WO2022044925A1 - 配向液晶フィルムおよびその製造方法、ならびに画像表示装置 - Google Patents

配向液晶フィルムおよびその製造方法、ならびに画像表示装置 Download PDF

Info

Publication number
WO2022044925A1
WO2022044925A1 PCT/JP2021/030220 JP2021030220W WO2022044925A1 WO 2022044925 A1 WO2022044925 A1 WO 2022044925A1 JP 2021030220 W JP2021030220 W JP 2021030220W WO 2022044925 A1 WO2022044925 A1 WO 2022044925A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
oriented
oriented liquid
resin
Prior art date
Application number
PCT/JP2021/030220
Other languages
English (en)
French (fr)
Inventor
暢 鈴木
聡司 三田
友成 内山
洋平 山岡
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202180053493.3A priority Critical patent/CN116261681A/zh
Priority to KR1020237009245A priority patent/KR20230056711A/ko
Publication of WO2022044925A1 publication Critical patent/WO2022044925A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to an oriented liquid crystal film in which liquid crystal molecules are oriented, a method for producing the same, and an image display device including the aligned liquid crystal film.
  • a liquid crystal film in which a liquid crystal compound is oriented in a predetermined direction is used as an optical film having functions such as optical compensation for a liquid crystal display device and prevention of external light reflection of an organic EL element. Since the oriented liquid crystal film has a larger birefringence than the polymer stretched film, it is advantageous in reducing the thickness and weight.
  • the oriented liquid crystal film is attached to an organic EL panel or a liquid crystal display panel as a polarizing plate integrally laminated with a polarizing element via an adhesive or an adhesive (for example, Patent Document 1).
  • the liquid crystal compound can orient the liquid crystal molecules in a predetermined direction by the shearing force when applied onto the substrate, the orientation restricting force of the alignment film, etc., and an oriented liquid crystal film having various optical anisotropes can be obtained. Be done.
  • thermolotopic liquid crystal When using a thermolotopic liquid crystal, a solution containing a liquid crystal compound (liquid crystal composition) is applied on a substrate and heated so that the compound contained in the composition becomes a liquid crystal state to orient the liquid crystal molecules.
  • the liquid crystal composition contains a liquid crystal compound (liquid crystal monomer) having photopolymerizability, the alignment state is fixed by orienting the liquid crystal molecules and then curing the liquid crystal monomer by light irradiation.
  • Image display devices such as liquid crystal displays and organic EL display devices are required to have higher durability, and the optical members constituting the image display devices are exposed to a high temperature environment for a long time. , It is required that the change in optical characteristics is small.
  • Patent Document 1 describes that the change in the retardation of the oriented liquid crystal film in a high temperature environment can be reduced by controlling the orientation parameter of the liquid crystal compound.
  • the optical characteristics of the oriented liquid crystal film may change in a high temperature environment due to the influence of the layer arranged adjacent to the liquid crystal layer as well as the alignment state of the liquid crystal.
  • the homogeneously oriented liquid crystal layer and the polarizing element are bonded together via an adhesive layer, there is almost no change in retardation in a high temperature environment, whereas there is almost no change in retardation, but via an ultraviolet curable adhesive.
  • the retardation tended to increase in a high temperature environment.
  • an object of the present invention is to provide an oriented liquid crystal film having a small change in optical characteristics and excellent heating durability even when exposed to a high temperature environment for a long time.
  • the oriented liquid crystal film includes an oriented liquid crystal layer in which liquid crystal molecules are oriented in a predetermined direction.
  • a liquid crystal composition containing a photopolymerizable liquid crystal monomer is applied onto a support substrate, and the liquid crystal composition on the support substrate is heated to orient the liquid crystal monomer in a liquid crystal state and receive light. It is formed by polymerizing or cross-linking a liquid crystal monomer by irradiation.
  • the liquid crystal molecules may be homogenically oriented.
  • the support substrate used for forming the oriented liquid crystal layer may be a resin film.
  • the oriented liquid crystal film of the present invention includes a resin coat layer in contact with the first main surface of the oriented liquid crystal layer, and includes an optical layer bonded to the resin coat layer via an adhesive layer.
  • Examples of the optical layer attached to the oriented liquid crystal layer include a splitter and a transparent film.
  • the optical layer may be another oriented liquid crystal layer.
  • the oriented liquid crystal film may be one in which another optical layer is bonded to the second main surface of the oriented liquid crystal layer via an adhesive layer.
  • a resin coat layer may also be provided on the second main surface of the oriented liquid crystal layer.
  • the oriented liquid crystal film may be one in which another optical layer is bonded to the second main surface of the oriented liquid crystal layer via an adhesive layer.
  • the oriented liquid crystal film may be a circular polarizing plate including a polarizing element as an optical layer.
  • the angle between the orientation direction of the liquid crystal molecules in the oriented liquid crystal layer and the absorption axis direction of the polarizing element is 10 to 80 °. It may be.
  • a resin coat layer is provided on one surface (first main surface) of the homogeneously oriented liquid crystal layer as the first oriented liquid crystal layer, and the resin coated layer is placed on the resin coated layer via an adhesive layer.
  • a homeotropic oriented liquid crystal layer is provided as a bialigned liquid crystal layer.
  • a splitter or a polarizing plate is attached to the other surface (second main surface) of the homogenius-aligned liquid crystal layer.
  • the homogenius-aligned liquid crystal layer and the polarizing element or the polarizing plate may be bonded to each other via the pressure-sensitive adhesive layer in contact with the second main surface of the homogenius-aligned liquid crystal layer.
  • the resin coat layer is preferably a non-curable resin layer.
  • the weight average molecular weight of the resin material constituting the resin coat layer is preferably 20,000 or more.
  • the resin material of the resin coat layer include a non-curable acrylic resin and a non-curable epoxy resin.
  • the glass transition temperature of the resin coat layer may be 20 ° C. or higher.
  • the thickness of the resin coat layer is preferably 0.05 to 3 ⁇ m.
  • the resin coat layer may contain an uncured liquid crystal compound constituting the oriented liquid crystal layer.
  • a resin coat layer is formed by applying a resin solution containing a resin and an organic solvent on the oriented liquid crystal layer.
  • the organic solvent of the resin solution preferably has solubility in a photopolymerizable liquid crystal monomer and is insoluble or sparingly soluble in a photocurable product of the photopolymerizable liquid crystal monomer. After applying the resin solution to the surface of the oriented liquid crystal layer, heating may be performed at 40 to 150 ° C. before bonding the optical layers.
  • the thickness of the adhesive layer for bonding the resin coat layer and the optical layer on the oriented liquid crystal layer is preferably 0.01 to 5 ⁇ m.
  • the adhesive may be an active energy ray-curable adhesive.
  • the oriented liquid crystal film of the present invention has excellent heating durability, and the change in retardation is small even when exposed to a high temperature environment for a long time. Therefore, it is suitably used as an optical member for an image display device such as a liquid crystal display device or an organic EL display device.
  • FIG. 1 is a cross-sectional view showing the configuration of the oriented liquid crystal film of one embodiment.
  • the oriented liquid crystal film 100 includes a resin coat layer 6 in contact with one main surface of the oriented liquid crystal layer 1, and an optical layer 4 bonded to the resin coat layer 6 via an adhesive layer 3.
  • the oriented liquid crystal layer 1 contains liquid crystal molecules oriented in a predetermined direction.
  • a liquid crystal composition containing a liquid crystal compound is applied onto the support substrate 8, the liquid crystal compound is oriented in a predetermined direction, and then the orientation state is fixed, whereby the liquid crystal composition is formed on the support substrate 8 as shown in FIG.
  • the oriented liquid crystal layer 1 is formed on the surface.
  • liquid crystal compound examples include a rod-shaped liquid crystal compound and a disk-shaped liquid crystal compound.
  • a rod-shaped liquid crystal compound is preferable as the liquid crystal compound because it is easy to be homogenically oriented due to the orientation restricting force of the support substrate.
  • the rod-shaped liquid crystal compound may be a main chain type liquid crystal or a side chain type liquid crystal.
  • the rod-shaped liquid crystal compound may be a liquid crystal polymer or a polymer of a polymerizable liquid crystal compound. As long as the liquid crystal compound (monomer) before polymerization exhibits liquid crystallinity, it may not exhibit liquid crystallinity after polymerization.
  • the liquid crystal compound is preferably a thermotropic liquid crystal that develops liquid crystal properties by heating.
  • the thermotropic liquid crystal undergoes a phase transition of a crystalline phase, a liquid crystal phase, and an isotropic phase with a temperature change.
  • the liquid crystal compound contained in the liquid crystal composition may be any of a nematic liquid crystal, a smectic liquid crystal, and a cholesteric liquid crystal.
  • a chiral agent may be added to the nematic liquid crystal to give cholesteric orientation.
  • rod-shaped liquid crystal compound exhibiting thermotropic properties examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, and alkoxys. Examples thereof include substituted phenylpyrimidines, phenyldioxans, trans, alkenylcyclohexylbenzonitriles and the like.
  • Examples of the polymerizable liquid crystal compound include a polymerizable liquid crystal compound capable of fixing the orientation state of the rod-shaped liquid crystal compound using a polymer binder, and a polymerizable functional group having a polymerizable functional group capable of fixing the orientation state of the liquid crystal compound by polymerization.
  • Examples include liquid crystal compounds. Among these, a photopolymerizable liquid crystal compound having a photopolymerizable functional group is preferable.
  • the photopolymerizable liquid crystal compound (liquid crystal monomer) has a mesogen group and at least one photopolymerizable functional group in one molecule.
  • the temperature at which the liquid crystal monomer exhibits liquid crystal properties is preferably 40 to 200 ° C, more preferably 50 to 150 ° C, still more preferably 55 to 100 ° C.
  • Examples of the mesogen group of the liquid crystal monomer include biphenyl group, phenylbenzoate group, phenylcyclohexane group, azoxybenzene group, azomethin group, azobenzene group, phenylpyrimidine group, diphenylacetylene group, diphenylbenzoate group, bicyclohexane group and cyclohexylbenzene group.
  • a cyclic structure such as a turphenyl group can be mentioned.
  • the terminal of these cyclic units may have a substituent such as a cyano group, an alkyl group, an alkoxy group, or a halogen group.
  • the photopolymerizable functional group examples include (meth) acryloyl group, epoxy group, vinyl ether group and the like. Of these, the (meth) acryloyl group is preferred.
  • the photopolymerizable liquid crystal monomer preferably has two or more photopolymerizable functional groups in one molecule. By using a liquid crystal monomer containing two or more photopolymerizable functional groups, a crosslinked structure is introduced into the liquid crystal layer after photocuring, so that the durability of the oriented liquid crystal film tends to be improved.
  • any suitable liquid crystal monomer can be adopted as the photopolymerizable liquid crystal monomer.
  • JP2008-107767 examples thereof include the compounds described in Japanese Patent Application Laid-Open No. 2008-273925, International Publication No. 2016/125839, Japanese Patent Application Laid-Open No. 2008-273925, and the like.
  • the expression of birefringence and the wavelength dispersion of the retardation can be adjusted.
  • the liquid crystal composition may contain, in addition to the liquid crystal monomer, a compound that controls the orientation of the liquid crystal monomer in a predetermined direction.
  • a compound that controls the orientation of the liquid crystal monomer in a predetermined direction For example, by including the side chain type liquid crystal polymer in the liquid crystal composition, the liquid crystal compound (monomer) can be homeotropically oriented. Further, by adding a chiral agent to the liquid crystal composition, the liquid crystal compound can be cholesterically oriented.
  • the liquid crystal composition may contain a photopolymerization initiator.
  • a photopolymerization initiator photoradical generator
  • a photocation generator or a photoanion generator may be used.
  • the amount of the photopolymerization initiator used is about 0.01 to 10 parts by weight with respect to 100 parts by weight of the liquid crystal monomer.
  • a sensitizer or the like may be used in addition to the photopolymerization initiator.
  • a liquid crystal composition can be prepared by mixing a liquid crystal monomer with a solvent, if necessary, various orientation control agents, polymerization initiators, and the like.
  • the solvent is not particularly limited as long as it can dissolve the liquid crystal monomer and does not erode the substrate (or has low erosion resistance), and the solvent is not particularly limited, and chloroform, dichloromethane, carbon tetrachloride, dichloroethane, tetrachloroethane, trichloroethylene, tetrachloroethylene, and chlorobenzene.
  • Orthodichlorobenzene and other halogenated hydrocarbons include phenols, barachlorophenol and other phenols; benzene, toluene, xylene, methoxybenzene, 1,2-dimethoxybenzene and other aromatic hydrocarbons; acetone, methylethylketone, methylisobutyl Ketone solvents such as ketone, cyclohexanone, cyclopentanone, 2-pyrrolidone, N-methyl-2-pyrrolidone; ester solvents such as ethyl acetate and butyl acetate; t-butyl alcohol, glycerin, ethylene glycol, triethylene glycol, Alcohol-based solvents such as ethylene glycol monomethyl ether, diethylene glycol dimethyl ether, propylene glycol, dipropylene glycol, 2-methyl-2,4-pentanediol; amide-based solvents such as dimethylformamide and dimethylacetamide;
  • the solid content concentration of the liquid crystal composition is usually about 5 to 60% by weight.
  • the liquid crystal composition may contain additives such as a surfactant and a leveling agent.
  • Examples of the support substrate 8 to which the liquid crystal composition is applied include a glass plate, a metal plate, a metal belt, a resin film substrate, and the like.
  • the support substrate has a first main surface and a second main surface, and the liquid crystal composition is applied on the first main surface.
  • the resin material constituting the film substrate is not particularly limited as long as it is not soluble in the solvent of the liquid crystal composition and has heat resistance at the time of heating for orienting the liquid crystal composition, and is not particularly limited, and polyethylene terephthalate and polyethylene are used.
  • Polyethylene such as naphthalate; Polyethylene, Polypropylene and other polyolefins; Cyclic polyolefins such as norbornene-based polymers; Cellulous polymers such as diacetyl cellulose and triacetyl cellulose; Acrylic polymers; Stylic polymers; Polycarbonate, polyamide, polyimide and the like. ..
  • the support substrate 8 may have an orientation ability for orienting liquid crystal molecules in a predetermined direction.
  • the stretch ratio of the stretched film may be such that the alignment ability can be exhibited, and is, for example, about 1.1 times to 5 times.
  • the stretched film may be a biaxially stretched film. Even if it is a biaxially stretched film, if a film having different stretching ratios in the vertical direction and the horizontal direction is used, the liquid crystal molecules can be oriented along the direction in which the stretching ratio is large.
  • the stretched film may be an oblique stretched film. By using the stretched film as the support substrate 8, the liquid crystal molecules can be oriented in a direction that is not parallel to either the longitudinal direction or the width direction of the support substrate.
  • the support substrate 8 may be provided with an alignment film on the first main surface.
  • the alignment film an appropriate one may be appropriately selected depending on the type of the liquid crystal compound, the material of the substrate, and the like.
  • a polyimide-based or polyvinyl alcohol-based alignment film that has been subjected to rubbing treatment is preferably used. Further, a photoalignment film may be used.
  • the resin film as the support substrate may be subjected to a rubbing treatment without providing the alignment film.
  • the support substrate 8 may include an alignment film for homeotropic alignment of liquid crystal molecules.
  • the orientation agent for forming a homeotropic orientation film include lecithin, stearic acid, hexadecyltrimethylammonium bromide, octadecylamine hydroxychloride, monobasic carboxylic acid chromium complex, and silane coupling agent.
  • organic silanes such as siloxane compounds, perfluorodimethylcyclohexane, tetrafluoroethylene, polytetrafluoroethylene and the like can be mentioned.
  • the liquid crystal compound is a thermotropic liquid crystal
  • the liquid crystal composition is applied on the first main surface of the support substrate 8 and the liquid crystal compound is oriented into a liquid crystal state by heating.
  • the method of applying the liquid crystal composition on the support substrate 8 is not particularly limited, and a spin coat, a die coat, a kiss roll coat, a gravure coat, a reverse coat, a spray coat, a Meyer bar coat, a knife roll coat, an air knife coat, etc. are applied. Can be adopted.
  • the solvent is removed to form a liquid crystal composition layer on the support substrate.
  • the coating thickness is preferably adjusted so that the thickness of the liquid crystal composition layer (thickness of the oriented liquid crystal film) after drying the solvent is about 0.1 to 20 ⁇ m.
  • the liquid crystal compound is oriented by heating the liquid crystal composition layer formed on the support substrate to form a liquid crystal phase. Specifically, after applying the liquid crystal composition on the support substrate, the liquid crystal composition is heated to a temperature equal to or higher than the N (nematic phase) -I (isotropic liquid phase) transition temperature of the liquid crystal composition to obtain the liquid crystal composition. Make it a anisotropic liquid state. From there, the nematic phase is expressed by slow cooling as needed. At this time, it is desirable to temporarily maintain the temperature at which the liquid crystal phase is exhibited and grow the liquid crystal phase domain to form a monodomain. Alternatively, after the liquid crystal composition is applied on the support substrate, the liquid crystal molecules may be oriented in a predetermined direction while maintaining the temperature for a certain period of time within the temperature range in which the nematic phase appears.
  • the heating temperature at which the liquid crystal compound is oriented in a predetermined direction may be appropriately selected depending on the type of the liquid crystal composition, and is usually about 40 to 200 ° C. If the heating temperature is excessively low, the transition to the liquid crystal phase tends to be insufficient, and if the heating temperature is excessively high, orientation defects may increase.
  • the heating time may be adjusted so that the liquid crystal phase domain grows sufficiently, and is usually about 30 seconds to 30 minutes.
  • the cooling method is not particularly limited, and for example, it may be taken out from the heating atmosphere to room temperature. Forced cooling such as air cooling or water cooling may be performed.
  • the photopolymerizable liquid crystal compound liquid crystal monomer
  • the irradiation light may be any as long as it is possible to polymerize a photopolymerizable liquid crystal compound, and usually ultraviolet or visible light having a wavelength of 250 to 450 nm is used.
  • the liquid crystal composition contains a photopolymerization initiator, light having a wavelength at which the photopolymerization initiator has sensitivity may be selected.
  • a low pressure mercury lamp As the irradiation light source, a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a xenon lamp, an LED, a black light, a chemical lamp and the like are used.
