WO2012014595A1 - 立体映像表示装置 - Google Patents

立体映像表示装置 Download PDF

Info

Publication number
WO2012014595A1
WO2012014595A1 PCT/JP2011/064002 JP2011064002W WO2012014595A1 WO 2012014595 A1 WO2012014595 A1 WO 2012014595A1 JP 2011064002 W JP2011064002 W JP 2011064002W WO 2012014595 A1 WO2012014595 A1 WO 2012014595A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
carbon atoms
preferable
och
Prior art date
Application number
PCT/JP2011/064002
Other languages
English (en)
French (fr)
Inventor
真治 稲垣
勝己 前島
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2012014595A1 publication Critical patent/WO2012014595A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • the present invention relates to a stereoscopic image display device including a display device and liquid crystal shutter glasses.
  • a stereoscopic image display device such as a television capable of displaying a stereoscopic image.
  • the methods for displaying the stereoscopic image there is a method for allowing the observer to recognize the two-dimensional image as a stereoscopic image by wearing dedicated stereoscopic image viewing glasses by the observer.
  • What is currently regarded as promising in this method is that the right-eye image and the left-eye image, which are parallax images, are alternately displayed in time series on a display that displays the image, and the observer as shown in FIG.
  • This is a method of wearing a pair of glasses for viewing a stereoscopic image (G) and viewing an image on a liquid crystal display (see, for example, Patent Document 1).
  • the stereoscopic image viewing glasses (G) are provided with liquid crystal shutters (S1) and (S2) for the left and right eyes, and a control circuit for controlling these liquid crystal shutters (S1) and (S2). C is connected.
  • a left-eye image (LI) and a right-eye image (RI) are assigned to two fields, respectively. These are displayed alternately in a time series at high speed.
  • the light emitted from the liquid crystal display (LCD) is linearly polarized light.
  • the switching between opening and closing of the left and right liquid crystal shutters (S1) and (S2) of the stereoscopic image viewing glasses G is performed in synchronization with the switching between the left eye image (LI) and the right eye image (RI).
  • the liquid crystal shutters (S1) and (S2) have polarizing plates (P1) and (P2) and a liquid crystal layer (LC), and are incident on the liquid crystal shutters (S1) and (S2).
  • the transmittance of the light emitted from the liquid crystal shutters (S1) and (S2) is controlled by controlling the rotation angle of the linearly polarized light (L) to be transmitted using the liquid crystal layer (LC).
  • the liquid crystal display (LCD) and the stereoscopic image viewing glasses (G) in this way, as shown in FIG. 2, when the left eye image (LI) is displayed on the liquid crystal display (LCD), The right-eye liquid crystal shutter (S1) is closed and the left-eye liquid crystal shutter (S2) is opened. Conversely, when the right-eye image (RI) is displayed, the right-eye liquid crystal shutter (S1) is opened. Thus, the liquid crystal shutter (S2) for the left eye is closed.
  • LCDs liquid crystal displays
  • organic EL displays that use circularly polarizing plates to prevent reflections
  • displays that emit linearly polarized light in addition to displays that emit linearly polarized light, displays that emit light that is not linearly polarized, such as plasma displays
  • a self-luminous display such as an organic EL display that does not use a circularly polarizing plate can be used to prevent reflection.
  • the above-described stereoscopic image display device including the liquid crystal display and the stereoscopic image viewing glasses has a problem of a decrease in luminance and a change in color when the head is tilted.
  • it is effective to use ⁇ / 4 on the surface on the viewing side of the liquid crystal display and the surface on the side far from the eyes of the stereoscopic image viewing glasses. .
  • Patent Document 2 discloses a stereoscopic image display device using glasses that use only one polarizing plate in order to suppress flicker of external light and improve the brightness of glasses.
  • crosstalk (a phenomenon that appears double) when the head is tilted can be suppressed by using a circular polarizing plate on the front surface of the display and the configuration of the glasses as ⁇ / 4 plate / liquid crystal cell / linear polarizing plate. Is disclosed.
  • the method using two glasses for the polarizing plate the method using one glasses for the polarizing plate, and the display when the head is tilted in both methods.
  • a ⁇ / 4 plate is required to improve performance. In particular, it is more important in a system in which a polarizing plate uses a pair of glasses.
  • the ⁇ / 4 plate has many uses related to antireflection films and liquid crystal display devices, and ⁇ / 4 plates that have been improved from various viewpoints have already been proposed (for example, Patent Documents 3 to 6). reference).
  • the present invention has been made in view of the above problems and situations, and its solution is to reduce crosstalk and color change when viewing a display device from an oblique direction during stereoscopic (3D) video viewing. It is to provide a stereoscopic video display device having visibility.
  • a stereoscopic image display device comprising a display device and liquid crystal shutter glasses, wherein the display device is provided with a ⁇ / 4 plate and a polarizer in this order from the viewing side. From the viewing side, a polarizer, a liquid crystal cell, and a ⁇ / 4 plate are provided in this order, and the total ⁇ Rt 1 to n of the thickness direction retardations Rt of all optical compensation layers (where n represents an integer). ) And the phase difference Rtc in the thickness direction when the shutter of the liquid crystal cell is in the closed state satisfy the following formula (1).
  • Formula (1) ⁇ 100 nm ⁇ ( ⁇ Rt 1 to n + Rtc) ⁇ 150 nm 2.
  • a driving mode of the liquid crystal cell of the liquid crystal shutter glasses is an ECB mode.
  • the stereoscopic image display device according to any one of items 1 to 4, wherein the ⁇ / 4 plate of the display device has a hard coat layer.
  • the stereoscopic image display device according to any one of items 1 to 5, wherein the ⁇ / 4 plate of the display device contains a cellulose ester resin.
  • FIG. 1 Schematic diagram of conventional stereoscopic image viewing glasses
  • G Schematic diagram of a conventional stereoscopic image display device
  • the stereoscopic image display device of the present invention is a stereoscopic image display device including a display device and liquid crystal shutter glasses, and the front display device is provided with a ⁇ / 4 plate and a polarizer in this order from the viewing side.
  • the liquid crystal shutter glasses a polarizer, a liquid crystal cell, and a ⁇ / 4 plate are provided in this order from the viewing side, and the total ⁇ Rt 1 to n of the thickness direction retardations of all the optical compensation layers is provided. (Where n represents an integer) and the retardation Rtc in the thickness direction of the liquid crystal cell satisfy the above formula (1).
  • This feature is a technical feature common to the inventions according to claims 1 to 6.
  • the driving mode of the liquid crystal cell of the liquid crystal shutter glasses is an ECB mode from the viewpoint of manifesting the effects of the present invention.
  • the Nz coefficient of at least one of the ⁇ / 4 plates is in the range of 1.1 to 4.0.
  • the Nz coefficient of the ⁇ / 4 plate of the display device is larger than the Nz coefficient of the ⁇ / 4 plate of the liquid crystal shutter glasses.
  • the ⁇ / 4 plate of the display device preferably has a hard coat layer. Moreover, it is preferable that the ⁇ / 4 plate of the display device includes a cellulose ester resin.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the following terms and symbols used in the present application are defined as follows. (1) “n x ” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “n y ” is the direction in the plane perpendicular to the slow axis (ie, the slow axis direction). , The fast axis direction), and “n z ” is the refractive index in the thickness direction.
  • n x n y
  • n x and n y are not only exactly equal, but also a case where n x and ny are substantially equal.
  • substantially equal in the present application, n x and n y in a range which does not give practical effect on the overall optical properties of the liquid crystal panel is a spirit encompasses vary.
  • In-plane retardation Ro refers to a retardation value in a film (layer) plane measured with light having a wavelength of 590 nm at 23 ° C. and 55% RH.
  • Ro (n x ⁇ n y ) ⁇ d.
  • Thinness direction retardation Rt refers to a thickness direction retardation value measured with light having a wavelength of 590 nm at 23 ° C. and 55% RH.
  • Rt is the slow axis direction of the film (layer) at a wavelength of 590 nm, a fast axis direction, refractive index in the thickness direction, respectively, and n x, n y, n z , d of (nm) of the film (layer)
  • Rt ⁇ (n x + n y ) / 2 ⁇ n z ) ⁇ ⁇ d.
  • Nz coefficient is a value calculated by the formula: Rt / Ro + 0.5.
  • the stereoscopic image display device of the present invention is a stereoscopic image display device including a display device and liquid crystal shutter glasses, and the front display device is provided with a ⁇ / 4 plate and a polarizer in this order from the viewing side.
  • a polarizer, a liquid crystal cell, and a ⁇ / 4 plate are provided in this order from the viewing side, and the total ⁇ Rt 1 to n of the thickness direction retardations of all the optical compensation layers is provided. (Where n represents an integer) and the retardation Rtc in the thickness direction of the liquid crystal cell satisfy the following formula (1).
  • ⁇ Rt 1 to n in the above formula (1) represents the sum of thickness direction retardations from the first optical compensation layer to the nth optical compensation layer.
  • the subscript “1” of Rt 1 to n and Rt c represents the first optical compensation layer
  • the subscript “2” represents the second optical compensation layer
  • the subscript “n” represents the first optical compensation layer.
  • n represents an optical compensation layer
  • the subscript “c” represents a liquid crystal cell.
  • ⁇ Rt 1 to n in the above formula (1) represents the phase difference in the thickness direction of the first to fifth optical compensation layers.
  • Rt 1 to Rt 5 respectively.
  • ⁇ Rt 1 to n Rt 1 + Rt 2 + Rt 3 + Rt 4 + Rt 5 It is.
  • the “optical compensation layer” in the present application refers to a polarizing plate protective film such as a ⁇ / 4 plate and a TAC film existing between the polarizer on the front side of the display device and the polarizer of the liquid crystal shutter glasses, and the like. It is a retardation film.
  • the driving mode of the liquid crystal cell of the liquid crystal shutter glasses is preferably an ECB mode from the viewpoint of the effect of the present invention. Details of the driving mode of the liquid crystal cell will be described later.
  • the Nz coefficient of at least one of the ⁇ / 4 plates is in the range of 1.1 to 4.0. Furthermore, it is preferable that the Nz coefficient of the ⁇ / 4 plate of the display device is larger than the Nz coefficient of the ⁇ / 4 plate of the liquid crystal shutter glasses.
  • the ⁇ / 4 plate of the display device preferably has a hard coat layer. Moreover, it is preferable that the ⁇ / 4 plate of the display device includes a cellulose ester resin.
  • Formula (1) ⁇ 100 nm ⁇ ( ⁇ Rt 1 to n + Rtc) ⁇ 150 nm
  • Formula (3) ⁇ 30 nm ⁇ ( ⁇ Rt 1 to n + Rtc) ⁇ 50 nm
  • the “ ⁇ / 4 plate” used in the present invention means a plate having a function of converting linearly polarized light having a specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light).
  • the ⁇ / 4 plate has an in-plane retardation value Ro of about 1 ⁇ 4 for a predetermined wavelength of light (usually in the visible light region).
  • the Nz coefficient of at least one of the ⁇ / 4 plates is in the range of 1.1 to 4.0. Further, the Nz coefficient of the ⁇ / 4 plate of the display device is preferably larger than the Nz coefficient of the ⁇ / 4 plate of the liquid crystal shutter glasses.
  • the ⁇ / 4 plate of the display device preferably has a hard coat layer. Moreover, it is preferable that the ⁇ / 4 plate of the display device includes a cellulose ester resin.
  • Ro (550) measured at a wavelength of 550 nm is preferably in the range of 110 to 170 nm, Ro (550) is preferably 120 to 160 nm, and Ro (550) is 130 to 150 nm. More preferably.
  • the ⁇ / 4 plate according to the present invention is a retardation plate (film) having a retardation of approximately 1 ⁇ 4 of the wavelength in the visible light wavelength range in order to obtain almost perfect circularly polarized light in the visible light wavelength range. It is preferable that
  • the term “retardation of approximately 1 ⁇ 4 in the wavelength range of visible light” means a retardation value represented by the following formula (i) measured at a wavelength of 450 nm, with a larger retardation at a wavelength of 400 to 700 nm.
  • the difference Ro (550) between a certain Ro (450) and a retardation value measured at a wavelength of 550 nm, Ro (550) ⁇ Ro (450) is preferably 2 to 34 nm, more preferably 4 to 32 nm. 8 to 28 nm is particularly preferable.
  • Formula (i): Ro (n x ⁇ n y ) ⁇ d
  • Rt ⁇ (n x + n y ) / 2 ⁇ n z ⁇ ⁇ d
  • n x, n y is, 23 °C ⁇ 55% RH, 450nm
  • refractive indices n x at 550nm or 590 nm maximum refractive index in the plane of the film, also referred to as a slow axis direction of the refractive index.
  • n y reffractive index in the direction perpendicular to the slow axis in the film plane
  • d is the film thickness (nm).
  • Ro, Rt, and ⁇ can be measured using an automatic birefringence meter.
  • Ro is calculated by birefringence measurement at each wavelength in an environment of 23 ° C. and 55% RH.
  • is based on the longitudinal direction of the film (0 °).
  • a circularly polarizing plate is obtained by laminating so that the angle between the slow axis of the ⁇ / 4 plate and the transmission axis of the polarizer described later is substantially 45 °. “Substantially 45 °” means 40 to 50 °.
  • the angle between the slow axis in the plane of the ⁇ / 4 plate and the transmission axis of the polarizer is preferably 41 to 49 °, more preferably 42 to 48 °, and more preferably 43 to 47 °. Is more preferably 44 to 46 °.
  • the Nz coefficient of at least one of the ⁇ / 4 plates is preferably in the range of 1.1 to 4.0, more preferably in the range of 1.3 to 3.5, and 1.5 to Most preferred is a range of 2.5.
  • the ⁇ / 4 plate according to the present invention can be prepared using various resin base materials, but is preferably an embodiment containing a cellulose ester resin.
  • the cellulose ester resin that can be used in the present invention is selected from cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose phthalate. It is preferable that there is at least one.
  • particularly preferred cellulose esters include cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate.
  • substitution degree of the mixed fatty acid ester when an acyl group having 2 to 4 carbon atoms is used as a substituent, the substitution degree of the acetyl group is X, and the substitution degree of the propionyl group or butyryl group is Y.
  • a cellulose resin containing a cellulose ester that simultaneously satisfies the following formulas (I) and (II) is preferable.
  • the cellulose ester used in the present invention preferably has a weight average molecular weight Mw / number average molecular weight Mn ratio of 1.5 to 5.5, particularly preferably 2.0 to 5.0, The cellulose ester is preferably 2.5 to 5.0, more preferably 3.0 to 5.0.
  • the raw material cellulose of the cellulose ester used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood, but softwood is more preferable.
  • a cotton linter is preferably used from the viewpoint of peelability during film formation.
  • the cellulose ester made from these can be mixed suitably or can be used independently.
  • the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (coniferous): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.
  • cellulose ester resin 1 g is added to 20 ml of pure water (electric conductivity 0.1 ⁇ S / cm or less, pH 6.8), and the pH is 6 when stirred in a nitrogen atmosphere at 25 ° C. for 1 hr. It is preferable that the electric conductivity is 1 to 100 ⁇ S / cm.
  • the ⁇ / 4 plate according to the present invention may be used in combination with a thermoplastic resin other than the cellulose acetate as long as the effects of the present invention are not impaired.
  • thermoplastic resin refers to a resin that becomes soft when heated to the glass transition temperature or melting point and can be molded into the desired shape.
  • thermoplastic resins include polyethylene (PE), high density polyethylene, medium density polyethylene, low density polyethylene, polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene (PS).
  • PE polyethylene
  • PVC polyvinyl chloride
  • PS polyvinylidene chloride
  • PS polystyrene
  • PA polyamide
  • nylon polyacetal
  • PC polycarbonate
  • m-PPE modified polyphenylene ether
  • PBT polybutylene terephthalate
  • PET Polyethylene terephthalate
  • GF-PET glass fiber reinforced polyethylene terephthalate
  • COP cyclic polyolefin
  • polyphenylene sulfide PPS
  • polytetrafluoroethylene PTFE
  • polysulfone polyethersulfone
  • amorphous polyarylate liquid crystal polymer
  • polyether Ether ketone thermoplastic polyimide (PI)
  • PAI polyamideimide
  • the residual sulfuric acid content in the cellulose resin used in the present invention is preferably in the range of 0.1 to 40 ppm in terms of elemental sulfur. These are considered to be contained in the form of salts. If the residual sulfuric acid content exceeds 40 ppm, the deposit on the die lip during heat melting increases, such being undesirable. Moreover, since it becomes easy to fracture
  • a smaller amount is preferable, but if it is less than 0.1, it is not preferable because the burden of the washing step of the cellulose resin becomes too large. This is not well understood, although an increase in the number of washings may affect the resin. Further, the range of 0.1 to 30 ppm is preferable.
  • the residual sulfuric acid content can be similarly measured by ASTM-D817-96.
  • the total residual acid amount including other (such as acetic acid) residual acid is preferably 1000 ppm or less, more preferably 500 ppm or less, and even more preferably 100 ppm or less.
  • a poor solvent such as methanol or ethanol
  • a mixed solvent of a poor solvent and a good solvent can be used as long as it is a poor solvent.
  • Organic impurities can be removed.
  • the cellulose resin In order to improve the heat resistance, mechanical properties, optical properties, etc. of the cellulose resin, it can be dissolved in a good solvent of the cellulose resin and then reprecipitated in the poor solvent to remove low molecular weight components and other impurities of the cellulose resin. it can. Furthermore, another polymer or low molecular weight compound may be added after the reprecipitation treatment of the cellulose resin.
  • the cellulose resin used in the present invention has few bright spot foreign substances when formed into a film.
  • a bright spot foreign material is an arrangement in which two polarizing plates are arranged orthogonally (crossed Nicols), a cellulose resin film is placed between them, and light from a light source is applied from one surface, and the cellulose resin film is applied from the other surface. It is the point where the light from the light source appears to leak when At this time, the polarizing plate used for the evaluation is desirably composed of a protective film having no bright spot foreign matter, and preferably a glass plate is used for protecting the polarizer.
  • the cause of bright spot foreign matter is considered to be one of the causes of unacetylated or low acetylated cellulose contained in the cellulose resin.
  • 0.01 mm or more is preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, more preferably 50 pieces / cm 2 or less, and 30 pieces / cm 2 or less. Preferably, it is preferably 10 pieces / cm 2 or less, but most preferably none.
  • the bright spots of 0.005 to 0.01 mm or less are preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, and 50 pieces / cm 2 or less. The number is preferably 30 pieces / cm 2 or less, more preferably 10 pieces / cm 2 or less, and most preferably none.
  • a cellulose resin composition also referred to as a dope
  • a plasticizer, an ultraviolet absorber, an antioxidant, a stabilizer and the like are added and mixed rather than filtering the cellulose resin alone.
  • the cellulose resin may be dissolved in a solvent during the synthesis and reduced by filtration. Filtration is preferably performed with the viscosity of the melt containing the cellulose resin being 10,000 P or less, more preferably 5000 P or less, still more preferably 1000 P or less, and even more preferably 500 P or less.
  • the filter medium conventionally known materials such as glass fibers, cellulose fibers, filter paper, and fluorine resins such as tetrafluoroethylene resin are preferably used, and ceramics and metals are particularly preferably used.
  • the absolute filtration accuracy is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, still more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less. These can be used in combination as appropriate.
  • the filter medium can be either a surface type or a depth type, but the depth type is preferably used because it is relatively less clogged.
  • the ⁇ / 4 plate according to the present invention may be obtained by appropriately mixing polymer components other than cellulose resin.
  • the polymer component to be mixed is preferably one having excellent compatibility with the cellulose resin, and the transmittance when formed into a film is 80% or more, more preferably 90% or more, and further preferably 92% or more.
  • Organic solvents that dissolve cellulose esters and are useful for cellulose ester solution or dope formation include chlorinated organic solvents and non-chlorinated organic solvents.
  • Methylene chloride methylene chloride
  • non-chlorine organic solvent examples include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1, Examples include 1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, and nitroethane.
  • a dissolution method at room temperature can be used, but an insoluble material can be obtained by using a dissolution method such as a high-temperature dissolution method, a cooling dissolution method, or a high-pressure dissolution method. Can be reduced, which is preferable.
  • a dissolution method such as a high-temperature dissolution method, a cooling dissolution method, or a high-pressure dissolution method. Can be reduced, which is preferable.
  • cellulose esters other than cellulose triacetate methylene chloride can be used, but methyl acetate, ethyl acetate, and acetone are preferably used. Particularly preferred is methyl acetate.
  • an organic solvent having good solubility with respect to the cellulose ester is referred to as a good solvent, and has a main effect on dissolution, and an organic solvent used in a large amount among them is a main (organic) solvent or a main ( Organic) solvent.
  • the dope used in the present invention preferably contains 1 to 40% by mass of an alcohol having 1 to 4 carbon atoms in addition to the organic solvent.
  • these are gelling solvents that make dope film (web) gel when the dope is cast on a metal support and the solvent starts to evaporate and the ratio of alcohol increases, making the web strong and easy to peel off from the metal support. When these ratios are small, there is also a role of promoting the dissolution of the cellulose ester of the non-chlorine organic solvent.
  • the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, ethanol is preferred because it has excellent dope stability, has a relatively low boiling point, and has good drying properties.
  • These organic solvents are called poor solvents because they are not soluble in cellulose esters alone.
  • the concentration of the cellulose ester in the dope is adjusted to 15 to 30% by mass and the dope viscosity is set to a range of 100 to 500 Pa ⁇ s.
  • Additives added to the dope include plasticizers, ultraviolet absorbers, retardation adjusting agents, antioxidants, deterioration inhibitors, peeling aids, surfactants, dyes, fine particles, and the like.
  • additives other than fine particles may be added during the preparation of the cellulose ester solution, or may be added during the preparation of the fine particle dispersion. It is preferable to add a plasticizer, an antioxidant, an ultraviolet absorber, or the like that imparts heat and moisture resistance to the polarizing plate used in the liquid crystal image display device. The additive will be described below.
  • R 1 to R 8 each independently represents a substituted or unsubstituted alkylcarbonyl group or a substituted or unsubstituted arylcarbonyl group, and R 1 to R 8 are the same as each other Or different.
  • R represents any one of R 1 to R 8 .
  • substituents such as a phenyl group and an alkoxy group included in the alkylcarbonyl group and the arylcarbonyl group shown in the following table are preferable.
  • a four-headed colben equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen gas inlet tube was mixed with 34.2 g (0.1 mol) of sucrose, 180.8 g (0.8 mol) of benzoic anhydride, 379. 7 g (4.8 mol) was charged, the temperature was raised while bubbling nitrogen gas from a nitrogen gas introduction tube with stirring, and an esterification reaction was carried out at 70 ° C. for 5 hours.
  • the inside of the Kolben is depressurized to 4 ⁇ 10 2 Pa or less, and after excess pyridine is distilled off at 60 ° C., the inside of the Kolben is depressurized to 1.3 ⁇ 10 Pa or less and the temperature is raised to 120 ° C. Most of the acid and benzoic acid formed were distilled off. Then, 1 L of toluene and 300 g of a 0.5% by mass aqueous sodium carbonate solution were added, and the mixture was stirred at 50 ° C. for 30 minutes and then allowed to stand to separate a toluene layer.
  • the total average substitution degree of the compound represented by the general formula A (1) added to the cellulose acetate film in the present invention is 6.1 to 6.9, and the range of the substitution degree is 4.0 to 8 0.0 is preferred.
  • the substitution degree distribution may be adjusted to the desired substitution degree by adjusting the esterification reaction time or mixing compounds having different substitution degrees.
  • a compound known as a so-called plasticizer is added for the purpose of improving mechanical properties, imparting flexibility, imparting water absorption resistance, reducing water vapor permeability, adjusting retardation, etc.
  • plasticizer phosphoric acid esters and carboxylic acid esters are preferably used.
  • the plasticizer is preferably contained in the ⁇ / 4 plate in an amount of 1 to 40% by mass, particularly 1 to 30% by mass.
  • phosphate ester examples include triphenyl phosphate, tricresyl phosphate, phenyl diphenyl phosphate, and the like.
  • carboxylic acid esters examples include phthalic acid esters and citric acid esters; phthalic acid esters such as dimethyl phthalate, diethyl phosphate, dioctyl phthalate and diethyl hexyl phthalate; and citrate esters such as acetyl triethyl citrate and acetyl citrate. Mention may be made of tributyl. Other examples include butyl oleate, methylacetyl ricinoleate, dibutyl sebacate, and triacetin. Alkylphthalylalkyl glycolates are also preferably used for this purpose.
  • the alkyl in the alkylphthalylalkyl glycolate is an alkyl group having 1 to 8 carbon atoms.
  • alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl ethyl glycolate, Ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, propyl phthalyl ethyl glycolate, methyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl Phthalyl ethyl glycolate, propyl phthalyl butyl
  • citrate plasticizer represented by the following general formulas (1) to (3) described in Japanese Patent No. 3793184 as a plasticizer.
  • Polyhydric alcohol esters are also preferably used.
  • the polyhydric alcohol used in the ⁇ / 4 plate according to the present invention is represented by the following general formula (4).
  • R 1 represents an n-valent organic group
  • n represents a positive integer of 2 or more
  • the OH group represents an alcoholic and / or phenolic hydroxy group (hydroxyl group).
  • the polyhydric alcohol ester plasticizer is a plasticizer composed of an ester of a divalent or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.
  • a divalent to 20-valent aliphatic polyhydric alcohol ester is preferred.
  • polyhydric alcohols examples include the following, but the present invention is not limited to these.
  • Examples include 1,3,5-triol, pinacol, sorbitol, trimethylolpropane, trimethylolethane, and xylitol.
  • monocarboxylic acid used for polyhydric alcohol ester there is no restriction
  • Preferred examples of the monocarboxylic acid include the following, but the present invention is not limited to this.
  • aliphatic monocarboxylic acid a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used.
  • the number of carbon atoms is more preferably 1-20, and particularly preferably 1-10.
  • acetic acid is contained, the compatibility with the cellulose ester is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanoic acid, undecylic acid, lauric acid, tridecylic acid, Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, laccelic acid, undecylenic acid, olein Examples thereof include unsaturated fatty acids such as acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
  • Examples of preferred alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenylcarboxylic acid, naphthalenecarboxylic acid, and tetralincarboxylic acid.
  • benzoic acid and toluic acid examples include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenylcarboxylic acid, naphthalenecarboxylic acid, and tetralincarboxylic acid.
  • the aromatic monocarboxylic acid which has, or those derivatives can be mentioned.
  • Benzoic acid is particularly preferable.
  • the molecular weight of the polyhydric alcohol ester is not particularly limited, but is preferably 300 to 1500, and more preferably 350 to 750. A higher molecular weight is preferred because it is less likely to volatilize, and a smaller one is preferred in terms of moisture permeability and compatibility with cellulose ester.
  • the carboxylic acid used in the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Moreover, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.
  • These compounds are preferably contained in an amount of 1 to 30% by mass, preferably 1 to 20% by mass, based on the cellulose ester.
  • a compound having a vapor pressure at 200 ° C. of 1400 Pa or less is preferable.
  • These compounds may be added together with the cellulose ester and the solvent during the preparation of the cellulose ester solution, or may be added during or after the solution preparation.
  • an aromatic terminal ester plasticizer represented by the following general formula (5).
  • B- (GA) n-GB (Wherein B is a benzene monocarboxylic acid residue, G is an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol residue having 4 to 12 carbon atoms, A represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms, and n represents an integer of 1 or more.)
  • benzene monocarboxylic acid component of the aromatic terminal ester plasticizer used in the present invention examples include, for example, benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, There are normal propyl benzoic acid, aminobenzoic acid, acetoxybenzoic acid and the like, and these can be used as one kind or a mixture of two or more kinds, respectively.
  • alkylene glycol component having 2 to 12 carbon atoms of the aromatic terminal ester plasticizer used in the present invention examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, , 3-butanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2, 2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl-1 , 5-pentanediol 1,6-hexanediol, 2,2,4-trimethyl 1,3-pentanediol, 2-ethyl 1,
  • Examples of the oxyalkylene glycol component having 4 to 12 carbon atoms of the aromatic terminal ester include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, and the like. It can be used as a mixture of two or more.
  • aryl glycol component having 6 to 12 carbon atoms of the aromatic terminal ester examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol, etc., and these glycols are used as one kind or a mixture of two or more kinds. it can.
  • alkylene dicarboxylic acid component having 4 to 12 carbon atoms of the aromatic terminal ester examples include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid. These are used as one kind or a mixture of two or more kinds.
  • aryl dicarboxylic acid component having 6 to 12 carbon atoms examples include phthalic acid, terephthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, and the like.
  • the number average molecular weight of the aromatic terminal ester plasticizer is preferably 300 to 2000, and more preferably 500 to 1500.
  • the acid value is 0.5 mgKOH / g or less, the hydroxy (hydroxyl group) value is 25 mgKOH / g or less, more preferably the acid value is 0.3 mgKOH / g or less, and the hydroxy (hydroxyl group) value is 15 mgKOH / g or less. Is preferred.
  • the acid value refers to the number of milligrams of potassium hydroxide necessary for neutralizing the acid (carboxy group present at the molecular end) contained in 1 g of the sample.
  • the acid value and hydroxy (hydroxyl group) value are measured according to JIS K0070 (1992).
  • Example No. 1 (Aromatic terminal ester sample)> A reaction vessel was charged with 820 parts (5 moles) of phthalic acid, 608 parts (8 moles) of 1,2-propylene glycol, 610 parts (5 moles) of benzoic acid, and 0.30 parts of tetraisopropyl titanate as a catalyst. While stirring in an air stream, a reflux condenser was attached to reflux excess monohydric alcohol, and heating was continued at 130 to 250 ° C. until the acid value became 2 or less, and water produced was continuously removed. Next, the distillate is removed under reduced pressure of 6.65 ⁇ 10 3 Pa to 4 ⁇ 10 2 Pa or less at 200 to 230 ° C., and then filtered to obtain an aromatic terminal ester having the following properties. It was.
  • Viscosity 25 ° C., mPa ⁇ s); 19815 Acid value: 0.4 ⁇ Sample No. 2 (Aromatic terminal ester sample)> A sample was used except that 500 parts (3.5 moles) of adipic acid, 305 parts (2.5 moles) of benzoic acid, 583 parts (5.5 moles) of diethylene glycol and 0.45 parts of tetraisopropyl titanate as a catalyst were used in the reaction vessel. No. In the same manner as in No. 1, an aromatic terminal ester having the following properties was obtained.
  • Viscosity 25 ° C., mPa ⁇ s); 90 Acid value: 0.05 ⁇ Sample No. 3 (Aromatic terminal ester sample)> Sample No. except that 410 parts (2.5 moles) of phthalic acid, 610 parts (5 moles) of benzoic acid, 737 parts (5.5 moles) of dipropylene glycol and 0.40 parts of tetraisopropyl titanate as the catalyst were used in the reaction vessel. . In the same manner as in No. 1, an aromatic terminal ester plasticizer having the following properties was obtained.
  • Viscosity 25 ° C., mPa ⁇ s); 43400 Acid value: 0.2
  • this invention is not limited to this.
  • the content of the aromatic terminal ester plasticizer used in the present invention is preferably 1 to 20% by mass, particularly preferably 3 to 11% by mass, in the cellulose ester film.
  • polyester polyol used in the present invention is a polymer in which the terminal which can be obtained by a condensation reaction of a dibasic acid or an ester-forming derivative thereof and a glycol becomes a hydroxy group (hydroxyl group).
  • the ester-forming derivatives referred to here are esterified products of dibasic acids, dibasic acid chlorides, and anhydrides of dibasic acids.
  • the polyester polyol is obtained by dehydration condensation reaction of aromatic dibasic acid and glycol, addition of glycol to aromatic anhydride dibasic acid and dehydration condensation reaction, or by alcohol removal of esterified product of aromatic dibasic acid and glycol. It can be obtained by a condensation reaction.
  • an aromatic dicarboxylic acid having 10 to 16 carbon atoms or an ester-forming derivative thereof can be used.
  • a benzene ring structure, a naphthalene ring structure, Dicarboxylic acids having an aromatic ring structure such as anthracene ring structure and ester-forming derivatives thereof can be used.
  • orthophthalic acid having a substituent isophthalic acid having a substituent, terephthalic acid having a substituent, substituted Group-containing phthalic anhydride, 1,4-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,6 -Anthracene dicarboxylic acid and the like, esterified products thereof, acid chlorides, 1,8-naphth Can be mentioned acid anhydrides of dicarboxylic acids, and these may have a substituent on the aromatic ring, can be used in combination use of two or more of these alone.
  • 1,4-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid and esterified products thereof are preferable.
  • Preferred are 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid and esterified products thereof and particularly preferred are 2,6-naphthalenedicarboxylic acid and esterified products thereof.
  • the average of the carbon number of the dibasic acid of the polyester polyol means the carbon number of the dibasic acid when the polyester polyol is polymerized using a single dibasic acid.
  • the polyester polyol is polymerized using, it means the sum of the products of the carbon number of each dibasic acid and the molar fraction of the dibasic acid.
  • the average number of carbon atoms of the dibasic acid used as a raw material for the polyester polyol is in the range of 10 to 16. If the average carbon number of the dibasic acid is 10 or more, the retardation is excellent. If the average carbon number is 16 or less, the compatibility with the cellulose ester is remarkably excellent.
  • the dibasic acid preferably has an average carbon number of 10 to 14, more preferably an average carbon number of 10 to 12.
  • the aromatic dibasic acid having 10 to 16 carbon atoms and other dibasic acids can be used in combination.
  • the dibasic acid that can be used in combination is preferably a dicarboxylic acid having 4 to 9 carbon atoms or an ester-forming derivative thereof.
  • a dicarboxylic acid having 4 to 9 carbon atoms or an ester-forming derivative thereof for example, succinic acid, glutaric acid, adipic acid, maleic acid, succinic anhydride, maleic anhydride, orthophthalic acid
  • acids isophthalic acid, terephthalic acid, phthalic anhydride and the like, esterified products, and acid chlorides thereof.
  • glycol examples include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 2-methyl 1,3-propanediol, 1,2-butanediol, 1,3- Butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, neopentyl glycol, 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1,4-cyclohexanediol Etc.
  • ethylene glycol diethylene glycol, 1,2-propylene glycol, 2-methyl 1,3-propanediol are preferable, and ethylene glycol, diethylene glycol, 1, 2 Propylene glycol.
  • the polyester polyol according to the present invention comprises the dibasic acid or an ester-forming derivative thereof and a glycol, if necessary, in the presence of an esterification catalyst, for example, within a temperature range of 180 to 250 ° C., for 10 to 25 hours. It can be produced by an esterification reaction by a well-known and usual method.
  • a solvent such as toluene or xylene may be used, but a method using no solvent or glycol used as a raw material as a solvent is preferable.
  • esterification catalyst for example, tetraisopropyl titanate, tetrabutyl titanate, p-toluenesulfonic acid, dibutyltin oxide and the like can be used.
  • the esterification catalyst is preferably used in an amount of 0.01 to 0.5 parts by mass with respect to 100 parts by mass of the total amount of dibasic acids or their ester-forming derivatives.
  • the molar ratio when the dibasic acid or ester-forming derivative thereof is reacted with the glycol must be a molar ratio in which the terminal group of the polyester becomes a hydroxy group (hydroxyl group).
  • the glycol is 1.1 to 10 moles per mole of the functional derivative.
  • glycol is 1.5 to 7 moles per mole of dibasic acid or ester-forming derivative thereof, and more preferably, per mole of dibasic acid or ester-forming derivative thereof.
  • the glycol is 2-5 moles.
  • the carboxy group terminal in the polyester polyol lowers the humidity stability, so that the content is preferably low.
  • the acid value is preferably 5.0 or less, more preferably 1.0 or less, and particularly preferably 0.5 or less.
  • the acid value refers to the number of milligrams of potassium hydroxide necessary to neutralize the acid (carboxy group present in the sample) contained in 1 g of the sample.
  • the acid value is measured according to JIS K0070.
  • the polyester polyol preferably has a hydroxy (hydroxyl group) value (OHV) in the range of 35 mg / g to 220 mg / g.
  • the hydroxy (hydroxyl group) value here means the number of milligrams of potassium hydroxide required to neutralize acetic acid bonded to a hydroxy group (hydroxyl group) when OH group contained in 1 g of a sample is acetylated.
  • Acetic anhydride is used to acetylate OH groups in the sample, and unused acetic acid is titrated with a potassium hydroxide solution, and obtained from the difference from the initial titration value of acetic anhydride.
  • the content of hydroxy group (hydroxyl group) in the polyester polyol is preferably 70% or more.
  • the hydroxy group (hydroxyl group) content is preferably 70% or more, more preferably 90% or more, and most preferably 99% or more.
  • a compound having a hydroxy group (hydroxyl group) content of 50% or less is not included in the hydroxy group (hydroxyl group) polyester polyol because one of the end groups is substituted with a group other than the hydroxy group (hydroxyl group). .
  • the hydroxy group (hydroxyl group) content can be determined by the following formula (A).
  • Formula (A): Y / X ⁇ 100 hydroxy group (hydroxyl group) content (%)
  • the polyester polyol preferably has a number average molecular weight within a range of 300 to 3,000, and more preferably has a number average molecular weight of 350 to 2,000.
  • the degree of dispersion of the molecular weight of the polyester polyol according to the present invention is preferably 1.0 to 3.0, and more preferably 1.0 to 2.0. If the degree of dispersion is within the above range, a polyester polyol having excellent compatibility with the cellulose ester can be obtained.
  • the polyester polyol preferably contains 50% or more of a component having a molecular weight of 300 to 1800. By setting the number average molecular weight within the above range, the compatibility can be greatly improved.
  • the temperature to be distilled off under reduced pressure is preferably 100 to 200 ° C, more preferably 120 to 180 ° C, and particularly preferably 130 to 170 ° C.
  • the degree of reduced pressure during distillation under reduced pressure is preferably 0.01 to 67 kPa (0.1 to 500 Torr), more preferably 0.06 to 27 kPa (0.5 to 200 Torr), and most preferably 0.13 to 13 kPa (1 to 100 Torr).
  • Polyester polyol number average molecular weight (Mn) and dispersity can be measured using gel permeation chromatography (GPC).
  • measurement conditions is as follows, but is not limited to this, and an equivalent measurement method can be used.
  • Solvent Tetrahydrofuran (THF) Column: TSKgel G2000HXL (Tosoh Co., Ltd., two connected and used) Column temperature: 40 ° C Sample concentration: 0.1% by mass Apparatus: HLC-8220 (manufactured by Tosoh Corporation) Flow rate: 1.0ml / min Calibration curve: A calibration curve by PStQuick F (manufactured by Tosoh Corporation) is used.
  • polyester polyol in the film. More preferably, it is 5 to 20% by mass.
  • dibasic acids having 10 to 16 carbon atoms are shown below, but the present invention is not limited thereto.
  • ultraviolet absorbers examples include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, triazine compounds, and the like. A benzotriazole-based compound with little coloring is preferable. Further, ultraviolet absorbers described in JP-A-10-182621, JP-A-8-337574, JP-A-2001-72782, JP-A-6-148430, JP-A-2002-31715, JP-A-2002-169020, 2002-2002. Polymer ultraviolet absorbers described in 47357, 2002-363420, and 2003-113317 are also preferably used.
  • an ultraviolet absorber from the viewpoint of preventing the deterioration of polarizers and liquid crystals, it has an excellent ability to absorb ultraviolet rays having a wavelength of 370 nm or less, and from the viewpoint of liquid crystal display properties, it has little absorption of visible light having a wavelength of 400 nm or more Is preferred.
  • UV absorbers useful in the present invention include 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) ) Benzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl)- 5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′, 6 ′′ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole, 2,2-methylenebis ( 4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2'-hydroxy-3 ' tert-butyl-5'-methylphenyl) -5-chlorobenzotriazo
  • TINUVIN 109 As commercially available products, TINUVIN 109, TINUVIN 171 and TINUVIN 326 (all manufactured by BASF Japan) can be preferably used.
  • An example of the polymeric ultraviolet absorber is a reactive ultraviolet absorber RUVA-93 manufactured by Otsuka Chemical Co., Ltd.
  • benzophenone compounds include 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, bis (2-methoxy-4-hydroxy-) 5-benzoylphenylmethane) and the like, but are not limited thereto.
  • the ultraviolet absorber described above preferably used in the present invention is preferably a benzotriazole-based ultraviolet absorber or a benzophenone-based ultraviolet absorber, which has high transparency and is excellent in the effect of preventing the deterioration of the polarizing plate and the liquid crystal element, and unnecessary coloring.
  • a benzotriazole-based ultraviolet absorber with a lower content is particularly preferably used.
  • the ultraviolet absorber can be added to the dope without limitation as long as it dissolves the ultraviolet absorber in the dope.
  • the ultraviolet absorber is cellulose such as methylene chloride, methyl acetate, dioxolane and the like.
  • Dope by dissolving in a good solvent for the ester, or a mixed solvent of a good solvent and a poor solvent such as a lower aliphatic alcohol (methanol, ethanol, propanol, butanol, etc.) and adding it to the cellulose ester solution as an ultraviolet absorber solution Is preferred.
  • a lower aliphatic alcohol methanol, ethanol, propanol, butanol, etc.
  • the content of the ultraviolet absorber is 0.01 to 5% by mass, particularly 0.5 to 3% by mass.
  • antioxidant hindered phenol compounds are preferably used.
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate] is preferred.
  • hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine and tris (2,4-di-t A phosphorus processing stabilizer such as -butylphenyl phosphite may be used in combination.
  • the amount of these compounds added is preferably 1 ppm to 1.0%, more preferably 10 to 1000 ppm in terms of mass ratio with respect to the cellulose ester.
  • R 2 to R 5 each independently represent a hydrogen atom or a substituent
  • R 6 represents a hydrogen atom or a substituent
  • n 1 or 2.
  • R 1 represents a substituent
  • R 1 represents a divalent linking group.
  • R 2 to R 5 each independently represent a hydrogen atom or a substituent.
  • the substituent represented by R 2 to R 5 is not particularly limited, and examples thereof include alkyl groups (eg, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pentyl group, hexyl group, octyl group).
  • cycloalkyl group eg, cyclopentyl group, cyclohexyl group, etc.
  • aryl group eg, phenyl group, naphthyl group, etc.
  • acylamino group eg, acetylamino group, benzoylamino
  • alkylthio group eg, methylthio group, ethylthio group, etc.
  • arylthio group eg, phenylthio group, naphthylthio group, etc.
  • alkenyl group eg, vinyl group, 2-propenyl group, 3-butenyl group, 1- Methyl-3-propenyl group, 3-pentenyl group, 1-methyl-3-butenyl group, 4-hexenyl group , Cyclohexenyl group etc.
  • halogen atom eg fluorine atom, chlorine atom, bro
  • Coxycarbonylamino group eg methoxycarbonylamino group, phenoxycarbonylamino group etc.
  • alkoxycarbonyl group eg methoxycarbonyl group, ethoxycarbonyl group, phenoxycarbonyl etc.
  • aryloxycarbonyl group eg phenoxycarbonyl group etc.
  • R 2 to R 5 are preferably a hydrogen atom or an alkyl group.
  • R 6 represents a hydrogen atom or a substituent, and examples of the substituent represented by R 6 include the same groups as the substituents represented by R 2 to R 5 .
  • R 6 is preferably a hydrogen atom.
  • n 1 or 2.
  • R 1 when n is 1, R 1 represents a substituent, and when n is 2, R 1 represents a divalent linking group.
  • R 1 represents a substituent examples of the substituent include the same groups as the substituents represented by R 2 to R 5 .
  • R 1 represents a divalent linking group examples of the divalent linking group include an alkylene group that may have a substituent, an arylene group that may have a substituent, an oxygen atom, a nitrogen atom, and a sulfur atom. Or a combination of these linking groups.
  • n is preferably 1, and R 1 at that time is preferably a substituted or unsubstituted phenyl group, and more preferably a phenyl group substituted with an alkyl group.
  • These compounds can be used singly or in combination of two or more, and the blending amount is appropriately selected within a range not impairing the object of the present invention, but is usually 0.001 per 100 parts by mass of the cellulose ester. Up to 10.0 parts by mass, preferably 0.01 to 5.0 parts by mass, and more preferably 0.1 to 3.0 parts by mass.
  • Retardation adjuster As a compound to be added for adjusting the retardation, an aromatic compound having two or more aromatic rings as described in EP 911,656A2 can be used.
  • the aromatic ring of the aromatic compound includes an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring. Particularly preferred is an aromatic heterocycle, and the aromatic heterocycle is generally an unsaturated heterocycle. Of these, a 1,3,5-triazine ring is particularly preferred.
  • the number of aromatic rings contained in the aromatic compound is preferably 2 to 20, more preferably 2 to 12, still more preferably 2 to 8, and most preferably 3 to 6.
  • the bonding relationship between two aromatic rings can be classified into (a) when forming a condensed ring, (b) when directly connecting with a single bond, and (c) when connecting via a linking group (for aromatic rings). Spiro bonds cannot be formed).
  • the bond relationship may be any of (a) to (c).
  • Examples of the condensed ring of (a) include an indene ring, a naphthalene ring, an azulene ring, a fluorene ring, a phenanthrene ring, an anthracene ring, an acenaphthylene ring, a naphthacene ring, a pyrene ring, Indole ring, isoindole ring, benzofuran ring, benzothiophene ring, indolizine ring, benzoxazole ring, benzothiazole ring, benzimidazole ring, benzotriazole ring, purine ring, indazole ring, chromene ring, quinoline ring, isoquinoline ring, quinolidine Ring, quinazoline ring, cinnoline ring, quinoxaline ring, phthalazine ring, pter
  • the single bond is preferably a bond between carbon atoms of two aromatic rings.
  • Two aromatic rings may be bonded by two or more single bonds to form an aliphatic ring or a non-aromatic heterocyclic ring between the two aromatic rings.
  • the linking group is also preferably bonded to carbon atoms of two aromatic rings.
  • the linking group is preferably an alkylene group, an alkenylene group, an alkynylene group, —CO—, —O—, —NH—, —S—, or a combination thereof. Examples of linking groups composed of combinations are shown below. In addition, the relationship between the left and right in the following examples of the linking group may be reversed.
  • the aromatic ring and the linking group may have a substituent.
  • substituents include a halogen atom (F, Cl, Br, I), hydroxy, carboxy, cyano, amino, nitro, sulfo, carbamoyl, sulfamoyl, ureido, alkyl group, alkenyl group, alkynyl group, aliphatic acyl group , Aliphatic acyloxy group, alkoxy group, alkoxycarbonyl group, alkoxycarbonylamino group, alkylthio group, alkylsulfonyl group, aliphatic amide group, aliphatic sulfonamido group, aliphatic substituted amino group, aliphatic substituted carbamoyl group, aliphatic Substituted sulfamoyl groups, aliphatic substituted ureido groups and non-aromatic heterocyclic groups are included.
  • a halogen atom
  • the alkyl group preferably has 1 to 8 carbon atoms.
  • a chain alkyl group is preferable to a cyclic alkyl group, and a linear alkyl group is particularly preferable.
  • the alkyl group may further have a substituent (eg, hydroxy, carboxy, alkoxy group, alkyl-substituted amino group).
  • Examples of alkyl groups (including substituted alkyl groups) include methyl, ethyl, n-butyl, n-hexyl, 2-hydroxyethyl, 4-carboxybutyl, 2-methoxyethyl and 2-diethylaminoethyl.
  • the alkenyl group preferably has 2 to 8 carbon atoms.
  • a chain alkenyl group is preferable to a cyclic alkenyl group, and a linear alkenyl group is particularly preferable.
  • the alkenyl group may further have a substituent.
  • alkenyl groups include vinyl, allyl and 1-hexenyl.
  • the alkynyl group preferably has 2 to 8 carbon atoms.
  • a chain alkynyl group is preferable to a cyclic alkynyl group, and a linear alkynyl group is particularly preferable.
  • the alkynyl group may further have a substituent. Examples of the alkynyl group include ethynyl, 1-butynyl and 1-hexynyl.
  • the aliphatic acyl group preferably has 1 to 10 carbon atoms.
  • Examples of the aliphatic acyl group include acetyl, propanoyl and butanoyl.
  • the number of carbon atoms in the aliphatic acyloxy group is preferably 1-10.
  • Examples of the aliphatic acyloxy group include acetoxy.
  • the number of carbon atoms of the alkoxy group is preferably 1-8.
  • the alkoxy group may further have a substituent (eg, an alkoxy group).
  • Examples of alkoxy groups (including substituted alkoxy groups) include methoxy, ethoxy, butoxy and methoxyethoxy.
  • the number of carbon atoms in the alkoxycarbonyl group is preferably 2-10.
  • alkoxycarbonyl group examples include methoxycarbonyl and ethoxycarbonyl.
  • the number of carbon atoms of the alkoxycarbonylamino group is preferably 2-10.
  • alkoxycarbonylamino group examples include methoxycarbonylamino and ethoxycarbonylamino.
  • the alkylthio group preferably has 1 to 12 carbon atoms.
  • Examples of the alkylthio group include methylthio, ethylthio and octylthio.
  • the alkylsulfonyl group preferably has 1 to 8 carbon atoms.
  • Examples of the alkylsulfonyl group include methanesulfonyl and ethanesulfonyl.
  • the aliphatic amide group preferably has 1 to 10 carbon atoms. Examples of the aliphatic amide group include acetamide. The number of carbon atoms of the aliphatic sulfonamide group is preferably 1-8.
  • Examples of the aliphatic sulfonamido group include methanesulfonamido, butanesulfonamido and n-octanesulfonamido.
  • the number of carbon atoms of the aliphatic substituted amino group is preferably 1-10.
  • Examples of the aliphatic substituted amino group include dimethylamino, diethylamino and 2-carboxyethylamino.
  • the aliphatic substituted carbamoyl group preferably has 2 to 10 carbon atoms.
  • Examples of the aliphatic substituted carbamoyl group include methylcarbamoyl and diethylcarbamoyl.
  • the number of carbon atoms in the aliphatic substituted sulfamoyl group is preferably 1-8.
  • Examples of the aliphatic substituted sulfamoyl group include methylsulfamoyl and diethylsulfamoyl.
  • the number of carbon atoms in the aliphatic substituted ureido group is preferably 2 to 10.
  • Examples of the aliphatic substituted ureido group include methylureido.
  • non-aromatic heterocyclic groups include piperidino and morpholino.
  • the molecular weight of the retardation adjusting agent is preferably 300 or more and 800 or less. This can arbitrarily select the polarity of the molecular structure from the viewpoint of suppressing the outflow at the time of use and processing of the polarizing plate.
  • the compound having a 1,3,5-triazine ring is preferably a compound represented by the following general formula (R).
  • X 1 is a single bond, —NR 4 —, —O— or —S—;
  • X 2 is a single bond, —NR 5 —, —O— or —S—;
  • X 3 is a single bond, —NR 6 —, —O— or —S—;
  • R 1 , R 2 and R 3 are an alkyl group, an alkenyl group, an aryl group or a heterocyclic group;
  • R 4 , R 5 and R 6 are a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, or a heterocyclic group.
  • the compound represented by the general formula (R) is particularly preferably a melamine compound.
  • X 1 , X 2 and X 3 are each —NR 4 —, —NR 5 — and —NR 6 —, or X 1 , X 2 and X 3 3 is a single bond, and R 1 , R 2 and R 3 are heterocyclic groups having a free valence on the nitrogen atom.
  • -X 1 -R 1 , -X 2 -R 2 and -X 3 -R 3 are preferably the same substituent.
  • R 1 , R 2 and R 3 are particularly preferably aryl groups.
  • R 4 , R 5 and R 6 are particularly preferably hydrogen atoms.
  • the alkyl group is preferably a chain alkyl group rather than a cyclic alkyl group.
  • a linear alkyl group is preferred to a branched alkyl group.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 8, still more preferably 1 to 6 is most preferred.
  • the alkyl group may have a substituent.
  • the substituent include a halogen atom, an alkoxy group (for example, each group such as methoxy, ethoxy, and epoxyethyloxy) and an acyloxy group (for example, acryloyloxy, methacryloyloxy).
  • the alkenyl group is preferably a chain alkenyl group rather than a cyclic alkenyl group.
  • a linear alkenyl group is preferable to a branched chain alkenyl group.
  • the number of carbon atoms in the alkenyl group is preferably 2 to 30, more preferably 2 to 20, still more preferably 2 to 10, still more preferably 2 to 8, and further preferably 2 to 6 is most preferred.
  • the alkenyl group may have a substituent.
  • substituents include a halogen atom, an alkoxy group (for example, each group such as methoxy, ethoxy, and epoxyethyloxy) or an acyloxy group (for example, each group such as acryloyloxy and methacryloyloxy).
  • the aryl group is preferably a phenyl group or a naphthyl group, and particularly preferably a phenyl group.
  • the aryl group may have a substituent.
  • substituents include, for example, a halogen atom, hydroxy, cyano, nitro, carboxy, alkyl group, alkenyl group, aryl group, alkoxy group, alkenyloxy group, aryloxy group, acyloxy group, alkoxycarbonyl group, alkenyloxy Carbonyl group, aryloxycarbonyl group, sulfamoyl, alkyl-substituted sulfamoyl group, alkenyl-substituted sulfamoyl group, aryl-substituted sulfamoyl group, sulfonamido group, carbamoyl, alkyl-substituted carbamoyl group, alkenyl-substituted carbamoyl group, aryl-substituted carbamoyl group, amide group, alkylthio Groups, alkenylthio groups, arylthio Group
  • alkyl part of the alkoxy group, acyloxy group, alkoxycarbonyl group, alkyl-substituted sulfamoyl group, sulfonamido group, alkyl-substituted carbamoyl group, amide group, alkylthio group and acyl group are also synonymous with the alkyl group described above.
  • the alkenyl group has the same meaning as the alkenyl group described above.
  • alkenyl part of the alkenyloxy group, acyloxy group, alkenyloxycarbonyl group, alkenyl-substituted sulfamoyl group, sulfonamido group, alkenyl-substituted carbamoyl group, amide group, alkenylthio group and acyl group is also synonymous with the alkenyl group described above.
  • aryl group examples include groups such as phenyl, ⁇ -naphthyl, ⁇ -naphthyl, 4-methoxyphenyl, 3,4-diethoxyphenyl, 4-octyloxyphenyl, and 4-dodecyloxyphenyl. Can be mentioned.
  • aryloxy group examples include aryloxy group, acyloxy group, aryloxycarbonyl group, aryl-substituted sulfamoyl group, sulfonamido group, aryl-substituted carbamoyl group, amide group, arylthio group, and acyl group are the same as the above aryl group.
  • the heterocyclic ring in the heterocyclic group having aromaticity is generally an unsaturated heterocyclic ring, preferably a heterocyclic ring having the largest number of double bonds.
  • the heterocyclic ring is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring, and most preferably a 6-membered ring.
  • the hetero atom in the heterocyclic ring is preferably an atom such as N, S or O, and particularly preferably an N atom.
  • the aromatic heterocyclic ring is particularly preferably a pyridine ring (the heterocyclic group is, for example, each group such as 2-pyridyl or 4-pyridyl).
  • the heterocyclic group may have a substituent. Examples of the substituent of the heterocyclic group are the same as the examples of the substituent of the aryl moiety.
  • the heterocyclic group is preferably a heterocyclic group having a free valence on the nitrogen atom.
  • the heterocyclic group having a free valence on the nitrogen atom is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring, and a 5-membered ring. Is most preferred.
  • the heterocyclic group may have a plurality of nitrogen atoms.
  • hetero atom in the heterocyclic group may have a hetero atom other than the nitrogen atom (for example, O atom, S atom).
  • the heterocyclic group may have a substituent. Specific examples of the substituent of the heterocyclic group are the same as the specific examples of the substituent of the aryl moiety.
  • heterocyclic group having a free valence on the nitrogen atom are shown below.
  • a melamine polymer may be used as the compound having a 1,3,5-triazine ring.
  • the melamine polymer is preferably synthesized by a polymerization reaction between a melamine compound represented by the following general formula (M) and a carbonyl compound.
  • R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a heterocyclic group.
  • alkyl group, alkenyl group, aryl group, heterocyclic group, and substituents thereof have the same meanings as the groups and substituents described in the general formula (R).
  • the polymerization reaction between the melamine compound and the carbonyl compound is the same as the method for synthesizing a normal melamine resin (for example, melamine formaldehyde resin). Moreover, you may use a commercially available melamine polymer (melamine resin).
  • a normal melamine resin for example, melamine formaldehyde resin.
  • the molecular weight of the melamine polymer is preferably 2,000 to 400,000. Specific examples of the repeating unit of the melamine polymer are shown below.
  • two or more kinds of compounds having 1,3,5-triazine ring may be used in combination.
  • Two or more kinds of discotic compounds (for example, a compound having a 1,3,5-triazine ring and a compound having a porphyrin skeleton) may be used in combination.
  • At least one benzoic acid phenyl ester compound as a retardation adjusting agent, and among them, it is preferable to add a benzoic acid phenyl ester compound represented by the following general formula (6) to the cellulose resin.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 9 and R 10 each independently represents a hydrogen atom or a substituent, and R 1 , R 2 , At least one of R 3 , R 4 and R 5 represents an electron donating group, R 8 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or 2 to 6 alkynyl groups, aryl groups having 6 to 12 carbon atoms, alkoxy groups having 1 to 12 carbon atoms, aryloxy groups having 6 to 12 carbon atoms, alkoxycarbonyl groups having 2 to 12 carbon atoms, acylamino having 2 to 12 carbon atoms Represents a group, a cyano group or a halogen atom.
  • At least one of R 1 , R 2 , R 3 , R 4 and R 5 represents an electron donating group.
  • one of R 1 , R 3 or R 5 is an electron donating group, and R 3 is more preferably an electron donating group.
  • the electron donating group means one having Hammet's ⁇ p value of O or less
  • Chem. Rev. , 91, 165 (1991) having a Hammett ⁇ p value of O or less is preferably applicable, and more preferably ⁇ 0.85 to 0. Examples thereof include an alkyl group, an alkoxy group, an amino group, and a hydroxy group (hydroxyl group).
  • the electron donating group is preferably an alkyl group or an alkoxy group, more preferably an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 6 carbon atoms). Having 1 to 4 carbon atoms).
  • R 1 is preferably a hydrogen atom or an electron donating group, more preferably an alkyl group, an alkoxy group, an amino group, or a hydroxy group (hydroxyl group), still more preferably an alkyl group having 1 to 4 carbon atoms, An alkoxy group having 1 to 12 carbon atoms, particularly preferably an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 12 carbon atoms). 4), and most preferably a methoxy group.
  • R 2 is preferably a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group (hydroxyl group), more preferably a hydrogen atom, an alkyl group, or an alkoxy group, still more preferably a hydrogen atom or an alkyl group.
  • an alkoxy group preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, particularly preferably Has 1 to 4 carbon atoms.
  • Particularly preferred are a hydrogen atom, a methyl group and a methoxy group.
  • R 3 is preferably a hydrogen atom or an electron donating group, more preferably a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group (hydroxyl group), and still more preferably an alkyl group or an alkoxy group. And particularly preferably an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 4 carbon atoms). Most preferred are n-propoxy group, ethoxy group and methoxy group.
  • R 4 is preferably a hydrogen atom or an electron donating group, more preferably a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group (hydroxyl group), still more preferably a hydrogen atom or a carbon number of 1
  • An alkyl group having 1 to 4 carbon atoms and an alkoxy group having 1 to 12 carbon atoms preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 4 carbon atoms.
  • Particularly preferred are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and an alkoxy group having 1 to 4 carbon atoms, and most preferred are a hydrogen atom, a methyl group, and a methoxy group.
  • R 5 is preferably a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxy group (hydroxyl group), more preferably a hydrogen atom, an alkyl group, or an alkoxy group, still more preferably a hydrogen atom or an alkyl group.
  • alkoxy groups preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, particularly preferably 1 carbon atom.
  • Particularly preferred are a hydrogen atom, a methyl group and a methoxy group.
  • R 6 , R 7 , R 9 and R 10 are preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom, more preferably a hydrogen atom or a halogen atom. And more preferably a hydrogen atom.
  • R 8 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or an aryl having 6 to 12 carbon atoms Represents an oxy group, an alkoxycarbonyl group having 2 to 12 carbon atoms, an acylamino group having 2 to 12 carbon atoms, a cyano group or a halogen atom, and if possible, may have a substituent. Substituent T can be applied. Further, the substituent may be further substituted.
  • R 8 is preferably an alkyl group having 1 to 4 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or an alkoxycarbonyl having 2 to 12 carbon atoms.
  • a more preferred compound is a compound represented by the following general formula (6-A).
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 have the same meanings as those in general formula (6), The preferred range is also the same.
  • R 11 represents an alkyl group having 1 to 12 carbon atoms.
  • the alkyl group represented by R 11 may be linear or branched, and may further have a substituent, but is preferably an alkyl group having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms.
  • a more preferred compound is a compound represented by the following general formula (6-B).
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 9 , R 10 have the same meanings as those in general formula (6), and preferred ranges are also the same. It is.
  • R 11 has the same meaning as that in formula (6-A), and the preferred range is also the same.
  • X is an alkyl group having 1 to 4 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryloxy group having 6 to 12 carbon atoms, carbon Represents an alkoxycarbonyl group having 2 to 12 carbon atoms, an acylamino group having 2 to 12 carbon atoms, a cyano group, or a halogen atom.
  • X is preferably an alkyl group, alkynyl group, aryl group, alkoxy group or aryloxy group, more preferably an aryl group or alkoxy group.
  • Group, an aryloxy group, more preferably an alkoxy group preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 4 carbon atoms).
  • X is preferably an alkynyl group, aryl group, alkoxycarbonyl group or cyano group, more preferably an aryl group (preferably Is a cyano group or an alkoxycarbonyl group (preferably 2 to 12 carbon atoms), more preferably an aryl group (preferably an aryl group having 6 to 12 carbon atoms, more preferably a phenyl group).
  • a p-cyanophenyl group, and p-methoxyphenyl an alkoxycarbonyl group (preferably having 2 to 12, more preferably 2 to 6, more preferably 2 to 4, more preferably methoxycarbonyl, Ethoxycarbonyl, n-propoxycarbonyl), cyano group, particularly preferably phenyl group, methoxy group A carbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, and a cyano group.
  • a more preferred compound is a compound represented by the following general formula (6-C).
  • R 1 , R 2 , R 4 , R 5 , R 11 and X have the same meanings as those in general formula (6-B), and preferred ranges are also the same.
  • a particularly preferable compound is a compound represented by the following general formula (6-D).
  • R 2 , R 4 and R 5 have the same meanings as those in general formula (6-C), and the preferred ranges are also the same.
  • R 21 and R 22 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • X1 represents an aryl group having 6 to 12 carbon atoms, an alkoxycarbonyl group having 2 to 12 carbon atoms, or a cyano group.
  • R 21 represents an alkyl group having 1 to 4 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, and more preferably an ethyl group or a methyl group.
  • R 22 represents an alkyl group having 1 to 4 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, more preferably an ethyl group or a methyl group, and still more preferably a methyl group.
  • X 1 is an aryl group having 6 to 12 carbon atoms, an alkoxycarbonyl group having 2 to 12 carbon atoms, or a cyano group, preferably an aryl group having 6 to 10 carbon atoms, an alkoxycarbonyl group having 2 to 6 carbon atoms, or a cyano group. More preferably a phenyl group, a p-cyanophenyl group, a p-methoxyphenyl group, a methoxycarbonyl, an ethoxycarbonyl, an n-propoxycarbonyl, a cyano group, and still more preferably a phenyl group, a methoxycarbonyl group, an ethoxycarbonyl group. N-propoxycarbonyl group, cyano group.
  • the most preferable compound is a compound represented by the following general formula (6-E).
  • R 2 , R 4 and R 5 have the same meanings as those in general formula (6-D), and the preferred ranges are also the same.
  • any one is a group represented by —OR 13 .
  • R 13 is an alkyl group having 1 to 4 carbon atoms.
  • R 21 , R 22 and X 1 have the same meanings as those in formula (6-D), and preferred ranges are also the same.
  • R 4 and R 5 are a group represented by —OR 13 , and more preferably, R 4 is a group represented by —OR 13 .
  • R 13 represents an alkyl group having 1 to 4 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, more preferably an ethyl group or a methyl group, and still more preferably a methyl group.
  • substituent T examples include an alkyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms.
  • alkyl group preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms.
  • an alkenyl group preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, for example, vinyl, allyl, 2-butenyl, 3-pentenyl, etc.
  • alkynyl groups preferably 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms,
  • acyl group preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include acetyl, benzoyl, formyl, and pivaloyl.
  • An alkoxycarbonyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), aryloxy A carbonyl group (preferably having a carbon number of 7 to 20, more preferably a carbon number of 7 to 16, particularly preferably a carbon number of 7 to 10, such as phenyloxycarbonyl), an acyloxy group (preferably having a carbon number of 2 To 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms.
  • Xyl benzoyloxy and the like.
  • An acylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetylamino and benzoylamino), alkoxycarbonylamino group (Preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms such as methoxycarbonylamino), aryloxycarbonylamino group (preferably having carbon number) 7 to 20, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonylamino, and the like, and sulfonylamino groups (preferably 1 to 20 carbon atoms, more preferably Has 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms.