  • an inert gas such as nitrogen gas.
  • the liquid crystal compound When the liquid crystal composition is photocured, the liquid crystal compound can be oriented in a predetermined direction by using the polarization in a predetermined direction. As described above, when the liquid crystal compound is oriented by the orientation restricting force of the support substrate 8, the irradiation light may be unpolarized (natural light).
  • the irradiation intensity may be appropriately adjusted according to the composition of the liquid crystal composition, the amount of the photopolymerization initiator added, and the like.
  • the irradiation energy (integrated irradiation light amount) is usually about 20 to 10000 mJ / cm 2 , preferably 50 to 5000 mJ / cm 2 , and more preferably 100 to 800 mJ / cm 2 .
  • light irradiation may be carried out under heating conditions.
  • the polymer after photo-curing the liquid crystal monomer by light irradiation is non-liquid crystal, and the transition of the liquid crystal phase, the glass phase, and the crystal phase does not occur due to the temperature change. Therefore, the liquid crystal layer photo-cured with the liquid crystal monomer oriented in a predetermined direction is unlikely to change in molecular orientation due to a temperature change. Further, since the oriented liquid crystal film has a remarkably large birefringence as compared with a film made of a non-liquid crystal material, the thickness of the optically anisotropic element having a desired retardation can be remarkably reduced.
  • the thickness of the oriented liquid crystal film (liquid crystal layer) may be set according to the target retardation value or the like, and is usually about 0.1 to 20 ⁇ m, preferably 0.2 to 10 ⁇ m, and 0.5 to 7 ⁇ m. More preferred.
  • the optical characteristics of the oriented liquid crystal layer are not particularly limited.
  • the frontal retardation and the thickness direction retardation of the oriented liquid crystal layer may be appropriately set according to the intended use and the like.
  • the front retardation of the oriented liquid crystal layer is, for example, about 20 to 1000 nm.
  • the front retardation is preferably 100 to 180 nm, more preferably 120 to 150 nm.
  • the front retardation is preferably 200 to 340 nm, more preferably 240 to 300 nm.
  • the letteration value is a measured value at a wavelength of 550 nm unless otherwise specified.
  • the oriented liquid crystal layer may have a front retardation R (450) at a wavelength of 450 nm smaller than a front retardation R (550) at a wavelength of 550 nm.
  • the front retardation R (650) at a wavelength of 650 nm is larger than R (550) and satisfies R (550) ⁇ R (650). It may be a thing.
  • the R (450) / R (550) of the oriented liquid crystal layer may be 0.70 to 0.95, 0.75 to 0.90, or 0.80 to 0.87.
  • the R (650) / R (550) of the oriented liquid crystal layer may be 1.05 to 1.30, 1.10 to 1.25, or 1.13 to 1.20.
  • the selection of the liquid crystal monomer can form an oriented liquid crystal layer in which the retardation has the desired wavelength dispersion.
  • the front retardation of the oriented liquid crystal layer is approximately 0 (for example, 5 nm or less, preferably 3 nm or less), and the absolute value of the thickness direction retardation is about 30 to 500 nm.
  • the resin coat layer 6 is formed by applying a resin solution containing a resin and an organic solvent to the surface of the oriented liquid crystal layer 1.
  • a non-curable resin is preferable.
  • the non-curable resin is a material capable of forming a resin layer without a curing reaction such as photocuring or thermosetting after coating with a resin solution.
  • the non-curable resin does not contain photocurable or thermosetting reactive groups, but a small amount of reactive groups may remain.
  • the reactive functional group equivalent mass of the resin containing 1 equivalent of the reactive functional group is preferably 3000 or more, more preferably 4000 or more, and may be 5000 or more or 6000 or more.
  • the resin material is preferably highly transparent and less colored.
  • Resin materials include epoxy resin, silicone resin, acrylic resin, polyurethane, polyamide, polyether, polyvinyl alcohol, polyester, polycarbonate, polyarylate, polyvinylidene sulfide, polyether sulfone, polyether ether ketone, polyamide, polyimide, polyolefin, and cyclic. Examples thereof include polymers such as polyolefin, polystyrene, polyvinyl chloride, and polyvinylidene chloride. Among these, a non-curable acrylic resin and a non-curable epoxy resin are preferable because they have high adhesion to the oriented liquid crystal layer 1 and the adhesive layer 3.
  • the "non-curable acrylic resin” is a polymer obtained by polymerizing the (meth) acryloyl group of a compound (acrylic monomer) having one or more (meth) acryloyl groups in one molecule. After coating the surface of the oriented liquid crystal layer 1 with the resin solution, the resin coat layer 6 can be formed without performing photocuring or heat curing.
  • the uncured acrylic resin is typically a polymer of a (meth) acrylic acid alkyl ester, and examples thereof include polymethylmethacrylate, ethyl polymethacrylate, and butylpolymethacrylate.
  • the uncured acrylic resin may be a copolymer of a plurality of types of (meth) acrylic acid alkyl esters, or may be a copolymer of a (meth) acrylic acid alkyl ester and another monomer.
  • the monomer other than the (meth) acrylic acid alkyl ester include (meth) acrylic acid, (meth) acrylamide, (meth) acrylonitrile, vinyl-based monomer, styrene-based monomer and the like.
  • the copolymerization monomer may contain a boron-containing functional group such as boronic acid or a boronic acid ester.
  • non-curable epoxy resin is a polymer obtained by a polymerization reaction of epoxy groups of a compound (epoxy monomer) having one or more epoxy groups in one molecule, and is a resin on the surface of the oriented liquid crystal layer 1. After coating the solution, the resin coat layer 6 can be formed without performing photocuring or heat curing.
  • epoxy resins having an aromatic ring are preferable.
  • the resin material may be a mixture of a non-curable acrylic resin and a non-curable epoxy resin.
  • the content ratio of the acrylic resin and the epoxy resin is preferably 95: 5 to 60:40 or 40:60 to 1:99 in terms of weight ratio from the viewpoint of transparency.
  • the weight ratio of the two may be 90:10 to 70:30 or 30:70 to 10:90.
  • the glass transition temperature of the resin material of the resin coat layer 6 is preferably 20 ° C. or higher, more preferably 30 ° C. or higher, and may be 40 ° C. or higher or 50 ° C. or higher.
  • the polymer material used for bonding between layers such as an adhesive is generally set to have a glass transition temperature lower than room temperature in order to have viscosity.
  • the resin coat layer 6 provided on the surface of the aligned liquid crystal layer has a glass transition temperature higher than room temperature, so that the characteristic change in the usage environment of the image display device is small, and the optical characteristics of the aligned liquid crystal layer are accompanied by this. Changes tend to be suppressed.
  • the weight average molecular weight of the resin material is preferably 20,000 or more, more preferably 30,000 or more.
  • the organic solvent of the resin solution is not particularly limited as long as it can dissolve the above resin material.
  • the organic solvent is preferably one that does not dissolve the oriented liquid crystal layer.
  • the organic solvent may be one that exhibits solubility in a liquid crystal compound (monomer) before photocuring.
  • the organic solvent may be one kind of solvent or a mixed solvent of two or more kinds.
  • the solid content concentration of the resin solution may be adjusted in the range of about 1 to 50% by weight so as to have a viscosity suitable for coating. From the viewpoint of uniformly forming the resin coat layer having a small thickness, the solid content concentration of the resin solution is preferably 30% by weight or less, more preferably 20% by weight or less, and may be 15% by weight or less or 10% by weight or less. ..
  • the method of applying the resin solution to the surface of the oriented liquid crystal layer 1 is not particularly limited, and various coating methods can be appropriately adopted.
  • heating may be performed to remove the organic solvent.
  • the heating temperature is preferably 40 ° C. or higher, more preferably 50 ° C. or higher. If the heating temperature is excessively high, the heating stability of the oriented liquid crystal film may decrease due to heat damage to the substrate, reorientation of the liquid crystal compound, and the like. Therefore, the heating temperature is preferably 150 ° C. or lower, more preferably 130 ° C. or lower, and may be 110 ° C. or lower or 100 ° C. or lower.
  • the thickness of the resin coat layer 6 is not particularly limited, but is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, and may be 1 ⁇ m or less from the viewpoint of thinning, adhesiveness, and transparency maintenance. On the other hand, the thickness of the resin coat layer 6 is preferably 0.05 ⁇ m or more, preferably 0.1 ⁇ m or more, from the viewpoint of encapsulating the eluate from the oriented liquid crystal layer 1 such as the uncured monomer in the resin coat layer 6 and suppressing bleeding out. Is more preferable.
  • the laminate shown in FIG. 1 can be obtained.
  • the optical layer 4 is not particularly limited, and an optically isotropic or optically anisotropic film generally used as an optical film can be used without particular limitation.
  • Specific examples of the optical layer 4 include transparent films such as retardation films and protector protective films, polarizing films, viewing angle expanding films, viewing angle limiting (peeping prevention) films, and functional films such as brightness improving films. Be done.
  • the optical layer 4 may be a single layer or a laminated body.
  • the optical layer 4 may be an oriented liquid crystal layer.
  • the optical layer 4 may be a polarizing plate in which a transparent protective film is bonded to one surface or both surfaces of a polarizing element. When the polarizing plate has a transparent protective film on one surface, the polarizing element and the oriented liquid crystal layer may be bonded together, or the transparent protective film and the oriented liquid crystal layer may be bonded together.
  • an image display cell liquid crystal cell
  • a polarizing element for the purpose of appropriately converting the polarization state of light emitted from the liquid crystal cell to the visual recognition side to improve the viewing angle characteristics.
  • a retardation plate as an optical compensation film may be arranged between them.
  • a 1/4 wave plate may be arranged between the cell and the polarizing plate in order to prevent external light from being reflected by the metal electrode layer and visually recognized as a mirror surface. ..
  • the material of the adhesive constituting the adhesive layer 3 is not particularly limited as long as it is optically transparent, and examples thereof include epoxy resin, silicone resin, acrylic resin, polyurethane, polyamide, polyether, and polyvinyl alcohol.
  • a non-curable resin is used for the resin coat layer 6 described above, whereas a curable composition is used for the adhesive.
  • the thickness of the adhesive layer 3 is appropriately set according to the type of the adherend, the material of the adhesive, and the like. When a curable adhesive that exhibits adhesiveness by a cross-linking reaction after coating is used, the thickness of the adhesive layer 3 is preferably 0.01 to 5 ⁇ m, more preferably 0.03 to 3 ⁇ m.
  • the adhesive various forms such as a water-based adhesive, a solvent-based adhesive, a hot-melt adhesive-based adhesive, and an active energy ray-curable adhesive are used.
  • a water-based adhesive or an active energy ray-curable adhesive is preferable because the thickness of the adhesive layer can be reduced.
  • water-based adhesive examples include those containing a water-soluble or water-dispersible polymer such as vinyl polymer-based, gelatin-based, vinyl-based latex-based, polyurethane-based, isocyanate-based, polyester-based, and epoxy-based.
  • the adhesive layer made of such a water-based adhesive is formed by applying an aqueous solution on the film and drying it.
  • a cross-linking agent, other additives, a catalyst such as an acid can be added.
  • Crosslinking agents to be added to water-based adhesives include boric acid and borax; carboxylic acid compounds; alkyldiamines; isocyanates; epoxies; monoaldehydes; dialdehydes; amino-formaldehyde resins; divalent metals or trivalents. Examples thereof include salts of valence metals and oxides thereof.
  • the active energy ray-curable adhesive is an adhesive capable of radical polymerization, cationic polymerization or anionic polymerization by irradiation with active energy rays such as electron beam and ultraviolet rays.
  • active energy rays such as electron beam and ultraviolet rays.
  • a photoradical polymerizable adhesive that initiates radical polymerization by irradiation with ultraviolet rays is preferable because it can be cured with low energy.
  • Examples of the monomer of the radically polymerizable adhesive include a compound having a (meth) acryloyl group and a compound having a vinyl group. Of these, compounds having a (meth) acryloyl group are preferable.
  • Examples of the compound having a (meth) acryloyl group include alkyl (meth) acrylates such as C 1-20 chain alkyl (meth) acrylate, alicyclic alkyl (meth) acrylate, and polycyclic alkyl (meth) acrylate; hydroxyl group. Containing (meth) acrylate; Examples thereof include epoxy group-containing (meth) acrylate such as glycidyl (meth) acrylate.
  • Radical polymerizable adhesives include hydroxyethyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, (meth) acrylamide, and (meth) acryloylmorpholin. It may contain a nitrogen-containing monomer such as.
  • the radically polymerizable adhesive has tripropylene glycol diacrylate, 1,9-nonanediol diacrylate, tricyclodecanedimethanol diacrylate, cyclic trimethylolpropane formal acrylate, dioxane glycol diacrylate, and EO-modified diacrylate as cross-linking components. It may contain a polyfunctional monomer such as glycerin tetraacrylate.
  • the photocurable adhesive such as a photoradical polymerizable adhesive preferably contains a photopolymerization initiator.
  • the photopolymerization initiator may be appropriately selected depending on the reaction species. For example, it is preferable to add a photoradical generator that generates radicals by light irradiation to the radically polymerizable adhesive as a photopolymerization initiator. Specific examples of the photoradical generator will be described later.
  • the content of the photoradical generator is usually about 0.1 to 10 parts by weight, preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the monomer.
  • a photopolymerization initiator is not particularly required.
  • a photosensitizer typified by a carbonyl compound or the like can be added to the radically polymerizable adhesive, if necessary.
  • Photosensitizers are used to increase the curing rate and sensitivity of electron beams.
  • the amount of the photosensitizer used is usually about 0.001 to 10 parts by weight, preferably 0.01 to 3 parts by weight, based on 100 parts by weight of the monomer.
  • the adhesive may contain an appropriate additive if necessary.
  • additives include silane coupling agents, coupling agents such as titanium coupling agents, adhesion promoters such as ethylene oxide, ultraviolet absorbers, deterioration inhibitors, dyes, processing aids, ion trap agents, and antioxidants.
  • Adhesive-imparting agents fillers, plasticizers, leveling agents, foaming inhibitors, antistatic agents, heat-resistant stabilizers, hydrolysis-resistant stabilizers and the like.
  • the resin coat layer is interposed through the adhesive layer 3.
  • the oriented liquid crystal layer 1 provided with 6 and the optical layer 4 are laminated.
  • Curing of the adhesive may be appropriately selected according to the type of the adhesive. For example, water-based adhesives can be cured by heating.
  • the active energy ray-curable adhesive can be cured by irradiation with active energy rays such as ultraviolet rays.
  • the oriented liquid crystal film 103 in which the resin coat layer 6 is provided on the surface of the oriented liquid crystal layer 1 on the support substrate 8 and the optical layer 4 is bonded to the resin coated layer 6 via the adhesive layer 3 is an optical member as it is. It may be used as.
  • the support substrate 8 constitutes a part of the oriented liquid crystal film 103.
  • the support substrate may be peeled off from the aligned liquid crystal layer 1.
  • an appropriate pressure-sensitive adhesive layer 2 may be laminated on the surface of the oriented liquid crystal layer 1 exposed by peeling of the support substrate.
  • the adhesive layer 2 is laminated on the exposed surface of the aligned liquid crystal layer 1 after the support substrate 8 is peeled off (the substrate surface at the time of forming the aligned liquid crystal layer).
  • the pressure-sensitive adhesive layer may be laminated on the air surface side at the time of layer formation, and the optical layer may be bonded to the substrate surface side of the oriented liquid crystal layer via the resin coat layer and the adhesive layer.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 2 is not particularly limited, and those using an acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based polymer, a rubber-based polymer, or the like as a base polymer are appropriately selected. Can be used.
  • pressure-sensitive adhesives such as acrylic pressure-sensitive adhesives and rubber-based pressure-sensitive adhesives, which have excellent transparency, exhibit appropriate wettability, cohesiveness, and adhesiveness, and are excellent in weather resistance, heat resistance, and the like are preferable.
  • the thickness of the pressure-sensitive adhesive layer is appropriately set according to the type of adherend and the like, and is generally about 5 to 500 ⁇ m.
  • the laminating of the pressure-sensitive adhesive layer 2 on the oriented liquid crystal layer 1 is performed, for example, by adhering a pressure-sensitive adhesive previously formed in a sheet shape to the surface of the oriented liquid crystal layer 1.
  • the pressure-sensitive adhesive layer 2 may be formed by drying, cross-linking, photo-curing, or the like of the solvent.
  • a surface treatment such as corona treatment or plasma treatment or an easy-adhesion layer is formed on the surface of the oriented liquid crystal layer 1, and then the pressure-sensitive adhesive layer is formed. 2 may be laminated.
  • the separator 9 is temporarily attached to the surface of the pressure-sensitive adhesive layer 2.
  • the separator 9 protects the surface of the pressure-sensitive adhesive layer 2 until the optical film with the pressure-sensitive adhesive is bonded to the image display cell 50.
  • a plastic film such as acrylic, polyolefin, cyclic polyolefin, or polyester is preferably used.
  • the thickness of the separator is usually about 5 to 200 ⁇ m.
  • the surface of the separator is subjected to a mold release treatment.
  • the mold release agent include silicone-based materials, fluorine-based materials, long-chain alkyl-based materials, fatty acid amide-based materials, and the like.
  • Another optical layer may be laminated on the exposed surface of the liquid crystal layer 1 via an appropriate adhesive layer or adhesive layer.
  • another optical layer 5 may be laminated on the oriented liquid crystal layer 1 via an appropriate adhesive layer 7.
  • An adhesive layer (not shown) may be further laminated on the optical layer 5, and a separator may be temporarily attached to the surface of the adhesive layer.
  • the support substrate 8 may be peeled off from the oriented liquid crystal layer 1, and a resin solution may be applied to the surface of the oriented liquid crystal layer 1 exposed by the peeling of the support substrate to form the resin coat layer 16.
  • the optical layer 5 may be bonded to the resin coat layer 16 provided on the surface of the oriented liquid crystal layer 1 exposed by peeling of the support substrate via the adhesive layer 7. ..
  • the resin coat layers 6 and 16 are provided on both sides of the oriented liquid crystal layer 1, but the resin coat layer may be provided on only one side of the oriented liquid crystal layer 1.
  • the resin coat layer 16 is formed only on the exposed surface of the aligned liquid crystal layer 1 (the substrate surface at the time of forming the aligned liquid crystal layer). You may.
  • the oriented liquid crystal film can be used as an optical film for a display for the purpose of improving visibility and the like.
  • an image display cell liquid crystal cell
  • a polarizing element are used for the purpose of appropriately converting the polarization state of light emitted from the liquid crystal cell to the visual recognition side to improve the viewing angle characteristics.
  • a retardation plate as an optical compensation film may be arranged between them.
  • the oriented liquid crystal film is a circular polarizing plate in which a polarizing plate as an optical layer 4 is bonded to a resin-coated layer 6 forming surface on the oriented liquid crystal layer 1 via an adhesive layer 3.
  • the circular polarizing plate may include two or more oriented liquid crystal layers.