  • sulfamoyl groups preferably having 0 to 20 carbon atoms, more preferably 0 to 16 carbon atoms, particularly preferably 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl) , Dimethylsulfamoyl, phenylsulfamoyl, etc.
  • a carbamoyl group preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms.
  • carbamoyl Methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl, etc.
  • an alkylthio group preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio, Ethylthio etc.
  • arylthio group preferably Has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, and the like
  • a sulfonyl group preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.
  • sulfinyl group preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably Has 1 to 12 carbon atoms, such as
  • ureido, methylureido, phenylureido, etc. phosphoric acid amide groups (preferably having 1 to 20 carbon atoms, More preferably, it has 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include diethyl phosphoric acid amide and phenyl phosphoric acid amide.
  • Hydroxy group mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carboxy group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, Heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms).
  • halogen atom eg fluorine atom, chlorine atom, bromine atom, iodine atom
  • cyano group eg fluorine atom, chlorine atom, bromine atom, iodine atom
  • sulfo group carboxy group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, Heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms).
  • hetero atom examples include a nitrogen atom, an oxygen atom, a sulfur atom, specifically, for example, imidazolyl, pyridyl, quinolyl, furyl, piperidyl , Morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, etc.), silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms). For example, trimethylsilyl, triphenylsilyl, etc.)These substituents may be further substituted.
  • substituents when there are two or more substituents, they may be the same or different. If possible, they may be linked together to form a ring.
  • the compound represented by the general formula (6) used in the present invention can be synthesized by a general ester reaction of a substituted benzoic acid and a phenol derivative, and any reaction may be used as long as it is an ester bond forming reaction.
  • Examples thereof include a method of converting a substituted benzoic acid into an acid halide and then condensing with phenol, a method of dehydrating condensation of a substituted benzoic acid and a phenol derivative using a condensing agent or a catalyst, and the like.
  • reaction solvent examples include hydrocarbon solvents (preferably toluene and xylene), ether solvents (preferably dimethyl ether, tetrahydrofuran, dioxane and the like), ketone solvents, ester solvents, acetonitrile and dimethyl.
  • hydrocarbon solvents preferably toluene and xylene
  • ether solvents preferably dimethyl ether, tetrahydrofuran, dioxane and the like
  • ketone solvents preferably dimethyl ether, tetrahydrofuran, dioxane and the like
  • ester solvents acetonitrile and dimethyl.
  • the reaction temperature is preferably 0 to 150 ° C, more preferably 0 to 100 ° C, still more preferably 0 to 90 ° C, and particularly preferably 20 ° C to 90 ° C.
  • a base either an organic base or an inorganic base may be used, preferably an organic base such as pyridine, tertiary alkylamine (preferably triethylamine, ethyldiisopropyl). Pyramine and the like).
  • organic base such as pyridine, tertiary alkylamine (preferably triethylamine, ethyldiisopropyl). Pyramine and the like).
  • the ⁇ / 4 plate according to the present invention preferably contains a rod-like compound having a maximum absorption wavelength ( ⁇ max) of the ultraviolet absorption spectrum of the solution shorter than 250 nm as a retardation adjusting agent.
  • the rod-like compound preferably has at least one aromatic ring, and more preferably has at least two aromatic rings.
  • the rod-like compound preferably has a linear molecular structure.
  • the linear molecular structure means that the molecular structure of the rod-like compound is linear in the most thermodynamically stable structure.
  • the most thermodynamically stable structure can be obtained by crystal structure analysis or molecular orbital calculation.
  • molecular orbital calculation can be performed using molecular orbital calculation software (eg, WinMOPAC2000, manufactured by Fujitsu Limited) to obtain a molecular structure that minimizes the heat of formation of a compound.
  • the molecular structure being linear means that the angle of the molecular structure is 140 degrees or more in the thermodynamically most stable structure obtained by calculation as described above.
  • the rod-shaped compound preferably exhibits liquid crystallinity. More preferably, the rod-like compound exhibits liquid crystallinity upon heating (has thermotropic liquid crystallinity).
  • the liquid crystal phase is preferably a nematic phase or a smectic phase.
  • the rod-like compound is preferably a trans-1,4-cyclohexanedicarboxylic acid ester compound represented by the following general formula (7).
  • Ar 1 and Ar 2 are each independently an aromatic group.
  • the aromatic group includes an aryl group (aromatic hydrocarbon group), a substituted aryl group, an aromatic heterocyclic group, and a substituted aromatic heterocyclic group.
  • An aryl group and a substituted aryl group are more preferable than an aromatic heterocyclic group and a substituted aromatic heterocyclic group.
  • the heterocyclic ring of the aromatic heterocyclic group is generally unsaturated.
  • the aromatic heterocycle is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring.
  • Aromatic heterocycles generally have the most double bonds. As a hetero atom, a nitrogen atom, an oxygen atom or a sulfur atom is preferable, and a nitrogen atom or a sulfur atom is more preferable.
  • aromatic heterocycles include furan ring, thiophene ring, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, pyrazole ring, furazane ring, triazole ring, pyran ring, pyridine ring , Pyridazine ring, pyrimidine ring, pyrazine ring, and 1,3,5-triazine ring.
  • a benzene ring As the aromatic ring of the aromatic group, a benzene ring, a furan ring, a thiophene ring, a pyrrole ring, an oxazole ring, a thiazole ring, an imidazole ring, a triazole ring, a pyridine ring, a pyrimidine ring and a pyrazine ring are preferable, and a benzene ring is particularly preferable. .
  • substituent of the substituted aryl group and the substituted aromatic heterocyclic group include a halogen atom (F, Cl, Br, I), hydroxy, carboxy, cyano, amino, alkylamino group (eg, methylamino, ethylamino).
  • substituent of the substituted aryl group and the substituted aromatic heterocyclic group examples include a halogen atom, cyano, carboxy, hydroxy, amino, alkyl-substituted amino group, acyl group, acyloxy group, amide group, alkoxycarbonyl group, alkoxy group, alkylthio And groups and alkyl groups are preferred.
  • the alkyl moiety of the alkylamino group, alkoxycarbonyl group, alkoxy group, and alkylthio group and the alkyl group may further have a substituent.
  • alkyl moieties and substituents of alkyl groups include halogen atoms, hydroxy, carboxy, cyano, amino, alkylamino groups, nitro, sulfo, carbamoyl, alkylcarbamoyl groups, sulfamoyl, alkylsulfamoyl groups, ureido, alkylureido Group, alkenyl group, alkynyl group, acyl group, acyloxy group, alkoxy group, aryloxy group, alkoxycarbonyl group, aryloxycarbonyl group, alkoxycarbonylamino group, alkylthio group, arylthio group, alkylsulfonyl group, amide group and non-aromatic An aromatic heterocyclic group is included.
  • a halogen atom hydroxy, amino, alkylamino group, acyl group, acyloxy group, acylamino group, alkoxycarbonyl group and alkoxy group are preferable.
  • L 1 is a divalent linking group selected from the group consisting of an alkylene group, an alkenylene group, an alkynylene group, a divalent saturated heterocyclic group, —O—, —CO—, and combinations thereof. is there.
  • the alkylene group may have a cyclic structure.
  • cyclic alkylene group cyclohexylene is preferable, and 1,4-cyclohexylene is particularly preferable.
  • the chain alkylene group a linear alkylene group is more preferable than a branched alkylene group.
  • the alkylene group preferably has 1 to 20 carbon atoms, more preferably 1 to 15, more preferably 1 to 10, still more preferably 1 to 8, and still more preferably 1 to 15. 6 is most preferred.
  • the alkenylene group and the alkynylene group preferably have a chain structure rather than a cyclic structure, and more preferably have a linear structure rather than a branched chain structure.
  • the number of carbon atoms in the alkenylene group and alkynylene group is preferably 2 to 10, more preferably 2 to 8, still more preferably 2 to 6, and still more preferably 2 to 4. 2 (vinylene or ethynylene) is most preferred.
  • the divalent saturated heterocyclic group preferably has a 3- to 9-membered heterocyclic ring.
  • the hetero atom of the hetero ring is preferably an oxygen atom, a nitrogen atom, a boron atom, a sulfur atom, a silicon atom, a phosphorus atom or a germanium atom.
  • saturated heterocycles include piperidine ring, piperazine ring, morpholine ring, pyrrolidine ring, imidazolidine ring, tetrahydrofuran ring, tetrahydropyran ring, 1,3-dioxane ring, 1,4-dioxane ring, tetrahydrothiophene ring, 1 , 3-thiazolidine ring, 1,3-oxazolidine ring, 1,3-dioxolane ring, 1,3-dithiolane ring and 1,3,2-dioxaborolane.
  • Particularly preferred divalent saturated heterocyclic groups are piperazine-1,4-diylene, 1,3-dioxane-2,5-di
  • Ar 1 -L 2 -XL 3 -Ar 2 Ar 1 and Ar 2 are each independently an aromatic group.
  • the definition and examples of the aromatic group are the same as Ar 1 and Ar 2 in the formula (7).
  • L 2 and L 3 are each independently a divalent linking group selected from the group consisting of an alkylene group, —O—, —CO—, and combinations thereof.
  • the alkylene group preferably has a chain structure rather than a cyclic structure, and more preferably has a linear structure rather than a branched chain structure.
  • the number of carbon atoms of the alkylene group is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, still more preferably 1 to 4, and 1 or Most preferred is 2 (methylene or ethylene).
  • L 2 and L 3 are particularly preferably —O—CO— or —CO—O—.
  • X is 1,4-cyclohexylene, vinylene or ethynylene. Specific examples of the compound represented by formula (7) are shown below.
  • Specific examples (1) to (34), (41), (42), (46), (47), (52), (53) are two asymmetric carbons at the 1st and 4th positions of the cyclohexane ring. Has atoms.
  • the specific examples (1), (4) to (34), (41), (42), (46), (47), (52), (53) have a symmetric meso type molecular structure. Therefore, there is no optical isomer (optical activity) and only geometric isomers (trans and cis forms) exist.
  • the trans type (1-trans) and cis type (1-cis) of specific example (1) are shown below.
  • the rod-like compound preferably has a linear molecular structure. Therefore, the trans type is preferable to the cis type.
  • Specific examples (2) and (3) have optical isomers (a total of four isomers) in addition to geometric isomers. As for geometric isomers, the trans type is similarly preferable to the cis type.
  • the optical isomer is not particularly superior or inferior, and may be D, L, or a racemate.
  • the central vinylene bond includes a trans type and a cis type. For the same reason as above, the trans type is preferable to the cis type.
  • Two or more rod-like compounds having a maximum absorption wavelength ( ⁇ max) shorter than 250 nm in the ultraviolet absorption spectrum of the solution may be used in combination.
  • the rod-like compound can be synthesized with reference to methods described in literature.
  • fine particles can be contained in the ⁇ / 4 plate as a matting agent, whereby when the ⁇ / 4 plate is a long film, it can be easily conveyed and wound.
  • the particle size of the matting agent is preferably primary particles or secondary particles of 10 nm to 0.1 ⁇ m.
  • a substantially spherical matting agent having a primary particle acicular ratio of 1.1 or less is preferably used.
  • silicon dioxide is particularly preferable.
  • Preferred fine particles of silicon dioxide for the present invention include, for example, Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (Nippon Aerosil Co., Ltd.) manufactured by Nippon Aerosil Co., Ltd. What is marketed by a brand name can be mentioned, Aerosil 200V, R972, R972V, R974, R202, R812 can be used preferably.
  • Examples of polymer fine particles include silicone resin, fluorine resin, and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. Examples include Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.). Can do.
  • the fine silicon dioxide particles preferably have a primary average particle diameter of 20 nm or less and an apparent specific gravity of 70 g / L or more.
  • the average primary particle diameter is more preferably 5 to 16 nm, further preferably 5 to 12 nm. A smaller primary particle average diameter is preferred because haze is low.
  • the apparent specific gravity is preferably 90 to 200 g / L or more, and more preferably 100 to 200 g / L or more. Higher apparent specific gravity makes it possible to produce a high-concentration fine particle dispersion, which is preferable because no haze or aggregates are generated.
  • the addition amount of the matting agent in the present invention preferably lambda / 4 plate 1 m 2 per 0.01 ⁇ 1.0 g is more preferably 0.03 ⁇ 0.3 g, more preferably 0.08 ⁇ 0.16 g.
  • thermal stabilizers such as inorganic fine particles such as kaolin, talc, diatomaceous earth, quartz, calcium carbonate, barium sulfate, titanium oxide, and alumina, and alkaline earth metal salts such as calcium and magnesium may be added.
  • a surfactant, a peeling accelerator, an antistatic agent, a flame retardant, a lubricant, an oil agent and the like may be added.
  • the ⁇ / 4 plate according to the present invention may be produced by either a solution casting method or a melt casting method, but is preferably produced by a solution casting method.
  • the production of ⁇ / 4 plate according to the present invention is a step of preparing a dope by dissolving an additive such as cellulose acetate and the plasticizer in a solvent, and casting the dope on a belt-like or drum-like metal support.
  • an additive such as cellulose acetate and the plasticizer in a solvent
  • the ⁇ / 4 plate according to the present invention preferably contains 60 to 95% by mass of cellulose acetate in the solid content.
  • the concentration of cellulose acetate in the dope is preferably higher because the drying load after casting on a metal support can be reduced. However, if the concentration of cellulose acetate is too high, the load during filtration increases and the filtration accuracy increases. Becomes worse.
  • the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
  • the solvent used in the dope according to the present invention may be used alone or in combination of two or more, but it is preferable in terms of production efficiency to use a good solvent and a poor solvent of cellulose acetate, A larger amount of good solvent is preferred from the viewpoint of solubility of cellulose acetate.
  • the preferable range of the mixing ratio of the good solvent and the poor solvent is 70 to 98% by mass for the good solvent and 2 to 30% by mass for the poor solvent.
  • the good solvent and the poor solvent change depending on the degree of acetyl group substitution of cellulose acetate.
  • the cellulose ester acetate acetyl group substitution degree 2.4
  • Acetic acid ester acetyl group substitution degree 2.8
  • the good solvent used in the present invention is not particularly limited, and examples thereof include organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, and methyl acetoacetate. Particularly preferred is methylene chloride or methyl acetate.
  • the poor solvent used in the present invention is not particularly limited, but for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone and the like are preferably used.
  • the dope preferably contains 0.01 to 2% by mass of water.
  • a general method can be used as a method for dissolving cellulose acetate when preparing the dope described above.
  • heating and pressurization it is possible to heat above the boiling point at normal pressure. It is preferable to stir and dissolve while heating at a temperature that is equal to or higher than the boiling point of the solvent at normal pressure and that the solvent does not boil under pressure, in order to prevent the generation of massive undissolved materials called gels and macos.
  • a method in which cellulose acetate is mixed with a poor solvent and wetted or swollen, and then a good solvent is added and dissolved is also preferably used.
  • Pressurization may be performed by a method of injecting an inert gas such as nitrogen gas or a method of increasing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside.
  • a jacket type is preferable because temperature control is easy.
  • the heating temperature with the addition of a solvent is preferably higher from the viewpoint of the solubility of cellulose acetate, but if the heating temperature is too high, the required pressure increases and the productivity deteriorates.
  • a preferred heating temperature is 45 to 120 ° C, more preferably 60 to 110 ° C, and still more preferably 70 ° C to 105 ° C. The pressure is adjusted so that the solvent does not boil at the set temperature.
  • a cooling dissolution method is also preferably used, whereby cellulose acetate can be dissolved in a solvent such as methyl acetate.
  • the cellulose acetate solution is filtered using a suitable filter medium such as filter paper.
  • a suitable filter medium such as filter paper.
  • the absolute filtration accuracy is small in order to remove insoluble matters and the like.
  • a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium with 0.001 to 0.008 mm is more preferable, and a filter medium with 0.003 to 0.006 mm is more preferable.
  • the material of the filter medium there are no particular restrictions on the material of the filter medium, and ordinary filter media can be used. However, plastic filter media such as polypropylene and Teflon (registered trademark), and metal filter media such as stainless steel do not drop off fibers. preferable. It is preferable to remove and reduce impurities, particularly bright spot foreign matter, contained in the raw material cellulose acetate by filtration.
  • a bright spot foreign material is when two polarizing plates are placed in a crossed Nicol state, a cellulose ester film is placed between them, light is applied from the side of one polarizing plate, and observed from the side of the other polarizing plate. It is a point (foreign matter) where light from the opposite side appears to leak, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less. More preferably, it is 100 pieces / cm 2 or less, still more preferably 50 pieces / m 2 or less, still more preferably 0 to 10 pieces / cm 2 . Further, it is preferable that the number of bright spots of 0.01 mm or less is small.
  • the dope can be filtered by a normal method, but the method of filtering while heating at a temperature not lower than the boiling point of the solvent at normal pressure and in a range where the solvent does not boil under pressure is the filtration pressure before and after filtration.
  • the increase in the difference (referred to as differential pressure) is small and preferable.
  • a preferred temperature is 45 to 120 ° C., more preferably 45 to 70 ° C., and still more preferably 45 to 55 ° C.
  • the filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and further preferably 1.0 MPa or less.
  • the metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width can be 1 to 4 m.
  • the surface temperature of the metal support in the casting step is set to ⁇ 50 ° C. to below the temperature at which the solvent boils and does not foam. A higher temperature is preferable because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.
  • a preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C.
  • the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing warm air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
  • warm air considering the temperature drop of the web due to the latent heat of vaporization of the solvent, while using warm air above the boiling point of the solvent, there may be cases where wind at a temperature higher than the target temperature is used while preventing foaming. .
  • the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Particularly preferred is 20 to 30% by mass or 70 to 120% by mass.
  • the temperature at the peeling position on the metal support is preferably ⁇ 50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
  • the amount of residual solvent is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100 Note that M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
  • the web In the drying process of the cellulose acetate film, the web is peeled off from the metal support, further dried, and dried until the residual solvent amount is 0.5% by mass or less.
  • a roll drying method (a method in which a plurality of rolls arranged at the top and bottom are alternately passed through the web for drying) or a tenter method for drying while transporting the web is employed.
  • the web When peeling from the metal support, the web is stretched in the longitudinal direction due to the peeling tension and the subsequent conveying tension. Therefore, in the present invention, when peeling the web from the casting support, the peeling and conveying tensions are reduced as much as possible. It is preferable to carry out in the state. Specifically, for example, it is effective to set it to 50 to 170 N / m or less. At that time, it is preferable to apply a cold air of 20 ° C. or less to fix the web rapidly.
  • Ro (550) measured at a wavelength of 550 nm is preferably in the range of 110 to 170 nm, Ro (550) is preferably 120 to 160 nm, and Ro (550) is 130 to 150 nm. More preferably.
  • the ⁇ / 4 plate according to the present invention is a retardation plate (film) having a retardation of approximately 1 ⁇ 4 of the wavelength in the visible light wavelength range in order to obtain almost perfect circularly polarized light in the visible light wavelength range. It is preferable that
  • the term “retardation of approximately 1 ⁇ 4 in the wavelength range of visible light” means a retardation value represented by the following formula (i) measured at a wavelength of 450 nm, with a larger retardation at a wavelength of 400 to 700 nm.
  • the difference Ro (550) between a certain Ro (450) and a retardation value measured at a wavelength of 550 nm, Ro (550) ⁇ Ro (450) is preferably 2 to 34 nm, more preferably 4 to 32 nm. 8 to 28 nm is particularly preferable.
  • the ⁇ / 4 plate according to the present invention may be controlled by adjusting the stretching ratio of uniaxial stretching or by adjusting the refractive index by performing unbalanced biaxial stretching.
  • the draw ratio is adjusted so that the retardation value is ⁇ / 4.
  • the biaxial stretching treatment may be performed simultaneously in two directions or sequentially.
  • the retardation value Rt in the film thickness direction represented by the formula (ii) described later of the ⁇ / 4 plate according to the present invention is influenced by the draw ratio, but may be in the range of 0 to 400 nm. preferable.
  • Stretching is performed in the transport direction using the peripheral speed difference of the film transport roll, or by a tenter method in which both ends of the web are gripped with clips or the like in the direction orthogonal to the transport direction (also referred to as the width direction or the TD direction). It is also preferable to use a tenter that can independently control the gripping length of the web (distance from the start of gripping to the end of gripping) by the left and right gripping means.
  • a roll-shaped circularly polarizing plate can be produced simply by laminating a roll-shaped polarizer and a ⁇ / 4 plate with a roll-to-roll.
  • the angle between the longitudinal direction of the polarizer made of a roll-shaped polymer film and the absorption axis is substantially 45 °
  • a roll-shaped circularly polarizing plate can be produced simply by laminating a plate with a roll-to-roll.
  • a ⁇ / 4 plate in which the angle between the longitudinal direction and the in-plane slow axis is substantially 45 ° is obtained by stretching a roll-like cellulose ester film in a direction substantially 45 ° with respect to the longitudinal direction. It can be manufactured by processing.
  • FIG. 4 is a schematic diagram showing oblique stretching by a tenter.
  • the production of the stretched film according to the present invention is performed using a tenter.
  • This tenter is a device that widens a film fed from a film roll (feeding roll) in an oblique direction with respect to its traveling direction (moving direction of the middle point in the film width direction) in a heating environment by an oven.
  • the tenter includes an oven, a pair of rails on the left and right on which a gripping tool for transporting the film travels, and a number of gripping tools that travel on the rails. Both ends of the film fed out from the film roll and sequentially supplied to the entrance portion of the tenter are gripped by a gripping tool, the film is guided into the oven, and the film is released from the gripping tool at the exit portion of the tenter.
  • the film released from the gripping tool is wound around the core.
  • Each of the pair of rails has an endless continuous track, and the gripping tool which has released the grip of the film at the exit portion of the tenter travels outside and is sequentially returned to the
  • the rail shape of the tenter is asymmetrical on the left and right according to the orientation angle, stretch ratio, etc. given to the stretched film to be manufactured, and can be finely adjusted manually or automatically.
  • a long thermoplastic resin film is stretched, and the orientation angle ⁇ can be set to an arbitrary angle within the range of 40 ° to 80 ° with respect to the winding direction after stretching. Yes.
  • the gripping tool of the tenter is configured to travel at a constant speed with a certain distance from the front and rear gripping tools.
  • FIG. 4 shows a track (rail pattern) of a tenter rail used in the manufacturing method according to the present invention.
  • the feeding direction D1 of the thermoplastic resin film is different from the winding direction (MD direction) D2 of the stretched film, thereby obtaining a wide and uniform optical characteristic even in a stretched film having a relatively large orientation angle. It is possible.
  • the feeding angle ⁇ i is an angle formed by the feeding direction D1 of the film before stretching and the winding direction D2 of the film after stretching.
  • the feeding angle ⁇ i is set to 10 ° ⁇ i ⁇ 60 °, preferably 15 ° ⁇ i ⁇ 50 °. The By setting the feeding angle ⁇ i in the above range, the variation in the optical characteristics in the width direction of the obtained film becomes good (becomes small).
  • thermoplastic resin film fed from the film roll is gripped at both ends (both sides) by the left and right gripping tools at the tenter entrance (position a), and travels as the gripping tool travels.
  • the left and right grips CL, CR which are opposed to the direction of the film travel direction (feeding direction D1) at the tenter entrance (position a), run on the left-right asymmetric rail, and are in the preheating zone.
  • feeding direction D1 the direction of the film travel direction
  • substantially perpendicular indicates that the angle formed by the straight line connecting the aforementioned gripping tools CL and CR and the film feeding direction D1 is within 90 ⁇ 1 °.
  • Preheating zone refers to the section that runs while the interval between the gripping tools gripping both ends is kept constant at the oven entrance.
  • the stretching zone refers to an interval until the gap between the gripping tools gripping both ends starts to become constant again.
  • the cooling zone refers to a section in which the temperature in the zone is set to be equal to or lower than the glass transition temperature Tg ° C. of the thermoplastic resin constituting the film during a period in which the interval between the gripping tools after the stretching zone becomes constant again. .
  • the temperature of each zone is set to Tg + 5 to Tg + 20 ° C for the preheating zone, Tg to Tg + 20 ° C for the stretching zone, and Tg-30 to Tg ° C for the cooling zone, relative to the glass transition temperature Tg of the thermoplastic resin. It is preferable to do.
  • the draw ratio R (W / Wo) in the drawing step according to the present invention is preferably 1.3 to 3.0, more preferably 1.5 to 2.8. When the draw ratio is within this range, thickness unevenness in the width direction is reduced, which is preferable. In the stretching zone of the tenter stretching machine, if the stretching temperature is differentiated in the width direction, the thickness unevenness in the width direction can be further improved.
  • Wo represents the width of the film before stretching
  • W represents the width of the film after stretching.
  • the means for drying the web is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roll, microwave, or the like, but is preferably performed with hot air in terms of simplicity.
  • the drying temperature in the web drying step is preferably a glass transition temperature of the film of ⁇ 5 ° C. or lower, and it is effective to perform heat treatment at 100 ° C. or higher and 10 minutes or longer and 60 minutes or shorter. Drying is performed at a drying temperature of 100 to 200 ° C., more preferably 110 to 160 ° C.
  • the knurling process can be formed by pressing a heated embossing roll. Fine embossing is formed on the embossing roll, and the embossing roll can be pressed to form asperity on the film and make the end bulky.
  • the height of the knurling at both ends of the ⁇ / 4 plate according to the present invention is preferably 4 to 20 ⁇ m and the width is 5 to 20 mm.
  • the knurling process is preferably provided after the drying in the film forming process and before winding.
  • a ⁇ / 4 plate having a multilayer structure by a co-casting method can be preferably used. Even when the ⁇ / 4 plate has a multilayer structure, it has a layer containing a plasticizer, which may be a core layer, a skin layer, or both.
  • the center line average roughness (Ra) of the surface of the ⁇ / 4 plate according to the present invention is preferably 0.001 to 1 ⁇ m.
  • the ⁇ / 4 plate according to the present invention preferably has a thickness in the range of 20 to 200 ⁇ m, more preferably 20 to 100 ⁇ m, and particularly preferably 30 to 80 ⁇ m.
  • the larger the film thickness of the ⁇ / 4 plate the easier it is to increase the phase difference.
  • the ⁇ / 4 plate since the ⁇ / 4 plate has the function of a polarizing plate protective film, the thickness of the entire polarizing plate is reduced. Also, the above range is preferable.
  • the moisture permeability is preferably 200 g / m 2 ⁇ 24 hours or less, more preferably 10 to 180 g / m 2 ⁇ 24 hours, as a value measured according to JIS Z 0208 (25 ° C., 90% RH). Or less, particularly preferably 160 g / m 2 ⁇ 24 hours or less.
  • the film thickness is 30 to 80 ⁇ m and the moisture permeability is within the above range.
  • the long ⁇ / 4 plate according to the present invention specifically has a length of about 100 to 10000 m, and is usually in the form of a roll.
  • the width of the ⁇ / 4 plate according to the present invention is preferably 1 m or more, more preferably 1.4 m or more, and particularly preferably 1.4 to 4 m.
  • a hard coat layer is provided on the ⁇ / 4 plate according to the present invention, and the hard coat layer is preferably either a clear hard coat layer or an antiglare hard coat layer.
  • the hard coat layer used in the present invention is provided on at least one surface of the ⁇ / 4 plate.
  • an antireflection layer including at least a low refractive index layer is preferably provided on the hard coat layer.
  • the hard coat layer used in the present invention When the hard coat layer used in the present invention is anti-glare, it has a fine uneven shape on the surface.
  • the fine uneven shape is formed by containing fine particles in the hard coat layer, and is as follows. It can be formed by incorporating fine particles having an average particle size of 0.01 ⁇ m to 4 ⁇ m in the hard coat layer. Further, as will be described later, as the surface roughness of the outermost surface of the antireflection layer provided on the antiglare hard coat layer, the centerline average roughness (Ra) defined by JIS B 0601 is 0.08 ⁇ m. It is preferable to adjust to a range of ⁇ 0.5 ⁇ m.
  • a clear hard coat layer it is a clear hard coat layer having a center line average roughness (Ra) defined by JIS B 0601 of 0.001 to 0.1 ⁇ m, and Ra is 0.002 to 0.05 ⁇ m. It is preferable.
  • the center line average roughness (Ra) is preferably measured by an optical interference type surface roughness measuring instrument, and can be measured, for example, using a non-contact surface fine shape measuring device WYKO NT-2000 manufactured by WYKO.
  • the particles contained in the antiglare hard coat layer used in the present invention for example, inorganic or organic fine particles are used.
  • inorganic fine particles examples include silicon oxide, titanium oxide, aluminum oxide, tin oxide, zinc oxide, calcium carbonate, barium sulfate, talc, kaolin, and calcium sulfate.
  • the organic fine particles include polymethyl methacrylate methyl acrylate resin fine particles, acrylic styrene resin fine particles, polymethyl methacrylate resin fine particles, silicone resin fine particles, polystyrene resin fine particles, polycarbonate resin fine particles, benzoguanamine resin fine particles, and melamine resin.
  • examples thereof include fine particles, polyolefin resin fine particles, polyester resin fine particles, polyamide resin fine particles, polyimide resin fine particles, and polyfluoroethylene resin fine particles.
  • silicon oxide fine particles or polystyrene resin fine particles are particularly preferable.
  • the above-described inorganic or organic fine particles are preferably used in addition to a coating composition containing a resin or the like used for producing an antiglare hard coat layer.
  • the content of the inorganic or organic fine particles is set to 0. It is preferably 1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass. In order to impart a more preferable antiglare effect, it is preferable to use 1 part by mass to 15 parts by mass of fine particles having an average particle diameter of 0.1 ⁇ m to 1 ⁇ m with respect to 100 parts by mass of the resin for preparing the antiglare hard coat layer. . It is also preferable to use two or more kinds of fine particles having different average particle diameters.
  • the antiglare hard coat layer used in the present invention preferably contains an antistatic agent, and examples of the antistatic agent include Sn, Ti, In, Al, Zn, Si, Mg, Ba, Mo, and W. And a conductive material containing at least one element selected from the group consisting of V and V as a main component and having a volume resistivity of 10 7 ⁇ ⁇ cm or less.
  • antistatic agent examples include metal oxides and composite oxides having the above elements.
  • metal oxides are preferably ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , SiO 2 , MgO, BaO, MoO 2 , V 2 O 5 , or a composite oxide thereof.
  • ZnO, In 2 O 3 , TiO 2 and SnO 2 are preferred.
  • Examples of containing different atoms include, for example, addition of Al, In, etc. to ZnO, addition of Nb, Ta, etc. to TiO 2 , and addition of Sb, Nb, halogen elements, etc. to SnO 2 . Addition is effective.
  • the amount of these different atoms added is preferably in the range of 0.01 to 25 mol%, particularly preferably in the range of 0.1 to 15 mol%.
  • the volume resistivity of these metal oxide powders having conductivity is 10 7 ⁇ ⁇ cm or less, particularly 10 5 ⁇ ⁇ cm or less.
  • the film thickness of the clear hard coat layer or antiglare hard coat layer is preferably in the range of 0.5 ⁇ m to 15 ⁇ m, more preferably 1.0 ⁇ m to 7 ⁇ m. .
  • the hard coat layer used in the present invention preferably contains an active energy ray-curable resin that is cured by irradiation with active energy rays such as ultraviolet rays.
  • the active energy ray curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with an active energy ray such as an ultraviolet ray or an electron beam.
  • an active energy ray such as an ultraviolet ray or an electron beam.
  • Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, but a resin that is cured by irradiation with an active energy ray other than an ultraviolet ray or an electron beam may be used.
  • Examples of the ultraviolet curable resin include an ultraviolet curable acrylic urethane resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable epoxy resin. be able to.
  • UV curable acrylic urethane resins generally include 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate) in products obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. It can be easily obtained by reacting an acrylate monomer having a hydroxy group (hydroxyl group) such as 2-hydroxypropyl acrylate.
  • a mixture of 100 parts of Unidic 17-806 (manufactured by DIC Corporation) and 1 part of Coronate L (manufactured by Nippon Polyurethane Corporation) described in JP-A-59-151110 is preferably used.
  • the UV curable polyester acrylate resin can be easily obtained by reacting a monomer such as 2-hydroxyethyl acrylate, glycidyl acrylate or acrylic acid with a hydroxy group (hydroxyl group) or a carboxy group at the end of the polyester (for example, JP, 59-151112, A).
  • the UV curable epoxy acrylate resin is obtained by reacting a terminal hydroxyl group of the epoxy resin with a monomer such as acrylic acid, acrylic acid chloride, or glycidyl acrylate.
  • ultraviolet curable polyol acrylate resins include ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and dipenta.
  • examples include erythritol pentaacrylate, dipentaerythritol hexaacrylate, and alkyl-modified dipentaerythritol pentaacrylate.
  • an ultraviolet curable epoxy acrylate resin and an ultraviolet curable epoxy resin an epoxy-based active energy ray reactive compound that is useful is shown.
  • A Glycidyl ether of bisphenol A (this compound is obtained as a mixture having different degrees of polymerization by reaction of epichlorohydrin and bisphenol A)
  • B A compound having a glycidyl ether group by reacting a compound having two phenolic OHs such as bisphenol A with epichlorohydrin, ethylene oxide and / or propylene oxide
  • c Glycidyl ether of 4,4'-methylenebisphenol
  • D Epoxy compound of phenol formaldehyde resin of novolak resin or resol resin
  • e Compound having alicyclic epoxide, for example, bis (3,4-epoxycyclohexylmethyl) oxalate, bis (3,4-epoxycyclohexylmethyl) ) Adipate, bis (3,4-epoxy-6-cyclohexylmethyl) adipate, bis (3,4-epoxycyclohexylmethyl pimelate), 3,4-epoxy
  • the molecular weight of the epoxy compound is 2000 or less, preferably 1000 or less as an average molecular weight.
  • the photopolymerization initiator or photosensitizer for cationically polymerizing an epoxy-based active energy ray-reactive compound is a compound capable of releasing a cationic polymerization initiator by irradiation with active energy rays, and particularly preferably a cation by irradiation. It is a group of double salts of onium salts that release Lewis acids capable of initiating polymerization.
  • the active energy ray-reactive compound epoxy resin forms a polymerized, crosslinked structure or network structure not by radical polymerization but by cationic polymerization. Unlike radical polymerization, it is not affected by oxygen in the reaction system, and is therefore a preferred active energy ray reactive resin.
  • the active energy ray-reactive epoxy resin useful in the present invention is polymerized by a photopolymerization initiator or a photosensitizer that releases a substance that initiates cationic polymerization by irradiation with active energy rays.
  • a photopolymerization initiator a group of double salts of onium salts that release a Lewis acid that initiates cationic polymerization by light irradiation is particularly preferable.
  • a typical example of such a compound is a compound represented by the following general formula (a).
  • Me is a metal or metalloid which is a central atom of a halide complex
  • B P, As, Sb, Fe, Sn, Bi, Al, Ca, In, Ti, Zn, Sc, V, Cr, Mn, Co, etc.
  • X is halogen
  • w is the net charge of the halogenated complex ion
  • v is the number of halogen atoms in the halogenated complex ion.
  • anion [MeX v ] w- of the general formula (a) include tetrafluoroborate (BF 4 ⁇ ), tetrafluorophosphate (PF 4 ⁇ ), tetrafluoroantimonate (SbF 4 ⁇ ), tetra Examples thereof include fluoroarsenate (AsF 4 ⁇ ) and tetrachloroantimonate (SbCl 4 ⁇ ).
  • anions include perchlorate ion (ClO 4 ⁇ ), trifluoromethylsulfite ion (CF 3 SO 3 ⁇ ), fluorosulfonate ion (FSO 3 ⁇ ), toluenesulfonate ion, and trinitrobenzene acid anion.
  • An ion etc. can be mentioned.
  • aromatic onium salts As a cationic polymerization initiator.
  • aromatic halonium salts described in JP-A-50-151996, 50-158680, etc. VIA group aromatic onium salts described in Kaikai 50-151997, 52-30899, 59-55420, 55-125105, JP-A-56-8428, 56-149402, The oxosulfoxonium salts described in JP-A-57-192429, aromatic diazonium salts described in JP-B-49-17040, thiopyridium salts described in US Pat. No. 4,139,655, and the like are preferable.
  • an aluminum complex a photodegradable silicon compound type
  • the cationic polymerization initiator can be used in combination with a photosensitizer such as benzophenone, benzoin isopropyl ether, or thioxanthone.
  • a photosensitizer such as n-butylamine, triethylamine, or tri-n-butylphosphine can be used.
  • the photosensitizer and photoinitiator used for the active energy ray-reactive compound are sufficient to initiate the photoreaction at 0.1 to 15 parts by mass with respect to 100 parts by mass of the UV-reactive compound.
  • the amount is preferably 1 to 10 parts by mass.
  • the sensitizer preferably has an absorption maximum from the near ultraviolet region to the visible light region.
  • the polymerization initiator is generally 0.1 to 15 parts by mass with respect to 100 parts by mass of the active energy ray-curable epoxy resin (prepolymer). Is more preferable, and addition of 1 to 10 parts by mass is more preferable.
  • an epoxy resin can be used in combination with the urethane acrylate type resin, polyether acrylate type resin, or the like.
  • an active energy ray radical polymerization initiator and an active energy ray cationic polymerization initiator in combination.
  • an oxetane compound can be used for the hard coat layer used in the present invention.
  • the oxetane compound used is a compound having a three-membered oxetane ring containing oxygen or sulfur. Among them, a compound having an oxetane ring containing oxygen is preferable.
  • the oxetane ring may be substituted with a halogen atom, a haloalkyl group, an arylalkyl group, an alkoxyl group, an allyloxy group, or an acetoxy group.
  • a binder such as a known thermoplastic resin, thermosetting resin, or hydrophilic resin such as gelatin can be mixed with the active energy ray curable resin described above.
  • These resins preferably have a polar group in the molecule.
  • the polar group includes —COOM, —OH, —NR 2 , —NR 3 X, —SO 3 M, —OSO 3 M, —PO 3 M 2 , —OPO 3 M (where M is a hydrogen atom, alkali A metal or an ammonium group, X represents an acid that forms an amine salt, R represents a hydrogen atom or an alkyl group).
  • the active energy ray is irradiated on the support by an antiglare hard coat layer, an antireflection layer (medium to high refractive index layer).
  • the active energy ray may be irradiated after the coating of the low refractive index layer or the like, but the active energy ray is preferably irradiated when the hard coat layer is coated.
  • the active energy ray used in the present invention can be used without limitation as long as it is an energy source that activates a compound such as ultraviolet ray, electron beam, ⁇ ray, etc., but ultraviolet ray and electron beam are preferable, especially easy handling and high energy. UV rays are preferred in that they can be easily obtained.
  • the ultraviolet light source for photopolymerizing the ultraviolet reactive compound any light source that generates ultraviolet light can be used. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used.
  • Irradiation conditions vary depending on each lamp, but the irradiation light amount is preferably 20 mJ / cm 2 or more, more preferably 50 mJ / cm 2 to 10000 mJ / cm 2 , and particularly preferably 50 mJ / cm 2 to 2000 mJ / cm 2. It is.
  • the ultraviolet irradiation may be performed every time one layer is provided for each of a plurality of layers (medium refractive index layer, high refractive index layer, low refractive index layer) constituting the hard coat layer and the antireflection layer described later.
  • the film may be irradiated after lamination. Or you may irradiate combining these. From the viewpoint of productivity, it is preferable to irradiate ultraviolet rays after laminating multiple layers.
  • an electron beam can be used in the same manner.
  • the electron beam 50 to 1000 keV, preferably 100 to 100, emitted from various electron beam accelerators such as cockroft walton type, bandegraph type, resonance transformer type, insulated core transformer type, linear type, dynamitron type, and high frequency type.
  • An electron beam having an energy of 300 keV can be given.
  • the active energy ray-reactive compound used in the present invention In order to initiate the photopolymerization or photocrosslinking reaction of the active energy ray-reactive compound used in the present invention, the active energy ray-reactive compound alone is initiated, but the polymerization induction period is long or the polymerization initiation is slow. Therefore, it is preferable to use a photosensitizer or a photoinitiator, which can accelerate the polymerization.
  • the hard coat layer used in the present invention contains an active energy ray-curable resin
  • a photoreaction initiator and a photosensitizer can be used at the time of irradiation with active energy rays.
  • acetophenone benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof.
  • a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine can be used.
  • the amount of the photoreaction initiator and / or photosensitizer used in the ultraviolet curable resin composition excluding the solvent component that volatilizes after coating and drying is preferably 1% by mass to 10% by mass, particularly preferably. Is 2.5% by mass to 6% by mass.
  • an ultraviolet absorber described later may be included in the ultraviolet curable resin composition to the extent that the photocuring of the ultraviolet curable resin is not hindered.
  • an antioxidant that does not inhibit the photocuring reaction can be selected and used.
  • examples include hindered phenol derivatives, thiopropionic acid derivatives, phosphite derivatives, and the like.
  • 4,4′-thiobis (6-tert-3-methylphenol), 4,4′-butylidenebis (6-tert-butyl-3-methylphenol), 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) mesitylene, di-octadecyl-4-
  • examples include hydroxy-3,5-di-tert-butylbenzyl phosphate.
  • Examples of the ultraviolet curable resin include ADEKA OPTMER KR, BY series KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (above, manufactured by ADEKA Corporation), Koeihard A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS-101, FT -102Q8, MAG-1-P20, AG-106, M-101-C (manufactured by Guangei Chemical Industry Co., Ltd.), Seika Beam PHC2210 (S), PHCX-9 (K-3), PHC2213, DP- 10, DP-20, DP-30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 (above, Dainichi Chemical Industries) Manufactured by K.K.
  • the coating composition containing the active energy ray-curable resin preferably has a solid content concentration of 10% by mass to 95% by mass, and an appropriate concentration is selected depending on the coating method.
  • the hard coat layer and antireflection layer used in the present invention preferably also contain a surfactant, and the surfactant is preferably a silicone-based or fluorine-based surfactant.
  • silicone-based surfactant a nonionic surfactant having a hydrophobic group composed of dimethylpolysiloxane and a hydrophilic group composed of polyoxyalkylene is preferable.
  • a nonionic surfactant is a generic term for a system surfactant that does not have a group capable of dissociating into ions in an aqueous solution.
  • a hydroxyl group of a polyhydric alcohol (hydroxyl group) as a hydrophilic group
  • It has an oxyalkylene chain (polyoxyethylene) or the like as a hydrophilic group.
  • the hydrophilicity becomes stronger as the number of alcoholic hydroxy groups (hydroxyl groups) increases and as the polyoxyalkylene chain (polyoxyethylene chain) becomes longer.
  • the nonionic surfactant according to the present invention is characterized by having dimethylpolysiloxane as a hydrophobic group.
  • nonionic surfactants include, for example, silicone surfactants SILWET L-77, L-720, L-7001, L-7002, L-7604, Y-7006, manufactured by Nippon Unicar Co., Ltd. FZ-2101, FZ-2104, FZ-2105, FZ-2110, FZ-2118, FZ-2120, FZ-2122, FZ-2123, FZ-2130, FZ-2154, FZ-2161, FZ-2162, FZ- 2163, FZ-2164, FZ-2166, FZ-2191 and the like.
  • SUPERSILWET SS-2801, SS-2802, SS-2803, SS-2804, SS-2805 and the like can be mentioned.
  • the nonionic surfactant in which the hydrophobic group is composed of dimethylpolysiloxane and the hydrophilic group is composed of polyoxyalkylene a dimethylpolysiloxane structure portion and a polyoxyalkylene chain are alternately and repeatedly bonded. It is preferably a linear block copolymer. Since the main chain skeleton has a long chain length and a linear structure, it is excellent. This is considered to be due to the fact that one activator molecule can be adsorbed on the surface of the silica fine particle at a plurality of locations so as to cover the surface of the silica fine particle by being a block copolymer in which hydrophilic groups and hydrophobic groups are alternately repeated.
  • silicone surfactants ABN SILWET FZ-2203, FZ-2207, FZ-2208, etc., manufactured by Nippon Unicar Co., Ltd.
  • a surfactant having a hydrophobic group having a perfluorocarbon chain can be used.
  • the types are fluoroalkylcarboxylic acid, N-perfluorooctanesulfonyl glutamate disodium, sodium 3- (fluoroalkyloxy) -1-alkylsulfonate, 3- ( ⁇ -fluoroalkanoyl-N-ethylamino) -1- Sodium propanesulfonate, N- (3-perfluorooctanesulfonamido) propyl-N, N-dimethyl-N-carboxymethyleneammonium betaine, perfluoroalkylcarboxylic acid, perfluorooctanesulfonic acid diethanolamide, perfluoroalkylsulfonic acid Salt, N-propyl-N- (2-hydroxyethyl) perfluorooctanesulfonamide, perfluoroalky
  • fluorosurfactants are commercially available under the trade names such as Megafac, Ftop, Surflon, Footagen, Unidyne, Florard, Zonyl and others.
  • a preferable addition amount is 0.01 to 3.0%, more preferably 0.02 to 1.0% per solid content in the coating liquid of the hard coat layer and the antireflection layer.
  • surfactants can be used in combination.
  • anionic surfactants such as sulfonates, sulfates, phosphates, etc., and ethers having polyoxyethylene chain hydrophilic groups
  • Type, ether ester type nonionic surfactants and the like may be used in combination.
  • the solvent for coating the hard coat layer in the present invention can be appropriately selected from, for example, hydrocarbons, alcohols, ketones, esters, glycol ethers, and other solvents, or can be used by mixing. .
  • a solvent containing 5% by mass or more, more preferably 5% by mass to 80% by mass or more of propylene glycol mono (C1-C4) alkyl ether or propylene glycol mono (C1-C4) alkyl ether ester is used.
  • a coating method of the hard coat layer composition coating solution a known method such as a gravure coater, a spinner coater, a wire bar coater, a roll coater, a reverse coater, an extrusion coater, an air doctor coater, a spray coat, an ink jet method can be used.
  • the coating amount is suitably 5 ⁇ m to 30 ⁇ m, preferably 10 ⁇ m to 20 ⁇ m in terms of wet film thickness.
  • the coating speed is preferably 10 m / min to 200 m / min.
  • the antiglare hard coat layer composition is preferably applied and dried and then irradiated with an active energy ray such as ultraviolet rays or an electron beam and cured, and the irradiation time of the active energy ray is 0.5 seconds to 5 seconds. Minutes are preferable, and more preferably 3 seconds to 2 minutes from the viewpoint of curing efficiency and work efficiency of the ultraviolet curable resin.
  • an active energy ray such as ultraviolet rays or an electron beam and cured
  • the irradiation time of the active energy ray is 0.5 seconds to 5 seconds. Minutes are preferable, and more preferably 3 seconds to 2 minutes from the viewpoint of curing efficiency and work efficiency of the ultraviolet curable resin.
  • the antireflection layer used in the present invention may have a single-layer structure consisting of only a low refractive index layer, but it is also preferable to provide a multilayer refractive index layer.
  • a ⁇ / 4 plate has a hard coat layer, and can be laminated on the surface in consideration of the refractive index, film thickness, number of layers, layer order, etc. so that the reflectivity is reduced by optical interference.
  • the antireflection layer is composed of a combination of a high refractive index layer having a higher refractive index than that of the support and a low refractive index layer having a lower refractive index than that of the support, and particularly preferably from three or more refractive index layers.
  • An anti-reflection layer comprising three layers having different refractive indexes from the support side, a medium refractive index layer (having a higher refractive index than the support or anti-glare hard coat layer, and having a higher refractive index than the high refractive index layer). It is preferable that the layers are laminated in the order of (low layer) / high refractive index layer / low refractive index layer.
  • an antireflection layer having a layer structure of four or more layers in which two or more high refractive index layers and two or more low refractive index layers are alternately laminated is also preferably used.
  • Examples of preferred layer configurations of the antireflection layer according to the present invention are shown below.
  • / indicates that the layers are arranged in layers.
  • an intermediate layer may be provided as appropriate.
  • an antistatic layer containing conductive polymer fine particles (for example, crosslinked cation fine particles) or metal oxide fine particles (for example, SnO 2 , ITO) is preferable.
  • ⁇ Low refractive index layer> In the low refractive index layer used in the present invention, the following hollow spherical silica-based fine particles are preferably used.
  • the hollow spherical fine particles are (I) composite particles comprising porous particles and a coating layer provided on the surface of the porous particles, or (II) having a cavity inside, and the content is a solvent, gas or porous Cavity particles filled with a substance. Note that the low refractive index layer only needs to contain either (I) composite particles or (II) hollow particles, or both.
  • the cavity particles are particles having a cavity inside, and the cavity is surrounded by a particle wall.
  • the cavity is filled with contents such as a solvent, a gas, or a porous material used at the time of preparation. It is desirable that the average particle size of such hollow spherical fine particles is in the range of 5 to 300 nm, preferably 10 to 200 nm.
  • the hollow spherical fine particles used are appropriately selected according to the thickness of the transparent film to be formed, and are in the range of 2/3 to 1/10 of the film thickness of the transparent film such as the low refractive index layer to be formed. Is desirable.
  • These hollow spherical fine particles are preferably used in a state of being dispersed in an appropriate medium in order to form a low refractive index layer.
  • an appropriate medium for example, water, alcohol (for example, methanol, ethanol, isopropyl alcohol), ketone (for example, methyl ethyl ketone, methyl isobutyl ketone), and ketone alcohol (for example, diacetone alcohol) are preferable.
  • the thickness of the coating layer of the composite particles or the thickness of the particle walls of the hollow particles is desirably 1 to 20 nm, preferably 2 to 15 nm.
  • the thickness of the coating layer is less than 1 nm, the particles may not be completely covered, and it is easy to use a silicate monomer or oligomer having a low polymerization degree, which is a coating liquid component described later.
  • the inside of the composite particles may enter and the internal porosity may decrease, and the low refractive index effect may not be sufficiently obtained.
  • the thickness of the coating layer exceeds 20 nm, the silicic acid monomer and oligomer do not enter the inside, but the porosity (pore volume) of the composite particles is lowered and the effect of low refractive index is sufficiently obtained. It may not be possible.
  • the particle wall thickness is less than 1 nm, the particle shape may not be maintained, and even if the thickness exceeds 20 nm, the effect of low refractive index may not be sufficiently exhibited. is there.
  • the coating layer of the composite particles or the particle wall of the hollow particles is preferably composed mainly of silica.
  • components other than silica may be contained, and specifically, Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 3 , Sb 2 O 3. , MoO 3 , ZnO 2 , WO 3 and the like.
  • the porous particles constituting the composite particles include those made of silica, those made of silica and an inorganic compound other than silica, and those made of CaF 2 , NaF, NaAlF 6 , MgF, and the like.
  • porous particles made of a composite oxide of silica and an inorganic compound other than silica are particularly preferable.
  • inorganic compounds other than silica include Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 3 , Sb 2 O 3 , MoO 3 , ZnO 2 and WO 3. 1 type or 2 types or more can be mentioned.
  • the molar ratio MO X / SiO 2 when the silica is expressed by SiO 2 and the inorganic compound other than silica is expressed in terms of oxide (MO X ) is 0.0001 to 1.0, Preferably it is in the range of 0.001 to 0.3. It is difficult to obtain a porous particle having a molar ratio MO X / SiO 2 of less than 0.0001. Even if it is obtained, a pore volume is small and particles having a low refractive index cannot be obtained.
  • the pore volume of such porous particles is desirably in the range of 0.1 to 1.5 ml / g, preferably 0.2 to 1.5 ml / g. If the pore volume is less than 0.1 ml / g, particles having a sufficiently reduced refractive index cannot be obtained. If the pore volume exceeds 1.5 ml / g, the strength of the fine particles is lowered, and the strength of the resulting coating may be lowered. is there.
  • the pore volume of such porous particles can be determined by a mercury intrusion method.
  • the contents of the hollow particles include a solvent, a gas, and a porous substance used at the time of preparing the particles.
  • the solvent may contain an unreacted particle precursor used when preparing the hollow particles, the catalyst used, and the like.
  • the porous substance include those composed of the compounds exemplified for the porous particles. These contents may be composed of a single component or may be a mixture of a plurality of components.
  • hollow spherical fine particles for example, the method for preparing composite oxide colloidal particles disclosed in paragraphs [0010] to [0033] of JP-A-7-133105 is suitably employed. Specifically, when the composite particles are composed of silica and an inorganic compound other than silica, hollow spherical fine particles are produced from the following first to third steps.
  • First Step Preparation of Porous Particle Precursor
  • an alkali aqueous solution of a silica raw material and an inorganic compound raw material other than silica is separately prepared in advance, or a silica raw material and an inorganic compound raw material other than silica are prepared in advance.
  • a mixed aqueous solution is prepared, and this aqueous solution is gradually added to an aqueous alkaline solution having a pH of 10 or more while stirring according to the composite ratio of the target composite oxide to prepare a porous particle precursor.
  • alkali metal, ammonium or organic base silicate is used as the silica raw material.
  • Sodium silicate (water glass) or potassium silicate is used as the alkali metal silicate.
  • the organic base include quaternary ammonium salts such as tetraethylammonium salt, and amines such as monoethanolamine, diethanolamine, and triethanolamine.
  • the ammonium silicate or organic base silicate includes an alkaline solution obtained by adding ammonia, a quaternary ammonium hydroxide, an amine compound, or the like to a silicate solution.
  • alkali-soluble inorganic compounds are used as raw materials for inorganic compounds other than silica.
  • an oxo acid of an element selected from Al, B, Ti, Zr, Sn, Ce, P, Sb, Mo, Zn, W, etc. an alkali metal salt or alkaline earth metal salt of the oxo acid, ammonium And salts and quaternary ammonium salts. More specifically, sodium aluminate, sodium tetraborate, zirconyl ammonium carbonate, potassium antimonate, potassium stannate, sodium aluminosilicate, sodium molybdate, cerium ammonium nitrate, and sodium phosphate are suitable.
  • the aqueous solution finally has a pH value determined by the type of inorganic oxide and the mixing ratio thereof. There is no restriction
  • a dispersion of seed particles can be used as a starting material.
  • the seed particles are not particularly limited, but inorganic oxides such as SiO 2 , Al 2 O 3 , TiO 2 or ZrO 2 or fine particles of these composite oxides are used. Usually, these sols are used. Can do.
  • the porous particle precursor dispersion obtained by the above production method may be used as a seed particle dispersion.
  • the pH of the seed particle dispersion is adjusted to 10 or higher, and then an aqueous solution of the compound is added to the above-mentioned alkaline aqueous solution while stirring. Also in this case, it is not always necessary to control the pH of the dispersion.
  • seed particles are used in this way, it is easy to control the particle size of the porous particles to be prepared, and particles with uniform particle sizes can be obtained.
  • the silica raw material and inorganic compound raw material described above have high solubility on the alkali side. However, when both are mixed in this highly soluble pH region, the solubility of oxo acid ions such as silicate ions and aluminate ions decreases, and these composites precipitate and grow into fine particles, or seed particles. It grows on the top and particle growth occurs. Therefore, it is not always necessary to perform pH control as in the conventional method for precipitation and growth of fine particles.
  • the composite ratio of silica and an inorganic compound other than silica in the first step is calculated by converting the inorganic compound to silica into an oxide (MO X ), and the molar ratio of MO X / SiO 2 is 0.05 to 2.0, Preferably it is in the range of 0.2 to 2.0. Within this range, the pore volume of the porous particles increases as the proportion of silica decreases. However, even when the molar ratio exceeds 2.0, the pore volume of the porous particles hardly increases. On the other hand, when the molar ratio is less than 0.05, the pore volume becomes small.
  • the MO X / SiO 2 molar ratio is preferably in the range of 0.25 to 2.0.
  • Second step Removal of inorganic compound other than silica from porous particles
  • inorganic compounds other than silica elements other than silicon and oxygen
  • the porous particle precursor obtained in the first step At least a portion is selectively removed.
  • the inorganic compound in the porous particle precursor is dissolved and removed using a mineral acid or an organic acid, or is contacted with a cation exchange resin for ion exchange removal.
  • the porous particle precursor obtained in the first step is a particle having a network structure in which silicon and an inorganic compound constituent element are bonded through oxygen.
  • fluorine-substituted obtained by dealkalizing an alkali metal salt of silica into the porous particle precursor dispersion obtained in the first step. It is preferable to add a silicic acid solution containing an alkyl group-containing silane compound or a hydrolyzable organosilicon compound to form a silica protective film.
  • the thickness of the silica protective film may be 0.5 to 15 nm. Even if the silica protective film is formed, the protective film in this step is porous and thin, so that it is possible to remove inorganic compounds other than silica described above from the porous particle precursor.
  • silica protective film By forming such a silica protective film, inorganic compounds other than silica can be removed from the porous particle precursor while maintaining the particle shape. Further, when forming the silica coating layer described later, the pores of the porous particles are not blocked by the coating layer, and therefore the silica coating layer described later is formed without reducing the pore volume. Can do. Note that when the amount of the inorganic compound to be removed is small, the particles are not broken, and thus it is not always necessary to form a protective film.
  • the inorganic compound is removed to obtain a hollow particle precursor composed of a silica protective film, a solvent in the silica protective film, and an undissolved porous solid content.
  • a coating layer to be described later is formed on the precursor, the formed coating layer becomes a particle wall to form hollow particles.
  • the amount of the silica source added for forming the silica protective film is preferably small as long as the particle shape can be maintained. If the amount of the silica source is too large, the silica protective film becomes too thick, and it may be difficult to remove inorganic compounds other than silica from the porous particle precursor.
  • tetraalkoxysilanes such as fluorine-substituted tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.
  • a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilane, pure water, and alcohol is added to the dispersion of the porous particles, and the alkoxysilane is hydrolyzed.
  • the produced silicic acid polymer is deposited on the surface of the inorganic oxide particles.
  • alkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion.
  • the alkali catalyst ammonia, an alkali metal hydroxide, or an amine can be used.
  • the acid catalyst various inorganic acids and organic acids can be used.
  • a silica protective film can be formed using a silicic acid solution.
  • a silicic acid solution a predetermined amount of the silicic acid solution is added to the dispersion, and at the same time an alkali is added to deposit the silicic acid solution on the surface of the porous particles.
  • the porous particle dispersion prepared in the second step contains a fluorine-substituted alkyl group-containing silane compound.
  • a hydrolyzable organosilicon compound or silicic acid solution By adding a hydrolyzable organosilicon compound or silicic acid solution, the surface of the particles is coated with a polymer such as a hydrolyzable organosilicon compound or silicic acid solution to form a silica coating layer.
  • R, R' an alkyl group, an aryl group, a vinyl group
  • tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.
  • a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilanes, pure water, and alcohol is used as a dispersion of the porous particles (in the case of hollow particles, hollow particle precursor).
  • the silicic acid polymer produced by hydrolyzing alkoxysilane is deposited on the surface of the porous particles (in the case of hollow particles, hollow particle precursors).
  • alkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion.
  • the alkali catalyst ammonia, an alkali metal hydroxide, or an amine can be used.
  • the acid catalyst various inorganic acids and organic acids can be used.
  • the silicic acid solution is an aqueous solution of a low silicic acid polymer obtained by dealkalizing an aqueous solution of an alkali metal silicate such as water glass by ion exchange treatment.
  • the silicic acid solution is added to the dispersion of porous particles (in the case of hollow particles, hollow particle precursors), and at the same time, alkali is added to make the low-silicic acid polymer into porous particles (in the case of hollow particles, hollow particle precursors). ) Deposit on the surface.
  • alkali is added to make the low-silicic acid polymer into porous particles (in the case of hollow particles, hollow particle precursors).
  • a silicic acid liquid for the coating layer formation in combination with the said alkoxysilane.
  • the amount of the organosilicon compound or silicic acid solution used for forming the coating layer may be such that the surface of the colloidal particles can be sufficiently covered, and the finally obtained silica coating layer has a thickness of 1 to 20 nm.
  • the organosilicon compound or the silicate solution is added in such an amount that the total thickness of the silica protective film and the silica coating layer is in the range of 1 to 20 nm.
  • the particle dispersion having the coating layer formed thereon is heat-treated.
  • the heat treatment in the case of porous particles, the silica coating layer covering the surface of the porous particles is densified, and a dispersion of composite particles in which the porous particles are coated with the silica coating layer is obtained.
  • the formed coating layer is densified to form hollow particle walls, and a dispersion of hollow particles having cavities filled with a solvent, gas, or porous solid content is obtained.
  • the heat treatment temperature at this time is not particularly limited as long as it can close the fine pores of the silica coating layer, and is preferably in the range of 80 to 300 ° C.
  • the heat treatment temperature is less than 80 ° C.
  • the fine pores of the silica coating layer may not be completely closed and densified, and the treatment time may take a long time.
  • the heat treatment temperature exceeds 300 ° C. for a long time, fine particles may be formed, and the effect of low refractive index may not be obtained.
  • the refractive index of the inorganic fine particles thus obtained is as low as less than 1.42. Such inorganic fine particles are presumed to have a low refractive index because the porosity inside the porous particles is maintained or the inside is hollow.
  • the refractive index of the low refractive index layer used in the present invention is preferably 1.30 to 1.50, and more preferably 1.35 to 1.44.
  • the commercially available SiO 2 fine particles can be used.
  • Specific examples of commercially available particles include P-4 manufactured by Catalyst Chemical Industry Co., Ltd.
  • the content (mass) of the hollow spherical silica-based fine particles A having an outer shell layer, which is porous or hollow, in the low refractive index layer coating solution is preferably 10 to 80% by mass, more preferably 20 to 60% by mass. % By mass.
  • the low refractive index layer used in the present invention preferably contains a tetraalkoxysilane compound or a hydrolyzate thereof as a sol-gel material.
  • a silicon oxide having an organic group in addition to the inorganic silicon oxide are generally called sol-gel materials, but metal alcoholates, organoalkoxy metal compounds and hydrolysates thereof can be used.
  • alkoxysilane, organoalkoxysilane and its hydrolyzate are preferable.
  • Examples of these include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), alkyltrialkoxysilane (methyltrimethoxysilane, ethyltrimethoxysilane, etc.), aryltrialkoxysilane (phenyltrimethoxysilane, etc.), dialkyl. Examples thereof include dialkoxysilane and diaryl dialkoxysilane. Tetraalkoxysilane and its hydrolyzate are particularly preferable.
  • organoalkoxysilanes having various functional groups (vinyl trialkoxysilane, methylvinyl dialkoxysilane, ⁇ -glycidyloxypropyltrialkoxysilane, ⁇ -glycidyloxypropylmethyl dialkoxysilane, ⁇ - (3,4-epoxy) Dicyclohexyl) ethyltrialkoxysilane, ⁇ -methacryloyloxypropyltrialkoxysilane, ⁇ -aminopropyltrialkoxysilane, ⁇ -mercaptopropyltrialkoxysilane, ⁇ -chloropropyltrialkoxysilane, etc.), perfluoroalkyl group-containing silane compounds (for example, it is also preferable to use (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane, 3,3,3-trifluoropropyltrimethoxys
  • the low refractive index layer used in the present invention preferably contains the silicon oxide and the following silane coupling agent.
  • silane coupling agent examples include methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane.
  • silane coupling agents having a disubstituted alkyl group with respect to silicon include dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyldiethoxysilane, phenylmethyldiethoxysilane, and ⁇ -glycidyloxypropylmethyldiethoxysilane.
  • ⁇ -acryloyloxypropylmethyldimethoxysilane, ⁇ -acryloyloxypropylmethyldiethoxysilane, ⁇ -methacryloyloxypropylmethyldimethoxysilane, ⁇ -methacryloyloxypropylmethyldiethoxy are those having a disubstituted alkyl group with respect to silicon.
  • Silane, methylvinyldimethoxysilane and methylvinyldiethoxysilane are preferred, ⁇ -acryloyloxypropyltrimethoxysilane and ⁇ -methacryloyloxy Particularly preferred are propyltrimethoxysilane, ⁇ -acryloyloxypropylmethyldimethoxysilane, ⁇ -acryloyloxypropylmethyldiethoxysilane, ⁇ -methacryloyloxypropylmethyldimethoxysilane and ⁇ -methacryloyloxypropylmethyldiethoxysilane.
  • silane coupling agent examples include KBM-303, KBM-403, KBM-402, KBM-403, KBM-1403, KBM-502, KBM-503, KBE-502, KBE- manufactured by Shin-Etsu Chemical Co., Ltd. 503, KBM-603, KBE-603, KBM-903, KBE-903, KBE-9103, KBM-802, KBM-803 and the like.
  • silane coupling agents Two or more coupling agents may be used in combination.
  • other silane coupling agents may be used.
  • Other silane coupling agents include alkyl esters of orthosilicate (eg, methyl orthosilicate, ethyl orthosilicate, n-propyl orthosilicate, i-propyl orthosilicate, n-butyl orthosilicate, sec-butyl orthosilicate, orthosilicate). Acid t-butyl) and hydrolysates thereof.
  • silane coupling agents are preferably hydrolyzed with a necessary amount of water in advance.
  • the silane coupling agent is hydrolyzed, the above-described silicon oxide particles and the surface of the silicon oxide having an organic group easily react, and a stronger film is formed.
  • the low refractive index layer can also contain a polymer in an amount of 5 to 50% by mass.
  • the polymer has a function of adhering fine particles and maintaining the structure of a low refractive index layer including voids.
  • the amount of the polymer used is adjusted so that the strength of the low refractive index layer can be maintained without filling the voids.
  • the amount of the polymer is preferably 10 to 30% by mass with respect to the total amount of the low refractive index layer.
  • the polymer is bonded to the surface treatment agent of the fine particles, (2) the fine particles are used as a core, and a polymer shell is formed around the fine particles. It is preferable to use a polymer as the binder.
  • the polymer to be bonded to the surface treating agent (1) is preferably the shell polymer (2) or the binder polymer (3).
  • the polymer (2) is preferably formed around the fine particles by a polymerization reaction before preparing the coating solution for the low refractive index layer.
  • the polymer (3) is preferably formed by adding a monomer to the coating solution for the low refractive index layer, and by polymerization reaction simultaneously with or after the coating of the low refractive index layer. It is preferable to implement a combination of two or all of the above (1) to (3), and to implement a combination of (1) and (3), or (1) to (3) all combinations. Particularly preferred. (1) Surface treatment, (2) shell, and (3) binder will be described sequentially.
  • the surface treatment can be classified into physical surface treatment such as plasma discharge treatment and corona discharge treatment, and chemical surface treatment using a coupling agent. It is preferable to carry out by chemical surface treatment alone or a combination of physical surface treatment and chemical surface treatment.
  • a coupling agent an organoalkoxy metal compound (eg, titanium coupling agent, silane coupling agent) is preferably used.
  • the fine particles are made of SiO 2, the surface treatment with the above-described silane coupling agent can be carried out particularly effectively.
  • the surface treatment with the coupling agent can be carried out by adding the coupling agent to the fine particle dispersion and leaving the dispersion at a temperature from room temperature to 60 ° C. for several hours to 10 days.
  • inorganic acids for example, sulfuric acid, hydrochloric acid, nitric acid, chromic acid, hypochlorous acid, boric acid, orthosilicic acid, phosphoric acid, carbonic acid
  • organic acids for example, acetic acid, polyacrylic acid, Benzenesulfonic acid, phenol, polyglutamic acid
  • salts thereof eg, metal salts, ammonium salts
  • the polymer forming the shell is preferably a polymer having a saturated hydrocarbon as the main chain.
  • a polymer containing a fluorine atom in the main chain or side chain is preferred, and a polymer containing a fluorine atom in the side chain is more preferred.
  • Polyacrylic acid esters or polymethacrylic acid esters are preferred, and esters of fluorine-substituted alcohols with polyacrylic acid or polymethacrylic acid are most preferred.
  • the refractive index of the shell polymer decreases as the content of fluorine atoms in the polymer increases.
  • the shell polymer preferably contains 35 to 80% by mass of fluorine atoms, and more preferably contains 45 to 75% by mass of fluorine atoms.
  • the polymer containing a fluorine atom is preferably synthesized by a polymerization reaction of an ethylenically unsaturated monomer containing a fluorine atom.
  • Examples of ethylenically unsaturated monomers containing fluorine atoms include fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole), Examples thereof include esters of fluorinated vinyl ethers and fluorine-substituted alcohols with acrylic acid or methacrylic acid.
  • fluoroolefins eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole
  • the polymer forming the shell may be a copolymer comprising a repeating unit containing a fluorine atom and a repeating unit not containing a fluorine atom.
  • the repeating unit containing no fluorine atom is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer containing no fluorine atom.
  • ethylenically unsaturated monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride), acrylic esters (eg, methyl acrylate, ethyl acrylate, 2-acrylic acid 2- Ethyl hexyl), methacrylic acid esters (for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate), styrene and its derivatives (for example, styrene, divinylbenzene, vinyl toluene, ⁇ -methyl styrene), vinyl ether ( For example, methyl vinyl ether), vinyl esters (for example, vinyl acetate, vinyl propionate, vinyl cinnamate), acrylamide (for example, N-tertbutylacrylamide, N-cyclohexylacrylic) Amides
  • a crosslinkable functional group may be introduced into the shell polymer to chemically bond the shell polymer and the binder polymer by crosslinking.
  • the shell polymer may have crystallinity.
  • Tg glass transition temperature
  • the core-shell fine particles preferably contain 5 to 90% by volume, more preferably 15 to 80% by volume of a core composed of inorganic fine particles. Two or more kinds of core-shell fine particles may be used in combination. Further, inorganic fine particles having no shell and core-shell particles may be used in combination.
  • Binder The binder polymer is preferably a polymer having a saturated hydrocarbon or polyether as the main chain, and more preferably a polymer having a saturated hydrocarbon as the main chain.
  • the binder polymer is preferably crosslinked.
  • the polymer having a saturated hydrocarbon as the main chain is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer. In order to obtain a crosslinked binder polymer, it is preferable to use a monomer having two or more ethylenically unsaturated groups.
  • Examples of monomers having two or more ethylenically unsaturated groups include esters of polyhydric alcohols and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate, 1,4-dichlorohexane diacrylate, pentaerythritol).
  • esters of polyhydric alcohols and (meth) acrylic acid eg, ethylene glycol di (meth) acrylate, 1,4-dichlorohexane diacrylate, pentaerythritol.
  • 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloyl ethyl ester, 1,4-divinylcyclohexanone), vinyl sulfone (eg divinyl sulfone), acrylamide (eg methylene bisacrylamide) and methacrylamide Can be mentioned.
  • the polymer having a polyether as the main chain is preferably synthesized by a ring-opening polymerization reaction of a polyfunctional epoxy compound.
  • a crosslinked structure may be introduced into the binder polymer by reaction of a crosslinkable group.
  • crosslinkable functional groups include isocyanate groups, epoxy groups, aziridine groups, oxazoline groups, aldehyde groups, carbonyl groups, hydrazine groups, carboxy groups, methylol groups, and active methylene groups.
  • Vinylsulfonic acid, acid anhydride, cyanoacrylate derivative, melamine, etherified methylol, ester and urethane can also be used as a monomer for introducing a crosslinked structure.
  • a functional group that exhibits crosslinkability as a result of the decomposition reaction such as a block isocyanate group, may be used.
  • the cross-linking group is not limited to the above compound, and may be one that exhibits reactivity as a result of decomposition of the functional group.
  • the polymerization initiator used for the polymerization reaction and the crosslinking reaction of the binder polymer a thermal polymerization initiator or a photopolymerization initiator is used, and the photopolymerization initiator is more preferable.
  • photopolymerization initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds , Fluoroamine compounds and aromatic sulfoniums.
  • acetophenones examples include 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone and 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone.
  • benzoins include benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
  • benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone.
  • phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
  • the binder polymer is preferably formed by adding a monomer to the coating solution for the low refractive index layer, and at the same time as or after the coating of the low refractive index layer, by a polymerization reaction (further crosslinking reaction if necessary). Even if a small amount of polymer (for example, polyvinyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, alkyd resin) is added to the coating solution for the low refractive index layer Good.
  • a polymer for example, polyvinyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, alkyd resin
  • the low refractive index layer used in the present invention may be a low refractive index layer formed by crosslinking a fluorine-containing resin that is crosslinked by heat or ionizing radiation (hereinafter also referred to as “fluorine-containing resin before crosslinking”). .
  • fluorine-containing resin before crosslinking include a fluorine-containing copolymer formed from a fluorine-containing vinyl monomer and a monomer for imparting a crosslinkable group.
  • fluorine-containing vinyl monomer unit include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3 -Dioxole, etc.), (meth) acrylic acid partial or fully fluorinated alkyl ester derivatives (for example, Biscoat 6FM (produced by Osaka Organic Chemical), M-2020 (produced by Daikin), etc.), fully or partially fluorinated vinyl ethers, etc.
  • fluoroolefins for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, he
  • Examples of the monomer for imparting a crosslinkable group include glycidyl methacrylate, vinyltrimethoxysilane, ⁇ -methacryloyloxypropyltrimethoxysilane, vinyl glycidyl ether, and other vinyl monomers having a crosslinkable functional group in advance in the molecule. , Vinyl monomers having a carboxy group, a hydroxy group, an amino group, a sulfonic acid group, etc. (for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, hydroxyalkyl vinyl ether, hydroxyalkyl allyl) Ether, etc.).
  • crosslinkable group examples include acryloyl, methacryloyl, isocyanate, epoxy, aziridine, oxazoline, aldehyde, carbonyl, hydrazine, carboxy, methylol, and active methylene group.
  • the fluorine-containing copolymer When the fluorine-containing copolymer is crosslinked by heating with a crosslinking group that reacts by heating, or a combination of an ethylenically unsaturated group and a thermal radical generator or an epoxy group and a thermal acid generator, it is a thermosetting type.
  • a crosslinking group that reacts by heating, or a combination of an ethylenically unsaturated group and a thermal radical generator or an epoxy group and a thermal acid generator
  • it is a thermosetting type.
  • crosslinking by irradiation with light preferably ultraviolet rays, electron beams, etc.
  • the ionizing radiation curable type is used.
  • a fluorine-containing copolymer formed by using a monomer other than the fluorine-containing vinyl monomer and the monomer for imparting a crosslinkable group may be used as the fluorine-containing resin before crosslinking.
  • the monomer that can be used in combination is not particularly limited.
  • olefins ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.
  • acrylic esters methyl acrylate, methyl acrylate, ethyl acrylate, 2-acrylic acid 2- Ethyl hexyl
  • methacrylic acid esters methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.
  • styrene derivatives styrene, divinylbenzene, vinyl toluene, ⁇ -methyl styrene, etc.
  • vinyl ethers methyl vinyl ether) Etc.
  • vinyl esters vinyl acetate, vinyl propionate, vinyl cinnamate, etc.
  • acrylamides N-tertbutylacrylamide, N-cyclohexylacrylamide, etc.
  • methacrylamides Ronitoriru derivatives and the like
  • polyorganosiloxane skeleton or a perfluoropolyether skeleton into the fluorinated copolymer in order to impart slipperiness and antifouling properties.
  • polyorganosiloxane or perfluoropolyether having an acrylic group, methacrylic group, vinyl ether group, styryl group or the like at the terminal is polymerized with the above monomer, and polyorganosiloxane or perfluoropolyester having a radical generating group at the terminal. It can be obtained by polymerization of the above monomers with ether, reaction of a polyorganosiloxane or perfluoropolyether having a functional group with a fluorine-containing copolymer, or the like.
  • the proportion of each monomer used to form the fluorinated copolymer before cross-linking is preferably 20 to 70 mol%, more preferably 40 to 70 mol% of the fluorinated vinyl monomer,
  • the amount of the monomer is preferably 1 to 20 mol%, more preferably 5 to 20 mol%, and the other monomer used in combination is preferably 10 to 70 mol%, more preferably 10 to 50 mol%.
  • the fluorine-containing copolymer can be obtained by polymerizing these monomers in the presence of a radical polymerization initiator by means of solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization or the like.
  • Fluorine-containing resin before crosslinking is commercially available and can be used.
  • Examples of commercially available fluorine-containing resins before cross-linking include Cytop (Asahi Glass), Teflon (registered trademark) AF (DuPont), polyvinylidene fluoride, Lumiflon (Asahi Glass), Opstar (JSR), etc. Can be mentioned.
  • the low refractive index layer comprising a crosslinked fluorine-containing resin as a constituent component preferably has a dynamic friction coefficient in the range of 0.03 to 0.15 and a contact angle with water in the range of 90 to 120 degrees.
  • the low refractive index layer used in the present invention is applied by dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating or extrusion coating (US Pat. No. 2,681,294). Can be formed. Two or more layers may be applied simultaneously. For the method of simultaneous application, US Pat. Nos. 2,761,791, 2,941,898, 3,508,947, 3,526,528 and Yuji Harasaki, Coating Engineering, page 253, It is described in Asakura Shoten (1973).
  • the film thickness of the low refractive index layer used in the present invention is preferably 50 to 200 nm, more preferably 60 to 150 nm.
  • ⁇ High refractive index layer and medium refractive index layer> it is preferable to provide a high refractive index layer between the hard coat layer and the low refractive index layer in order to reduce the reflectance.
  • a middle refractive index layer between the docoat layer and the high refractive index layer.
  • the refractive index of the high refractive index layer is preferably 1.55 to 2.30, and more preferably 1.57 to 2.20.
  • the refractive index of the middle refractive index layer is adjusted to be an intermediate value between the refractive index of the support and the refractive index of the high refractive index layer.
  • the refractive index of the middle refractive index layer is preferably 1.55 to 1.80.
  • the thickness of the high refractive index layer and the middle refractive index layer is preferably 5 nm to 1 ⁇ m, more preferably 10 nm to 0.2 ⁇ m, and most preferably 30 nm to 100 nm.
  • the haze of the high refractive index layer and the medium refractive index layer is preferably 5% or less, more preferably 3% or less, and most preferably 1% or less.
  • the strength of the high refractive index layer and the medium refractive index layer is preferably H or higher, more preferably 2H or higher, and most preferably 3H or higher, with a pencil hardness of 1 kg.
  • a layer having a rate of 1.55 to 2.5 is preferred.
  • R 1 is preferably an aliphatic hydrocarbon group having 1 to 8 carbon atoms, preferably an aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • the monomer, oligomer or hydrolyzate thereof of the organotitanium compound reacts like —Ti—O—Ti— when the alkoxide group is hydrolyzed to form a crosslinked structure, thereby forming a cured layer.
  • Examples of the monomer or oligomer of the organic titanium compound used in the present invention include Ti (OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 , Ti (On—C 3 H 7 ) 4 , and Ti (Oi ⁇ ).
  • Ti (On-C 3 H 7 ) 4 , Ti (O-i-C 3 H 7 ) 4 , Ti (On-C 4 H 9 ) 4 , Ti (On-C 3 H 7) ) 4 to 10-mer and Ti (On-C 4 H 9 ) 4 to 10-mer are particularly preferable.
  • the organic titanium compound it is preferable to add the organic titanium compound to a solution in which water and an organic solvent described later are sequentially added.
  • water When water is added later, hydrolysis / polymerization does not proceed uniformly, and white turbidity occurs or film strength decreases.
  • the water and the organic solvent After the water and the organic solvent are added, it is preferable that they are stirred and mixed and dissolved in order to mix well.
  • an organic titanium compound and an organic solvent are mixed and this mixed solution is added to the above-mentioned mixed and stirred solution of water and the organic solvent.
  • the amount of water is preferably in the range of 0.25 to 3 moles with respect to 1 mole of the organic titanium compound.
  • the amount is less than 0.25 mol, hydrolysis and polymerization are not sufficiently progressed and the film strength is lowered. If it exceeds 3 mol, hydrolysis and polymerization will proceed excessively, resulting in generation of coarse TiO 2 particles and cloudiness, which is not preferable. Therefore, the amount of water needs to be adjusted within the above range.
  • the water content is preferably less than 10% by mass with respect to the total amount of the coating solution. If the water content is 10% by mass or more with respect to the total amount of the coating solution, it is not preferable because the stability of the coating solution with time deteriorates and white turbidity occurs.
  • the organic solvent used in the present invention is preferably a water-miscible organic solvent.
  • the water-miscible organic solvent include alcohols (eg, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, pentanol, hexanol, cyclohexanol, benzyl alcohol, etc.), many Monohydric alcohols (for example, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, pentanediol, glycerin, hexanetriol, thiodiglycol, etc.), polyvalent Alcohol ethers (eg, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether) , Ethylene glyco
  • the monomer, oligomer or hydrolyzate of the organic titanium compound used in the present invention preferably occupies 50.0% by mass to 98.0% by mass in the solid content contained in the coating solution.
  • the solid content ratio is more preferably 50% by mass to 90% by mass, and further preferably 55% by mass to 90% by mass.
  • the high refractive index layer and medium refractive index layer used in the present invention preferably contain metal oxide particles as fine particles, and further contain a binder polymer.
  • the metal oxide particles and the hydrolyzed / polymerized organic titanium compound are firmly bonded, and the hardness and uniform film of the particles It is possible to obtain a strong coating film having both flexibility.
  • the metal oxide particles used for the high refractive index layer and the middle refractive index layer preferably have a refractive index of 1.80 to 2.80, and more preferably 1.90 to 2.80.
  • the weight average diameter of the primary particles of the metal oxide particles is preferably 1 to 150 nm, more preferably 1 to 100 nm, and most preferably 1 to 80 nm.
  • the weight average diameter of the metal oxide particles in the layer is preferably 1 to 200 nm, more preferably 5 to 150 nm, still more preferably 10 to 100 nm, and more preferably 10 to 80 nm. Most preferred.
  • the average particle diameter of the metal oxide particles is measured by a light scattering method if it is 20-30 nm or more, and by an electron micrograph if it is 20-30 nm or less.
  • the specific surface area of the metal oxide particles is preferably 10 to 400 m 2 / g, more preferably 20 to 200 m 2 / g, and more preferably 30 to 150 m 2 / g, as measured by the BET method. Most preferably it is.
  • the metal oxide particles include at least one selected from Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P, and S.
  • Specific examples of the metal oxide include titanium dioxide (eg, rutile, rutile / anatase mixed crystal, anatase, amorphous structure), tin oxide, indium oxide, zinc oxide, and zirconium oxide. Of these, titanium oxide, tin oxide, and indium oxide are particularly preferable.
  • the metal oxide particles are mainly composed of oxides of these metals and can further contain other elements.
  • the main component means a component having the largest content (mass%) among the components constituting the particles. Examples of other elements include Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P, and S.
  • the metal oxide particles are preferably surface-treated.
  • the surface treatment can be performed using an inorganic compound or an organic compound.
  • inorganic compounds used for the surface treatment include alumina, silica, zirconium oxide and iron oxide. Of these, alumina and silica are preferable.
  • organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Among these, the silane coupling agent is most preferable.
  • silane coupling agents Two or more types may be used in combination, and other silane coupling agents may be used in addition to the silane coupling agent.
  • Other silane coupling agents include alkyl esters of orthosilicate (eg, methyl orthosilicate, ethyl orthosilicate, n-propyl orthosilicate, i-propyl orthosilicate, n-butyl orthosilicate, sec-butyl orthosilicate, orthosilicate). Acid t-butyl) and hydrolysates thereof.
  • the surface treatment with the coupling agent can be carried out by adding the coupling agent to the fine particle dispersion and leaving the dispersion at a temperature from room temperature to 60 ° C. for several hours to 10 days.
  • inorganic acids for example, sulfuric acid, hydrochloric acid, nitric acid, chromic acid, hypochlorous acid, boric acid, orthosilicic acid, phosphoric acid, carbonic acid
  • organic acids for example, acetic acid, polyacrylic acid, Benzenesulfonic acid, phenol, polyglutamic acid
  • salts thereof eg, metal salts, ammonium salts
  • silane coupling agents are preferably hydrolyzed with a necessary amount of water in advance.
  • the silane coupling agent is hydrolyzed, the surfaces of the organic titanium compound and the metal oxide particles described above are easy to react and a stronger film is formed. It is also preferable to add a hydrolyzed silane coupling agent to the coating solution in advance.
  • the water used for this hydrolysis can also be used for the hydrolysis / polymerization of the organic titanium compound.
  • the shape of the metal oxide particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape or an indefinite shape. Two or more kinds of metal oxide particles may be used in combination in the high refractive index layer and the middle refractive index layer.
  • the ratio of the metal oxide particles in the high refractive index layer and the medium refractive index layer is preferably 5 to 65% by volume, more preferably 10 to 60% by volume, still more preferably 20 to 55% by volume. is there.
  • the metal oxide particles are supplied to a coating solution for forming a high refractive index layer and a medium refractive index layer in a dispersion state dispersed in a medium.
  • a dispersion medium for metal oxide particles a liquid having a boiling point of 60 to 170 ° C. is preferably used.
  • the dispersion solvent include water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ester (eg, methyl acetate, ethyl acetate).
  • toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are particularly preferable.
  • the metal oxide particles can be dispersed in the medium using a disperser.
  • the disperser include a sand grinder mill (eg, a bead mill with pins), a high-speed impeller mill, a pebble mill, a roller mill, an attritor, and a colloid mill.
  • a sand grinder mill and a high-speed impeller mill are particularly preferred.
  • preliminary dispersion processing may be performed.
  • the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an extruder.
  • a polymer having a crosslinked structure (hereinafter also referred to as a crosslinked polymer) as a binder polymer.
  • the crosslinked polymer include polymers having a saturated hydrocarbon chain such as polyolefin (hereinafter collectively referred to as polyolefin), and crosslinked products such as polyether, polyurea, polyurethane, polyester, polyamine, polyamide, and melamine resin.
  • the crosslinked polymer has an anionic group.
  • the anionic group has a function of maintaining the dispersion state of the inorganic fine particles, and the crosslinked structure has a function of imparting a film forming ability to the polymer and strengthening the film.
  • the anionic group may be directly bonded to the polymer chain or may be bonded to the polymer chain via a linking group, but is bonded to the main chain as a side chain via the linking group. Is preferred.
  • the anionic group examples include a carboxylic acid group (carboxy), a sulfonic acid group (sulfo), and a phosphoric acid group (phosphono). Of these, sulfonic acid groups and phosphoric acid groups are preferred.
  • the anionic group may be in a salt state.
  • the cation that forms a salt with the anionic group is preferably an alkali metal ion.
  • the proton of the anionic group may be dissociated.
  • the linking group that connects the anionic group and the polymer chain is preferably a divalent group selected from —CO—, —O—, an alkylene group, an arylene group, and combinations thereof.
  • the crosslinked polymer which is a preferable binder polymer is preferably a copolymer having a repeating unit having an anionic group and a repeating unit having a crosslinked structure.
  • the proportion of the repeating unit having an anionic group in the copolymer is preferably 2 to 96% by mass, more preferably 4 to 94% by mass, and most preferably 6 to 92% by mass. preferable.
  • the repeating unit may have two or more anionic groups.
  • the crosslinked polymer having an anionic group may contain other repeating units (a repeating unit having neither an anionic group nor a crosslinked structure).
  • Other repeating units are preferably a repeating unit having an amino group or a quaternary ammonium group and a repeating unit having a benzene ring.
  • the amino group or the quaternary ammonium group has a function of maintaining the dispersed state of the inorganic fine particles, like the anionic group.
  • the benzene ring has a function of increasing the refractive index of the high refractive index layer. The amino group, the quaternary ammonium group, and the benzene ring can obtain the same effect even if they are contained in a repeating unit having an anionic group or a repeating unit having a crosslinked structure.
  • the amino group or quaternary ammonium group may be directly bonded to the polymer chain, or may be a side chain via a linking group. May be bonded to the polymer chain, but the latter is more preferred.
  • the amino group or quaternary ammonium group is preferably a secondary amino group, a tertiary amino group or a quaternary ammonium group, and more preferably a tertiary amino group or a quaternary ammonium group.
  • the group bonded to the nitrogen atom of the secondary amino group, tertiary amino group or quaternary ammonium group is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, still more preferably a carbon number. 1 to 6 alkyl groups.
  • the counter ion of the quaternary ammonium group is preferably a halide ion.
  • the linking group that connects the amino group or quaternary ammonium group to the polymer chain is a divalent group selected from —CO—, —NH—, —O—, an alkylene group, an arylene group, and combinations thereof. Is preferred.
  • the proportion is preferably 0.06 to 32% by mass, more preferably 0.08 to 30% by mass, Most preferably, the content is 0.1 to 28% by mass.
  • the cross-linked polymer is prepared by a polymerization reaction at the same time as or after application of the coating solution by preparing a coating solution for forming a high refractive index layer and a medium refractive index layer by blending a monomer for generating a crosslinked polymer. Is preferred. Each layer is formed with the production of the crosslinked polymer.
  • the monomer having an anionic group functions as a dispersant for inorganic fine particles in the coating solution.
  • the monomer having an anionic group is preferably used in an amount of 1 to 50% by mass, more preferably 5 to 40% by mass, and still more preferably 10 to 30% by mass with respect to the inorganic fine particles.
  • the monomer having an amino group or a quaternary ammonium group functions as a dispersion aid in the coating solution.
  • the monomer having an amino group or a quaternary ammonium group is preferably used in an amount of 3 to 33% by mass based on the monomer having an anionic group.
  • a monomer having two or more ethylenically unsaturated groups is most preferable, and examples thereof include esters of polyhydric alcohol and (meth) acrylic acid (eg, ethylene glycol di ( (Meth) acrylate, 1,4-dichlorohexanediacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol Tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, pentaerythritol hexa (meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, poly Stear polyacrylate), vinylbenzene and its derivative
  • monomers may be used as the monomer having an anionic group and the monomer having an amino group or a quaternary ammonium group.
  • examples of commercially available monomers having an anionic group include KAYAMAPMPM-21, PM-2 (manufactured by Nippon Kayaku Co., Ltd.), Antox MS-60, MS-2N, MS-NH4 (manufactured by Nippon Emulsifier Co., Ltd.).
  • Aronix M-5000, M-6000, M-8000 series (manufactured by Toagosei Co., Ltd.), Biscote # 2000 series (manufactured by Osaka Organic Chemical Industry Co., Ltd.), New Frontier GX-8289 (Daiichi Kogyo Seiyaku Co., Ltd. ) Ester, NK ester CB-1, A-SA (manufactured by Shin-Nakamura Chemical Co., Ltd.), AR-100, MR-100, MR-200 (manufactured by Eighth Chemical Industry Co., Ltd.), and the like.
  • Examples of commercially available monomers having a commercially available amino group or quaternary ammonium group include DMAA (manufactured by Osaka Organic Chemical Industry Co., Ltd.), DMAEA, DMAPAA (manufactured by Kojin Co., Ltd.), and Bremer QA (Nippon Yushi Co. And New Frontier C-1615 (Daiichi Kogyo Seiyaku Co., Ltd.).
  • the polymer polymerization reaction may be a photopolymerization reaction or a thermal polymerization reaction.
  • a photopolymerization reaction is particularly preferable.
  • a polymerization initiator is preferably used for the polymerization reaction.
  • the thermal polymerization initiator mentioned later used in order to form the binder polymer of an anti-glare hard-coat layer, and a photoinitiator are mentioned.
  • a commercially available polymerization initiator may be used as the polymerization initiator.
  • a polymerization accelerator may be used.
  • the addition amount of the polymerization initiator and the polymerization accelerator is preferably in the range of 0.2 to 10% by mass of the total amount of monomers.
  • the coating liquid (dispersion of inorganic fine particles containing monomer) may be heated to promote polymerization of the monomer (or oligomer). Moreover, it may heat after the photopolymerization reaction after application
  • a polymer having a relatively high refractive index for the medium refractive index layer and the high refractive index layer.
  • the polymer having a high refractive index include polystyrene, styrene copolymer, polycarbonate, melamine resin, phenol resin, epoxy resin, and polyurethane obtained by reaction of cyclic (alicyclic or aromatic) isocyanate and polyol. .
  • Polymers having other cyclic (aromatic, heterocyclic, and alicyclic) groups and polymers having halogen atoms other than fluorine as substituents can also be used with a high refractive index.
  • each layer of the antireflection layer or coating liquid thereof includes a polymerization inhibitor, a leveling agent, a thickener, and an anti-coloring agent.
  • An agent, an ultraviolet absorber, a silane coupling agent, an antistatic agent or an adhesion promoter may be added.
  • the middle to high refractive index layer and the low refractive index layer After the application of the middle to high refractive index layer and the low refractive index layer according to the present invention, it is preferable to irradiate active energy rays in order to promote hydrolysis or curing of the composition containing the metal alkoxide. More preferably, the active energy ray is irradiated every time each layer is coated.
  • the active energy ray used in the present invention can be used without limitation as long as it is an energy source that activates a compound such as ultraviolet ray, electron beam, and ⁇ ray, but ultraviolet ray and electron beam are preferable, and handling is particularly simple and high energy. Ultraviolet rays are preferred because they can be easily obtained.
  • the ultraviolet light source for photopolymerizing the ultraviolet reactive compound any light source that generates ultraviolet light can be used. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used.
  • the irradiation conditions vary depending on individual lamps, but the amount of light irradiated is preferably 20mJ / cm 2 ⁇ 10,000mJ / cm 2, more preferably, a 100mJ / cm 2 ⁇ 2,000mJ / cm 2, particularly preferably 400 mJ / Cm 2 to 2,000 mJ / cm 2 .
  • the multilayer antireflection layer may be irradiated one by one or may be irradiated after lamination. From the viewpoint of productivity, it is preferable to irradiate ultraviolet rays after laminating multiple layers.
  • an electron beam can be used in the same manner.
  • the electron beam 50 to 1000 keV, preferably 100 to 100, emitted from various electron beam accelerators such as cockroft walton type, bandegraph type, resonance transformer type, insulated core transformer type, linear type, dynamitron type, and high frequency type.
  • An electron beam having an energy of 300 keV can be given.
  • each refractive index layer constituting the antireflection layer is preferably in the range of 1 nm to 200 nm, and more preferably 5 nm to 150 nm. However, depending on the refractive index of each layer, an appropriate thickness is required. It is preferable to select.
  • the antireflection layer used in the present invention preferably has an average reflectance at 450 nm to 650 nm of 1% or less, particularly preferably 0.5% or less. Further, the minimum reflectance in this range is particularly preferably from 0.00 to 0.3%.
  • the refractive index and film thickness of the antireflection layer can be calculated and calculated by measuring the spectral reflectance.
  • the reflective optical characteristic of the produced low reflection film can measure a reflectance on the conditions of a 5-degree regular reflection using a spectrophotometer. In this measurement method, after roughening the substrate surface on which the antireflection layer is not applied, a light absorption treatment is performed using a black spray to prevent reflection of light on the back surface of the film and reflectivity. Is measured.
  • the transmittance at a transmittance of 550 nm is measured using a spectrophotometer with reference to air.
  • the polarizing plate using the ⁇ / 4 plate according to the present invention is a polarizing plate in which the ⁇ / 4 plate, a polarizer, and an optical film are provided in this order, and the optical film has the following requirement (1) or (2) is satisfied (see FIG. 5).
  • the in-plane retardation value Ro (590) defined by the following formula (I) is in the range of 20 to 150 nm, and the retardation value Rt in the thickness direction defined by the following formula (II) ( 590) is in the range of 70 to 400 nm.
  • the in-plane retardation value Ro (590) defined by the following formula (I) is in the range of 0 to 2 nm, and the retardation value Rt in the thickness direction defined by the following formula (II) ( 590) is in the range of ⁇ 15 to 15 nm.
  • Ro (590) (n x ⁇ n y ) ⁇ d (nm)
  • Rt (590) ⁇ (n x + n y ) / 2 ⁇ n z ⁇ ⁇ d (nm)
  • Ro (590) represents the in-plane retardation value in the film at the measurement wavelength of 590 nm
  • Rt (590) represents the retardation value in the thickness direction in the film at the measurement wavelength of 590 nm.
  • d represents the thickness of the optical film (nm)
  • n x represents the maximum refractive index in the plane of the film at a measurement wavelength of 590 nm, also referred to as a slow axis direction of the refractive index.
  • n y represents a direction perpendicular refractive index to the slow axis in the film plane at a measurement wavelength of 590 nm
  • n z represents the refractive index of the film in the thickness direction at a measurement wavelength of 590 nm. The measurement is performed in a 23 ° C./55% RH environment.
  • the polarizing plate according to the present invention is manufactured by using a stretched polyvinyl alcohol doped with iodine or a dichroic dye as a polarizer, and laminating with a configuration of ⁇ / 4 plate / polarizer / optical film. be able to.
  • the ⁇ / 4 plate according to the present invention is bonded to the viewing side.
  • optical film for polarizing plate is composed of cellulose acetate, plasticizer, ultraviolet absorber, antioxidant, retardation adjusting agent, matting agent, deterioration inhibitor, peeling aid, and surface activity used in the above-mentioned ⁇ / 4 plate.
  • An agent or the like can be preferably used.
  • the optical film bonded to the surface opposite to the surface on which the ⁇ / 4 plate is bonded to the polarizer has retardation values Ro and Rt defined by the following formulas of 20 to 150 nm and 70 to 400 nm, respectively. Or an optical film satisfying 0 nm ⁇ Ro ⁇ 2 nm and ⁇ 15 nm ⁇ Rt ⁇ 15 nm is preferably bonded.
  • Formula (i) Ro (n x -n y) ⁇ d
  • Formula (ii) Rt ((n x + n y ) / 2 ⁇ n z ) ⁇ d
  • n x, n y, n z is, 23 °C ⁇ 55% RH
  • the refractive indices n x at 590 nm maximum refractive index in the plane of the film, also referred to as a slow axis direction of the refractive index.
  • N y reffractive index in the direction perpendicular to the slow axis in the film plane
  • nz reffractive index of the film in the thickness direction
  • d is the thickness (nm) of the film.
  • the optical film has retardation values Ro and Rt in the range of 20 to 150 nm and 70 to 400 nm, respectively.
  • the Ro value is 30 to 100 nm
  • Rt value is 70 to 250 nm when two optical compensation films are used for the VA liquid crystal display device
  • Rt value is 150 when one optical film is used for the VA liquid crystal display device. It is preferably ⁇ 400 nm.
  • optical film for example, a method of supporting a discotic liquid crystalline compound, which is a compound having negative uniaxiality, on a support (see, for example, JP-A-7-325221), positive optical anisotropy is achieved.
  • a method in which a nematic type polymer liquid crystalline compound having a hybrid orientation in which the pretilt angle of liquid crystal molecules changes in the depth direction is supported on a support see, for example, JP-A-10-186356
  • an optical film provided with an optically anisotropic layer on a support by a method for example, see JP-A-8-15681
  • a conventional TAC film An optical film having a retardation film function by causing a retardation to develop by stretching a roulose derivative film, saponifying the film, and laminating a PVA polarizer (see, for example, JP-A-2003-270442)
  • Examples include, but are not limited to, optical compensation films obtained by adding a retardation adjusting agent to a cellulose ester film to obtain a retardation film (see, for example, JP-A Nos. 2000-275434 and 2003-344655). Is not to be done.
  • optical films are preferably polymer films, and are preferably easy to manufacture, optically uniform, and optically transparent. Any of these may be used, for example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate.
  • Polyester film such as polyethylene film, polypropylene film, cellophane, cellulose diacetate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin Film, polymethylpentene film, polyetherketone film, Polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, a cycloolefin polymer film, a polyvinyl acetal resin film, there may be mentioned polymethyl methacrylate film, or an acrylic film or the like, but are not limited to.
  • films formed by a solution casting method or a melting method are preferably used.
  • cellulose ester films, polycarbonate films, polysulfones (including polyether sulfones) and cycloolefin polymer films are preferred.
  • cellulose ester films and cycloolefin polymer films are particularly advantageous in terms of production, cost, and transparency. From the viewpoints of uniformity, adhesion and the like.
  • cellulose ester films include Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC12UR, KC16UR, KC4UE, KC8UE, KC4F Etc.) are preferably used.
  • the most preferred optical film is a cellulose ester film stretched in the width direction of the film by a tenter device or the like.
  • the optical film used in the present invention can also be used as a polarizing plate protective film used in a transverse electric field switching mode type (also referred to as IPS mode type) liquid crystal display device, in which case the retardation value is 0 nm.
  • An optical film satisfying ⁇ Ro ⁇ 2 nm and ⁇ 15 nm ⁇ Rt ⁇ 15 nm is preferable.
  • the optical film preferably contains an acrylic polymer containing a cellulose ester and having a weight average molecular weight of 500 or more and 30000 or less, and among them, an ethylenically unsaturated monomer Xa and a molecule having no aromatic ring and no hydrophilic group in the molecule.
  • a weight average molecular weight of 500 or more and 3000 or less obtained by polymerizing X and an ethylenically unsaturated monomer Ya having no aromatic ring Preferably contains a polymer Y.
  • the polymer X used in the present invention comprises an ethylenically unsaturated monomer Xa having no aromatic ring and a hydrophilic group in the molecule and an ethylenically unsaturated monomer Xb having no aromatic ring and having a hydrophilic group in the molecule. It is a polymer having a weight average molecular weight of 5,000 to 30,000 obtained by copolymerization.
  • Xa is an acrylic or methacrylic monomer that does not have an aromatic ring and a hydrophilic group in the molecule
  • Xb is an acrylic or methacrylic monomer that does not have an aromatic ring in the molecule and has a hydrophilic group.
  • the polymer X used in the present invention is represented by the following general formula (X).
  • R 1 and R 3 represent H or CH 3.
  • R 2 represents an alkyl group having 1 to 12 carbon atoms or a cycloalkyl group.
  • R 4 represents —CH 2 —, —C 2 H 4 —.
  • Xc represents a monomer unit polymerizable to Xa and Xb
  • a hydrophilic group means a group having a hydroxy group (hydroxyl group) or an ethylene oxide chain.
  • Examples of the ethylenically unsaturated monomer Xa having no aromatic ring and no hydrophilic group in the molecule include methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), and butyl acrylate (n-, i- , S-, t-), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n- I-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), acrylic acid (2-ethylhexyl), acrylic acid ( ⁇ -caprolactone), acrylic acid (2-hydroxyethyl) ), Acrylic acid (2-ethoxyethyl), etc., or those obtained by replacing the above acrylic ester with a methacrylic ester.
  • the ethylenically unsaturated monomer Xb having no aromatic ring in the molecule and having a hydrophilic group is preferably acrylic acid or methacrylic acid ester as a monomer unit having a hydroxy group (hydroxyl group).
  • Acrylic acid (2-hydroxyethyl), methacrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), and acrylic acid (3-hydroxypropyl) are preferable.
  • Xc is not particularly limited as long as it is an ethylenically unsaturated monomer other than Xa and Xb and copolymerizable, but preferably has no aromatic ring.
  • the molar composition ratio m: n of Xa, Xb and Xc is preferably in the range of 99: 1 to 65:35, more preferably in the range of 95: 5 to 75:25.
  • P of Xc is 0-10.
  • Xc may be a plurality of monomer units.
  • the molecular weight of the polymer X has a weight average molecular weight of 5,000 to 30,000, more preferably 8,000 to 25,000.
  • the weight average molecular weight be 5000 or more because advantages such as little dimensional change of the cellulose ester film under high temperature and high humidity and less curling as a polarizing plate protective film can be obtained.
  • the weight average molecular weight is within 30000, the compatibility with the cellulose ester is further improved, and bleeding out under high temperature and high humidity and further haze generation immediately after film formation are suppressed.
  • the weight average molecular weight of the polymer X used in the present invention can be adjusted by a known molecular weight adjusting method.
  • a molecular weight adjusting method include a method of adding a chain transfer agent such as carbon tetrachloride, lauryl mercaptan, octyl thioglycolate, and the like.
  • the polymerization temperature is usually from room temperature to 130 ° C., preferably from 50 ° C. to 100 ° C., but this temperature or the polymerization reaction time can be adjusted.
  • the method for measuring the weight average molecular weight can be as follows.
  • Weight average molecular weight measurement method The weight average molecular weight Mw was measured using gel permeation chromatography.
  • the measurement conditions are as follows.
  • the polymer Y used in the present invention is a polymer having a weight average molecular weight of 500 or more and 3000 or less obtained by polymerizing an ethylenically unsaturated monomer Ya having no aromatic ring.
  • a weight average molecular weight of 500 or more is preferable because the residual monomer of the polymer is reduced.
  • Ya is preferably an acrylic or methacrylic monomer having no aromatic ring.
  • the polymer Y used in the present invention is represented by the following general formula (Y).
  • R 5 represents H or CH 3.
  • R 6 represents an alkyl group or a cycloalkyl group having 1 to 12 carbon atoms.
  • Yb is not particularly limited as long as it is an ethylenically unsaturated monomer copolymerizable with Ya.
  • Yb may be plural.
  • k + q 100, q is preferably 0-30.
  • the ethylenically unsaturated monomer Ya constituting the polymer Y obtained by polymerizing an ethylenically unsaturated monomer having no aromatic ring is, for example, methyl acrylate, ethyl acrylate, propyl acrylate (i- , N-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (N-, i-), octyl acrylate (n-, i-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), cyclohexyl acrylate, acrylic acid (2- Ethyl hexyl), acrylic acid ( ⁇ -caprolactone), acrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), acrylic acid
  • Yb is not particularly limited as long as it is an ethylenically unsaturated monomer copolymerizable with Ya.
  • vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl valerate, vinyl pivalate, and vinyl caproate.
  • Vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, vinyl octylate, vinyl methacrylate, vinyl crotonate, vinyl sorbate, vinyl cinnamate and the like are preferred.
  • Yb may be plural.
  • a method that can align the molecular weight as much as possible without increasing the molecular weight examples include a method using a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide, a method using a polymerization initiator in a larger amount than usual polymerization, and a mercapto compound in addition to the polymerization initiator.
  • a method using a chain transfer agent such as carbon tetrachloride a method using a polymerization terminator such as benzoquinone and dinitrobenzene in addition to the polymerization initiator, and further disclosed in JP 2000-128911 or 2000-344823.
  • Examples include a compound having one thiol group and a secondary hydroxy group (hydroxyl group), or a bulk polymerization method using a polymerization catalyst in which the compound and an organometallic compound are used in combination.
  • the polymer Y has a thiol group and a secondary hydride in the molecule.
  • the polymerization method of using a compound having a carboxy group (hydroxyl group) as a chain transfer agent is preferred.
  • the terminal of the polymer Y has a hydroxy group (hydroxyl group) and a thioether resulting from the polymerization catalyst and the chain transfer agent.
  • the compatibility of Y and cellulose ester can be adjusted by this terminal residue.
  • Polymers X and Y preferably have a hydroxy (hydroxyl) value of 30 to 150 [mg KOH / g].
  • This measurement conforms to JIS K 0070 (1992).
  • This hydroxy (hydroxyl group) value is defined as the number of mg of potassium hydroxide required to neutralize acetic acid bonded to a hydroxy group (hydroxyl group) when 1 g of a sample is acetylated.
  • sample Xg (about 1 g) is precisely weighed in a flask, and 20 ml of an acetylating reagent (a solution obtained by adding pyridine to 20 ml of acetic anhydride to 400 ml) is accurately added thereto. Attach an air cooling tube to the mouth of the flask and heat in a glycerin bath at 95-100 ° C.
  • hydroxy (hydroxyl group) value is calculated by the following formula.
  • Hydroxy (hydroxyl group) value ⁇ (BC) ⁇ f ⁇ 28.05 / X ⁇ + D (Wherein B is the amount of 0.5 mol / L potassium hydroxide ethanol solution used in the blank test (ml), and C is the amount of 0.5 mol / L potassium hydroxide ethanol solution used in the titration (ml).
  • the content of the polymer X and the polymer Y in the cellulose ester film is preferably in a range satisfying the following formulas (i) and (ii).
  • a preferred range of formula (i) is 10 to 25% by mass.
  • the polymer X and the polymer Y have a sufficient effect for reducing the retardation value Rt. Moreover, if it is 35 mass% or less as a total amount, adhesiveness with a polyvinyl alcohol-type polarizer will be favorable.
  • Polymer X and polymer Y can be directly added and dissolved as a material constituting the dope solution, or can be added to the dope solution after being previously dissolved in an organic solvent for dissolving the cellulose ester.
  • Examples of the polarizer preferably used in the polarizing plate according to the present invention include a polyvinyl alcohol polarizing film, which includes a polyvinyl alcohol film dyed with iodine and a dichroic dye dyed.
  • a polyvinyl alcohol film a modified polyvinyl alcohol film modified with ethylene is preferably used.
  • a polyvinyl alcohol aqueous solution is formed into a film and dyed by uniaxial stretching or dyed or uniaxially stretched and then preferably subjected to a durability treatment with a boron compound. Stretching is preferably performed uniaxially in the film forming direction, or in the direction of 45 ° obliquely with respect to the film forming direction, similarly to the ⁇ / 4 plate described above.
  • the film thickness of the polarizer is 5 to 40 ⁇ m, preferably 5 to 30 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the ⁇ / 4 plate according to the present invention and one side of the polarizing plate protective film B are bonded to form a polarizing plate.
  • the polarizing plate can be produced by a general method.
  • the ⁇ / 4 plate according to the present invention subjected to alkali saponification treatment is bonded to at least one surface of a polarizer prepared by immersing and stretching a polyvinyl alcohol film in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution. Is preferred. It is preferable to paste the polarizing plate protective film B on the other surface.
  • the polarizing plate can be constructed by further bonding a protective film on one side of the polarizing plate and a separate film on the other side.
  • the protective film and the separate film are used for the purpose of protecting the polarizing plate at the time of shipping the polarizing plate and at the time of product inspection.
  • the polarizing plate according to the present invention is a reflective type, transmissive type, transflective type LCD or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), IPS type, etc. Preferably used.
  • any appropriate driving mode can be adopted as long as the effect of the present invention is obtained.
  • driving modes include super twisted nematic (STN) mode, twisted nematic (TN) mode, electrically controlled birefringence (ECB) mode, in-plane switching (IPS) mode, and vertical alignment (VA) mode.
  • STN super twisted nematic
  • TN twisted nematic
  • ECB electrically controlled birefringence
  • IPS in-plane switching
  • VA vertical alignment
  • HAN Hybrid Aligned Nematic
  • ECB mode is preferred. This is because, in the present invention, a stereoscopic image display device having an excellent balance between contrast and viewing angle characteristics can be obtained.
  • the ECB mode uses the birefringence of the liquid crystal, and changes the retardation according to the voltage applied to the liquid crystal molecules, and controls transmission and transmission by combining with the retardation film.
  • the stereoscopic image display device of the present invention is a stereoscopic image display device including a display device and liquid crystal shutter glasses, and the display device is provided with a ⁇ / 4 plate and a polarizer in this order from the viewing side.
  • the liquid crystal shutter glasses are provided with a polarizer, a liquid crystal cell, and a ⁇ / 4 plate in this order from the viewing side, and the total ⁇ Rt 1 to n of the thickness direction retardation Rt of all the optical compensation layers. (Where n represents an integer) and the retardation Rtc in the thickness direction of the liquid crystal cell satisfy the above formula (1).
  • the above aspect / configuration can reduce crosstalk, luminance reduction, and color change when viewing the display device from an oblique angle during stereoscopic (3D) video viewing, and has excellent visibility for the usage environment. Can be maintained, and a stereoscopic image display device having higher durability against the use environment can be obtained.
  • Example 1 ⁇ Production of ⁇ / 4 plate 1> ⁇ Fine particle dispersion 1> Fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.) 11 parts by mass Ethanol 89 parts by mass The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
  • Fine particle addition liquid 1 The fine particle dispersion 1 was slowly added to the dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
  • a main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose acetate was added to a pressurized dissolution tank containing a solvent while stirring. This is completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The main dope solution was prepared by filtration using 244.
  • the solvent was evaporated until the amount of residual solvent in the cast (cast) film reached 75%, and then peeled off from the stainless steel belt support with a peeling tension of 130 N / m.
  • the ⁇ of the ⁇ / 4 plate 1 was 0 °, Ro was 138 nm, Rt was 80 nm, and Ro (550) -Ro (450) was 4 nm.
  • the following hard coat layer coating solution is die-coated with a coating width of 1.4 m, dried at 80 ° C., and then irradiated with 120 mJ / cm 2 ultraviolet light with a high-pressure mercury lamp so that the film thickness after curing is 6 ⁇ m. A layer was provided.
  • ⁇ Application of antireflection layer> (Application of medium refractive index layer)
  • the following medium refractive index layer coating solution is die-coated on the surface of the hard coat layer, dried at 80 ° C., and then irradiated with 120 mJ / cm 2 of ultraviolet light with a high-pressure mercury lamp so that the cured film thickness becomes 110 nm.
  • a medium refractive index layer was provided.
  • the refractive index was 1.60.
  • PGME propylene glycol monomethyl ether 40 parts by mass Isopropyl alcohol 25 parts by mass Methyl ethyl ketone 25 parts by mass Pentaerythritol triacrylate 0.9 parts by mass Pentaerythritol tetraacrylate 1.0 part by mass Urethane acrylate (trade name: U-4HA Shin-Nakamura Chemical Co., Ltd.) (Made by company) 0.6 parts by mass Particle dispersion A 20 parts by mass 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184, manufactured by BASF Japan Ltd.) 0.4 parts by mass 2-methyl-1- [4- (methylthio) phenyl]- 2-monoforinopropan-1-one (Irgacure 907, manufactured by BASF Japan) 0.2 parts by mass 10% FZ-2207, propylene glycol monomethyl ether solution (Nihon Unicar Co., Ltd.) 0.4 parts by mass (
  • Propylene glycol monomethyl ether 430 parts by mass Isopropyl alcohol 430 parts by mass Tetraethoxysilane hydrolyzate A 120 parts by mass ⁇ -methacryloxypropyltrimethoxysilane (trade name: KBM503, manufactured by Shin-Etsu Chemical Co., Ltd.) 3.0 parts by mass Isopropyl alcohol dispersion Hollow silica sol (solid content 20%, silica sol manufactured by Catalyst Chemical Industry Co., Ltd., trade name: ELCOM V-8209) 40 parts by mass Aluminum ethyl acetoacetate diisopropylate (manufactured by Kawaken Fine Chemicals) 3.0 parts by mass 10% FZ -2207, propylene glycol monomethyl ether solution (Nihon Unicar Co., Ltd.) 3.0 parts by mass (production of optical film 201) ⁇ Fine particle dispersion 1> Fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.)
  • Fine particle addition liquid 1 The fine particle dispersion 1 was slowly added to the dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
  • a main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose acetate was added to a pressurized dissolution tank containing a solvent while stirring. This is completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The main dope solution was prepared by filtration using 244.
  • the solvent was evaporated until the amount of residual solvent in the cast (cast) film reached 75%, and then peeled off from the stainless steel belt support with a peeling tension of 130 N / m.
  • the film is stretched 1.4 times in the width direction by a tenter set at 170 ° C., then dried by being transported for 30 minutes in a drying zone set at 130 ° C., and has a width of 2 m and a width of 1 cm at the end.
  • the retardation values Ro (590) and Rt (590) of the optical film 201 were 50 nm and 130 nm, respectively.
  • a polarizer, a TAC film 4UY manufactured by Konica Minolta Co., Ltd., and an optical film 201 were bonded to the back side to prepare a polarizing plate.
  • Step 1 Soaked in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried to obtain a TAC film saponified on the side to be bonded to the polarizer.
  • Step 2 The polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
  • Step 3 Excess adhesive adhered to the polarizer in Step 2 was gently wiped off and placed on the TAC film treated in Step 1.
  • Step 4 The TAC film, the polarizer, and the optical film 201 laminated in Step 3 were bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 2 m / min.
  • Step 5 A sample obtained by bonding the polarizer, the TAC film, and the optical film 201 produced in Step 4 in a dryer at 80 ° C. was dried for 2 minutes to produce a polarizing plate.
  • the ⁇ / 4 plate 1 was bonded to a single wafer so that the slow axis of the ⁇ / 4 plate and the absorption axis of the polarizer were 45 ° on the 4UY side of the obtained polarizing plate, whereby a polarizing plate 1 was obtained. .
  • the TAC film 4UY used this time had a thickness of 40 ⁇ m, Ro was 0 nm, and Rt was 30 nm.
  • the direction of bonding of the polarizing plate is such that the surface of the ⁇ / 4 film of the present invention is on the viewing side, and the absorption axis is in the same direction as the polarizing plate previously bonded.
  • the display device 1 was manufactured.
  • the absorption axis and slow axis were oriented as shown in FIG.
  • Polarizing Plate 101 Production of Polarizing Plate 101 ⁇ Production of Polarizing Plate 101> A polyvinyl alcohol film having a thickness of 120 ⁇ m was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times).
  • a polarizer, a Konica Minolta TAC film 4UY, and a Konica Minolta TAC film 4UY were bonded to the back side in accordance with the following steps 1 to 5 to produce a polarizing plate.
  • Step 1 Soaked in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried to obtain a TAC film saponified on the side to be bonded to the polarizer.
  • Step 2 The polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
  • Step 3 Excess adhesive adhered to the polarizer in Step 2 was gently wiped off and placed on the TAC film treated in Step 1.
  • Step 4 The TAC film, the polarizer and the TAC film laminated in Step 3 were bonded at a pressure of 20 to 30 N / cm 2 and a conveying speed of about 2 m / min.
  • Process 5 The sample which bonded the polarizer, the TAC film, and TAC film which were produced in the process 4 in the 80 degreeC dryer was dried for 2 minutes, and the polarizing plate was produced.
  • the absorption axis and slow axis were set to the directions shown in FIG.
  • the stereoscopic video display device 1 including the liquid crystal shutter glasses 1 and the display device 1 is referred to as a stereoscopic video display device 1.
  • Example 2 Production of ⁇ / 4 plate 2 Production is performed in the same manner as ⁇ / 4 plate 1 until peeling from the stainless steel belt support, and after peeling, the film is stretched in the TD direction by 180 ° C. 1.5 times ⁇ / 4 plate 2 Was made.
  • the film thickness was 80 ⁇ .
  • a polarizing plate 2 was produced in the same manner as the polarizing plate 1 except that the ⁇ / 4 plate 1 was changed to the ⁇ / 4 plate 2.
  • a display device 2 was produced in the same manner as the display device 1 except that the polarizing plate 1 was changed to the polarizing plate 2.
  • a stereoscopic video display device composed of the liquid crystal shutter glasses 1 and the display device 2 is defined as a stereoscopic video display device 2.
  • Example 3 Production of ⁇ / 4 plate 3 A ⁇ / 4 plate 3 was produced in the same manner as the ⁇ / 4 plate 2 except that the stretching temperature, the draw ratio, and the film thickness were changed as shown in Table 1.
  • a polarizing plate 3 was produced in the same manner as the polarizing plate 1 except that the ⁇ / 4 plate 1 was changed to the ⁇ / 4 plate 3.
  • a display device 3 was produced in the same manner as the display device 1 except that the polarizing plate 1 was changed to the polarizing plate 3.
  • the stereoscopic video display device 3 including the liquid crystal shutter glasses 1 and the display device 3 is defined as the stereoscopic video display device 3.
  • Example 4 Preparation of ⁇ / 4 plate 4
  • the ⁇ / 4 plate 4 was prepared in the same manner as the ⁇ / 4 plate 1 until it was peeled off from the stainless steel belt support, and after peeling, the apparatus described in Example 1 of JP2009-214441 A FIG. 11) was used, and the film was stretched in an oblique direction at a temperature of 170 ° C. and a magnification of 1.5 times so that the slow axis formed 45 ° with the film width direction.
  • drying was terminated while the drying zone was conveyed by a number of rolls.
  • the drying temperature was 130 ° C. and the transport tension was 100 N / m.
  • Polarizing plate 4 (polarizing plate for display device) ⁇ Preparation of Polarizing Plate 4> A polyvinyl alcohol film having a thickness of 120 ⁇ m was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times).
  • the polarizer, the ⁇ / 4 plate 4, and the optical film 201 were bonded to the back surface side to produce the polarizing plate 4.
  • Step 1 Soaked in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried to obtain a ⁇ / 4 plate 4 saponified on the side to be bonded to the polarizer.
  • Step 2 The polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
  • Step 3 Excess adhesive adhered to the polarizer in Step 2 was gently wiped off, and this was placed on the ⁇ / 4 plate 4 processed in Step 1.
  • Step 4 The ⁇ / 4 plate 4, the polarizer, and the optical film 201 laminated in Step 3 were bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 2 m / min.
  • Step 5 The polarizer prepared in Step 4 in the drier at 80 ° C., the ⁇ / 4 plate 4 and the optical film 201 bonded together were dried for 2 minutes to prepare the polarizing plate 4.
  • a display device 3 was produced in the same manner as the display device 1 except that the polarizing plate 1 was changed to the polarizing plate 4.
  • a stereoscopic video display device including the liquid crystal shutter glasses 1 and the display device 4 is referred to as a stereoscopic video display device 4.
  • Example 5 Production of ⁇ / 4 plate 5 A ⁇ / 4 plate 5 was produced in the same manner as the ⁇ / 4 plate 2 except that the stretching temperature, the draw ratio, and the film thickness were changed as shown in Table 1.
  • a polarizing plate 5 was produced in the same manner as the polarizing plate 1 except that the ⁇ / 4 plate 1 was changed to the ⁇ / 4 plate 5.
  • a display device 5 was produced in the same manner as the display device 1 except that the polarizing plate 1 was changed to the polarizing plate 5.
  • the stereoscopic video display device 5 including the liquid crystal shutter glasses 1 and the display device 5 is referred to as a stereoscopic video display device 5.
  • Example 6 Production of ⁇ / 4 plate 6 A ⁇ / 4 plate 6 was produced in the same manner as the ⁇ / 4 plate 1 except that the stretching temperature, the draw ratio, and the film thickness were changed as shown in Table 1.
  • a polarizing plate 6 was produced in the same manner as the polarizing plate 1 except that the ⁇ / 4 plate 1 was changed to the ⁇ / 4 plate 6.
  • a display device 6 was produced in the same manner as the display device 1 except that the polarizing plate 1 was changed to the polarizing plate 6.
  • Liquid crystal shutter glasses 2 were produced in the same manner as the liquid crystal shutter glasses 1 except that the polarizing plate 101 was attached to the viewing side and the ⁇ / 4 plate 6 was attached to the opposite side.
  • the stereoscopic video display device including the liquid crystal shutter glasses 2 and the display device 6 is referred to as a stereoscopic video display device 6.
  • Example 7 Production of liquid crystal shutter glasses 3 Liquid crystal shutter glasses 3 were produced in the same manner as the liquid crystal shutter glasses 1 except that the polarizing plate 101 was attached to the viewing side and the ⁇ / 4 plate 2 was attached to the opposite side.
  • the stereoscopic video display device including the liquid crystal shutter glasses 3 and the display device 2 is referred to as a stereoscopic video display device 7.
  • Example 8 Production of Polarizing Plate 102 A polarizing plate 102 was produced in the same manner as the polarizing plate 101 except that one TAC film was changed to a TAC film 8UX manufactured by Konica Minolta.
  • the TAC film 8UX used this time had a film thickness of 80 ⁇ m, Ro of 0 nm, and Rt of 60 nm.
  • Liquid crystal shutter glasses 1 are bonded in the same manner as the liquid crystal shutter glasses 1 except that the polarizing plate 102 is bonded to the liquid crystal cell side of the liquid crystal shutter glasses so as to be 8UX and the ⁇ / 4 plate 1 is bonded to the opposite side. Shutter glasses 4 were produced.
  • Polarizing Plate 7 A polarizing plate 7 was produced in the same manner as the polarizing plate 1 except that the TAC film 4UY was changed to the TAC film 8UX.
  • a display device 7 was produced in the same manner as the display device 1 except that the polarizing plate 1 was changed to the polarizing plate 7.
  • the stereoscopic video display device 8 including the liquid crystal shutter glasses 4 and the display device 7 is referred to as a stereoscopic video display device 8.
  • Example 9 Production of Polarizing Plate 8
  • a polarizing plate 8 was produced in the same manner as the polarizing plate 7 except that the ⁇ / 4 plate 1 was changed to the ⁇ / 4 plate 2.
  • a display device 8 was produced in the same manner as the display device 1 except that the polarizing plate 1 was changed to the polarizing plate 8.
  • a stereoscopic video display device 9 including the liquid crystal shutter glasses 4 and the display device 8 is referred to as a stereoscopic video display device 9.
  • Example 10 Production of Polarizing Plate 103
  • a polarizing plate 103 was produced in the same manner as the polarizing plate 101 except that one TAC film was changed to a TAC film 4UE manufactured by Konica Minolta.
  • the TAC film 4UE used this time had a film thickness of 40 ⁇ m, Ro of 0 nm, and Rt of 0 nm.
  • Liquid crystal shutter glasses 1 are bonded in the same manner as the liquid crystal shutter glasses 1 except that the polarizing plate 103 is bonded to the liquid crystal cell side of the liquid crystal shutter glasses so as to be 4UE and the ⁇ / 4 plate 1 is bonded to the opposite side. Shutter glasses 5 were produced.
  • a polarizing plate 9 was produced in the same manner as the polarizing plate 8 except that the TAC film 8UX was changed to the TAC film 4UE.
  • a display device 9 was produced in the same manner as the display device 1 except that the polarizing plate 1 was changed to the polarizing plate 9.
  • the stereoscopic image display device 10 including the liquid crystal shutter glasses 5 and the display device 9 is defined as the stereoscopic image display device 10.
  • Example 11 Production of ⁇ / 4 plate 7
  • a ⁇ / 4 plate 7 was produced in the same manner as the ⁇ / 4 plate 4 except that the stretching temperature, the draw ratio, and the film thickness were changed as shown in Table 1.
  • a polarizing plate 10 was produced in the same manner as the polarizing plate 4 except that the ⁇ / 4 plate 4 was changed to the ⁇ / 4 plate 7.
  • a display device 10 was produced in the same manner as the display device 1 except that the polarizing plate 1 was changed to the polarizing plate 10.
  • a stereoscopic video display device including the liquid crystal shutter glasses 1 and the display device 10 is defined as a stereoscopic video display device 11.
  • Example 12 Production of liquid crystal shutter glasses 6 Liquid crystal shutter glasses 6 were produced in the same manner as the liquid crystal shutter glasses 1 except that an IPS cell was used as the liquid crystal cell.
  • the IPS cell for liquid crystal shutter glasses used this time has Ro of 270 nm and Rt of 135 nm.
  • a stereoscopic video display device 12 including the liquid crystal shutter glasses 6 and the display device 4 is referred to as a stereoscopic video display device 12.
  • the stereoscopic video display device of the present invention has very little or no crosstalk or color change when viewing the display device when viewing 3D video from an oblique direction. It is clear that this is a stereoscopic video display device.
  • CC control circuit LCD Liquid crystal display G Glasses for viewing 3D images (glasses) S1 Right eye liquid crystal shutter S2 Left eye liquid crystal shutter L Linearly polarized light LC Liquid crystal layer LI Left eye image RI Right eye image P1, P2 Polarizer DR1 Feeding direction DR2 Winding direction ⁇ i Feeding angle (feeding direction and winding) Angle formed by the picking direction) CR, CL Gripping device Wo Width of film before stretching W Width of film after stretching A Liquid crystal shutter glasses A1, A4 Polarizer A2 Liquid crystal cell A3 ⁇ / 4 plate B Liquid crystal display device (for example, television (TV)) C Polarizing plate C1 ⁇ / 4 plate C2 Polarizer C3 Optical film C4 Polarizer protective film D Liquid crystal cell E Polarizing plate F Backlight HC Hard coat layer AR Antireflection layer a Absorption axis b Slow axis