  • the polarizing plate may be composed of only one layer of a polarizing element, and as described above, a transparent protective film may be bonded to one surface or both sides of the polarizing element.
  • a hydrophilic polymer film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, an ethylene / vinyl acetate copolymerization system partially saponified film, and a dichroic substance such as iodine or a dichroic dye are used.
  • a polyene-based oriented film such as a dehydrated product of polyvinyl alcohol and a dehydrogenated product of polyvinyl chloride, which is uniaxially stretched by adsorbing.
  • polyvinyl alcohol-based film such as polyvinyl alcohol or partially formalized polyvinyl alcohol is adsorbed with a dichroic substance such as iodine or a dichroic dye and oriented in a predetermined direction.
  • Alcohol (PVA) -based modulators are preferred.
  • a PVA-based polarizing element can be obtained by subjecting a polyvinyl alcohol-based film to iodine dyeing and stretching.
  • a PVA-based resin layer may be formed on the resin base material, and iodine dyeing and stretching may be performed in the state of the laminated body.
  • liquid crystal molecules are homogenically oriented in at least one oriented liquid crystal layer.
  • the orientation direction of the liquid crystal molecules in the oriented liquid crystal layer in which the liquid crystal molecules are homogenically oriented is arranged so as not to be parallel or orthogonal to the absorption axis direction of the substituent.
  • the oriented liquid crystal layer 1 is a 1/4 wave plate, and the direction of the absorption axis of the substituent and the direction of the orientation of the liquid crystal molecules (generally, the direction of the slow phase axis).
  • the angle between the two is set to 45 °.
  • the angle formed by the absorption axis direction of the polarizing element and the orientation direction of the liquid crystal molecules may be 35 to 55 °, 40 to 50 °, or 43 to 47 °.
  • the liquid crystal molecules are further formed as the optical layer 5 as a substrate.
  • An oriented liquid crystal layer that is vertically oriented (homeotropic oriented) with respect to the surface may be provided.
  • reflected light is also reflected from an oblique direction. It is possible to form a circular polarizing plate that can shield the light.
  • a homeotropic-oriented liquid crystal layer (positive C plate) and a homogeneously oriented liquid crystal layer (1/4 wave plate which is a positive A plate) may be laminated in order on the polarizing plate.
  • the oriented liquid crystal layers 1 and 5 are all homogeneous oriented liquid crystal layers. You may. In this case, it is preferable that the oriented liquid crystal layer 1 arranged on the side closer to the polarizing plate 4 is a 1/2 wave plate, and the oriented liquid crystal layer 5 arranged on the side far from the polarizing plate is a 1/4 wave plate. ..
  • the angle between the slow-phase axial direction of the 1/2 wave plate and the absorption axis direction of the splitter is 75 ° ⁇ 5 °, and the slow-phase axial direction of the 1/4 wave plate and the absorption axis direction of the splitter. It is preferable to arrange the particles so that the angle between the particles and the particles is 15 ° ⁇ 5 °. Since the circularly polarizing plate having such a laminated structure functions as a circularly polarizing plate over a wide wavelength range of visible light, it is possible to reduce the coloring of the reflected light.
  • a resin coat layer 6 is arranged between the aligned liquid crystal layer 1 and the aligned liquid crystal layer 5, and the oriented liquid crystal is formed.
  • a resin-coated layer may not be provided between the layer 1 and the polarizing plate 4.
  • the aligned liquid crystal layer 5 is bonded onto the resin coat layer 6 via the adhesive layer 7.
  • a laminated body (aligned liquid crystal film) 113 in which the aligned liquid crystal layer is bonded to the resin coat layer 6 forming surface of the oriented liquid crystal layer 1 via the adhesive layer 7 is obtained.
  • the support substrate 8 is peeled off from this laminated body, and the polarizing plate 4 is attached to the oriented liquid crystal layer 1 exposed by the peeling of the support substrate via the pressure-sensitive adhesive layer 12, so that the oriented liquid crystal display is as shown in FIG.
  • a resin coat layer 6 is provided on one surface of the layer 1, an oriented liquid crystal layer 5 is laminated on the resin coat layer 5 via an adhesive layer 7, and polarization is performed on the other surface of the oriented liquid crystal layer 1 via an adhesive layer 12.
  • a laminated body 107 to which the plates 4 are bonded is obtained.
  • the oriented liquid crystal layer 1 arranged on the side close to the polarizing plate 4 is a homogenous oriented liquid crystal layer as a 1/4 wave plate, and is arranged on the side far from the polarizing plate 4.
  • the oriented liquid crystal layer 5 is a homeotropic oriented liquid crystal layer as a positive C plate.
  • the oriented liquid crystal layer 5 is bonded to the resin coated layer forming surface 6 of the oriented liquid crystal layer 1 via the adhesive layer 7.
  • the adhesive layer 7 is formed by curing the adhesive which is a curable material, but since the non-curable resin coat layer 6 is formed on the oriented liquid crystal layer 1, the oriented liquid crystal layer 1 is formed by heating. Changes in frontal lettering are suppressed. Although the resin coat layer is not provided on the bonding surface of the oriented liquid crystal layer 1 with the polarizing plate 4, the oriented liquid crystal layer 1 and the polarizing plate 4 are bonded via the pressure-sensitive adhesive layer 12 (non-curable material). Therefore, the decrease in heating durability as seen when the adhesive layer is directly formed on the oriented liquid crystal layer is unlikely to occur.
  • a non-curable resin coat layer 6 is provided on the homogeneous oriented liquid crystal layer 1, and a positive C plate (optical layer) is provided on the non-curable resin coat layer 6 via the adhesive layer 7. Since it has a structure in which the oriented liquid crystal layers 5 of the above are laminated, the change in the front retardation is small even when exposed to a high temperature environment for a long time, and it is suitably used as a circular polarizing plate for a liquid crystal display device, an organic EL display device, or the like. Be done.
  • the laminated body 107 In the laminated body 107, the oriented liquid crystal layer 5 which is a positive C plate is in contact with the adhesive layer 7, but since the front retardation of the positive C plate is substantially 0, the laminated body 107 is kept in a high temperature environment. Time exposure causes little change in frontal lettering.
  • FIG. 10 is a cross-sectional view showing a laminated configuration example of an image display device, in which an oriented liquid crystal film provided with an aligned liquid crystal layer 1 is attached to the surface of an image display cell 50 via an adhesive layer 2.
  • the oriented liquid crystal film may include two or more oriented liquid crystal layers.
  • Examples of the image display cell 50 include a liquid crystal cell, an organic EL cell, and the like.
  • the heating durability of the aligned liquid crystal layer is improved by providing the resin coat layer on the surface of the oriented liquid crystal layer.
  • An image display device provided with an oriented liquid crystal layer having a resin coat layer formed on its surface has a small change in visibility even when exposed to a heating environment for a long time, so that the change in visibility is small and the heating durability is small. Excellent in sex.
  • a photopolymerizable liquid crystal compound showing a nematic liquid crystal phase (“Pariocolor LC242” manufactured by BASF) was dissolved in cyclopentanone to prepare a solution having a solid content concentration of 30% by weight.
  • a liquid crystal composition solution was prepared by adding a surfactant (“BYK-360” manufactured by BIC Chemie) and a photopolymerization initiator (“Omnirad 907” manufactured by IGM Resins) to this solution.
  • the amount of the leveling agent and the polymerization initiator added was 0.01 part by weight and 3 parts by weight, respectively, with respect to 100 parts by weight of the photopolymerizable liquid crystal compound.
  • a biaxially stretched norbornene-based film (“Zeonoa film” manufactured by ZEON Corporation, thickness: 33 ⁇ m, front retardation: 135 nm) was used.
  • the above liquid crystal composition was applied to the surface of the film substrate with a bar coater so that the thickness after drying was 1 ⁇ m, and the liquid crystal was oriented by heating at 100 ° C. for 3 minutes. After cooling to room temperature, the film was subjected to photocuring by irradiating with ultraviolet rays having an integrated light amount of 400 mJ / cm 2 in a nitrogen atmosphere to obtain a laminate in which a homogenius-aligned liquid crystal layer was formed on a film substrate.
  • Examples 1 to 6 A resin solution was prepared by dissolving the resin shown in Table 1 in a mixed solvent of cyclopentanone and ethyl acetate so as to have a solid content concentration of 3% by weight. A resin solution is applied to the surface of the oriented liquid crystal layer of the laminated body of Comparative Example 1 with a wire bar (# 10), and then heated at 85 ° C. to remove the solvent, and a resin coated layer is formed on the surface of the oriented liquid crystal layer. Formed.
  • the acrylic resins of Examples 1 to 3 were obtained from Kusumoto Kasei, and the epoxy resins of Examples 4 to 6 and Comparative Example 3 were obtained from Mitsubishi Chemical.
  • HEAA hydroxyethylacrylamide
  • ACMO acryloylmorpholin
  • PEG400 # diacrylate Light Acrylate 9EG-A” manufactured by Kyoeisha Chemical Co., Ltd.
  • UV curable adhesive composition by mixing 3 parts by weight of a photopolymerization initiator (“Omnirad 907” manufactured by IGM Resins) and 3 parts by weight of 2,4-diethylthioxanthone (“Kayacure DETX-S” manufactured by Nippon Kayaku Co., Ltd.).
  • This adhesive is applied to the surface of the above-mentioned single-protective polarizing plate to a thickness of about 1 ⁇ m, and on the coated layer of the adhesive, the oriented liquid crystal layer side of the laminates of Examples 1 to 6 and Comparative Examples 1 to 3 is used.
  • the adhesive was cured by irradiating with ultraviolet rays having an integrated light amount of 1000 mJ / cm 2 .
  • the angle formed by the absorption axis direction of the substituent and the orientation direction of the liquid crystal molecules in the alignment liquid crystal layer was set to 45 °.
  • the film substrate is peeled off from the oriented liquid crystal film, an acrylic pressure-sensitive adhesive sheet having a thickness of 15 ⁇ m is attached to the surface of the oriented liquid crystal film, and the oriented liquid crystal layer is placed on the polarizing element of the single-protective polarizing plate via a UV curable adhesive layer.
  • a polarizing plate provided with an acrylic pressure-sensitive adhesive sheet was obtained.
  • a resin layer having a thickness of about 300 nm was formed between the adhesive layer and the oriented liquid crystal layer.
  • ⁇ Letteration change> The pressure-sensitive adhesive layer of the above-mentioned polarizing plate was bonded to a glass plate to prepare a sample for evaluation. After measuring the front retardation at a wavelength of 590 nm with a phase difference meter (“KOBRA 21-ADH” manufactured by Oji Measuring Instruments), the evaluation sample was placed in an air circulation type constant temperature oven at 85 ° C. for 120 hours. After taking out the sample from the oven, the front retardation was measured again, and the rate of change of the retardation before and after the heating test was calculated.
  • a phase difference meter (“KOBRA 21-ADH” manufactured by Oji Measuring Instruments)
  • the pressure-sensitive adhesive layer of the above polarizing plate was bonded to Corning's non-alkali glass to prepare an evaluation sample.
  • An aluminum vapor-deposited polyester film (“DMS-X42” manufactured by Toray Advanced Film) is placed under the non-alkali glass of the evaluation sample, and a spectrocolorimeter (“CM-2600d” manufactured by Konica Minolta) is used from the polarizing plate side.
  • the light was irradiated and the hue of the reflected light (values of a * and b * in the Lab color space) was measured by the SCI method.
  • the evaluation sample was placed in an air circulation type constant temperature oven at 85 ° C. for 120 hours.
  • the hue of the reflected light was measured again on the aluminum-deposited polyester film, and the amount of change in the hue of the reflected light before and after the heating test was ⁇ ⁇ ( ⁇ a * ) 2 + ( ⁇ b * ) 2 ⁇ . Calculated.
  • Table 1 shows the evaluation results of the resin types used for forming the resin coat layer in Examples 1 to 6 and Comparative Examples 1 to 3 and the oriented liquid crystal film.
  • Comparative Example 1 in which the surface treatment of the oriented liquid crystal layer was not performed, the amount of Re change before and after the heating test was 3% and the hue change of the reflected light was 2.2, whereas the treatment with cyclopentanone was performed.
  • Comparative Example 2 carried out, the change in Re was suppressed, and the change in the hue of the reflected light was also suppressed accordingly.
  • deposits were confirmed on the surface of the oriented liquid crystal layer, resulting in poor appearance.
  • a surfactant (“Megafuck F-554” manufactured by DIC): 0.2 parts by weight
  • a photopolymerization initiator (“Omnirad 907” manufactured by IGM Resins): 3 parts by weight
  • p-methoxyphenol 0.
  • a liquid crystal composition solution was prepared by adding 1 part by weight.
  • a film substrate As the film substrate, a film provided with a rubbing-treated alignment film on a triacetyl cellulose film was used.
  • the above liquid crystal composition was applied by spin coating on the alignment film of the film substrate, and heated at 100 ° C. for 2 minutes to orient the liquid crystal. After cooling to room temperature, the film is photo-cured by irradiating it with ultraviolet rays having an integrated light amount of 900 mJ / cm 2 in a nitrogen atmosphere to obtain a laminate A in which a homogeneously oriented liquid crystal layer (thickness 4 ⁇ m) is formed on a film substrate. rice field.
  • the front retardation R (550) having a wavelength of 550 nm was 130 nm
  • the front retardation R (550) having a wavelength of 550 nm and the front retardation having a wavelength of 450 nm were measured.
  • the ratio R (450) / R (550) to R (450) was 0.85.
  • a biaxially stretched norbornene-based film (“Zeonoa film” manufactured by ZEON Corporation, thickness: 52 ⁇ m, front retardation: 50 nm) was used.
  • the above liquid crystal composition is applied to the surface of the film substrate with a bar coater so that the thickness after drying is 1 ⁇ m, heated at 80 ° C. for 2 minutes, cooled to the room temperature where the liquid crystal is oriented, and then nitrogen.
  • the liquid crystal monomer was photocured by irradiating with ultraviolet rays of 700 mJ / cm 2 in an atmosphere to obtain a laminate B in which a homeotropic oriented liquid crystal layer was formed on a film substrate.
  • dibenzoyl peroxide (“Niper BMT” manufactured by Nippon Oil & Fats Co., Ltd.): 0.15 parts by weight, and a trimethylolpropane / tolylene diisocyanate adduct (“Niper BMT” manufactured by Tosoh) as a cross-linking agent are added to this solution.
  • Coronate L 0.6 parts by weight was blended to obtain a pressure-sensitive adhesive composition.
  • This pressure-sensitive adhesive composition was applied to the release-treated surface of a release film (silicone release-treated polyethylene terephthalate film), dried and crosslinked at 150 ° C. to prepare a pressure-sensitive adhesive sheet having a thickness of 5 ⁇ m.
  • Example 7 An acrylic polymer having a weight average molecular weight of 80,000 obtained by copolymerizing methyl methacrylate and 3-methacrylamide phenylboronic acid in a weight ratio of 97: 3 was dissolved in ethyl acetate so as to have a solid content concentration of 3% by weight.
  • a resin solution was prepared. A resin solution is applied to the surface of the homogeneous oriented liquid crystal layer of the laminate A with a wire bar (# 10), and then heated at 85 ° C. to remove the solvent, and the resin having a thickness of about 300 nm is applied to the surface of the homogeneous oriented liquid crystal layer. A coat layer was formed, and a laminate D having a homogeneously oriented liquid crystal layer and a resin coat layer on the film substrate was obtained.
  • the above UV curable adhesive was applied to the resin coat layer of the laminate D to a thickness of about 1 ⁇ m, and the surface of the laminate B on the homeotropic oriented liquid crystal layer side was bonded onto the adhesive coating layer. After that, the adhesive was cured by irradiating with ultraviolet rays having an integrated light amount of 1000 mJ / cm 2 .
  • the film substrate was peeled off from the surface of the homogenius-aligned liquid crystal layer, and the surface of the single-protective polarizing plate on the polarizing element side was bonded onto the exposed homogenius-aligned liquid crystal layer via the above-mentioned pressure-sensitive adhesive layer.
  • the angle formed by the absorption axis direction of the polarizing element and the orientation direction of the liquid crystal molecules in the homogeneously oriented liquid crystal layer was set to 45 °.
  • the film substrate is peeled off from the surface of the homeotropic oriented liquid crystal layer, and the homogeneous oriented liquid crystal layer is bonded to the surface on the polarizing element side of the one-sided protective polarizing plate via the pressure-sensitive adhesive layer, and a resin coat is applied on the homogenius oriented liquid crystal layer.
  • ⁇ Comparative Example 4> In the same manner as in Example 7, a resin coat layer having a thickness of about 300 nm was formed on the surface of the homogeneously oriented liquid crystal layer to obtain a laminated body D. The surface of the single-protective polarizing plate on the polarizing element side was bonded onto the resin-coated layer of the laminate D via the above-mentioned pressure-sensitive adhesive layer. At the time of bonding, the angle formed by the absorption axis direction of the polarizing element and the orientation direction of the liquid crystal molecules in the homogeneously oriented liquid crystal layer (rubbing direction of the alignment film of the film substrate) was set to 45 °.
  • the film substrate is peeled off from the surface of the homogeneous oriented liquid crystal layer, and the above UV curable adhesive is applied to the exposed homogenius oriented liquid crystal layer to a thickness of about 1 ⁇ m, and the adhesive is applied onto the coated layer of the adhesive.
  • the adhesive was cured by irradiating with ultraviolet rays having an integrated light amount of 1000 mJ / cm 2 .
  • the film substrate is peeled off from the surface of the homeotropic oriented liquid crystal layer, and the laminate of the resin coat layer and the homogenius oriented liquid crystal layer is attached to the surface on the polarizing element side of the one-sided polarizing plate via the pressure-sensitive adhesive layer.
  • a laminated body (circular polarizing plate) was obtained in which a homeotropic oriented liquid crystal layer was bonded to the homogenius oriented liquid crystal layer via an adhesive layer.
  • Example 8> instead of the acrylic polymer solution, a methyl ethyl ketone solution containing an acrylic polymer and an epoxy resin (Mitsubishi Chemical “jER YX7200B35) in a weight ratio of 85:15 and having a solid content concentration of 3% by weight was used. Other than that, Examples. A resin coat layer having a thickness of about 300 nm was formed on the surface of the homogeneously oriented liquid crystal layer in the same manner as in Example 7. After that, in the same manner as in Example 7, a pressure-sensitive adhesive layer was formed on the surface of the one-sided protective polarizing plate on the polymer side.
  • an epoxy resin Mitsubishi Chemical “jER YX7200B35
  • a laminated body (circular polarizing plate) was obtained in which a homogenius-aligned liquid crystal layer was bonded via a resin coat layer and a homeotropically oriented liquid crystal layer was bonded thereto via a resin coat layer and an adhesive layer.
  • Example 9 A circularly polarizing plate was produced in the same manner as in Example 8 except that the thickness of the resin coat layer was changed to about 600 nm.
  • ⁇ Comparative Example 5> In the same manner as in Example 8, a resin coat layer having a thickness of about 300 nm was formed on the surface of the homogeneous oriented liquid crystal layer using a mixed resin solution of an acrylic polymer and an epoxy resin. After that, in the same manner as in Comparative Example 4, a laminate of the resin coat layer and the homogeneous oriented liquid crystal layer is bonded to the surface on the polarizing element side of the single protective polarizing plate via the adhesive layer, and is placed on the homogeneous oriented liquid crystal layer. A laminated body (circular polarizing plate) in which a homeotropic oriented liquid crystal layer was bonded via an adhesive layer was obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

液晶配向フィルム(100)は、液晶分子が配向した第一配向液晶層(1)、第一配向液晶層の第一主面に接する樹脂コート層(6)、および樹脂コート層(6)上に接着剤層(3)を介して貼り合わせられた光学層(4)を備える。樹脂コート層は、非硬化型樹脂層である。樹脂コート層のガラス転移温度は20℃以上であってもよい。第一配向液晶層は、液晶分子がホモジニアス配向したものであってもよい。一実施形態では、第一配向液晶層の第一主面に、樹脂と有機溶媒とを含む樹脂溶液を塗布して前記樹脂コート層を形成し、樹脂コート層と光学層とを接着剤を介して貼り合わせることにより、配向液晶フィルムが形成される。

Description

配向液晶フィルムおよびその製造方法、ならびに画像表示装置
 本発明は、液晶分子が配向した配向液晶フィルムおよびその製造方法、ならびに配向液晶フィルムを備える画像表示装置に関する。
 液晶表示装置の光学補償、有機EL素子の外光反射防止等の機能を有する光学フィルムとして、液晶化合物が所定方向に配向した液晶フィルム(配向液晶フィルム)が用いられている。配向液晶フィルムは、ポリマーの延伸フィルムに比べて複屈折が大きいため、薄型化や軽量化に有利である。画像表示装置においては、配向液晶フィルムは、粘着剤または接着剤を介して偏光子と一体積層した偏光板として、有機ELパネルや液晶表示パネルに貼り合わせられている(例えば、特許文献1)。
 液晶化合物は、基板上に塗布する際のせん断力や配向膜の配向規制力等により、液晶分子を所定方向に配向させることが可能であり、種々の光学異方性を有する配向液晶フィルムが得られる。例えば、正の屈折率異方性を有するネマチック液晶分子を基板面に平行に配向させたホモジニアス配向液晶層は、nx>ny=nzの屈折率異方性を有するポジティブAプレートとして利用できる。
 サーモロトピック液晶を用いる場合は、液晶化合物を含む溶液(液晶性組成物)を基板上に塗布し、組成物中に含まれる化合物が液晶状態となるように加熱して液晶分子を配向させる。液晶性組成物が光重合性を有する液晶化合物(液晶モノマー)を含む場合は、液晶分子を配向させた後、光照射により液晶モノマーを硬化することにより、配向状態が固定される。
特開2015-7700号公報
 液晶表示装置や有機EL表示装置等の画像表示装置には、より高い耐久性が要求されるようになっており、画像表示装置を構成する光学部材は、高温環境に長時間暴露された場合でも、光学特性の変化が小さいことが求められている。上記特許文献1では、液晶化合物の配向パラメータを制御することにより、配向液晶フィルムの高温環境でのレターデーションの変化を低減できることが記載されている。
 液晶の配向状態だけでなく、液晶層に隣接して配置される層の影響により、高温環境において配向液晶フィルムの光学特性が変化する場合がある。例えば、粘着剤層を介してホモジニアス配向液晶層と偏光子とを貼り合わせた場合には、高温環境下でのレターデーション変化がほとんど生じないのに対して、紫外線硬化型の接着剤を介してホモジニアス配向液晶層と偏光子とを貼り合わせた試料は、高温環境下でレターデーションが上昇する傾向がみられた。
 かかる課題に鑑み、本発明は、高温環境に長時間暴露された場合でも、光学特性の変化が小さく、加熱耐久性に優れる配向液晶フィルムの提供を目的とする。
 配向液晶フィルムは、液晶分子が所定方向に配向した配向液晶層を備える。配向液晶層は、例えば、光重合性液晶モノマーを含有する液晶性組成物を支持基板上に塗布し、支持基板上の液晶性組成物を加熱して、液晶モノマーを液晶状態として配向させ、光照射により液晶モノマーを重合または架橋することにより形成される。配向液晶層において、液晶分子はホモジニアス配向していてもよい。配向液晶層の形成に用いる支持基板は、樹脂フィルムであってもよい。
 本発明の配向液晶フィルムは、配向液晶層の第一主面に接する樹脂コート層を備え、樹脂コート層上に接着剤層を介して貼り合わせられた光学層を備える。配向液晶層に貼り合わせられる光学層としては、偏光子や透明フィルムが挙げられる。光学層は、他の配向液晶層であってもよい。
 配向液晶フィルムは、配向液晶層の第二主面に接着剤層を介して他の光学層が貼り合わせられたものであってもよい。配向液晶層の第二主面にも樹脂コート層が設けられていてもよい。配向液晶フィルムは、配向液晶層の第二主面に粘着剤層を介して他の光学層が貼り合わせられたものであってもよい。
 一実施形態において、配向液晶フィルムは、光学層として偏光子を含む円偏光板であってもよい。液晶分子がホモジニアス配向している配向液晶層と偏光子とが積層された配向液晶フィルムにおいて、配向液晶層における液晶分子の配向方向と、偏光子の吸収軸方向とのなす角は10~80°であってもよい。
 円偏光板の一実施形態では、第一配向液晶層としてのホモジニアス配向液晶層の一方の面(第一主面)に樹脂コート層が設けられ、樹脂コート層上に接着剤層を介して第二配向液晶層としてのホメオトロピック配向液晶層が設けられている。ホモジニアス配向液晶層の他方の面(第二主面)には偏光子または偏光板が貼り合わせられている。ホモジニアス配向液晶層の第二主面に接する粘着剤層を介してホモジニアス配向液晶層と偏光子または偏光板が貼り合わせられていてもよい。
 樹脂コート層は、非硬化型樹脂層であることが好ましい。樹脂コート層を構成する樹脂材料の重量平均分子量は2万以上が好ましい。樹脂コート層の樹脂材料としては、非硬化型のアクリル樹脂、非硬化型のエポキシ樹脂等が挙げられる。樹脂コート層のガラス転移温度は20℃以上であってもよい。樹脂コート層の厚みは0.05~3μmが好ましい。樹脂コート層には、配向液晶層を構成する液晶化合物の未硬化物が含まれていてもよい。
 配向液晶層上に、樹脂と有機溶媒とを含む樹脂溶液を塗布することにより、樹脂コート層が形成される。樹脂溶液の有機溶媒は、光重合性液晶モノマーに対する溶解性を有し、かつ光重合性液晶モノマーの光硬化物を不溶または難溶であるものが好ましい。配向液晶層の表面に樹脂溶液を塗布した後、光学層を貼り合わせる前に、40~150℃で加熱を行ってもよい。
 配向液晶層上の樹脂コート層と光学層とを貼り合わせる接着剤層の厚みは、好ましくは0.01~5μmである。接着剤は、活性エネルギー線硬化型の接着剤であってもよい。
 本発明の配向液晶フィルムは加熱耐久性に優れ、高温環境に長時間暴露した場合でも、レターデーションの変化が小さい。そのため、液晶表示装置や有機EL表示装置等の画像表示装置用光学部材として好適に用いられる。
一実施形態の配向液晶フィルムの断面図である。 支持基板上に配向液晶層を備える積層体の断面図である。 配向液晶層上に樹脂コート層が形成された積層体の端面図である。 一実施形態の配向液晶フィルムの断面図である。 粘着剤層を備える配向液晶フィルムの断面図である。 一実施形態の配向液晶フィルムの断面図である。 一実施形態の配向液晶フィルムの断面図である。 一実施形態の配向液晶フィルムの断面図である。 一実施形態の配向液晶フィルムの断面図である。 画像表示装置の積層構成例を示す断面図である。
 図1は、一実施形態の配向液晶フィルムの構成を示す断面図である。配向液晶フィルム100は、配向液晶層1の一方の主面に接する樹脂コート層6を備え、樹脂コート層6上に、接着剤層3を介して貼り合わせられた光学層4を備える。
[配向液晶層]
 配向液晶層1は、所定方向に配向した液晶分子を含む。例えば、支持基板8上に、液晶化合物を含む液晶性組成物を塗布し、液晶化合物を所定方向に配向させた後、配向状態を固定することにより、図2に示す様に、支持基板8上に配向液晶層1が形成される。
<液晶性組成物>
 液晶化合物としては、棒状液晶化合物および円盤状液晶化合物等が挙げられる。支持基板の配向規制力によりホモジニアス配向しやすいことから、液晶化合物としては棒状液晶化合物が好ましい。棒状液晶化合物は、主鎖型液晶でも側鎖型液晶でもよい。棒状液晶化合物は、液晶ポリマーでもよく、重合性液晶化合物の重合物でもよい。重合前の液晶化合物(モノマー)が液晶性を示すものであれば、重合後は液晶性を示さないものであってもよい。
 液晶化合物は、加熱により液晶性を発現するサーモトロピック液晶であることが好ましい。サーモトロピック液晶は、温度変化に伴って、結晶相、液晶相、等方相の相転移を生じる。液晶性組成物に含まれる液晶化合物は、ネマチック液晶、スメクチック液晶、およびコレステリック液晶のいずれでもよい。ネマチック液晶にカイラル剤を添加してコレステリック配向性を持たせてもよい。
 サーモトロピック性を示す棒状液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、アルケニルシクロヘキシルベンゾニトリル類等が挙げられる。
 重合性液晶化合物としては、例えば、ポリマーバインダーを用いて棒状液晶化合物の配向状態を固定可能とした重合性液晶化合物、重合により液晶化合物の配向状態を固定可能とした重合性官能基を有する重合性液晶化合物等が挙げられる。この中でも、光重合性官能基を有する光重合性液晶化合物が好ましい。
 光重合性液晶化合物(液晶モノマー)は、1分子中にメソゲン基と少なくとも1つの光重合性官能基とを有する。液晶モノマーが液晶性を示す温度(液晶相転移温度)は、40~200℃が好ましく、50~150℃がより好ましく、55~100℃がさらに好ましい。
 液晶モノマーのメソゲン基としては、ビフェニル基、フェニルベンゾエート基、フェニルシクロヘキサン基、アゾキシベンゼン基、アゾメチン基、アゾベンゼン基、フェニルピリミジン基、ジフェニルアセチレン基、ジフェニルベンゾエート基、ビシクロヘキサン基、シクロヘキシルベンゼン基、ターフェニル基等の環状構造が挙げられる。これらの環状単位の末端は、シアノ基、アルキル基、アルコキシ基、ハロゲン基等の置換基を有していてもよい。
 光重合性官能基としては、(メタ)アクリロイル基、エポキシ基、ビニルエーテル基等が挙げられる。中でも、(メタ)アクリロイル基が好ましい。光重合性液晶モノマーは、1分子中に2以上の光重合性官能基を有するものが好ましい。2以上の光重合性官能基を含む液晶モノマーを用いることにより、光硬化後の液晶層に架橋構造が導入されるため、配向液晶フィルムの耐久性が向上する傾向がある。
 光重合性液晶モノマーとしては、任意の適切な液晶モノマーが採用され得る。例えば、国際公開第00/37585号、米国特許第5211877号、米国特許第4388453号、国際公開第93/22397号、欧州特許第0261712号、独国特許第19504224号、独国特許第4408171号、英国特許第2280445号、特開2017-206460号公報、国際公開第2014/126113号、国際公開第2016/114348号、国際公開第2014/010325号、特開2015-200877号公報、特開2010-31223号公報、国際公開第2011/050896号、特開2011-207765号公報、特開2010-31223号公報、特開2010-270108号公報、国際公開第2008/119427号、特開2008-107767号公報、特開2008-273925号公報、国際公開第2016/125839号、特開2008-273925号公報等に記載の化合物が挙げられる。液晶モノマーの選択により、複屈折の発現性や、レターデーションの波長分散を調整することもできる。
 液晶性組成物には、液晶モノマーに加えて、液晶モノマーの所定方向への配向を制御する化合物が含まれていてもよい。例えば、液晶性組成物に側鎖型液晶ポリマーを含めることより、液晶化合物(モノマー)をホメオトロピック配向させることができる。また、液晶性組成物にカイラル剤を添加することにより、液晶化合物をコレステリック配向させることができる。
 液晶性組成物は、光重合開始剤を含んでいてもよい。紫外線照射により液晶モノマーを硬化する場合は、光硬化を促進するために、液晶性組成物は、光照射によりラジカルを生成する光重合開始剤(光ラジカル発生剤)を含んでいることが好ましい。液晶モノマーの種類(光重合性官能基の種類)に応じて、光カチオン発生剤や光アニオン発生剤を用いてもよい。光重合開始剤の使用量は、液晶モノマー100重量部に対して、0.01~10重量部程度である。光重合開始剤の他に増感剤等を用いてもよい。
 液晶モノマーと、必要に応じて各種の配向制御剤、重合開始剤等を溶媒と混合することにより、液晶性組成物を調製できる。溶媒は、液晶モノマーを溶解可能であり、かつ基板を侵食しない(または侵食性が低い)ものであれば特に限定されず、クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタン、テトラクロロエタン、トリクロロエチレン、テトラクロロエチレン、クロロベンゼン、オルソジクロロベンゼン等のハロゲン化炭化水素類;フェノール、バラクロロフェノール等のフェノール類;ベンゼン、トルエン、キシレン、メトキシベンゼン、1,2-ジメトキシベンゼン等の芳香族炭化水素類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2-ピロリドン、N-メチル-2-ピロリドン等のケトン系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;t-ブチルアルコール、グリセリン、エチレングリコール、トリエチレングリコール、エチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコール、ジプロピレングリコール、2-メチル-2,4-ペンタンジオール等のアルコール系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒;アセトニトリル、ブチロニトリル等のニトリル系溶媒;ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン等のエーテル系溶媒;エチルセルソルブ、ブチルセルソルブ等が挙げられる。2種以上の溶媒の混合溶媒を用いてもよい。
 液晶性組成物の固形分濃度は、通常5~60重量%程度である。液晶性組成物は、界面活性剤やレベリング剤等の添加剤を含んでいてもよい。
<支持基板>
 液晶性組成物を塗布する支持基板8としては、ガラス板、金属板、金属ベルト、樹脂フィルム基板等が挙げられる。支持基板は第一主面および第二主面を有し、第一主面上に液晶性組成物を塗布する。
 支持基板8としてフィルム基板を用いることにより、基板上への液晶性組成物の塗布から液晶モノマーの光硬化、およびその後の加熱処理までの一連の工程を、ロール・トゥー・ロールにより実施できるため、配向液晶フィルムの生産性を向上できる。フィルム基板を構成する樹脂材料は、液晶性組成物の溶媒に溶解せず、かつ液晶性組成物を配向させるための加熱時の耐熱性を有していれば特に制限されず、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;ノルボルネン系ポリマー等の環状ポリオレフィン;ジアセチルセルロース、トリアセチルセルロース等のセルロース系ポリマー;アクリル系ポリマー;スチレン系ポリマー;ポリカーボネート、ポリアミド、ポリイミド等が挙げられる。
 支持基板8は、液晶分子を所定方向に配向させるための配向能を有していてもよい。例えば、支持基板として延伸フィルムを用いることにより、その延伸方向に沿って液晶分子をホモジニアス配向させることが可能である。延伸フィルムの延伸率は、配向能を発揮し得る程度であればよく、例えば、1.1倍~5倍程度である。延伸フィルムは二軸延伸フィルムであってもよい。二軸延伸フィルムであっても、縦方向と横方向の延伸倍率が異なるものを用いれば、延伸倍率の大きい方向に沿って液晶分子を配向させることができる。延伸フィルムは斜め延伸フィルムであってもよい。支持基板8として延伸フィルムを用いることにより、支持基板の長手方向および幅方向のいずれとも平行ではない方向に液晶分子を配向させることができる。