Abstract

 立体(3D)映像観賞時に表示装置を斜め方向から見た際のクロストーク及び色味変化を低減し、優れた視認性を有する立体映像表示装置を提供する。 本発明の立体映像表示装置は、表示装置と液晶シャッタメガネとからなる立体映像表示装置であって、当該表示装置には、視認側から、λ/4板、及び偏光子がこの順に設けられており、当該液晶シャッタメガネには、視認側から、偏光子、液晶セル、及びλ/4板がこの順に設けられており、すべての光学補償層の厚さ方向位相差Rtの合計ΣRt1~n(ただし、nは整数を表す。)と液晶セルのシャッタ閉状態の時厚さ方向の位相差Rtcとが下記式(1)を満足することを特徴とする。 (式1):-100nm<(ΣRt1~n+Rtc)<150nm

Description

立体映像表示装置
 本発明は、表示装置と液晶シャッタメガネとからなる立体映像表示装置に関する。
 近年、立体画像の表示が可能なテレビなどの立体画像表示装置が提唱されている。この立体画像を表示させる方式の一つに、専用の立体画像視認用眼鏡を観測者が着用することで、2次元画像を立体画像として観測者に認識させる方式がある。この方式で現在有力視されているのが、画像を表示するディスプレイに視差画像である右眼用画像と左眼用画像とを時系列で交互に切り替えて映し出し、観測者は図1に示すような立体画像視認用眼鏡(G)を着用して、液晶ディスプレイの画像を見るという方式である(例えば特許文献1参照。)。
 立体画像視認用眼鏡(G)には、図1に示すように左右の目に液晶シャッタ(S1)及び(S2)が備え付けられ、これらの液晶シャッタ(S1)及び(S2)を制御する制御回路Cが接続されている。
 図2に示す立体画像表示装置のように、液晶ディスプレイ(LCD)に映し出される画像としては、二枚のフィールドに、左眼用画像(LI)と右眼用画像(RI)とがそれぞれ割り当てられてあり、時系列でこれらが交互に高速に切り替わって表示される。液晶ディスプレイ(LCD)から出射される光は直線偏光である。さらに、立体画像視認用眼鏡Gの左右の液晶シャッタ(S1)及び(S2)の開閉の切り替えは、左眼用画像(LI)と右眼用画像(RI)の切り替えに同期させて行う。
 液晶シャッタ(S1)及び(S2)は、図3に示すように、偏光板(P1)及び(P2)と液晶層(LC)を有しており、液晶シャッタ(S1)及び(S2)に入射する直線偏光の光(L)の回転角を、液晶層(LC)を用いて制御することで、液晶シャッタ(S1)及び(S2)から出射する光の透過率を制御している。このように液晶ディスプレイ(LCD)と立体画像視認用眼鏡(G)とを制御することにより、図2に示すように、液晶ディスプレイ(LCD)に左眼用画像(LI)が表示されている時には右眼用の液晶シャッタ(S1)が閉じて左眼用の液晶シャッタ(S2)が開き、逆に右眼用画像(RI)が表示されているときには右眼用の液晶シャッタ(S1)が開いて左眼用の液晶シャッタ(S2)が閉じることになる。
 なお、液晶ディスプレイ(LCD)や反射防止のために円偏光板を用いた有機ELディスプレイのように発せられる光が直線偏光のディスプレイのほかに、発せられる光が直線偏光ではないディスプレイ、例えばプラズマディスプレイや反射防止のために円偏光板用いない有機ELディスプレイなどの自発光型ディスプレイを用いることもできる。
 上記の液晶ディスプレイと立体画像視認用眼鏡からなる立体画像表示装置では、首を傾けた際に、輝度低下や色味の変化という問題がある。首を傾けた際の輝度低下の抑制及び色味変化の抑制ためには、液晶ディスプレイの視認側及び立体画像視認用眼鏡の目から遠い側の表面にそれぞれλ/4を用いることが有効である。
 また、特許文献2には、外光のフリッカー抑制、眼鏡の明るさ向上のために、偏光板を一枚しか使用しない眼鏡を使用した立体映像表示装置が開示されている。当該文献では、ディスプレイの前面に円偏光板、眼鏡の構成をλ/4板/液晶セル/直線偏光板とすることで、首を傾けた際のクロストーク(二重に見える現象)を抑制できることを開示している。
 このように、液晶シャッタを使用した方式においては、偏光板が二枚の眼鏡を使用する方式、偏光板が一枚の眼鏡を使用する方式、どちらの方式においても、首を傾けた際の表示性能を改善するためにλ/4板が必要である。とりわけ偏光板が一枚の眼鏡を使用する方式では、より重要である。
 また、立体映像表示装置は大型であるほど効果が大きいため、大型化の要望が非常に強い。よって、大型ディスプレイに使用できる大型のλ/4板が求められている。
 λ/4板は、反射防止膜や液晶表示装置に関連する多くの用途を有しており、すでに種々の観点から改良されたλ/4板が提案されている(例えば、特許文献3~6参照)。
 しかしながら、立体(3D)映像観賞時に表示装置を斜めから見た際のクロストークの抑制、及び色味変化の低減については、上記従来技術では、未だ不十分であり、更なる改良技術の開発が望まれている。
特開平8-201942号公報 特開2002-82307号公報 特開2002-131540号公報 特開2002-127244号公報 特開2009-48204号公報 特開2006-89529号公報
 本発明は、上記問題・状況にかんがみてなされたものであり、その解決課題は、立体(3D)映像観賞時に表示装置を斜めから見た際のクロストーク及び色味変化を低減し、優れた視認性を有する立体映像表示装置を提供することである。
 本発明に係る上記課題は、以下の手段により解決される。
 1.表示装置と液晶シャッタメガネとからなる立体映像表示装置であって、当該表示装置には、視認側から、λ/4板、及び偏光子がこの順に設けられており、当該液晶シャッタメガネには、視認側から、偏光子、液晶セル、及びλ/4板がこの順に設けられており、すべての光学補償層の厚さ方向位相差Rtの合計ΣRt1~n(ただし、nは整数を表す。)と液晶セルのシャッタが閉状態の時の厚さ方向の位相差Rtcとが下記式(1)を満足することを特徴とする立体映像表示装置。
式(1):-100nm<(ΣRt1~n+Rtc)<150nm
 2.前記液晶シャッタメガネの液晶セルの駆動モードが、ECBモードであることを特徴とする前記第1項に記載の立体映像表示装置。
 3.前記λ/4板の少なくとも一方のNz係数が、1.1~4.0の範囲内であることを特徴とする前記第1項又は第2項に記載の立体映像表示装置。
 4.前記表示装置のλ/4板のNz係数が、前記液晶シャッタメガネのλ/4板のNz係数より大きいことを特徴とする前記第1項から第3項までのいずれか一項に記載の立体映像表示装置。
 5.前記表示装置のλ/4板が、ハードコート層を有することを特徴とする前記第1項から第4項までのいずれか一項に記載の立体映像表示装置。
 6.前記表示装置のλ/4板が、セルロースエステル樹脂を含有することを特徴とする前記第1項から第5項までのいずれか一項に記載の立体映像表示装置。
 本発明の上記手段により、立体(3D)映像観賞時に表示装置を斜めから見た際のクロストーク及び色味変化を低減し、優れた視認性を有する立体映像表示装置を提供することができる。
従来の立体画像視認用眼鏡Gの模式図 従来の立体画像表示装置の模式図 従来の液晶シャッタS1及びS2の模式図 λ/4板の製造に用いる延伸用のテンターのレール配置の一例を示す図 本発明に係る偏光板の模式図 立体映像表示装置(メガネの偏光板が一枚の方式)の模式図
 本発明の立体映像表示装置は、表示装置と液晶シャッタメガネとからなる立体映像表示装置であって、当該表表示装置には、視認側から、λ/4板、及び偏光子がこの順に設けられており、当該液晶シャッタメガネには、視認側から、偏光子、液晶セル、及びλ/4板がこの順に設けられており、すべての光学補償層の厚さ方向位相差の合計ΣRt1~n(ただし、nは整数を表す。)と液晶セルの厚さ方向の位相差Rtcとが前記式(1)を満足することを特徴とする。この特徴は、請求項1から請求項6までの請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、前記液晶シャッタメガネの液晶セルの駆動モードが、ECBモードであることが好ましい。また、前記λ/4板の少なくとも一方のNz係数が、1.1~4.0の範囲内であることが好ましい。さらに、前記表示装置のλ/4板のNz係数が、前記液晶シャッタメガネのλ/4板のNz係数より大きいことが好ましい。
 本発明においては、前記表示装置のλ/4板が、ハードコート層を有することが好ましい。また、当該表示装置のλ/4板が、セルロースエステル樹脂を含有する態様であることが好ましい。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。また、本願において用いる次の用語及び記号の定義は下記の通りである。
(1)「n」は、面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「n」は面内で遅相軸に垂直な方向(すなわち、進相軸方向)の屈折率であり、「n」は厚さ方向の屈折率である。
 また、例えば「n=n」は、nとnが厳密に等しい場合のみならず、nとnyが実質的に等しい場合も包含する。本願において「実質的に等しい」とは、液晶パネルの全体的な光学特性に実用上の影響を与えない範囲でnとnが異なる場合も包含する趣旨である。
(2)「面内位相差Ro」は、23℃・55%RHにおける波長590nmの光で測定したフィルム(層)面内の位相差値をいう。Roは、波長590nmにおけるフィルム(層)の遅相軸方向、進相軸方向の屈折率をそれぞれ、n、nとし、d(nm)をフィルム(層)の厚さとしたとき、式:Ro=(n-n)×dによって求められる。
(3)「厚さ方向位相差Rt」は、23℃・55%RHにおける波長590nmの光で測定した厚さ方向の位相差値をいう。Rtは、波長590nmにおけるフィルム(層)の遅相軸方向、進相軸方向、厚さ方向の屈折率をそれぞれ、n、n、nとし、d(nm)をフィルム(層)の厚さとしたとき、式:Rt={(n+n)/2-n)}×dによって求められる。
(4)「Nz係数」は、式;Rt/Ro+0.5により算出される値である。
 (立体映像表示装置の概要)
 本発明の立体映像表示装置は、表示装置と液晶シャッタメガネとからなる立体映像表示装置であって、当該表表示装置には、視認側から、λ/4板、及び偏光子がこの順に設けられており、当該液晶シャッタメガネには、視認側から、偏光子、液晶セル、及びλ/4板がこの順に設けられており、すべての光学補償層の厚さ方向位相差の合計ΣRt1~n(ただし、nは整数を表す。)と液晶セルの厚さ方向の位相差Rtcとが下記式(1)を満足することを特徴とする。
(式(1):-100nm<(ΣRt1~n+Rtc)<150nm
 ここで、上記式(1)におけるΣRt1~nは、第1の光学補償層から第nの光学補償層までの厚さ方向の位相差の合計を表す。また、Rt1~n及びRtの添え字の「1」は第1の光学補償層を表し、添え字の「2」は第2の光学補償層を表し、添え字の「n」は第nの光学補償層を表し、添え字の「c」は液晶セルを表す。
 したがって、本発明の立体映像表示装置が五つの光学補償層を有する場合には、上記式(1)におけるΣRt1~nは、第1~第5の光学補償層の厚さ方向の位相差をそれぞれRt~Rtとすると、
ΣRt1~n=Rt+Rt+Rt+Rt+Rt
である。
 なお、なお、本願でいう「光学補償層」とは、表示装置の前側の偏光子と液晶シャッタメガネの偏光子との間に存在するλ/4板およびTACフィルムなどの偏光板保護フィルム、その他位相差フィルムなどのことである。
 本発明の実施態様としては、前記液晶シャッタメガネの液晶セルの駆動モードが、ECBモードであることが、本発明の効果発現の観点から、好ましい。当該液晶セルの駆動モードの詳細については、後述する。
 また、前記λ/4板の少なくとも一方のNz係数が、1.1~4.0の範囲内であることが好ましい。さらに、前記表示装置のλ/4板のNz係数が、前記液晶シャッタメガネのλ/4板のNz係数より大きいことが好ましい。
 本発明においては、前記表示装置のλ/4板が、ハードコート層を有することが好ましい。また、当該表示装置のλ/4板が、セルロースエステル樹脂を含有する態様であることが好ましい。
 以下、本発明の立体映像表示装置の各構成要素について詳細な説明をする。
 すべての光学補償層の厚さ方向位相差の合計ΣRt1~n(ただし、nは整数を表す。)と液晶セルの厚さ方向の位相差Rtcとの関係は、下記式(1)を満足することを特徴とし、下記式(2)を満足することが好ましく、下記式(3)を満足することがさらに好ましい。
 式(1):-100nm<(ΣRt1~n+Rtc)<150nm
 式(2):-50nm<(ΣRt1~n+Rtc)<80nm
 式(3):-30nm<(ΣRt1~n+Rtc)<50nm
 以下、本発明の立体映像表示装置の各構成要素について詳細な説明をする。
 (λ/4板)
 本発明において用いる「λ/4板」とは、ある特定の波長の直線偏光を円偏光に(又は、円偏光を直線偏光に)変換する機能を有するものをいう。λ/4板は、所定の光の波長(通常、可視光領域)に対して、層の面内の位相差値Roが約1/4である。
 本発明においては、当該λ/4板の少なくとも一方のNz係数が、1.1~4.0の範囲内であることが好ましい。さらに、表示装置のλ/4板のNz係数が、液晶シャッタメガネのλ/4板のNz係数より大きいことが好ましい。
 本発明においては、前記表示装置のλ/4板が、ハードコート層を有することが好ましい。また、当該表示装置のλ/4板が、セルロースエステル樹脂を含有する態様であることが好ましい。
 本発明に係るλ/4板は、波長550nmで測定したRo(550)が110~170nmの範囲内でありRo(550)が120~160nmであることが好ましく、Ro(550)が130~150nmであることがさらに好ましい。
 本発明に係るλ/4板は、可視光の波長の範囲においてほぼ完全な円偏光を得るため、可視光の波長の範囲において概ね波長の1/4のリターデーションを有する位相差板(フィルム)であることが好ましい。
 「可視光の波長の範囲において概ね1/4のリターデーション」とは、波長400から700nmにおいて長波長ほどリターデーションが大きく、波長450nmで測定した下記式(i)で表されるリターデーション値であるRo(450)と波長550nmで測定したリターデーション値であるRo(550)の差Ro(550)-Ro(450)が2~34nmであることが好ましく、4~32nmであることがより好ましく、8~28nmであることが特に好ましい。
 式(i):Ro=(n-n)×d
 式(ii):Rt={(n+n)/2-n}×d
 式中、n、nは、23℃・55%RH、450nm、550nm又は590nmにおける屈折率n(フィルムの面内の最大の屈折率、遅相軸方向の屈折率ともいう。)、n(フィルム面内で遅相軸に直交する方向の屈折率)であり、dはフィルムの厚さ(nm)である。
 Ro、Rt、θは自動複屈折率計を用いて測定することができる。自動複屈折率計KOBRA-21ADH(王子計測機器(株)製)を用いて、23℃、55%RHの環境下で、各波長での複屈折率測定によりRoを算出する。θはフィルム長手方向を基準(0°)とした。
 λ/4板の遅相軸と後述する偏光子の透過軸との角度が実質的に45°になるように積層すると円偏光板が得られる。「実質的に45°」とは、40~50°であることを意味する。λ/4板の面内の遅相軸と偏光子の透過軸との角度は、41~49°であることが好ましく、42~48°であることがより好ましく、43~47°であることが更に好ましく、44~46°であることが最も好ましい。
 当該λ/4板の少なくとも一方のNz係数が、1.1~4.0の範囲内であることが好ましく、1.3~3.5の範囲内であることがさらに好ましく、1.5~2.5の範囲であることが最も好ましい。
 〈セルロースエステル樹脂〉
 本発明に係るλ/4板は、種々の樹脂基材を用いて作製することができるが、セルロースエステル樹脂を含有する態様であることが好ましい。
 本発明に用いることができるセルロースエステル樹脂は、セルロース(ジ、トリ)アセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、及びセルロースフタレートから選ばれる少なくとも1種であることが好ましい。
 これらの中で特に好ましいセルロースエステルは、セルローストリアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネートやセルロースアセテートブチレートが挙げられる。
 混合脂肪酸エステルの置換度として、炭素原子数2~4のアシル基を置換基として有している場合、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(I)及び(II)を同時に満たすセルロースエステルを含むセルロース樹脂であることが好ましい。
 式(I)  2.0≦X+Y≦3.0
 式(II)  0≦X≦2.5
 さらに、本発明で用いられるセルロースエステルは、重量平均分子量Mw/数平均分子量Mn比が1.5~5.5のものが好ましく用いられ、特に好ましくは2.0~5.0であり、さらに好ましくは2.5~5.0であり、さらに好ましくは3.0~5.0のセルロースエステルが好ましく用いられる。
 本発明で用いられるセルロースエステルの原料セルロースは、木材パルプでも綿花リンターでもよく、木材パルプは針葉樹でも広葉樹でもよいが、針葉樹の方がより好ましい。製膜の際の剥離性の点からは綿花リンターが好ましく用いられる。これらから作られたセルロースエステルは適宜混合して、或いは単独で使用することができる。
 例えば、綿花リンター由来セルロースエステル:木材パルプ(針葉樹)由来セルロースエステル:木材パルプ(広葉樹)由来セルロースエステルの比率が100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30で用いることができる。
 本発明において、セルロースエステル樹脂は、20mlの純水(電気伝導度0.1μS/cm以下、pH6.8)に1g投入し、25℃、1hr、窒素雰囲気下にて攪拌した時のpHが6~7、電気伝導度が1~100μS/cmであることが好ましい。
 なお、本発明に係るλ/4板には、本発明の効果を害しない限りにおいて、上記セルロースアセテート以外の熱可塑性樹脂を併用することもできる。
 ここで、「熱可塑性樹脂」とは、ガラス転移温度又は融点まで加熱することによって軟らかくなり、目的の形に成形できる樹脂のことをいう。
 熱可塑性樹脂としては、一般的汎用樹脂としては、ポリエチレン(PE)、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、テフロン(登録商標)(ポリテトラフルオロエチレン、PTFE)、ABS樹脂(アクリロニトリルブタジエンスチレン樹脂)、AS樹脂、アクリル樹脂(PMMA)等を用いることができる。
 また、強度や壊れにくさを特に要求される場合、ポリアミド(PA)、ナイロン、ポリアセタール(POM)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m-PPE、変性PPE、PPO)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、グラスファイバー強化ポリエチレンテレフタレート(GF-PET)、環状ポリオレフィン(COP)等を用いることができる。
 さらに、高い熱変形温度と長期使用できる特性を要求される場合は、ポリフェニレンスルファイド(PPS)、ポリテトラフロロエチレン(PTFE)、ポリスルホン、ポリエーテルサルフォン、非晶ポリアリレート、液晶ポリマー、ポリエーテルエーテルケトン、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)等を用いることができる。
 なお、本発明の用途にそって樹脂の種類、分子量の組み合わせを行うことが可能である。
 また、工業的にはセルロース樹脂は硫酸を触媒として合成されているが、この硫酸は完全には除去されておらず、残留する硫酸が溶融製膜時に各種の分解反応を引き起こし、得られるセルロース樹脂フィルムの品質に影響を与えるため、本発明に用いられるセルロース樹脂中の残留硫酸含有量は、硫黄元素換算で0.1~40ppmの範囲であることが好ましい。これらは塩の形で含有していると考えられる。残留硫酸含有量が40ppmを超えると熱溶融時のダイリップ部の付着物が増加するため好ましくない。また、熱延伸時や熱延伸後でのスリッティングの際に破断しやすくなるため好ましくない。少ない方が好ましいが、0.1未満とするにはセルロース樹脂の洗浄工程の負担が大きくなり過ぎるため好ましくないだけでなく、逆に破断しやすくなることがあり好ましくない。これは洗浄回数が増えることが樹脂に影響を与えているのかもしれないがよく分かっていない。更に0.1~30ppmの範囲が好ましい。残留硫酸含有量は、同様にASTM-D817-96により測定することができる。
 また、その他(酢酸等)の残留酸を含めたトータル残留酸量は1000ppm以下が好ましく、500ppm以下が更に好ましく、100ppm以下がより好ましい。
 セルロース樹脂の洗浄は、水に加えて、メタノール、エタノールのような貧溶媒、或いは結果として貧溶媒であれば貧溶媒と良溶媒の混合溶媒を用いることができ、残留酸以外の無機物、低分子の有機不純物を除去することができる。
 また、セルロース樹脂の耐熱性、機械物性、光学物性等を向上させるため、セルロース樹脂の良溶媒に溶解後、貧溶媒中に再沈殿させ、セルロース樹脂の低分子量成分、その他不純物を除去することができる。更に、セルロース樹脂の再沈殿処理の後、別のポリマー或いは低分子化合物を添加してもよい。
 また、本発明で用いられるセルロース樹脂はフィルムにした時の輝点異物が少ないものであることが好ましい。輝点異物とは、二枚の偏光板を直交に配置し(クロスニコル)、この間にセルロース樹脂フィルムを配置して、一方の面から光源の光を当てて、もう一方の面からセルロース樹脂フィルムを観察した時に、光源の光が漏れて見える点のことである。このとき評価に用いる偏光板は輝点異物がない保護フィルムで構成されたものであることが望ましく、偏光子の保護にガラス板を使用したものが好ましく用いられる。輝点異物はセルロース樹脂に含まれる未酢化もしくは低酢化度のセルロースがその原因の1つと考えられ、輝点異物の少ないセルロース樹脂を用いることと、溶融したセルロース樹脂もしくはセルロース樹脂溶液を濾過すること、或いはセルロース樹脂の合成後期の過程や沈殿物を得る過程の少なくともいずれかにおいて、一度溶液状態として同様に濾過工程を経由して輝点異物を除去することもできる。溶融樹脂は粘度が高いため、後者の方法のほうが効率がよい。
 フィルム膜厚が薄くなるほど単位面積当たりの輝点異物数は少なくなり、フィルムに含まれるセルロース樹脂の含有量が少なくなるほど輝点異物は少なくなる傾向があるが、輝点異物は、輝点の直径0.01mm以上が200個/cm以下であることが好ましく、更に100個/cm以下であることが好ましく、50個/cm以下であることが好ましく、30個/cm以下であることが好ましく、10個/cm以下であることが好ましいが、皆無であることが最も好ましい。また、0.005~0.01mm以下の輝点についても200個/cm以下であることが好ましく、更に100個/cm以下であることが好ましく、50個/cm以下であることが好ましく、30個/cm以下であることが好ましく、10個/cm以下であることが好ましいが、皆無であることが最も好ましい。
 輝点異物を濾過によって除去する場合、セルロース樹脂を単独で濾過するよりも可塑剤、紫外線吸収剤、酸化防止剤、安定剤等を添加混合したセルロース樹脂組成物(ドープともいう)を濾過することが輝点異物の除去効率が高く好ましい。もちろん、セルロース樹脂の合成の際に溶媒に溶解させて濾過により低減させてもよい。濾過はセルロース樹脂を含む溶融物の粘度が10000P以下で濾過されることが好ましく、更に好ましくは5000P以下が好ましく、1000P以下であることが更に好ましく、500P以下であることが更に好ましい。濾材としては、ガラス繊維、セルロース繊維、濾紙、四フッ化エチレン樹脂などの弗素樹脂等の従来公知のものが好ましく用いられるが、特にセラミックス、金属等が好ましく用いられる。絶対濾過精度としては50μm以下のものが好ましく用いられ、30μm以下のものが更に好ましく、10μm以下のものが更に好ましく、5μm以下のものが更に好ましく用いられる。これらは適宜組み合わせて使用することもできる。濾材はサーフェースタイプでもデプスタイプでも用いることができるが、デプスタイプの方が比較的目詰まりしにくく好ましく用いられる。
 本発明に係るλ/4板はセルロース樹脂以外の高分子成分を適宜混合したものでもよい。混合される高分子成分はセルロース樹脂と相溶性に優れるものが好ましく、フィルムにした時の透過率が80%以上、更に好ましくは90%以上、更に好ましくは92%以上であることが好ましい。
 (有機溶媒)
 セルロースエステルを溶解しセルロースエステル溶液又はドープ形成に有用な有機溶媒としては、塩素系有機溶媒と非塩素系有機溶媒がある。塩素系の有機溶媒としてメチレンクロライド(塩化メチレン)を挙げることができ、セルロースエステル、特にセルローストリアセテートの溶解に適している。昨今の環境問題から非塩素系有機溶媒の使用が検討されている。非塩素系有機溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることができる。これらの有機溶媒をセルローストリアセテートに対して使用する場合には、常温での溶解方法も使用可能であるが、高温溶解方法、冷却溶解方法、高圧溶解方法等の溶解方法を用いることにより不溶解物を少なくすることができるので好ましい。セルローストリアセテート以外のセルロースエステルに対しては、メチレンクロライドを用いることはできるが、酢酸メチル、酢酸エチル、アセトンが好ましく使用される。特に酢酸メチルが好ましい。本発明において、上記セルロースエステルに対して良好な溶解性を有する有機溶媒を良溶媒といい、また溶解に主たる効果を示し、その中で大量に使用する有機溶媒を主(有機)溶媒又は主たる(有機)溶媒という。
 本発明に用いられるドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4のアルコールを含有させることが好ましい。これらはドープを金属支持体に流延後溶媒が蒸発をし始めアルコールの比率が多くなるとドープ膜(ウェブ)がゲル化し、ウェブを丈夫にし金属支持体から剥離することを容易にするゲル化溶媒として用いられたり、これらの割合が少ない時は非塩素系有機溶媒のセルロースエステルの溶解を促進する役割もある。炭素原子数1~4のアルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらのうちドープの安定性に優れ、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。これらの有機溶媒は単独ではセルロースエステルに対して溶解性を有していないので貧溶媒という。
 ドープ中のセルロースエステルの濃度は15~30質量%、ドープ粘度は100~500Pa・sの範囲に調製されることが良好なフィルム面品質を得る上で好ましい。
 ドープ中に添加される添加剤としては、可塑剤、紫外線吸収剤、リターデーション調整剤、酸化防止剤、劣化防止剤、剥離助剤、界面活性剤、染料、微粒子等がある。本発明において、微粒子以外の添加剤についてはセルロースエステル溶液の調製の際に添加してもよいし、微粒子分散液の調製の際に添加してもよい。液晶画像表示装置に使用する偏光板には耐熱耐湿性を付与する可塑剤、酸化防止剤や紫外線吸収剤等を添加することが好ましい。下記に添加剤を説明する。
 (一般式A(1)で表される化合物)
 本発明に係る下記一般式A(1)で表される化合物、及び参考化合物を、以下に記載するが本発明はこれらに限定されない。
 一般式A(1)中、R~Rは、各々独立に、置換又は無置換のアルキルカルボニル基、若しくは、置換又は無置換のアリールカルボニル基を表し、R~Rは相互に同じであっても、異なっていてもよい。なお、下表中に記載のRは、R~Rのうちのいずれかを表す。アルキルカルボニル基及びアリールカルボニル基の置換基としては、下表に示すアルキルカルボニル基及びアリールカルボニル基が有するフェニル基、アルコキシ基等の置換基が好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 (合成例:本発明に係る化合物の合成)
Figure JPOXMLDOC01-appb-C000003
 撹拌装置、還流冷却器、温度計及び窒素ガス導入管を備えた四頭コルベンに、ショ糖34.2g(0.1モル)、無水安息香酸180.8g(0.8モル)、ピリジン379.7g(4.8モル)を仕込み、撹拌下に窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間エステル化反応を行った。次に、コルベン内を4×10Pa以下に減圧し、60℃で過剰のピリジンを留去した後に、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去した。そして、次にトルエン1L、0.5質量%の炭酸ナトリウム水溶液300gを添加し、50℃で30分間撹拌後、静置して、トルエン層を分取した。最後に、分取したトルエン層に水100gを添加し、常温で30分間水洗後、トルエン層を分取し、減圧下(4×10Pa以下)、60℃でトルエンを留去させ、化合物A-1、A-2、A-3、A-4及びA-5の混合物を得た。得られた混合物をHPLC及びLC-MASSで解析したところ、A-1が7質量%、A-2が58質量%、A-3が23質量%、A-4が9質量%、A-5が3質量%であった。なお、得られた混合物の一部をシリカゲルを用いたカラムクロマトグラフィーにより精製することで、それぞれ純度100%のA-1、A-2、A-3、A-4及びA-5を得た。
 本発明でセルロースアセテートフィルムに添加される、一般式A(1)で表される化合物の総平均置換度は6.1~6.9であるが、当該置換度の範囲は4.0~8.0であることが好ましい。置換度分布は、エステル化反応時間の調節、又は置換度違いの化合物を混合することにより目的の置換度に調整してもよい。
 (可塑剤)
 本発明に係るλ/4板には、所謂可塑剤として知られる化合物を、機械的性質向上、柔軟性を付与、耐吸水性付与、水蒸気透過率低減、リターデーション調整等の目的で添加することが好ましく、例えばリン酸エステルやカルボン酸エステルが好ましく用いられる。
 可塑剤はλ/4板中に1~40質量%、特に1~30質量%含有することが好ましい。
 リン酸エステルとしては、例えばトリフェニルホスフェート、トリクレジルホスフェート、フェニルジフェニルホスフェート等を挙げることができる。
 カルボン酸エステルとしては、フタル酸エステル及びクエン酸エステル等、フタル酸エステルとしては、例えばジメチルフタレート、ジエチルホスフェート、ジオクチルフタレート及びジエチルヘキシルフタレート等、またクエン酸エステルとしてはクエン酸アセチルトリエチル及びクエン酸アセチルトリブチルを挙げることができる。またその他、オレイン酸ブチル、リシノール酸メチルアセチル、セバチン酸ジブチル、トリアセチン等も挙げられる。アルキルフタリルアルキルグリコレートもこの目的で好ましく用いられる。アルキルフタリルアルキルグリコレートのアルキルは炭素原子数1~8のアルキル基である。アルキルフタリルアルキルグリコレートとしてはメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、プロピルフタリルエチルグリコレート、メチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等を挙げることができ、メチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレートが好ましく用いられる。またこれらアルキルフタリルアルキルグリコレートを二種以上混合して使用してもよい。
 また、可塑剤として特許第3793184号公報記載の下記一般式(1)~(3)で表されるクエン酸エステル系可塑剤を用いることも好ましい。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 また、多価アルコールエステルも好ましく用いられる。
 本発明に係るλ/4板に用いられる多価アルコールは次の一般式(4)で表される。
 一般式(4):R-(OH)n
 但し、Rはn価の有機基、nは2以上の正の整数、OH基はアルコール性、及び/又はフェノール性ヒドロキシ基(水酸基)を表す。
 多価アルコールエステル系可塑剤は2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる可塑剤であり、分子内に芳香環又はシクロアルキル環を有することが好ましい。好ましくは2~20価の脂肪族多価アルコールエステルである。
 好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジブチレングリコール、1,2,4-ブタントリオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3-メチルペンタン-1,3,5-トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
 多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。
 好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。
 脂肪族モノカルボン酸としては、炭素数1~32の直鎖又は側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1~20であることが更に好ましく、1~10であることが特に好ましい。酢酸を含有させるとセルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。
 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体を挙げることができる。
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタレンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、又はそれらの誘導体を挙げることができる。特に安息香酸が好ましい。
 多価アルコールエステルの分子量は特に制限はないが、300~1500であることが好ましく、350~750であることが更に好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。
 多価アルコールエステルに用いられるカルボン酸は一種類でもよいし、二種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。
 以下に、本発明に用いられる多価アルコールエステル系可塑剤の具体的化合物を示すが、本発明はこれに限定されない。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 これらの化合物は、セルロースエステルに対して1~30質量%、好ましくは1~20質量%となるように含まれていることが好ましい。また、延伸及び乾燥中のブリードアウト等を抑制させるため、200℃における蒸気圧が1400Pa以下の化合物であることが好ましい。
 これらの化合物は、セルロースエステル溶液の調製の際に、セルロースエステルや溶媒と共に添加してもよいし、溶液調製中や調製後に添加してもよい。
 更に本発明では、下記一般式(5)で表される芳香族末端エステル系可塑剤を用いることが好ましい。
 一般式(5):B-(G-A)n-G-B
(式中、Bはベンゼンモノカルボン酸残基、Gは炭素数2~12のアルキレングリコール残基又は炭素数6~12のアリールグリコール残基又は炭素数が4~12のオキシアルキレングリコール残基、Aは炭素数4~12のアルキレンジカルボン酸残基又は炭素数6~12のアリールジカルボン酸残基を表し、またnは1以上の整数を表す。)
 一般式(5)中、Bで示されるベンゼンモノカルボン酸残基とGで示されるアルキレングリコール残基又はオキシアルキレングリコール残基又はアリールグリコール残基、Aで示されるアルキレンジカルボン酸残基又はアリールジカルボン酸残基とから構成されるものであり、通常のポリエステル系可塑剤と同様の反応により得られる。
 本発明に用いられる芳香族末端エステル系可塑剤のベンゼンモノカルボン酸成分としては、例えば、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等があり、これらはそれぞれ一種又は二種以上の混合物として使用することができる。
 本発明に用いられる芳香族末端エステル系可塑剤の炭素数2~12のアルキレングリコール成分としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロ-ルペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール1,6-ヘキサンジオール、2,2,4-トリメチル1,3-ペンタンジオール、2-エチル1,3-ヘキサンジオール、2-メチル1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等があり、これらのグリコールは、一種又は二種以上の混合物として使用される。
 また、芳香族末端エステルの炭素数4~12のオキシアルキレングリコール成分としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等があり、これらのグリコールは、一種又は二種以上の混合物として使用できる。
 また、芳香族末端エステルの炭素数6~12のアリールグリコール成分としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノール等があり、これらのグリコールは、一種又は二種以上の混合物として使用できる。
 芳香族末端エステルの炭素数4~12のアルキレンジカルボン酸成分としては、例えば、コハク酸、マレイン酸、フマール酸、グルタール酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等があり、これらは、それぞれ一種又は二種以上の混合物として使用される。炭素数6~12のアリールジカルボン酸成分としては、フタル酸、テレフタル酸、1,5ナフタレンジカルボン酸、1,4ナフタレンジカルボン酸等がある。
 芳香族末端エステル系可塑剤は、数平均分子量が、好ましくは300~2000、より好ましくは500~1500の範囲が好適である。また、その酸価は、0.5mgKOH/g以下、ヒドロキシ(水酸基)価は25mgKOH/g以下、より好ましくは酸価0.3mgKOH/g以下、ヒドロキシ(水酸基)価は15mgKOH/g以下のものが好適である。
 〈芳香族末端エステルの酸価、ヒドロキシ(水酸基)価〉
 酸価とは、試料1g中に含まれる酸(分子末端に存在するカルボキシ基)を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価及びヒドロキシ(水酸基)価はJIS K0070(1992)に準拠して測定したものである。
 以下、本発明に用いられる芳香族末端エステル系可塑剤の合成例を示す。
 〈サンプルNo.1(芳香族末端エステルサンプル)〉
 反応容器に、フタル酸820部(5モル)、1,2-プロピレングリコール608部(8モル)、安息香酸610部(5モル)及び触媒としてテトライソプロピルチタネート0.30部を一括して仕込み窒素気流中で攪拌下、還流凝縮器を付して過剰の1価アルコールを還流させながら、酸価が2以下になるまで130~250℃で加熱を続け生成する水を連続的に除去した。次いで200~230℃で6.65×10Pa~最終的に4×10Pa以下の減圧下、留出分を除去し、この後濾過して次の性状を有する芳香族末端エステルを得た。
 粘度(25℃、mPa・s);19815
 酸価           ;0.4
 〈サンプルNo.2(芳香族末端エステルサンプル)〉
 反応容器に、アジピン酸500部(3.5モル)、安息香酸305部(2.5モル)、ジエチレングリコール583部(5.5モル)及び触媒としてテトライソプロピルチタネート0.45部を用いる以外はサンプルNo.1と全く同様にして次の性状を有する芳香族末端エステルを得た。
 粘度(25℃、mPa・s);90
 酸価           ;0.05
 〈サンプルNo.3(芳香族末端エステルサンプル)〉
 反応容器にフタル酸410部(2.5モル)、安息香酸610部(5モル)、ジプロピレングリコール737部(5.5モル)及び触媒としてテトライソプロピルチタネート0.40部を用いる以外はサンプルNo.1と全く同様にして次の性状を有する芳香族末端エステル系可塑剤を得た。
 粘度(25℃、mPa・s);43400
 酸価           ;0.2
 以下に、本発明に用いられる芳香族末端エステル系可塑剤の具体的化合物を示すが、本発明はこれに限定されない。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 本発明に用いられる芳香族末端エステル系可塑剤の含有量は、セルロースエステルフィルム中に1~20質量%含有することが好ましく、特に3~11質量%含有することが好ましい。
 (ポリエステルポリオール)
 本発明で使用されるポリエステルポリオールは、二塩基酸又はこれらのエステル形成性誘導体とグリコールとの縮合反応により得ることができる末端がヒドロキシ基(水酸基)となる重合体である。ここで言うエステル形成性誘導体とは、二塩基酸のエステル化物、二塩基酸クロライド、二塩基酸の無水物のことである。
 前記ポリエステルポリオールは、芳香族二塩基酸とグリコールとの脱水縮合反応、芳香族無水二塩基酸へのグリコールの付加及び脱水縮合反応、又は芳香族二塩基酸のエステル化物とグリコールとの脱アルコールによる縮合反応により得ることができる。
 前記芳香族二塩基酸又はこれらのエステル形成性誘導体として、単独で10~16個の炭素原子を有する芳香族ジカルボン酸又はそのエステル形成性誘導体を使用できるが、例えばベンゼン環構造、ナフタレン環構造、アントラセン環構造等の芳香族環式構造を有するジカルボン酸やそのエステル形成性誘導体を使用することができ、例えば置換基を有するオルソフタル酸、置換基を有するイソフタル酸、置換基を有するテレフタル酸、置換基を有する無水フタル酸、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,6-アントラセンジカルボン酸等やこれらのエステル化物、及び酸塩化物、1,8-ナフタレンジカルボン酸の酸無水物等を挙げることができ、これらは芳香族環に置換基を有していても良く、これらを単独で使用又は2種以上併用できる。好ましくは、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸及びそのエステル化物であり、更に好ましくは、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸及びそのエステル化物であり、特に好ましくは、2,6-ナフタレンジカルボン酸及びそのエステル化物である。
 前記ポリエステルポリオールの二塩基酸の炭素数の平均とは、単一の二塩基酸を用いてポリエステルポリオールを重合する場合は該二塩基酸の炭素数を意味するが、2種以上の二塩基酸を用いてポリエステルポリオールを重合する場合、それぞれの二塩基酸の炭素数とその二塩基酸のモル分率の積の合計を意味する。
 本発明において、ポリエステルポリオールの原料として使用する二塩基酸の炭素数の平均が10~16の範囲であることが重要である。かかる二塩基酸の炭素数の平均が10以上であれば、リターデーションの発現性に優れ、炭素数の平均が16以下であれば、セルロースエステルとの相溶性が著しく優れる。二塩基酸として、好ましくは炭素数の平均が10~14であり、更に好ましくは炭素数の平均が10~12である。
 前記炭素数の平均が10~16であれば、前記10~16個の炭素原子を有する芳香族二塩基酸とそれ以外の二塩基酸を併用することができる。
 併用できる二塩基酸として、4~9個の炭素原子を有するジカルボン酸又はそのエステル形成性誘導体が好ましく、例えば、コハク酸、グルタル酸、アジピン酸、マレイン酸、無水コハク酸、無水マレイン酸、オルソフタル酸、イソフタル酸、テレフタル酸、無水フタル酸等やこれらのエステル化物、及び酸塩化物を挙げることができる。
 前記グリコールとしては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、2-メチル1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、1,4-シクロヘキサンジオール等を単独で使用又は2種以上併用することができ、なかでもエチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、2-メチル1,3-プロパンジオールが好ましく、更に好ましくは、エチレングリコール、ジエチレングリコール、1,2-プロピレングリコールである。
 本発明に係るポリエステルポリオールは、前記二塩基酸又はそれらのエステル形成性誘導体とグリコールを必要に応じてエステル化触媒の存在下で、例えば、180~250℃の温度範囲内で、10~25時間、周知慣用の方法でエステル化反応させることによって製造することができる。
 エステル化反応を行う際に、トルエン、キシレン等の溶媒を用いても良いが、無溶媒若しくは原料として使用するグリコールを溶媒として用いる方法が好ましい。
 前記エステル化触媒としては、例えばテトライソプロピルチタネート、テトラブチルチタネート、p-トルエンスルホン酸、ジブチル錫オキサイド等を使用することができる。前記エステル化触媒は、二塩基酸又はそれらのエステル形成性誘導体の全量100質量部に対して0.01~0.5質量部使用することが好ましい。
 二塩基酸又はそれらのエステル形成性誘導体とグリコールを反応させる際のモル比は、ポリエステルの末端基がヒドロキシ基(水酸基)となるモル比でなければならず、そのため二塩基酸又はそれらのエステル形成性誘導体1モルに対してグリコールは1.1~10モルである。好ましくは、二塩基酸又はそれらのエステル形成性誘導体1モルに対して、グリコールが1.5~7モルであり、更に好ましくは、二塩基酸又はそれらのエステル形成性誘導体1モルに対して、グリコールが2~5モルである。
 一方、前記ポリエステルポリオール中に於けるカルボキシ基末端は、湿度安定性を低下させるため、その含有量は低い方が好ましい。具体的には、酸価5.0以下が好ましく、更に好ましくは1.0以下であり、特に好ましくは0.5以下である。
 ここで言う酸価とは、試料1g中に含まれる酸(試料中に存在するカルボキシ基)を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価はJIS K0070に準拠して測定したものである。
 前記ポリエステルポリオールは、ヒドロキシ(水酸基)価(OHV)が35mg/g~220mg/gの範囲であることが好ましい。ここで言うヒドロキシ(水酸基)価とは、試料1g中に含まれるOH基をアセチル化したときに、ヒドロキシ基(水酸基)と結合した酢酸を中和するために要する水酸化カリウムのミリグラム数をいう。無水酢酸を用いて試料中のOH基をアセチル化し、使われなかった酢酸を水酸化カリウム溶液で滴定し、初期の無水酢酸の滴定値との差より求める。
 前記ポリエステルポリオールのヒドロキシ基(水酸基)含有量は、70%以上であることが好ましい。ヒドロキシ基(水酸基)含有量が少ない場合、ポリエステルポリオールとセルロースエステルとの相溶性が低下する。このため、ヒドロキシ基(水酸基)含有量は、70%以上が好ましく、更に好ましくは90%以上であり、最も好ましくは99%以上である。
 本発明において、ヒドロキシ基(水酸基)含有量が50%以下の化合物は、末端基の一方がヒドロキシ基(水酸基)以外の基で置換されているためヒドロキシ基(水酸基)ポリエステルポリオールには含まれない。
 前記ヒドロキシ基(水酸基)含有量は、下記の式(A)により求めることができる。式(A):Y/X×100=ヒドロキシ基(水酸基)含有量(%)
 X:前記ポリエステルポリオールのヒドロキシ(水酸基)価(OHV)
 Y:1/(数平均分子量(Mn))×56×2×1000
 前記ポリエステルポリオールは、300~3000の範囲内の数平均分子量を有することが好ましく、350~2000の数平均分子量を有することがより好ましい。
 また、本発明に係るポリエステルポリオールの分子量の分散度は1.0~3.0であることが好ましく、1.0~2.0であることが更に好ましい。分散度が上記範囲以内であれば、セルロースエステルとの相溶性に優れたポリエステルポリオールを得ることができる。また、前記ポリエステルポリオールは、分子量が300~1800の成分を50%以上含有することが好ましい。数平均分子量を前記範囲とすることにより、相溶性を大幅に向上させることができる。
 数平均分子量、分散度及び成分含有率を上記の好ましい範囲に制御する方法として、二塩基酸又はそれらのエステル形成性誘導体1モルに対してグリコールを2~5モル使用し、未反応のグリコールを減圧留去する方法が好ましい。減圧留去する温度は、100~200℃が好ましく、更に好ましくは120~180℃であり、特に好ましくは130~170℃が好ましい。減圧留去する際の減圧度は、0.01~67kPa(0.1~500Torr)が好ましく、更に好ましくは0.06~27kPa(0.5~200Torr)であり、最も好ましくは0.13~13kPa(1~100Torr)である。
 ポリエステルポリオール数平均分子量(Mn)及び分散度は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。
 測定条件の一例は以下の通りであるが、これに限られることはなく、同等の測定方法を用いることも可能である。
 溶媒:   テトラヒドロフラン(THF)
 カラム:  TSKgel G2000HXL(東ソー(株)製を2本接続して使用する。)
 カラム温度:40℃
 試料濃度: 0.1質量%
 装置:   HLC-8220(東ソー(株)製)
 流量:   1.0ml/min
 校正曲線: PStQuick F(東ソー(株)製)による校正曲線を使用する。
 本発明の効果を得る上で、ポリエステルポリオールをフィルム中に5~30質量%含有することが好ましい。より好ましくは5~20質量%である。
 以下に、炭素数が10~16である二塩基酸の具体例を示すが、本発明はこれに限定されない。
 (1)2,6-ナフタレンジカルボン酸
 (2)2,3-ナフタレンジカルボン酸
 (3)2,6-アントラセンジカルボン酸
 (4)2,6-ナフタレンジカルボン酸:コハク酸(75:25~99:1 モル比)
 (5)2,6-ナフタレンジカルボン酸:テレフタル酸(50:50~99:1 モル比)
 (6)2,3-ナフタレンジカルボン酸:コハク酸(75:25~99:1 モル比)
 (7)2,3-ナフタレンジカルボン酸:テレフタル酸(50:50~99:1 モル比)
 (8)2,6-アントラセンジカルボン酸:コハク酸(50:50~99:1 モル比)
 (9)2,6-アントラセンジカルボン酸:テレフタル酸(25:75~99:1 モル比)
 (10)2,6-ナフタレンジカルボン酸:アジピン酸(67:33~99:1 モル比)
 (11)2,3-ナフタレンジカルボン酸:アジピン酸(67:33~99:1 モル比)
 (12)2,6-アントラセンジカルボン酸:アジピン酸(40:60~99:1 モル比)
 (紫外線吸収剤)
 本発明に係るλ/4板及び光学フィルムには、紫外線吸収剤を含有させることができる。使用し得る紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物、トリアジン系化合物等を挙げることができるが、着色の少ないベンゾトリアゾール系化合物が好ましい。また、特開平10-182621号、同8-337574号、特開2001-72782号記載の紫外線吸収剤、特開平6-148430号、特開2002-31715号、同2002-169020号、同2002-47357号、同2002-363420号、同2003-113317号記載の高分子紫外線吸収剤も好ましく用いられる。紫外線吸収剤としては、偏光子や液晶の劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、かつ、液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。
 本発明に有用な紫外線吸収剤の具体例として、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル)ベンゾトリアゾール、2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、オクチル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートと2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートの混合物等を挙げることができるが、これらに限定されない。また、市販品として、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)326(何れもBASFジャパン社製)を好ましく使用できる。高分子紫外線吸収剤としては、大塚化学社製の反応型紫外線吸収剤RUVA-93を例として挙げることができる。
 ベンゾフェノン系化合物の具体例として、2,4-ジヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)等を挙げることができるが、これらに限定されない。
 本発明で好ましく用いられる上記記載の紫外線吸収剤は、透明性が高く、偏光板や液晶素子の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましく、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましく用いられる。
 紫外線吸収剤のドープへの添加方法は、ドープ中で紫外線吸収剤を溶解するようなものであれば制限なく使用できるが、本発明においては紫外線吸収剤をメチレンクロライド、酢酸メチル、ジオキソラン等のセルロースエステルに対する良溶媒、又は良溶媒と低級脂肪族アルコール(メタノール、エタノール、プロパノール、ブタノール等)のような貧溶媒との混合有機溶媒に溶解し紫外線吸収剤溶液としてセルロースエステル溶液に添加してドープとする方法が好ましい。この場合できるだけドープ溶媒組成と紫外線吸収剤溶液の溶媒組成とを同じとするか近づけることが好ましい。紫外線吸収剤の含有量は0.01~5質量%、特に0.5~3質量%である。
 (酸化防止剤)
 酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、例えば、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N′-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト等が挙げられる。特に2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕が好ましい。また例えば、N,N′-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4-ジ-t-ブチルフェニル)フォスファイト等のリン系加工安定剤を併用してもよい。
 これらの化合物の添加量は、セルロースエステルに対して質量割合で1ppm~1.0%が好ましく、10~1000ppmが更に好ましい。
 また、下記一般式(L)で表される化合物を用いることも好ましい。
Figure JPOXMLDOC01-appb-C000013
〔式中、R~Rは、各々、互いに独立して水素原子又は置換基を表し、Rは水素原子又は置換基を表し、nは1又は2を表す。nが1であるとき、Rは置換基を表し、nが2であるとき、Rは2価の連結基を表す。〕
 前記一般式(L)において、R~Rはおのおの互いに独立して水素原子又は置換基を表す。R~Rで表される置換基は、特に制限はないが、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリフルオロメチル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アリール基(例えば、フェニル基、ナフチル基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルケニル基(例えば、ビニル基、2-プロペニル基、3-ブテニル基、1-メチル-3-プロペニル基、3-ペンテニル基、1-メチル-3-ブテニル基、4-ヘキセニル基、シクロヘキセニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、沃素原子等)、アルキニル基(例えば、プロパルギル基等)、複素環基(例えば、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基等)、アルキルスルフィニル基(例えば、メチルスルフィニル基等)、アリールスルフィニル基(例えば、フェニルスルフィニル基等)、ホスホノ基、アシル基(例えば、アセチル基、ピバロイル基、ベンゾイル基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、ブチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、フェニルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、スルホンアミド基(例えば、メタンスルホンアミド基、ベンゼンスルホンアミド基等)、シアノ基、アルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、複素環オキシ基、シロキシ基、アシルオキシ基(例えば、アセチルオキシ基、ベンゾイルオキシ基等)、スルホン酸基、スルホン酸の塩、アミノカルボニルオキシ基、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基等)、アニリノ基(例えば、フェニルアミノ基、クロロフェニルアミノ基、トルイジノ基、アニシジノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、イミド基、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2-ピリジルアミノウレイド基等)、アルコキシカルボニルアミノ基(例えば、メトキシカルボニルアミノ基、フェノキシカルボニルアミノ基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、フェノキシカルボニル等)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基等)、複素環チオ基、チオウレイド基、カルボキシ基、カルボン酸の塩、ヒドロキシ基、メルカプト基、ニトロ基等の各基が挙げられる。これらの置換基は同様の置換基によって更に置換されていてもよい。
 前記一般式(L)において、R~Rは、水素原子又はアルキル基が好ましい。
 前記一般式(L)において、Rは水素原子又は置換基を表し、Rで表される置換基は、R~Rが表す置換基と同様な基を挙げることができる。
 前記一般式(L)において、Rは水素原子が好ましい。
 前記一般式(L)において、nは1又は2を表す。
 前記一般式(L)において、nが1であるとき、Rは置換基を表し、nが2であるとき、Rは2価の連結基を表す。Rが置換基を表すとき、置換基としては、R~Rが表す置換基と同様な基を挙げることができる。Rは2価の連結基を表すとき、2価の連結基として例えば、置換基を有しても良いアルキレン基、置換基を有しても良いアリーレン基、酸素原子、窒素原子、硫黄原子、或いはこれらの連結基の組み合わせを挙げることができる。
 前記一般式(L)において、nは1が好ましく、その時のRは置換又は無置換のフェニル基が好ましく、アルキル基が置換したフェニル基が更に好ましい。
 次に、本発明における前記一般式(L)で表される化合物の具体例を示すが、本発明は以下の具体例によって限定されるものではない。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 これらの化合物は、それぞれ一種或いは二種以上組み合わせて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択されるが、セルロースエステル100質量部に対して、通常0.001~10.0質量部、好ましくは0.01~5.0質量部、更に好ましくは、0.1~3.0質量部である。
 (リターデーション調整剤)
 リターデーションを調整するために添加する化合物は、欧州特許911,656A2号明細書に記載されているような、二つ以上の芳香族環を有する芳香族化合物を使用することができる。
 また、二種類以上の芳香族化合物を併用してもよい。該芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。芳香族性ヘテロ環であることが特に好ましく、芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。中でも1,3,5-トリアジン環が特に好ましい。
 芳香族化合物が有する芳香族環の数は2~20であることが好ましく、2~12であることがより好ましく、2~8であることが更に好ましく、3~6であることが最も好ましい。二つの芳香族環の結合関係は、(a)縮合環を形成する場合、(b)単結合で直結する場合及び(c)連結基を介して結合する場合に分類できる(芳香族環のため、スピロ結合は形成出来ない)。結合関係は、(a)~(c)のいずれでもよい。
 (a)の縮合環(二つ以上の芳香族環の縮合環)の例には、インデン環、ナフタレン環、アズレン環、フルオレン環、フェナントレン環、アントラセン環、アセナフチレン環、ナフタセン環、ピレン環、インドール環、イソインドール環、ベンゾフラン環、ベンゾチオフェン環、インドリジン環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環、プリン環、インダゾール環、クロメン環、キノリン環、イソキノリン環、キノリジン環、キナゾリン環、シンノリン環、キノキサリン環、フタラジン環、プテリジン環、カルバゾール環、アクリジン環、フェナントリジン環、キサンテン環、フェナジン環、フェノチアジン環、フェノキサチイン環、フェノキサジン環及びチアントレン環が含まれる。ナフタレン環、アズレン環、インドール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環及びキノリン環が好ましい。
 (b)の単結合は、二つの芳香族環の炭素原子間の結合であることが好ましい。二以上の単結合で二つの芳香族環を結合して、二つの芳香族環の間に脂肪族環又は非芳香族性複素環を形成してもよい。
 (c)の連結基も二つの芳香族環の炭素原子と結合することが好ましい。連結基は、アルキレン基、アルケニレン基、アルキニレン基、-CO-、-O-、-NH-、-S-又はそれらの組み合わせであることが好ましい。組み合わせからなる連結基の例を以下に示す。なお、以下の連結基の例の左右の関係は、逆になってもよい。
 -CO-O-、-CO-NH-、-アルキレン-O-、-NH-CO-NH-、-NH-CO-O-、-O-CO-O-、-O-アルキレン-O-、-CO-アルケニレン-、-CO-アルケニレン-NH-、-CO-アルケニレン-O-、-アルキレン-CO-O-アルキレン-O-CO-アルキレン-、-O-アルキレン-CO-O-アルキレン-O-CO-アルキレン-O-、-O-CO-アルキレン-CO-O-、-NH-CO-アルケニレン-、-O-CO-アルケニレン-。
 芳香族環及び連結基は置換基を有していてもよい。置換基の例には、ハロゲン原子(F、Cl、Br、I)、ヒドロキシ、カルボキシ、シアノ、アミノ、ニトロ、スルホ、カルバモイル、スルファモイル、ウレイド、アルキル基、アルケニル基、アルキニル基、脂肪族アシル基、脂肪族アシルオキシ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アルキルスルホニル基、脂肪族アミド基、脂肪族スルホンアミド基、脂肪族置換アミノ基、脂肪族置換カルバモイル基、脂肪族置換スルファモイル基、脂肪族置換ウレイド基及び非芳香族性複素環基が含まれる。
 アルキル基の炭素原子数は1~8であることが好ましい。環状アルキル基よりも鎖状アルキル基の方が好ましく、直鎖状アルキル基が特に好ましい。アルキル基は、更に置換基(例、ヒドロキシ、カルボキシ、アルコキシ基、アルキル置換アミノ基)を有していてもよい。アルキル基の(置換アルキル基を含む)例には、メチル、エチル、n-ブチル、n-ヘキシル、2-ヒドロキシエチル、4-カルボキシブチル、2-メトキシエチル及び2-ジエチルアミノエチルが含まれる。アルケニル基の炭素原子数は、2~8であることが好ましい。環状アルケニル基よりも鎖状アルケニル基の方が好ましく、直鎖状アルケニル基が特に好ましい。アルケニル基は、更に置換基を有していてもよい。アルケニル基の例には、ビニル、アリル及び1-ヘキセニルが含まれる。アルキニル基の炭素原子数は、2~8であることが好ましい。環状アルキニル基よりも鎖状アルキニル基の方が好ましく、直鎖状アルキニル基が特に好ましい。アルキニル基は、更に置換基を有していてもよい。アルキニル基の例には、エチニル、1-ブチニル及び1-ヘキシニルが含まれる。
 脂肪族アシル基の炭素原子数は1~10であることが好ましい。脂肪族アシル基の例には、アセチル、プロパノイル及びブタノイルが含まれる。脂肪族アシルオキシ基の炭素原子数は、1~10であることが好ましい。脂肪族アシルオキシ基の例には、アセトキシが含まれる。アルコキシ基の炭素原子数は1~8であることが好ましい。アルコキシ基は、更に置換基(例、アルコキシ基)を有していてもよい。アルコキシ基の(置換アルコキシ基を含む)例には、メトキシ、エトキシ、ブトキシ及びメトキシエトキシが含まれる。アルコキシカルボニル基の炭素原子数は2~10であることが好ましい。アルコキシカルボニル基の例には、メトキシカルボニル及びエトキシカルボニルが含まれる。アルコキシカルボニルアミノ基の炭素原子数は、2~10であることが好ましい。アルコキシカルボニルアミノ基の例には、メトキシカルボニルアミノ及びエトキシカルボニルアミノが含まれる。
 アルキルチオ基の炭素原子数は1~12であることが好ましい。アルキルチオ基の例には、メチルチオ、エチルチオ及びオクチルチオが含まれる。アルキルスルホニル基の炭素原子数は、1~8であることが好ましい。アルキルスルホニル基の例には、メタンスルホニル及びエタンスルホニルが含まれる。脂肪族アミド基の炭素原子数は、1~10であることが好ましい。脂肪族アミド基の例には、アセトアミドが含まれる。脂肪族スルホンアミド基の炭素原子数は、1~8であることが好ましい。脂肪族スルホンアミド基の例には、メタンスルホンアミド、ブタンスルホンアミド及びn-オクタンスルホンアミドが含まれる。脂肪族置換アミノ基の炭素原子数は、1~10であることが好ましい。脂肪族置換アミノ基の例には、ジメチルアミノ、ジエチルアミノ及び2-カルボキシエチルアミノが含まれる。脂肪族置換カルバモイル基の炭素原子数は2~10であることが好ましい。脂肪族置換カルバモイル基の例には、メチルカルバモイル及びジエチルカルバモイルが含まれる。脂肪族置換スルファモイル基の炭素原子数は、1~8であることが好ましい。脂肪族置換スルファモイル基の例には、メチルスルファモイル及びジエチルスルファモイルが含まれる。脂肪族置換ウレイド基の炭素原子数は、2~10であることが好ましい。脂肪族置換ウレイド基の例には、メチルウレイドが含まれる。非芳香族性複素環基の例には、ピペリジノ及びモルホリノが含まれる。
 リターデーション調整剤の分子量は、300以上800以下であることが好ましい。これは、使用時及び偏光板加工時における流出抑制の観点から、任意に分子構造の極性を選択することができる。
 1,3,5-トリアジン環を有する化合物は、中でも、下記一般式(R)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000017
 一般式(R)において、Xは、単結合、-NR-、-O-又は-S-であり;Xは単結合、-NR-、-O-又は-S-であり;Xは単結合、-NR-、-O-または-S-であり;R、R及びRはアルキル基、アルケニル基、アリール基又は複素環基であり;そして、R、R及びRは、水素原子、アルキル基、アルケニル基、アリール基又は複素環基である。一般式(R)で表される化合物は、メラミン化合物であることが特に好ましい。
 メラミン化合物では、一般式(R)において、X、X及びXが、それぞれ、-NR-、-NR-及び-NR-であるか、或いは、X、X及びXが単結合であり、かつ、R、R及びRが窒素原子に遊離原子価を持つ複素環基である。-X-R、-X-R及び-X-Rは、同一の置換基であることが好ましい。R、R及びRは、アリール基であることが特に好ましい。R、R及びRは、水素原子であることが特に好ましい。
 上記アルキル基は、環状アルキル基よりも鎖状アルキル基である方が好ましい。分岐を有する鎖状アルキル基よりも、直鎖状アルキル基の方が好ましい。
 アルキル基の炭素原子数は、1~30であることが好ましく、1~20であることがより好ましく、1~10であることが更に好ましく、1~8であることが更にまた好ましく、1~6であることが最も好ましい。アルキル基は置換基を有していてもよい。
 置換基の具体例としては、例えばハロゲン原子、アルコキシ基(例えばメトキシ、エトキシ、エポキシエチルオキシ等の各基)及びアシルオキシ基(例えば、アクリロイルオキシ、メタクリロイルオキシ)等が挙げられる。上記アルケニル基は、環状アルケニル基よりも鎖状アルケニル基である方が好ましい。分岐を有する鎖状アルケニル基よりも、直鎖状アルケニル基の方が好ましい。アルケニル基の炭素原子数は、2~30であることが好ましく、2~20であることがより好ましく、2~10であることが更に好ましく、2~8であることが更にまた好ましく、2~6であることが最も好ましい。アルケニル基は、置換基を有していてもよい。
 置換基の具体例としては、ハロゲン原子、アルコキシ基(例えば、メトキシ、エトキシ、エポキシエチルオキシ等の各基)又はアシルオキシ基(例えば、アクリロイルオキシ、メタクリロイルオキシ等の各基)が挙げられる。
 上記アリール基は、フェニル基又はナフチル基であることが好ましく、フェニル基であることが特に好ましい。アリール基は置換基を有していてもよい。
 置換基の具体例としては、例えば、ハロゲン原子、ヒドロキシ、シアノ、ニトロ、カルボキシ、アルキル基、アルケニル基、アリール基、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、アルコキシカルボニル基、アルケニルオキシカルボニル基、アリールオキシカルボニル基、スルファモイル、アルキル置換スルファモイル基、アルケニル置換スルファモイル基、アリール置換スルファモイル基、スルホンアミド基、カルバモイル、アルキル置換カルバモイル基、アルケニル置換カルバモイル基、アリール置換カルバモイル基、アミド基、アルキルチオ基、アルケニルチオ基、アリールチオ基及びアシル基が含まれる。上記アルキル基は、前述したアルキル基と同義である。
 アルコキシ基、アシルオキシ基、アルコキシカルボニル基、アルキル置換スルファモイル基、スルホンアミド基、アルキル置換カルバモイル基、アミド基、アルキルチオ基とアシル基のアルキル部分も、前述したアルキル基と同義である。
 上記アルケニル基は、前述したアルケニル基と同義である。
 アルケニルオキシ基、アシルオキシ基、アルケニルオキシカルボニル基、アルケニル置換スルファモイル基、スルホンアミド基、アルケニル置換カルバモイル基、アミド基、アルケニルチオ基及びアシル基のアルケニル部分も、前述したアルケニル基と同義である。
 上記アリール基の具体例としては、例えば、フェニル、α-ナフチル、β-ナフチル、4-メトキシフェニル、3,4-ジエトキシフェニル、4-オクチルオキシフェニル又は4-ドデシルオキシフェニル等の各基が挙げられる。
 アリールオキシ基、アシルオキシ基、アリールオキシカルボニル基、アリール置換スルファモイル基、スルホンアミド基、アリール置換カルバモイル基、アミド基、アリールチオ基及びアシル基の部分の例は、上記アリール基と同義である。
 X、X又はXが-NR-、-O-又は-S-である場合の複素環基は、芳香族性を有することが好ましい。
 芳香族性を有する複素環基中の複素環としては、一般に不飽和複素環であり、好ましくは最多の二重結合を有する複素環である。複素環は、5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることが更に好ましく、6員環であることが最も好ましい。
 複素環中のヘテロ原子は、N、S又はO等の各原子であることが好ましく、N原子であることが特に好ましい。
 芳香族性を有する複素環としては、ピリジン環(複素環基としては、例えば、2-ピリジル又は4-ピリジル等の各基)が特に好ましい。複素環基は、置換基を有していてもよい。複素環基の置換基の例は、上記アリール部分の置換基の例と同様である。
 X、X又はXが単結合である場合の複素環基は、窒素原子に遊離原子価を持つ複素環基であることが好ましい。窒素原子に遊離原子価を持つ複素環基は、5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることが更に好ましく、5員環であることが最も好ましい。複素環基は、複数の窒素原子を有していてもよい。
 また、複素環基中のヘテロ原子は、窒素原子以外のヘテロ原子(例えば、O原子、S原子)を有していてもよい。複素環基は、置換基を有していてもよい。複素環基の置換基の具体例は、上記アリール部分の置換基の具体例と同義である。
 以下に、窒素原子に遊離原子価を持つ複素環基の具体例を示す。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 以下に、1,3,5-トリアジン環を有する化合物の具体例を示す。
 なお、以下に示す複数のRは同一の基を表す。
Figure JPOXMLDOC01-appb-C000020