 支持基板8は、第一主面に配向膜を備えるものでもよい。配向膜は、液晶化合物の種類や基板の材質等によって、適宜、適切なものを選択すればよい。液晶分子を所定方向にホモジニアス配向させるための配向膜としては、ポリイミド系やポリビニルアルコール系の配向膜をラビング処理したものが好適に用いられる。また、光配向膜を用いてもよい。配向膜を設けずに、支持基板としての樹脂フィルムにラビング処理を施してもよい。
 支持基板8は、液晶分子をホメオトロピック配向させるための配向膜を備えていてもよい。ホメオトロピック配向性の配向膜(垂直配向膜)を形成するための配向剤としては、レシチン、ステアリン酸、ヘキサデシルトリメチルアンモニウムブロマイド、オクタデシルアミンハイドロクロライド、一塩基性カルボン酸クロム錯体、シランカップリング剤やシロキサン化合物等の有機シラン、パーフルオロジメチルシクロヘキサン、テトラフルオロエチレン、ポリテトラフルオロエチレン等が挙げられる。
<支持基板上への配向液晶層の形成>
 液晶化合物がサーモトロピック液晶である場合は、支持基板8の第一主面上に液晶性組成物を塗布し、加熱により液晶化合物を液晶状態として配向させる。
 支持基板8上に液晶性組成物を塗布する方法は特に限定されず、スピンコート、ダイコー、キスロールコート、グラビアコート、リバースコート、スプレーコート、マイヤーバーコート、ナイフロールコート、エアーナイフコート等を採用できる。溶液を塗布後、溶媒を除去することにより、支持基板上に液晶性組成物層が形成される。塗布厚みは、溶媒を乾燥後の液晶性組成物層の厚み(配向液晶フィルムの厚み)が0.1~20μm程度となるように調整することが好ましい。
 支持基板上に形成された液晶性組成物層を加熱して液晶相とすることにより、液晶化合物が配向する。具体的には、液晶性組成物を支持基板上に塗布後、液晶性組成物のN(ネマチック相)-I(等方性液体相)転移温度以上に加熱して、液晶性組成物を等方性液体状態にする。そこから、必要に応じ徐冷してネマチック相を発現させる。このとき、一旦液晶相を呈する温度に保ち、液晶相ドメインを成長させてモノドメインとすることが望ましい。あるいは、液晶性組成物を支持基板上に塗布後、ネマチック相が発現する温度範囲内で温度を一定時間保持して液晶分子を所定方向に配向させてもよい。
 液晶化合物を所定方向に配向させる際の加熱温度は、液晶性組成物の種類に応じて適宜選択すればよく、通常40~200℃程度である。加熱温度が過度に低いと液晶相への転移が不十分となる傾向があり、加熱温度が過度に高いと配向欠陥が増加する場合がある。加熱時間は液晶相ドメインが十分に成長するように調整すればよく、通常30秒~30分程度である。
 加熱により液晶化合物を配向させた後、ガラス転移温度以下の温度に冷却することが好ましい。冷却方法は特に限定されず、例えば、加熱雰囲気から室温に取り出せばよい。空冷、水冷等の強制冷却を行ってもよい。
 液晶層に光照射を行うことにより、光重合性液晶化合物(液晶モノマー)が液晶規則性を有した状態で光硬化が行われる。照射光は、光重合性液晶化合物を重合せさることが可能であればよく、通常は、波長250~450nmの紫外または可視光が用いられる。液晶性組成物が光重合開始剤を含む場合は、光重合開始剤が感度を有する波長の光を選択すればよい。照射光源としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、キセノンランプ、LED、ブラックライト、ケミカルランプ等が用いられる。光硬化反応を促進するために、光照射は窒素ガス等の不活性ガス雰囲気下で行うことが好ましい。
 液晶性組成物の光硬化の際に、所定方向の偏光を利用することにより、液晶化合物を所定方向に配向させることもできる。上記のように、支持基板8の配向規制力により液晶化合物を配向させる場合は、照射光は非偏光(自然光)でもよい。
 照射強度は、液晶性組成物の組成や光重合開始剤の添加量等に応じて適宜調整すればよい。照射エネルギー(積算照射光量)は、通常20~10000mJ/cm程度であり、50~5000mJ/cmが好ましく、100~800mJ/cmがより好ましい。光硬化反応を促進するために、加熱条件下で光照射を実施してもよい。
 光照射により液晶モノマーを光硬化後の重合物は非液晶性であり、温度変化による、液晶相、ガラス相、結晶相の転移が生じない。そのため、液晶モノマーを所定方向に配向させた状態で光硬化した液晶層は、温度変化による分子配向の変化が生じ難い。また、配向液晶フィルムは、非液晶材料からなるフィルムに比べて複屈折が格段に大きいため、所望のレターデーションを有する光学異方性素子の厚みを格段に小さくできる。配向液晶フィルム(液晶層)の厚みは、目的とするレターデーション値等に応じて設定すればよく、通常0.1~20μm程度であり、0.2~10μmが好ましく、0.5~7μmがより好ましい。
 配向液晶層の光学特性は特に限定されない。配向液晶層の正面レターデーションおよび厚み方向レターデーションは、用途等に応じて適宜設定すればよい。液晶がホモジニアス配向している場合、配向液晶層の正面レターデーションは、例えば、20~1000nm程度である。配向液晶層が1/4波長板である場合、正面レターデーションは、100~180nmが好ましく、120~150nmがより好ましい。配向液晶層が1/2波長板である場合、正面レターデーションは、200~340nmが好ましく、240~300nmがより好ましい。
 レターデーションの値は、特に断りがない限り、波長550nmにおける測定値である。配向液晶層は、波長450nmにおける正面レターデーションR(450)が、波長550nmにおける正面レターデーションR(550)よりも小さいものであってもよい。配向液晶層は、R(450)<R(550)であることに加えて、波長650nmにおける正面レターデーションR(650)がR(550)より大きく、R(550)<R(650)を満たすものであってもよい。配向液晶層のR(450)/R(550)は、0.70~0.95、0.75~0.90または0.80~0.87であってもよい。配向液晶層のR(650)/R(550)は、1.05~1.30、1.10~1.25、または1.13~1.20であってもよい。前述のように、液晶モノマーの選択により、レターデーションが所期の波長分散を有する配向液晶層を形成できる。
 液晶がホメオトロピック配向している場合は、配向液晶層の正面レターデーションは略0(例えば5nm以下、好ましくは3nm以下)であり、厚み方向レターデーションの絶対値は、30~500nm程度である。
[樹脂コート層]
 上記の通り、光硬化後の液晶層は、加熱しても相転移を生じないため、未硬化の配向液晶層に比べると熱安定性に優れている。しかし、光硬化後の液晶層を高温環境に長時間暴露すると、光学特性が変化する場合があり、加熱耐久性向上の余地がある。特に、ホモジニアス配向液晶層に接着剤を介して他の光学層を貼り合わせた配向液晶フィルムは、長時間の加熱により、レターデーションが変動する傾向があり、加熱耐久性に課題がある。
 図3に示す様に、配向液晶層1の表面に樹脂コート層6を設けることにより、配向液晶層の光学特性の加熱安定性の向上が期待できる。樹脂コート層6は、配向液晶層1の表面に、樹脂と有機溶媒とを含む樹脂溶液を塗布することにより形成される。
<樹脂材料>
 樹脂コート層6の樹脂材料としては、非硬化型樹脂が好ましい。非硬化型樹脂とは、樹脂溶液をコーティングした後に、光硬化や熱硬化等の硬化反応を伴わずに樹脂層を形成可能な材料である。非硬化型樹脂は、光硬化性または熱硬化性の反応性基を含まないものであるが、少量の反応性基が残存していてもよい。例えば、反応性官能基当量(1当量の反応性官能基をを含む樹脂の質量)は、3000以上が好ましく、4000以上がより好ましく、5000以上または6000以上であってもよい。
 樹脂材料は、透明性が高く、着色が少ないものが好ましい。樹脂材料としては、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、ポリウレタン、ポリアミド、ポリエーテル、ポリビニルアルコール、ポリエステル、ポリカーボネート、ポリアリレート、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアミド、ポリイミド、ポリオレフィン、環状ポリオレフィン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン等のポリマーが挙げられる。これらの中でも、配向液晶層1および接着剤層3との密着性が高いことから、非硬化型のアクリル樹脂および非硬化型のエポキシ樹脂が好ましい。
 「非硬化型のアクリル樹脂」とは、1分子中に1個以上の(メタ)アクリロイル基を有する化合物(アクリルモノマー)の(メタ)アクリロイル基が重合反応することにより得られたポリマーであり、配向液晶層1の表面に樹脂溶液をコーティングした後、光硬化や熱硬化を行わずに樹脂コート層6を形成可能なものである。非硬化型のアクリル樹脂は、典型的には、(メタ)アクリル酸アルキルエステルの重合体であり、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ブチル等が挙げられる。
 非硬化型のアクリル樹脂は、複数種の(メタ)アクリル酸アルキルエステルの共重合体でもよく、(メタ)アクリル酸アルキルエステルと他のモノマーとの共重合体でもよい。
(メタ)アクリル酸アルキルエステル以外のモノマーとしては、(メタ)アクリル酸、(メタ)アクリルアミド、(メタ)アクリロニトリル、ビニル系モノマー、スチレン系モノマー等が挙げられる。共重合モノマーは、ボロン酸やボロン酸エステル等のホウ素含有官能基を含むものであってもよい。
 「非硬化型のエポキシ樹脂」とは、1分子中に1個以上のエポキシ基を有する化合物(エポキシモノマー)のエポキシ基の重合反応により得られたポリマーであり、配向液晶層1の表面に樹脂溶液をコーティングした後、光硬化や熱硬化を行わずに樹脂コート層6を形成可能なものである。非硬化型のエポキシ樹脂の中でも、芳香環を有するエポキシ樹脂が好ましい。
 樹脂材料は2種以上を混合してもよい。樹脂コート層のヘイズ上昇を抑制する観点から、2種以上の樹脂材料は、相溶性を有するものが好ましい。樹脂材料は、非硬化型のアクリル樹脂と非硬化型のエポキシ樹脂との混合物であってもよい。樹脂材料がアクリル樹脂とエポキシ樹脂を含む場合、透明性の観点から、アクリル樹脂とエポキシ樹脂の含有割合は、重量比で95:5~60:40、または40:60~1:99が好ましい。両者の重量比は、90:10~70:30、または、30:70~10:90であってもよい。
 樹脂コート層6の樹脂材料のガラス転移温度は、20℃以上が好ましく、30℃以上がより好ましく、40℃以上または50℃以上であってもよい。粘着剤等の層間の接着に用いられるポリマー材料は、粘性を持たせるために、一般的には、ガラス転移温度が室温よりも低く設定されている。一方、配向液晶層の表面に設けられる樹脂コート層6は、室温よりも高いガラス転移温度を有することにより、画像表示装置の使用環境における特性変化が小さく、これに伴って配向液晶層の光学特性の変化が抑制される傾向がある。硬化反応を伴わずに樹脂コート層6の膜強度を維持する観点から、樹脂材料の重量平均分子量は、2万以上が好ましく、3万以上がより好ましい。
(樹脂層の形成)
 樹脂溶液の有機溶媒は、上記の樹脂材料を溶解可能なものであれば特に限定されない。有機溶媒は、配向液晶層を溶解しないものが好ましい。例えば、配向液晶層が光重合性液晶モノマーの光硬化物を含む場合は、当該硬化物を不溶または難溶である有機溶媒が好ましい。一方、有機溶媒は、光硬化前の液晶性化合物(モノマー)に対する溶解性を示すものであってもよい。有機溶媒は、1種の溶媒でもよく、2種以上の混合溶媒でもよい。
 樹脂溶液の固形分濃度は、1~50重量%程度の範囲で、コーティングに適した粘度となるように調整すればよい。厚みが小さい樹脂コート層を均一に形成する観点から、樹脂溶液の固形分濃度は30重量%以下が好ましく、20重量%以下がより好ましく、15重量%以下または10重量%以下であってもよい。
 配向液晶層1の表面に樹脂溶液を塗布する方法は特に限定されず、各種のコーティング法を適宜に採用できる。樹脂溶液を塗布後に、有機溶媒を除去するために加熱を行ってもよい。加熱温度は、40℃以上が好ましく、50℃以上がより好ましい。加熱温度が過度に高い場合は、基材への熱ダメージや液晶化合物の再配向等により、配向液晶フィルムの加熱安定性が低下する場合がある。そのため、加熱温度は150℃以下が好ましく、130℃以下がより好ましく、110℃以下または100℃以下であってもよい。
 樹脂コート層6の厚みは特に限定されないが、薄型化、接着性および透明性維持等の観点から、3μm以下が好ましく、2μm以下がより好ましく、1μm以下であってもよい。一方、未硬化モノマー等の配向液晶層1からの溶出物を樹脂コート層6に内包させブリードアウトを抑制する観点から、樹脂コート層6の厚みは、0.05μm以上が好ましく、0.1μm以上がより好ましい。
 樹脂コート層を設けることにより配向液晶層の加熱耐久性が向上する理由は定かではないが、光硬化後の液晶層に残存している未硬化のモノマーや、3次元ネットワーク構造の形成が不十分な部分に含まれている遊離の添加剤等が、樹脂溶液の有機溶媒により溶出し、樹脂コート層に取り込まれるため、加熱によるレターデーション変化の原因となる物質が配向液晶層から除去されることが一因として考えられる。配向液晶層内の未硬化物等が有機溶媒に溶出した場合でも、溶出成分が樹脂コート層内に取り込まれるため、配向液晶層表面への析出物等に起因する汚染や透明性の低下を防止できる。有機溶媒除去のための加熱の際に液晶が再配向し、配向状態が安定化されること等も、加熱安定性向上に寄与していると考えられる。
 配向液晶層1上に設けられた樹脂コート層6と光学層4とを接着剤層3を介して積層することにより、図1に示す積層体が得られる。
[光学層]
 光学層4は特に限定されず、光学フィルムとして一般的に用いられる光学等方性または光学異方性のフィルムを特に制限なく使用できる。光学層4の具体例としては、位相差フィルムや偏光子保護フィルム等の透明フィルム、偏光子、視野角拡大フィルム、視野角制限(覗き見防止)フィルム、輝度向上フィルム等の機能性フィルムが挙げられる。光学層4は、単層でもよく積層体でもよい。光学層4は、配向液晶層であってもよい。例えば、光学層4は、偏光子の一方の面または両面に透明保護フィルムが貼り合わせられた偏光板であってもよい。偏光板が一方の面に透明保護フィルムを備える場合、偏光子と配向液晶層とを貼り合わせてもよく、透明保護フィルムと配向液晶層とを貼り合わせてもよい。
 例えば、液晶表示装置では、液晶セルから視認側に射出される光の偏光状態を適宜に変換して、視野角特性を向上させる等の目的で、画像表示セル(液晶セル)と偏光子との間に光学補償フィルムとしての位相差板が配置される場合がある。有機EL表示装置では、外光が金属電極層で反射して鏡面のように視認されることを抑制するために、セルと偏光板との間に1/4波長板が配置される場合がある。
[接着剤層]
 上記のように、配向液晶層1の表面に樹脂コート層6を設け、その上に接着剤層3を介して光学層4を貼り合わせることにより、配向液晶フィルム100における配向液晶層1の加熱耐久性を向上できる。
 接着剤層3を構成する接着剤は、光学的に透明であればその材料は特に制限されず、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、ポリウレタン、ポリアミド、ポリエーテル、ポリビニルアルコール等が挙げられる。前述の樹脂コート層6には非硬化型樹脂が用いられるのに対して、接着剤には、硬化型の組成物が用いられる。接着剤層3の厚みは、被着体の種類や接着剤の材料等に応じて適宜に設定される。塗布後の架橋反応により接着性を示す硬化型の接着剤を用いる場合、接着剤層3の厚みは0.01~5μmが好ましく、0.03~3μmがより好ましい。
 接着剤としては、水系接着剤、溶剤系接着剤、ホットメルト接着剤系、活性エネルギー線硬化型接着剤等の各種形態のものが用いられる。これらの中でも、接着剤層の厚みを小さくできることから、水系接着剤または活性エネルギー線硬化型接着剤が好ましい。
 水系接着剤としては、例えば、ビニルポリマー系、ゼラチン系、ビニル系ラテックス系、ポリウレタン系、イソシアネート系、ポリエステル系、エポキシ系等の水溶性または水分散性ポリマーを含むものを例示できる。このような水系接着剤からなる接着剤層は、フィルム上に水溶液を塗布し、乾燥させることにより形成される。水溶液の調製に際しては、必要に応じて、架橋剤や他の添加剤、酸等の触媒を配合することもできる。
 水系接着剤に配合される架橋剤としては、ホウ酸やホウ砂;カルボン酸化合物;アルキルジアミン類;イソシアネート類;エポキシ類;モノアルデヒド類;ジアルデヒド類;アミノ-ホルムアルデヒド樹脂;二価金属または三価金属の塩およびその酸化物等が挙げられる。
 活性エネルギー線硬化型接着剤は、電子線や紫外線等の活性エネルギー線の照射により、ラジカル重合、カチオン重合またはアニオン重合可能な接着剤である。中でも、低エネルギーで硬化可能であることから、紫外線照射によりラジカル重合が開始する光ラジカル重合性接着剤が好ましい。
 ラジカル重合性接着剤のモノマーとしては、(メタ)アクリロイル基を有する化合物や、ビニル基を有する化合物が挙げられる。中でも、(メタ)アクリロイル基を有する化合物が好適である。(メタ)アクリロイル基を有する化合物としては、C1-20鎖状アルキル(メタ)アクリレート、脂環式アルキル(メタ)アクリレート、多環式アルキル(メタ)アクリレート等のアルキル(メタ)アクリレート;ヒドロキシル基含有(メタ)アクリレート;グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリレート等が挙げられる。ラジカル重合性接着剤は、ヒドロキシエチル(メタ)アクリルアミド、N‐メチロール(メタ)アクリルアミド、N‐メトキシメチル(メタ)アクリルアミド、N‐エトキシメチル(メタ)アクリルアミド、(メタ)アクリルアミド、(メタ)アクリロイルモルホリン等の窒素含有モノマーを含んでいてもよい。ラジカル重合性接着剤は、架橋成分として、トリプロピレングリコールジアクリレート、1,9‐ノナンジオールジアクリレート、トリシクロデカンジメタノールジアクリレート、環状トリメチロールプロパンフォルマルアクリレート、ジオキサングリコールジアクリレート、EO変性ジグリセリンテトラアクリレート等の多官能モノマーを含んでいてもよい。
 光ラジカル重合性接着剤等の光硬化型接着剤は、光重合開始剤を含むことが好ましい。光重合開始剤は、反応種に応じて適宜選択すればよい。例えば、ラジカル重合性接着剤には、光重合開始剤として、光照射によりラジカルを生成する光ラジカル発生剤を配合すること好ましい。光ラジカル発生剤の具体例は後述する。光ラジカル発生剤の含有量は、モノマー100重量部に対して、通常0.1~10重量部程度、好ましくは、0.5~3重量部である。なお、ラジカル重合性接着剤を電子線硬化型として用いる場合には、光重合開始剤は特に必要ない。ラジカル重合性接着剤には、必要に応じて、カルボニル化合物等で代表される光増感剤を添加することもできる。光増感剤は、電子線による硬化速度や感度を上昇させるために用いられる。光増感剤の使用量はモノマー100重量部に対して、通常0.001~10重量部程度、好ましくは、0.01~3重量部である。
 接着剤は、必要に応じて適宜の添加剤を含んでいてもよい。添加剤の例としては、シランカップリング剤、チタンカップリング剤等のカップリング剤、エチレンオキシド等の接着促進剤、紫外線吸収剤、劣化防止剤、染料、加工助剤、イオントラップ剤、酸化防止剤、粘着付与剤、充填剤、可塑剤、レベリング剤、発泡抑制剤、帯電防止剤、耐熱安定剤、耐加水分解安定剤等が挙げられる。
 配向液晶層1上に設けられた樹脂コート層6の表面および光学層4の表面のいずれか一方または両方に接着剤を塗布し、硬化することにより、接着剤層3を介して、樹脂コート層6が設けられた配向液晶層1と光学層4が積層される。接着剤の硬化は、接着剤の種類に応じて適宜選択すればよい。例えば、水系接着剤は、加熱により硬化できる。活性エネルギー線硬化型接着剤は、紫外線等の活性エネルギー線の照射により硬化できる。
[配向液晶フィルムの積層構成]
 支持基板8上の配向液晶層1の表面に樹脂コート層6が設けられ、樹脂コート層6上に接着剤層3を介して光学層4が貼り合わせられた配向液晶フィルム103は、そのまま光学部材として用いてもよい。この場合、支持基板8が配向液晶フィルム103の一部を構成する。図1に示す配向液晶フィルム100の様に、配向液晶層1から支持基板を剥離してもよい。支持基板の剥離により露出した配向液晶層1の表面には、図5に示す様に、適宜の粘着剤層2を積層してもよい。
 図5に示す形態では、支持基板8を剥離後の配向液晶層1の露出面(配向液晶層形成時の基板面)に粘着剤層2を積層しているが、配向液晶フィルムは、配向液晶層形成時の空気面側に粘着剤層を積層し、配向液晶層の基板面側に樹脂コート層および接着剤層を介して光学層を貼り合わせたものであってもよい。
 粘着剤層2を構成する粘着剤は特に制限されず、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系ポリマー、ゴム系ポリマー等をベースポリマーとするものを適宜に選択して用いることができる。特に、アクリル系粘着剤やゴム系粘着剤等の、透明性に優れ、適度な濡れ性と凝集性と接着性を示し、耐候性や耐熱性等に優れる粘着剤が好ましい。粘着剤層の厚みは、被着体の種類等に応じて適宜設定され、一般には5~500μm程度である。
 配向液晶層1上への粘着剤層2の積層は、例えば、予めシート状に形成された粘着剤を、配向液晶層1の表面に貼り合わせることにより行われる。配向液晶層1上に粘着剤組成物を塗布した後、溶媒の乾燥、架橋、光硬化等を行って粘着剤層2を形成してもよい。配向液晶層1と粘着剤層2との接着力(投錨力)を高めるために、配向液晶層1の表面にコロナ処理、プラズマ処理等の表面処理や易接着層を形成した後に、粘着剤層2を積層してもよい。
 粘着剤層2の表面には、セパレーター9が仮着されていることが好ましい。セパレーター9は、粘着剤付き光学フィルムを画像表示セル50と貼り合わせるまでの間、粘着剤層2の表面を保護する。セパレーターの構成材料としては、アクリル、ポリオレフィン、環状ポリオレフィン、ポリエステル等のプラスチックフィルムが好適に用いられる。セパレーターの厚みは、通常5~200μm程度である。セパレーターの表面には、離型処理が施されていることが好ましい。離型剤としては、シリコーン系材料、フッ素系材料、長鎖アルキル系材料、脂肪酸アミド系材料等が挙げられる。
 支持基板8を剥離後の配向液晶層1の露出面には、適宜の接着剤層または粘着剤層を介して他の光学層を積層してもよい。例えば、図6に示す様に、配向液晶層1上に、適宜の接着剤層7を介して、他の光学層5を積層してもよい。光学層5の上には、さらに粘着剤層(不図示)が積層されていてもよく、粘着剤層の表面にはセパレーターが仮着されていてもよい。
 配向液晶層1から支持基板8を剥離し、支持基板の剥離により露出した配向液晶層1の表面に、樹脂溶液を塗布して樹脂コート層16を形成してもよい。図7に示すように、支持基板の剥離により露出した配向液晶層1の表面に設けられた樹脂コート層16上には、接着剤層7を介して光学層5が貼り合わせられていてもよい。
 図7では、配向液晶層1の両面に樹脂コート層6,16が設けられているが、樹脂コート層は、配向液晶層1の片面のみに設けられていてもよい。支持基板8上に配向液晶層1が密着積層された積層体101の配向液晶層1の表面(配向液晶層形成時の空気面)には樹脂コート層を形成せずに粘着剤層や接着剤層を介して他の層を貼り合わせ、配向液晶層1から支持基板8を剥離後に、露出した配向液晶層1の表面(配向液晶層形成時の基板面)のみに樹脂コート層16を形成してもよい。
<円偏光板>
 配向液晶フィルムは、視認性向上等を目的としたディスプレイ用光学フィルムとして用いることができる。例えば、液晶表示装置では、液晶セルから視認側に射出される光の偏光状態を適宜に変換して、視野角特性を向上させる等の目的で、画像表示セル(液晶セル)と偏光子との間に光学補償フィルムとしての位相差板が配置される場合がある。
 一実施形態において、配向液晶フィルムは、配向液晶層1上の樹脂コート層6形成面に、接着剤層3を介して光学層4としての偏光板が貼り合わせられた円偏光板である。円偏光板は、2層以上の配向液晶層を備えるものであってもよい。
 偏光板は、1層の偏光子のみからなるものでもよく、前述のように、偏光子の一方の面または両面に透明保護フィルムが貼り合わせられていてもよい。偏光子としては、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等のポリエン系配向フィルム等が挙げられる。
 中でも、高い偏光度を有することから、ポリビニルアルコールや、部分ホルマール化ポリビニルアルコール等のポリビニルアルコール系フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて所定方向に配向させたポリビニルアルコール(PVA)系偏光子が好ましい。例えば、ポリビニルアルコール系フィルムに、ヨウ素染色および延伸を施すことにより、PVA系偏光子が得られる。樹脂基材上にPVA系樹脂層を形成し、積層体の状態でヨウ素染色および延伸を行ってもよい。
 偏光板と配向液晶層とが積層された円偏光板において、少なくとも1層の配向液晶層は液晶分子がホモジニアス配向していることが好ましい。円偏光板では、液晶分子がホモジニアス配向している配向液晶層における液晶分子の配向方向と、偏光子の吸収軸方向とが平行でも直交でもないように配置される。
 例えば、円偏光板が配向液晶層を1層のみ有する場合、配向液晶層1は1/4波長板であり、偏光子の吸収軸方向と液晶分子の配向方向(一般には遅相軸方向)とのなす角は45°に設定される。偏光子の吸収軸方向と液晶分子の配向方向とのなす角は、35~55°であってもよく、40~50°であってもよく、43~47°であってもよい。
 偏光板4と1/4波長板としての配向液晶層1とが、両者の光学軸のなす角が45°となるように積層された構成においては、さらに、光学層5として、液晶分子が基板面に対して垂直配向(ホメオトロピック配向)している配向液晶層を備えていてもよい。偏光板上に、1/4波長板としての配向液晶層1とポジティブCプレートとして機能するホメオトロピック配向液晶層5とが順に積層されることにより、斜め方向からの外光に対しても反射光を遮蔽可能な円偏光板を形成できる。偏光板上に、ホメオトロピック配向液晶層(ポジティブCプレート)とホモジニアス配向液晶層(ポジティブAプレートである1/4波長板)とが順に積層されていてもよい。
 図6,7に示す様に、光学層としての偏光板4に複数の配向液晶層1,5が積層された円偏光板において、配向液晶層1,5は、いずれもホモジニアス配向液晶層であってもよい。この場合、偏光板4に近い側に配置される配向液晶層1が1/2波長板であり、偏光板から遠い側に配置される配向液晶層5が1/4波長板であることが好ましい。この積層構成では、1/2波長板の遅相軸方向と偏光子の吸収軸方向とのなす角が75°±5°、1/4波長板の遅相軸方向と偏光子の吸収軸方向とのなす角が15°±5°となるように配置することが好ましい。このような積層構成の円偏光板は、可視光の広い波長範囲にわたって円偏光板として機能するため、反射光の色付きを低減できる。
 偏光板4に複数の配向液晶層1,5が積層された円偏光板は、図8に示すように、配向液晶層1と配向液晶層5の間に樹脂コート層6が配置され、配向液晶層1と偏光板4との間には樹脂コート層を備えていない構成であってもよい。例えば、図3に示す様に、配向液晶層1の表面に樹脂コート層6を設けた後、樹脂コート層6上に接着剤層7を介して配向液晶層5を貼り合わせることにより、図9に示す様に、配向液晶層1の樹脂コート層6形成面上に、接着剤層7を介して配向液晶層が貼り合わせられた積層体(配向液晶フィルム)113が得られる。この積層体から支持基板8を剥離し、支持基板の剥離により露出した配向液晶層1上に、粘着剤層12を介して偏光板4を貼り合わせることにより、図8に示す様に、配向液晶層1の一方の面に樹脂コート層6が設けられ、その上に接着剤層7を介して配向液晶層5が積層され、配向液晶層1の他方の面に粘着剤層12を介して偏光板4が貼り合わせられた積層体107が得られる。
 この積層体107の一実施形態では、偏光板4に近い側に配置されている配向液晶層1が、1/4波長板としてのホモジニアス配向液晶層であり、偏光板4から遠い側に配置されている配向液晶層5がポジティブCプレートとしてのホメオトロピック配向液晶層である。この実施形態では、配向液晶層1の樹脂コート層形成面6上に接着剤層7を介して配向液晶層5が貼り合わせられる。
 接着剤層7は、硬化性材料である接着剤の硬化により形成されるが、配向液晶層1上には非硬化型の樹脂コート層6が形成されているため、加熱による配向液晶層1の正面レターデーションの変化が抑制される。配向液晶層1の偏光板4との貼り合わせ面には樹脂コート層が設けられていないが、配向液晶層1と偏光板4は、粘着剤層12(非硬化型材料)を介して貼り合わせられているため、配向液晶層上に直接接着剤層が形成される場合にみられるような加熱耐久性の低下は生じ難い。
 このように、図8に示す積層体107は、ホモジニアス配向液晶層1上に非硬化型の樹脂コート層6が設けられ、その上に接着剤層7を介してポジティブCプレート(光学層)としての配向液晶層5が貼り合わせられた構成を有するため、高温環境に長時間暴露した場合でも、正面レターデーションの変化が小さく、液晶表示装置や有機EL表示装置等の円偏光板として好適に用いられる。なお、積層体107において、ポジティブCプレートである配向液晶層5は、接着剤層7と接しているが、ポジティブCプレートは正面レターデーションが略0であるため、積層体107を高温環境に長時間暴露しても、正面レターデーションの変化はほとんど生じない。
[画像表示装置]
 図10は画像表示装置の積層構成例を示す断面図であり、画像表示セル50の表面に、粘着剤層2を介して配向液晶層1を備える配向液晶フィルムが貼り合わせられている。配向液晶フィルムは、2層以上の配向液晶層を備えるものであってもよい。画像表示セル50としては、液晶セルや有機ELセル等が挙げられる。
 上記のように、配向液晶フィルムは、配向液晶層の表面に樹脂コート層を設けることにより、配向液晶層の加熱耐久性が向上している。表面に樹脂コート層が形成された配向液晶層を備える画像表示装置は、加熱環境に長時間曝された場合も配向液晶層のレターデーションの変化が小さいため、視認性の変化が小さく、加熱耐久性に優れている。
 以下に、配向液晶フィルムの作製例を挙げて本発明をより詳細に説明するが、本発明は下記の例に限定されるものではない。
[ホモジニアス配向液晶フィルムの作製]
<比較例1>
 ネマチック液晶相を示す光重合性液晶化合物(BASF製「Paliocolor LC242」)をシクロペンタノンに溶解して、固形分濃度30重量%の溶液を調製した。この溶液に、界面活性剤(ビック・ケミー製「BYK-360」)および光重合開始剤(IGM Resins製「Omnirad907」)を添加して、液晶性組成物溶液を調製した。レベリング剤および重合開始剤の添加量は、光重合性液晶化合物100重量部に対して、それぞれ、0.01重量部および3重量部とした。