 (1)ブチル
 (2)2-メトキシ-2-エトキシエチル
 (3)5-ウンデセニル
 (4)フェニル
 (5)4-エトキシカルボニルフェニル
 (6)4-ブトキシフェニル
 (7)p-ビフェニリル
 (8)4-ピリジル
 (9)2-ナフチル
 (10)2-メチルフェニル
 (11)3,4-ジメトキシフェニル
 (12)2-フリル
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 (14)フェニル
 (15)3-エトキシカルボニルフェニル
 (16)3-ブトキシフェニル
 (17)m-ビフェニリル
 (18)3-フェニルチオフェニル
 (19)3-クロロフェニル
 (20)3-ベンゾイルフェニル
 (21)3-アセトキシフェニル
 (22)3-ベンゾイルオキシフェニル
 (23)3-フェノキシカルボニルフェニル
 (24)3-メトキシフェニル
 (25)3-アニリノフェニル
 (26)3-イソブチリルアミノフェニル
 (27)3-フェノキシカルボニルアミノフェニル
 (28)3-(3-エチルウレイド)フェニル
 (29)3-(3,3-ジエチルウレイド)フェニル
 (30)3-メチルフェニル
 (31)3-フェノキシフェニル
 (32)3-ヒドロキシフェニル
 (33)4-エトキシカルボニルフェニル
 (34)4-ブトキシフェニル
 (35)p-ビフェニリル
 (36)4-フェニルチオフェニル
 (37)4-クロロフェニル
 (38)4-ベンゾイルフェニル
 (39)4-アセトキシフェニル
 (40)4-ベンゾイルオキシフェニル
 (41)4-フェノキシカルボニルフェニル
 (42)4-メトキシフェニル
 (43)4-アニリノフェニル
 (44)4-イソブチリルアミノフェニル
 (45)4-フェノキシカルボニルアミノフェニル
 (46)4-(3-エチルウレイド)フェニル
 (47)4-(3,3-ジエチルウレイド)フェニル
 (48)4-メチルフェニル
 (49)4-フェノキシフェニル
 (50)4-ヒドロキシフェニル
 (51)3,4-ジエトキシカルボニルフェニル
 (52)3,4-ジブトキシフェニル
 (53)3,4-ジフェニルフェニル
 (54)3,4-ジフェニルチオフェニル
 (55)3,4-ジクロロフェニル
 (56)3,4-ジベンゾイルフェニル
 (57)3,4-ジアセトキシフェニル
 (58)3,4-ジベンゾイルオキシフェニル
 (59)3,4-ジフェノキシカルボニルフェニル
 (60)3,4-ジメトキシフェニル
 (61)3,4-ジアニリノフェニル
 (62)3,4-ジメチルフェニル
 (63)3,4-ジフェノキシフェニル
 (64)3,4-ジヒドロキシフェニル
 (65)2-ナフチル
 (66)3,4,5-トリエトキシカルボニルフェニル
 (67)3,4,5-トリブトキシフェニル
 (68)3,4,5-トリフェニルフェニル
 (69)3,4,5-トリフェニルチオフェニル
 (70)3,4,5-トリクロロフェニル
 (71)3,4,5-トリベンゾイルフェニル
 (72)3,4,5-トリアセトキシフェニル
 (73)3,4,5-トリベンゾイルオキシフェニル
 (74)3,4,5-トリフェノキシカルボニルフェニル
 (75)3,4,5-トリメトキシフェニル
 (76)3,4,5-トリアニリノフェニル
 (77)3,4,5-トリメチルフェニル
 (78)3,4,5-トリフェノキシフェニル
 (79)3,4,5-トリヒドロキシフェニル
Figure JPOXMLDOC01-appb-C000023
 (80)フェニル
 (81)3-エトキシカルボニルフェニル
 (82)3-ブトキシフェニル
 (83)m-ビフェニリル
 (84)3-フェニルチオフェニル
 (85)3-クロロフェニル
 (86)3-ベンゾイルフェニル
 (87)3-アセトキシフェニル
 (88)3-ベンゾイルオキシフェニル
 (89)3-フェノキシカルボニルフェニル
 (90)3-メトキシフェニル
 (91)3-アニリノフェニル
 (92)3-イソブチリルアミノフェニル
 (93)3-フェノキシカルボニルアミノフェニル
 (94)3-(3-エチルウレイド)フェニル
 (95)3-(3,3-ジエチルウレイド)フェニル
 (96)3-メチルフェニル
 (97)3-フェノキシフェニル
 (98)3-ヒドロキシフェニル
 (99)4-エトキシカルボニルフェニル
 (100)4-ブトキシフェニル
 (101)p-ビフェニリル
 (102)4-フェニルチオフェニル
 (103)4-クロロフェニル
 (104)4-ベンゾイルフェニル
 (105)4-アセトキシフェニル
 (106)4-ベンゾイルオキシフェニル
 (107)4-フェノキシカルボニルフェニル
 (108)4-メトキシフェニル
 (109)4-アニリノフェニル
 (110)4-イソブチリルアミノフェニル
 (111)4-フェノキシカルボニルアミノフェニル
 (112)4-(3-エチルウレイド)フェニル
 (113)4-(3,3-ジエチルウレイド)フェニル
 (114)4-メチルフェニル
 (115)4-フェノキシフェニル
 (116)4-ヒドロキシフェニル
 (117)3,4-ジエトキシカルボニルフェニル
 (118)3,4-ジブトキシフェニル
 (119)3,4-ジフェニルフェニル
 (120)3,4-ジフェニルチオフェニル
 (121)3,4-ジクロロフェニル
 (122)3,4-ジベンゾイルフェニル
 (123)3,4-ジアセトキシフェニル
 (124)3,4-ジベンゾイルオキシフェニル
 (125)3,4-ジフェノキシカルボニルフェニル
 (126)3,4-ジメトキシフェニル
 (127)3,4-ジアニリノフェニル
 (128)3,4-ジメチルフェニル
 (129)3,4-ジフェノキシフェニル
 (130)3,4-ジヒドロキシフェニル
 (131)2-ナフチル
 (132)3,4,5-トリエトキシカルボニルフェニル
 (133)3,4,5-トリブトキシフェニル
 (134)3,4,5-トリフェニルフェニル
 (135)3,4,5-トリフェニルチオフェニル
 (136)3,4,5-トリクロロフェニル
 (137)3,4,5-トリベンゾイルフェニル
 (138)3,4,5-トリアセトキシフェニル
 (139)3,4,5-トリベンゾイルオキシフェニル
 (140)3,4,5-トリフェノキシカルボニルフェニル
 (141)3,4,5-トリメトキシフェニル
 (142)3,4,5-トリアニリノフェニル
 (143)3,4,5-トリメチルフェニル
 (144)3,4,5-トリフェノキシフェニル
 (145)3,4,5-トリヒドロキシフェニル
Figure JPOXMLDOC01-appb-C000024
 (146)フェニル
 (147)4-エトキシカルボニルフェニル
 (148)4-ブトキシフェニル
 (149)p-ビフェニリル
 (150)4-フェニルチオフェニル
 (151)4-クロロフェニル
 (152)4-ベンゾイルフェニル
 (153)4-アセトキシフェニル
 (154)4-ベンゾイルオキシフェニル
 (155)4-フェノキシカルボニルフェニル
 (156)4-メトキシフェニル
 (157)4-アニリノフェニル
 (158)4-イソブチリルアミノフェニル
 (159)4-フェノキシカルボニルアミノフェニル
 (160)4-(3-エチルウレイド)フェニル
 (161)4-(3,3-ジエチルウレイド)フェニル
 (162)4-メチルフェニル
 (163)4-フェノキシフェニル
 (164)4-ヒドロキシフェニル
Figure JPOXMLDOC01-appb-C000025
 (165)フェニル
 (166)4-エトキシカルボニルフェニル
 (167)4-ブトキシフェニル
 (168)p-ビフェニリル
 (169)4-フェニルチオフェニル
 (170)4-クロロフェニル
 (171)4-ベンゾイルフェニル
 (172)4-アセトキシフェニル
 (173)4-ベンゾイルオキシフェニル
 (174)4-フェノキシカルボニルフェニル
 (175)4-メトキシフェニル
 (176)4-アニリノフェニル
 (177)4-イソブチリルアミノフェニル
 (178)4-フェノキシカルボニルアミノフェニル
 (179)4-(3-エチルウレイド)フェニル
 (180)4-(3,3-ジエチルウレイド)フェニル
 (181)4-メチルフェニル
 (182)4-フェノキシフェニル
 (183)4-ヒドロキシフェニル
Figure JPOXMLDOC01-appb-C000026
 (184)フェニル
 (185)4-エトキシカルボニルフェニル
 (186)4-ブトキシフェニル
 (187)p-ビフェニリル
 (188)4-フェニルチオフェニル
 (189)4-クロロフェニル
 (190)4-ベンゾイルフェニル
 (191)4-アセトキシフェニル
 (192)4-ベンゾイルオキシフェニル
 (193)4-フェノキシカルボニルフェニル
 (194)4-メトキシフェニル
 (195)4-アニリノフェニル
 (196)4-イソブチリルアミノフェニル
 (197)4-フェノキシカルボニルアミノフェニル
 (198)4-(3-エチルウレイド)フェニル
 (199)4-(3,3-ジエチルウレイド)フェニル
 (200)4-メチルフェニル
 (201)4-フェノキシフェニル
 (202)4-ヒドロキシフェニル
Figure JPOXMLDOC01-appb-C000027
 (203)フェニル
 (204)4-エトキシカルボニルフェニル
 (205)4-ブトキシフェニル
 (206)p-ビフェニリル
 (207)4-フェニルチオフェニル
 (208)4-クロロフェニル
 (209)4-ベンゾイルフェニル
 (210)4-アセトキシフェニル
 (211)4-ベンゾイルオキシフェニル
 (212)4-フェノキシカルボニルフェニル
 (213)4-メトキシフェニル
 (214)4-アニリノフェニル
 (215)4-イソブチリルアミノフェニル
 (216)4-フェノキシカルボニルアミノフェニル
 (217)4-(3-エチルウレイド)フェニル
 (218)4-(3,3-ジエチルウレイド)フェニル
 (219)4-メチルフェニル
 (220)4-フェノキシフェニル
 (221)4-ヒドロキシフェニル
Figure JPOXMLDOC01-appb-C000028
 (222)フェニル
 (223)4-ブチルフェニル
 (224)4-(2-メトキシ-2-エトキシエチル)フェニル
 (225)4-(5-ノネニル)フェニル
 (226)p-ビフェニリル
 (227)4-エトキシカルボニルフェニル
 (228)4-ブトキシフェニル
 (229)4-メチルフェニル
 (230)4-クロロフェニル
 (231)4-フェニルチオフェニル
 (232)4-ベンゾイルフェニル
 (233)4-アセトキシフェニル
 (234)4-ベンゾイルオキシフェニル
 (235)4-フェノキシカルボニルフェニル
 (236)4-メトキシフェニル
 (237)4-アニリノフェニル
 (238)4-イソブチリルアミノフェニル
 (239)4-フェノキシカルボニルアミノフェニル
 (240)4-(3-エチルウレイド)フェニル
 (241)4-(3,3-ジエチルウレイド)フェニル
 (242)4-フェノキシフェニル
 (243)4-ヒドロキシフェニル
 (244)3-ブチルフェニル
 (245)3-(2-メトキシ-2-エトキシエチル)フェニル
 (246)3-(5-ノネニル)フェニル
 (247)m-ビフェニリル
 (248)3-エトキシカルボニルフェニル
 (249)3-ブトキシフェニル
 (250)3-メチルフェニル
 (251)3-クロロフェニル
 (252)3-フェニルチオフェニル
 (253)3-ベンゾイルフェニル
 (254)3-アセトキシフェニル
 (255)3-ベンゾイルオキシフェニル
 (256)3-フェノキシカルボニルフェニル
 (257)3-メトキシフェニル
 (258)3-アニリノフェニル
 (259)3-イソブチリルアミノフェニル
 (260)3-フェノキシカルボニルアミノフェニル
 (261)3-(3-エチルウレイド)フェニル
 (262)3-(3,3-ジエチルウレイド)フェニル
 (263)3-フェノキシフェニル
 (264)3-ヒドロキシフェニル
 (265)2-ブチルフェニル
 (266)2-(2-メトキシ-2-エトキシエチル)フェニル
 (267)2-(5-ノネニル)フェニル
 (268)o-ビフェニリル
 (269)2-エトキシカルボニルフェニル
 (270)2-ブトキシフェニル
 (271)2-メチルフェニル
 (272)2-クロロフェニル
 (273)2-フェニルチオフェニル
 (274)2-ベンゾイルフェニル
 (275)2-アセトキシフェニル
 (276)2-ベンゾイルオキシフェニル
 (277)2-フェノキシカルボニルフェニル
 (278)2-メトキシフェニル
 (279)2-アニリノフェニル
 (280)2-イソブチリルアミノフェニル
 (281)2-フェノキシカルボニルアミノフェニル
 (282)2-(3-エチルウレイド)フェニル
 (283)2-(3,3-ジエチルウレイド)フェニル
 (284)2-フェノキシフェニル
 (285)2-ヒドロキシフェニル
 (286)3,4-ジブチルフェニル
 (287)3,4-ジ(2-メトキシ-2-エトキシエチル)フェニル
 (288)3,4-ジフェニルフェニル
 (289)3,4-ジエトキシカルボニルフェニル
 (290)3,4-ジドデシルオキシフェニル
 (291)3,4-ジメチルフェニル
 (292)3,4-ジクロロフェニル
 (293)3,4-ジベンゾイルフェニル
 (294)3,4-ジアセトキシフェニル
 (295)3,4-ジメトキシフェニル
 (296)3,4-ジ-N-メチルアミノフェニル
 (297)3,4-ジイソブチリルアミノフェニル
 (298)3,4-ジフェノキシフェニル
 (299)3,4-ジヒドロキシフェニル
 (300)3,5-ジブチルフェニル
 (301)3,5-ジ(2-メトキシ-2-エトキシエチル)フェニル
 (302)3,5-ジフェニルフェニル
 (303)3,5-ジエトキシカルボニルフェニル
 (304)3,5-ジドデシルオキシフェニル
 (305)3,5-ジメチルフェニル
 (306)3,5-ジクロロフェニル
 (307)3,5-ジベンゾイルフェニル
 (308)3,5-ジアセトキシフェニル
 (309)3,5-ジメトキシフェニル
 (310)3,5-ジ-N-メチルアミノフェニル
 (311)3,5-ジイソブチリルアミノフェニル
 (312)3,5-ジフェノキシフェニル
 (313)3,5-ジヒドロキシフェニル
 (314)2,4-ジブチルフェニル
 (315)2,4-ジ(2-メトキシ-2-エトキシエチル)フェニル
 (316)2,4-ジフェニルフェニル
 (317)2,4-ジエトキシカルボニルフェニル
 (318)2,4-ジドデシルオキシフェニル
 (319)2,4-ジメチルフェニル
 (320)2,4-ジクロロフェニル
 (321)2,4-ジベンゾイルフェニル
 (322)2,4-ジアセトキシフェニル
 (323)2,4-ジメトキシフェニル
 (324)2,4-ジ-N-メチルアミノフェニル
 (325)2,4-ジイソブチリルアミノフェニル
 (326)2,4-ジフェノキシフェニル
 (327)2,4-ジヒドロキシフェニル
 (328)2,3-ジブチルフェニル
 (329)2,3-ジ(2-メトキシ-2-エトキシエチル)フェニル
 (330)2,3-ジフェニルフェニル
 (331)2,3-ジエトキシカルボニルフェニル
 (332)2,3-ジドデシルオキシフェニル
 (333)2,3-ジメチルフェニル
 (334)2,3-ジクロロフェニル
 (335)2,3-ジベンゾイルフェニル
 (336)2,3-ジアセトキシフェニル
 (337)2,3-ジメトキシフェニル
 (338)2,3-ジ-N-メチルアミノフェニル
 (339)2,3-ジイソブチリルアミノフェニル
 (340)2,3-ジフェノキシフェニル
 (341)2,3-ジヒドロキシフェニル
 (342)2,6-ジブチルフェニル
 (343)2,6-ジ(2-メトキシ-2-エトキシエチル)フェニル
 (344)2,6-ジフェニルフェニル
 (345)2,6-ジエトキシカルボニルフェニル
 (346)2,6-ジドデシルオキシフェニル
 (347)2,6-ジメチルフェニル
 (348)2,6-ジクロロフェニル
 (349)2,6-ジベンゾイルフェニル
 (350)2,6-ジアセトキシフェニル
 (351)2,6-ジメトキシフェニル
 (352)2,6-ジ-N-メチルアミノフェニル
 (353)2,6-ジイソブチリルアミノフェニル
 (354)2,6-ジフェノキシフェニル
 (355)2,6-ジヒドロキシフェニル
 (356)3,4,5-トリブチルフェニル
 (357)3,4,5-トリ(2-メトキシ-2-エトキシエチル)フェニル
 (358)3,4,5-トリフェニルフェニル
 (359)3,4,5-トリエトキシカルボニルフェニル
 (360)3,4,5-トリドデシルオキシフェニル
 (361)3,4,5-トリメチルフェニル
 (362)3,4,5-トリクロロフェニル
 (363)3,4,5-トリベンゾイルフェニル
 (364)3,4,5-トリアセトキシフェニル
 (365)3,4,5-トリメトキシフェニル
 (366)3,4,5-トリ-N-メチルアミノフェニル
 (367)3,4,5-トリイソブチリルアミノフェニル
 (368)3,4,5-トリフェノキシフェニル
 (369)3,4,5-トリヒドロキシフェニル
 (370)2,4,6-トリブチルフェニル
 (371)2,4,6-トリ(2-メトキシ-2-エトキシエチル)フェニル
 (372)2,4,6-トリフェニルフェニル
 (373)2,4,6-トリエトキシカルボニルフェニル
 (374)2,4,6-トリドデシルオキシフェニル
 (375)2,4,6-トリメチルフェニル
 (376)2,4,6-トリクロロフェニル
 (377)2,4,6-トリベンゾイルフェニル
 (378)2,4,6-トリアセトキシフェニル
 (379)2,4,6-トリメトキシフェニル
 (380)2,4,6-トリ-N-メチルアミノフェニル
 (381)2,4,6-トリイソブチリルアミノフェニル
 (382)2,4,6-トリフェノキシフェニル
 (383)2,4,6-トリヒドロキシフェニル
 (384)ペンタフルオロフェニル
 (385)ペンタクロロフェニル
 (386)ペンタメトキシフェニル
 (387)6-N-メチルスルファモイル-8-メトキシ-2-ナフチル
 (388)5-N-メチルスルファモイル-2-ナフチル
 (389)6-N-フェニルスルファモイル-2-ナフチル
 (390)5-エトキシ-7-N-メチルスルファモイル-2-ナフチル
 (391)3-メトキシ-2-ナフチル
 (392)1-エトキシ-2-ナフチル
 (393)6-N-フェニルスルファモイル-8-メトキシ-2-ナフチル
 (394)5-メトキシ-7-N-フェニルスルファモイル-2-ナフチル
 (395)1-(4-メチルフェニル)-2-ナフチル
 (396)6,8-ジ-N-メチルスルファモイル-2-ナフチル
 (397)6-N-2-アセトキシエチルスルファモイル-8-メトキシ-2-ナフチル
 (398)5-アセトキシ-7-N-フェニルスルファモイル-2-ナフチル
 (399)3-ベンゾイルオキシ-2-ナフチル
 (400)5-アセチルアミノ-1-ナフチル
 (401)2-メトキシ-1-ナフチル
 (402)4-フェノキシ-1-ナフチル
 (403)5-N-メチルスルファモイル-1-ナフチル
 (404)3-N-メチルカルバモイル-4-ヒドロキシ-1-ナフチル
 (405)5-メトキシ-6-N-エチルスルファモイル-1-ナフチル
 (406)7-テトラデシルオキシ-1-ナフチル
 (407)4-(4-メチルフェノキシ)-1-ナフチル
 (408)6-N-メチルスルファモイル-1-ナフチル
 (409)3-N,N-ジメチルカルバモイル-4-メトキシ-1-ナフチル
 (410)5-メトキシ-6-N-ベンジルスルファモイル-1-ナフチル
 (411)3,6-ジ-N-フェニルスルファモイル-1-ナフチル
 (412)メチル
 (413)エチル
 (414)ブチル
 (415)オクチル
 (416)ドデシル
 (417)2-ブトキシ-2-エトキシエチル
 (418)ベンジル
 (419)4-メトキシベンジル
Figure JPOXMLDOC01-appb-C000029
 (424)メチル
 (425)フェニル
 (426)ブチル
Figure JPOXMLDOC01-appb-C000030
 (430)メチル
 (431)エチル
 (432)ブチル
 (433)オクチル
 (434)ドデシル
 (435)2-ブトキシ-2-エトキシエチル
 (436)ベンジル
 (437)4-メトキシベンジル
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 本発明においては、1,3,5-トリアジン環を有する化合物として、メラミンポリマーを用いてもよい。メラミンポリマーは、下記一般式(M)で示すメラミン化合物とカルボニル化合物との重合反応により合成することが好ましい。
Figure JPOXMLDOC01-appb-C000033
 上記合成反応スキームにおいて、R11、R12、R13、R14、R15及びR16は、水素原子、アルキル基、アルケニル基、アリール基又は複素環基である。
 上記アルキル基、アルケニル基、アリール基及び複素環基及びこれらの置換基は前記一般式(R)で説明した各基、それらの置換基と同義である。
 メラミン化合物とカルボニル化合物との重合反応は、通常のメラミン樹脂(例えば、メラミンホルムアルデヒド樹脂等)の合成方法と同様である。また、市販のメラミンポリマー(メラミン樹脂)を用いてもよい。
 メラミンポリマーの分子量は、2千~40万であることが好ましい。メラミンポリマーの繰り返し単位の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000034
 MP-1:R13、R14、R15、R16:CHOH
 MP-2:R13、R14、R15、R16:CHOCH
 MP-3:R13、R14、R15、R16:CHO-i-C
 MP-4:R13、R14、R15、R16:CHO-n-C
 MP-5:R13、R14、R15、R16:CHNHCOCH=CH
 MP-6:R13、R14、R15、R16:CHNHCO(CHCH=CH(CHCH
 MP-7:R13、R14、R15:CHOH;R16:CHOCH
 MP-8:R13、R14、R16:CHOH;R15:CHOCH
 MP-9:R13、R14:CHOH;R15、R16:CHOCH
 MP-10:R13、R16:CHOH;R14、R15:CHOCH
 MP-11:R13:CHOH;R14、R15、R16:CHOCH
 MP-12:R13、R14、R16:CHOCH;R15:CHOH
 MP-13:R13、R16:CHOCH;R14、R15:CHOH
 MP-14:R13、R14、R15:CHOH;R16:CHO-i-C
 MP-15:R13、R14、R16:CHOH;R15:CHO-i-C
 MP-16:R13、R14:CHOH;R15、R16:CHO-i-C
 MP-17:R13、R16:CHOH;R14、R15:CHO-i-C
 MP-18:R13:CHOH;R14、R15、R16:CHO-i-C
 MP-19:R13、R14、R16:CHO-i-C;R15:CHOH
 MP-20:R13、R16:CHO-i-C;R14、R15:CHOH
 MP-21:R13、R14、R15:CHOH;R16:CHO-n-C
 MP-22:R13、R14、R16:CHOH;R15:CHO-n-C
 MP-23:R13、R14:CHOH;R15、R16:CHO-n-C
 MP-24:R13、R16:CHOH;R14、R15:CHO-n-C
 MP-25:R13:CHOH;R14、R15、R16:CHO-n-C
 MP-26:R13、R14、R16:CHO-n-C;R15:CHOH
 MP-27:R13、R16:CHO-n-C;R14、R15:CHOH
 MP-28:R13、R14:CHOH;R15:CHOCH;R16:CHO-n-C
 MP-29:R13、R14:CHOH;R15:CHO-n-C;R16:CHOCH
 MP-30:R13、R16:CHOH;R14:CHOCH;R15:CHO-n-C
 MP-31:R13:CHOH;R14、R15:CHOCH;R16:CHO-n-C
 MP-32:R13:CHOH;R14、R16:CHOCH;R15:CHO-n-C
 MP-33:R13:CHOH;R14:CHOCH;R15、R16:CHO-n-C
 MP-34:R13:CHOH;R14、R15:CHO-n-C;R16:CHOCH
 MP-35:R13、R14:CHOCH;R15:CHOH;R16:CHO-n-C
 MP-36:R13、R16:CHOCH;R14:CHOH;R15:CHO-n-C
 MP-37:R13:CHOCH;R14、R15:CHOH;R16:CHO-n-C
 MP-38:R13、R16:CHO-n-C;R14:CHOCH;R15:CHOH
 MP-39:R13:CHOH;R14:CHOCH;R15:CHO-n-C;R16:CHNHCOCH=CH
 MP-40:R13:CHOH;R14:CHOCH;R15:CHNHCOCH=CH;R16:CHO-n-C
 MP-41:R13:CHOH;R14:CHO-n-C;R15:CHNHCOCH=CH;R16:CHOCH
 MP-42:R13:CHOCH;R14:CHOH;R15:CHO-n-C;R16:CHNHCOCH=CH
 MP-43:R13:CHOCH;R14:CHOH;R15:CHNHCOCH=CH;R16:CHO-n-C
 MP-44:R13:CHO-n-C;R14:CHOCH;R15:CHOH;R16:CHNHCOCH=CH
 MP-45:R13:CHOH;R14:CHOCH;R15:CHNHCO(CHCH=CH(CHCH;R16:CHNHCOCH=CH
 MP-46:R13:CHOH;R14:CHOCH;R15:CHNHCOCH=CH;R16:CHNHCO(CHCH=CH(CHCH
 MP-47:R13:CHOH;R14:CHNHCO(CHCH=CH(CHCH;R15:CHNHCOCH=CH;R16:CHOCH
 MP-48:R13:CHOCH;R14:CHOH;R15:CHNHCO(CHCH=CH(CHCH;R16:CHNHCOCH=CH
 MP-49:R13:CHOCH;R14:CHOH;R15:CHNHCOCH=CH;R16:CHNHCO(CHCH=CH(CHCH
 MP-50:R13:CHNHCO(CHCH=CH(CHCH;R14:CHOCH;R15:CHOH;R16:CHNHCOCH=CH
Figure JPOXMLDOC01-appb-C000035
 MP-51:R13、R14、R15、R16:CHOH
 MP-52:R13、R14、R15、R16:CHOCH
 MP-53:R13、R14、R15、R16:CHO-i-C
 MP-54:R13、R14、R15、R16:CHO-n-C
 MP-55:R13、R14、R15、R16:CHNHCOCH=CH
 MP-56:R13、R14、R15、R16:CHNHCO(CHCH=CH(CHCH
 MP-57:R13、R14、R15:CHOH;R16:CHOCH
 MP-58:R13、R14、R16:CHOH;R15:CHOCH
 MP-59:R13、R14:CHOH;R15、R16:CHOCH
 MP-60:R13、R16:CHOH;R14、R15:CHOCH
 MP-61:R13:CHOH;R14、R15、R16:CHOCH
 MP-62:R13、R14、R16:CHOCH;R15:CHOH
 MP-63:R13、R16:CHOCH;R14、R15:CHOH
 MP-64:R13、R14、R15:CHOH;R16:CHO-i-C
 MP-65:R13、R14、R16:CHOH;R15:CHO-i-C
 MP-66:R13、R14:CHOH;R15、R16:CHO-i-C
 MP-67:R13、R16:CHOH;R14、R15:CHO-i-C
 MP-68:R13:CHOH;R14、R15、R16:CHO-i-C
 MP-69:R13、R14、R16:CHO-i-C;R15:CHOH
 MP-70:R13、R16:CHO-i-C;R14、R15:CHOH
 MP-71:R13、R14、R15:CHOH;R16:CHO-n-C
 MP-72:R13、R14、R16:CHOH;R15:CHO-n-C
 MP-73:R13、R14:CHOH;R15、R16:CHO-n-C
 MP-74:R13、R16:CHOH;R14、R15:CHO-n-C
 MP-75:R13:CHOH;R14、R15、R16:CHO-n-C
 MP-76:R13、R14、R16:CHO-n-C;R15:CHOH
 MP-77:R13、R16:CHO-n-C;R14、R15:CHOH
 MP-78:R13、R14:CHOH;R15:CHOCH;R16:CHO-n-C
 MP-79:R13、R14:CHOH;R15:CHO-n-C;R16:CHOCH
 MP-80:R13、R16:CHOH;R14:CHOCH;R15:CHO-n-C
 MP-81:R13:CHOH;R14、R15:CHOCH;R16:CHO-n-C
 MP-82:R13:CHOH;R14、R16:CHOCH;R15:CHO-n-C
 MP-83:R13:CHOH;R14:CHOCH;R15、R16:CHO-n-C
 MP-84:R13:CHOH;R14、R15:CHO-n-C;R16:CHOCH
 MP-85:R13、R14:CHOCH;R15:CHOH;R16:CHO-n-C
 MP-86:R13、R16:CHOCH;R14:CHOH;R15:CHO-n-C
 MP-87:R13:CHOCH;R14、R15:CHOH;R16:CHO-n-C
 MP-88:R13、R16:CHO-n-C;R14:CHOCH;R15:CHOH
 MP-89:R13:CHOH;R14:CHOCH;R15:CHO-n-C;R16:CHNHCOCH=CH
 MP-90:R13:CHOH;R14:CHOCH;R15:CHNHCOCH=CH;R16:CHO-n-C
 MP-91:R13:CHOH;R14:CHO-n-C;R15:CHNHCOCH=CH;R16:CHOCH
 MP-92:R13:CHOCH;R14:CHOH;R15:CHO-n-C;R16:CHNHCOCH=CH
 MP-93:R13:CHOCH;R14:CHOH;R15:CHNHCOCH=CH;R16:CHO-n-C
 MP-94:R13:CHO-n-C;R14:CHOCH;R15:CHOH;R16:CHNHCOCH=CH
 MP-95:R13:CHOH;R14:CHOCH;R15:CHNHCO(CHCH=CH(CHCH;R16:CHNHCOCH=CH
 MP-96:R13:CHOH;R14:CHOCH;R15:CHNHCOCH=CH;R16:CHNHCO(CHCH=CH(CHCH
 MP-97:R13:CHOH;R14:CHNHCO(CHCH=CH(CHCH;R15:CHNHCOCH=CH;R16:CHOCH
 MP-98:R13:CHOCH;R14:CHOH;R15:CHNHCO(CHCH=CH(CHCH;R16:CHNHCOCH=CH
 MP-99:R13:CHOCH;R14:CHOH;R15:CHNHCOCH=CH;R16:CHNHCO(CHCH=CH(CHCH
 MP-100:R13:CHNHCO(CHCH=CH(CHCH;R14:CHOCH;R15:CHOH;R16:CHNHCOCH=CH
Figure JPOXMLDOC01-appb-C000036
 MP-101:R13、R14、R15、R16:CHOH
 MP-102:R13、R14、R15、R16:CHOCH
 MP-103:R13、R14、R15、R16:CHO-i-C
 MP-104:R13、R14、R15、R16:CHO-n-C
 MP-105:R13、R14、R15、R16:CHNHCOCH=CH
 MP-106:R13、R14、R15、R16:CHNHCO(CHCH=CH(CHCH
 MP-107:R13、R14、R15:CHOH;R16:CHOCH
 MP-108:R13、R14、R16:CHOH;R15:CHOCH
 MP-109:R13、R14:CHOH;R15、R16:CHOCH
 MP-110:R13、R16:CHOH;R14、R15:CHOCH
 MP-111:R13:CHOH;R14、R15、R16:CHOCH
 MP-112:R13、R14、R16:CHOCH;R15:CHOH
 MP-113:R13、R16:CHOCH;R14、R15:CHOH
 MP-114:R13、R14、R15:CHOH;R16:CHO-i-C
 MP-115:R13、R14、R16:CHOH;R15:CHO-i-C
 MP-116:R13、R14:CHOH;R15、R16:CHO-i-C
 MP-117:R13、R16:CHOH;R14、R15:CHO-i-C
 MP-118:R13:CHOH;R14、R15、R16:CHO-i-C
 MP-119:R13、R14、R16:CHO-i-C;R15:CHOH
 MP-120:R13、R16:CHO-i-C;R14、R15:CHOH
 MP-121:R13、R14、R15:CHOH;R16:CHO-n-C
 MP-122:R13、R14、R16:CHOH;R15:CHO-n-C
 MP-123:R13、R14:CHOH;R15、R16:CHO-n-C
 MP-124:R13、R16:CHOH;R14、R15:CHO-n-C
 MP-125:R13:CHOH;R14、R15、R16:CHO-n-C
 MP-126:R13、R14、R16:CHO-n-C;R15:CHOH
 MP-127:R13、R16:CHO-n-C;R14、R15:CHOH
 MP-128:R13、R14:CHOH;R15:CHOCH;R16:CHO-n-C
 MP-129:R13、R14:CHOH;R15:CHO-n-C;R16:CHOCH
 MP-130:R13、R16:CHOH;R14:CHOCH;R15:CHO-n-C
 MP-131:R13:CHOH;R14、R15:CHOCH;R16:CHO-n-C
 MP-132:R13:CHOH;R14、R16:CHOCH;R15:CHO-n-C
 MP-133:R13:CHOH;R14:CHOCH;R15、R16:CHO-n-C
 MP-134:R13:CHOH;R14、R15:CHO-n-C;R16:CHOCH
 MP-135:R13、R14:CHOCH;R15:CHOH;R16:CHO-n-C
 MP-136:R13、R16:CHOCH;R14:CHOH;R15:CHO-n-C
 MP-137:R13:CHOCH;R14、R15:CHOH;R16:CHO-n-C
 MP-138:R13、R16:CHO-n-C;R14:CHOCH;R15:CHOH
 MP-139:R13:CHOH;R14:CHOCH;R15:CHO-n-C;R16:CHNHCOCH=CH
 MP-140:R13:CHOH;R14:CHOCH;R15:CHNHCOCH=CH;R16:CHO-n-C
 MP-141:R13:CHOH;R14:CHO-n-C;R15:CHNHCOCH=CH;R16:CHOCH
 MP-142:R13:CHOCH;R14:CHOH;R15:CHO-n-C;R16:CHNHCOCH=CH
 MP-143:R13:CHOCH;R14:CHOH;R15:CHNHCOCH=CH;R16:CHO-n-C
 MP-144:R13:CHO-n-C;R14:CHOCH;R15:CHOH;R16:CHNHCOCH=CH
 MP-145:R13:CHOH;R14:CHOCH;R15:CHNHCO(CHCH=CH(CHCH;R16:CHNHCOCH=CH
 MP-146:R13:CHOH;R14:CHOCH;R15:CHNHCOCH=CH;R16:CHNHCO(CHCH=CH(CHCH
 MP-147:R13:CHOH;R14:CHNHCO(CHCH=CH(CHCH;R15:CHNHCOCH=CH;R16:CHOCH
 MP-148:R13:CHOCH;R14:CHOH;R15:CHNHCO(CHCH=CH(CHCH;R16:CHNHCOCH=CH
 MP-149:R13:CHOCH;R14:CHOH;R15:CHNHCOCH=CH;R16:CHNHCO(CHCH=CH(CHCH
 MP-150:R13:CHNHCO(CHCH=CH(CHCH;R14:CHOCH;R15:CHOH;R16:CHNHCOCH=CH
Figure JPOXMLDOC01-appb-C000037
 MP-151:R13、R14、R15、R16:CHOH
 MP-152:R13、R14、R15、R16:CHOCH
 MP-153:R13、R14、R15、R16:CHO-i-C
 MP-154:R13、R14、R15、R16:CHO-n-C
 MP-155:R13、R14、R15、R16:CHNHCOCH=CH
 MP-156:R13、R14、R15、R16:CHNHCO(CHCH=CH(CHCH
 MP-157:R13、R14、R15:CHOH;R16:CHOCH
 MP-158:R13、R14、R16:CHOH;R15:CHOCH
 MP-159:R13、R14:CHOH;R15、R16:CHOCH
 MP-160:R13、R16:CHOH;R14、R15:CHOCH
 MP-161:R13:CHOH;R14、R15、R16:CHOCH
 MP-162:R13、R14、R16:CHOCH;R15:CHOH
 MP-163:R13、R16:CHOCH;R14、R15:CHOH
 MP-164:R13、R14、R15:CHOH;R16:CHO-i-C
 MP-165:R13、R14、R16:CHOH;R15:CHO-i-C
 MP-166:R13、R14:CHOH;R15、R16:CHO-i-C
 MP-167:R13、R16:CHOH;R14、R15:CHO-i-C
 MP-168:R13:CHOH;R14、R15、R16:CHO-i-C
 MP-169:R13、R14、R16:CHO-i-C;R15:CHOH
 MP-170:R13、R16:CHO-i-C;R14、R15:CHOH
 MP-171:R13、R14、R15:CHOH;R16:CHO-n-C
 MP-172:R13、R14、R16:CHOH;R15:CHO-n-C
 MP-173:R13、R14:CHOH;R15、R16:CHO-n-C
 MP-174:R13、R16:CHOH;R14、R15:CHO-n-C
 MP-175:R13:CHOH;R14、R15、R16:CHO-n-C
 MP-176:R13、R14、R16:CHO-n-C;R15:CHOH
 MP-177:R13、R16:CHO-n-C;R14、R15:CHOH
 MP-178:R13、R14:CHOH;R15:CHOCH;R16:CHO-n-C
 MP-179:R13、R14:CHOH;R15:CHO-n-C;R16:CHOCH
 MP-180:R13、R16:CHOH;R14:CHOCH;R15:CHO-n-C
 MP-181:R13:CHOH;R14、R15:CHOCH;R16:CHO-n-C
 MP-182:R13:CHOH;R14、R16:CHOCH;R15:CHO-n-C
 MP-183:R13:CHOH;R14:CHOCH;R15、R16:CHO-n-C
 MP-184:R13:CHOH;R14、R15:CHO-n-C;R16:CHOCH
 MP-185:R13、R14:CHOCH;R15:CHOH;R16:CHO-n-C
 MP-186:R13、R16:CHOCH;R14:CHOH;R15:CHO-n-C
 MP-187:R13:CHOCH;R14、R15:CHOH;R16:CHO-n-C
 MP-188:R13、R16:CHO-n-C;R14:CHOCH;R15:CHOH
 MP-189:R13:CHOH;R14:CHOCH;R15:CHO-n-C;R16:CHNHCOCH=CH
 MP-190:R13:CHOH;R14:CHOCH;R15:CHNHCOCH=CH;R16:CHO-n-C
 MP-191:R13:CHOH;R14:CHO-n-C;R15:CHNHCOCH=CH;R16:CHOCH
 MP-192:R13:CHOCH;R14:CHOH;R15:CHO-n-C;R16:CHNHCOCH=CH
 MP-193:R13:CHOCH;R14:CHOH;R15:CHNHCOCH=CH;R16:CHO-n-C
 MP-194:R13:CHO-n-C;R14:CHOCH;R15:CHOH;R16:CHNHCOCH=CH
 MP-195:R13:CHOH;R14:CHOCH;R15:CHNHCO(CHCH=CH(CHCH;R16:CHNHCOCH=CH
 MP-196:R13:CHOH;R14:CHOCH;R15:CHNHCOCH=CH;R16:CHNHCO(CHCH=CH(CHCH
 MP-197:R13:CHOH;R14:CHNHCO(CHCH=CH(CHCH;R15:CHNHCOCH=CH;R16:CHOCH
 MP-198:R13:CHOCH;R14:CHOH;R15:CHNHCO(CHCH=CH(CHCH;R16:CHNHCOCH=CH
 MP-199:R13:CHOCH;R14:CHOH;R15:CHNHCOCH=CH;R16:CHNHCO(CHCH=CH(CHCH
 MP-200:R13:CHNHCO(CHCH=CH(CHCH;R14:CHOCH;R15:CHOH;R16:CHNHCOCH=CH
 本発明においては、上記繰り返し単位を二種類以上組み合わせたコポリマーを用いてもよい。二種類以上のホモポリマー又はコポリマーを併用してもよい。
 また、二種類以上の1,3,5-トリアジン環を有する化合物を併用してもよい。二種類以上の円盤状化合物(例えば、1,3,5-トリアジン環を有する化合物とポルフィリン骨格を有する化合物)を併用してもよい。
 本発明では、安息香酸フェニルエステル化合物の少なくとも一種をリターデーション調整剤として用いることが好ましく、中でも下記一般式(6)で示される安息香酸フェニルエステル化合物をセルロース樹脂に添加することが好ましい。
Figure JPOXMLDOC01-appb-C000038
(式中、R、R、R、R、R、R、R、R及びR10は、それぞれ独立に、水素原子又は置換基を表し、R、R、R、R及びRのうち少なくとも1つは電子供与性基を表す。Rは、水素原子、炭素数1~4のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、炭素数6~12のアリール基、炭素数1~12のアルコキシ基、炭素数6~12のアリールオキシ基、炭素数2~12のアルコキシカルボニル基、炭素数2~12のアシルアミノ基、シアノ基又はハロゲン原子を表す。)
 一般式(6)の式中、R、R、R、R、R、R、R、R及びR10は、それぞれ独立に、水素原子、又は置換基を表し、置換基は後述の置換基Tが適用できる。
 R、R、R、R及びRのうち少なくとも1つは電子供与性基を表す。好ましくはR、R又はRのうちの1つが電子供与性基であり、Rが電子供与性基であることがより好ましい。
 電子供与性基とは、Hammetのσp値がO以下のものを表し、Chem.Rev.,91,165(1991)記載のHammetのσp値がO以下のものが好ましく適用でき、より好ましくは、-0.85~0のものが用いられる。例えば、アルキル基、アルコキシ基、アミノ基、ヒドロキシ基(水酸基)などが挙げられる。
 電子供与性基として好ましくは、アルキル基、アルコキシ基であり、より好ましくはアルコキシ基(好ましくは炭素数1~12、より好ましくは炭素数1~8、更に好ましくは炭素数1~6特に好ましくは炭素数1~4である)である。
 Rとして、好ましくは、水素原子又は電子供与性基であり、より好ましくはアルキル基、アルコキシ基、アミノ基、ヒドロキシ基(水酸基)であり、更に好ましくは、炭素数1~4のアルキル基、炭素数1~12のアルコキシ基であり、特に好ましくはアルコキシ基(好ましくは炭素数1~12、より好ましくは炭素数1~8、更に好ましくは炭素数1~6、特に好ましくは炭素数1~4)であり、最も好ましくはメトキシ基である。
 Rとして、好ましくは、水素原子、アルキル基、アルコキシ基、アミノ基、ヒドロキシ基(水酸基)であり、より好ましくは、水素原子、アルキル基、アルコキシ基であり、更に好ましくは水素原子、アルキル基(好ましくは炭素数1~4、より好ましくはメチル基である。)、アルコキシ基(好ましくは炭素数1~12、より好ましくは炭素数1~8、更に好ましくは炭素数1~6、特に好ましくは炭素数1~4)である。特に好ましくは水素原子、メチル基、メトキシ基である。
 Rとして、好ましくは、水素原子又は電子供与性基であり、より好ましくは水素原子、アルキル基、アルコキシ基、アミノ基、ヒドロキシ基(水酸基)であり、更に好ましくは、アルキル基、アルコキシ基であり、特に好ましくはアルコキシ基(好ましくは炭素数1~12、より好ましくは炭素数1~8、更に好ましくは炭素数1~6、特に好ましくは炭素数1~4)である。最も好ましくはn-プロポキシ基、エトキシ基、メトキシ基である。
 Rとして、好ましくは、水素原子又は電子供与性基であり、より好ましくは水素原子、アルキル基、アルコキシ基、アミノ基、ヒドロキシ基(水酸基)であり、更に好ましくは、水素原子、炭素数1~4のアルキル基、炭素数1~12のアルコキシ基(好ましくは炭素数1~12、より好ましくは炭素数1~8、更に好ましくは炭素数1~6、特に好ましくは炭素数1~4)であり、特に好ましくは水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基であり、最も好ましくは水素原子、メチル基、メトキシ基である。
 Rとして、好ましくは、水素原子、アルキル基、アルコキシ基、アミノ基、ヒドロキシ基(水酸基)であり、より好ましくは、水素原子、アルキル基、アルコキシ基であり、更に好ましくは水素原子、アルキル基(好ましくは炭素数1~4、より好ましくはメチル基)、アルコキシ基(好ましくは炭素数1~12、より好ましくは炭素数1~8、更に好ましくは炭素数1~6特に好ましくは炭素数1~4)である。特に好ましくは水素原子、メチル基、メトキシ基である。
 R、R、R及びR10として、好ましくは水素原子、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、ハロゲン原子であり、より好ましくは、水素原子、ハロゲン原子であり、更に好ましくは水素原子である。
 Rは、水素原子、炭素数1~4のアルキル基、炭素数2~6のアルキニル基、炭素数6~12のアリール基、炭素数1~12のアルコキシ基、炭素数6~12のアリールオキシ基、炭素数2~12のアルコキシカルボニル基、炭素数2~12のアシルアミノ基、シアノ基又はハロゲン原子を表し、可能な場合には置換基を有してもよく、置換基としては後述の置換基Tが適用できる。また、置換基が更に置換してもよい。
 Rとして、好ましくは炭素数1~4のアルキル基、炭素数2~6のアルキニル基、炭素数6~12のアリール基、炭素数1~12のアルコキシ基、炭素数2~12のアルコキシカルボニル基、シアノ基であり、より好ましくは炭素数6~12のアリール基、炭素数1~12のアルコキシ基、炭素数2~12のアルコキシカルボニル基、シアノ基であり、更に好ましくは、炭素数1~6のアルコキシ基、炭素数6~12のアリール基、炭素数2~6のアルコキシカルボニル基、シアノ基であり、特に好ましくは、炭素数1~4のアルコキシ基、フェニル基、p-シアノフェニル基、p-メトキシフェニル基、炭素数2~4のアルコキシカルボニル基、シアノ基である。
 一般式(6)で表される化合物のうち、より好ましい化合物は下記一般式(6-A)で表される化合物ある。
Figure JPOXMLDOC01-appb-C000039
 一般式(6-A)中、R、R、R、R、R、R、R、R及びR10は、それぞれ一般式(6)におけるそれらと同義であり、また好ましい範囲も同様である。
 R11は、炭素数1~12のアルキル基を表す。R11で表されるアルキル基は直鎖でも分岐があってもよく、また更に置換基を有してもよいが、好ましくは炭素数1~12のアルキル基、より好ましくは炭素数1~8アルキル基、更に好ましくは炭素数1~6アルキル基、特に好ましくは炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、tert-ブチル基などが挙げられる)を表す。
 一般式(6)で表される化合物のうち、更に好ましい化合物は下記一般式(6-B)で表される化合物ある。
Figure JPOXMLDOC01-appb-C000040
 一般式(6-B)中、R、R、R、R、R、R、R、R10は一般式(6)におけるそれらと同義であり、また好ましい範囲も同様である。
 R11は、一般式(6-A)におけるそれと同義であり、また好ましい範囲も同様である。
 Xは、炭素数1~4のアルキル基、炭素数2~6のアルキニル基、炭素数6~12のアリール基、炭素数1~12のアルコキシ基、炭素数6~12のアリールオキシ基、炭素数2~12のアルコキシカルボニル基、炭素数2~12のアシルアミノ基、シアノ基又はハロゲン原子を表す。
 R、R、R、Rがすべて水素原子の場合には、Xとして好ましくはアルキル基、アルキニル基、アリール基、アルコキシ基、アリールオキシ基であり、より好ましくは、アリール基、アルコキシ基、アリールオキシ基であり、更に好ましくはアルコキシ基(好ましくは炭素数1~12、より好ましくは炭素数1~8、更に好ましくは炭素数1~6、特に好ましくは炭素数1~4である。)であり、特に好ましくは、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基である。
 R、R、R、Rのうち少なくとも1つが置換基の場合には、Xとして好ましくはアルキニル基、アリール基、アルコキシカルボニル基、シアノ基、であり、より好ましくはアリール基(好ましくは炭素数6~12)、シアノ基、アルコキシカルボニル基(好ましくは炭素数2~12)であり、更に好ましくはアリール基(好ましくは炭素数6~12のアリール基であり、より好ましくはフェニル基、p-シアノフェニル基、p-メトキシフェニルである)、アルコキシカルボニル基(好ましくは炭素2~12、より好ましくは炭素数2~6、更に好ましくは炭素数2~4、特に好ましくはメトキシカルボニル、エトキシカルボニル、n-プロポキシカルボニルである)、シアノ基であり、特に好ましくは、フェニル基、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、シアノ基である。
 一般式(6)で表される化合物のうち、更に好ましい化合物は下記一般式(6-C)で表される化合物ある。
Figure JPOXMLDOC01-appb-C000041
 一般式(6-C)中、R、R、R、R、R11及びXは、一般式(6-B)におけるそれらと同義であり、また好ましい範囲も同様である。
 一般式(6)で表される化合物の中で、特に好ましい化合物は下記一般式(6-D)で表される化合物である。
Figure JPOXMLDOC01-appb-C000042
 一般式(6-D)中、R、R及びRは、一般式(6-C)におけるそれらと同義であり、また好ましい範囲も同様である。R21、R22は、それぞれ独立に、炭素数1~4のアルキル基を表す。X1は、炭素数6~12のアリール基、炭素数2~12のアルコキシカルボニル基、又はシアノ基を表す。
 R21は、炭素数1~4のアルキル基を表し、好ましくは炭素数1~3のアルキル基であり、より好ましくはエチル基、メチル基である。
 R22は、炭素数1~4のアルキル基を表し、好ましくは炭素数1~3のアルキル基であり、より好ましくはエチル基、メチル基であり、更に好ましくはメチル基である。
 Xは、炭素数6~12のアリール基、炭素2~12アルコキシカルボニル基、又はシアノ基であり、好ましくは炭素数6~10のアリール基、炭素数2~6アルコキシカルボニル基、シアノ基であり、より好ましくはフェニル基、p-シアノフェニル基、p-メトキシフェニル基、メトキシカルボニル、エトキシカルボニル、n-プロポキシカルボニル、シアノ基であり、更に好ましくは、フェニル基、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、シアノ基である。
 一般式(6)で表される化合物のうち、最も好ましい化合物は下記一般式(6-E)で表される化合物ある。
Figure JPOXMLDOC01-appb-C000043
 一般式(6-E)中、R、R及びRは一般式(6-D)におけるそれらと同義であり、また好ましい範囲も同様である。但し、いずれか1つは-OR13で表される基である。ここで、R13は炭素数1~4のアルキル基である。R21、R22、Xは一般式(6-D)におけるそれらと同義であり、また好ましい範囲も同様である。
 好ましくは、R及びRの少なくともいずれかが-OR13で表される基であり、より好ましくはRが-OR13で表される基であることである。
 R13は炭素数1~4のアルキル基を表し、好ましくは炭素数1~3のアルキル基であり、より好ましくはエチル基、メチル基であり、更に好ましくはメチル基である。
 以下において、前述の置換基Tについて説明する。
 置換基Tとしては、例えば、アルキル基(好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8であり、例えばメチル、エチル、iso-プロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8であり、例えば、ビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニル、p-メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えばフェニルオキシ、2-ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは炭素数2~12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましくは炭素数7~10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは炭素数2~10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは炭素数2~10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは炭素数2~12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましくは炭素数7~12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0~20、より好ましくは炭素数0~16、特に好ましくは炭素数0~12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1~30、より好ましくは1~12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3~40、より好ましくは炭素数3~30、特に好ましくは、炭素数3~24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。
 また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。
 以下に一般式(6)で表される化合物に関して具体例をあげて詳細に説明するが、本発明は以下の具体例によって何ら限定されることはない。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
 本発明に用いられる一般式(6)で表される化合物は、置換安息香酸とフェノール誘導体の一般的なエステル反応によって合成でき、エステル結合形成反応であればどのような反応を用いてもよい。例えば、置換安息香酸を酸ハロゲン化物に官能基変換した後、フェノールと縮合する方法、縮合剤或いは触媒を用いて置換安息香酸とフェノール誘導体を脱水縮合する方法など挙げられる。
 製造プロセス等を考慮すると置換安息香酸を酸ハロゲン化物に官能基変換した後、フェノールと縮合する方法が好ましい。
 反応溶媒としては、炭化水素系溶媒(好ましくはトルエン、キシレンが挙げられる。)、エーテル系溶媒(好ましくはジメチルエーテル、テトラヒドロフラン、ジオキサンなどが挙げられる。)、ケトン系溶媒、エステル系溶媒、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミドなどを用いることができる。これらの溶媒は単独でも数種を混合して用いてもよく、反応溶媒として好ましくはトルエン、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミドである。
 反応温度は、好ましくは0~150℃、より好ましくは0~100℃、更に好ましくは0~90℃であり、特に好ましくは20℃~90℃である。
 本反応には塩基を用いないのが好ましく、塩基を用いる場合には有機塩基、無機塩基のどちらでもよく、好ましくは有機塩基であり、ピリジン、3級アルキルアミン(好ましくはトリエチルアミン、エチルジイソプルピルアミンなどが挙げられる)である。
 更に、本発明に係るλ/4板は、溶液の紫外線吸収スペクトルの最大吸収波長(λmax)が250nmより短波長である棒状化合物をリターデーション調整剤として含有することが好ましい。
 リターデーション調整剤の機能の観点では、棒状化合物は、少なくとも一つの芳香族環を有することが好ましく、少なくとも二つの芳香族環を有することが更に好ましい。棒状化合物は、直線的な分子構造を有することが好ましい。直線的な分子構造とは、熱力学的に最も安定な構造において棒状化合物の分子構造が直線的であることを意味する。熱力学的に最も安定な構造は、結晶構造解析又は分子軌道計算によって求めることができる。例えば、分子軌道計算ソフト(例、WinMOPAC2000、富士通(株)製)を用いて分子軌道計算を行い、化合物の生成熱が最も小さくなるような分子の構造を求めることができる。分子構造が直線的であるとは、上記のように計算して求められる熱力学的に最も安定な構造において、分子構造の角度が140度以上であることを意味する。棒状化合物は、液晶性を示すことが好ましい。棒状化合物は、加熱により液晶性を示す(サーモトロピック液晶性を有する)ことが更に好ましい。液晶相は、ネマティック相又はスメクティック相が好ましい。
 棒状化合物としては、下記一般式(7)で表されるトランス-1,4-シクロヘキサンジカルボン酸エステル化合物が好ましい。
 一般式(7):Ar-L-Ar
 式(7)において、Ar及びArは、それぞれ独立に、芳香族基である。本明細書において、芳香族基は、アリール基(芳香族性炭化水素基)、置換アリール基、芳香族性ヘテロ環基及び置換芳香族性ヘテロ環基を含む。アリール基及び置換アリール基の方が、芳香族性ヘテロ環基及び置換芳香族性ヘテロ環基よりも好ましい。芳香族性ヘテロ環基のヘテロ環は、一般には不飽和である。芳香族性ヘテロ環は、5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることが更に好ましい。芳香族性ヘテロ環は一般に最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子又は硫黄原子が好ましく、窒素原子又は硫黄原子が更に好ましい。芳香族性ヘテロ環の例には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、及び1,3,5-トリアジン環が含まれる。芳香族基の芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環及びピラジン環が好ましく、ベンゼン環が特に好ましい。
 置換アリール基及び置換芳香族性ヘテロ環基の置換基の例には、ハロゲン原子(F、Cl、Br、I)、ヒドロキシ、カルボキシ、シアノ、アミノ、アルキルアミノ基(例、メチルアミノ、エチルアミノ、ブチルアミノ、ジメチルアミノ)、ニトロ、スルホ、カルバモイル、アルキルカルバモイル基(例、N-メチルカルバモイル、N-エチルカルバモイル、N,N-ジメチルカルバモイル)、スルファモイル、アルキルスルファモイル基(例、N-メチルスルファモイル、N-エチルスルファモイル、N,N-ジメチルスルファモイル)、ウレイド、アルキルウレイド基(例、N-メチルウレイド、N,N-ジメチルウレイド、N,N,N′-トリメチルウレイド)、アルキル基(例、メチル、エチル、プロピル、ブチル、ペンチル、ヘプチル、オクチル、イソプロピル、s-ブチル、t-アミル、シクロヘキシル、シクロペンチル)、アルケニル基(例、ビニル、アリル、ヘキセニル)、アルキニル基(例、エチニル、ブチニル)、アシル基(例、ホルミル、アセチル、ブチリル、ヘキサノイル、ラウリル)、アシルオキシ基(例、アセトキシ、ブチリルオキシ、ヘキサノイルオキシ、ラウリルオキシ)、アルコキシ基(例、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘプチルオキシ、オクチルオキシ)、アリールオキシ基(例、フェノキシ)、アルコキシカルボニル基(例、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル、ペンチルオキシカルボニル、ヘプチルオキシカルボニル)、アリールオキシカルボニル基(例、フェノキシカルボニル)、アルコキシカルボニルアミノ基(例、ブトキシカルボニルアミノ、ヘキシルオキシカルボニルアミノ)、アルキルチオ基(例、メチルチオ、エチルチオ、プロピルチオ、ブチルチオ、ペンチルチオ、ヘプチルチオ、オクチルチオ)、アリールチオ基(例、フェニルチオ)、アルキルスルホニル基(例、メチルスルホニル、エチルスルホニル、プロピルスルホニル、ブチルスルホニル、ペンチルスルホニル、ヘプチルスルホニル、オクチルスルホニル)、アミド基(例、アセトアミド、ブチルアミド基、ヘキシルアミド、ラウリルアミド)及び非芳香族性複素環基(例、モルホリル、ピラジニル)が含まれる。
 置換アリール基及び置換芳香族性ヘテロ環基の置換基としては、ハロゲン原子、シアノ、カルボキシ、ヒドロキシ、アミノ、アルキル置換アミノ基、アシル基、アシルオキシ基、アミド基、アルコキシカルボニル基、アルコキシ基、アルキルチオ基及びアルキル基が好ましい。アルキルアミノ基、アルコキシカルボニル基、アルコキシ基及びアルキルチオ基のアルキル部分とアルキル基とは、更に置換基を有していてもよい。アルキル部分及びアルキル基の置換基の例には、ハロゲン原子、ヒドロキシ、カルボキシ、シアノ、アミノ、アルキルアミノ基、ニトロ、スルホ、カルバモイル、アルキルカルバモイル基、スルファモイル、アルキルスルファモイル基、ウレイド、アルキルウレイド基、アルケニル基、アルキニル基、アシル基、アシルオキシ基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アリールチオ基、アルキルスルホニル基、アミド基及び非芳香族性複素環基が含まれる。アルキル部分及びアルキル基の置換基としては、ハロゲン原子、ヒドロキシ、アミノ、アルキルアミノ基、アシル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニル基及びアルコキシ基が好ましい。
 式(7)において、Lは、アルキレン基、アルケニレン基、アルキニレン基、二価の飽和ヘテロ環基、-O-、-CO-及びそれらの組み合わせからなる群より選ばれる二価の連結基である。アルキレン基は、環状構造を有していてもよい。環状アルキレン基としては、シクロヘキシレンが好ましく、1,4-シクロヘキシレンが特に好ましい。鎖状アルキレン基としては、直鎖状アルキレン基の方が分岐を有するアルキレン基よりも好ましい。アルキレン基の炭素原子数は、1~20であることが好ましく、1~15であることがより好ましく、1~10であることが更に好ましく、1~8であることが更にまた好ましく、1~6であることが最も好ましい。
 アルケニレン基及びアルキニレン基は、環状構造よりも鎖状構造を有することが好ましく、分岐を有する鎖状構造よりも直鎖状構造を有することが更に好ましい。アルケニレン基及びアルキニレン基の炭素原子数は、2~10であることが好ましく、2~8であることがより好ましく、2~6であることが更に好ましく、2~4であることが更にまた好ましく、2(ビニレン又はエチニレン)であることが最も好ましい。二価の飽和ヘテロ環基は、3員~9員のヘテロ環を有することが好ましい。ヘテロ環のヘテロ原子は、酸素原子、窒素原子、ホウ素原子、硫黄原子、ケイ素原子、リン原子又はゲルマニウム原子が好ましい。飽和ヘテロ環の例には、ピペリジン環、ピペラジン環、モルホリン環、ピロリジン環、イミダゾリジン環、テトラヒドロフラン環、テトラヒドロピラン環、1,3-ジオキサン環、1,4-ジオキサン環、テトラヒドロチオフェン環、1,3-チアゾリジン環、1,3-オキサゾリジン環、1,3-ジオキソラン環、1,3-ジチオラン環及び1,3,2-ジオキサボロランが含まれる。特に好ましい二価の飽和ヘテロ環基は、ピペラジン-1,4-ジイレン、1,3-ジオキサン-2,5-ジイレン及び1,3,2-ジオキサボロラン-2,5-ジイレンである。
 組み合わせからなる二価の連結基の例を示す。
 L-1:-O-CO-アルキレン基-CO-O-
 L-2:-CO-O-アルキレン基-O-CO-
 L-3:-O-CO-アルケニレン基-CO-O-
 L-4:-CO-O-アルケニレン基-O-CO-
 L-5:-O-CO-アルキニレン基-CO-O-
 L-6:-CO-O-アルキニレン基-O-CO-
 L-7:-O-CO-二価の飽和ヘテロ環基-CO-O-
 L-8:-CO-O-二価の飽和ヘテロ環基-O-CO-
 一般式(7)の分子構造において、Lを挟んで、ArとArとが形成する角度は、140度以上であることが好ましい。棒状化合物としては、下記一般式(8)で表される化合物が更に好ましい。
 一般式(8):Ar-L-X-L-Ar
 式(8)において、Ar及びArは、それぞれ独立に、芳香族基である。芳香族基の定義及び例は、式(7)のAr及びArと同様である。
 式(8)において、L及びLは、それぞれ独立に、アルキレン基、-O-、-CO-及びそれらの組み合わせからなる群より選ばれる二価の連結基である。アルキレン基は、環状構造よりも鎖状構造を有することが好ましく、分岐を有する鎖状構造よりも直鎖状構造を有することが更に好ましい。アルキレン基の炭素原子数は、1~10であることが好ましく、1~8であることがより好ましく、1~6であることが更に好ましく、1~4であることが更にまた好ましく、1又は2(メチレン又はエチレン)であることが最も好ましい。L及びLは、-O-CO-又は-CO-O-であることが特に好ましい。
 式(8)において、Xは、1,4-シクロヘキシレン、ビニレン又はエチニレンである。以下に、式(7)で表される化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
 具体例(1)~(34)、(41)、(42)、(46)、(47)、(52)、(53)は、シクロヘキサン環の1位と4位とに二つの不斉炭素原子を有する。但し、具体例(1)、(4)~(34)、(41)、(42)、(46)、(47)、(52)、(53)は、対称なメソ型の分子構造を有するため光学異性体(光学活性)はなく、幾何異性体(トランス型とシス型)のみ存在する。具体例(1)のトランス型(1-trans)とシス型(1-cis)とを、以下に示す。
Figure JPOXMLDOC01-appb-C000055
 前述したように、棒状化合物は直線的な分子構造を有することが好ましい。そのため、トランス型の方がシス型よりも好ましい。具体例(2)及び(3)は、幾何異性体に加えて光学異性体(合計4種の異性体)を有する。幾何異性体については、同様にトランス型の方がシス型よりも好ましい。光学異性体については、特に優劣はなく、D、L或いはラセミ体のいずれでもよい。具体例(43)~(45)では、中心のビニレン結合にトランス型とシス型とがある。上記と同様の理由で、トランス型の方がシス型よりも好ましい。
 溶液の紫外線吸収スペクトルにおいて最大吸収波長(λmax)が250nmより短波長である棒状化合物を、二種類以上併用してもよい。棒状化合物は、文献記載の方法を参照して合成できる。文献としては、Mol.Cryst.Liq.Cryst.,53巻、229頁(1979年)、同89巻、93頁(1982年)、同145巻、111頁(1987年)、同170巻、43頁(1989年)、J.Am.Chem.Soc.,113巻、1349頁(1991年)、同118巻、5346頁(1996年)、同92巻、1582頁(1970年)、J.Org.Chem.,40巻、420頁(1975年)、Tetrahedron、48巻16号、3437頁(1992年)を挙げることができる。
 (マット剤)
 本発明では、マット剤として微粒子をλ/4板中に含有させることができ、これによって、λ/4板が長尺フィルムの場合、搬送や巻き取りをしやすくすることができる。
 マット剤の粒径は10nm~0.1μmの1次粒子もしくは2次粒子であることが好ましい。1次粒子の針状比は1.1以下の略球状のマット剤が好ましく用いられる。
 微粒子としては、ケイ素を含むものが好ましく、特に二酸化珪素が好ましい。本発明に好ましい二酸化珪素の微粒子としては、例えば、日本アエロジル(株)製のアエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されているものを挙げることができ、アエロジル200V、R972、R972V、R974、R202、R812を好ましく用いることができる。ポリマーの微粒子の例として、シリコーン樹脂、弗素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(東芝シリコーン(株)製)を挙げることができる。
 二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/L以上であるものが好ましい。1次粒子の平均径が5~16nmがより好ましく、5~12nmが更に好ましい。1次粒子の平均径が小さい方がヘイズが低く好ましい。見かけ比重は90~200g/L以上が好ましく、100~200g/L以上がより好ましい。見かけ比重が大きい程、高濃度の微粒子分散液を作ることが可能になり、ヘイズ、凝集物が発生せず好ましい。
 本発明におけるマット剤の添加量は、λ/4板1m当たり0.01~1.0gが好ましく、0.03~0.3gがより好ましく、0.08~0.16gが更に好ましい。
 (その他の添加剤)
 この他、カオリン、タルク、ケイソウ土、石英、炭酸カルシウム、硫酸バリウム、酸化チタン、アルミナ等の無機微粒子、カルシウム、マグネシウム等のアルカリ土類金属の塩等の熱安定剤を加えてもよい。更に界面活性剤、剥離促進剤、帯電防止剤、難燃剤、滑剤、油剤等も加えてもよい。
 (λ/4板の製造)
 本発明に係るλ/4板は、溶液流延法、溶融流延法のいずれの方法で製造されてもよいが、溶液流延法により製造することが好ましい。
 本発明に係るλ/4板の製造は、セルロースアセテート及び前記可塑剤などの添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状若しくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸する工程、更に乾燥する工程、必要であれば得られたフィルムを更に熱処理する工程、冷却後巻き取る工程により行われる。本発明に係るλ/4板は固形分中に好ましくはセルロースアセテートを60~95質量%含有するものである。
 ドープを調製する工程について述べる。ドープ中のセルロースアセテートの濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減出来て好ましいが、セルロースアセテートの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、更に好ましくは、15~25質量%である。
 本発明に係るドープで用いられる溶剤は、単独で用いても二種以上を併用してもよいが、セルロースアセテートの良溶剤と貧溶剤を混合して使用することが生産効率の点で好ましく、良溶剤が多い方がセルロースアセテートの溶解性の点で好ましい。良溶剤と貧溶剤の混合比率の好ましい範囲は、良溶剤が70~98質量%であり、貧溶剤が2~30質量%である。良溶剤、貧溶剤とは、使用するセルロースアセテートを単独で溶解するものを良溶剤、単独で膨潤するか又は溶解しないものを貧溶剤と定義している。そのため、セルロースアセテートのアセチル基置換度によっては、良溶剤、貧溶剤が変わり、例えばアセトンを溶剤として用いる時には、セルロースエステルの酢酸エステル(アセチル基置換度2.4)では良溶剤になり、セルロースの酢酸エステル(アセチル基置換度2.8)では貧溶剤となる。
 本発明に用いられる良溶剤は特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくはメチレンクロライド又は酢酸メチルが挙げられる。
 また、本発明に用いられる貧溶剤は特に限定されないが、例えば、メタノール、エタノール、n-ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中には水が0.01~2質量%含有していることが好ましい。
 上記記載のドープを調製する時の、セルロースアセテートの溶解方法としては、一般的な方法を用いることができる。加熱と加圧を組み合わせると常圧における沸点以上に加熱できる。溶剤の常圧での沸点以上でかつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら攪拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。また、セルロースアセテートを貧溶剤と混合して湿潤或いは膨潤させた後、更に良溶剤を添加して溶解する方法も好ましく用いられる。
 加圧は窒素ガス等の不活性気体を圧入する方法や、加熱によって溶剤の蒸気圧を上昇させる方法によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。
 溶剤を添加しての加熱温度は、高い方がセルロースアセテートの溶解性の観点から好ましいが、加熱温度が高過ぎると必要とされる圧力が大きくなり生産性が悪くなる。好ましい加熱温度は45~120℃であり、60~110℃がより好ましく、70℃~105℃が更に好ましい。また、圧力は設定温度で溶剤が沸騰しないように調整される。
 若しくは冷却溶解法も好ましく用いられ、これによって酢酸メチルなどの溶媒にセルロースアセテートを溶解させることができる。
 次に、このセルロースアセテート溶液を濾紙等の適当な濾過材を用いて濾過する。濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生しやすいという問題がある。このため絶対濾過精度0.008mm以下の濾材が好ましく、0.001~0.008mmの濾材がより好ましく、0.003~0.006mmの濾材が更に好ましい。
 濾材の材質は特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。濾過により、原料のセルロースアセテートに含まれていた不純物、特に輝点異物を除去、低減することが好ましい。
 輝点異物とは、二枚の偏光板をクロスニコル状態にして配置し、その間にセルロースエステルフィルムを置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm以下であることが好ましい。より好ましくは100個/cm以下であり、更に好ましくは50個/m以下であり、更に好ましくは0~10個/cm以下である。また、0.01mm以下の輝点も少ない方が好ましい。
 ドープの濾過は通常の方法で行うことができるが、溶剤の常圧での沸点以上で、かつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。好ましい温度は45~120℃であり、45~70℃がより好ましく、45~55℃であることが更に好ましい。
 濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることが更に好ましい。
 ここで、ドープの流延について説明する。
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1~4mとすることができる。流延工程の金属支持体の表面温度は-50℃~溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高過ぎるとウェブが発泡したり、平面性が劣化する場合がある。好ましい支持体温度としては0~100℃で適宜決定され、5~30℃が更に好ましい。或いは、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
 セルロースアセテートフィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%が好ましく、更に好ましくは20~40質量%又は60~130質量%であり、特に好ましくは、20~30質量%又は70~120質量%である。また、該金属支持体上の剥離位置における温度を-50~40℃とするのが好ましく、10~40℃がより好ましく、15~30℃とするのが最も好ましい。
 本発明においては、残留溶媒量は下記式で定義される。
 残留溶媒量(質量%)={(M-N)/N}×100
 なお、Mはウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
 また、セルロースアセテートフィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量が0.5質量%以下となるまで乾燥される。
 フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールをウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
 前記金属支持体から剥離する際に、剥離張力及びその後の搬送張力によってウェブは縦方向に延伸する為、本発明においては流延支持体からウェブを剥離する際は剥離及び搬送張力をできるだけ下げた状態で行うことが好ましい。具体的には、例えば50~170N/m以下にすることが効果的である。その際、20℃以下の冷風を当て、ウェブを急速に固定化することが好ましい。
 セルロースアセテートフィルムは、更に延伸処理により屈折率(面内の遅相軸方向の屈折率n、面内の遅相軸に垂直な方向の屈折率n及び厚さ方向の屈折率n)を調整することができる。本発明に係るλ/4板は、波長550nmで測定したRo(550)が110~170nmの範囲内でありRo(550)が120~160nmであることが好ましく、Ro(550)が130~150nmであることがさらに好ましい。
 本発明に係るλ/4板は、可視光の波長の範囲においてほぼ完全な円偏光を得るため、可視光の波長の範囲において概ね波長の1/4のリターデーションを有する位相差板(フィルム)であることが好ましい。
 「可視光の波長の範囲において概ね1/4のリターデーション」とは、波長400から700nmにおいて長波長ほどリターデーションが大きく、波長450nmで測定した下記式(i)で表されるリターデーション値であるRo(450)と波長550nmで測定したリターデーション値であるRo(550)の差Ro(550)-Ro(450)が2~34nmであることが好ましく、4~32nmであることがより好ましく、8~28nmであることが特に好ましい。本発明に係るλ/4板は、上記Ro(550)を達成するため、一軸延伸の延伸倍率を制御するか、或いはアンバランスな二軸延伸を実施して屈折率を調整すればよい。延伸倍率は、上記リターデーション値がλ/4となるように調整する。二軸延伸処理は、二方向に同時に延伸しても、逐次で延伸してもよい。
 因みに、本発明に係るλ/4板の、後述する式(ii)で表されるフィルム厚さ方向のリターデーション値Rtについては延伸倍率によって影響されるが、0~400nmの範囲にあることが好ましい。
 延伸はフィルム搬送ロールの周速差を利用して搬送方向に行うか、若しくは搬送方向と直交方向(幅手方向又はTD方向ともいう)にウェブの両端をクリップ等で把持するテンター方式で行うことが好ましく、更に左右把持手段によってウェブの把持長(把持開始から把持終了までの距離)を左右で独立に制御できるテンターを用いることも好ましい。
 また、本発明ではλ/4板又は偏光子のいずれかを、延伸工程でフィルム搬送方向に対して45°方向に延伸することも好ましい。
 これは、ロール状のポリマーフィルムからなるλ/4板の長手方向と面内の遅相軸との角度が実質的に45°であると、長手方向と透過軸とが実質的に平行であるロール状の偏光子とλ/4板とをロールtoロールで積層するだけで、ロール状の円偏光板を製造することができる。同様に、ロール状のポリマーフィルムからなる偏光子の長手方向と吸収軸との角度が実質的に45°であると、長手方向と透過軸とが実質的に平行であるロール状のλ/4板とをロールtoロールで積層するだけで、ロール状の円偏光板を製造することができる。
 例えば、長手方向と面内の遅相軸との角度が実質的に45°であるλ/4板は、ロール状のセルロースエステルフィルムを、長手方向に対して実質的に45°の方向に延伸処理することにより製造することができる。
 以下、45°の方向に延伸する方法を説明する。
 セルロースアセテートフィルムを長手方向に対して実質的に45°の方向に斜め延伸するためには、図4で示されるテンターを用いることが好ましい。図4は、テンターによる斜め延伸を示す模式図である。
 本発明に係る延伸フィルムの製造は、テンターを用いて行う。このテンターは、フィルムロール(繰出しロール)から繰り出されるフィルムを、オーブンによる加熱環境下で、その進行方向(フィルム幅方向の中点の移動方向)に対して斜め方向に拡幅する装置である。このテンターは、オーブンと、フィルムを搬送するための把持具が走行する左右で一対のレールと、該レール上を走行する多数の把持具とを備えている。フィルムロールから繰り出され、テンターの入口部に順次供給されるフィルムの両端を、把持具で把持し、オーブン内にフィルムを導き、テンターの出口部で把持具からフィルムを開放する。把持具から開放されたフィルムは巻芯に巻き取られる。一対のレールは、それぞれ無端状の連続軌道を有し、テンターの出口部でフィルムの把持を開放した把持具は、外側を走行して順次入口部に戻されるようになっている。
 なお、テンターのレール形状は、製造すべき延伸フィルムに与える配向角、延伸倍率等に応じて、左右で非対称な形状となっており、手動で又は自動で微調整できるようになっている。本発明においては、長尺の熱可塑性樹脂フィルムを延伸し、配向角θが延伸後の巻取り方向に対して、40°~80°の範囲内で、任意の角度に設定できるようになっている。本発明において、テンターの把持具は、前後の把持具と一定間隔を保って、一定速度で走行するようになっている。
 図4は、本発明に係る製造方法に用いるテンターのレールの軌道(レールパターン)を示している。熱可塑性樹脂フィルムの繰出し方向D1は、延伸後のフィルムの巻取り方向(MD方向)D2と異なっており、これにより、比較的大きな配向角をもつ延伸フィルムにおいても広幅で均一な光学特性を得ることが可能となっている。繰出し角度θiは、延伸前のフィルムの繰出し方向D1と延伸後のフィルムの巻取り方向D2とのなす角度である。本発明においては、上述のように40°~80°の配向角を持つフィルムを製造するため、繰出し角度θiは、10°<θi<60°、好ましくは15°<θi<50°で設定される。繰出し角度θiを前記範囲とすることにより、得られるフィルムの幅方向の光学特性のバラツキが良好となる(小さくなる。)。
 フィルムロール(繰出しロール)から繰出された熱可塑性樹脂フィルムは、テンター入口(符号aの位置)において、その両端(両側)を左右の把持具によって順次把持されて、把持具の走行に伴い走行される。テンター入口(符号aの位置)で、フィルム進行方向(繰り出し方向D1)に対して略垂直な方向に相対している左右の把持具CL,CRは、左右非対称なレール上を走行し、予熱ゾーン、延伸ゾーン、熱固定ゾーンを有するオーブンを通過する。ここで、略垂直とは、前述の向かい合う把持具CL,CR同士を結んだ直線とフィルム繰出し方向D1とがなす角度が、90±1°以内にあることを示す。
 予熱ゾーンとは、オーブン入口部において、両端を把持した把持具の間隔が一定の間隔を保ったまま走行する区間をさす。延伸ゾーンとは、両端を把持した把持具の間隔が開きだし、再び一定となるまでの区間をさす。また、冷却ゾーンとは、延伸ゾーンより後の把持具の間隔が再び一定となる期間において、ゾーン内の温度がフィルムを構成する熱可塑性樹脂のガラス転移温度Tg℃以下に設定される区間をさす。
 各ゾーンの温度は、熱可塑性樹脂のガラス転移温度Tgに対し、予熱ゾーンの温度はTg+5~Tg+20℃、延伸ゾーンの温度はTg~Tg+20℃、冷却ゾーンの温度はTg-30~Tg℃に設定することが好ましい。
 本発明に係る延伸工程における延伸倍率R(W/Wo)は、好ましくは1.3~3.0、より好ましくは1.5~2.8である。延伸倍率がこの範囲にあると幅方向厚さムラが小さくなるので好ましい。テンター延伸機の延伸ゾーンにおいて、幅方向で延伸温度に差を付けると幅方向厚さムラをさらに良好なレベルにすることが可能になる。なお、Woは延伸前のフィルムの幅、Wは延伸後のフィルムの幅を表す。
 ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行うことができるが、簡便さの点で、熱風で行うことが好ましい。
 ウェブの乾燥工程における乾燥温度は好ましくはフィルムのガラス転移点-5℃以下、100℃以上で10分以上60分以下の熱処理を行うことが効果的である。乾燥温度は100~200℃、更に好ましくは110~160℃で乾燥が行われる。
 所定の熱処理の後、巻き取り前にスリッターを設けて端部を切り落とすことが良好な巻姿を得るため好ましい。更に、幅手両端部にはナーリング加工をすることが好ましい。
 ナーリング加工は、加熱されたエンボスロールを押し当てることにより形成することができる。エンボスロールには細かな凹凸が形成されており、これを押し当てることでフィルムに凹凸を形成し、端部を嵩高くすることができる。
 本発明に係るλ/4板位の幅手両端部のナーリングの高さは4~20μm、幅5~20mmが好ましい。
 また、本発明においては、上記のナーリング加工は、フィルムの製膜工程において乾燥終了後、巻き取りの前に設けることが好ましい。
 また、共流延法によって多層構成としたλ/4板も好ましく用いることができる。λ/4板が多層構成の場合でも可塑剤を含有する層を有しており、それがコア層、スキン層、若しくはその両方であってもよい。
 本発明に係るλ/4板の表面の中心線平均粗さ(Ra)は0.001~1μmであることが好ましい。
 本発明に係るλ/4板は、その膜厚が20~200μmの範囲であることが好ましく、20~100μmであることがより好ましく、30~80μmであることが特に好ましい。一般にλ/4板の膜厚は厚い方が位相差を大きくし易いが、本発明ではλ/4板に偏光板保護フィルムの機能を持たせる為、偏光板全体の膜厚を低減する意味からも上記範囲が好ましい。
 透湿性は、JIS Z 0208(25℃、90%RH)に準じて測定した値として、200g/m・24時間以下であることが好ましく、更に好ましくは、10~180g/m・24時間以下であり、特に好ましくは、160g/m・24時間以下である。特には、膜厚30~80μmで透湿性が上記範囲内であることが好ましい。
 本発明に係る長尺のλ/4板は、具体的には、100~10000m程度の長さのものを示し、通常、ロール状で提供される形態のものである。また、本発明に係るλ/4板の幅は1m以上であることが好ましく、更に好ましくは1.4m以上であり、特に1.4~4mであることが好ましい。
 (ハードコート層)
 本発明に係るλ/4板上には、ハードコート層が設けられており、当該ハードコート層はクリアハードコート層又は防眩性ハードコート層のいずれかであることが好ましい。
 本発明に用いられるハードコート層は、少なくともλ/4板の一方の面に設けられる。本発明においては、前記ハードコート層上に、少なくとも低屈折率層を含む反射防止層が設けられることが好ましい。特に、車載カーナビゲーション用の場合では、より視認性を向上させる為に、防眩性ハードコート層の上に反射防止層が設けられることが好ましい。
 本発明に用いられるハードコート層が防眩性である場合は、表面に微細な凹凸形状を有するが、該微細凹凸形状は、ハードコート層に微粒子を含有させることで形成し、下記のような平均粒径0.01μm~4μmの微粒子をハードコート層中に含有させることで形成できる。また、後述するように、該防眩性ハードコート層上に設けられた反射防止層の最表面の表面粗さとして、JIS B 0601で規定される中心線平均粗さ(Ra)が0.08μm~0.5μmの範囲に調整されることが好ましい。
 クリアハードコート層の場合は、JIS B 0601で規定される中心線平均粗さ(Ra)が0.001~0.1μmのクリアハードコート層であり、Raが0.002~0.05μmであることが好ましい。中心線平均粗さ(Ra)は光干渉式の表面粗さ測定器で測定することが好ましく、例えばWYKO社製非接触表面微細形状計測装置WYKO NT-2000を用いて測定することができる。
 本発明に用いられる防眩性ハードコート層中に含有される粒子としては、例えば、無機又は有機の微粒子が用いられる。
 無機微粒子としては酸化ケイ素、酸化チタン、酸化アルミニウム、酸化錫、酸化亜鉛、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸カルシウム等を挙げることができる。
 また、有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂微粒子、アクリルスチレン系樹脂微粒子、ポリメチルメタクリレート樹脂微粒子、シリコーン系樹脂微粒子、ポリスチレン系樹脂微粒子、ポリカーボネート樹脂微粒子、ベンゾグアナミン系樹脂微粒子、メラミン系樹脂微粒子、ポリオレフィン系樹脂微粒子、ポリエステル系樹脂微粒子、ポリアミド系樹脂微粒子、ポリイミド系樹脂微粒子、又はポリ弗化エチレン系樹脂微粒子等を挙げることができる。
 本発明では特に、酸化ケイ素微粒子又はポリスチレン系樹脂微粒子であることが好ましい。
 上記記載の無機又は有機の微粒子は、防眩性ハードコート層の作製に用いられる樹脂等を含む塗布組成物に加えて用いることが好ましい。
 本発明に用いられる防眩性ハードコート層に防眩性を付与するためには、無機又は有機微粒子の含有量は、防眩性ハードコート層作製用の樹脂100質量部に対して、0.1質量部~30質量部が好ましく、更に好ましくは、0.1質量部~20質量部となるように配合することである。より好ましい防眩効果を付与するには、平均粒径0.1μm~1μmの微粒子を防眩性ハードコート層作製用の樹脂100質量部に対して1質量部~15質量部を用いるのが好ましい。又、異なる平均粒径の微粒子を二種以上用いることも好ましい。
 また、本発明に用いられる防眩性ハードコート層には帯電防止剤を含有させることも好ましく、帯電防止剤としては、Sn、Ti、In、Al、Zn、Si、Mg、Ba、Mo、W及びVからなる群から選択される少なくとも一つの元素を主成分として含有し、かつ、体積抵抗率が10Ω・cm以下であるような導電性材料が好ましい。
 前記帯電防止剤としては、上記の元素を有する金属酸化物、複合酸化物等が挙げられる。
 金属酸化物の例としては、ZnO、TiO、SnO、Al、In、SiO、MgO、BaO、MoO、V等、或いはこれらの複合酸化物が好ましく、特にZnO、In、TiO及びSnOが好ましい。異種原子を含む例としては、例えばZnOに対してはAl、In等の添加、TiOに対してはNb、Ta等の添加、またSnOに対しては、Sb、Nb、ハロゲン元素等の添加が効果的である。これら異種原子の添加量は0.01~25mol%の範囲が好ましいが、0.1~15mol%の範囲が特に好ましい。
 また、これらの導電性を有するこれら金属酸化物粉体の体積抵抗率は10Ω・cm以下、特に10Ω・cm以下である。
 十分な耐久性、耐衝撃性を付与する観点から、クリアハードコート層又は防眩性ハードコート層の膜厚は0.5μm~15μmの範囲が好ましく、更に好ましくは、1.0μm~7μmである。
 (活性エネルギー線硬化樹脂)
 本発明に用いられるハードコート層は、紫外線等活性エネルギー線照射により硬化する活性エネルギー線硬化樹脂を含有することが好ましい。
 活性エネルギー線硬化樹脂とは紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂である。活性エネルギー線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線や電子線以外の活性エネルギー線照射によって硬化する樹脂でもよい。
 紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等を挙げることができる。
 紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、又はプレポリマーを反応させて得られた生成物に更に2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2-ヒドロキシプロピルアクリレート等のヒドロキシ基(水酸基)を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59-151110号に記載の、ユニディック17-806(DIC(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。
 紫外線硬化型ポリエステルアクリレート系樹脂は、一般にポリエステル末端のヒドロキシ基(水酸基)やカルボキシ基に2-ヒドロキシエチルアクリレート、グリシジルアクリレート、アクリル酸のようなモノマーを反応させることによって容易に得ることができる(例えば、特開昭59-151112号)。
 紫外線硬化型エポキシアクリレート系樹脂は、エポキシ樹脂の末端のヒドロキシ基(水酸基)にアクリル酸、アクリル酸クロライド、グリシジルアクリレートのようなモノマーを反応させて得られる。
 紫外線硬化型ポリオールアクリレート系樹脂としては、エチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
 紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型エポキシ樹脂の例として、有用に用いられるエポキシ系活性エネルギー線反応性化合物を示す。
 (a)ビスフェノールAのグリシジルエーテル(この化合物はエピクロルヒドリンとビスフェノールAとの反応により、重合度の異なる混合物として得られる)
 (b)ビスフェノールA等のフェノール性OHを2個有する化合物に、エピクロルヒドリン、エチレンオキサイド及び/又はプロピレンオキサイドを反応させ末端にグリシジルエーテル基を有する化合物
 (c)4,4′-メチレンビスフェノールのグリシジルエーテル
 (d)ノボラック樹脂又はレゾール樹脂のフェノールフォルムアルデヒド樹脂のエポキシ化合物
 (e)脂環式エポキシドを有する化合物、例えば、ビス(3,4-エポキシシクロヘキシルメチル)オキザレート、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビス(3,4-エポキシ-6-シクロヘキシルメチル)アジペート、ビス(3,4-エポキシシクロヘキシルメチルピメレート)、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-1-メチルシクロヘキシルメチル-3′,4′-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-1-メチル-シクロヘキシルメチル-3′,4′-エポキシ-1′-メチルシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチル-シクロヘキシルメチル-3′,4′-エポキシ-6′-メチル-1′-シクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5′,5′-スピロ-3″,4″-エポキシ)シクロヘキサン-メタ-ジオキサン
 (f)2塩基酸のジグリシジルエーテル、例えば、ジグリシジルオキザレート、ジグリシジルアジペート、ジグリシジルテトラヒドロフタレート、ジグリシジルヘキサヒドロフタレート、ジグリシジルフタレート
 (g)グリコールのジグリシジルエーテル、例えば、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、コポリ(エチレングリコール-プロピレングリコール)ジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル
 (h)ポリマー酸のグリシジルエステル、例えば、ポリアクリル酸ポリグリシジルエステル、ポリエステルジグリシジルエステル
 (i)多価アルコールのグリシジルエーテル、例えば、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールジグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、グルコーストリグリシジルエーテル
 (j)2-フルオロアルキル-1,2-ジオールのジグリシジルエーテルとしては、前記低屈折率物質のフッ素含有樹脂のフッ素含有エポキシ化合物に挙げた化合物例と同様のもの
 (k)含フッ素アルカン末端ジオールグリシジルエーテルとしては、上記低屈折率物質のフッ素含有樹脂のフッ素含有エポキシ化合物等を挙げることができる。
 上記エポキシ化合物の分子量は、平均分子量として2000以下で、好ましくは1000以下である。
 上記のエポキシ化合物を活性エネルギー線により硬化する場合、より硬度を上げるためには、(h)又は(i)の多官能のエポキシ基を有する化合物を混合して用いると効果的である。
 エポキシ系活性エネルギー線反応性化合物をカチオン重合させる光重合開始剤又は光増感剤は、活性エネルギー線照射によりカチオン重合開始物質を放出することが可能な化合物であり、特に好ましくは、照射によりカチオン重合開始能のあるルイス酸を放出するオニウム塩の一群の複塩である。
 活性エネルギー線反応性化合物エポキシ樹脂は、ラジカル重合によるのではなく、カチオン重合により重合、架橋構造又は網目構造を形成する。ラジカル重合と異なり反応系中の酸素に影響を受けないため好ましい活性エネルギー線反応性樹脂である。
 本発明に有用な活性エネルギー線反応性エポキシ樹脂は、活性エネルギー線照射によりカチオン重合を開始させる物質を放出する光重合開始剤又は光増感剤により重合する。光重合開始剤としては、光照射によりカチオン重合を開始させるルイス酸を放出するオニウム塩の複塩の一群が特に好ましい。
 かかる代表的なものは下記一般式(a)で表される化合物である。
 一般式(a):〔(R(R(R(RZ〕w+〔MeXw-
 式中、カチオンはオニウムであり、ZはS、Se、Te、P、As、Sb、Bi、O、ハロゲン(例えばI、Br、Cl)、又はN=N(ジアゾ)であり、R、R、R、Rは同一であっても異なっていてもよい有機の基である。a、b、c、dはそれぞれ0~3の整数であって、a+b+c+dはZの価数に等しい。Meはハロゲン化物錯体の中心原子である金属又は半金属(metalloid)であり、B、P、As、Sb、Fe、Sn、Bi、Al、Ca、In、Ti、Zn、Sc、V、Cr、Mn、Co等である。Xはハロゲンであり、wはハロゲン化錯体イオンの正味の電荷であり、vはハロゲン化錯体イオン中のハロゲン原子の数である。
 上記一般式(a)の陰イオン〔MeXw-の具体例としては、テトラフルオロボレート(BF )、テトラフルオロホスフェート(PF )、テトラフルオロアンチモネート(SbF )、テトラフルオロアルセネート(AsF )、テトラクロロアンチモネート(SbCl )等を挙げることができる。
 また、その他の陰イオンとしては過塩素酸イオン(ClO )、トリフルオロメチル亜硫酸イオン(CFSO )、フルオロスルホン酸イオン(FSO )、トルエンスルホン酸イオン、トリニトロベンゼン酸陰イオン等を挙げることができる。
 このようなオニウム塩の中でも特に芳香族オニウム塩をカチオン重合開始剤として使用するのが有効であり、中でも特開昭50-151996号、同50-158680号等に記載の芳香族ハロニウム塩、特開昭50-151997号、同52-30899号、同59-55420号、同55-125105号等に記載のVIA族芳香族オニウム塩、特開昭56-8428号、同56-149402号、同57-192429号等に記載のオキソスルホキソニウム塩、特公昭49-17040号等に記載の芳香族ジアゾニウム塩、米国特許第4,139,655号等に記載のチオピリリューム塩等が好ましい。また、アルミニウム錯体や光分解性けい素化合物系重合開始剤等を挙げることができる。上記カチオン重合開始剤と、ベンゾフェノン、ベンゾインイソプロピルエーテル、チオキサントン等の光増感剤を併用することができる。
 また、エポキシアクリレート基を有する活性エネルギー線反応性化合物の場合は、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等の光増感剤を用いることができる。この活性エネルギー線反応性化合物に用いられる光増感剤や光開始剤は、紫外線反応性化合物100質量部に対して0.1質量部~15質量部で光反応を開始するには十分であり、好ましくは1質量部~10質量部である。この増感剤は近紫外線領域から可視光線領域に吸収極大のあるものが好ましい。
 本発明に有用な活性エネルギー線硬化樹脂組成物において、重合開始剤は、一般的には、活性エネルギー線硬化性エポキシ樹脂(プレポリマー)100質量部に対して0.1質量部~15質量部の使用が好ましく、更に好ましくは、1質量部~10質量部の範囲の添加が好ましい。
 また、エポキシ樹脂を上記ウレタンアクリレート型樹脂、ポリエーテルアクリレート型樹脂等と併用することもでき、この場合、活性エネルギー線ラジカル重合開始剤と活性エネルギー線カチオン重合開始剤を併用することが好ましい。
 また、本発明に用いられるハードコート層には、オキセタン化合物を用いることもできる。用いられるオキセタン化合物は、酸素又は硫黄を含む3員環のオキセタン環を有する化合物である。中でも酸素を含むオキセタン環を有する化合物が好ましい。オキセタン環は、ハロゲン原子、ハロアルキル基、アリールアルキル基、アルコキシル基、アリルオキシ基、アセトキシ基で置換されていてもよい。具体的には、3,3-ビス(クロルメチル)オキセタン、3,3-ビス(ヨードメチル)オキセタン、3,3-ビス(メトキシメチル)オキセタン、3,3-ビス(フェノキシメチル)オキセタン、3-メチル-3クロルメチルオキセタン、3,3-ビス(アセトキシメチル)オキセタン、3,3-ビス(フルオロメチル)オキセタン、3,3-ビス(ブロモメチル)オキセタン、3,3-ジメチルオキセタン等が挙げられる。なお、本発明ではモノマー、オリゴマー、ポリマーのいずれであってもよい。
 本発明に用いられるハードコート層には、公知の熱可塑性樹脂、熱硬化性樹脂又はゼラチン等の親水性樹脂等のバインダーを上記記載の活性エネルギー線硬化樹脂に混合して使用することができる。これらの樹脂は、その分子中に極性基を持っていることが好ましい。極性基としては、-COOM、-OH、-NR、-NRX、-SOM、-OSOM、-PO、-OPOM(ここで、Mは水素原子、アルカリ金属又はアンモニウム基を、Xはアミン塩を形成する酸を、Rは水素原子、アルキル基を表す)等を挙げることができる。
 本発明に用いられるハードコート層が活性エネルギー線硬化型樹脂を含む場合、活性エネルギー線の照射方法としては、支持体上に、防眩性ハードコート層、反射防止層(中~高屈折率層及び低屈折率層)等の塗設後に活性エネルギー線を照射してもよいが、ハードコート層塗設時に活性エネルギー線を照射することが好ましい。
 本発明に使用する活性エネルギー線は、紫外線、電子線、γ線等で、化合物を活性化させるエネルギー源であれば制限なく使用できるが、紫外線、電子線が好ましく、特に取り扱いが簡便で高エネルギーが容易に得られるという点で紫外線が好ましい。紫外線反応性化合物を光重合させる紫外線の光源としては、紫外線を発生する光源であれば何れも使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。また、ArFエキシマレーザ、KrFエキシマレーザ、エキシマランプ又はシンクロトロン放射光等も用いることができる。照射条件はそれぞれのランプによって異なるが、照射光量は20mJ/cm以上が好ましく、更に好ましくは、50mJ/cm~10000mJ/cmであり、特に好ましくは、50mJ/cm~2000mJ/cmである。
 紫外線照射は、ハードコート層と後述する反射防止層を構成する複数の層(中屈折率層、高屈折率層、低屈折率層)それぞれに対して1層設ける毎に照射してもよいし、積層後照射してもよい。或いはこれらを組み合わせて照射してもよい。生産性の点から、多層を積層後、紫外線を照射することが好ましい。
 また、電子線も同様に使用できる。電子線としては、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される50~1000keV、好ましくは100~300keVのエネルギーを有する電子線を挙げることができる。
 本発明に使用する上記活性エネルギー線反応性化合物を光重合又は光架橋反応を開始させるには、上記活性エネルギー線反応性化合物のみでも開始するが、重合の誘導期が長かったり、重合開始が遅かったりするため、光増感剤や光開始剤を用いることが好ましく、それにより重合を早めることができる。
 本発明に用いられるハードコート層が活性エネルギー線硬化樹脂を含有する場合、活性エネルギー線の照射時においては、光反応開始剤、光増感剤を用いることができる。
 具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。また、エポキシアクリレート系樹脂の合成に光反応剤を使用する際に、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等の増感剤を用いることができる。塗布乾燥後に揮発する溶媒成分を除いた紫外線硬化性樹脂組成物に含まれる光反応開始剤及び/又は光増感剤の使用量は、組成物の1質量%~10質量%が好ましく、特に好ましくは2.5質量%~6質量%である。
 また、活性エネルギー線硬化樹脂として、紫外線硬化性樹脂を用いる場合、前記紫外線硬化性樹脂の光硬化を妨げない程度に、後述する紫外線吸収剤を紫外線硬化性樹脂組成物に含ませてもよい。
 ハードコート層の耐熱性を高めるために、光硬化反応を抑制しないような酸化防止剤を選んで用いることができる。例えば、ヒンダードフェノール誘導体、チオプロピオン酸誘導体、ホスファイト誘導体等を挙げることができる。具体的には、例えば、4,4′-チオビス(6-tert-3-メチルフェノール)、4,4′-ブチリデンビス(6-tert-ブチル-3-メチルフェノール)、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)メシチレン、ジ-オクタデシル-4-ヒドロキシ-3,5-ジ-tert-ブチルベンジルホスフェート等を挙げることができる。
 紫外線硬化性樹脂としては、例えば、アデカオプトマーKR、BYシリーズのKR-400、KR-410、KR-550、KR-566、KR-567、BY-320B(以上、(株)ADEKA製)、コーエイハードのA-101-KK、A-101-WS、C-302、C-401-N、C-501、M-101、M-102、T-102、D-102、NS-101、FT-102Q8、MAG-1-P20、AG-106、M-101-C(以上、広栄化学工業(株)製)、セイカビームのPHC2210(S)、PHCX-9(K-3)、PHC2213、DP-10、DP-20、DP-30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(以上、大日精化工業(株)製)、KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(以上、ダイセル・ユーシービー(株))、RC-5015、RC-5016、RC-5020、RC-5031、RC-5100、RC-5102、RC-5120、RC-5122、RC-5152、RC-5171、RC-5180、RC-5181(以上、DIC(株)製)、オーレックスNo.340クリヤ(中国塗料(株)製)、サンラッド H-601(三洋化成工業(株)製)、SP-1509、SP-1507(以上、昭和高分子(株)製)、RCC-15C(グレース・ジャパン(株)製)、アロニックスM-6100、M-8030、M-8060(以上、東亞合成(株)製)、又はその他の市販のものから適宜選択して利用することができる。
 活性エネルギー線硬化樹脂を含む塗布組成物は、固形分濃度は10質量%~95質量%であることが好ましく、塗布方法により適当な濃度が選ばれる。
 本発明に用いられるハードコート層、及び反射防止層は界面活性剤を含有することも好ましく、界面活性剤としては、シリコーン系又はフッ素系界面活性剤が好ましい。
 シリコーン系界面活性剤としては、疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン界面活性剤が好ましい。
 非イオン面活性剤は、水溶液中でイオンに解離する基を有しない系面活性剤を総称していうが、疎水基のほか親水性基として多価アルコール類のヒドロキシ基(水酸基)、また、ポリオキシアルキレン鎖(ポリオキシエチレン)等を親水基として有するものである。親水性はアルコール性ヒドロキシ基(水酸基)の数が多くなるに従って、またポリオキシアルキレン鎖(ポリオキシエチレン鎖)が長くなるに従って強くなる。本発明に係わる非イオン界面活性剤は疎水基としてジメチルポリシロキサンを有することに特徴がある。
 疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン界面活性剤を用いると、防眩性ハードコート層や低屈折率層のムラや膜表面の防汚性が向上する。ポリメチルシロキサンからなる疎水基が表面に配向し汚れにくい膜表面を形成するものと考えられる。他の界面活性剤を用いることでは得られない効果である。
 これらの非イオン活性剤の具体例としては、例えば、日本ユニカー(株)製、シリコーン界面活性剤 SILWET L-77、L-720、L-7001、L-7002、L-7604、Y-7006、FZ-2101、FZ-2104、FZ-2105、FZ-2110、FZ-2118、FZ-2120、FZ-2122、FZ-2123、FZ-2130、FZ-2154、FZ-2161、FZ-2162、FZ-2163、FZ-2164、FZ-2166、FZ-2191等が挙げられる。
 また、SUPERSILWET SS-2801、SS-2802、SS-2803、SS-2804、SS-2805等が挙げられる。
 また、これら、疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから構成される非イオン系の界面活性剤の好ましい構造としては、ジメチルポリシロキサン構造部分とポリオキシアルキレン鎖が交互に繰り返し結合した直鎖状のブロックコポリマーであることが好ましい。主鎖骨格の鎖長が長く、直鎖状の構造であることから、優れている。親水基と疎水基が交互に繰り返したブロックコポリマーであることにより、シリカ微粒子の表面を1つの活性剤分子が、複数の箇所で、これを覆うように吸着することができるためと考えられる。
 これらの具体例としては、例えば、日本ユニカー(株)製、シリコーン界面活性剤 ABN SILWET FZ-2203、FZ-2207、FZ-2208等が挙げられる。
 フッ素系界面活性剤としては、疎水基がパーフルオロカーボンチェインをもつ界面活性剤を用いることができる。種類としては、フルオロアルキルカルボン酸、N-パーフルオロオクタンスルホニルグルタミン酸ジナトリウム、3-(フルオロアルキルオキシ)-1-アルキルスルホン酸ナトリウム、3-(ω-フルオロアルカノイル-N-エチルアミノ)-1-プロパンスルホン酸ナトリウム、N-(3-パーフルオロオクタンスルホンアミド)プロピル-N,N-ジメチル-N-カルボキシメチレンアンモニウムベタイン、パーフルオロアルキルカルボン酸、パーフルオロオクタンスルホン酸ジエタノールアミド、パーフルオロアルキルスルホン酸塩、N-プロピル-N-(2-ヒドロキシエチル)パーフルオロオクタンスルホンアミド、パーフルオロアルキルスルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル-N-エチルスルホニルグリシン塩、リン酸ビス(N-パーフルオロオクチルスルホニル-N-エチルアミノエチル)等が挙げられる。本発明では非イオン界面活性剤が好ましい。
 これらのフッ素系界面活性剤はメガファック、エフトップ、サーフロン、フタージェント、ユニダイン、フローラード、ゾニール等の商品名で市販されている。
 好ましい添加量はハードコート層、及び反射防止層の塗布液に含まれる固形分当たり0.01~3.0%であり、より好ましくは0.02~1.0%である。
 他の界面活性剤を併用して用いることもでき、適宜、例えばスルホン酸塩系、硫酸エステル塩系、リン酸エステル塩系等のアニオン界面活性剤、また、ポリオキシエチレン鎖親水基として有するエーテル型、エーテルエステル型等の非イオン界面活性剤等を併用してもよい。
 本発明にハードコート層を塗設する際の溶媒は、例えば、炭化水素類、アルコール類、ケトン類、エステル類、グリコールエーテル類、その他の溶媒の中から適宜選択し、又は混合して使用できる。好ましくは、プロピレングリコールモノ(C1~C4)アルキルエーテル又はプロピレングリコールモノ(C1~C4)アルキルエーテルエステルを5質量%以上、更に好ましくは5質量%~80質量%以上含有する溶媒が用いられる。
 ハードコート層組成物塗布液の塗布方法としては、グラビアコーター、スピナーコーター、ワイヤーバーコーター、ロールコーター、リバースコーター、押出コーター、エアードクターコーター、スプレーコート、インクジェット法等公知の方法を用いることができる。塗布量はウエット膜厚で5μm~30μmが適当で、好ましくは10μm~20μmである。塗布速度は10m/分~200m/分が好ましい。
 防眩性ハードコート層組成物は塗布乾燥された後、紫外線や電子線等の活性エネルギー線を照射され硬化処理されることが好ましいが、前記活性エネルギー線の照射時間は0.5秒~5分が好ましく、紫外線硬化性樹脂の硬化効率、作業効率等から更に好ましくは、3秒~2分である。
 〔反射防止層〕
 本発明に用いられる反射防止層は低屈折率層のみの単層構成でもよいが、多層の屈折率層を設けることも好ましい。λ/4板上に、ハードコート層を有し、その表面上に光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層できる。反射防止層は、支持体よりも屈折率の高い高屈折率層と、支持体よりも屈折率の低い低屈折率層を組み合わせて構成したり、特に好ましくは、3層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる3層を、中屈折率層(支持体又は防眩性ハードコート層よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものが好ましい。
 又は、2層以上の高屈折率層と2層以上の低屈折率層とを交互に積層した4層以上の層構成の反射防止層も好ましく用いられる。
 本発明に係る反射防止層の好ましい層構成の例を下記に示す。ここで/は積層配置されていることを示している。
 (λ/4板)/クリアハードコート層/低屈折率層
 (λ/4板)/クリアハードコート層/高屈折率層/低屈折率層
 (λ/4板)/クリアハードコート層/中屈折率層/高屈折率層/低屈折率層
 (λ/4板)/防眩性ハードコート層/低屈折率層
 (λ/4板)/防眩性ハードコート層/高屈折率層/低屈折率層
 (λ/4板)/防眩性ハードコート層/中屈折率層/高屈折率層/低屈折率層
 汚れや指紋のふき取りが容易となるように、最表面の低屈折率層の上に、更に防汚層を設けることもできる。防汚層としては、含フッ素有機化合物が好ましく用いられる。
 光学干渉により反射率を低減できるものであれば、特にこれらの層構成のみに限定されるものではない。また、上記層構成では、適宜中間層を設けてもよく、例えば導電性ポリマー微粒子(例えば架橋カチオン微粒子)又は金属酸化物微粒子(例えば、SnO、ITO等)を含む帯電防止層等は好ましい。
 〈低屈折率層〉
 本発明に用いられる低屈折率層では以下の中空球状シリカ系微粒子が好適に用いられる。
 (中空球状シリカ系微粒子)
 中空球状微粒子は、(I)多孔質粒子と該多孔質粒子表面に設けられた被覆層とからなる複合粒子、又は(II)内部に空洞を有し、かつ内容物が溶媒、気体又は多孔質物質で充填された空洞粒子である。なお、低屈折率層には(I)複合粒子又は(II)空洞粒子のいずれかが含まれていればよく、また双方が含まれていてもよい。
 なお、空洞粒子は内部に空洞を有する粒子であり、空洞は粒子壁で囲まれている。空洞内には、調製時に使用した溶媒、気体又は多孔質物質等の内容物で充填されている。このような中空球状微粒子の平均粒子径が5~300nm、好ましくは10~200nmの範囲にあることが望ましい。使用される中空球状微粒子は、形成される透明被膜の厚さに応じて適宜選択され、形成される低屈折率層等の透明被膜の膜厚の2/3~1/10の範囲にあることが望ましい。これらの中空球状微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えばジアセトンアルコール)が好ましい。
 複合粒子の被覆層の厚さ又は空洞粒子の粒子壁の厚さは、1~20nm、好ましくは2~15nmの範囲にあることが望ましい。複合粒子の場合、被覆層の厚さが1nm未満の場合は、粒子を完全に被覆することができないことがあり、後述する塗布液成分である重合度の低いケイ酸モノマー、オリゴマー等が容易に複合粒子の内部に進入して内部の多孔性が減少し、低屈折率の効果が十分得られないことがある。また、被覆層の厚さが20nmを越えると、前記ケイ酸モノマー、オリゴマーが内部に進入することはないが、複合粒子の多孔性(細孔容積)が低下し低屈折率の効果が十分得られなくなることがある。また空洞粒子の場合、粒子壁の厚さが1nm未満の場合は、粒子形状を維持出来ないことがあり、また厚さが20nmを越えても、低屈折率の効果が十分に現れないことがある。
 複合粒子の被覆層又は空洞粒子の粒子壁は、シリカを主成分とすることが好ましい。また、シリカ以外の成分が含まれていてもよく、具体的には、Al、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WO等が挙げられる。複合粒子を構成する多孔質粒子としては、シリカからなるもの、シリカとシリカ以外の無機化合物とからなるもの、CaF、NaF、NaAlF、MgF等からなるものが挙げられる。このうち特にシリカとシリカ以外の無機化合物との複合酸化物からなる多孔質粒子が好適である。シリカ以外の無機化合物としては、Al、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WO等との一種又は二種以上を挙げることができる。このような多孔質粒子では、シリカをSiOで表し、シリカ以外の無機化合物を酸化物換算(MO)で表したときのモル比MO/SiOが、0.0001~1.0、好ましくは0.001~0.3の範囲にあることが望ましい。多孔質粒子のモル比MO/SiOが0.0001未満のものは得ることが困難であり、得られたとしても細孔容積が小さく、屈折率の低い粒子が得られない。また、多孔質粒子のモル比MO/SiOが、1.0を越えると、シリカの比率が少なくなるので、細孔容積が大きくなり、更に屈折率が低いものを得ることが難しいことがある。
 このような多孔質粒子の細孔容積は、0.1~1.5ml/g、好ましくは0.2~1.5ml/gの範囲であることが望ましい。細孔容積が0.1ml/g未満では、十分に屈折率の低下した粒子が得られず、1.5ml/gを越えると微粒子の強度が低下し、得られる被膜の強度が低下することがある。
 なお、このような多孔質粒子の細孔容積は水銀圧入法によって求めることができる。また、空洞粒子の内容物としては、粒子調製時に使用した溶媒、気体、多孔質物質等が挙げられる。溶媒中には空洞粒子調製する際に使用される粒子前駆体の未反応物、使用した触媒等が含まれていてもよい。また多孔質物質としては、前記多孔質粒子で例表した化合物からなるものが挙げられる。これらの内容物は、単一の成分からなるものであってもよいが、複数成分の混合物であってもよい。
 このような中空球状微粒子の製造方法としては、例えば特開平7-133105号公報の段落番号[0010]~[0033]に開示された複合酸化物コロイド粒子の調製方法が好適に採用される。具体的に、複合粒子が、シリカ、シリカ以外の無機化合物とからなる場合、以下の第1~第3工程から中空球状微粒子は製造される。
 第1工程:多孔質粒子前駆体の調製
 第1工程では、予め、シリカ原料とシリカ以外の無機化合物原料のアルカリ水溶液を個別に調製するか、又は、シリカ原料とシリカ以外の無機化合物原料との混合水溶液を調製しておき、この水溶液を目的とする複合酸化物の複合割合に応じて、pH10以上のアルカリ水溶液中に攪拌しながら徐々に添加して多孔質粒子前駆体を調製する。
 シリカ原料としては、アルカリ金属、アンモニウム又は有機塩基のケイ酸塩を用いる。アルカリ金属のケイ酸塩としては、ケイ酸ナトリウム(水ガラス)やケイ酸カリウムが用いられる。有機塩基としては、テトラエチルアンモニウム塩等の第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン類を挙げることができる。なお、アンモニウムのケイ酸塩又は有機塩基のケイ酸塩には、ケイ酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物等を添加したアルカリ性溶液も含まれる。
 また、シリカ以外の無機化合物の原料としては、アルカリ可溶の無機化合物が用いられる。具体的には、Al、B、Ti、Zr、Sn、Ce、P、Sb、Mo、Zn、W等から選ばれる元素のオキソ酸、該オキソ酸のアルカリ金属塩又はアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができる。より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノケイ酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウムが適当である。
 これらの水溶液の添加と同時に混合水溶液のpH値は変化するが、このpH値を所定の範囲に制御するような操作は特に必要ない。水溶液は、最終的に、無機酸化物の種類及びその混合割合によって定まるpH値となる。このときの水溶液の添加速度には特に制限はない。また、複合酸化物粒子の製造に際して、シード粒子の分散液を出発原料と使用することも可能である。当該シード粒子としては、特に制限はないが、SiO、Al、TiO又はZrO等の無機酸化物又はこれらの複合酸化物の微粒子が用いられ、通常、これらのゾルを用いることができる。更に前記の製造方法によって得られた多孔質粒子前駆体分散液をシード粒子分散液としてもよい。シード粒子分散液を使用する場合、シード粒子分散液のpHを10以上に調整した後、該シード粒子分散液中に前記化合物の水溶液を、上記したアルカリ水溶液中に攪拌しながら添加する。この場合も、必ずしも分散液のpH制御を行う必要はない。このようにしてシード粒子を用いると、調製する多孔質粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることができる。
 上記したシリカ原料及び無機化合物原料はアルカリ側で高い溶解度を有する。しかしながら、この溶解度の大きいpH領域で両者を混合すると、ケイ酸イオン及びアルミン酸イオン等のオキソ酸イオンの溶解度が低下し、これらの複合物が析出して微粒子に成長したり、又は、シード粒子上に析出して粒子成長が起る。従って、微粒子の析出、成長に際して、従来法のようなpH制御は必ずしも行う必要がない。
 第1工程におけるシリカとシリカ以外の無機化合物との複合割合は、シリカに対する無機化合物を酸化物(MO)に換算し、MO/SiOのモル比が、0.05~2.0、好ましくは0.2~2.0の範囲内にあることが望ましい。この範囲内において、シリカの割合が少なくなる程、多孔質粒子の細孔容積が増大する。しかしながら、モル比が2.0を越えても、多孔質粒子の細孔の容積はほとんど増加しない。他方、モル比が0.05未満の場合は、細孔容積が小さくなる。空洞粒子を調製する場合、MO/SiOのモル比は、0.25~2.0の範囲内にあることが望ましい。
 第2工程:多孔質粒子からのシリカ以外の無機化合物の除去
 第2工程では、前記第1工程で得られた多孔質粒子前駆体から、シリカ以外の無機化合物(珪素と酸素以外の元素)の少なくとも一部を選択的に除去する。具体的な除去方法としては、多孔質粒子前駆体中の無機化合物を鉱酸や有機酸を用いて溶解除去したり、又は、陽イオン交換樹脂と接触させてイオン交換除去する。
 なお、第1工程で得られる多孔質粒子前駆体は、珪素と無機化合物構成元素が酸素を介して結合した網目構造の粒子である。このように多孔質粒子前駆体から無機化合物(珪素と酸素以外の元素)を除去することにより、一層多孔質で細孔容積の大きい多孔質粒子が得られる。また、多孔質粒子前駆体から無機酸化物(珪素と酸素以外の元素)を除去する量を多くすれば、空洞粒子を調製することができる。
 また、多孔質粒子前駆体からシリカ以外の無機化合物を除去するに先立って、第1工程で得られる多孔質粒子前駆体分散液に、シリカのアルカリ金属塩を脱アルカリして得られる、フッ素置換アルキル基含有シラン化合物を含有するケイ酸液又は加水分解性の有機珪素化合物を添加してシリカ保護膜を形成することが好ましい。シリカ保護膜の厚さは0.5~15nmの厚さであればよい。なおシリカ保護膜を形成しても、この工程での保護膜は多孔質であり厚さが薄いので、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することは可能である。
 このようなシリカ保護膜を形成することによって、粒子形状を保持したまま、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することができる。また、後述するシリカ被覆層を形成する際に、多孔質粒子の細孔が被覆層によって閉塞されてしまうことがなく、このため細孔容積を低下させることなく後述するシリカ被覆層を形成することができる。なお、除去する無機化合物の量が少ない場合は粒子が壊れることがないので必ずしも保護膜を形成する必要はない。
 また、空洞粒子を調製する場合は、このシリカ保護膜を形成しておくことが望ましい。空洞粒子を調製する際には、無機化合物を除去すると、シリカ保護膜と、該シリカ保護膜内の溶媒、未溶解の多孔質固形分とからなる空洞粒子の前駆体が得られ、該空洞粒子の前駆体に後述の被覆層を形成すると、形成された被覆層が、粒子壁となり空洞粒子が形成される。
 上記シリカ保護膜形成のために添加するシリカ源の量は、粒子形状を保持できる範囲で少ないことが好ましい。シリカ源の量が多過ぎると、シリカ保護膜が厚くなり過ぎるので、多孔質粒子前駆体からシリカ以外の無機化合物を除去することが困難となることがある。シリカ保護膜形成用に使用される加水分解性の有機珪素化合物としては、一般式RSi(OR′)4-n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2又は3〕で表されるアルコキシシランを用いることができる。特に、フッ素置換したテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
 添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリ又は酸を添加した溶液を、前記多孔質粒子の分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を無機酸化物粒子の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。
 多孔質粒子前駆体の分散媒が、水単独、又は有機溶媒に対する水の比率が高い場合には、ケイ酸液を用いてシリカ保護膜を形成することも可能である。ケイ酸液を用いる場合には、分散液中にケイ酸液を所定量添加し、同時にアルカリを加えてケイ酸液を多孔質粒子表面に沈着させる。なお、ケイ酸液と上記アルコキシシランを併用してシリカ保護膜を作製してもよい。
 第3工程:シリカ被覆層の形成
 第3工程では、第2工程で調製した多孔質粒子分散液(空洞粒子の場合は空洞粒子前駆体分散液)に、フッ素置換アルキル基含有シラン化合物を含有する加水分解性の有機珪素化合物又はケイ酸液等を加えることにより、粒子の表面を加水分解性有機珪素化合物又はケイ酸液等の重合物で被覆してシリカ被覆層を形成する。
 シリカ被覆層形成用に使用される加水分解性の有機珪素化合物としては、前記したような一般式RSi(OR′)4-n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2又は3〕で表されるアルコキシシランを用いることができる。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
 添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリ又は酸を添加した溶液を、前記多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。
 多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の分散媒が水単独、又は有機溶媒との混合溶媒であって、有機溶媒に対する水の比率が高い混合溶媒の場合には、ケイ酸液を用いて被覆層を形成してもよい。ケイ酸液とは、水ガラス等のアルカリ金属ケイ酸塩の水溶液をイオン交換処理して脱アルカリしたケイ酸の低重合物の水溶液である。
 ケイ酸液は、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中に添加され、同時にアルカリを加えてケイ酸低重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)表面に沈着させる。なお、ケイ酸液を上記アルコキシシランと併用して被覆層形成用に使用してもよい。被覆層形成用に使用される有機珪素化合物又はケイ酸液の添加量は、コロイド粒子の表面を十分被覆できる程度であればよく、最終的に得られるシリカ被覆層の厚さが1~20nmとなるように量で、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中で添加される。また前記シリカ保護膜を形成した場合はシリカ保護膜とシリカ被覆層の合計の厚さが1~20nmの範囲となるような量で、有機珪素化合物又はケイ酸液は添加される。
 次いで、被覆層が形成された粒子の分散液を加熱処理する。加熱処理によって、多孔質粒子の場合は、多孔質粒子表面を被覆したシリカ被覆層が緻密化し、多孔質粒子がシリカ被覆層によって被覆された複合粒子の分散液が得られる。また空洞粒子前駆体の場合、形成された被覆層が緻密化して空洞粒子壁となり、内部が溶媒、気体又は多孔質固形分で充填された空洞を有する空洞粒子の分散液が得られる。
 このときの加熱処理温度は、シリカ被覆層の微細孔を閉塞できる程度であれば特に制限はなく、80~300℃の範囲が好ましい。加熱処理温度が80℃未満ではシリカ被覆層の微細孔を完全に閉塞して緻密化できないことがあり、また処理時間に長時間を要してしまうことがある。また加熱処理温度が300℃を越えて長時間処理すると緻密な粒子となることがあり、低屈折率の効果が得られないことがある。
 このようにして得られた無機微粒子の屈折率は、1.42未満と低い。このような無機微粒子は、多孔質粒子内部の多孔性が保持されているか、内部が空洞であるので、屈折率が低くなるものと推察される。本発明に用いられる低屈折率層の屈折率は、1.30~1.50であることが好ましく、1.35~1.44であることが更に好ましい。
 本発明では市販の上記SiO微粒子を用いることができる。市販の粒子の具体例としては、触媒化成工業社製P-4等が挙げられる。
 外殻層を有し、内部が多孔質又は空洞である中空球状シリカ系微粒子Aの低屈折率層塗布液中の含量(質量)は、10~80質量%が好ましく、更に好ましくは20~60質量%である。
 (テトラアルコキシシラン化合物又はその加水分解物)
 本発明に用いられる低屈折率層には、ゾルゲル素材としてテトラアルコキシシラン化合物又はその加水分解物が含有されることが好ましい。
 本発明に用いられる低屈折率層用の素材として、前記無機珪素酸化物以外に有機基を有する珪素酸化物を用いることも好ましい。これらは一般にゾルゲル素材と呼ばれるが、金属アルコレート、オルガノアルコキシ金属化合物及びその加水分解物を用いることができる。特に、アルコキシシラン、オルガノアルコキシシラン及びその加水分解物が好ましい。これらの例としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、アルキルトリアルコキシシラン(メチルトリメトキシシラン、エチルトリメトキシシラン等)、アリールトリアルコキシシラン(フェニルトリメトキシシラン等)、ジアルキルジアルコキシシラン、ジアリールジアルコキシシラン等が挙げられる。特にテトラアルコキシシラン及びその加水分解物が好ましい。
 また、各種の官能基を有するオルガノアルコキシシラン(ビニルトリアルコキシシラン、メチルビニルジアルコキシシラン、γ-グリシジルオキシプロピルトリアルコキシシラン、γ-グリシジルオキシプロピルメチルジアルコキシシラン、β-(3,4-エポキジシクロヘキシル)エチルトリアルコキシシラン、γ-メタクリロイルオキシプロピルトリアルコキシシラン、γ-アミノプロピルトリアルコキシシラン、γ-メルカプトプロピルトリアルコキシシラン、γ-クロロプロピルトリアルコキシシラン等)、パーフルオロアルキル基含有シラン化合物(例えば、(ヘプタデカフルオロ-1,1,2,2-テトラデシル)トリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン等)を用いることも好ましい。特にフッ素含有のシラン化合物を用いることは、層の低屈折率化及び撥水・撥油性付与の点で好ましい。
 上記テトラアルコキシシランを加水分解する際には、前記無機微粒子を混合することが膜強度を高める上で好ましい。
 本発明に用いられる低屈折率層は前記珪素酸化物と下記シランカップリング剤を含むことが好ましい。
 具体的なシランカップリング剤の例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルトリアセトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、γ-グリシジルオキシプロピルトリメトキシシラン、γ-グリシジルオキシプロピルトリエトキシシラン、γ-(β-グリシジルオキシエトキシ)プロピルトリメトキシシラン、β-(3,4-エポシシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、γ-アクリロイルオキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン及びβ-シアノエチルトリエトキシシランが挙げられる。
 また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ-グリシジルオキシプロピルメチルジエトキシシラン、γ-グリシジルオキシプロピルメチルジメトキシシラン、γ-グリシジルオキシプロピルフェニルジエトキシシラン、γ-クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ-アクリロイルオキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルメチルジエトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン、γ-メタクリロイルオキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。
 これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ-アクリロイルオキシプロピルトリメトキシシラン及びγ-メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ-アクリロイルオキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルメチルジエトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン、γ-メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ-アクリロイルオキシプロピルトリメトキシシラン及びγ-メタクリロイルオキシプロピルトリメトキシシラン、γ-アクリロイルオキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルメチルジエトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン及びγ-メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。
 シランカップリング剤の具体例としては、信越化学工業株式会社製KBM-303、KBM-403、KBM-402、KBM-403、KBM-1403、KBM-502、KBM-503、KBE-502、KBE-503、KBM-603、KBE-603、KBM-903、KBE-903、KBE-9103、KBM-802、KBM-803等が挙げられる。
 二種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n-プロピル、オルトケイ酸i-プロピル、オルトケイ酸n-ブチル、オルトケイ酸sec-ブチル、オルトケイ酸t-ブチル)及びその加水分解物が挙げられる。
 カップリング剤による表面処理の具体的方法は、下記に示す。
 これらシランカップリング剤は予め必要量の水で加水分解されていることが好ましい。シランカップリング剤が加水分解されていると、前述の珪素酸化物粒子及び有機基を有する珪素酸化物の表面が反応し易く、より強固な膜が形成される。また、加水分解されたシランカップリング剤を予め塗布液中に加えてもよい。
 また、低屈折率層は、5~50質量%の量のポリマーを含むこともできる。ポリマーは、微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。ポリマーの使用量は、空隙を充填することなく低屈折率層の強度を維持できるように調整する。ポリマーの量は、低屈折率層の全量の10~30質量%であることが好ましい。ポリマーで微粒子を接着するためには、(1)微粒子の表面処理剤にポリマーを結合させるか、(2)微粒子をコアとして、その周囲にポリマーシェルを形成するか、或いは(3)微粒子間のバインダーとして、ポリマーを使用することが好ましい。(1)の表面処理剤に結合させるポリマーは、(2)のシェルポリマー又は(3)のバインダーポリマーであることが好ましい。(2)のポリマーは、低屈折率層の塗布液の調製前に、微粒子の周囲に重合反応により形成することが好ましい。(3)のポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時又は塗布後に、重合反応により形成することが好ましい。上記(1)~(3)のうちの二つ又は全てを組み合わせて実施することが好ましく、(1)と(3)の組み合わせ、又は(1)~(3)全ての組み合わせで実施することが特に好ましい。(1)表面処理、(2)シェル及び(3)バインダーについて順次説明する。
 (1)表面処理
 微粒子(特に無機微粒子)には、表面処理を実施して、ポリマーとの親和性を改善することが好ましい。表面処理は、プラズマ放電処理やコロナ放電処理のような物理的表面処理と、カップリング剤を使用する化学的表面処理に分類できる。化学的表面処理のみ、又は物理的表面処理と化学的表面処理の組み合わせで実施することが好ましい。カップリング剤としては、オルガノアルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。微粒子がSiOからなる場合は、前述のシランカップリング剤による表面処理が特に有効に実施できる。
 カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施できる。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、又はこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。
 (2)シェル
 シェルを形成するポリマーは、飽和炭化水素を主鎖として有するポリマーであることが好ましい。フッ素原子を主鎖又は側鎖に含むポリマーが好ましく、フッ素原子を側鎖に含むポリマーが更に好ましい。ポリアクリル酸エステル又はポリメタクリル酸エステルが好ましく、フッ素置換アルコールとポリアクリル酸又はポリメタクリル酸とのエステルが最も好ましい。シェルポリマーの屈折率は、ポリマー中のフッ素原子の含有量の増加に伴い低下する。低屈折率層の屈折率を低下させるため、シェルポリマーは35~80質量%のフッ素原子を含むことが好ましく、45~75質量%のフッ素原子を含むことが更に好ましい。フッ素原子を含むポリマーは、フッ素原子を含むエチレン性不飽和モノマーの重合反応により合成することが好ましい。フッ素原子を含むエチレン性不飽和モノマーの例としては、フルオロオレフィン(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ-2,2-ジメチル-1,3-ジオキソール)、フッ素化ビニルエーテル及びフッ素置換アルコールとアクリル酸又はメタクリル酸とのエステルが挙げられる。
 シェルを形成するポリマーは、フッ素原子を含む繰り返し単位とフッ素原子を含まない繰り返し単位からなるコポリマーであってもよい。フッ素原子を含まない繰り返し単位は、フッ素原子を含まないエチレン性不飽和モノマーの重合反応により得ることが好ましい。フッ素原子を含まないエチレン性不飽和モノマーの例としては、オレフィン(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2-エチルヘキシル)、メタクリル酸エステル(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート)、スチレン及びその誘導体(例えば、スチレン、ジビニルベンゼン、ビニルトルエン、α-メチルスチレン)、ビニルエーテル(例えば、メチルビニルエーテル)、ビニルエステル(例えば、酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル)、アクリルアミド(例えば、N-tertブチルアクリルアミド、N-シクロヘキシルアクリルアミド)、メタクリルアミド及びアクリロニトリルが挙げられる。
 後述する(3)のバインダーポリマーを併用する場合は、シェルポリマーに架橋性官能基を導入して、シェルポリマーとバインダーポリマーとを架橋により化学的に結合させてもよい。シェルポリマーは、結晶性を有していてもよい。シェルポリマーのガラス転移温度(Tg)が低屈折率層の形成時の温度よりも高いと、低屈折率層内のミクロボイドの維持が容易である。但し、Tgが低屈折率層の形成時の温度よりも高いと、微粒子が融着せず、低屈折率層が連続層として形成されない(その結果、強度が低下する)場合がある。その場合は、後述する(3)のバインダーポリマーを併用し、バインダーポリマーにより低屈折率層を連続層として形成することが望ましい。微粒子の周囲にポリマーシェルを形成して、コアシェル微粒子が得られる。コアシェル微粒子中に無機微粒子からなるコアが5~90体積%含まれていることが好ましく、15~80体積%含まれていることが更に好ましい。二種類以上のコアシェル微粒子を併用してもよい。また、シェルのない無機微粒子とコアシェル粒子とを併用してもよい。
 (3)バインダー
 バインダーポリマーは、飽和炭化水素又はポリエーテルを主鎖として有するポリマーであることが好ましく、飽和炭化水素を主鎖として有するポリマーであることが更に好ましい。バインダーポリマーは架橋していることが好ましい。飽和炭化水素を主鎖として有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好ましい。架橋しているバインダーポリマーを得るためには、二以上のエチレン性不飽和基を有するモノマーを用いることが好ましい。2以上のエチレン性不飽和基を有するモノマーの例としては、多価アルコールと(メタ)アクリル酸とのエステル(例えば、エチレングリコールジ(メタ)アクリレート、1,4-ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例えば、1,4-ジビニルベンゼン、4-ビニル安息香酸-2-アクリロイルエチルエステル、1,4-ジビニルシクロヘキサノン)、ビニルスルホン(例えば、ジビニルスルホン)、アクリルアミド(例えば、メチレンビスアクリルアミド)及びメタクリルアミドが挙げられる。ポリエーテルを主鎖として有するポリマーは、多官能エポシキ化合物の開環重合反応により合成することが好ましい。2以上のエチレン性不飽和基を有するモノマーの代わり又はそれに加えて、架橋性基の反応により、架橋構造をバインダーポリマーに導入してもよい。架橋性官能基の例としては、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシ基、メチロール基及び活性メチレン基が挙げられる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタンも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。また、架橋基は、上記化合物に限らず上記官能基が分解した結果反応性を示すものであってもよい。バインダーポリマーの重合反応及び架橋反応に使用する重合開始剤は、熱重合開始剤や、光重合開始剤が用いられるが、光重合開始剤の方がより好ましい。光重合開始剤の例としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類がある。アセトフェノン類の例としては、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、1-ヒドロキシジメチルフェニルケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-4-メチルチオ-2-モルフォリノプロピオフェノン及び2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノンが挙げられる。ベンゾイン類の例としては、ベンゾインメチルエーテル、ベンゾインエチルエーテル及びベンゾインイソプロピルエーテルが挙げられる。ベンゾフェノン類の例としては、ベンゾフェノン、2,4-ジクロロベンゾフェノン、4,4-ジクロロベンゾフェノン及びp-クロロベンゾフェノンが挙げられる。ホスフィンオキシド類の例としては、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキシドが挙げられる。
 バインダーポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時又は塗布後に重合反応(必要ならば更に架橋反応)により形成することが好ましい。低屈折率層の塗布液に、少量のポリマー(例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂)を添加してもよい。
 また、本発明に用いられる低屈折率層が、熱又は電離放射線により架橋する含フッ素樹脂(以下、「架橋前の含フッ素樹脂」ともいう)の架橋からなる低屈折率層であってもよい。