 フィルム基材として、二軸延伸ノルボルネン系フィルム(日本ゼオン製「ゼオノアフィルム」、厚み:33μm、正面レターデーション:135nm)を用いた。フィルム基材の表面に、上記の液晶性組成物を乾燥後の厚みが1μmとなるようにバーコーターにより塗布し、100℃で3分間加熱して液晶を配向させた。室温に冷却した後、窒素雰囲気下で、積算光量400mJ/cmの紫外線を照射して光硬化を行い、フィルム基材上にホモジニアス配向液晶層が形成された積層体を得た。
<実施例1~6>
 シクロペンタノンと酢酸エチルの混合溶媒に、表1に示す樹脂を固形分濃度3重量%となるように溶解して、樹脂溶液を調製した。比較例1の積層体の配向液晶層の表面に、ワイヤーバー(#10)で樹脂溶液を塗布した後、85℃で加熱して溶媒を除去して、配向液晶層の表面に樹脂コート層を形成した。なお、表1において、実施例1~3のアクリル樹脂は、楠本化成より入手したものであり、実施例4~6および比較例3のエポキシ樹脂は三菱ケミカルより入手したものである。
<比較例2>
 比較例1の積層体の配向液晶層の表面に、ワイヤーバー(#10)でシクロペンタノンを塗布した後、85℃で1分間加熱して溶媒を除去した。
<比較例3>
 シクロペンタノンと酢酸エチルの混合溶媒に、エポキシ当量約190のビスフェノールA型エポキシ樹脂(三菱ケミカル製「jER828」および光カチオン重合開始剤(サンアプロ製「CPI100P」)を、エポキシ樹脂濃度が3重量%となるように溶解して、光硬化性の樹脂組成物(溶液)を調製した。比較例1の積層体の配向液晶層の表面に、ワイヤーバー(#10)で組成物を塗布した後、85℃で加熱して溶媒を除去して、その後、紫外線を照射して、エポキシ樹脂を光硬化した。
[配向液晶層を備える偏光板(円偏光板)の作製]
 厚み20μmの無延伸ノルボルネン系フィルム(日本ゼオン製「ゼオノアフィルム」)の片面に、UV硬化型接着剤を介して厚み5μmのPVA系偏光子が設けられた積層体(片保護偏光板)を準備した。
 ヒドロキシエチルアクリルアミド(興人製「HEAA」)62重量部、アクリロイルモルホリン(興人製「ACMO」)25重量部、PEG400#ジアクリレート(共栄社化学製「ライトアクリレート9EG-A」)7重量部、ならびに光重合開始剤(IGM Resins製「Omnirad907」)3重量部、および2,4-ジエチルチオキサントン(日本化薬製「カヤキュアDETX-S」)3重量部を混合して、UV硬化型接着剤組成物を調製した。この接着剤を、上記の片保護偏光板の表面に約1μmの厚みで塗布し、接着剤の塗布層上に、実施例1~6および比較例1~3の積層体の配向液晶層側の面を貼り合わせた後、積算光量1000mJ/cmの紫外線を照射して接着剤を硬化させた。貼り合わせ時に、偏光子の吸収軸方向と、配向液晶層における液晶分子の配向方向(フィルム基材の遅相軸方向)とのなす角を45°とした。
 配向液晶フィルムからフィルム基材を剥離し、配向液晶フィルムの表面に、厚み15μmのアクリル系粘着シートを貼り合わせ、片保護偏光板の偏光子上にUV硬化型接着剤層を介して配向液晶層が貼り合わせられ、その上にアクリル系粘着シートを備える偏光板を得た。実施例1~6および比較例3では、接着剤層と配向液晶層の間に、厚み約300nmの樹脂層が形成されていた。
[評価]
<外観>
 樹脂コート層を形成後(比較例2はシクロペンタノンによる表面処理後)のフィルム表面を目視にて観察し、析出物が確認されなかったものをOK、析出物が確認されたものをNGとした。
<レターデーション変化>
 上記の偏光板の粘着剤層をガラス板に貼り合わせて評価用試料を作製した。位相差計(王子計測機器製「KOBRA 21-ADH」)により波長590nmの正面レターデーションを測定した後、評価用試料を85℃の空気循環式恒温オーブンに120時間投入した。オーブンから試料を取り出した後、再度正面レターデーションを測定し、加熱試験前後のレターデーションの変化率を算出した。
<色相変化>
 上記の偏光板の粘着剤層をコーニング製の無アルカリガラスに貼り合わせて評価用試料を作製した。評価用試料の無アルカリガラスの下にアルミニウム蒸着ポリエステルフィルム(東レアドバンスドフィルム製「DMS-X42」)を配置し、分光測色計(コニカミノルタ製「CM-2600d」を用いて、偏光板側から光を照射し、SCI方式で反射光の色相(Lab色空間におけるaおよびbの値)を測定した。その後、評価用試料を85℃の空気循環式恒温オーブンに120時間投入した。オーブンから試料を取り出した後、再度、アルミニウム蒸着ポリエステルフィルム上で反射光の色相を測定し、加熱試験前後での反射光の色相の変化量√{(Δa+(Δb}を算出した。
 上記の実施例1~6および比較例1~3における樹脂コート層の形成に用いた樹脂種、ならびに配向液晶フィルムの評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 配向液晶層の表面処理を実施しなかった比較例1では、加熱試験前後のRe変化量が3%、反射光の色相変化が2.2であったのに対して、シクロペンタノンによる処理を実施した比較例2では、Re変化が抑制され、これに伴って反射光の色相の変化も抑制されていた。しかし、比較例2では、配向液晶層の表面に析出物が確認され、外観不良を生じていた。
 非硬化型の樹脂を用いて、配向液晶層上に樹脂コート層を形成した実施例1~6では、比較例1に比べてRe変化および反射光の色相変化が抑制されており、かつ外観も良好であった。実施例1の樹脂コート層表面をテトラヒドロフランに溶解させて樹脂分を抽出し、MALDI-TOF質量分析により分析したところ、未反応の液晶モノマーが確認された。これらの結果から、樹脂溶液を塗布することにより、配向液晶層中の未硬化物等が抽出され、これが樹脂コート層内に取り込まれることが、配向液晶層の加熱耐久性向上に寄与していると考えられる。
 光カチオン硬化性の樹脂組成物を用い、配向液晶層上へのコーティング後に樹脂層のUV硬化を行った比較例3では、加熱耐久試験後に正面Reが低減しており、加熱耐久性が不充分であった。これらの結果から、配向液晶層上に、非硬化型の樹脂コート層を形成することにより、配向液晶層の加熱耐久性を向上し、レターデーションの変化が小さく、反射光の色付きや色の変化が少ない円偏光板が得られることが分かる。
[複数の配向液晶層を備える円偏光板の作製例]
<ホモジニアス配向液晶層の作製>
 式(I)で表される化合物:55重量部、式(II)で表される化合物:25重量部、および式(III)で表される化合物:20重量部を、シクロペンタノン:400重量部に添加し、60℃に加温して撹拌・溶解させた後、室温に冷却して、固形分濃度20重量%の溶液を調製した。
Figure JPOXMLDOC01-appb-C000002
 この溶液に、界面活性剤(DIC製「メガファックF-554」):0.2重量部、光重合開始剤(IGM Resins製「Omnirad907」):3重量部、およびp-メトキシフェノール:0.1重量部を添加して、液晶性組成物溶液を調製した。
 フィルム基材として、トリアセチルセルロースフィルム上にラビング処理された配向膜を備えるフィルムを用いた。フィルム基材の配向膜上に、上記の液晶性組成物をスピンコートにより塗布し、100℃で2分間加熱して液晶を配向させた。室温に冷却した後、窒素雰囲気下で、積算光量900mJ/cmの紫外線を照射して光硬化を行い、フィルム基材上にホモジニアス配向液晶層(厚み4μm)が形成された積層体Aを得た。配向液晶層をガラス板上に転写して正面レターデーションを測定したところ、波長550nmの正面レターデーションR(550)は130nmであり、波長550nmの正面レターデーションR(550)と波長450nm正面レターデーションR(450)との比R(450)/R(550)は0.85であった。
<ホメオトロピック配向液晶層の作製>
 下記の化学式(n=0.35であり、便宜上ブロックポリマー体で示している)の重量平均分子量5000の側鎖型液晶ポリマー:20重量部、ネマチック液晶相を示す重合性液晶化合物(BASF製「Paliocolor LC242」):80重量部、および光重合開始剤剤(IGM Resins製「Omnirad907」):5重量部を、シクロペンタノン400重量部に溶解して液晶性組成物を調製した。
Figure JPOXMLDOC01-appb-C000003
 フィルム基材として、二軸延伸ノルボルネン系フィルム(日本ゼオン製「ゼオノアフィルム」、厚み:52μm、正面レターデーション:50nm)を用いた。フィルム基材の表面に、上記の液晶性組成物を乾燥後の厚みが1μmとなるようにバーコーターにより塗布し、80℃で2分間加熱して液晶を配向させた室温に冷却した後、窒素雰囲気下で700mJ/cmの紫外線を照射して、液晶モノマーを光硬化させ、フィルム基材上にホメオトロピック配向液晶層が形成された積層体Bを得た。
<粘着シートの作製>
 反応容器に、モノマーとして、アクリル酸ブチル:92重量部、N-アクリロイルモルホリン:5重量部、アクリル酸:2.9重量部、およびアクリル酸2-ヒドロキシエチル:0.1重量部、ならびに重合開始剤として2,2’-アゾビスイソブチロニトリル:0.1重量部を、酢酸エチルと共に加え、窒素ガス気流下、55℃で8時間反応させた。その後、反応液に酢酸エチルを加えて、重量平均分子量178万のアクリル系ポリマーの溶液を得た。この溶液に、ポリマー100重量部に対して、架橋剤として、ジベンゾイルパーオキシド(日本油脂製「ナイパーBMT」):0.15重量部、およびトリメチロールプロパン/トリレンジイソシアネート付加物(東ソー製「コロネートL」):0.6重量部を配合して、粘着剤組成物を得た。この粘着剤組成物を、離型フィルム(シリコーン離型処理したポリエチレンテレフタレートフィルム)の離型処理面に塗布し、150℃で乾燥および架橋処理を行い、厚みが5μmの粘着シートを作製した。
<実施例7>
 酢酸エチルに、メタクリル酸メチルと3-メタクリルアミドフェニルボロン酸を97:3の重量比で共重合した重量平均分子量80000のアクリル系ポリマーを、固形分濃度3重量%となるように溶解して、樹脂溶液を調製した。積層体Aのホモジニアス配向液晶層の表面に、ワイヤーバー(#10)で樹脂溶液を塗布した後、85℃で加熱して溶媒を除去して、ホモジニアス配向液晶層の表面に厚み約300nmの樹脂コート層を形成し、フィルム基材上に、ホモジニアス配向液晶層および樹脂コート層を順に備える積層体Dを得た。
 積層体Dの樹脂コート層上に、上記のUV硬化型接着剤を約1μmの厚みで塗布し、接着剤の塗布層上に、積層体Bのホメオトロピック配向液晶層側の面を貼り合わせた後、積算光量1000mJ/cmの紫外線を照射して接着剤を硬化させた。
 その後、ホモジニアス配向液晶層の表面からフィルム基材を剥離除去し、露出したホモジニアス配向液晶層上に、上記の粘着剤層を介して、片保護偏光板の偏光子側の面を貼り合わせた。貼り合わせ時に、偏光子の吸収軸方向と、ホモジニアス配向液晶層における液晶分子の配向方向(フィルム基材の配向膜のラビング方向)とのなす角を45°とした。その後、ホメオトロピック配向液晶層の表面からフィルム基材を剥離除去し、片保護偏光板の偏光子側の面に、粘着剤層を介してホモジニアス配向液晶層が貼り合わせられ、その上に樹脂コート層および接着剤層を介してホメオトロピック配向液晶層が貼り合わせられた積層体(円偏光板)を得た。
<比較例4>
 実施例7と同様にして、ホモジニアス配向液晶層の表面に厚み約300nmの樹脂コート層を形成して、積層体Dを得た。積層体Dの樹脂コート層上に、上記の粘着剤層を介して、片保護偏光板の偏光子側の面を貼り合わせた。貼り合わせ時に、偏光子の吸収軸方向と、ホモジニアス配向液晶層における液晶分子の配向方向(フィルム基材の配向膜のラビング方向)とのなす角を45°とした。
 その後、ホモジニアス配向液晶層の表面からフィルム基材を剥離除去し、露出したホモジニアス配向液晶層上に、上記のUV硬化型接着剤を約1μmの厚みで塗布し、接着剤の塗布層上に、積層体Bのホメオトロピック配向液晶層側の面を貼り合わせた後、積算光量1000mJ/cmの紫外線を照射して接着剤を硬化させた。その後、ホメオトロピック配向液晶層の表面からフィルム基材を剥離除去し、片保護偏光板の偏光子側の面に、粘着剤層を介して樹脂コート層とホモジニアス配向液晶層との積層体が貼り合わせられ、ホモジニアス配向液晶層上に、接着剤層を介してホメオトロピック配向液晶層が貼り合わせられた積層体(円偏光板)を得た。
<実施例8>
 アクリル系ポリマーの溶液に代えて、アクリル系ポリマーとエポキシ樹脂(三菱ケミカル製「jER YX7200B35)を85:15の重量比で含む固形分濃度3重量%のメチルエチルケトン溶液を用いた。それ以外は実施例7と同様にして、ホモジニアス配向液晶層の表面に厚み約300nmの樹脂コート層を形成した。その後は実施例7と同様にして、片保護偏光板の偏光子側の面に、粘着剤層を介してホモジニアス配向液晶層が貼り合わせられ、その上に樹脂コート層および接着剤層を介してホメオトロピック配向液晶層が貼り合わせられた積層体(円偏光板)を得た。
<実施例9>
 樹脂コート層の厚みを約600nmに変更したこと以外は実施例8と同様にして、円偏光板を作製した。
<比較例5>
 実施例8と同様にして、アクリル系ポリマーとエポキシ樹脂の混合樹脂溶液を用いて、ホモジニアス配向液晶層の表面に、厚み約300nmの樹脂コート層を形成した。その後は比較例4と同様にして、片保護偏光板の偏光子側の面に、粘着剤層を介して樹脂コート層とホモジニアス配向液晶層との積層体が貼り合わせられ、ホモジニアス配向液晶層上に、接着剤層を介してホメオトロピック配向液晶層が貼り合わせられた積層体(円偏光板)を得た。
[評価]
 実施例7~9および比較例4,5の円偏光板のホメオトロピック配向液晶層側の面に、厚み15μmのアクリル系粘着シートを貼り合わせ、この粘着シートをガラス板に貼り合わせて評価用試料を作製した。位相差計(王子計測機器製「KOBRA 21-ADH」)により波長590nmの正面レターデーション(初期値)を測定した後、評価用試料を85℃の空気循環式恒温オーブンに投入し、120時間後、240時間後、および500時間後に正面レターデーションを測定し、初期値からの変化率を算出した。
 上記の実施例7~9および比較例4,5の円偏光板の積層構成、樹脂コート層のポリマー種および厚み、ならびに加熱耐久試験(120時間後、240時間後および500時間後)の正面レターデーションの変化率を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 ホモジニアス配向層に接して接着剤層を設けてホメオトロピック配向液晶層を貼り合わせた比較例4,5では、120時間の加熱試験により、1%以上の正面レターデーションの低下がみられたのに対して、ホモジニアス配向液晶層上に樹脂コート層を設け、その上に接着剤層を介してホメオトロピック配向液晶層を貼り合わせた実施例7~9では、加熱耐久試験による正面レターデーションの変化が抑制されていた。
 これらの結果から、ホモジニアス配向液晶層と硬化型の接着剤層とが接しないように樹脂コート層を設けることにより、配向液晶層の加熱耐久性が向上し、レターデーションの変化が抑制されることが分かる。実施例8と実施例9の対比から、樹脂コート層の厚みが大きい方が、加熱耐久性が高められる(レターデーション変化が抑制される)傾向があることが分かる。
  1    配向液晶層
  6    樹脂コート層
  8    支持基板
  4    光学層(偏光板)
  5    光学層(配向液晶層)
  3,7  接着剤層
  2,12 粘着剤層
  9    セパレーター
  50   画像表示セル

 

Claims (23)

  1.  液晶分子が配向した第一配向液晶層、前記第一配向液晶層の第一主面に接する樹脂コート層、および前記樹脂コート層上に接着剤層を介して貼り合わせられた光学層を備え、
     前記樹脂コート層は、非硬化型樹脂層である、
     配向液晶フィルム。
  2.  前記樹脂コート層のガラス転移温度が20℃以上である、請求項1に記載の配向液晶フィルム。
  3.  前記接着剤層の厚みが0.01~5μmである、請求項1または2に記載の配向液晶フィルム。
  4.  前記接着剤層を構成する接着剤が、活性エネルギー線硬化型の接着剤である、請求項1~3のいずれか1項に記載の配向液晶フィルム。
  5.  前記光学層が、偏光子、透明フィルム、または他の配向液晶層である、請求項1~4のいずれか1項に記載の配向液晶フィルム。
  6.  前記樹脂コート層の厚みが、0.05~3μmである、請求項1~5のいずれか1項に記載の配向液晶フィルム。
  7.  前記樹脂コート層を構成する樹脂材料の重量平均分子量が2万以上である、請求項1~6のいずれか1項に記載の配向液晶フィルム。
  8.  前記樹脂コート層が、非硬化型のアクリル樹脂または非硬化型のエポキシ樹脂を含む、請求項1~7のいずれか1項に記載の配向液晶フィルム。
  9.  前記樹脂コート層に、前記第一配向液晶層を構成する液晶化合物の未硬化物が含まれている、請求項1~8のいずれか1項に記載の配向液晶フィルム。
  10.  前記第一配向液晶層の第二主面側に粘着剤層を備える、請求項1~9のいずれか1項に記載の配向液晶フィルム。
  11.  前記第一配向液晶層において、液晶分子がホモジニアス配向している、請求項1~10のいずれか1項に記載の配向液晶フィルム。
  12.  前記光学層が偏光子を含み、
     前記第一配向液晶層における液晶分子の配向方向と、前記偏光子の吸収軸方向とのなす角が10~80°である、請求項11に記載の配向液晶フィルム。
  13.  前記光学層は、液晶分子がホメオトロピック配向している第二配向液晶層であり、
     前記第一配向液晶層の第二主面側に偏光板が貼り合わせられている、請求項11または12に記載の配向液晶フィルム。
  14.  前記第一配向液晶層と前記偏光板とが粘着剤層を介して貼り合わせられている、請求項13に記載の配向液晶フィルム。
  15.  前記粘着剤層が、前記第一配向液晶層の第二主面に接している、請求項14に記載の配向液晶フィルム。
  16.  画像表示セル上に、請求項1~15のいずれか1項に記載の配向液晶フィルムが配置された画像表示装置。
  17.  請求項1~15のいずれか1項に記載の配向液晶フィルムの製造方法であって、
     前記第一配向液晶層の第一主面に、樹脂と有機溶媒とを含む樹脂溶液を塗布して前記樹脂コート層を形成し、
     前記樹脂コート層と前記光学層とを接着剤を介して貼り合わせる、
     配向液晶フィルムの製造方法。
  18.  前記樹脂溶液を塗布した後、前記光学層を貼り合わせる前に、40~150℃で加熱を行う、請求項17に記載の配向液晶フィルムの製造方法。
  19.  光重合性液晶モノマーを含有する液晶性組成物を支持基板上に塗布し、
     前記支持基板上の液晶性組成物を加熱して、液晶モノマーを液晶状態として配向させ、
     光照射により前記液晶モノマーを重合または架橋することにより、
     前記第一配向液晶層を形成する、請求項17または18に記載の配向液晶フィルムの製造方法。
  20.  前記支持基板が樹脂フィルムである、請求項19に記載の配向液晶フィルムの製造方法。
  21.  前記支持基板上に前記第一配向液晶層が設けられた状態で、前記第一配向液晶層の前記支持基板と接していない面に、前記樹脂溶液を塗布する、請求項19または20に記載の配向液晶フィルムの製造方法。
  22.  前記第一配向液晶層から前記支持基板を剥離し、
     支持基板の剥離により露出した第一配向液晶層の表面に、前記樹脂溶液を塗布する、請求項19または20に記載の配向液晶フィルムの製造方法。
  23.  前記樹脂溶液の有機溶媒は、前記光重合性液晶モノマーに対する溶解性を有し、かつ前記光重合性液晶モノマーの光硬化物を不溶または難溶である、請求項17~22のいずれか1項に記載の配向液晶フィルムの製造方法。

     
PCT/JP2021/030220 2020-08-28 2021-08-18 配向液晶フィルムおよびその製造方法、ならびに画像表示装置 WO2022044925A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180053493.3A CN116261681A (zh) 2020-08-28 2021-08-18 取向液晶膜及其制造方法以及图像显示装置
KR1020237009245A KR20230056711A (ko) 2020-08-28 2021-08-18 배향 액정 필름 및 그의 제조 방법, 및 화상 표시 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-144989 2020-08-28
JP2020144989 2020-08-28
JP2021-091403 2021-05-31
JP2021091403A JP2022039954A (ja) 2020-08-28 2021-05-31 配向液晶フィルムおよびその製造方法、ならびに画像表示装置

Publications (1)

Publication Number Publication Date
WO2022044925A1 true WO2022044925A1 (ja) 2022-03-03

Family

ID=76920381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030220 WO2022044925A1 (ja) 2020-08-28 2021-08-18 配向液晶フィルムおよびその製造方法、ならびに画像表示装置

Country Status (5)

Country Link
JP (2) JP6906670B1 (ja)
KR (1) KR20230056711A (ja)
CN (1) CN116261681A (ja)
TW (1) TW202208895A (ja)
WO (1) WO2022044925A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014935A (ja) * 2001-02-23 2003-01-15 Nippon Kayaku Co Ltd 配向膜用紫外線硬化型樹脂組成物および液晶性化合物を有する高分子フィルムからなる位相差フィルム
JP2016139566A (ja) * 2015-01-28 2016-08-04 Jxエネルギー株式会社 有機エレクトロルミネッセンス表示装置
JP2017027057A (ja) * 2015-07-24 2017-02-02 住友化学株式会社 積層体、積層体を含む円偏光板及び積層体を備える表示装置
WO2017170360A1 (ja) * 2016-03-30 2017-10-05 日本ゼオン株式会社 光学異方性積層体、円偏光板、及び、画像表示装置
JP2017215558A (ja) * 2016-05-31 2017-12-07 富士フイルム株式会社 ハーフミラーおよび画像表示機能付きミラー

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6318481B2 (ja) 2013-06-25 2018-05-09 大日本印刷株式会社 光学フィルム用転写体の製造方法、光学フィルムの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014935A (ja) * 2001-02-23 2003-01-15 Nippon Kayaku Co Ltd 配向膜用紫外線硬化型樹脂組成物および液晶性化合物を有する高分子フィルムからなる位相差フィルム
JP2016139566A (ja) * 2015-01-28 2016-08-04 Jxエネルギー株式会社 有機エレクトロルミネッセンス表示装置
JP2017027057A (ja) * 2015-07-24 2017-02-02 住友化学株式会社 積層体、積層体を含む円偏光板及び積層体を備える表示装置
WO2017170360A1 (ja) * 2016-03-30 2017-10-05 日本ゼオン株式会社 光学異方性積層体、円偏光板、及び、画像表示装置
JP2017215558A (ja) * 2016-05-31 2017-12-07 富士フイルム株式会社 ハーフミラーおよび画像表示機能付きミラー

Also Published As

Publication number Publication date
CN116261681A (zh) 2023-06-13
JP6906670B1 (ja) 2021-07-21
JP2022039954A (ja) 2022-03-10
JP2022039873A (ja) 2022-03-10
TW202208895A (zh) 2022-03-01
KR20230056711A (ko) 2023-04-27

Similar Documents

Publication Publication Date Title
JP6243869B2 (ja) 光学フィルム、偏光板、および光学フィルムの製造方法
KR100666895B1 (ko) 액정성 디〔메트〕아크릴레이트 화합물, 위상차 필름, 광학필름, 편광판, 액정 패널 및 액정 표시 장치
JPWO2017175581A1 (ja) 光反射フィルム、ならびにこれを用いた光制御フィルムおよびミラーディスプレイ
WO2014157251A1 (ja) 光学フィルム、偏光板、画像表示装置及び光学フィルムの製造方法
WO2016114210A1 (ja) 重合性液晶組成物及び該組成物を用いて作製した光学異方体、位相差膜、反射防止膜、液晶表示素子
JP4413117B2 (ja) 位相差フィルム、偏光板、液晶パネル、液晶表示装置及び位相差フィルムの製造方法
KR101689900B1 (ko) 위상차 소자
WO2022044925A1 (ja) 配向液晶フィルムおよびその製造方法、ならびに画像表示装置
JP5655113B2 (ja) ホメオトロピック配向液晶フィルム、偏光板、画像表示装置、及びホメオトロピック配向液晶フィルムの製造方法
JP2011095514A (ja) 位相差素子
WO2022044926A1 (ja) 配向液晶フィルムの製造方法
KR20230140478A (ko) 광학 적층체 및 원편광판
JP6424090B2 (ja) 光学的異方性粒子群を含む複合体およびその製造方法、ならびにそれを用いた表示装置
JP7355955B1 (ja) 光学積層体
WO2018198434A1 (ja) 液晶配向フィルムおよびその製造方法
JP2022144068A (ja) 配向液晶フィルムの製造方法
WO2020196174A1 (ja) 積層光学フィルムおよびその製造方法、偏光板、ならびに画像表示装置
JP2022144069A (ja) 配向液晶フィルムの製造方法
TW202415987A (zh) 光學積層體及圓偏光板
KR20220120677A (ko) 광학 필름, 액정 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237009245

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861353

Country of ref document: EP

Kind code of ref document: A1