 架橋前の含フッ素樹脂としては、含フッ素ビニルモノマーと架橋性基付与のためのモノマーから形成される含フッ素共重合体を好ましく挙げることができる。上記含フッ素ビニルモノマー単位の具体例としては、例えばフルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ-2,2-ジメチル-1,3-ジオキソール等)、(メタ)アクリル酸の部分又は完全フッ素化アルキルエステル誘導体類(例えば、ビスコート6FM(大阪有機化学製)やM-2020(ダイキン製)等)、完全又は部分フッ素化ビニルエーテル類等が挙げられる。架橋性基付与のためのモノマーとしては、グリシジルメタクリレートや、ビニルトリメトキシシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、ビニルグリシジルエーテル等のように分子内に予め架橋性官能基を有するビニルモノマーの他、カルボキシ基やヒドロキシ基、アミノ基、スルホン酸基等を有するビニルモノマー(例えば、(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシアルキルビニルエーテル、ヒドロキシアルキルアリルエーテル等)が挙げられる。後者は共重合の後、ポリマー中の官能基と反応する基ともう1つ以上の反応性基を持つ化合物を加えることにより、架橋構造を導入できることが特開平10-25388号、同10-147739号に記載されている。架橋性基の例には、アクリロイル、メタクリロイル、イソシアナート、エポキシ、アジリジン、オキサゾリン、アルデヒド、カルボニル、ヒドラジン、カルボキシ、メチロール及び活性メチレン基等が挙げられる。含フッ素共重合体が、加熱により反応する架橋基、若しくは、エチレン性不飽和基と熱ラジカル発生剤若しくはエポキシ基と熱酸発生剤等の組み合わせにより、加熱により架橋する場合、熱硬化型であり、エチレン性不飽和基と光ラジカル発生剤若しくは、エポキシ基と光酸発生剤等の組み合わせにより、光(好ましくは紫外線、電子ビーム等)の照射により架橋する場合、電離放射線硬化型である。
 また上記モノマーに加えて、含フッ素ビニルモノマー及び架橋性基付与のためのモノマー以外のモノマーを併用して形成された含フッ素共重合体を架橋前の含フッ素樹脂として用いてもよい。併用可能なモノマーには特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2-エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α-メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N-tertブチルアクリルアミド、N-シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロニトリル誘導体等を挙げることができる。また、含フッ素共重合体中に、滑り性、防汚性付与のため、ポリオルガノシロキサン骨格や、パーフルオロポリエーテル骨格を導入することも好ましい。これは、例えば末端にアクリル基、メタクリル基、ビニルエーテル基、スチリル基等を持つポリオルガノシロキサンやパーフルオロポリエーテルと上記のモノマーとの重合、末端にラジカル発生基を持つポリオルガノシロキサンやパーフルオロポリエーテルによる上記モノマーの重合、官能基を持つポリオルガノシロキサンやパーフルオロポリエーテルと、含フッ素共重合体との反応等によって得られる。
 架橋前の含フッ素共重合体を形成するために用いられる上記各モノマーの使用割合は、含フッ素ビニルモノマーが好ましくは20~70モル%、より好ましくは40~70モル%、架橋性基付与のためのモノマーが好ましくは1~20モル%、より好ましくは5~20モル%、併用されるその他のモノマーが好ましくは10~70モル%、より好ましくは10~50モル%の割合である。
 含フッ素共重合体は、これらモノマーをラジカル重合開始剤の存在下で、溶液重合、塊状重合、乳化重合、懸濁重合法等の手段により重合することにより得ることができる。
 架橋前の含フッ素樹脂は、市販されており使用することができる。市販されている架橋前の含フッ素樹脂の例としては、サイトップ(旭硝子製)、テフロン(登録商標)AF(デュポン製)、ポリフッ化ビニリデン、ルミフロン(旭硝子製)、オプスター(JSR製)等が挙げられる。
 架橋した含フッ素樹脂を構成成分とする低屈折率層は、動摩擦係数が0.03~0.15の範囲、水に対する接触角が90~120度の範囲にあることが好ましい。
 本発明に用いられる低屈折率層は、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(米国特許2681294号)により、塗布により形成することができる。また、2以上の層を同時に塗布してもよい。同時塗布の方法については、米国特許2,761,791号、同2,941,898号、同3,508,947号、同3,526,528号及び原崎勇次著、コーティング工学、253頁、朝倉書店(1973)に記載がある。
 本発明に用いられる低屈折率層の膜厚は50~200nmであることが好ましく、60~150nmであることがより好ましい。
 〈高屈折率層及び中屈折率層〉
 本発明においては、反射率の低減のために、ハードコート層と低屈折率層との間に、高屈折率層を設けることが好ましい。又はドコート層と高屈折率層との間に中屈折率層を設けることは、更に好ましい。高屈折率層の屈折率は、1.55~2.30であることが好ましく、1.57~2.20であることが更に好ましい。中屈折率層の屈折率は、支持体の屈折率と高屈折率層の屈折率との中間の値となるように調整する。中屈折率層の屈折率は、1.55~1.80であることが好ましい。高屈折率層及び中屈折率層の厚さは、5nm~1μmであることが好ましく、10nm~0.2μmであることが更に好ましく、30nm~100nmであることが最も好ましい。高屈折率層及び中屈折率層のヘイズは、5%以下であることが好ましく、3%以下であることが更に好ましく、1%以下であることが最も好ましい。高屈折率層及び中屈折率層の強度は、1kg荷重の鉛筆硬度でH以上であることが好ましく、2H以上であることが更に好ましく、3H以上であることが最も好ましい。
 本発明に用いられる中、高屈折率層は下記一般式(9)で表される有機チタン化合物のモノマー、オリゴマー又はそれらの加水分解物を含有する塗布液を塗布し乾燥させて形成させた屈折率1.55~2.5の層であることが好ましい。
 一般式(9):Ti(OR
 式中、Rとしては炭素数1~8の脂肪族炭化水素基がよいが、好ましくは炭素数1~4の脂肪族炭化水素基である。また、有機チタン化合物のモノマー、オリゴマー又はそれらの加水分解物は、アルコキシド基が加水分解を受けて-Ti-O-Ti-のように反応して架橋構造を作り、硬化した層を形成する。
 本発明に用いられる有機チタン化合物のモノマー、オリゴマーとしては、Ti(OCH、Ti(OC、Ti(O-n-C、Ti(O-i-C、Ti(O-n-C、Ti(O-n-Cの2~10量体、Ti(O-i-Cの2~10量体、Ti(O-n-Cの2~10量体等が好ましい例として挙げられる。これらは単独で、又は二種以上組み合わせて用いることができる。中でもTi(O-n-C、Ti(O-i-C、Ti(O-n-C、Ti(O-n-Cの2~10量体、Ti(O-n-Cの2~10量体が特に好ましい。
 本発明に用いられる中、高屈折率層用塗布液は、水と後述する有機溶媒が順次添加された溶液中に上記有機チタン化合物を添加することが好ましい。水を後から添加した場合は、加水分解/重合が均一に進行せず、白濁が発生したり、膜強度が低下する。水と有機溶媒は添加された後、良く混合させるために攪拌し混合溶解されていることが好ましい。
 また、別法として有機チタン化合物と有機溶媒を混合させておき、この混合溶液を、上記水と有機溶媒の混合攪拌された溶液中に添加することも好ましい態様である。
 また、水の量は有機チタン化合物1モルに対して、0.25~3モルの範囲であることが好ましい。0.25モル未満であると、加水分解、重合の進行が不十分で膜強度が低下する。3モルを超えると加水分解、重合が進行し過ぎて、TiOの粗大粒子が発生し白濁するため好ましくない。従って水の量は上記範囲で調整する必要がある。
 また、水の含有率は塗布液総量に対して10質量%未満であることが好ましい。水の含有率を塗布液総量に対して10質量%以上にすると、塗布液の経時安定が劣り白濁を生じたりするため好ましくない。
 本発明に用いられる有機溶媒としては、水混和性の有機溶媒であることが好ましい。水混和性の有機溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール等)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、モルホリン、N-エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)、複素環類(例えば、2-ピロリドン、N-メチル-2-ピロリドン、シクロヘキシルピロリドン、2-オキサゾリドン、1,3-ジメチル-2-イミダゾリジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)、スルホン類(例えば、スルホラン等)、尿素、アセトニトリル、アセトン等が挙げられるが、特に、アルコール類、多価アルコール類、多価アルコールエーテル類が好ましい。これらの有機溶媒の使用量は、前述したように、水の含有率が塗布液総量に対して10質量%未満であるように、水と有機溶媒のトータルの使用量を調整すればよい。
 本発明に用いられる有機チタン化合物のモノマー、オリゴマー又はそれらの加水分解物は、塗布液に含まれる固形分中の50.0質量%~98.0質量%を占めていることが望ましい。固形分比率は50質量%~90質量%がより好ましく、55質量%~90質量%が更に好ましい。この他、塗布組成物には有機チタン化合物のポリマー(予め有機チタン化合物の加水分解を行って架橋したもの)或いは酸化チタン微粒子を添加することも好ましい。
 本発明に用いられる高屈折率層及び中屈折率層は、微粒子として金属酸化物粒子を含み、更にバインダーポリマーを含むことが好ましい。
 上記塗布液調製法で加水分解/重合した有機チタン化合物と金属酸化物粒子を組み合わせると、金属酸化物粒子と加水分解/重合した有機チタン化合物とが強固に接着し、粒子のもつ硬さと均一膜の柔軟性を兼ね備えた強い塗膜を得ることができる。
 高屈折率層及び中屈折率層に用いる金属酸化物粒子は、屈折率が1.80~2.80であることが好ましく、1.90~2.80であることが更に好ましい。金属酸化物粒子の1次粒子の重量平均径は、1~150nmであることが好ましく、1~100nmであることが更に好ましく、1~80nmであることが最も好ましい。層中での金属酸化物粒子の重量平均径は、1~200nmであることが好ましく、5~150nmであることがより好ましく、10~100nmであることが更に好ましく、10~80nmであることが最も好ましい。金属酸化物粒子の平均粒径は、20~30nm以上であれば光散乱法により、20~30nm以下であれば電子顕微鏡写真により測定される。金属酸化物粒子の比表面積は、BET法で測定された値として、10~400m/gであることが好ましく、20~200m/gであることが更に好ましく、30~150m/gであることが最も好ましい。
 金属酸化物粒子の例としては、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物であり、具体的には二酸化チタン(例、ルチル、ルチル/アナターゼの混晶、アナターゼ、アモルファス構造)、酸化錫、酸化インジウム、酸化亜鉛、及び酸化ジルコニウムが挙げられる。中でも、酸化チタン、酸化錫及び酸化インジウムが特に好ましい。金属酸化物粒子は、これらの金属の酸化物を主成分とし、更に他の元素を含むことができる。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。他の元素の例としては、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びS等が挙げられる。
 金属酸化物粒子は表面処理されていることが好ましい。表面処理は、無機化合物又は有機化合物を用いて実施することができる。表面処理に用いる無機化合物の例としては、アルミナ、シリカ、酸化ジルコニウム及び酸化鉄が挙げられる。中でもアルミナ及びシリカが好ましい。表面処理に用いる有機化合物の例としては、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が挙げられる。中でも、前記シランカップリング剤が最も好ましい。
 二種類以上のカップリング剤を併用してもよく、前記シランカップリング剤に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n-プロピル、オルトケイ酸i-プロピル、オルトケイ酸n-ブチル、オルトケイ酸sec-ブチル、オルトケイ酸t-ブチル)及びその加水分解物が挙げられる。
 カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施できる。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、又はこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。
 これらシランカップリング剤は予め必要量の水で加水分解されていることが好ましい。シランカップリング剤が加水分解されていると、前述の有機チタン化合物及び金属酸化物粒子の表面が反応し易く、より強固な膜が形成される。また、加水分解されたシランカップリング剤を予め塗布液中に加えることも好ましい。この加水分解に用いた水も有機チタン化合物の加水分解/重合に用いることができる。
 本発明では二種類以上の表面処理を組み合わせて処理されていても構わない。金属酸化物粒子の形状は、米粒状、球形状、立方体状、紡錘形状或いは不定形状であることが好ましい。二種類以上の金属酸化物粒子を高屈折率層及び中屈折率層に併用してもよい。
 高屈折率層及び中屈折率層中の金属酸化物粒子の割合は、5~65体積%であることが好ましく、より好ましくは10~60体積%であり、更に好ましくは20~55体積%である。
 上記金属酸化物粒子は、媒体に分散した分散体の状態で、高屈折率層及び中屈折率層を形成するための塗布液に供される。金属酸化物粒子の分散媒体としては、沸点が60~170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n-メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1-メトキシ-2-プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。
 また金属酸化物粒子は、分散機を用いて媒体中に分散することができる。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。
 本発明に用いられる高屈折率層及び中屈折率層は、架橋構造を有するポリマー(以下、架橋ポリマーともいう)をバインダーポリマーとして用いることが好ましい。架橋ポリマーの例として、ポリオレフィン等の飽和炭化水素鎖を有するポリマー(以下、ポリオレフィンと総称する)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミド及びメラミン樹脂等の架橋物が挙げられる。中でも、ポリオレフィン、ポリエーテル及びポリウレタンの架橋物が好ましく、ポリオレフィン及びポリエーテルの架橋物が更に好ましく、ポリオレフィンの架橋物が最も好ましい。また、架橋ポリマーがアニオン性基を有することは更に好ましい。アニオン性基は無機微粒子の分散状態を維持する機能を有し、架橋構造はポリマーに皮膜形成能を付与して皮膜を強化する機能を有する。上記アニオン性基は、ポリマー鎖に直接結合していてもよいし、連結基を介してポリマー鎖に結合していてもよいが、連結基を介して側鎖として主鎖に結合していることが好ましい。
 アニオン性基の例としては、カルボン酸基(カルボキシ)、スルホン酸基(スルホ)及びリン酸基(ホスホノ)が挙げられる。中でも、スルホン酸基及びリン酸基が好ましい。ここで、アニオン性基は、塩の状態であってもよい。アニオン性基と塩を形成するカチオンは、アルカリ金属イオンであることが好ましい。また、アニオン性基のプロトンは、解離していてもよい。アニオン性基とポリマー鎖とを結合する連結基は、-CO-、-O-、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる二価の基であることが好ましい。好ましいバインダーポリマーである架橋ポリマーは、アニオン性基を有する繰り返し単位と、架橋構造を有する繰り返し単位とを有するコポリマーであることが好ましい。この場合、コポリマー中のアニオン性基を有する繰り返し単位の割合は、2~96質量%であることが好ましく、4~94質量%であることが更に好ましく、6~92質量%であることが最も好ましい。繰り返し単位は、2以上のアニオン性基を有していてもよい。
 アニオン性基を有する架橋ポリマーには、その他の繰り返し単位(アニオン性基も架橋構造も有しない繰り返し単位)が含まれていてもよい。その他の繰り返し単位としては、アミノ基又は4級アンモニウム基を有する繰り返し単位及びベンゼン環を有する繰り返し単位が好ましい。アミノ基又は4級アンモニウム基は、アニオン性基と同様に、無機微粒子の分散状態を維持する機能を有する。ベンゼン環は、高屈折率層の屈折率を高くする機能を有する。なお、アミノ基、4級アンモニウム基及びベンゼン環は、アニオン性基を有する繰り返し単位或いは架橋構造を有する繰り返し単位に含まれていても、同様の効果が得られる。
 上記アミノ基又は4級アンモニウム基を有する繰り返し単位を構成単位として含有する架橋ポリマーにおいて、アミノ基又は4級アンモニウム基は、ポリマー鎖に直接結合していてもよいし、或いは連結基を介し側鎖としてポリマー鎖に結合していてもよいが、後者がより好ましい。アミノ基又は4級アンモニウム基は、2級アミノ基、3級アミノ基又は4級アンモニウム基であることが好ましく、3級アミノ基又は4級アンモニウム基であることが更に好ましい。2級アミノ基、3級アミノ基又は4級アンモニウム基の窒素原子に結合している基としては、アルキル基が好ましく、より好ましくは炭素数1~12のアルキル基であり、更に好ましくは炭素数1~6のアルキル基である。4級アンモニウム基の対イオンは、ハライドイオンであることが好ましい。アミノ基又は4級アンモニウム基とポリマー鎖とを結合する連結基は、-CO-、-NH-、-O-、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる2価の基であることが好ましい。架橋ポリマーが、アミノ基又は4級アンモニウム基を有する繰り返し単位を含む場合、その割合は、0.06~32質量%であることが好ましく、0.08~30質量%であることが更に好ましく、0.1~28質量%であることが最も好ましい。
 架橋ポリマーは、架橋ポリマーを生成するためのモノマーを配合して高屈折率層及び中屈折率層形成用の塗布液を調製し、塗布液の塗布と同時又は塗布後に、重合反応によって生成させることが好ましい。架橋ポリマーの生成と共に、各層が形成される。アニオン性基を有するモノマーは、塗布液中で無機微粒子の分散剤として機能する。アニオン性基を有するモノマーは、無機微粒子に対して、好ましくは1~50質量%、より好ましくは5~40質量%、更に好ましくは10~30質量%使用される。また、アミノ基又は4級アンモニウム基を有するモノマーは、塗布液中で分散助剤として機能する。アミノ基又は4級アンモニウム基を有するモノマーは、アニオン性基を有するモノマーに対して、好ましくは3~33質量%使用される。塗布液の塗布と同時又は塗布後に、重合反応によって架橋ポリマーを生成する方法により、塗布液の塗布前にこれらのモノマーを有効に機能させることができる。
 本発明に用いられるモノマーとしては、2個以上のエチレン性不飽和基を有するモノマーが最も好ましいが、その例としては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4-ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例、1,4-ジビニルベンゼン、4-ビニル安息香酸-2-アクリロイルエチルエステル、1,4-ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)及びメタクリルアミド等が挙げられる。アニオン性基を有するモノマー、及びアミノ基又は4級アンモニウム基を有するモノマーは市販のモノマーを用いてもよい。好ましく用いられる市販のアニオン性基を有するモノマーとしては、KAYAMARPM-21、PM-2(日本化薬(株)製)、AntoxMS-60、MS-2N、MS-NH4(日本乳化剤(株)製)、アロニックスM-5000、M-6000、M-8000シリーズ(東亞合成(株)製)、ビスコート#2000シリーズ(大阪有機化学工業(株)製)、ニューフロンティアGX-8289(第一工業製薬(株)製)、NKエステルCB-1、A-SA(新中村化学工業(株)製)、AR-100、MR-100、MR-200(第八化学工業(株)製)等が挙げられる。また、好ましく用いられる市販のアミノ基又は4級アンモニウム基を有するモノマーとしてはDMAA(大阪有機化学工業(株)製)、DMAEA,DMAPAA(興人(株)製)、ブレンマーQA(日本油脂(株)製)、ニューフロンティアC-1615(第一工業製薬(株)製)等が挙げられる。
 ポリマーの重合反応は、光重合反応又は熱重合反応を用いることができる。特に光重合反応が好ましい。重合反応のため、重合開始剤を使用することが好ましい。例えば、防眩性ハードコート層のバインダーポリマーを形成するために用いられる後述する熱重合開始剤、及び光重合開始剤が挙げられる。
 重合開始剤として市販の重合開始剤を使用してもよい。重合開始剤に加えて、重合促進剤を使用してもよい。重合開始剤と重合促進剤の添加量は、モノマーの全量の0.2~10質量%の範囲であることが好ましい。塗布液(モノマーを含む無機微粒子の分散液)を加熱して、モノマー(又はオリゴマー)の重合を促進してもよい。また、塗布後の光重合反応の後に加熱して、形成されたポリマーの熱硬化反応を追加処理してもよい。
 中屈折率層及び高屈折率層には、比較的屈折率が高いポリマーを用いることが好ましい。屈折率が高いポリマーの例としては、ポリスチレン、スチレン共重合体、ポリカーボネート、メラミン樹脂、フェノール樹脂、エポキシ樹脂及び環状(脂環式又は芳香族)イソシアネートとポリオールとの反応で得られるポリウレタンが挙げられる。その他の環状(芳香族、複素環式、脂環式)基を有するポリマーや、フッ素以外のハロゲン原子を置換基として有するポリマーも、屈折率が高く用いることができる。
 反射防止層の各層又はその塗布液には、前述した成分(金属酸化物粒子、ポリマー、分散媒体、重合開始剤、重合促進剤)以外に、重合禁止剤、レベリング剤、増粘剤、着色防止剤、紫外線吸収剤、シランカップリング剤、帯電防止剤や接着付与剤を添加してもよい。
 本発明に係る中~高屈折率層及び低屈折率層の塗設後、金属アルコキシドを含む組成物の加水分解又は硬化を促進するため、活性エネルギー線を照射することが好ましい。より好ましくは、各層を塗設するごとに活性エネルギー線を照射することである。
 本発明に使用する活性エネルギー線は、紫外線、電子線、γ線等で、化合物を活性させるエネルギー源であれば制限なく使用できるが、紫外線、電子線が好ましく、特に取り扱いが簡便で高エネルギーが容易に得られるという点で紫外線が好ましい。紫外線反応性化合物を光重合させる紫外線の光源としては、紫外線を発生する光源であれば何れも使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。また、ArFエキシマレーザ、KrFエキシマレーザ、エキシマランプ又はシンクロトロン放射光等も用いることができる。照射条件はそれぞれのランプによって異なるが、照射光量は20mJ/cm~10,000mJ/cmが好ましく、更に好ましくは、100mJ/cm~2,000mJ/cmであり、特に好ましくは、400mJ/cm~2,000mJ/cmである。
 紫外線を用いる場合、多層の反射防止層を1層ずつ照射してもよいし、積層後照射してもよい。生産性の点から、多層を積層後、紫外線を照射することが好ましい。
 また、電子線も同様に使用できる。電子線としては、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される50~1000keV、好ましくは100~300keVのエネルギーを有する電子線を挙げることができる。
 (反射防止層の膜厚)
 反射防止層を構成する各屈折率層の膜厚としては、各々1nm~200nmの範囲が好ましく、更に好ましくは、5nm~150nmであるが、各層の屈折率に応じて、各々適切な膜厚を選択することが好ましい。
 (反射防止層の反射率)
 本発明に用いられる反射防止層は、450nm~650nmにおける平均反射率が1%以下であることが好ましく、特に好ましくは0.5%以下である。また、この範囲における最低反射率は0.00~0.3%にあることが特に好ましい。
 反射防止層の屈折率と膜厚は、分光反射率の測定より計算して算出することができる。また、作製した低反射フィルムの反射光学特性は、分光光度計を用い、5度正反射の条件にて反射率を測定することができる。この測定法において、反射防止層が塗布されていない側の基板面を粗面化した後、黒色のスプレーを用いて光吸収処理を行い、フィルム裏面での光の反射を防止して、反射率が測定される。
 測定に際しては、透過率550nmにおける透過率を分光光度計を用いて空気を参照として測定を行う。
 (偏光板)
 本発明に係るλ/4板を利用した偏光板は、当該λ/4板、偏光子、及び光学フィルムがこの順に設けられた偏光板であって、当該光学フィルムが、下記要件(1)又は(2)を満たすことを特徴とする(図5参照)。
(1)下記式(I)により定義される面内リターデーション値Ro(590)が20~150nmの範囲内であり、かつ下記式(II)により定義される厚さ方向のリターデーション値Rt(590)が70~400nmnmの範囲内である。
(2)下記式(I)により定義される面内リターデーション値Ro(590)が0~2nmの範囲内であり、かつ下記式(II)により定義される厚さ方向のリターデーション値Rt(590)が-15~15nmの範囲内である。
式(I):Ro(590)=(n-n)×d(nm)
式(II):Rt(590)={(n+n)/2-n}×d(nm)
〔上式中、Ro(590)は測定波長590nmにおけるフィルム内の面内リターデーション値を表し、Rt(590)は測定波長590nmにおけるフィルム内の厚さ方向のリターデーション値を表す。また、dは光学フィルムの厚さ(nm)を表し、nは測定波長590nmにおけるフィルムの面内の最大の屈折率を表し、遅相軸方向の屈折率ともいう。nは測定波長590nmにおけるフィルム面内で遅相軸に直角な方向の屈折率を表し、nは測定波長590nmにおける厚さ方向におけるフィルムの屈折率を表す。なお、測定は、23℃・55%RH環境下で行う。〕
 本発明に係る偏光板は、偏光子としてヨウ素、又は二色性染料をドープしたポリビニルアルコールを延伸したものを使用し、λ/4板/偏光子/光学フィルムの構成で貼合して製造することができる。本発明に係るλ/4板は視認側に貼合する。
 〈偏光板用光学フィルム〉
 本発明に用いられる光学フィルムは、前述のλ/4板で用いられるセルロースアセテート、可塑剤、紫外線吸収剤、酸化防止剤、リターデーション調整剤、マット剤、劣化防止剤、剥離助剤、界面活性剤等を好ましく用いることができる。
 偏光子に対して前記λ/4板を貼合した面と反対側の面に貼合される光学フィルムは、下記式で定義されるリターデーション値Ro、Rtが各々20~150nm、70~400nmである光学フィルム、又は0nm≦Ro≦2nm、かつ-15nm≦Rt≦15nmである光学フィルムのいずれかを貼合することが好ましい。
 式(i) Ro=(n-n)×d
 式(ii) Rt=((n+n)/2-n)×d
 式中、n、n、nは、23℃・55%RH、590nmにおける屈折率n(フィルムの面内の最大の屈折率、遅相軸方向の屈折率ともいう。)、n(フィルム面内で遅相軸に直交する方向の屈折率)、n(厚さ方向におけるフィルムの屈折率)であり、dはフィルムの厚さ(nm)である。
 上記光学フィルムは、リターデーション値Ro、Rtが各々20~150nm、70~400nmの範囲にあり、特にVAモードの液晶セルを有するVA型液晶表示装置の光学補償フィルムとして用いる場合は、Ro値を30~100nmとし、Rt値をVA型液晶表示装置に二枚の光学補償フィルムを使用する場合は70~250nm、VA型液晶表示装置に一枚の光学フィルムを使用する場合は、Rt値は150~400nmであることが好ましい。
 上記光学フィルムとして、例えば、負の一軸性を有する化合物であるディスコティック液晶性化合物を支持体上に担持させる方法(例えば、特開平7-325221号公報参照。)、正の光学異方性を有するネマティック型高分子液晶性化合物を深さ方向に液晶分子のプレチルト角が変化するハイブリッド配向をさせたものを支持体上に担持させる方法(例えば、特開平10-186356号公報参照。)、正の光学異方性を有するネマティック型液晶性化合物を支持体上に2層構成にして各々の層の配向方向を略90°とすることにより擬似的に負の一軸性類似の光学特性を付与させる方法(例えば、特開平8-15681号公報参照。)等による光学異方性層を支持体上に設けた光学フィルム、又は、従来のTACフィルムの代わりにセルロース誘導体フィルムを延伸により位相差を発現させ、これをケン化処理してPVA偏光子をラミネートすることにより位相差フィルムの機能を併せ持つ光学フィルム(例えば、特開2003-270442号公報参照。)、セルロースエステルフィルムにリターデーション調整剤を添加し、位相差フィルムを得る方法(例えば、特開2000-275434号公報、2003-344655号公報参照。)等による光学補償フィルムが挙げられるが、これらに限定されるものではない。
 これらの光学フィルムはポリマーフィルムであることが好ましく、製造が容易であること、光学的に均一性であること、光学的に透明性であることが好ましい。これらの性質を有していれば何れでもよく、例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム,ポリカーボネートフィルム、ノルボルネン樹脂系フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、シクロオレフィンポリマーフィルム、ポリビニルアセタール系樹脂フィルム、ポリメチルメタクリレートフィルム又はアクリルフィルム等を挙げることができるが、これらに限定されるわけではない。これらのフィルムは溶液流延法或いは溶融法で製膜されたフィルムが好ましく用いられる。これらのうちセルロースエステルフィルム、ポリカーボネートフィルム、ポリスルホン(ポリエーテルスルホンを含む)、シクロオレフィンポリマーフィルムが好ましく、本発明においては、特にセルロースエステルフィルム、シクロオレフィンポリマーフィルムが、製造上、コスト面、透明性、均一性、接着性等の面から好ましい。例えば、市販のセルロースエステルフィルムとしては、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC12UR、KC16UR、KC4UE、KC8UE、KC4FR-1、KC4FR-2(以上コニカミノルタオプト(株)製)などが好ましく用いられる。
 最も好ましい光学フィルムは、テンター装置等によりフィルム幅手方向に延伸したセルロースエステルフィルムである。
 また、本発明に用いられる光学フィルムは、横電界スイッチングモード型(IPSモード型ともいう。)液晶表示装置に用いられる偏光板保護フィルムとしても用いることができ、その場合は、リターデーション値が0nm≦Ro≦2nm、かつ-15nm≦Rt≦15nmである光学フィルムが好ましい。該光学フィルムはセルロースエステルを含み、かつ重量平均分子量が500以上30000以下であるアクリルポリマーを含有することが好ましく、中でも分子内に芳香環と親水性基を有しないエチレン性不飽和モノマーXaと分子内に芳香環を有さず親水性基を有するエチレン性不飽和モノマーXbとを共重合して得られた重量平均分子量5000以上30000以下のポリマーX、より好ましくは、分子内に芳香環と親水性基を有しないエチレン性不飽和モノマーXaと分子内に芳香環を有さず親水性基を有するエチレン性不飽和モノマーXbとを共重合して得られた重量平均分子量5000以上30000以下のポリマーXと、芳香環を有さないエチレン性不飽和モノマーYaを重合して得られた重量平均分子量500以上3000以下のポリマーYとを含有することが好ましい。
 〈ポリマーX、ポリマーY〉
 本発明に用いられるポリマーXは分子内に芳香環と親水性基を有しないエチレン性不飽和モノマーXaと分子内に芳香環を有せず、親水性基を有するエチレン性不飽和モノマーXbとを共重合して得られた重量平均分子量5000以上30000以下のポリマーである。
 好ましくは、Xaは分子内に芳香環と親水性基を有しないアクリル又はメタクリルモノマー、Xbは分子内に芳香環を有せず親水性基を有するアクリル又はメタクリルモノマーである。
 本発明に用いられるポリマーXは、下記一般式(X)で表される。
 一般式(X):-(Xa)m-(Xb)n-(Xc)p-
 更に好ましくは、下記一般式(X-1)で表されるポリマーである。
 一般式(X-1):-[CH-C(-R)(-CO)]m-[CH-C(-R)(-CO-OH)-]n-[Xc]p-
(式中、R、Rは、H又はCHを表す。Rは炭素数1~12のアルキル基、シクロアルキル基を表す。Rは-CH-、-C-又は-C-を表す。Xcは、Xa、Xbに重合可能なモノマー単位を表す。m、n及びpは、モル組成比を表す。ただしm≠0、n≠0、k≠0、m+n+p=100である。)
 本発明に用いられるポリマーXを構成するモノマー単位としてのモノマーを下記に挙げるがこれに限定されない。
 Xにおいて、親水性基とは、ヒドロキシ基(水酸基)、エチレンオキシド連鎖を有する基をいう。
 分子内に芳香環と親水性基を有しないエチレン性不飽和モノマーXaは、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i-、n-)、アクリル酸ブチル(n-、i-、s-、t-)、アクリル酸ペンチル(n-、i-、s-)、アクリル酸ヘキシル(n-、i-)、アクリル酸ヘプチル(n-、i-)、アクリル酸オクチル(n-、i-)、アクリル酸ノニル(n-、i-)、アクリル酸ミリスチル(n-、i-)、アクリル酸(2-エチルヘキシル)、アクリル酸(ε-カプロラクトン)、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-エトキシエチル)等、又は上記アクリル酸エステルをメタクリル酸エステルに変えたものを挙げることができる。中でも、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル(i-、n-)であることが好ましい。
 分子内に芳香環を有せず、親水性基を有するエチレン性不飽和モノマーXbは、ヒドロキシ基(水酸基)を有するモノマー単位として、アクリル酸又はメタクリル酸エステルが好ましく、例えば、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)、アクリル酸(4-ヒドロキシブチル)、アクリル酸(2-ヒドロキシブチル)、又はこれらアクリル酸をメタクリル酸に置き換えたものを挙げることができ、好ましくは、アクリル酸(2-ヒドロキシエチル)及びメタクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)である。
 Xcとしては、Xa、Xb以外のものでかつ共重合可能なエチレン性不飽和モノマーであれば、特に制限はないが、芳香環を有していないものが好ましい。
 Xa、Xb及びXcのモル組成比m:nは99:1~65:35の範囲が好ましく、更に好ましくは95:5~75:25の範囲である。Xcのpは0~10である。Xcは複数のモノマー単位であってもよい。
 Xaのモル組成比が多いとセルロースエステルとの相溶性が良化するがフィルム厚さ方向のリターデーション値Rtが大きくなる。Xbのモル組成比が多いと上記相溶性が悪くなるが、Rtを低減させる効果が高い。また、Xbのモル組成比が上記範囲を超えると製膜時にヘイズが出る傾向があり、これらの最適化を図りXa、Xbのモル組成比を決めることが好ましい。
 ポリマーXの分子量は重量平均分子量が5000以上30000以下であり、更に好ましくは8000以上25000以下である。
 重量平均分子量を5000以上とすることにより、セルロースエステルフィルムの、高温高湿下における寸法変化が少ない、偏光板保護フィルムとしてカールが少ない等の利点が得られ好ましい。重量平均分子量が30000を以内とした場合は、セルロースエステルとの相溶性がより向上し、高温高湿下においてのブリードアウト、更に製膜直後でのヘイズの発生が抑制される。
 本発明に用いられるポリマーXの重量平均分子量は、公知の分子量調節方法で調整することができる。そのような分子量調節方法としては、例えば四塩化炭素、ラウリルメルカプタン、チオグリコール酸オクチル等の連鎖移動剤を添加する方法等が挙げられる。また、重合温度は通常室温から130℃、好ましくは50℃から100℃で行われるが、この温度又は重合反応時間を調整することで可能である。
 重量平均分子量の測定方法は下記方法によることができる。
 (重量平均分子量測定方法)
 重量平均分子量Mwは、ゲルパーミエーションクロマトグラフィーを用いて測定した。
 測定条件は以下の通りである。
 溶媒   :メチレンクロライド
 カラム  :Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度 :0.1質量%
 検出器  :RI Model 504(GLサイエンス社製)
 ポンプ  :L6000(日立製作所(株)製)
 流量   :1.0ml/min
 校正曲線 :標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いる。
 本発明に用いられるポリマーYは芳香環を有さないエチレン性不飽和モノマーYaを重合して得られた重量平均分子量500以上3000以下のポリマーである。重量平均分子量500以上ではポリマーの残存モノマーが減少し好ましい。また、3000以下とすることは、リターデーション値Rt低下性能を維持するために好ましい。Yaは、好ましくは芳香環を有さないアクリル又はメタクリルモノマーである。
 本発明に用いられるポリマーYは、下記一般式(Y)で表される。
 一般式(Y):-(Ya)-(Yb)
 更に好ましくは、下記一般式(Y-1)で表されるポリマーである。
 一般式(Y-1):-[CH-C(-R)(-CO)]-[Yb]
(式中、Rは、H又はCHを表す。Rは炭素数1~12のアルキル基又はシクロアルキル基を表す。Ybは、Yaと共重合可能なモノマー単位を表す。k及びqは、モル組成比を表す。ただしk≠0、k+q=100である。)
 Ybは、Yaと共重合可能なエチレン性不飽和モノマーであれば特に制限はない。Ybは複数であってもよい。k+q=100、qは好ましくは0~30である。
 芳香環を有さないエチレン性不飽和モノマーを重合して得られるポリマーYを構成するエチレン性不飽和モノマーYaはアクリル酸エステルとして、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i-、n-)、アクリル酸ブチル(n-、i-、s-、t-)、アクリル酸ペンチル(n-、i-、s-)、アクリル酸ヘキシル(n-、i-)、アクリル酸ヘプチル(n-、i-)、アクリル酸オクチル(n-、i-)、アクリル酸ノニル(n-、i-)、アクリル酸ミリスチル(n-、i-)、アクリル酸シクロヘキシル、アクリル酸(2-エチルヘキシル)、アクリル酸(ε-カプロラクトン)、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)、アクリル酸(4-ヒドロキシブチル)、アクリル酸(2-ヒドロキシブチル)、メタクリル酸エステルとして、上記アクリル酸エステルをメタクリル酸エステルに変えたもの;不飽和酸として、例えば、アクリル酸、メタクリル酸、無水マレイン酸、クロトン酸、イタコン酸等を挙げることができる。
 Ybは、Yaと共重合可能なエチレン性不飽和モノマーであれば特に制限はないが、ビニルエステルとして、例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、吉草酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、オクチル酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、桂皮酸ビニル等が好ましい。Ybは複数であってもよい。
 ポリマーX、Yを合成するには、通常の重合では分子量のコントロールが難しく、分子量を余り大きくしない方法でできるだけ分子量を揃えることのできる方法を用いることが望ましい。かかる重合方法としては、クメンペルオキシドやt-ブチルヒドロペルオキシドのような過酸化物重合開始剤を使用する方法、重合開始剤を通常の重合より多量に使用する方法、重合開始剤の他にメルカプト化合物や四塩化炭素等の連鎖移動剤を使用する方法、重合開始剤の他にベンゾキノンやジニトロベンゼンのような重合停止剤を使用する方法、更に特開2000-128911号又は同2000-344823号公報にあるような一つのチオール基と2級のヒドロキシ基(水酸基)とを有する化合物、或いは、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等を挙げることができ、何れも本発ヒドロキシ基(水酸基)明において好ましく用いられるが、特に、ポリマーYは、分子中にチオール基と2級のヒドロキシ基(水酸基)とを有する化合物を連鎖移動剤として使用する重合方法が好ましい。この場合、ポリマーYの末端には、重合触媒及び連鎖移動剤に起因するヒドロキシ基(水酸基)、チオエーテルを有することとなる。この末端残基により、Yとセルロースエステルとの相溶性を調整することができる。
 ポリマーX及びYのヒドロキシ(水酸基)価は30~150[mgKOH/g]であることが好ましい。
 (ヒドロキシ(水酸基)価の測定方法)
 この測定は、JIS K 0070(1992)に準ずる。このヒドロキシ(水酸基)価は、試料1gをアセチル化させたとき、ヒドロキシ基(水酸基)と結合した酢酸を中和するのに必要とする水酸化カリウムのmg数と定義される。具体的には試料Xg(約1g)をフラスコに精秤し、これにアセチル化試薬(無水酢酸20mlにピリジンを加えて400mlにしたもの)20mlを正確に加える。フラスコの口に空気冷却管を装着し、95~100℃のグリセリン浴にて加熱する。1時間30分後、冷却し、空気冷却管から精製水1mlを加え、無水酢酸を酢酸に分解する。次に電位差滴定装置を用いて0.5mol/L水酸化カリウムエタノール溶液で滴定を行い、得られた滴定曲線の変曲点を終点とする。更に空試験として、試料を入れないで滴定し、滴定曲線の変曲点を求める。ヒドロキシ(水酸基)価は、次の式によって算出する。
 ヒドロキシ(水酸基)価={(B-C)×f×28.05/X}+D
(式中、Bは空試験に用いた0.5mol/Lの水酸化カリウムエタノール溶液の量(ml)、Cは滴定に用いた0.5mol/Lの水酸化カリウムエタノール溶液の量(ml)、fは0.5mol/L水酸化カリウムエタノール溶液のファクター、Dは酸価、また、28.05は水酸化カリウムの1mol量56.11の1/2を表す)
 上述のポリマーXとポリマーYは何れもセルロースエステルとの相溶性に優れ、蒸発や揮発もなく生産性に優れ、偏光板用保護フィルムとしての保留性がよく、透湿度が小さく、寸法安定性に優れている。
 ポリマーXとポリマーYのセルロースエステルフィルム中での含有量は、下記式(i)、式(ii)を満足する範囲であることが好ましい。ポリマーXの含有量をXg(質量%=ポリマーXの質量/セルロースエステルの質量×100)、ポリマーYの含有量をYg(質量%)とすると、
 式(i) 5≦Xg+Yg≦35(質量%)
 式(ii) 0.05≦Yg/(Xg+Yg)≦0.4
 式(i)の好ましい範囲は、10~25質量%である。
 ポリマーXとポリマーYは総量として5質量%以上であれば、リターデーション値Rtの低減に十分な作用をする。また、総量として35質量%以下であれば、ポリビニルアルコール系の偏光子との接着性が良好である。
 ポリマーXとポリマーYはドープ液を構成する素材として直接添加、溶解するか、もしくはセルロースエステルを溶解する有機溶媒に予め溶解した後ドープ液に添加することができる。
 本発明に係る偏光板に好ましく用いられる偏光子としては、ポリビニルアルコール系偏光フィルムが挙げられ、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。ポリビニルアルコール系フィルムとしては、エチレンで変性された変性ポリビニルアルコール系フィルムが好ましく用いられる。偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。延伸は、フィルム製膜方向に一軸延伸を行うか、又は前述したλ/4板と同様にフィルム製膜方向に対して斜め45°方向に延伸することが好ましい。
 偏光子の膜厚は5~40μm、好ましくは5~30μmであり、特に好ましくは5~20μmである。該偏光子の面上に、本発明に係るλ/4板、及び偏光板保護フィルムBの片面を貼り合わせて偏光板を形成する。
 偏光板は一般的な方法で作製することができる。アルカリ鹸化処理した本発明に係るλ/4板は、ポリビニルアルコール系フィルムをヨウ素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面には、前記偏光板保護フィルムBを貼合することが好ましい。
 偏光板は、更に該偏光板の一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成することができる。プロテクトフィルム及びセパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。
 〈液晶表示装置〉
 本発明に係る偏光板を液晶セルの視認側の面に貼合した液晶表示装置とすることによって、偏光サングラス等偏光作用のある光学部材を通して観察した場合でも表示画像が偏光軸の方向によって見え難くなるのを低減でき、使用環境に対してより耐久性が高い本発明に係る液晶表示装置を作製することができる。本発明に係る偏光板は反射型、透過型、半透過型LCD或いはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等の各種駆動方式のLCDで好ましく用いられる。
 (液晶セルの駆動モード)
 液晶セルの駆動モードとしては、本発明の効果が得られる限りにおいて任意の適切な駆動モードが採用され得る。駆動モードの具体例としては、スーパーツイステッドネマティック(STN)モード、ツイステッドネマティック(TN)モード、電気制御複屈折(ECB:Electrically Controlled Birefringence)モード、インプレーンスイッチング(IPS)モード、垂直配向(VA)モード、ベンドネマチック(OCB:Optically Aligned Birefringence)モードおよびハイブリッド配向(HAN:Hybrid Aligned Nematic)モードが挙げられる。ECBモードが好ましい。本発明においては、特にコントラストと視野角特性のバランスに優れた立体映像表示装置が得られるからである。
 なお、ECBモードは、液晶の複屈折性を利用したもので、液晶分子への印加電圧によってリターデーションを変化させ、位相差フィルムとの組合せにより透過不透過をコントロールするものである。
 (立体映像表示装置)
 本発明の立体映像表示装置は、表示装置と液晶シャッタメガネとからなる立体映像表示装置であって、当該表示装置には、視認側から、λ/4板、及び偏光子がこの順に設けられており、当該液晶シャッタメガネには、視認側から、偏光子、液晶セル、及びλ/4板がこの順に設けられており、すべての光学補償層の厚さ方向位相差Rtの合計ΣRt1~n(ただし、nは、整数を表す。)と液晶セルの厚さ方向の位相差Rtcとが前記式(1)を満足することを特徴とする。
 本発明においては、上記の態様・構成により、立体(3D)映像観賞時に表示装置を斜めから見た際のクロストーク若しくは輝度低下及び色味変化を低減でき、使用環境に対して優れた視認性を保つことが可能で、使用環境に対してより耐久性が高い立体映像表示装置とすることができる。
 以下、本発明について実施例を挙げて説明するが、本発明はこれらに限定されるものではない。
 実施例1
 <λ/4板1の作製>
 〈微粒子分散液1〉
 微粒子(アエロジル R972V 日本アエロジル(株)製)11質量部
 エタノール                       89質量部
 以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行った。
 〈微粒子添加液1〉
 メチレンクロライドを入れた溶解タンクに十分攪拌しながら、微粒子分散液1をゆっくりと添加した。さらに、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。
 メチレンクロライド                   99質量部
 微粒子分散液1                      5質量部
 下記組成の主ドープ液を調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにセルロースアセテートを攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解し。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ液を調製した。
 〈主ドープ液の組成〉
 メチレンクロライド                  340質量部
 エタノール                       64質量部
 アセチル基置換度が2.1のセルロースアセテート    100質量部
 糖エステル化合物1-22              10.0質量部
 ポリエステル(a)                  2.5質量部
 紫外線吸収剤(チヌビン928(BASFジャパン(株)製))
                            2.3質量部
 微粒子添加液1                      1質量部
 以上を密閉容器に投入し、攪拌しながら溶解してドープ液を調製した。次いで、無端ベルト流延装置を用い、ドープ液を温度33℃、2000mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は30℃に制御した。
 ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、次いで剥離張力130N/mで、ステンレスベルト支持体上から剥離した。
 その後、剥離部分の張力をカットする部分(ロール)とその次の搬送張力をかける部分(ロール)との速度差をつけた状態で、170℃で流延方向と平行な方向に1.6倍に延伸しながら搬送を行った。さらに130℃に設定された乾燥ゾーンで30分間搬送させて乾燥を行い、幅1500mm、かつ端部に幅1cm、高さ8μmのナーリングを有する膜厚40μmのλ/4板1を作製した。
 λ/4板1のθは0°、Roは138nm、Rtは80nm、Ro(550)-Ro(450)は4nmであった。
 なお、各種λ/4板を作製する際に用いたポリエステル(a)の合成方法は下記の通りである。
 <ポリエステル(a)の合成>
 窒素雰囲気下、2,6-ナフタレンジカルボン酸ジメチル19.2g、1,2-プロピレングリコール14.9g、テトライソプロピルチタネート20mgを混合し、生成するメタノールを留去しながら165℃で1時間攪拌を行った。更に185℃で1時間攪拌を行った後、195℃に昇温して18時間攪拌を行った。次に、170℃まで降温し、未反応物の1,2-プロピレングリコールを減圧留去することにより、ポリエステルポリオール(a)を得た。
 酸価    :0.2
 数平均分子量:1020
 分散度   :1.6
 分子量300~1800の成分含有率:48%
 ヒドロキシ(水酸基)価:110
 水酸基含有量:100%
 H-NMRにより、末端にメチルエステル残基がないことを確認した。
 (ハードコート層の塗設)
 次いで、上記λ/4板1の一方の面上に下記ハードコート層を設け、λ/4板1hcを作製した。
 《ハードコート層の塗布》
 下記ハードコート層塗布液を塗布幅1.4mでダイコートし、80℃で乾燥した後、120mJ/cmの紫外線を高圧水銀灯で照射して硬化後の膜厚が6μmになるようにクリアハードコート層を設けた。
 (ハードコート層用塗布液)
 アセトン                        45質量部
 酢酸エチル                       45質量部
 プロピレングリコールモノメチルエーテル         10質量部
 ペンタエリスリトールトリアクリレート          30質量部
 ペンタエリスリトールテトラアクリレート         45質量部
 ウレタンアクリレート(商品名U-4HA 新中村化学工業社製)
                             25質量部
 1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
  (イルガキュア184、BASFジャパン社製)      5質量部
 2-メチル-1-[4-(メチルチオ)フェニル]-2-モノフォリノ-1-オン(イルガキュア907、BASFジャパン社製)    3質量部
 BYK-331(シリコーン界面活性剤、ビックケミー・ジャパン(株)製)                          0.5質量部
 作製したハードコート層の上に更に下記反射防止層を設け、λ/4板1を得た。
 《反射防止層の塗布》
 (中屈折率層の塗布)
 ハードコート層表面上に、下記中屈折率層塗布液をダイコートし、80℃で乾燥した後、120mJ/cmの紫外線を高圧水銀灯で照射して、硬化後の膜厚が110nmとなるように中屈折率層を設けた。屈折率は1.60であった。
 〈中屈折率層塗布液〉
 〈粒子分散液Aの調製〉
 メタノール分散アンチモン複酸化物コロイド(固形分60%、日産化学工業(株)製アンチモン酸亜鉛ゾル、商品名:セルナックスCX-Z610M-F2)6.0kgにイソプロピルアルコール12.0kgを攪拌しながら徐々に添加し、粒子分散液Aを調製した。
 PGME(プロピレングリコールモノメチルエーテル)   40質量部
 イソプロピルアルコール                 25質量部
 メチルエチルケトン                   25質量部
 ペンタエリスリトールトリアクリレート         0.9質量部
 ペンタエリスリトールテトラアクリレート        1.0質量部
 ウレタンアクリレート(商品名:U-4HA 新中村化学工業社製)
                            0.6質量部
 粒子分散液A                      20質量部
 1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
  (イルガキュア184、BASFジャパン社製)    0.4質量部
 2-メチル-1-[4-(メチルチオ)フェニル]-2-モノフォリノプロパン-1-オン(イルガキュア907、BASFジャパン社製)
                            0.2質量部
 10%FZ-2207、プロピレングリコールモノメチルエーテル溶液
  (日本ユニカー社製)                0.4質量部
 (低屈折率層の塗布)
 上記中屈折率層上に、下記の低屈折率層塗布液をダイコートし、80℃で乾燥した後、120mJ/cmの紫外線を高圧水銀灯で照射して膜厚が92nmになるように低屈折率層を設け、反射防止層を作製した。屈折率は1.38であった。
 (低屈折率層塗布液)
 〈テトラエトキシシラン加水分解物Aの調製〉
 テトラエトキシシラン230g(商品名:KBE04、信越化学工業社製)とエタノール440gを混合し、これに2%酢酸水溶液120gを添加した後に、室温(25℃)にて26時間攪拌することでテトラエトキシシラン加水分解物Aを調製した。
 プロピレングリコールモノメチルエーテル        430質量部
 イソプロピルアルコール                430質量部
 テトラエトキシシラン加水分解物A           120質量部
 γ-メタクリロキシプロピルトリメトキシシラン
  (商品名:KBM503、信越化学工業社製)     3.0質量部
 イソプロピルアルコール分散中空シリカゾル(固形分20%、触媒化成工 業社製シリカゾル、商品名:ELCOM V-8209)  40質量部
 アルミニウムエチルアセトアセテート・ジイソプロピレート
  (川研ファインケミカル社製)            3.0質量部
 10%FZ-2207、プロピレングリコールモノメチルエーテル溶液
  (日本ユニカー社製)                3.0質量部
 (光学フィルム201の作製)
 〈微粒子分散液1〉
 微粒子(アエロジル R972V 日本アエロジル(株)製)11質量部
 エタノール                       89質量部
 以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行った。
 〈微粒子添加液1〉
 メチレンクロライドを入れた溶解タンクに十分攪拌しながら、微粒子分散液1をゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を調製した。
 メチレンクロライド                   99質量部
 微粒子分散液1                      5質量部
 下記組成の主ドープ液を調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにセルロースアセテートを攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解し。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ液を調製した。
 〈主ドープ液の組成〉
 メチレンクロライド                  340質量部
 エタノール                       64質量部
 アセチル基置換度が2.4のセルロースアセテート    100質量部
 糖エステル化合物 1-23             10.0質量部
 ポリエステル(a)                  2.5質量部
 紫外線吸収剤(チヌビン928(BASFジャパン(株)製))
                            2.3質量部
 微粒子添加液1                      1質量部
 上記組成物を密閉容器に投入し、攪拌しながら溶解してドープ液を調製した。次いで、無端ベルト流延装置を用い、ドープ液を温度33℃、2000mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は30℃に制御した。
 ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、次いで剥離張力130N/mで、ステンレスベルト支持体上から剥離した。
 その後170℃に設定されたテンターにより幅手方向に1.4倍の延伸を行い、次いで130℃に設定された乾燥ゾーンで30分間搬送させて乾燥を行い、幅2m、かつ端部に幅1cm、高さ8μmのナーリングを有する膜厚40μmの光学フィルム201を作製し、5000mで巻き取った。
 光学フィルム201のリターデーション値Ro(590)、Rt(590)は、各々50nm、130nmであった。
 <偏光板1の作製>
 厚さ、120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。
 これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥し偏光子を得た。
 次いで、下記工程1~5に従って偏光子とコニカミノルタ社製TACフィルム4UYと、裏面側には光学フィルム201を貼り合わせて偏光板を作製した。
 工程1:60℃の2モル/Lの水酸化ナトリウム溶液に90秒間浸漬し、次いで水洗し乾燥して、偏光子と貼合する側を鹸化したTACフィルムを得た。
 工程2:前記偏光子を固形分2質量%のポリビニルアルコール接着剤槽中に1~2秒浸漬した。
 工程3:工程2で偏光子に付着した過剰の接着剤を軽く拭き除き、これを工程1で処理したTACフィルムの上にのせて配置した。
 工程4:工程3で積層したTACフィルムと偏光子と光学フィルム201を圧力20~30N/cm、搬送スピードは約2m/分で貼合した。
 工程5:80℃の乾燥機中に工程4で作製した偏光子とTACフィルムと光学フィルム201とを貼り合わせた試料を2分間乾燥し、偏光板を作製した。
 得られた偏光板の4UY側にλ/4板1を、λ/4板の遅相軸と偏光子の吸収軸が45°になるように枚葉に貼合して偏光板1を得た。
 今回使用したTACフィルム4UYは膜厚40μm、Roが0nm、Rtが30nmであった。
 表示装置1の作製
 SONY製40型ディスプレイBRAVIA LX900の予め貼合されていた前面板を剥がして、パネル前面の偏光板と前面板の間にあった充填剤を除去し、予め貼合されていたパネル前側の偏光板を剥がして、上記作製した偏光板1を液晶セルのガラス面の前面に貼合した。
 その際、その偏光板の貼合の向きは、本発明のλ/4フィルムの面が、視認側となるように、かつ、予め貼合されていた偏光板と同一の方向に吸収軸が向くように行い、表示装置1を作製した。吸収軸、遅相軸は図6に示した向きになるようにした。
 偏光板101の作製
 <偏光板101の作製>
 厚さ、120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。
 これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥し偏光子を得た。
 次いで、下記工程1~5に従って偏光子とコニカミノルタ社製TACフィルム4UYと、裏面側にもコニカミノルタ社製TACフィルム4UYを貼り合わせて偏光板を作製した。
 工程1:60℃の2モル/Lの水酸化ナトリウム溶液に90秒間浸漬し、次いで水洗し乾燥して、偏光子と貼合する側を鹸化したTACフィルムを得た。
 工程2:前記偏光子を固形分2質量%のポリビニルアルコール接着剤槽中に1~2秒浸漬した。
 工程3:工程2で偏光子に付着した過剰の接着剤を軽く拭き除き、これを工程1で処理したTACフィルムの上にのせて配置した。
 工程4:工程3で積層したTACフィルムと偏光子とTACフィルムを圧力20~30N/cm、搬送スピードは約2m/分で貼合した。
 工程5:80℃の乾燥機中に工程4で作製した偏光子とTACフィルムとTACフィルムとを貼り合わせた試料を2分間乾燥し、偏光板を作製した。
 液晶シャッタメガネ1の作製
 ECBモードの液晶シャッタメガネの光学フィルム、偏光板を剥離し、視認側に偏光板101、逆側にλ/4板1を貼り液晶シャッタメガネ1を作製した。
 吸収軸、遅相軸は図6に示した向きになるようにした。
 今回使用した液晶シャッタメガネ用のECBセルのシャッタが閉状態の時のRoは0nm、Rtは-300nmであった。
 立体映像表示装置1
 液晶シャッタメガネ1と表示装置1からなる立体映像表示装置を立体映像表示装置1とした。
 実施例2
 λ/4板2の作製
 ステンレスベルト支持体上から剥離するまではλ/4板1と同様に作製し、剥離後、テンターにて180℃1.5倍TD方向に延伸しλ/4板2を作製した。膜厚は80μであった。
 偏光板2の作製
 λ/4板1をλ/4板2に変更した以外は偏光板1と同様に偏光板2を作製した。
 表示装置2の作製
 偏光板1を偏光板2に変えた以外は表示装置1と同様に表示装置2を作製した。
 立体映像表示装置2
 液晶シャッタメガネ1と表示装置2からなる立体映像表示装置を立体映像表示装置2とした。
 実施例3
 λ/4板3の作製
 延伸温度、延伸倍率、膜厚を表1のように変更した以外はλ/4板2と同様にλ/4板3を作製した。
 偏光板3の作製
 λ/4板1をλ/4板3に変更した以外は偏光板1と同様に偏光板3を作製した。
 表示装置3の作製
 偏光板1を偏光板3に変えた以外は表示装置1と同様に表示装置3を作製した。
 立体映像表示装置3
 液晶シャッタメガネ1と表示装置3からなる立体映像表示装置を立体映像表示装置3とした。
 実施例4
 λ/4板4の作製
 ステンレスベルト支持体上から剥離するまではλ/4板1と同様に作製し、剥離後、特開2009-214441号公報の実施例1に記載の装置(延伸機A:図11)を用い、温度170℃、倍率1.5倍で遅相軸がフィルム幅方向と45°をなす様に斜め方向に延伸を行った。
 次いで、乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。
 以上のようにして、乾燥膜厚40μmのλ/4板4を得た。
 偏光板4の作製(表示装置用偏光板)
 <偏光板4の作製>
 厚さ、120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。
 これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥し偏光子を得た。
 次いで、下記工程1~5に従って偏光子と前記λ/4板4と、裏面側には光学フィルム201を貼り合わせて偏光板4を作製した。
 工程1:60℃の2モル/Lの水酸化ナトリウム溶液に90秒間浸漬し、次いで水洗し乾燥して、偏光子と貼合する側を鹸化したλ/4板4を得た。
 工程2:前記偏光子を固形分2質量%のポリビニルアルコール接着剤槽中に1~2秒浸漬した。
 工程3:工程2で偏光子に付着した過剰の接着剤を軽く拭き除き、これを工程1で処理したλ/4板4の上にのせて配置した。
 工程4:工程3で積層したλ/4板4と偏光子と光学フィルム201を圧力20~30N/cm、搬送スピードは約2m/分で貼合した。
 工程5:80℃の乾燥機中に工程4で作製した偏光子とλ/4板4と光学フィルム201とを貼り合わせた試料を2分間乾燥し、偏光板4を作製した。
 表示装置4の作製
 偏光板1を偏光板4に変えた以外は表示装置1と同様に表示装置3を作製した。
 立体映像表示装置4
 液晶シャッタメガネ1と表示装置4からなる立体映像表示装置を立体映像表示装置4とした。
 実施例5
 λ/4板5の作製
 延伸温度、延伸倍率、膜厚を表1のように変更した以外はλ/4板2と同様にλ/4板5を作製した。
 偏光板5の作製
 λ/4板1をλ/4板5に変更した以外は偏光板1と同様に偏光板5を作製した。
 表示装置5の作製
 偏光板1を偏光板5に変えた以外は表示装置1と同様に表示装置5を作製した。
 立体映像表示装置5
 液晶シャッタメガネ1と表示装置5からなる立体映像表示装置を立体映像表示装置5とした。
 実施例6
 λ/4板6の作製
 延伸温度、延伸倍率、膜厚を表1のように変更した以外はλ/4板1と同様にλ/4板6を作製した。
 偏光板6の作製
 λ/4板1をλ/4板6に変更した以外は偏光板1と同様に偏光板6を作製した。
 表示装置6の作製
 偏光板1を偏光板6に変えた以外は表示装置1と同様に表示装置6を作製した。
 液晶シャッタメガネ2の作製
 視認側に偏光板101、逆側にλ/4板6を貼る以外は液晶シャッタメガネ1と同様に液晶シャッタメガネ2を作製した。
 立体映像表示装置6
 液晶シャッタメガネ2と表示装置6からなる立体映像表示装置を立体映像表示装置6とした。
 実施例7
 液晶シャッタメガネ3の作製
 視認側に偏光板101、逆側にλ/4板2を貼る以外は液晶シャッタメガネ1と同様に液晶シャッタメガネ3を作製した。
 立体映像表示装置7
 液晶シャッタメガネ3と表示装置2からなる立体映像表示装置を立体映像表示装置7とした。
 実施例8
 偏光板102の作製
 一方のTACフィルムをコニカミノルタ社製TACフィルム8UXに変更した以外は偏光板101と同様に偏光板102を作製した。
 今回使用したTACフィルム8UXは、膜厚80μm、Roが0nm、Rtが60nmであった。
 液晶シャッタメガネ4の作製
 視認側に偏光板102を液晶シャッタメガネの液晶セル側に8UXとなるように貼合し、逆側にλ/4板1を貼る以外は液晶シャッタメガネ1と同様に液晶シャッタメガネ4を作製した。
 偏光板7の作製
 TACフィルム4UYをTACフィルム8UXに変更した以外は偏光板1と同様に偏光板7を作製した。
 表示装置7の作製
 偏光板1を偏光板7に変えた以外は表示装置1と同様に表示装置7を作製した。
 立体映像表示装置8
 液晶シャッタメガネ4と表示装置7からなる立体映像表示装置を立体映像表示装置8とした。
 実施例9
 偏光板8の作製
 λ/4板1をλ/4板2に変更した以外は偏光板7と同様に偏光板8を作製した。
 表示装置8の作製
 偏光板1を偏光板8に変えた以外は表示装置1と同様に表示装置8を作製した。
 立体映像表示装置9
 液晶シャッタメガネ4と表示装置8からなる立体映像表示装置を立体映像表示装置9とした。
 実施例10
 偏光板103の作製
 一方のTACフィルムをコニカミノルタ社製TACフィルム4UEに変更した以外は偏光板101と同様に偏光板103を作製した。
 今回使用したTACフィルム4UEは、膜厚40μm、Roが0nm、Rtが0nmであった。
 液晶シャッタメガネ5の作製
 視認側に偏光板103を液晶シャッタメガネの液晶セル側に4UEとなるように貼合し、逆側にλ/4板1を貼る以外は液晶シャッタメガネ1と同様に液晶シャッタメガネ5を作製した。
 偏光板9の作製
 TACフィルム8UXをTACフィルム4UEに変更した以外は偏光板8と同等に偏光板9を作製した。
 表示装置9の作製
 偏光板1を偏光板9に変えた以外は表示装置1と同様に表示装置9を作製した。
 立体映像表示装置10
 液晶シャッタメガネ5と表示装置9からなる立体映像表示装置を立体映像表示装置10とした。
 実施例11
 λ/4板7の作製
 延伸温度、延伸倍率、膜厚を表1のように変更した以外はλ/4板4と同様にλ/4板7を作製した。
 偏光板10の作製
 λ/4板4をλ/4板7に変更した以外は偏光板4と同様に偏光板10を作製した。
 表示装置10の作製
 偏光板1を偏光板10に変えた以外は表示装置1と同様に表示装置10を作製した。
 立体映像表示装置11
 液晶シャッタメガネ1と表示装置10からなる立体映像表示装置を立体映像表示装置11とした。
 実施例12
 液晶シャッタメガネ6の作製
 液晶セルとして、IPSセルを用いた以外は液晶シャッタメガネ1と同様に液晶シャッタメガネ6を作製した。
 今回使用した液晶シャッタメガネ用のIPSセルは、Roは270nm、Rtは135nmであった。
 立体映像表示装置12
 液晶シャッタメガネ6と表示装置4からなる立体映像表示装置を立体映像表示装置12とした。
 《3D映像視聴時の首を傾けた際のクロストークの評価》
 23℃・55%RHの環境で、各々の表示装置を点灯させた直後、表示装置の正面で、液晶シャッタメガネをかけて、液晶シャッタメガネが25°傾いた状態になるよう首を傾けた状態で3D映像を視聴し、クロストークを下記基準で評価した。
◎:クロストークがまったくない
○:非常に弱いクロストークが見える
△:弱いクロストークが見える
×:クロストークがはっきり見える
 立体映像表示装置1~12はどれも◎であった。
 《3D映像視聴時の表示装置を斜めから見た際のクロストーク抑制の評価》
 23℃・55%RHの環境で、各々の表示装置を地面に置きバックライトを点灯させた直後、各々の液晶シャッタメガネをかけて、パネル正面から1mはなれ、さらに右側に1mずれたところの高さ1.8mの視点から3D映像を視聴し、クロストークを下記基準で評価した。
◎:クロストークがまったくない
○:非常に弱いクロストークが見える
△:弱いクロストークが見える
×:クロストークがはっきり見える。
 《3D映像視聴時の色味変化の評価》
 23℃・55%RHの環境の暗室で、各々の表示装置を地面に置きバックライトを点灯させた直後、各々の液晶シャッタメガネをかけて、パネル正面から1mはなれ、高さ0.5mの視点から黒表示を観察し(視点A)、さらに右側に1mずれたところの高さ1.8mの視点からの黒表示を観察し(視点B)、色味変化を下記基準で評価した。
◎:色味変化がまったくない
○:非常に弱い色味変化が確認できる
△:弱い色味変化が確認できる
×:色味変化がはっきり確認できる
 上記の各種λ/4板(1~7)の製造条件及び性能を表1に示した。また、各種立体映像表示装置(1~12)の評価結果を表2に示した。
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
 表2に示した結果から、本発明の立体映像表示装置は、3D映像視聴時の表示装置を斜めから見た際のクロストークや色味変化がまったくないか、非常に少なく視認性に優れた立体映像表示装置であることが明らかである。
 CC 制御回路
 LCD 液晶ディスプレイ
 G 立体画像視認用眼鏡(メガネ)
 S1 右眼用液晶シャッタ
 S2 左眼用液晶シャッタ
 L 直線偏光の光
 LC 液晶層
 LI 左眼用画像
 RI 右眼用画像
 P1、P2 偏光板
 DR1 繰出し方向
 DR2 巻取り方向
 θi 繰出し角度(繰出し方向と巻取り方向のなす角度)
 CR,CL 把持具
 Wo 延伸前のフィルムの幅
 W 延伸後のフィルムの幅
 A 液晶シャッタメガネ
 A1、A4 偏光子
 A2 液晶セル
 A3 λ/4板
 B 液晶表示装置(例えばテレビジョン(TV))
 C 偏光板
 C1 λ/4板
 C2 偏光子
 C3 光学フィルム
 C4 偏光子保護フィルム
 D 液晶セル
 E 偏光板
 F バックライト
 HC ハードコート層
 AR 反射防止層
 a 吸収軸
 b 遅相軸

Claims (6)

  1.  表示装置と液晶シャッタメガネとからなる立体映像表示装置であって、当該表示装置には、視認側から、λ/4板、及び偏光子がこの順に設けられており、当該液晶シャッタメガネには、視認側から、偏光子、液晶セル、及びλ/4板がこの順に設けられており、すべての光学補償層の厚さ方向位相差Rtの合計ΣRt1~n(ただし、nは整数を表す。)と液晶セルのシャッタ閉状態の時の厚さ方向の位相差Rtcとが下記式(1)を満足することを特徴とする立体映像表示装置。
    式(1):-100nm<(ΣRt1~n+Rtc)<150nm
  2.  前記液晶シャッタメガネの液晶セルの駆動モードが、ECBモードであることを特徴とする請求項1に記載の立体映像表示装置。
  3.  前記λ/4板の少なくとも一方のNz係数が、1.1~4.0の範囲内であることを特徴とする請求項1又は請求項2に記載の立体映像表示装置。
  4.  前記表示装置のλ/4板のNz係数が、前記液晶シャッタメガネのλ/4板のNz係数より大きいことを特徴とする請求項1から請求項3までのいずれか一項に記載の立体映像表示装置。
  5.  前記表示装置のλ/4板が、ハードコート層を有することを特徴とする請求項1から請求項4までのいずれか一項に記載の立体映像表示装置。
  6.  前記表示装置のλ/4板が、セルロースエステル樹脂を含有することを特徴とする請求項1から請求項5までのいずれか一項に記載の立体映像表示装置。
PCT/JP2011/064002 2010-07-29 2011-06-20 立体映像表示装置 WO2012014595A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010170206 2010-07-29
JP2010-170206 2010-07-29

Publications (1)

Publication Number Publication Date
WO2012014595A1 true WO2012014595A1 (ja) 2012-02-02

Family

ID=45529815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064002 WO2012014595A1 (ja) 2010-07-29 2011-06-20 立体映像表示装置

Country Status (2)

Country Link
TW (1) TW201213864A (ja)
WO (1) WO2012014595A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177018A (ja) * 2011-02-25 2012-09-13 Dic Corp セルロースエステル樹脂組成物及びそれを用いた光学フィルム
JP2012198491A (ja) * 2011-03-09 2012-10-18 Fujifilm Corp 3d表示システム
JP2015111311A (ja) * 2015-03-20 2015-06-18 日東電工株式会社 位相差フィルム
JP2015129970A (ja) * 2015-03-20 2015-07-16 日東電工株式会社 位相差フィルム
US9796146B2 (en) 2013-03-29 2017-10-24 Nitto Denko Corporation Methods for producing phase-difference film and circularly polarizing plate involving simultaneous reduction of clip pitch on one side and increase of clip pitch on another side
US9804313B2 (en) 2013-03-29 2017-10-31 Nitto Denko Corporation Methods for producing phase-difference film and circularly polarizing plate involving simultaneous reduction of clip pitch on one side and increase of clip pitch on another side
US9950461B2 (en) 2013-06-10 2018-04-24 Nitto Denko Corporation Production method for phase shift film and circular polarizing plate involving bilaterally symmetric loops with non-simultaneous reduction of clip pitch
WO2018110277A1 (ja) * 2016-12-16 2018-06-21 日東電工株式会社 光学積層体、画像表示装置、及び光学積層体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490552B (zh) * 2013-08-20 2015-07-01 Sumika Technology Co Ltd 立體顯示裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223A (ja) * 1987-08-24 1990-01-05 Seiko Epson Corp 液晶光学装置および液晶光学装置を備えた立体映像装置
JP2002071957A (ja) * 2000-06-14 2002-03-12 Konica Corp 光学フィルム、偏光板、光学フィルムロ−ル、光学フィルムを用いた表示装置、光学フィルムの製造方法
JP2002082307A (ja) * 2000-06-21 2002-03-22 Sony Corp 立体画像認識装置および立体画像表示方法
JP2003014933A (ja) * 2001-07-02 2003-01-15 Konica Corp 位相差フィルムとその製造方法及び複合偏光板
JP2007121830A (ja) * 2005-10-31 2007-05-17 Epson Imaging Devices Corp 画像表示装置およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223A (ja) * 1987-08-24 1990-01-05 Seiko Epson Corp 液晶光学装置および液晶光学装置を備えた立体映像装置
JP2002071957A (ja) * 2000-06-14 2002-03-12 Konica Corp 光学フィルム、偏光板、光学フィルムロ−ル、光学フィルムを用いた表示装置、光学フィルムの製造方法
JP2002082307A (ja) * 2000-06-21 2002-03-22 Sony Corp 立体画像認識装置および立体画像表示方法
JP2003014933A (ja) * 2001-07-02 2003-01-15 Konica Corp 位相差フィルムとその製造方法及び複合偏光板
JP2007121830A (ja) * 2005-10-31 2007-05-17 Epson Imaging Devices Corp 画像表示装置およびその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177018A (ja) * 2011-02-25 2012-09-13 Dic Corp セルロースエステル樹脂組成物及びそれを用いた光学フィルム
JP2012198491A (ja) * 2011-03-09 2012-10-18 Fujifilm Corp 3d表示システム
US9796146B2 (en) 2013-03-29 2017-10-24 Nitto Denko Corporation Methods for producing phase-difference film and circularly polarizing plate involving simultaneous reduction of clip pitch on one side and increase of clip pitch on another side
US9804313B2 (en) 2013-03-29 2017-10-31 Nitto Denko Corporation Methods for producing phase-difference film and circularly polarizing plate involving simultaneous reduction of clip pitch on one side and increase of clip pitch on another side
US9950461B2 (en) 2013-06-10 2018-04-24 Nitto Denko Corporation Production method for phase shift film and circular polarizing plate involving bilaterally symmetric loops with non-simultaneous reduction of clip pitch
JP2015111311A (ja) * 2015-03-20 2015-06-18 日東電工株式会社 位相差フィルム
JP2015129970A (ja) * 2015-03-20 2015-07-16 日東電工株式会社 位相差フィルム
WO2018110277A1 (ja) * 2016-12-16 2018-06-21 日東電工株式会社 光学積層体、画像表示装置、及び光学積層体の製造方法
JPWO2018110277A1 (ja) * 2016-12-16 2019-10-24 日東電工株式会社 光学積層体、画像表示装置、及び光学積層体の製造方法
JP6992006B2 (ja) 2016-12-16 2022-01-13 日東電工株式会社 光学積層体、画像表示装置、及び光学積層体の製造方法

Also Published As

Publication number Publication date
TW201213864A (en) 2012-04-01

Similar Documents

Publication Publication Date Title
JP5038625B2 (ja) 延伸セルロースエステルフィルム、ハードコートフィルム、反射防止フィルム及び光学補償フィルム、並びにそれらを用いた偏光板及び表示装置
JP2008083307A (ja) 偏光板、偏光板の製造方法、及び液晶表示装置
JP5333210B2 (ja) セルロースエステル光学フィルム、該セルロースエステル光学フィルムを用いた偏光板及び液晶表示装置、及びセルロースエステル光学フィルムの製造方法
WO2012014595A1 (ja) 立体映像表示装置
KR101454054B1 (ko) 광학 필름, 편광판 및 액정 표시 장치
JP5604872B2 (ja) セルロースエステルフィルム
JP4736562B2 (ja) 偏光板及び表示装置
JP5333209B2 (ja) セルロースエステル光学フィルム、該セルロースエステル光学フィルムを用いた偏光板及び液晶表示装置、及びセルロースエステル光学フィルムの製造方法
JP5565281B2 (ja) 斜め延伸フィルムの製造方法、及び光学フィルムの製造方法
JPWO2008126700A1 (ja) 光学フィルム、偏光板、液晶表示装置、及び紫外線吸収性ポリマー
JP5387405B2 (ja) 紫外線吸収性ポリマー、セルロースエステル光学フィルム、セルロースエステル光学フィルムの製造方法、偏光板、及び液晶表示装置
JP5996163B2 (ja) 光学フィルムの製造方法、偏光板及び画像表示装置
JP5678965B2 (ja) 前面板付き液晶表示装置の製造方法、前面板付き液晶表示装置
JP2012198282A (ja) λ/4板、その製造方法、偏光板、液晶表示装置、及び立体画像表示装置
TW200533698A (en) Cellulose acylate film, polarizing film, and liquid crystal display
JP5589648B2 (ja) ハードコート付きλ/4板、その製造方法、偏光板、液晶表示装置、及びタッチパネル部材
JP2012173677A (ja) 位相差フィルムとその製造方法、長尺状偏光板、及び液晶表示装置
JP5521832B2 (ja) λ/4板及び立体映像表示装置
JP5915660B2 (ja) 立体画像表示システム
JP5569323B2 (ja) 長尺延伸フィルムの製造方法、及び長尺偏光板の製造方法
JP5510198B2 (ja) 前面板付き液晶表示装置の製造方法、前面板付き液晶表示装置
JP2005134609A (ja) 反射防止フィルム及び反射防止フィルムの製造方法並びに偏光板及び表示装置
JP2012230282A (ja) λ/4位相差フィルムの製造方法、長尺状偏光板、及び液晶表示装置
JP2012101466A (ja) 長尺状延伸フィルムとその製造方法、長尺状偏光板、及び液晶表示装置
JP2005274696A (ja) 反射防止フィルム、偏光板及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP