WO2017170248A1 - 繊維強化ポリアミド樹脂基材、その製造方法、それを含む成形品および複合成形品 - Google Patents

繊維強化ポリアミド樹脂基材、その製造方法、それを含む成形品および複合成形品 Download PDF

Info

Publication number
WO2017170248A1
WO2017170248A1 PCT/JP2017/012084 JP2017012084W WO2017170248A1 WO 2017170248 A1 WO2017170248 A1 WO 2017170248A1 JP 2017012084 W JP2017012084 W JP 2017012084W WO 2017170248 A1 WO2017170248 A1 WO 2017170248A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
terminal
fiber
general formula
modified polyamide
Prior art date
Application number
PCT/JP2017/012084
Other languages
English (en)
French (fr)
Inventor
政之 越
大目 裕千
健 須藤
憲一 歌崎
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017517126A priority Critical patent/JP6841221B2/ja
Priority to US16/085,694 priority patent/US11155686B2/en
Priority to KR1020187025391A priority patent/KR102329010B1/ko
Priority to EP17774785.4A priority patent/EP3438163B1/en
Priority to CN201780017411.3A priority patent/CN108779271B/zh
Publication of WO2017170248A1 publication Critical patent/WO2017170248A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/046Carbon nanorods, nanowires, nanoplatelets or nanofibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2555/00Personal care
    • B32B2555/02Diapers or napkins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2603/00Vanes, blades, propellers, rotors with blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/003Interior finishings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a fiber-reinforced polyamide resin substrate, a method for producing the same, a molded product including the same, and a composite molded product.
  • a fiber reinforced polyamide resin base material made by impregnating a polyamide resin into a continuous reinforcing fiber or a reinforcing fiber base material in which discontinuous reinforcing fibers are dispersed is excellent in specific strength and specific rigidity, and has a high weight reduction effect. Because of its high heat resistance and chemical resistance, it is preferably used for transportation equipment such as aircraft and automobiles, and various uses such as sports and electric / electronic parts. In recent years, due to the increasing demand for weight reduction, the replacement of metal parts to resin parts, and the miniaturization and modularization of parts are progressing mainly in aircraft and automobile applications. Development of materials with excellent mechanical properties is required.
  • a carbon fiber-reinforced polyamide resin prepreg (for example, see Patent Document 1) formed by containing carbon fibers in a polyamide resin is known.
  • Patent Document 1 Although the technique disclosed in Patent Document 1 is expected as a lightweight material due to its high mechanical properties, it takes time to impregnate the carbon fiber bundle with the polyamide resin. There was a need for further improvements. Polyamide resins have lower melt flowability as the molecular weight increases, so when used as a fiber-reinforced polyamide resin base material, the impregnation property of the reinforcing fiber bundle decreases, resulting in increased voids, fluff generation, and resin richness. There is a problem that the surface quality is deteriorated due to the increase in the portion. Although the melt fluidity can be improved by increasing the processing temperature, the thermal stability decreases and thermal decomposition accompanied by gas generation occurs during processing. There was a problem that caused a decrease. Then, this invention makes it a subject to provide the fiber reinforced polyamide resin base material which was excellent in impregnation property and thermal stability, and was excellent in surface quality with few voids.
  • the fiber-reinforced polyamide resin substrate of the present invention has the following configuration. That is, A fiber-reinforced polyamide resin base material obtained by impregnating a continuous reinforcing fiber or a reinforcing fiber base material in which discontinuous reinforcing fibers are dispersed with a polyamide resin, wherein the polyamide resin is at least a polymer constituting the polyamide resin.
  • a fiber-reinforced polyamide resin base material which is a terminal-modified polyamide resin, partly having a structure composed of structural units different from the repeating structural units constituting the main chain of the polymer.
  • the manufacturing method of the fiber reinforced polyamide resin base material of this invention has the following structure. That is, When polymerizing amino acids, lactams and / or diamines and dicarboxylic acids, the terminal modifying compound represented by the following general formula (III) is added in an amount of 1 to 20 masses based on the total of amino acids, lactams, diamines and dicarboxylic acids.
  • a method for producing a fiber-reinforced polyamide resin substrate, comprising at least a step of impregnating the terminal-modified polyamide resin into a reinforced fiber substrate in which the reinforced fiber or the reinforcing fiber substrate in which the discontinuous fibers are dispersed is dispersed.
  • m represents a range of 2 to 100.
  • R 1 represents a divalent hydrocarbon group having 2 to 10 carbon atoms
  • R 2 represents a monovalent hydrocarbon group having 1 to 30 carbon atoms.
  • —X— represents —NH—, —N (CH 3 ) — or —O (C ⁇ O) —.
  • —X— represents —NH—, —N (CH 3 ) — or — (C ⁇ O) —.
  • the m R 1 contained in the general formula (III) may be the same or different.
  • the molded article containing the fiber-reinforced polyamide resin substrate of the present invention has the following configuration. That is, A molded article comprising the fiber-reinforced polyamide resin base material.
  • the composite molded article of the present invention has the following configuration. That is, A composite molded product in which the fiber-reinforced polyamide resin base material and a molded product containing a thermoplastic resin are joined at least partially.
  • the terminal-modified polyamide resin preferably contains 1 to 20% by mass of the terminal structure represented by the general formula (I).
  • the terminal-modified polyamide resin preferably further contains 0.1 to 5% by mass of a terminal structure represented by the following general formula (II).
  • R 3 represents a monovalent hydrocarbon group having 1 to 30 carbon atoms.
  • X in the general formula (I) is —NH— or —N (CH 3 ) —
  • —Y— in the general formula (II) represents — (C ⁇ O) —
  • the fiber-reinforced polyamide resin substrate of the present invention is preferably a discontinuous fiber in which the reinforcing fibers are continuously arranged in one direction or the number average fiber length is 3 to 100 mm.
  • the reinforcing fiber contains carbon fiber and contains 20 to 70% by volume of reinforcing fiber.
  • the terminal-modified polyamide resin has a total of 60 to 250 mol / mol of the terminal structure represented by the general formula (I) and the terminal structure represented by the general formula (II).
  • t] and the ratio [mol / t] of the terminal structure represented by the general formula (I) to the content [mol / t] of the terminal structure represented by the general formula (II) ( (I) / (II)) is preferably 0.3 to 2.5.
  • the terminal-modified polyamide resin contains a total of 50 to 150 [mol / t] of amino terminal groups and carboxyl terminal groups, and the content of amino terminal groups [mol / t]
  • the ratio (amino end group / carboxyl end group) of carboxyl end group content [mol / t] is preferably 0.5 to 2.5.
  • the fiber-reinforced polyamide resin base material of the present invention has a relative viscosity ( ⁇ r ) at 25 ° C. of a 98% sulfuric acid solution having a resin concentration of 0.01 g / mL of the terminal-modified polyamide resin of 1.3 to 3.0. Is preferred.
  • the fiber-reinforced polyamide resin substrate of the present invention preferably has a weight average molecular weight Mw of 15,000 to 50,000 as measured by gel permeation chromatography of the terminal-modified polyamide resin.
  • the fiber-reinforced polyamide resin substrate of the present invention preferably has a melt viscosity of 30 Pa ⁇ s or less under the conditions of the melting point + 60 ° C. and the shear rate of 9,728 sec ⁇ 1 of the terminal-modified polyamide resin.
  • the fiber-reinforced polyamide resin base material of the present invention is the content retention rate of the terminal structure represented by the general formula (I) before and after residence for 60 minutes under the condition of melting point + 60 ° C. Amount / content before residence) ⁇ 100) is preferably 80% or more.
  • the fiber-reinforced polyamide resin base material of the present invention is a weight average molecular weight retention rate before and after residence for 60 minutes under the condition of melting point + 60 ° C. ((weight average molecular weight after residence / weight average molecular weight before residence) ⁇ 100). Is preferably 80% to 120%.
  • the fiber-reinforced polyamide resin base material of the present invention has a melt viscosity retention ((melt viscosity after residence / melt viscosity before residence) ⁇ 100) before and after residence for 60 minutes under the condition of melting point + 60 ° C. of the terminal-modified polyamide resin is 80%. It is preferably ⁇ 120%.
  • the weight reduction rate of the terminal-modified polyamide resin before and after residence for 40 minutes under a nitrogen atmosphere under a melting point + 60 ° C. is preferably 4% or less.
  • the fiber reinforced polyamide resin base material of the embodiment of the present invention can be formed into a desired shape by any molding method such as autoclave molding, press molding, film molding and the like.
  • Molded articles obtained by molding a fiber reinforced polyamide resin base material include, for example, aircraft engine peripheral parts, aircraft interior parts, aircraft exterior parts, vehicle skeleton, automobile engine peripheral parts, automobile under hood parts, automobile gear parts, and automobile interior parts. It is effective to process parts for automobiles such as parts, automobile exterior parts, intake / exhaust parts, engine cooling water parts, automobile electrical parts, and electrical / electronic parts such as LED reflectors and SMT connectors.
  • the fiber-reinforced polyamide resin base material of the embodiment of the present invention has one of the following two aspects.
  • the first aspect is a fiber-reinforced polyamide resin base material obtained by impregnating a continuous reinforcing fiber with a terminal-modified polyamide resin described later
  • the second aspect is a reinforcing fiber base material in which reinforcing fibers of discontinuous fibers are dispersed.
  • the continuous reinforcing fiber in the first aspect means that the reinforcing fiber is not interrupted in the fiber-reinforced polyamide resin base material.
  • the form and arrangement of the reinforcing fibers in the embodiment of the present invention include those arranged in one direction, woven fabric (cross), knitted fabric, braided string, tow, and the like. Among them, it is preferable that the reinforcing fibers are arranged in one direction because the mechanical properties in a specific direction can be efficiently improved.
  • the reinforcing fiber base material in which discontinuous fibers are dispersed in the second aspect refers to a mat-like material in which the reinforcing fibers are cut and dispersed in a fiber reinforced polyamide resin base material.
  • the reinforcing fiber base in the embodiment of the present invention can be obtained by an arbitrary method such as a wet method in which fibers are dispersed in a solution and then manufactured into a sheet shape, or a dry method using a carding device or an airlaid device. it can. From the viewpoint of productivity, a dry method using a carding device or an airlaid device is preferable.
  • the number average fiber length of the discontinuous fibers in the reinforcing fiber base is preferably 3 to 100 mm. If the number average fiber length of the discontinuous fibers is 3 mm or more, the reinforcing effect by the discontinuous fibers is sufficiently exhibited, and the mechanical strength of the obtained fiber-reinforced polyamide resin base material can be further improved. 5 mm or more is preferable. On the other hand, if the number average fiber length of the discontinuous fibers is 100 mm or less, the fluidity at the time of molding can be further improved. The number average fiber length of the discontinuous fibers is more preferably 50 mm or less, and further preferably 30 mm or less.
  • the number average fiber length of the discontinuous fibers in the fiber reinforced polyamide resin substrate of the embodiment of the present invention can be obtained by the following method. First, a 100 mm ⁇ 100 mm sample is cut out from the fiber-reinforced polyamide resin base material, and the cut out sample is heated in an electric furnace at 600 ° C. for 1.5 hours to burn off the matrix resin. From the fiber-reinforced polyamide resin substrate thus obtained, 400 discontinuous reinforcing fiber bundles are randomly collected. About the discontinuous reinforcing fiber bundle taken out, the fiber length is measured in units of 1 mm using calipers, and the number average fiber length (Ln) can be calculated by the following formula.
  • the number average fiber length of the discontinuous fibers can be adjusted to the above range by cutting the fibers into a desired length during the production of the reinforcing fiber substrate.
  • the orientation of the discontinuous fiber mat is not particularly limited, but isotropic dispersion is preferable from the viewpoint of moldability.
  • the type of reinforcing fiber in the first and second forms is not particularly limited, and examples thereof include carbon fiber, metal fiber, organic fiber, and inorganic fiber. Two or more of these may be used.
  • carbon fibers examples include PAN-based carbon fibers made from polyacrylonitrile (PAN) fibers, pitch-based carbon fibers made from petroleum tar and petroleum pitch, cellulose-based carbon made from viscose rayon, cellulose acetate, and the like. Examples thereof include vapor-grown carbon fibers made from fibers and hydrocarbons, and graphitized fibers thereof. Of these carbon fibers, PAN-based carbon fibers are preferably used in that they have an excellent balance between strength and elastic modulus.
  • PAN-based carbon fibers made from polyacrylonitrile (PAN) fibers
  • pitch-based carbon fibers made from petroleum tar and petroleum pitch
  • cellulose-based carbon made from viscose rayon, cellulose acetate, and the like. Examples thereof include vapor-grown carbon fibers made from fibers and hydrocarbons, and graphitized fibers thereof.
  • PAN-based carbon fibers are preferably used in that they have an excellent balance between strength and elastic modulus.
  • metal fibers include fibers made of metal such as iron, gold, silver, copper, aluminum, brass, and stainless steel.
  • organic fibers include fibers made of organic materials such as aramid, polybenzoxazole (PBO), polyphenylene sulfide, polyester, polyamide, and polyethylene.
  • aramid fiber examples include a para-aramid fiber excellent in strength and elastic modulus and a meta-aramid fiber excellent in flame retardancy and long-term heat resistance.
  • para-aramid fiber examples include polyparaphenylene terephthalamide fiber and copolyparaphenylene-3,4'-oxydiphenylene terephthalamide fiber.
  • meta-aramid fiber include polymetaphenylene isophthalamide fiber. Is mentioned.
  • As the aramid fiber a para-aramid fiber having a higher elastic modulus than the meta-aramid fiber is preferably used.
  • the fiber which consists of inorganic materials such as glass, a basalt, a silicon carbide, a silicon nitride
  • glass fiber examples include E glass fiber (for electricity), C glass fiber (for corrosion resistance), S glass fiber, and T glass fiber (high strength, high elastic modulus).
  • Basalt fiber is a fiber made from basalt, a mineral, and is extremely heat-resistant. Basalt, generally the FeO or FeO 2 is a compound of iron 9-25% by weight, but containing TiO or TiO 2 which is a compound of titanium 1-6% by weight, increase of these components in the molten state It is also possible to fiberize.
  • the fiber-reinforced polyamide resin base material in the first and second embodiments of the present invention is often expected to serve as a reinforcing material, it is desirable to exhibit high mechanical properties, and to exhibit high mechanical properties. It is preferable that the reinforcing fiber includes carbon fiber.
  • the reinforcing fiber is usually configured by arranging one or a plurality of reinforcing fiber bundles in which a large number of single fibers are bundled.
  • the total number of reinforcing fiber filaments (number of single fibers) when one or a plurality of reinforcing fiber bundles are arranged is preferably 1,000 to 2,000,000. From the viewpoint of productivity, the total number of reinforcing fibers is preferably 1,000 to 1,000,000, more preferably 1,000 to 600,000, and more preferably 1,000 to 300,000. Particularly preferred.
  • the upper limit of the total number of filaments in the reinforcing fiber is only required to maintain good productivity, dispersibility, and handleability in consideration of balance with dispersibility and handleability.
  • the single reinforcing fiber bundle in the first and second embodiments of the present invention is preferably formed by bundling 1,000 to 50,000 reinforcing fiber single fibers having an average diameter of 5 to 10 ⁇ m.
  • the fiber-reinforced polyamide resin substrate according to the first aspect of the present invention is characterized in that the polyamide resin impregnated into continuous reinforcing fibers is a terminal-modified polyamide resin.
  • the fiber-reinforced polyamide resin base material in the second embodiment of the present invention is characterized in that the polyamide resin impregnated in the reinforcing fiber base material in which the discontinuous fiber reinforcing fibers are dispersed is a terminal-modified polyamide resin.
  • the “terminal-modified polyamide resin” in the present invention is a structure in which at least a part of the polymer constituting the polyamide resin is composed of structural units different from the repeating structural units constituting the main chain of the polymer (hereinafter, It may refer to a polyamide resin having a terminal structure of the polymer).
  • a polyamide resin having a terminal structure of the polymer By reducing the melt viscosity of the polyamide resin while maintaining mechanical properties such as tensile strength and impact resistance, at least a part of the polymer constituting the polyamide resin has a modified structure at the end group of the polymer. Can do.
  • the polymer end group has a structure in which at least a part of the polymer constituting the polyamide resin is modified, thereby reducing the interaction between molecules of the polymer chain and increasing the free volume. This is thought to be because the molecular mobility of the chain is greatly increased.
  • the terminal-modified polyamide resin in the embodiment of the present invention is a polyamide resin that can be obtained as a main raw material of at least one selected from amino acids, lactams, and “mixtures of diamine and dicarboxylic acid”, and constitutes the polyamide resin. At least a part of the polymer has a modified structure at the end group of the polymer.
  • the terminal-modified polyamide resin in the present invention is a polyamide resin that is polymerized by using at least one selected from the group consisting of a combination of diamine and dicarboxylic acid, an amino acid, and a lactam as a main raw material, At least a part of the constituent polymer has a modified structure at the end group of the polymer.
  • the chemical structure constituting the main structural unit of the polyamide resin preferably has a carbon number in the range of 4 to 20 when amino acid or lactam is used as a raw material.
  • the diamine preferably has 2 to 20 carbon atoms
  • the dicarboxylic acid preferably has 2 to 20 carbon atoms.
  • Typical examples of the raw material include the following.
  • amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and paraaminomethylbenzoic acid.
  • Lactams such as ⁇ -caprolactam, ⁇ -undecanactam, ⁇ -laurolactam.
  • Aliphatic diamines such as diamine, heptadecanediamine, octadecanediamine, nonadecanediamine, eicosanediamine, 2-methyl-1,5-diaminopentane, 2-methyl-1,8-diaminooctane; cyclohexanediamine, bis- ( Cycloaliphatic diamines such as 4-aminocyclohexyl) methane and bis (3-methyl-4-aminocyclohexyl) methane; Diamine such as family diamine.
  • Aliphatic dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid; terephthalic acid, isophthalic acid, 2-chloroterephthalic acid, Aromatic dicarboxylic acids such as 2-methylterephthalic acid, 5-methylisophthalic acid, 5-sodium sulfoisophthalic acid, hexahydroterephthalic acid and hexahydroisophthalic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; Examples thereof include dialkyl esters and dichlorides.
  • polyamide homopolymer or copolymer derived from these raw materials can be used as the polyamide resin into which the terminal structure is introduced. Two or more kinds of such polyamides may be mixed to form a polyamide resin.
  • the structural units derived from the raw materials exemplified above are modified from the viewpoint of further improving mechanical properties and thermal stability during melt residence and further reducing voids caused by the generated gas. It is preferable to have 80 mol% or more, more preferably 90 mol% or more, and even more preferably 100 mol%, out of 100 mol% of all structural units constituting the polyamide resin excluding the structure.
  • the polymerization structure derived from the raw material illustrated above is linear.
  • the melting point (Tm) of the terminal-modified polyamide resin of the embodiment of the present invention is preferably 200 ° C. or higher.
  • the melting point of the terminal-modified polyamide resin can be determined by differential scanning calorimetry (DSC). The measurement method is as follows. Weigh 5-7 mg of terminal-modified polyamide resin. In a nitrogen atmosphere, the temperature is increased from 20 ° C. to Tm + 30 ° C. at a rate of temperature increase of 20 ° C./min. Subsequently, the temperature is decreased to 20 ° C. at a temperature decrease rate of 20 ° C./min. The temperature at the top of the endothermic peak that appears when the temperature is raised again from 20 ° C. to Tm + 30 ° C. at a rate of temperature increase of 20 ° C./min is defined as the melting point (Tm).
  • Examples of the end-modified polyamide resin having a melting point of 200 ° C. or higher include those having a modified structure at the ends of the following polyamides and copolymers thereof. Two or more of these may be used depending on the required properties such as heat resistance, toughness and surface properties.
  • Polyamides include polycaproamide (polyamide 6), polyundecanamide (polyamide 11), polydodecanamide (polyamide 12), polyhexamethylene adipamide (polyamide 66), polytetramethylene adipamide (polyamide 46), Polypentamethylene adipamide (polyamide 56), polytetramethylene sebacamide (polyamide 410), polypentamethylene sebacamide (polyamide 510), polyhexamethylene sebacamide (polyamide 610), polyhexamethylene dodecamide ( Polyamide 612), polydecamethylene sebacamide (nylon 1010), polydecamethylene dodecamide (nylon 1012), polymetaxylylene adipamide (MXD6), polymetaxylylene sebacamide (MXD10), polypara Silylene sebacamide (PXD10), polynonamethylene terephthalamide (nylon 9T), polydecamethylene terephthalamide (polyamide 10T), polyundecamethylene
  • polyamide 6, polyamide 66, polyamide 56, polyamide 410, polyamide 510, polyamide 610, polyamide 6/66, polyamide 6/12, polyamide 9T, polyamide 10T, etc. which have a modified structure. Things can be mentioned.
  • the modified structure contained in the terminal group of the terminal-modified polyamide is different from the structure derived from the repeating structural unit constituting the polymer main chain of the polyamide resin.
  • the modified structure include structures derived from saturated aliphatic compounds, unsaturated aliphatic compounds, aromatic compounds, and the like. Two or more of these may be used. From the viewpoint of further improving the impregnation property and surface quality, a structure derived from a saturated aliphatic compound or an aromatic compound is more preferable, and a structure derived from a saturated aliphatic compound is more preferable.
  • Examples of the modified structure in the embodiment of the present invention include a residue of a compound for terminal modification described below.
  • the terminal-modified polyamide resin of the embodiment of the present invention preferably has a terminal structure represented by the following general formula (I). Since the terminal structure represented by the following general formula (I) has an alkylene oxide structure, the resulting polymer has high molecular mobility and excellent affinity with an amide group.
  • the structure represented by the following general formula (I) at the terminal of the polyamide resin is interposed between the polyamide molecular chains, so that the free volume of the polymer is further increased and the entanglement is further decreased.
  • the molecular mobility of the polymer can be further increased to reduce the melt viscosity, and the impregnation property and the surface quality can be further improved. Such an effect is extremely high as compared with the case where the polyalkylene oxide structure is mainly included in the main chain of the polyamide resin.
  • m represents a range of 2 to 100 (2 or more and 100 or less). As m is larger, the effect of reducing the melt viscosity is effectively exhibited. m is preferably 5 or more, more preferably 8 or more, and still more preferably 16 or more. On the other hand, the smaller m is, the higher the heat resistance can be maintained. m is preferably 70 or less, and more preferably 50 or less.
  • the terminal-modified polyamide resin in the present invention preferably has the structure represented by the general formula (I) only at the terminal of the polymer.
  • R 1 represents a divalent hydrocarbon group having 2 to 10 carbon atoms (2 to 10 carbon atoms). From the viewpoint of affinity with the main structural unit of the polyamide resin, a hydrocarbon group having 2 to 6 carbon atoms is more preferable, and a hydrocarbon group having 2 to 4 carbon atoms is more preferable.
  • R 1 examples include an ethylene group, 1,3-trimethylene group, isopropylene group, 1,4-tetramethylene group, 1,5-pentamethylene group, 1,6-hexamethylene group, and the like.
  • Each R 1 may be a combination of hydrocarbon groups having different carbon numbers.
  • R 1 is preferably composed of at least a divalent saturated hydrocarbon group having 2 carbon atoms and a divalent saturated hydrocarbon group having 3 carbon atoms.
  • the polyamide resin is composed of an ethylene group excellent in affinity with the main structural unit of the polyamide resin and an isopropylene group having a large free volume, and the effect of reducing the melt viscosity can be expressed more effectively.
  • the terminal structure represented by the general formula (I) contains 10 or more ethylene groups and 6 or less isopropylene groups, and introduces a terminal structure close to the desired amount into the polyamide resin. It is possible to increase the melt viscosity reduction effect.
  • R 2 represents a monovalent hydrocarbon group having 1 to 30 carbon atoms (1 to 30 carbon atoms).
  • R 2 is a monovalent saturated hydrocarbon group.
  • R 2 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group.
  • the main structural unit of a polyamide resin and A methyl group and an ethyl group, which are excellent in affinity are more preferable.
  • —X— represents —NH—, —N (CH 3 ) — or — (C ⁇ O) —.
  • —NH— which is excellent in affinity with the main structural unit of the polyamide resin, is more preferable.
  • the terminal-modified polyamide resin of the embodiment of the present invention preferably has the terminal structure represented by the general formula (I) in at least a part of the terminal groups of the polymer constituting the terminal-modified polyamide resin.
  • the terminal-modified polyamide resin of the present invention preferably has the terminal structure represented by the general formula (I) at at least one terminal of the polymer constituting the terminal-modified polyamide resin.
  • the terminal-modified polyamide resin of the embodiment of the present invention contains 1 to 20% by mass (1 to 20% by mass) of the terminal structure represented by the general formula (I) in 100% by mass of the terminal-modified polyamide resin. Is preferred.
  • the content of the terminal structure represented by the general formula (I) is 1% by mass or more, the melt viscosity of the terminal-modified polyamide resin is further reduced, the impregnation property and the surface quality are further improved, and voids are further reduced. be able to.
  • the content of the terminal structure represented by the general formula (I) is more preferably 3% by mass or more, and further preferably 5% by mass or more.
  • the content of the terminal structure represented by the general formula (I) is 20% by mass or less, an increase in gas components due to thermal decomposition of the structure represented by the general formula (I) at the time of melt residence is suppressed, It is possible to further improve the thermal stability at the time of melting and retention, to further reduce voids resulting from the generated gas, and to improve the surface quality. Moreover, since the molecular weight of the terminal-modified polyamide resin can be further increased, the mechanical properties can be further improved.
  • the content of the terminal structure represented by the general formula (I) is more preferably 15% by mass or less, and further preferably 10% by mass or less.
  • the content of the terminal structure represented by the general formula (I) in the terminal-modified polyamide resin is, for example, the following general formula (III) used when manufacturing the terminal-modified polyamide resin. It can adjust to a desired range by adjusting the compounding quantity of the compound for terminal modification represented.
  • the terminal-modified polyamide resin of the embodiment of the present invention preferably further has a terminal structure represented by the following general formula (II).
  • a terminal structure represented by the following general formula (II) As described above, by introducing the terminal structure represented by the general formula (I), the melt viscosity of the terminal-modified polyamide resin can be reduced and the impregnation property and the surface quality can be improved. There is a tendency that the thermal decomposition of the terminal structure represented by the general formula (I) tends to proceed during the period of melt residence. In particular, since the amino terminal group and carboxyl terminal group of the polyamide resin act as a thermal decomposition catalyst for the terminal structure represented by the general formula (I), the amount of amino terminal group and carboxyl terminal group in the polyamide resin should be reduced.
  • the thermal stability during the melt residence is further improved. Can be improved. For this reason, impregnation property and surface quality can be further improved, and voids can be further reduced.
  • the thermal decomposition of the structure represented by the general formula (I) is suppressed, and the melt viscosity reducing effect is maintained while melting.
  • the thermal stability during dwelling can be further improved, and the surface quality can be improved along with the reduction of voids.
  • a polyamide resin having only the terminal structure represented by the general formula (I) is obtained by reacting the carboxyl terminal group of the polyamide resin with a compound for terminal modification represented by the following general formula (III).
  • a compound for terminal modification represented by the following general formula (III) Can do.
  • one terminal is modified with the terminal structure represented by the general formula (I), but the other terminal is not modified and remains an amino terminal group or a carboxyl group. Therefore, the amino terminal group or the carboxyl terminal group acts as a thermal decomposition catalyst for the terminal structure represented by the general formula (I), and the thermal decomposition of the structure represented by the general formula (I) easily proceeds.
  • the above-mentioned polyamide resin that is, a polyamide resin in which only one terminal is modified with a structure represented by the general formula (I)
  • a compound for terminal modification represented by the following general formula (IV) By further reacting, the other terminal can be modified to obtain a polyamide resin further having a terminal structure represented by the following general formula (II).
  • the terminal structure represented by the general formula (II) into the polyamide resin modified with the structure represented by the general formula (I), the effects described above can be obtained.
  • R 3 represents a monovalent hydrocarbon group having 1 to 30 (1 to 30) carbon atoms. Since the smaller the carbon number of R 3, the better the affinity with the main structural unit of the polyamide resin, it is preferably a hydrocarbon group having 1 to 30 carbon atoms.
  • —Y— in the general formula (II) represents — (C ⁇ O) —
  • one terminal group is an amino terminal group
  • the other terminal group is a carboxyl terminal group.
  • the terminal modification compound represented by the general formula (III) when the terminal modification compound represented by the general formula (III) has an amino terminal group, the terminal modification compound reacts with the carboxyl terminal group of the polyamide resin, and X in the general formula (I) is —NH. -Or -N (CH 3 )-.
  • the other end of the polyamide resin is reacted with the terminal-modifying compound represented by the general formula (IV) to react the other end of the polyamide resin with the general formula (II). It can be blocked by the terminal structure.
  • Y in the general formula (II) is — (C ⁇ O) —.
  • the compound for terminal modification represented by the general formula (III) has a carboxyl terminal group
  • the compound for terminal modification reacts with the amino terminal group of the polyamide resin
  • the other end of the polyamide resin is reacted with the terminal-modifying compound represented by the general formula (IV), so that the other end of the polyamide resin is reacted with the above-described general formula (II).
  • Y is —NH— or —N (CH 3 ) —.
  • the terminal-modified polyamide resin of the present invention contains the terminal structure represented by the general formula (II) in an amount of 0.1 to 5% by mass (0.1 to 5% by mass) in 100% by mass of the terminal-modified polyamide resin. It is preferable.
  • the content of the terminal structure represented by the general formula (II) is 0.1% by mass or more, thermal decomposition of the structure represented by the general formula (I) in the terminal-modified polyamide resin is suppressed during the residence time.
  • the thermal stability during melt residence can be further improved, voids can be further reduced, and the surface quality can be improved.
  • the content of the terminal structure represented by the general formula (II) is more preferably 0.2% by mass or more, and further preferably 0.4% by mass or more.
  • the content of the terminal structure represented by the general formula (II) is 5% by mass or less, the mechanical properties and the thermal stability at the time of melt residence can be further improved, and voids can be further reduced. In addition, the surface quality can be improved.
  • the content of the terminal structure represented by the general formula (II) is more preferably 3% by mass or less, and further preferably 1% by mass or less.
  • the content of the terminal structure represented by the general formula (II) in the terminal-modified polyamide resin is represented by, for example, the following general formula (IV) used when producing the terminal-modified polyamide resin.
  • the terminal-modified polyamide resin in the present invention is a polyamide resin having a terminal structure represented by the general formula (I) and a terminal structure represented by the general formula (II) (that is, one terminal is represented by the general formula (I)). It is preferable that the other terminal contains a polyamide resin modified with the terminal structure represented by the general formula (II).
  • a polyamide resin having only a terminal structure represented by the general formula (I) for example, a polyamide in which one terminal is modified with a terminal structure represented by the general formula (I) but the other terminal is not modified
  • Resin and a polyamide resin having only a terminal structure represented by the general formula (II) (for example, one terminal is modified with a terminal structure represented by the general formula (II), but the other terminal is
  • An embodiment containing a non-modified polyamide resin may also be used.
  • the terminal-modified polyamide resin of the present invention has a terminal structure content [mol / t] represented by the general formula (I) and a terminal structure content [mol / t] represented by the general formula (II). Is preferably 60 to 250 mol / t (60 mol / t or more and 250 mol / t or less).
  • the melt viscosity of the terminal-modified polyamide resin is further reduced. Impregnation can be further improved, thermal stability during melt residence can be further improved, voids can be further reduced, and surface quality can be improved.
  • the total content of these terminal structures is more preferably 70 mol / t or more, and still more preferably 80 mol / t or more.
  • the total content of these terminal structures is more preferably 225 mol / t, further preferably 200 mol / t or less.
  • the total amount of the terminal structure represented by the general formula (I) and the terminal structure represented by the general formula (II) in the terminal-modified polyamide resin is used when, for example, producing the terminal-modified polyamide resin. It can adjust to the desired range by adjusting the compounding quantity of the compound for terminal modification represented by the below-mentioned general formula (III) and the compound for terminal modification represented by general formula (IV).
  • the terminal-modified polyamide resin of the present invention has a terminal structure content [mol / t] represented by the general formula (I) with respect to a content [mol / t] of the terminal structure represented by the general formula (II).
  • the ratio ((I) / (II)) is preferably 0.3 to 2.5.
  • the polyamide resin undergoes a molecular weight increase due to a polymerization reaction between an amino terminal group and a carboxyl terminal group simultaneously with a decrease in the molecular weight due to thermal decomposition during melt residence.
  • melt viscosity of the terminal-modified polyamide resin is further reduced to improve the impregnation property, and the terminal-modified polyamide resin at the time of melt residence Thermal decomposition of the structure represented by the general formula (I) can be further suppressed, thermal stability can be further improved, voids can be further reduced, and surface quality can be improved.
  • the molar ratio ((I) / (II)) is more preferably 0.5 or more, preferably 0.6 or more, and most preferably 0.8 or more.
  • the molar ratio ((I) / (II)) is more preferably 2.2 or less, and further preferably 2.0 or less.
  • the content of the terminal structure represented by the general formula (I) and the terminal structure represented by the general formula (II) in the terminal-modified polyamide resin can be determined by 1 H-NMR measurement, respectively.
  • the measurement method and calculation method are as follows.
  • a deuterated sulfuric acid solution with a polyamide resin concentration of 50 mg / mL is prepared, and 1 H-NMR measurement is performed with 256 integrations.
  • Spectrum integral value of R 1, spectrum integral value of R 2, spectrum integral value of R 3, and from the spectrum integral value of the repeating structural units of the polyamide resin skeleton (the repeating structural units constituting the main chain of the polymer), each end structure Of the terminal structure (I) to the content (mol / t) and the content (mol / t) of the terminal structure (II) (hereinafter referred to as “molar ratio”). Can be calculated).
  • the molar ratio ((I) / (II)) in the terminal-modified polyamide resin is, for example, the terminal represented by the general formula (III) described later used when manufacturing the terminal-modified polyamide resin. It can be adjusted to a desired range by the compounding ratio of the modifying compound and the terminal modifying compound represented by the general formula (IV).
  • the terminal-modified polyamide resin of the present invention preferably contains a total of 50 to 150 mol / t (50 mol / t or more and 150 mol / t or less) of amino terminal groups and carboxyl terminal groups.
  • a total of 50 mol or more of these end groups in the end-modified polyamide resin 1t it is possible to further suppress the decrease in the molecular weight retention during the melt residence and to further improve the thermal stability, resulting in voids resulting from the generated gas. Can be further reduced, and the surface quality can be improved.
  • the total content of these end groups is more preferably 60 mol / t or more, and still more preferably 80 mol / t or more.
  • the terminal-modified polyamide resin by containing a total of 150 mol / t or less of amino terminal groups and carboxyl terminal groups in the terminal-modified polyamide resin, thermal decomposition of the structure represented by the above general formula (I) in the terminal-modified polyamide resin at the time of melt residence.
  • the total content of these end groups is more preferably 135 mol / t or less, and still more preferably 120 mol / t or less.
  • the terminal-modified polyamide resin of the present invention has a ratio of the amino terminal group content [mol / t] to the carboxyl terminal group content [mol / t] (amino terminal group content / carboxyl terminal group content). ) Is preferably 0.5 to 2.5 (0.5 or more and 2.5 or less). As described above, the greater the difference between the amount of amino end groups and the amount of carboxyl end groups, the more difficult the polymerization during the melt residence is, and the lower the molecular weight due to thermal decomposition, the greater the decrease in melt viscosity and molecular weight during the melt residence. There is a tendency.
  • terminal groups (amino terminal group and carboxyl terminal group) are not consumed in the polymerization reaction, and as described above, these terminal groups become thermal decomposition catalysts of general formula (I), In order to accelerate the thermal decomposition of the alkylene oxide structure in the terminal structure represented by the formula (I), the melt viscosity tends to increase.
  • the molar ratio (content of amino end groups / content of carboxyl end groups) is more preferably 0.6 or more, and even more preferably 0.8 or more.
  • the molar ratio (amino terminal group / carboxyl terminal group) is more preferably 2.4 or less, and even more preferably 2.3 or less.
  • the content of amino terminal groups in the terminal-modified polyamide resin is such that the terminal-modified polyamide resin is dissolved in a phenol / ethanol mixed solution (ratio: 83.5 / 16.5 weight ratio) and thymol blue is used as an indicator. It can be measured by titrating with an aqueous hydrochloric acid solution.
  • the content of carboxyl end groups in the terminal-modified polyamide resin is determined by dissolving the terminal-modified polyamide resin in benzyl alcohol at 195 ° C., using phenolphthalein as an indicator, and titrating with an ethanol solution of potassium hydroxide. It can be measured.
  • the ratio of the content of the amino terminal group and the content of the carboxyl terminal group of the terminal-modified polyamide resin is represented by, for example, the following general formula (III) used when manufacturing the terminal-modified polyamide resin. It can be adjusted to a desired range by adjusting the compounding ratio of the compound for terminal modification and the compound for terminal modification represented by formula (IV) and the reaction time.
  • the terminal-modified polyamide resin of the present invention has a relative viscosity ( ⁇ r ) of a 98% sulfuric acid solution having a resin concentration of 0.01 g / mL at 25 ° C. of 1.3 to 3.0 (1.3 to 3.0). A range is preferable.
  • the eta r by 1.3 or more, it is possible to improve the toughness, it is possible to improve the mechanical properties of the substrate. 1.4 or more is preferable, and 1.5 or more is more preferable.
  • the impregnation property can be further improved by setting ⁇ r to 3.0 or less. 2.5 or less is preferable and 2.1 or less is more preferable. 2.05 or less is more preferable, and 2.0 or less is most preferable.
  • the relative viscosity of the terminal-modified polyamide resin is represented by, for example, a compound for terminal modification represented by the following general formula (III) and the general formula (IV) used when the terminal-modified polyamide resin is produced. It can be adjusted to a desired range by adjusting the blending amount of the compound for terminal modification and the reaction time.
  • the weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the terminal-modified polyamide resin of the present invention is preferably 15,000 or more. By setting Mw to 15,000 or more, the mechanical characteristics can be further improved. Mw is more preferably 18,000 or more, and further preferably 20,000 or more. Further, Mw is preferably 50,000 or less. By setting Mw to 50,000 or less, the melt viscosity can be further reduced and the impregnation property can be further improved. Mw is more preferably 45,000 or less, and further preferably 40,000 or less.
  • the weight average molecular weight (Mw) in the present invention is such that hexafluoroisopropanol (0.005N-sodium trifluoroacetate added) is used as a solvent, “Shodex” (registered trademark) HFIP-806M (two) and HFIP are used as columns. It is obtained by GPC measurement at 30 ° C. using -LG. Polymethyl methacrylate is used as a molecular weight reference material.
  • the weight average molecular weight of the terminal-modified polyamide resin is represented by, for example, a compound for terminal modification represented by the following general formula (III) and the general formula (IV) used when producing the terminal-modified polyamide resin. It can be adjusted to a desired range by adjusting the blending amount of the compound for terminal modification and the reaction time.
  • the terminal-modified polyamide resin of the present invention preferably has a melt viscosity of 30 Pa ⁇ s or less under the conditions of a melting point + 60 ° C. and a shear rate of 9,728 sec ⁇ 1 .
  • the melt viscosity is more preferably 20 Pa ⁇ s or less, further preferably 15 Pa ⁇ s or less, and further preferably 10 Pa ⁇ s or less.
  • the melt viscosity is more preferably 0.1 Pa ⁇ s or more, further preferably 0.5 or more, and most preferably 1.0 or more.
  • melt viscosity is measured by a capillary flow meter at a shear rate of 9,728 sec ⁇ 1 after being retained for 5 minutes to melt the end-modified polyamide resin at a temperature of the melting point of the end-modified polyamide resin + 60 ° C. Can be measured.
  • the melting point + 60 ° C. is selected as a temperature condition in which the effect of good fluidization of the melt is likely to appear and the thermal decomposition does not proceed easily in a short stay
  • the resin impregnation 9,728 sec ⁇ 1 was selected as the shear rate, which is a high shear condition assuming time.
  • the melt viscosity of the terminal-modified polyamide resin is represented by, for example, a compound for terminal modification represented by the following general formula (III) and the general formula (IV) used when producing the terminal-modified polyamide resin. It can be adjusted to a desired range by adjusting the blending amount of the compound for terminal modification and the reaction time.
  • the terminal-modified polyamide resin of the present invention has a content retention of the terminal structure represented by the general formula (I) ((content after residence / content before residence)) before and after residence for 60 minutes under the condition of melting point + 60 ° C. 100) is preferably 80% or more.
  • the content retention rate of the terminal structure represented by the general formula (I) is preferably 85% or more, and further preferably 90% or more. From the viewpoint of mechanical properties, the content retention of the terminal structure represented by the general formula (I) is preferably 100% or less.
  • the content retention rate of the terminal-modified polyamide resin was determined by determining the content of the terminal structure represented by the general formula (I) by the above-mentioned 1 H-NMR measurement, and then in the capillary flow meter, the terminal modification After retaining for 60 minutes at the melting point of the polyamide resin + 60 ° C., the content of the terminal structure represented by the general formula (I) is similarly determined, and the terminal structure represented by the general formula (I) before the melt residence It can be calculated by dividing by the content of and multiplying by 100.
  • the melting point + 60 ° C. was selected as a temperature condition in which the effect of good fluidization of the melt is likely to appear and the thermal decomposition does not proceed easily in a short stay.
  • the content retention rate of the terminal structure represented by the general formula (I) in the terminal-modified polyamide resin is expressed by, for example, the general formula (III) described later used when manufacturing the terminal-modified polyamide resin.
  • the terminal-modified polyamide resin of the present invention has a weight average molecular weight retention ratio ((weight average molecular weight after residence / weight average molecular weight before residence) ⁇ 100) before and after residence for 60 minutes under the condition of melting point + 60 ° C. 80 to 120% (80% It is preferably 120% or less).
  • the weight average molecular weight retention is more preferably 85% or more, and still more preferably 90% or more.
  • the weight average molecular weight retention is more preferably 115% or less, and even more preferably 110% or less.
  • this weight molecular weight retention rate measured the weight average molecular weight about the terminal modified polyamide resin by the above-mentioned gel permeation chromatography (GPC), and then the melting point of the terminal modified polyamide resin in the capillary flow meter + 60 ° C. After the residence at temperature for 60 minutes, the weight average molecular weight is measured in the same manner, and is calculated by dividing by the weight average molecular weight before the melt residence and multiplying by 100.
  • the melting point + 60 ° C. was selected as a temperature condition in which the effect of good fluidization of the melt is likely to appear and the thermal decomposition does not proceed easily in a short stay.
  • the weight average molecular weight retention of the terminal-modified polyamide resin is, for example, a compound for terminal modification represented by the following general formula (III) and general formula (IV) used in the production of the terminal-modified polyamide resin. It can adjust to the desired range by adjusting the compounding quantity and reaction time of the compound for terminal modification
  • the terminal-modified polyamide resin of the present invention has a melt viscosity retention ratio ((melt viscosity after residence / melt viscosity before residence) ⁇ 100) before and after residence for 60 minutes under the condition of melting point + 60 ° C. (80% to 120%). Or less).
  • the melt viscosity retention rate is more preferably 85% or more, more preferably 90% or more, and still more preferably 95% or more.
  • the impregnation property can be further improved by setting the melt viscosity retention rate to 120% or less.
  • the melt viscosity retention is more preferably 115% or less, and even more preferably 110% or less.
  • This melt viscosity retention rate was determined by the capillary flow at a temperature of the melting point of the terminal-modified polyamide resin + 60 ° C., after the terminal-modified polyamide resin was retained for 5 minutes to melt, and then under a shear rate of 9,728 sec ⁇ 1. After the terminal-modified polyamide resin was retained for 60 minutes at the melt viscosity measured by a meter (melt viscosity before retention) and the melting point of the terminal-modified polyamide resin + 60 ° C., the shear rate was 9,728 sec ⁇ 1 .
  • melt viscosity (melt viscosity after residence) measured by a capillary flow meter, it can be calculated by (melt viscosity after residence / melt viscosity before residence) ⁇ 100.
  • the melting point + 60 ° C. is selected as a temperature condition where the effect of good fluidization of the melt is likely to appear, and the thermal decomposition is difficult to proceed in a short stay
  • 9,728 sec ⁇ 1 was selected as the shear rate, which is a high shear condition assuming resin impregnation.
  • the melt viscosity retention rate of the terminal-modified polyamide resin is, for example, the terminal-modified compound represented by the following general formula (III) and the general formula (IV) used when producing the terminal-modified polyamide resin. It can be adjusted to a desired range by adjusting the blending amount of the terminal-modifying compound represented and the reaction time.
  • the terminal-modified polyamide resin of the present invention preferably has a weight loss rate of 4% or less before and after residence for 40 minutes under a melting point + 60 ° C. in a nitrogen atmosphere.
  • the weight reduction rate is more preferably 3% or less, and further preferably 2% or less.
  • this weight reduction rate can be measured using a thermogravimetric analyzer (TGA).
  • TGA thermogravimetric analyzer
  • the melting point + 60 ° C. was selected as an index for evaluating the weight loss rate as a temperature condition in which the effect of good fluidization of the melt tends to appear and the thermal decomposition does not easily proceed in a short stay.
  • the weight reduction rate of the terminal-modified polyamide resin is represented by, for example, a terminal-modifying compound represented by the following general formula (III) and a general formula (IV) used when producing the terminal-modified polyamide resin. It can be adjusted to a desired range by adjusting the blending amount of the compound for terminal modification and the reaction time.
  • (1) A method of melting and kneading a polyamide resin, a compound for terminal modification, and if necessary, other components at a melting point or higher of the polyamide resin and reacting them, or mixing them in a solution and reacting them.
  • (2) a raw material constituting the main structural unit of the polyamide resin (main raw material of the polyamide resin), a compound for terminal modification, and, if necessary, other components are added and reacted (addition method during reaction) ) And the like.
  • examples of the terminal modification compound include saturated aliphatic compounds, unsaturated aliphatic compounds, and aromatic compounds. Two or more of these may be used. From the viewpoint of further improving the fluidity, the terminal-modifying compound is preferably a saturated aliphatic compound or an aromatic compound, and more preferably a saturated aliphatic compound.
  • saturated aliphatic compounds include monocyclic cycloalkane compounds such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclodecane, cycloundecane, and cyclododecane, and bicyclic rings such as decahydronaphthalene.
  • Cyclic saturated aliphatic compounds such as formula cycloalkane compounds, methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, heptadecane, etc.
  • Chain saturated aliphatic compounds such as 15 hydrocarbon compounds.
  • the cyclic saturated aliphatic compound may have a branched structure, and the chain saturated aliphatic compound may have a straight chain structure or a branched structure.
  • a saturated aliphatic compound having one or more terminal structures represented by the following general formula (V) is preferable.
  • A represents an alkylene group having 1 to 12 carbon atoms or an arylene group having 6 to 24 carbon atoms.
  • a represents an atom or a single bond other than a carbon atom and a hydrogen atom.
  • r represents the number of repeating structural units represented by (aA) and is 1 or more.
  • W represents a hydroxyl group, an aldehyde group, a carboxyl group, a sulfo group, an amino group, a glycidyl group, an isocyanate group, a carbodiimide group, an oxazoline group, an oxazine group, an ester group, an amide group, a silanol group, or a silyl ether group.
  • a in the general formula (V) is a residue obtained by removing two hydrogen atoms from a chain saturated aliphatic compound, and r is 1 to 100 And W is preferably a hydroxyl group. If r is 1 or more, the impregnation property can be further improved. r is preferably 3 or more, and more preferably 5 or more. On the other hand, if r is less than 100, the mechanical properties can be further improved. r is more preferably 70 or less. From the viewpoint of further improving the impregnation properties and mechanical properties, a is preferably an oxygen atom or a single bond, and more preferably an oxygen atom.
  • the compound for terminal modification in the embodiment of the present invention may have one terminal structure represented by the above general formula (V) or two or more, but the impregnation property and the mechanical properties may be provided. From the viewpoint of further improvement, it is preferable to have 1 to 4 structures represented by the general formula (V), and it is more preferable to have 1 to 3 structures.
  • the terminal-modified polyamide resin of the embodiment of the present invention has the terminal structure represented by the general formula (I) and the terminal structure represented by the above (II) will be described as an example.
  • a method for producing such a terminal-modified polyamide resin for example, a raw material of polyamide resin, a compound for terminal modification represented by the general formula (III) and a compound for terminal modification represented by the following general formula (IV) are used. Examples thereof include a method of reacting at the time of polymerization and a method of melt-kneading a polyamide resin and a terminal-modifying compound.
  • Examples of the method of reacting at the time of polymerization include, for example, a method in which a polyamide resin raw material and a terminal modification compound are mixed in advance and then condensation is performed by heating, or a terminal modification compound is added during polymerization of the main component raw material. And the like.
  • the terminal-modified polyamide resin having a terminal structure represented by the general formula (I) can be polymerized using a terminal-modifying compound represented by the following general formula (III).
  • a terminal-modifying compound represented by the following general formula (III) For example, when polymerizing amino acids, lactams and / or diamines and dicarboxylic acids (in other words, using at least one selected from the group consisting of diamines and dicarboxylic acids, amino acids, and lactams as main raw materials) 1 to 20% by mass (1% by mass to 20% by mass) based on the total of amino acids, lactams, diamines and dicarboxylic acids (main raw materials)
  • a terminal-modifying compound having 1 to 20% by mass of the terminal structure represented by the general formula (I) can be obtained by bonding the terminal-modifying compound to the terminal of the polyamide resin. it can.
  • n represents a range of 2 to 100. Like m in the general formula (I), 5 or more is preferable, 8 or more is more preferable, and 16 or more is more preferable. On the other hand, n is preferably 70 or less, and more preferably 50 or less.
  • R 1 represents a divalent hydrocarbon group having 2 to 10 carbon atoms
  • R 2 represents a monovalent hydrocarbon group having 1 to 30 carbon atoms. Examples thereof include those exemplified as R 1 and R 2 in the general formula (I).
  • X— represents —NH—, —N (CH 3 ) — or —O (C ⁇ O) —.
  • -NH- which is excellent in reactivity with the terminal of the polyamide, is more preferable.
  • the terminal-modified polyamide resin having a terminal structure represented by the general formula (II) can be polymerized using a terminal-modifying compound represented by the following general formula (IV).
  • a terminal-modifying compound represented by the following general formula (IV) For example, when polymerizing amino acids, lactams and / or diamines and dicarboxylic acids (in other words, using at least one selected from the group consisting of diamines and dicarboxylic acids, amino acids, and lactams as main raw materials)
  • the terminal modification compound represented by the following general formula (IV) is 0.1 to 5% by mass (0.1% by mass) based on the total of amino acids, lactams, diamines and dicarboxylic acids (main raw materials).
  • Terminal modification containing 0.1 to 5% by mass of the terminal structure represented by the general formula (II) by binding the compound for terminal modification to the terminal of the polyamide resin.
  • a polyamide resin can be obtained.
  • R 3 represents a monovalent hydrocarbon group having 1 to 30 carbon atoms. Similarly to the general formula (II), R 3 is more preferably a monovalent saturated hydrocarbon group from the viewpoint of thermal stability of the terminal-modified polyamide resin and prevention of coloring.
  • X in the general formula (III) is —NH— or —N (CH 3 ) —
  • —Y— in the general formula (IV) represents —O (C ⁇ O) —
  • the general formula (III ) In the formula (IV) represents —NH— or —N (CH 3 ) —.
  • the number average molecular weight of the compound for terminal modification represented by the general formula (III) is preferably 500 to 10,000.
  • the melt viscosity can be further reduced and the impregnation property can be further improved. More preferably, it is 800 or more, More preferably, it is 900 or more.
  • the number average molecular weight is 10,000 or less, the affinity with the main structural unit of the polyamide resin can be further improved, and the mechanical properties of the substrate can be further improved. More preferably, it is 5,000 or less, More preferably, it is 2,500 or less, More preferably, it is 1,500 or less.
  • terminal modification compound represented by the general formula (III) examples include methoxypoly (ethylene glycol) amine, methoxypoly (trimethylene glycol) amine, methoxypoly (propylene glycol) amine, and methoxypoly (tetramethylene glycol) amine. , Methoxy poly (ethylene glycol) poly (propylene glycol) amine, methoxy poly (ethylene glycol) carboxylic acid, methoxy poly (trimethylene glycol) carboxylic acid, methoxy poly (propylene glycol) carboxylic acid, methoxy poly (tetramethylene glycol) carboxylic acid, methoxy poly (ethylene Glycol) poly (propylene glycol) carboxylic acid and the like.
  • two types of polyalkylene glycols When two types are included, they may have a block polymerization structure or a random copolymer structure. You may use 2 or more types of above-mentioned terminal modification compounds.
  • terminal modification compound represented by the general formula (IV) examples include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, undecanoic acid, lauric acid, tridecane.
  • Aliphatic monocarboxylic acids such as acid, myristic acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, arachidic acid, and serotic acid, and cycloaliphatic monocarboxylic acids such as cyclohexanecarboxylic acid and methylcyclohexanecarboxylic acid , Aromatic monocarboxylic acids such as benzoic acid, toluic acid, ethylbenzoic acid, phenylacetic acid, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, 2-ethylhexylamine, nonylamine, Decylamine, Undeci Aliphatic monoamines such as amine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine,
  • the terminal-modified polyamide resin of the present invention has a terminal structure represented by the general formula (I) and a terminal structure represented by the general formula (II).
  • An example of the method will be described.
  • the methods (1) and (2) have been described above, but will be described in more detail below.
  • the melt-kneading temperature is 10 ° C. or more and 40 ° C. or less higher than the melting point (Tm) of the polyamide resin. It is preferable to react.
  • the cylinder temperature of an extruder shall be the said range.
  • the terminal of the polyamide resin and the terminal modifying compound can be efficiently bonded while suppressing the volatilization of the terminal modifying compound and the decomposition of the polyamide resin.
  • the polyamide resin include the polyamide resins described above.
  • a terminal-modified polyamide resin is produced by a method in which a polyamide resin raw material and a compound for terminal modification are reacted at the time of polymerization, a melt polymerization method in which the reaction is performed at a temperature higher than the melting point of the polyamide resin; Any solid phase polymerization method may be used.
  • the raw material that gives the polyamide resin include the aforementioned amino acids, lactams, and “mixtures of diamine and dicarboxylic acid”.
  • the raw material of the terminal-modified polyamide resin is charged into a reaction vessel, purged with nitrogen, and reacted by heating. If the reaction time at this time is too short, not only the molecular weight does not increase, but also the oligomer component increases, so the mechanical properties may decrease. Therefore, it is preferable that the nitrogen flow time in the reaction time is 15 minutes or more. On the other hand, if the reaction time is too long, thermal decomposition proceeds and coloration or the like occurs. Therefore, the nitrogen flow time in the reaction time is preferably 8 hours or less.
  • a polymerization accelerator When producing a terminal-modified polyamide resin by a method in which a polyamide resin raw material and a compound for terminal modification are reacted at the time of polymerization, a polymerization accelerator can be added as necessary.
  • the polymerization accelerator for example, phosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, polyphosphoric acid and inorganic phosphorus compounds such as alkali metal salts and alkaline earth metal salts thereof are preferable. Sodium acid and sodium hypophosphite are preferably used.
  • the polymerization accelerator is preferably used in the range of 0.001 to 1 part by mass with respect to 100 parts by mass of the polyamide resin raw material (excluding the compound for terminal modification). By setting the addition amount of the polymerization accelerator to 0.001 to 1 part by mass, a terminal-modified polyamide resin having an excellent balance between mechanical properties and impregnation properties can be obtained.
  • the fiber-reinforced polyamide resin base material of the embodiment of the present invention is formed by impregnating the above-mentioned terminal-modified polyamide resin into a continuous reinforcing fiber or a reinforcing fiber base material in which reinforcing fibers of discontinuous fibers are dispersed. Depending on the situation, it may further contain a filler, other types of polymers, various additives, and the like.
  • any material generally used as a filler for a resin can be used, and the strength, rigidity, heat resistance, and dimensional stability of a fiber-reinforced polyamide resin substrate or a molded product can be further improved.
  • the filler include glass fiber, carbon fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone koji fiber, and metal fiber.
  • Fibrous inorganic filler wollastonite, zeolite, sericite, kaolin, mica, talc, clay, pyrophyllite, bentonite, montmorillonite, asbestos, aluminosilicate, alumina, silicon oxide, magnesium oxide, zirconium oxide, titanium oxide, oxidation Iron, calcium carbonate, magnesium carbonate, dolomite, calcium sulfate, barium sulfate, magnesium hydroxide, calcium hydroxide, aluminum hydroxide, glass beads, ceramic beads, boron nitride, silicon carbide, silica, etc.
  • the fiber reinforced polyamide resin base material in the first aspect as long as it is made of discontinuous fibers as the fibrous filler, it functions without impairing the reinforcing effect of the reinforcing fibers in the fiber reinforced polyamide resin base material. Can be granted.
  • the fibrous filler in the fiber reinforced polyamide resin base material in the second aspect, can be used within a range that does not impair the reinforcing effect of the discontinuous fiber base material.
  • polymers include, for example, polyolefins such as polyethylene and polypropylene, elastomers such as polyamide elastomer and polyester elastomer, polyester, polycarbonate, polyphenylene ether, polyphenylene sulfide, liquid crystal polymer, polysulfone, polyethersulfone, ABS resin, SAN Examples thereof include resins and polystyrene. Two or more of these may be contained.
  • modified polyolefins such as (co) polymers of olefin compounds and / or conjugated diene compounds, polyamide elastomers, polyester elastomers, etc.
  • An improver is preferably used.
  • Examples of (co) polymers of olefin compounds and / or conjugated diene compounds include ethylene copolymers, conjugated diene polymers, conjugated diene-aromatic vinyl hydrocarbon copolymers, and the like.
  • Examples of the ethylene copolymer include copolymers of ethylene and ⁇ -olefins having 3 or more carbon atoms, non-conjugated dienes, vinyl acetate, vinyl alcohol, ⁇ , ⁇ -unsaturated carboxylic acids and derivatives thereof. Can be mentioned.
  • Examples of the ⁇ -olefin having 3 or more carbon atoms include propylene and butene-1.
  • Examples of the non-conjugated diene include 5-methylidene-2-norbornene, 5-ethylidene-2-norbornene, dicyclopentadiene, 1,4-hexadiene, and the like.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid include acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, and butenedicarboxylic acid.
  • Examples of the derivatives of ⁇ , ⁇ -unsaturated carboxylic acids include alkyl esters, aryl esters, glycidyl esters, acid anhydrides, imides and the like of the ⁇ , ⁇ -unsaturated carboxylic acids.
  • the conjugated diene polymer refers to at least one conjugated diene polymer.
  • the conjugated diene include 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and the like. Further, some or all of the unsaturated bonds of these polymers may be reduced by hydrogenation.
  • the conjugated diene-aromatic vinyl hydrocarbon copolymer refers to a copolymer of conjugated diene and aromatic vinyl hydrocarbon, and may be a block copolymer or a random copolymer.
  • Examples of the conjugated diene include 1,3-butadiene and isoprene.
  • Examples of the aromatic vinyl hydrocarbon include styrene.
  • a part or all of unsaturated bonds other than double bonds other than the aromatic ring of the conjugated diene-aromatic vinyl hydrocarbon copolymer may be reduced by hydrogenation.
  • impact modifiers include ethylene / methacrylic acid copolymers and some or all of the carboxylic acid moieties in these copolymers as salts with sodium, lithium, potassium, zinc, calcium, Examples include ethylene / propylene-g-maleic anhydride copolymer, ethylene / butene-1-g-maleic anhydride copolymer, and the like.
  • additives include, for example, antioxidants and heat stabilizers (hindered phenols, hydroquinones, phosphites and their substitutes, copper halides, iodine compounds, etc.), weathering agents (resorcinols, salicylates).
  • antioxidants and heat stabilizers hindered phenols, hydroquinones, phosphites and their substitutes, copper halides, iodine compounds, etc.
  • weathering agents resorcinols, salicylates.
  • Benzotriazole series, benzophenone series, hindered amine series, etc.), mold release agents and lubricants aliphatic alcohol, aliphatic amide, aliphatic bisamide, bisurea, polyethylene wax, etc.
  • pigments cadmium sulfide, phthalocyanine, carbon black, etc.
  • Dye nigrosine, aniline black, etc.
  • plasticizer octyl p-oxybenzoate, N-butylbenzenesulfonamide, etc.
  • antistatic agent alkyl sulfate type anionic antistatic agent, quaternary ammonium salt type cationic charging
  • Inhibitor polyoxyethylene Nonionic antistatic agents such as rubitan monostearate, betaine amphoteric antistatic agents, etc.
  • flame retardants hydramines such as melamine cyanurate, magnesium hydroxide, aluminum hydroxide, ammonium polyphosphate, brominated polystyrene
  • the fiber-reinforced polyamide resin substrate of the embodiment of the present invention can be obtained by impregnating continuous reinforcing fibers with a terminal-modified polyamide resin (first aspect). Alternatively, it can be obtained by impregnating a reinforcing fiber base material in which reinforcing fibers of discontinuous fibers are dispersed with a terminal-modified polyamide resin (second embodiment).
  • the continuous reinforcing fiber is impregnated with the terminal-modified polyamide resin, for example, the film-like terminal-modified polyamide resin is melted and pressed to impregnate the reinforcing fiber bundle with the terminal-modified polyamide resin.
  • the end-modified polyamide resin is applied to the reinforcing fiber bundle by immersing the reinforcing fiber bundle in the end-modified polyamide resin and pressurizing it.
  • the thickness of the fiber-reinforced polyamide resin substrate in the first aspect of the present invention is preferably 0.1 to 10 mm. If thickness is 0.1 mm or more, the intensity
  • the fiber reinforced polyamide resin base material preferably has a volume content of 20 to 70% by volume.
  • the reinforcing fiber is preferably contained in an amount of 20 to 70% by volume (20 to 70% by volume) with respect to the entire fiber reinforced polyamide resin substrate (100% by volume).
  • the strength of the molded product obtained using the fiber-reinforced polyamide resin base material can be further improved. 30 volume% or more is more preferable, and 40 volume% or more is further more preferable.
  • by containing 70% by volume or less of reinforcing fibers it is easier to impregnate the reinforcing fibers with the terminal-modified polyamide resin. 60 volume% or less is more preferable, and 55 volume% or less is further more preferable.
  • the volume content can be adjusted to a desired range by adjusting the input amounts of the reinforcing fiber and the terminal-modified polyamide resin.
  • the volume content (V f ) of the reinforced fiber in the fiber reinforced polyamide resin substrate is determined by measuring the mass W 0 of the fiber reinforced polyamide resin substrate, and then heating the fiber reinforced polyamide resin substrate in air at 500 ° C. for 30 minutes. Then, the polyamide resin component is burned off, the mass W 1 of the remaining reinforcing fibers is measured, and can be calculated by the following formula.
  • V f (volume%) (W 1 / ⁇ f ) / ⁇ W 1 / ⁇ f + (W 0 ⁇ W 1 ) / ⁇ 1 ⁇ ⁇ 100
  • ⁇ f density of reinforcing fiber (g / cm 3 )
  • ⁇ r Density of terminal-modified polyamide resin (g / cm 3 )
  • the fiber reinforced polyamide resin base material of embodiment of this invention can select desired impregnation property according to the usage and the objective. For example, prepregs with higher impregnation properties, semi-impregnated semi-pregs, and fabrics with low impregnation properties may be used.
  • a molding material having a high impregnation property is preferable because a molded product having excellent mechanical properties can be obtained in a short time.
  • the terminal-modified polyamide resin is supplied by an extruder to impregnate the reinforcing fiber substrate.
  • a method in which a terminal-modified polyamide resin in powder is dispersed and melted in a fiber layer of a reinforcing fiber base a method in which a terminal-modified polyamide resin is formed into a film and laminated with a reinforcing fiber base, a solution in which the terminal-modified polyamide resin is dissolved in a solvent.
  • the method of volatilizing the solvent after impregnating the reinforcing fiber base in the state of the above, the method of making the terminal-modified polyamide resin into a mixed yarn with discontinuous fibers, the terminal-modified polyamide resin precursor to the reinforcing fiber base examples include methods of impregnating and then polymerizing to a terminal-modified polyamide resin, and laminating using a melt blown nonwoven fabric.
  • the method of supplying the end-modified polyamide resin with an extruder and impregnating the reinforcing fiber base has the advantage that the end-modified polyamide resin does not need to be processed, and the end-modification of the powder
  • the method of dispersing and melting the polyamide resin in the fiber layer of the reinforcing fiber base has the advantage of easy impregnation, and the method of forming a film of the terminal modified polyamide resin and laminating it with the reinforcing fiber base has a relatively high quality. There is an advantage that things can be obtained.
  • the thickness of the fiber-reinforced polyamide resin substrate in the second aspect of the present invention is preferably 0.1 to 10 mm. If thickness is 0.1 mm or more, the intensity
  • the volume content of the fiber-reinforced polyamide resin substrate in the second aspect of the present invention is preferably 20 to 70% by volume. In other words, it is preferable to contain 20% by volume or more and 70% by volume or less of discontinuous fibers in the entire fiber reinforced polyamide resin substrate (100% by volume). By containing 20% by volume or more of discontinuous fibers, the strength of the molded product obtained using the fiber-reinforced polyamide resin substrate can be further improved. 30 volume% or more is more preferable. On the other hand, when the discontinuous fiber is contained in an amount of 70% by volume or less, the discontinuous fiber is more easily impregnated with the terminal-modified polyamide resin. 60 volume% or less is more preferable, and 50 volume% or less is further more preferable. The volume content can be calculated by the above formula (VI).
  • the fiber-reinforced polyamide resin substrate according to the second aspect of the present invention can be selected for a desired impregnation property depending on its usage and purpose.
  • a molding material having a high impregnation property is preferable because a molded product having excellent mechanical properties can be obtained in a short time.
  • a method for adjusting the substrate to a desired thickness or volume content is a method of heating and pressing using a press machine.
  • the press machine is not particularly limited as long as it can realize the temperature and pressure necessary for impregnation with the end-modified polyamide resin, and includes a normal press machine having a flat platen that moves up and down, and a pair of endless steel belts. A so-called double belt press having a traveling mechanism can be used.
  • One or more fiber-reinforced polyamide resin substrates in the first and second embodiments of the present invention are laminated in an arbitrary configuration, and then molded while applying heat and / or pressure as necessary to obtain a molded product. It is done.
  • a press molding method in which a fiber-reinforced terminal-modified polyamide resin laminated in an arbitrary configuration is placed in a mold or on a press plate, and then the mold or press plate is closed and pressurized.
  • a fiber reinforced polyamide resin base material is placed in a mold in advance, pressed and heated together with mold clamping, and then the mold is cooled and the fiber reinforced polyamide resin base is cooled.
  • the material is cooled by a hot press method to obtain a molded product, or a fiber reinforced polyamide resin base material is heated in advance by a heating device such as a far-infrared heater, a heating plate, a high-temperature oven, dielectric heating, etc. above the melting temperature of the terminal-modified polyamide resin.
  • the press molding method is not particularly limited, but stamping molding is desirable from the viewpoint of increasing the productivity by increasing the molding cycle.
  • the fiber-reinforced polyamide resin base material and molded product according to the first and second embodiments of the present invention are integrated molding such as insert molding and outsert molding, correction treatment by heating, thermal welding, vibration welding, ultrasonic welding, etc. Can be integrated using an adhesive method or an adhesive having excellent productivity, and a composite can be obtained.
  • a composite molded product in which the fiber-reinforced polyamide resin base material in the first and second embodiments of the present invention and a molded product containing a thermoplastic resin are joined at least partially is preferable.
  • thermoplastic resin integrated with the fiber-reinforced polyamide resin base material there is no particular limitation on the molded article (molding base material and molded article) containing the thermoplastic resin integrated with the fiber-reinforced polyamide resin base material in the first and second embodiments of the present invention.
  • examples include molded products, metal materials and molded products, inorganic materials and molded products.
  • a resin material and a molded product are preferable in terms of adhesive strength with the fiber-reinforced terminal-modified polyamide resin in the present invention.
  • the matrix material of the molding material and the molded product integrated with the fiber-reinforced polyamide resin base material in the first and second embodiments of the present invention may be the same type of resin as the fiber-reinforced polyamide resin base material and the molded product. It may be a different resin. In order to further increase the adhesive strength, the same kind of resin is preferable. In the case of a different kind of resin, it is more preferable to provide a resin layer at the interface.
  • V f volume content (V f )
  • V f (volume%) (W 1 / ⁇ f ) / ⁇ W 1 / ⁇ f + (W 0 ⁇ W 1 ) / ⁇ 1 ⁇ ⁇ 100
  • ⁇ f density of reinforcing fiber
  • ⁇ r Density of terminal-modified polyamide resin (g / cm 3 ) [Relative viscosity ( ⁇ r )] The relative viscosity was measured at 25 ° C. using an Ostwald viscometer for the 98% sulfuric acid solution of the terminal-modified polyamide resin or polyamide resin obtained in each Example and Comparative Example and having a resin concentration of 0.01 g / mL.
  • [Amino terminal group amount [NH 2 ]] 0.5 g of the end-modified polyamide resin or polyamide resin obtained in each Example and Comparative Example was precisely weighed, and 25 mL of a phenol / ethanol mixed solution (ratio: 83.5 / 16.5 mass ratio) was added and dissolved at room temperature. Then, titration with 0.02 N hydrochloric acid was performed using thymol blue as an indicator to determine the amino terminal group amount (mol / t).
  • terminal-modified polyamide resin or polyamide resin obtained in Examples and Comparative Examples was subjected to 1 H-NMR measurement using FT-NMR: JNM-AL400 manufactured by JEOL Ltd. First, a solution having a sample concentration of 50 mg / mL was prepared using deuterated sulfuric acid as a measurement solvent. The polyamide resin was subjected to 1 H-NMR measurement at a cumulative number of 256 times.
  • the integrated intensity of each peak is calculated, and the content [I] of the terminal structure represented by the general formula (I) in the terminal-modified polyamide resin is calculated from the calculated integrated intensity and the number of hydrogen atoms in each structural unit.
  • mol / t, mass%) (content before residence) and content [II] (mol / t, mass%) of the terminal structure represented by the general formula (II) were calculated.
  • melt viscosity The terminal-modified polyamide resin or polyamide resin obtained in each example and comparative example was dried in an 80 ° C. vacuum dryer for 12 hours or more.
  • a melt viscosity measuring device a capillary flow meter (manufactured by Toyo Seiki Seisakusho Co., Ltd., Capillograph 1C type) is used, and an orifice having a diameter of 0.5 mm and a length of 5 mm, melting point + 60 ° C., shear rate 9,728 sec ⁇
  • the melt viscosity (melt viscosity before residence) was measured under the condition of 1 .
  • the measurement was carried out after being retained for 5 minutes. It shows that it has high fluidity, so that the value of this melt viscosity is small.
  • melt viscosity retention The terminal-modified polyamide resin or polyamide resin obtained in each example and comparative example was dried in an 80 ° C. vacuum dryer for 12 hours or more. Using a capillary flow meter (Capillograph 1C type, manufactured by Toyo Seiki Seisakusyo Co., Ltd.), melted and retained at melting point + 60 ° C. for 60 minutes with an orifice having a diameter of 0.5 mm and a length of 5 mm, and a shear rate of 9,728 sec ⁇ 1 The melt viscosity (melt viscosity after residence) was measured under the following conditions.
  • melt viscosity retention [%] was calculated by (melt viscosity after residence / melt viscosity before residence) ⁇ 100.
  • the terminal-modified polyamide resin or polyamide resin obtained in each example and comparative example was dried in an 80 ° C. vacuum dryer for 12 hours or more. Using a capillary flow meter (Capillograph 1C type, manufactured by Toyo Seiki Seisakusho Co., Ltd.), melt residence was performed at an melting point of + 60 ° C. for 60 minutes with an orifice having a diameter of 0.5 mm and a length of 5 mm. About the terminal modified polyamide resin or polyamide resin after melt residence, the weight average molecular weight (Mw) (weight average molecular weight after residence) was measured by GPC measurement similar to the molecular weight measurement method described above.
  • Mw weight average molecular weight after residence
  • the content of the terminal structure represented by the general formula (I) in the terminal-modified polyamide resin by 1 H-NMR measurement similar to the above-described terminal structure content measurement method [ I] (mol / t) (content after residence) was calculated.
  • Content of terminal structure represented by general formula (I) [I] (mol / t) (content before residence) and content of terminal structure represented by general formula (I) measured by the above method [ I] The content retention was calculated from (mol / t) (content after residence) (content after residence / content before residence) ⁇ 100.
  • the terminal-modified polyamide resin or polyamide resin obtained in each example and comparative example was dried in an 80 ° C. vacuum dryer for 12 hours or more. 20 mg of an arbitrary portion was cut out and held for 40 minutes at a temperature of the melting point of the terminal-modified polyamide resin or polyamide resin + 60 ° C. in a nitrogen gas atmosphere using a thermogravimetric analyzer (Perkin Elmer, TGA7), and the weight decreased before and after the heat treatment. The rate [%] was measured.
  • dumbbell-shaped test piece was subjected to “Tensilon” (registered trademark) UTA-2.5T (manufactured by Orientec Co., Ltd.) and in an atmosphere of 23 ° C. and 50% humidity according to ASTM-D638.
  • a tensile test was performed at a strain rate of 10 mm / min to measure the tensile elongation at break.
  • the cross section in the thickness direction of the fiber reinforced polyamide resin base material obtained in each example and comparative example was observed as follows.
  • a sample in which a fiber-reinforced terminal-modified polyamide resin was embedded with an epoxy resin was prepared, and the sample was polished until the cross-section in the thickness direction of the fiber-reinforced terminal-modified polyamide resin could be observed well.
  • the polished sample was photographed at a magnification of 400 times using an ultra-deep color 3D shape measuring microscope VHX-9500 (controller part) / VHZ-100R (measuring part) (manufactured by Keyence Corporation).
  • the photographing range was set to a range of the thickness of the fiber-reinforced terminal-modified polyamide resin ⁇ the width of 500 ⁇ m.
  • the area of the part occupied by the resin and the area of the part serving as a void were obtained, and the impregnation rate was calculated by the following equation.
  • Impregnation rate (%) 100 ⁇ (total area occupied by resin) / ⁇ (total area occupied by resin) + (total area occupied by voids) ⁇
  • This impregnation rate was used as a criterion for evaluation, and was evaluated in the following two stages.
  • the fiber-reinforced polyamide resin substrate in the first embodiment was produced at processing temperatures of melting points + 30 ° C., 60 ° C., and 100 ° C.
  • the fiber-reinforced polyamide resin base material in the second embodiment was produced at processing temperatures of melting point + 10 ° C, 20 ° C, 30 ° C. Good: The impregnation rate is 98% or more.
  • Impregnation rate is less than 98%.
  • the fiber-reinforced polyamide resin substrate in the first aspect has a melting point of + 30 ° C., 60 It was manufactured at a processing temperature of 100 ° C.
  • the fiber-reinforced polyamide resin base material in the second embodiment was produced at processing temperatures of melting point + 10 ° C, 20 ° C, 30 ° C.
  • Adipic acid Wako Pure Chemical Industries, Wako Special Grade.
  • ⁇ Sebacic acid Wako Pure Chemical Industries, Wako first grade.
  • Methoxypoly (ethylene glycol) poly (propylene glycol) amine represented by the following structural formula (Chemical Formula 2): “JEFFAMINE” (registered trademark) M2070 (number average molecular weight Mn2,000) manufactured by HUNTSMAN.
  • Methoxyethylene glycol poly (propylene glycol) amine represented by the following structural formula (Chemical Formula 3): “JEFFAMINE” (registered trademark) M600 (number average molecular weight Mn600) manufactured by HUNTSMAN.
  • the internal pressure of the can was maintained at 1.0 MPa while releasing moisture out of the system, and the temperature was increased until the internal temperature of the can reached 240 ° C.
  • the heater set temperature was changed to 270 ° C., and the internal pressure of the can was adjusted to normal pressure over 1 hour (can internal temperature when reaching normal pressure: 243 ° C.) .
  • nitrogen was allowed to flow in the can (nitrogen flow) for 240 minutes to obtain a terminal-modified polyamide 6 resin (maximum temperature reached: 253 ° C.).
  • the obtained terminal-modified polyamide 6 resin was subjected to Soxhlet extraction with ion-exchanged water to remove the unreacted terminal-modifying compound.
  • the terminal-modified polyamide 6 resin thus obtained had a relative viscosity of 1.81, a weight average molecular weight of 30,000, a melting point (Tm) of 220 ° C., and a melt viscosity of 5.5 Pa ⁇ s.
  • the obtained terminal-modified polyamide 6 resin contained a terminal-modified polyamide 6 resin having a structure represented by the following chemical formula 4 and a structure represented by the following chemical formula 5 at its ends. Other physical properties are shown in Table 1.
  • each carbon fiber bundle wound thereon Sixteen bobbins each having a carbon fiber bundle wound thereon were prepared, and each carbon fiber bundle was continuously fed out from each bobbin through a yarn path guide.
  • the carbon fiber bundle continuously fed out was impregnated with the end-modified polyamide 6 resin obtained by the above-mentioned method, which was supplied in a constant amount from a filled feeder in an impregnation die.
  • the carbon fiber impregnated with the end-modified polyamide 6 resin in the impregnation die was continuously drawn out from the nozzle of the impregnation die at a drawing speed of 1 m / min using a take-up roll.
  • the temperature at which the carbon fiber is drawn is called the processing temperature.
  • the drawn carbon fiber bundle passed through a cooling roll, the terminal-modified polyamide 6 resin was cooled and solidified, and was wound on a winder as a continuous fiber-reinforced polyamide resin base material.
  • the obtained fiber reinforced polyamide resin base material has a thickness of 0.3 mm, a width of 50 mm, a reinforced fiber direction arranged in one direction, a volume content of 30%, and a number average fiber length of 15 mm.
  • a substrate was obtained.
  • the obtained fiber reinforced polyamide resin substrate was subjected to the above evaluation. The evaluation results are shown in Table 1.
  • Examples 2 to 39, Comparative Examples 1 to 3 After changing the raw materials to the compositions shown in Tables 1 to 5 and setting the pressure in the can to normal pressure, the time for keeping nitrogen flowing in the can (nitrogen flow time) was changed to the time shown in Tables 1 to 5. Except that, a terminal-modified polyamide 6 resin was obtained in the same manner as in Example 1. Fiber reinforced in the same manner as in Example 1 except that the terminal-modified polyamide 6 resin or polyamide 6 resin obtained in each Example and Comparative Example was used instead of the terminal-modified polyamide 6 resin obtained in Example 1. A polyamide resin substrate was obtained. Tables 1 to 5 show the physical properties of the obtained terminal-modified polyamide 6 resin and the physical properties of the fiber-reinforced polyamide resin base material.
  • Example 40 9.46 g of hexamethylenediamine, 11.92 g of adipic acid, 20 g of ion-exchanged water, 1.6 g of “JEFFAMINE” (registered trademark) M1000, and 0.14 g of benzoic acid were charged in a reaction vessel, sealed, and purged with nitrogen. The set temperature of the heater on the outer periphery of the reaction vessel was set to 290 ° C., and heating was started. After the internal pressure of the can reached 1.75 MPa, the internal pressure of the can was maintained at 1.75 MPa while releasing water out of the system, and the temperature was increased until the internal temperature of the can reached 260 ° C.
  • JEFFAMINE registered trademark
  • the set temperature of the heater was changed to 290 ° C., and the internal pressure of the can was adjusted to be normal pressure over 1 hour (internal temperature at the time of reaching normal pressure: 270 ° C.). .
  • nitrogen was allowed to flow in the can (nitrogen flow) for 240 minutes to obtain a terminal-modified polyamide 66 resin (maximum temperature reached: 275 ° C.).
  • the obtained polyamide resin contained a terminal-modified polyamide 66 resin having the structure shown in Example 1 at its terminal.
  • a fiber-reinforced polyamide 66 resin substrate was obtained using the obtained terminal-modified polyamide 66 resin in the same manner as in Example 1 except that the processing temperature was 320 ° C.
  • Table 6 shows the physical properties of the obtained terminal-modified polyamide 66 resin and the physical properties of the fiber-reinforced polyamide 66 resin base material.
  • a reaction vessel was charged with 7.74 g of hexamethylenediamine, 13.46 g of sebacic acid, 20 g of ion-exchanged water, 1.6 g of “JEFFAMINE” (registered trademark) M1000, and 0.14 g of benzoic acid, and the atmosphere was replaced with nitrogen.
  • the set temperature of the heater on the outer periphery of the reaction vessel was set to 290 ° C., and heating was started. After the internal pressure of the can reached 1.0 MPa, the internal pressure of the can was maintained at 1.0 MPa while releasing moisture out of the system, and the temperature was increased until the internal temperature of the can reached 240 ° C. After the can internal temperature reached 240 ° C., the heater set temperature was changed to 290 ° C., and the internal pressure of the can was adjusted to be normal pressure over one hour (can internal temperature when normal pressure reached: 243 ° C.). .
  • the obtained polyamide resin contained terminal-modified polyamide 610 resin having the structure shown in Example 1 below at its terminal.
  • a fiber-reinforced polyamide 610 resin substrate was obtained using the terminal-modified polyamide 610 resin obtained in the same manner as in Example 1 except that the processing temperature was 280 ° C.
  • Table 6 shows the physical properties of the resulting terminal-modified polyamide 610 resin and the physical properties of the fiber-reinforced polyamide 610 resin base material.
  • a terminal-modified polyamide resin was obtained in the same manner as in Example 1. The obtained terminal-modified polyamide resin was put into an extruder, melt-kneaded and then extruded into a film form from a film die to obtain a resin film.
  • the carbon fiber used as the reinforcing fiber was cut into a fiber length of 15 mm and put into an air laid apparatus to obtain a mat-like reinforcing fiber substrate having a basis weight of 100 g / m 2 .
  • the mold temperature processing temperature
  • a cooling press was performed at a pressure of 3 MPa to obtain a fiber-reinforced polyamide resin base material having a volume content of 30%.
  • the obtained fiber reinforced polyamide resin substrate was subjected to the above evaluation. Table 7 shows the evaluation results.
  • Examples 43 to 80, Comparative Examples 4 to 6 After changing the raw materials to the compositions shown in Tables 7 to 11 and setting the pressure in the can to normal pressure, the time for keeping nitrogen flowing in the can (nitrogen flow time) was changed to the time shown in Tables 7 to 11. Except that, a terminal-modified polyamide 6 resin was obtained in the same manner as in Example 40. Fiber reinforced in the same manner as in Example 42 except that the terminal modified polyamide 6 resin or polyamide 6 resin obtained in each Example and Comparative Example was used instead of the terminal modified polyamide 6 resin obtained in Example 42. A polyamide resin substrate was obtained. Tables 7 to 11 show the physical properties of the resulting terminal-modified polyamide 6 resin and the physical properties of the fiber-reinforced polyamide resin substrate.
  • Example 81 In the same manner as in Example 40, a terminal-modified polyamide 66 resin was obtained. A fiber-reinforced polyamide 610 resin substrate was obtained using the terminal-modified polyamide 610 resin obtained in the same manner as in Example 42 except that the processing temperature was 290 ° C. Table 12 shows the physical properties of the obtained terminal-modified polyamide 610 resin and the physical properties of the fiber-reinforced polyamide 610 resin base material. [Example 82] In the same manner as in Example 41, a terminal-modified polyamide 610 resin was obtained. A fiber-reinforced polyamide 610 resin substrate was obtained using the terminal-modified polyamide 610 resin obtained in the same manner as in Example 42 except that the processing temperature was 250 ° C. Table 12 shows the physical properties of the obtained terminal-modified polyamide 610 resin and the physical properties of the fiber-reinforced polyamide 610 resin base material.
  • the terminal-modified polyamide resins obtained in Examples 10 to 12 and 51 to 53 include a structure represented by the following chemical formula 6 and a terminal-modified polyamide having a structure represented by the chemical formula 5 at its terminal. It was.
  • the terminal-modified polyamide resin obtained in Examples 13 and 54 contained a structure represented by the following chemical formula 7 and a terminal-modified polyamide having a structure represented by the chemical formula 5 at its terminal.
  • the terminal-modified polyamide resin obtained in Examples 30 and 71 contained terminal-modified polyamide having a structure represented by the following chemical formula 4 at its terminal.
  • the terminal-modified polyamide resin obtained in Examples 31 and 72 contained a terminal-modified polyamide having a structure represented by the following chemical formula 4 and a structure represented by the chemical formula 8 at its terminal.
  • the terminal-modified polyamide resin obtained in Examples 32, 33, 73 and 74 contained a terminal-modified polyamide having a structure represented by the following chemical formula 4 and a structure represented by the chemical formula 9 at its terminal.
  • the end-modified polyamide resins obtained in Examples 34 and 75 contained a structure represented by the following chemical formula 4 and a terminal-modified polyamide having a structure represented by the following chemical formula 10 at its ends.
  • the terminal-modified polyamide resin obtained in Examples 35 and 76 contained a structure represented by the following chemical formula 6 and a terminal-modified polyamide having a structure represented by the chemical formula 10 at its terminal.
  • terminal-modified polyamide resins obtained in Examples 1 to 9, 14 to 29, 36 to 37, 40 to 50, 55 to 70, 77 to 82 include terminal modified polyamides having the structure shown in Example 1 at the terminal. Met.
  • the polyamide resins obtained in Comparative Examples 1 to 3, 4 to 6 did not contain terminal-modified polyamide.
  • a fiber-reinforced terminal-modified polyamide 6 containing a structure composed of structural units different from the repeating structural units constituting the main chain of the polymer in the terminal group of the polymer It can be seen that the continuous fiber reinforced polyamide resin base material obtained using the resin is excellent in impregnation property and thermal stability during melt residence, and can achieve reduction of voids and improvement of surface quality.
  • a comparison between Examples 42 to 82 and Comparative Examples 4 to 6 shows that a fiber reinforced end-modified polyamide 6 containing a structure composed of a structural unit different from the repeating structural unit constituting the main chain of the polymer in the terminal group of the polymer. It can be seen that the discontinuous fiber reinforced polyamide resin substrate obtained by using the resin is excellent in impregnation property and thermal stability during melt residence, and can achieve reduction of voids and improvement of surface quality.
  • the fiber-reinforced polyamide resin base material and the molded product thereof according to the first and second aspects of the present invention taking advantage of the excellent characteristics, are aircraft parts, automobile parts, electrical / electronic parts, building members, various containers, daily necessities, daily life. It can be used for various purposes such as general goods and sanitary goods.
  • the fiber-reinforced polyamide resin base material and the molded product thereof according to the embodiment of the present invention include, inter alia, aircraft engine peripheral parts, aircraft parts exterior parts, automobile body parts, vehicle skeletons, which require impregnation, heat aging resistance, and surface appearance.
  • the fiber-reinforced terminal-modified polyamide resin and the molded product thereof according to the embodiment of the present invention include aircraft engine peripheral parts such as fan blades, landing gear pods, winglets, spoilers, edges, ladders, elevators, and failings.
  • Aircraft-related parts such as ribs, various seats, front body, underbody, various pillars, various members, various frames, various beams, various supports, various rails, various hinges, and other automobile body parts, engine covers, air intake pipes, timing Automobile engine peripheral parts such as belt cover, intake manifold, filler cap, throttle body, cooling fan, cooling fan, top and base of radiator tank, cylinder head cover, oil pan Automotive underhood parts such as brake piping, fuel piping tubes, waste gas system parts, etc., automotive gear parts such as gears, actuators, bearing retainers, bearing cages, chain guides, chain tensioners, shift lever brackets, steering lock brackets, key cylinders , Door inner handle, door handle cowl, interior mirror bracket, air conditioner switch, instrument panel, console box, glove box, steering wheel, trim and other automotive interior parts, front fender, rear fender, fuel lid, door panel, cylinder head cover, door mirror Stay, tailgate panel, license garnish, roof rail, engine mount bracket, rear Finish, rear spoiler, trunk lid, rocker
  • electronic parts such as

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

連続した強化繊維に、または不連続の強化繊維が分散した強化繊維基材にポリアミド樹脂を含浸させてなる繊維強化ポリアミド樹脂基材であって、前記ポリアミド樹脂が、ポリアミド樹脂を構成するポリマーの少なくとも一部が、ポリマーの主鎖を構成する繰り返し構造単位とは異なる構造単位から構成される構造をポリマーの末端基に有する末端変性ポリアミド樹脂である繊維強化ポリアミド樹脂基材。 含浸性および熱安定性に優れ、ボイドが少なく、表面品位に優れた繊維強化ポリアミド樹脂基材を提供する。

Description

繊維強化ポリアミド樹脂基材、その製造方法、それを含む成形品および複合成形品
 本発明は、繊維強化ポリアミド樹脂基材、その製造方法、それを含む成形品および複合成形品に関するものである。
 連続した強化繊維に、または不連続の強化繊維が分散した強化繊維基材にポリアミド樹脂を含浸させてなる繊維強化ポリアミド樹脂基材は、比強度、比剛性に優れ、軽量化効果が高い上に、耐熱性、耐薬品性が高いため、航空機、自動車等の輸送機器や、スポーツ、電気・電子部品などの各種用途へ好ましく用いられている。近年、軽量化に対する需要の高まりにより、航空機、自動車用途を中心に、金属部品から樹脂部品への代替や、部品の小型化・モジュール化が進みつつあることから、成形加工性に優れ、かつ、機械特性に優れる材料開発が求められている。
 成形性と機械的性質に優れた構造材用複合材料としては、例えば、ポリアミド樹脂に炭素繊維を含有してなる炭素繊維強化ポリアミド樹脂プリプレグ(例えば、特許文献1参照)が知られている。
特開2013-159675号公報
 しかしながら、特許文献1に開示される技術では、高い機械特性のために軽量化材料として期待されるものの、炭素繊維束へのポリアミド樹脂の含浸に時間がかかるため、生産性が低く、含浸性の更なる改良が求められていた。ポリアミド樹脂は分子量が増大するにしたがって溶融流動性が低下するため、繊維強化ポリアミド樹脂基材に用いた場合に強化繊維束への含浸性が低下し、ボイドが増加する課題や毛羽発生や樹脂リッチ部の増加により、表面品位の低下が生じる課題があった。加工温度を高くすることにより溶融流動性を改善することはできるものの、熱安定性が低下し、加工時にガス発生を伴う熱分解が生じることから、ボイドの増加やマトリックス樹脂の劣化による表面品位の低下を生じる課題があった。そこで、本発明は、含浸性と熱安定性に優れた、ボイドが少なく表面品位に優れた繊維強化ポリアミド樹脂基材を提供することを課題とする。
 上記課題を解決するため、本発明の繊維強化ポリアミド樹脂基材は次の構成を有する。すなわち、
連続した強化繊維に、または不連続の強化繊維が分散した強化繊維基材にポリアミド樹脂を含浸させてなる繊維強化ポリアミド樹脂基材であって、前記ポリアミド樹脂が、ポリアミド樹脂を構成するポリマーの少なくとも一部が、ポリマーの主鎖を構成する繰り返し構造単位とは異なる構造単位から構成される構造をポリマーの末端基に有する末端変性ポリアミド樹脂である繊維強化ポリアミド樹脂基材、である。
 本発明の繊維強化ポリアミド樹脂基材の製造方法は次の構成を有する。すなわち、
アミノ酸、ラクタム、ならびに/もしくは、ジアミンおよびジカルボン酸を重合する際に、下記一般式(III)で表される末端変性用化合物をアミノ酸、ラクタム、ジアミンおよびジカルボン酸の合計に対して1~20質量%含有させて、ポリアミド樹脂の末端に末端変性用化合物を結合させることにより、下記一般式(I)で表される末端構造を1~20質量%含有する末端変性ポリアミド樹脂を得る工程と、連続した強化繊維に、または不連続繊維の強化繊維が分散した強化繊維基材に前記末端変性ポリアミド樹脂を含浸させる工程を少なくとも有する上記繊維強化ポリアミド樹脂基材の製造方法、である。
 H-X-(R-O)-R                                (III)
 -X-(R-O)-R                                  (I)
 上記一般式(III)および(I)中、mは2~100の範囲を表す。Rは炭素数2~10の2価の炭化水素基、Rは炭素数1~30の1価の炭化水素基を表す。上記一般式が(III)の場合、-X-は-NH-、-N(CH)-または-O(C=O)-を表す。上記一般式が(I)の場合、-X-は-NH-、-N(CH)-または-(C=O)-を表す。一般式(III)中に含まれるm個のRは同じでも異なってもよい。
 本発明の繊維強化ポリアミド樹脂基材を含む成形品は次の構成を有する。すなわち、
上記繊維強化ポリアミド樹脂基材を含む成形品、である。
 本発明の複合成形品は次の構成を有する。すなわち、
上記繊維強化ポリアミド樹脂基材と、熱可塑性樹脂を含む成形品とが、少なくとも一部で接合された複合成形品、である。
 本発明の繊維強化ポリアミド樹脂基材は前記末端変性ポリアミド樹脂が、前記一般式(I)で表される末端構造を1~20質量%含有することが好ましい。
 本発明の繊維強化ポリアミド樹脂基材は前記末端変性ポリアミド樹脂が、さらに下記一般式(II)で表される末端構造を0.1~5質量%含有することが好ましい。
 -Y-R                                                (II)
 上記一般式(II)中、Rは炭素数1~30の1価の炭化水素基を表す。前記一般式(I)におけるXが-NH-または-N(CH)-の場合、上記一般式(II)における-Y-は-(C=O)-を表し、前記一般式(I)におけるXが-(C=O)-の場合、上記一般式(II)におけるYは-NH-または-N(CH)-を表す。
 本発明の繊維強化ポリアミド樹脂基材は前記強化繊維が一方向に連続して配列している、または、数平均繊維長が3~100mmの不連続繊維であることが好ましい。
 本発明の繊維強化ポリアミド樹脂基材は前記強化繊維が炭素繊維を含み、強化繊維を20~70体積%含有することが好ましい。
 本発明の繊維強化ポリアミド樹脂基材は前記末端変性ポリアミド樹脂が、前記一般式(I)で表される末端構造と前記一般式(II)で表される末端構造を合計60~250[mol/t]含有し、かつ前記一般式(I)で表される末端構造の含有量[mol/t]と前記一般式(II)で表される末端構造の含有量[mol/t]の比((I)/(II))が0.3~2.5であることが好ましい。
 本発明の繊維強化ポリアミド樹脂基材は前記末端変性ポリアミド樹脂が、アミノ末端基とカルボキシル末端基を合計50~150[mol/t]含有し、かつアミノ末端基の含有量[mol/t]とカルボキシル末端基の含有量[mol/t]の比(アミノ末端基/カルボキシル末端基)が0.5~2.5であることが好ましい。
 本発明の繊維強化ポリアミド樹脂基材は前記末端変性ポリアミド樹脂の、樹脂濃度0.01g/mLの98%硫酸溶液の25℃における相対粘度(η)が1.3~3.0であることが好ましい。
 本発明の繊維強化ポリアミド樹脂基材は前記末端変性ポリアミド樹脂の、ゲルパーミエーションクロマトグラフィーにより測定した重量平均分子量Mwが15,000~50,000であることが好ましい。
 本発明の繊維強化ポリアミド樹脂基材は前記末端変性ポリアミド樹脂の、融点+60℃、せん断速度9,728sec-1の条件における溶融粘度が30Pa・s以下であることが好ましい。
 本発明の繊維強化ポリアミド樹脂基材は前記末端変性ポリアミド樹脂の、融点+60℃の条件下60分間滞留前後における前記一般式(I)で表される末端構造の含有量保持率((滞留後含有量/滞留前含有量)×100)が80%以上であることが好ましい。
 本発明の繊維強化ポリアミド樹脂基材は前記末端変性ポリアミド樹脂の、融点+60℃の条件下60分間滞留前後における重量平均分子量保持率((滞留後重量平均分子量/滞留前重量平均分子量)×100)が80%~120%であることが好ましい。
 本発明の繊維強化ポリアミド樹脂基材は前記末端変性ポリアミド樹脂の、融点+60℃の条件下60分間滞留前後における溶融粘度保持率((滞留後溶融粘度/滞留前溶融粘度)×100)が80%~120%であることが好ましい。
 本発明の繊維強化ポリアミド樹脂基材は前記末端変性ポリアミド樹脂の、窒素雰囲気下、融点+60℃の条件下40分間滞留前後における重量減少率が4%以下であることが好ましい。
 本発明によれば、含浸性、熱安定性に優れ、ボイドが少なく表面品位にすぐれた繊維強化ポリアミド樹脂基材を得ることができる。本発明の実施形態の繊維強化ポリアミド樹脂基材は、オートクレーブ成形、プレス成形、フィルム成形などの任意の成形方法により、所望の形状に成形することができる。繊維強化ポリアミド樹脂基材を成形して得られる成形品は、例えば、航空機エンジン周辺部品、航空機内装部品、航空機外装部品、車両骨格、自動車エンジン周辺部品、自動車アンダーフード部品、自動車ギア部品、自動車内装部品、自動車外装部品、吸排気系部品、エンジン冷却水系部品、自動車電装部品などの自動車用途、LEDリフレクタやSMTコネクタなどの電気・電子部品用途などに加工することが有効である。
 以下、本発明の実施形態を詳細に説明する。本発明の実施形態の繊維強化ポリアミド樹脂基材は、以下2つの態様のいずれかを有する。第一の態様は、連続した強化繊維に後述の末端変性ポリアミド樹脂を含浸させてなる繊維強化ポリアミド樹脂基材であり、第二の態様は不連続繊維の強化繊維が分散した強化繊維基材に、後述の末端変性ポリアミド樹脂を含浸させてなる繊維強化ポリアミド樹脂基材である。
 本発明の実施形態において、第一の態様における連続した強化繊維とは、繊維強化ポリアミド樹脂基材中で当該強化繊維が途切れのないものをいう。本発明の実施形態における強化繊維の形態および配列としては、例えば、一方向に引き揃えられたもの、織物(クロス)、編み物、組み紐、トウ等が挙げられる。中でも、特定方向の機械特性を効率よく高められることから、強化繊維が一方向に配列してなることが好ましい。
 第二の態様における不連続繊維が分散した強化繊維基材とは、繊維強化ポリアミド樹脂基材中で当該強化繊維が切断され分散されたマット状のものをいう。本発明の実施形態における強化繊維基材は、繊維を溶液に分散させた後、シート状に製造する湿式法や、カーディング装置やエアレイド装置を用いた乾式法などの任意の方法により得ることができる。生産性の観点から、カーディング装置やエアレイド装置を用いた乾式法が好ましい。
 本発明の実施形態における強化繊維基材における不連続繊維の数平均繊維長は、3~100mmが好ましい。不連続繊維の数平均繊維長が3mm以上であれば、不連続繊維による補強効果が十分に奏され、得られる繊維強化ポリアミド樹脂基材の機械強度をより向上させることができる。5mm以上が好ましい。一方、不連続繊維の数平均繊維長が100mm以下であれば、成形時の流動性をより向上させることができる。不連続繊維の数平均繊維長は50mm以下がより好ましく、30mm以下がさらに好ましい。
 本発明の実施形態の繊維強化ポリアミド樹脂基材における不連続繊維の数平均繊維長は、以下の方法により求めることができる。まず、繊維強化ポリアミド樹脂基材から100mm×100mmのサンプルを切り出し、切り出したサンプルを600℃の電気炉中で1.5時間加熱し、マトリックス樹脂を焼き飛ばす。こうして得られた繊維強化ポリアミド樹脂基材中から、不連続強化繊維束を無作為に400本採取する。取り出した不連続強化繊維束について、ノギスを用いて1mm単位で繊維長を測定し、次式により数平均繊維長(Ln)を算出することができる。
 Ln=ΣLi/400
(Li:測定した繊維長(i=1,2,3,・・・400)(単位:mm))。
 不連続繊維の数平均繊維長は、強化繊維基材製造時に繊維を所望の長さに切断することにより、上記範囲に調整することができる。不連続繊維マットの配向性については特に制限は無いが、成形性の観点からは等方的に分散されている方が好ましい。
 第一および第二の形態における強化繊維の種類としては特に限定されず、炭素繊維、金属繊維、有機繊維、無機繊維が例示される。これらを2種以上用いてもよい。
 炭素繊維としては、例えば、ポリアクリロニトリル(PAN)繊維を原料とするPAN系炭素繊維、石油タールや石油ピッチを原料とするピッチ系炭素繊維、ビスコースレーヨンや酢酸セルロースなどを原料とするセルロース系炭素繊維、炭化水素などを原料とする気相成長系炭素繊維、これらの黒鉛化繊維などが挙げられる。これら炭素繊維のうち、強度と弾性率のバランスに優れる点で、PAN系炭素繊維が好ましく用いられる。
 金属繊維としては、例えば、鉄、金、銀、銅、アルミニウム、黄銅、ステンレスなどの金属からなる繊維が挙げられる。
 有機繊維としては、例えば、アラミド、ポリベンゾオキサゾール(PBO)、ポリフェニレンスルフィド、ポリエステル、ポリアミド、ポリエチレンなどの有機材料からなる繊維が挙げられる。アラミド繊維としては、例えば、強度や弾性率に優れるパラ系アラミド繊維と、難燃性、長期耐熱性に優れるメタ系アラミド繊維が挙げられる。パラ系アラミド繊維としては、例えば、ポリパラフェニレンテレフタルアミド繊維、コポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド繊維などが挙げられ、メタ系アラミド繊維としては、ポリメタフェニレンイソフタルアミド繊維などが挙げられる。アラミド繊維としては、メタ系アラミド繊維に比べて弾性率の高いパラ系アラミド繊維が好ましく用いられる。
 無機繊維としては、例えば、ガラス、バサルト、シリコンカーバイト、シリコンナイトライドなどの無機材料からなる繊維が挙げられる。ガラス繊維としては、例えば、Eガラス繊維(電気用)、Cガラス繊維(耐食用)、Sガラス繊維、Tガラス繊維(高強度、高弾性率)などが挙げられる。バサルト繊維は、鉱物である玄武岩を繊維化した物で、耐熱性の非常に高い繊維である。玄武岩は、一般的に、鉄の化合物であるFeOまたはFeOを9~25重量%、チタンの化合物であるTiOまたはTiOを1~6重量%含有するが、溶融状態でこれらの成分を増量して繊維化することも可能である。
 本発明の第一および第二の形態における繊維強化ポリアミド樹脂基材は、補強材としての役目を期待されることが多いため、高い機械特性を発現することが望ましく、高い機械特性を発現するためには、強化繊維が炭素繊維を含むことが好ましい。
 本発明の第一および第二の形態における繊維強化ポリアミド樹脂基材において、強化繊維は、通常、多数本の単繊維を束ねた強化繊維束を1本または複数本並べて構成される。1本または複数本の強化繊維束を並べたときの強化繊維の総フィラメント数(単繊維の本数)は、1,000~2,000,000本が好ましい。生産性の観点からは、強化繊維の総フィラメント数は、1,000~1,000,000本がより好ましく、1,000~600,000本がさらに好ましく、1,000~300,000本が特に好ましい。強化繊維の総フィラメント数の上限は、分散性や取り扱い性とのバランスも考慮して、生産性と分散性、取り扱い性を良好に保てるようであれば良い。
 本発明の第一および第二の形態における1本の強化繊維束は、好ましくは平均直径5~10μmである強化繊維の単繊維を1,000~50,000本束ねて構成される。
 本発明の第一の形態における繊維強化ポリアミド樹脂基材は、連続した強化繊維に含浸させるポリアミド樹脂が末端変性ポリアミド樹脂であることを特徴とする。また、本発明の第二の形態における繊維強化ポリアミド樹脂基材は、不連続繊維の強化繊維が分散した強化繊維基材に含浸させるポリアミド樹脂が、末端変性ポリアミド樹脂であることを特徴とする。ここで、本発明における「末端変性ポリアミド樹脂」とは、ポリアミド樹脂を構成するポリマーの少なくとも一部が、ポリマーの主鎖を構成する繰り返し構造単位とは異なる構造単位から構成される構造(以下、変性された構造という場合がある)をポリマーの末端基に有するポリアミド樹脂を指す。ポリアミド樹脂を構成するポリマーの少なくとも一部が、変性された構造をポリマーの末端基に有することにより、引張強度や耐衝撃性などの機械特性を維持しながら、ポリアミド樹脂の溶融粘度を低減することができる。そのため、加工温度が適度に低い場合であっても含浸性を向上させることができ、繊維強化ポリアミド樹脂基材におけるボイドの発生を大幅に抑制することができる。この理由としては、ポリアミド樹脂を構成するポリマーの少なくとも一部が変性された構造をポリマーの末端基に有することにより、ポリマー鎖の分子間相互作用の低減や自由体積の増加などの効果により、ポリマー鎖の分子運動性が大幅に増大するためと考えている。
 本発明の実施形態における末端変性ポリアミド樹脂は、アミノ酸、ラクタムおよび「ジアミンとジカルボン酸との混合物」から選ばれる1種以上を主たる原料として得ることができるポリアミド樹脂であって、ポリアミド樹脂を構成するポリマーの少なくとも一部が、変性された構造をポリマーの末端基に有するものである。言い換えると、本発明における末端変性ポリアミド樹脂は、ジアミンおよびジカルボン酸からなる組合せ、アミノ酸、ならびにラクタムからなる群より選ばれる少なくとも1種を主たる原料として用いて重合するポリアミド樹脂であって、ポリアミド樹脂を構成するポリマーの少なくとも一部が、変性された構造をポリマーの末端基に有するものである。ポリアミド樹脂の主たる構造単位を構成する化学構造としては、アミノ酸またはラクタムを原料とする場合、炭素数4~20の範囲のものが好ましい。また、ジアミンとジカルボン酸とを原料とする場合、そのジアミンの炭素数は2~20の範囲が好ましく、ジカルボン酸の炭素数は2~20の範囲が好ましい。原料の代表例としては、以下のものが挙げられる。
 具体的に、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸。ε-カプロラクタム、ω-ウンデカンラクタム、ω-ラウロラクタムなどのラクタム。エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカンジアミン、ウンデカンジアミン、ドデカンジアミン、トリデカンジアミン、テトラデカンジアミン、ペンタデカンジアミン、ヘキサデカンジアミン、ヘプタデカンジアミン、オクタデカンジアミン、ノナデカンジアミン、エイコサンジアミン、2-メチル-1,5-ジアミノペンタン、2-メチル-1,8-ジアミノオクタンなどの脂肪族ジアミン;シクロヘキサンジアミン、ビス-(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタンなどの脂環式ジアミン;キシリレンジアミンなどの芳香族ジアミンなどのジアミン。シュウ酸、マロン酸、スクシン酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸などの脂肪族ジカルボン酸;テレフタル酸、イソフタル酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸などの芳香族ジカルボン酸;シクロヘキサンジカルボン酸などの脂環族ジカルボン酸;これらジカルボン酸のジアルキルエステル、およびジクロリドなどが挙げられる。
 本発明の実施形態においては、末端構造を導入するポリアミド樹脂として、これらの原料から誘導されるポリアミドホモポリマーまたはコポリマーを用いることができる。かかるポリアミドが2種以上混合されてポリアミド樹脂となっていてもよい。本発明の実施形態においては、機械特性および溶融滞留時の熱安定性をより向上させ、発生ガスに起因するボイドをより低減する観点から、上に例示した原料に由来する構造単位を、変性された構造を除いたポリアミド樹脂を構成する全構造単位100モル%中、80モル%以上有することが好ましく、90モル%以上有することがより好ましく、100モル%有することがさらに好ましい。また、上に例示した原料に由来する重合構造は直鎖であることが好ましい。
 本発明の実施形態の末端変性ポリアミド樹脂の融点(Tm)は、200℃以上であることが好ましい。ここで、末端変性ポリアミド樹脂の融点は、示差走査熱量測定(DSC)により求めることができる。測定方法は以下のとおりである。末端変性ポリアミド樹脂5~7mgを秤量する。窒素雰囲気下中、20℃から昇温速度20℃/minでTm+30℃まで昇温する。引き続き降温速度20℃/minで20℃まで降温する。再度20℃から昇温速度20℃/minでTm+30℃まで昇温したときに現れる吸熱ピークの頂点の温度を融点(Tm)と定義する。
 融点が200℃以上の末端変性ポリアミド樹脂としては、下記のポリアミドおよびこれらの共重合体の末端に、変性された構造を有するものが挙げられる。耐熱性、靭性、表面特性などの必要特性に応じて、これらを2種以上用いてもよい。ポリアミドとしては、ポリカプロアミド(ポリアミド6)、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリペンタメチレンアジパミド(ポリアミド56)、ポリテトラメチレンセバカミド(ポリアミド410)、ポリペンタメチレンセバカミド(ポリアミド510)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリデカメチレンセバカミド(ナイロン1010)、ポリデカメチレンドデカミド(ナイロン1012)、ポリメタキシリレンアジパミド(MXD6)、ポリメタキシリレンセバカミド(MXD10)、ポリパラキシリレンセバカミド(PXD10)、ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリデカメチレンテレフタルアミド(ポリアミド10T)、ポリウンデカメチレンテレフタルアミド(ポリアミド11T)、ポリドデカメチレンテレフタルアミド(ポリアミド12T)、ポリペンタメチレンテレフタルアミド/ポリヘキサメチレンテレフタルアミドコポリマー(ポリアミド5T/6T)、ポリ-2-メチルペンタメチレンテレフタルアミド/ポリヘキサメチレンテレフタルアミド(ポリアミドM5T/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ポリアミド66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6I)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミド(ポリアミド66/6T/6I)、ポリビス(3-メチル-4-アミノシクロヘキシル)メタンテレフタルアミド(ポリアミドMACMT)、ポリビス(3-メチル-4-アミノシクロヘキシル)メタンイソフタルアミド(ポリアミドMACMI)、ポリビス(3-メチル-4-アミノシクロヘキシル)メタンドデカミド(ポリアミドMACM12)、ポリビス(4-アミノシクロヘキシル)メタンテレフタルアミド(ポリアミドPACMT)、ポリビス(4-アミノシクロヘキシル)メタンイソフタルアミド(ポリアミドPACMI)、ポリビス(4-アミノシクロヘキシル)メタンドデカミド(ポリアミドPACM12)などが挙げられる。
 とりわけ好ましいものとしては、ポリアミド6、ポリアミド66、ポリアミド56、ポリアミド410、ポリアミド510、ポリアミド610、ポリアミド6/66、ポリアミド6/12、ポリアミド9T、ポリアミド10Tなどの末端に、変性された構造を有するものを挙げることができる。
 本発明の実施形態において、末端変性ポリアミドの末端基に有される変性された構造は、ポリアミド樹脂のポリマーの主鎖を構成する繰り返し構造単位由来の構造と異なる。変性された構造としては、例えば、飽和脂肪族化合物、不飽和脂肪族化合物、芳香族化合物などに由来する構造が挙げられる。これらを2種以上用いてもよい。含浸性および表面品位をより向上させる観点から、飽和脂肪族化合物または芳香族化合物に由来する構造がより好ましく、飽和脂肪族化合物に由来する構造がさらに好ましい。
 本発明の実施形態における変性された構造としては、後述の末端変性用化合物の残基などが挙げられる。
 本発明の実施形態の末端変性ポリアミド樹脂は、下記一般式(I)で表される末端構造を有することが好ましい。下記一般式(I)で表される末端構造は、アルキレンオキシド構造を有するため、得られるポリマーの分子運動性が高く、また、アミド基との親和性に優れる。ポリアミド樹脂の末端にある下記一般式(I)で表される構造が、ポリアミド分子鎖の間に介在して、ポリマーの自由体積がより増加し、絡み合いがより減少する。その結果、ポリマーの分子運動性がさらに増大して溶融粘度を低減させることができ、含浸性及び表面品位をより向上させることができる。かかる効果は、ポリアルキレンオキシド構造をポリアミド樹脂の主鎖に主として有する場合に比べて、極めて高い。
 -X-(R-O)-R                 (I)
 上記一般式(I)中、mは2~100(2以上100以下)の範囲を表す。mが大きいほど、溶融粘度の低減効果が効果的に奏される。mは5以上が好ましく、8以上がより好ましく、16以上がさらに好ましい。一方、mが小さいほど、耐熱性をより高く維持することができる。mは70以下が好ましく、50以下がより好ましい。なお、ポリアミド樹脂の主たる構造単位に由来する特性を維持する観点から、本発明における末端変性ポリアミド樹脂は、上記一般式(I)で表される構造をポリマーの末端のみに有することが好ましい。
 上記一般式(I)中、Rは炭素数2~10(2以上10以下)の2価の炭化水素基を表す。ポリアミド樹脂の主たる構造単位との親和性の観点から、炭素数2~6の炭化水素基がより好ましく、炭素数2~4の炭化水素基がより好ましい。
 末端変性ポリアミド樹脂の熱安定性および着色防止の観点から、飽和炭化水素基がさらに好ましい。Rとしては、例えば、エチレン基、1,3-トリメチレン基、イソプロピレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基、1,6-ヘキサメチレン基などが挙げられ、m個のRは、異なる炭素数の炭化水素基の組合せであってもよい。Rは、炭素数2の2価の飽和炭化水素基および炭素数3の2価の飽和炭化水素基から少なくとも構成されることが好ましい。ポリアミド樹脂の主たる構造単位との親和性に優れるエチレン基および自由体積の大きいイソプロピレン基から構成されることがより好ましく、溶融粘度低減効果をより効果的に発現させることができる。この場合、一般式(I)で表される末端構造はエチレン基を10個以上含有し、かつイソプロピレン基を6個以下含有することが好ましく、所望に近い量の末端構造をポリアミド樹脂に導入することができ、溶融粘度低減効果をより高めることができる。また、Rは炭素数1~30(1以上30以下)の1価の炭化水素基を表す。Rの炭素数が少ないほどポリアミド樹脂の主たる構造単位との親和性に優れるため、炭素数1~20の炭化水素基が好ましく、炭素数1~10の炭化水素基がより好ましく用いられる。また、末端変性ポリアミド樹脂の熱安定性および着色防止の観点から、Rは1価の飽和炭化水素基であることがさらに好ましい態様である。Rとしては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などが挙げられ、その中でもポリアミド樹脂の主たる構造単位との親和性に優れるメチル基およびエチル基がより好ましい。
 上記一般式(I)中、-X-は-NH-、-N(CH)-または-(C=O)-を表す。これらのうちポリアミド樹脂の主たる構造単位との親和性に優れる-NH-がより好ましい。
 本発明の実施形態の末端変性ポリアミド樹脂は、一般式(I)で表される末端構造を、末端変性ポリアミド樹脂を構成するポリマーの少なくとも一部の末端基に有することが好ましい。言い換えると、本発明の末端変性ポリアミド樹脂は、一般式(I)で表される末端構造を、末端変性ポリアミド樹脂を構成するポリマーの少なくとも一方の末端に有することが好ましい。
 本発明の実施形態の末端変性ポリアミド樹脂は、一般式(I)で表される末端構造を、末端変性ポリアミド樹脂100質量%中1~20質量%(1質量%以上20質量%以下)含むことが好ましい。一般式(I)で表される末端構造の含有量が1質量%以上であると、末端変性ポリアミド樹脂の溶融粘度をより低減し、含浸性および表面品位をより向上させ、ボイドをより低減することができる。一般式(I)で表される末端構造の含有量は3質量%以上がより好ましく、5質量%以上がさらに好ましい。一方、一般式(I)で表される末端構造の含有量が20質量%以下であると、溶融滞留時に一般式(I)で表される構造の熱分解によるガス成分の増加を抑制し、溶融滞留時の熱安定性をより向上させ、発生ガスに起因するボイドをより低減することができるとともに、表面品位を向上することができる。また、末端変性ポリアミド樹脂の分子量をより高くすることができることから、機械特性をより向上させることができる。上記一般式(I)で表される末端構造の含有量は15質量%以下がより好ましく、10質量%以下がさらに好ましい。
 本発明の実施形態において、末端変性ポリアミド樹脂中における一般式(I)で表される末端構造の含有量は、例えば、末端変性ポリアミド樹脂を製造する際に用いられる後述の一般式(III)で表される末端変性用化合物の配合量を調整することにより、所望の範囲に調整することができる。
 また、本発明の実施形態の末端変性ポリアミド樹脂は、さらに下記一般式(II)で表される末端構造を有することが好ましい。前述のとおり、一般式(I)で表される末端構造を導入することにより、末端変性ポリアミド樹脂の溶融粘度を低減させ、含浸性及び表面品位を向上させることができるが、含浸時などの長期間溶融滞留時に、一般式(I)で表される末端構造の熱分解が進行しやすい傾向がある。特に、ポリアミド樹脂のアミノ末端基とカルボキシル末端基が一般式(I)で表される末端構造の熱分解触媒として作用するため、ポリアミド樹脂中のアミノ末端基量とカルボキシル末端基量を低減することにより、一般式(I)で表される末端構造の熱分解を抑制し、一般式(I)で表される末端構造による溶融粘度低減効果を維持しながら、溶融滞留時の熱安定性をより向上させることができる。このため、含浸性及び表面品位をより向上させ、ボイドをより低減することができる。例えば、ポリアミド樹脂のカルボキシル末端基に、後述の一般式(III)で表される末端変性用化合物を反応させることにより一般式(I)で表される末端構造のみを導入する場合に比べて、さらにアミノ末端基に下記一般式(II)で表される末端構造を導入することにより、一般式(I)で表される構造の熱分解を抑制し、溶融粘度低減効果を維持しながら、溶融滞留時の熱安定性をより向上させ、ボイドの低減とともに表面品位を向上できる。
 より具体的に説明する。例えば、ポリアミド樹脂のカルボキシル末端基に、後述の一般式(III)で表される末端変性用化合物を反応させることにより、一般式(I)で表される末端構造のみを有するポリアミド樹脂を得ることができる。しかしながら、前記ポリアミド樹脂は、一方の末端は一般式(I)で表される末端構造で変性されているものの、他方の末端は変性されておらず、アミノ末端基またはカルボキシル基のままである。そのため、前記アミノ末端基またはカルボキシル末端基が一般式(I)で表される末端構造の熱分解触媒として作用し、一般式(I)で表される構造の熱分解が進行しやすくなる。そこで、例えば、前記ポリアミド樹脂(すなわち、一方の末端のみが一般式(I)で表される構造で変性されているポリアミド樹脂)に、後述の一般式(IV)で表される末端変性用化合物をさらに反応させることなどによって、当該他方の末端を変性せしめ、下記一般式(II)で表される末端構造をさらに有するポリアミド樹脂を得ることができる。一般式(I)で表される構造で変性されたポリアミド樹脂に、さらに一般式(II)で表される末端構造を導入することにより、先述した効果を奏することができる。
 -Y-R                        (II)
 上記一般式(II)中、Rは炭素数1~30(1以上30以下)の1価の炭化水素基を表す。Rの炭素数が少ないほどポリアミド樹脂の主たる構造単位との親和性に優れるため、炭素数1~30の炭化水素基であることが好ましい。具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、エイコシル基、ヘンイコシル基、ヘネイコシル基、ドコシル基、トリコシル基、テトラコシル基、ペンタコシル基、ヘキサコシル基、ヘプタコシル基、オクタコシル基、ノナコシル基、トリアコンチル等の直鎖アルキル基、イソプロピル基、イソブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基等の分岐鎖アルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基等のアリール基、ベンジル基、2-フェニルエチル基等のアラルキル基などが挙げられる。末端変性ポリアミド樹脂の熱安定性および着色防止の観点から、Rは1価の炭素数1以上20以下の飽和炭化水素基またはアリール基であることがさらに好ましい態様である。
 前記一般式(I)におけるXが-NH-または-N(CH)-の場合、上記一般式(II)における-Y-は-(C=O)-を表し、前記一般式(I)におけるXが-(C=O)-の場合、上記一般式(II)におけるYは-NH-または-N(CH)-を表す。
 通常、両方の末端が変性されていないポリアミド樹脂の末端基は、その一方の末端基がアミノ末端基であり、他方の末端基がとカルボキシル末端基である。ここで、一般式(III)で表される末端変性用化合物がアミノ末端基を有する場合、かかる末端変性用化合物はポリアミド樹脂のカルボキシル末端基と反応し、一般式(I)におけるXが-NH-または-N(CH)-となる。この場合、ポリアミド樹脂のもう一方の末端であるアミノ末端基を、一般式(IV)で表される末端変性用化合物と反応せしめることによって、ポリアミド樹脂の当該他方の末端を上記一般式(II)の末端構造により封鎖することができる。この場合、上記一般式(II)におけるYは-(C=O)-となる。一方、一般式(III)で表される末端変性用化合物がカルボキシル末端基を有する場合、かかる末端変性用化合物はポリアミド樹脂のアミノ末端基と反応し、一般式(I)におけるXが-(C=O)-となる。この場合、ポリアミド樹脂のもう一方の末端であるカルボキシル末端基を、一般式(IV)で表される末端変性用化合物と反応せしめることによって、ポリアミド樹脂の当該他方の末端を上記一般式(II)の末端構造により封鎖し、一般式(II)におけるYは-NH-または-N(CH)-となる。
 本発明の末端変性ポリアミド樹脂は、一般式(II)で表される末端構造を、末端変性ポリアミド樹脂100質量%中0.1~5質量%(0.1質量%以上5質量%以下)含むことが好ましい。一般式(II)で表される末端構造の含有量が0.1質量%以上であると、溶融滞留時に末端変性ポリアミド樹脂中の一般式(I)で表される構造の熱分解を抑制し、溶融滞留時の熱安定性をより向上させることができ、ボイドをより低減することができるとともに表面品位を向上することができる。一般式(II)で表される末端構造の含有量は0.2質量%以上がより好ましく、0.4質量%以上がさらに好ましい。一方、一般式(II)で表される末端構造の含有量が5質量%以下であると、機械特性および溶融滞留時の熱安定性をより向上させることができ、ボイドをより低減することができるとともに、表面品位を向上できる。一般式(II)で表される末端構造の含有量は3質量%以下がより好ましく、1質量%以下がさらに好ましい。
 本発明において、末端変性ポリアミド樹脂中における一般式(II)で表される末端構造の含有量は、例えば、末端変性ポリアミド樹脂を製造する際に用いられる後述の一般式(IV)で表される末端変性用化合物の配合量を調整することにより、所望の範囲に調整することができる。
 本発明における末端変性ポリアミド樹脂は、一般式(I)で表される末端構造、および一般式(II)で表される末端構造を有するポリアミド樹脂(すなわち、一方の末端は一般式(I)で表される末端構造で変性されており、他方の末端は一般式(II)で表される末端構造で変性されているポリアミド樹脂)を含有することが好ましい。一般式(I)で表される末端構造のみを有するポリアミド樹脂(例えば、一方の末端は一般式(I)で表される末端構造で変性されているが、他方の末端は変性されていないポリアミド樹脂)、および、一般式(II)で表される末端構造のみを有するポリアミド樹脂(例えば、一方の末端は一般式(II)で表される末端構造で変性されているが、他方の末端は変性されていないポリアミド樹脂)を含有する態様でもよい。
 また、本発明の末端変性ポリアミド樹脂は、一般式(I)で表される末端構造の含有量[mol/t]と一般式(II)で表される末端構造の含有量[mol/t]の合計が60~250mol/t(60mol/t以上250mol/t以下)であることが好ましい。一般式(I)で表される末端構造と一般式(II)で表される末端構造を末端変性ポリアミド樹脂1t中に合計60mol以上含むことにより、末端変性ポリアミド樹脂の溶融粘度をより低減して含浸性をより向上させ、溶融滞留時の熱安定性をより向上させることができ、ボイドをより低減できるとともに表面品位の向上ができる。これらの末端構造の合計含有量は70mol/t以上がより好ましく、80mol/t以上がさらに好ましい。一方、末端変性ポリアミド樹脂1t中に一般式(I)で表される末端構造と一般式(II)で表される末端構造を合計250mol以下含有することにより、機械特性および溶融滞留時の熱安定性をより向上させることができ、ボイドをより低減することができるとともに表面品位が向上できる。これらの末端構造の合計含有量は225mol/tがより好ましく、200mol/t以下がさらに好ましい。
 本発明において、末端変性ポリアミド樹脂中における一般式(I)で表される末端構造と一般式(II)で表される末端構造の合計量は、例えば、末端変性ポリアミド樹脂を製造する際に用いられる後述の一般式(III)で表される末端変性用化合物および一般式(IV)で表される末端変性用化合物の配合量を調整することにより、所望の範囲に調整することができる。
 さらに、本発明の末端変性ポリアミド樹脂は、一般式(II)で表される末端構造の含有量[mol/t]に対する一般式(I)で表される末端構造の含有量[mol/t]の比((I)/(II))が0.3~2.5であることが好ましい。ポリアミド樹脂は、溶融滞留時に熱分解による分子量低下と同時に、アミノ末端基とカルボキシル末端基との重合反応による分子量増大が進行する。前記モル比((I)/(II))が1から離れるほど、変性される(封鎖される)アミノ末端基量とカルボキシル末端基量の差が大きくなることを示しており、差が大きくなるほど溶融滞留時の重合反応は進みにくく、熱分解による分子量低下の方が大きくなるため、溶融滞留時の溶融粘度や分子量低下が大きくなる傾向にある。また、差が大きくなるほど、溶融滞留時に重合反応が進行しにくく末端基(アミノ末端基やカルボキシル末端基)が重合反応に消費されないため、上述したようにこれらの末端基が一般式(I)で表される末端構造の熱分解触媒となり、一般式(I)で表される末端構造中のアルキレンオキシド構造の熱分解を促進するため、溶融粘度が大きくなる傾向となる。かかるモル比((I)/(II))を0.3以上とすることにより、末端変性ポリアミド樹脂の溶融粘度をより低減して含浸性をより向上させるとともに、溶融滞留時における末端変性ポリアミド樹脂中の上記一般式(I)で表される構造の熱分解をより抑制し、熱安定性をより向上させることができ、ボイドをより低減できるとともに表面品位を向上できる。モル比((I)/(II))は0.5以上がより好ましく、0.6以上が好ましく、0.8以上が最も好ましい。一方、モル比((I)/(II))を2.5以下とすることにより、溶融滞留時の末端変性ポリアミド樹脂中の一般式(I)で表される末端構造の熱分解をより抑制し、熱安定性をより向上させることができ、発生ガスに起因するボイドをより低減することができるとともに、表面品位を向上できる。モル比((I)/(II))は2.2以下がより好ましく、2.0以下がさらに好ましい。
 ここで、末端変性ポリアミド樹脂中の、一般式(I)で表される末端構造および一般式(II)で表される末端構造の含有量は、それぞれH-NMR測定によって求めることができる。測定方法および計算方法は以下のとおりである。
 まず、ポリアミド樹脂の濃度が50mg/mLである重水素化硫酸溶液を調製し、積算回数256回によってH-NMR測定を行う。Rのスペクトル積分値、Rのスペクトル積分値、Rのスペクトル積分値、およびポリアミド樹脂骨格の繰り返し構造単位(ポリマーの主鎖を構成する繰り返し構造単位)のスペクトル積分値から、各末端構造の含有量(質量%、または、mol/t)、および末端構造(II)の含有量(mol/t)に対する末端構造(I)の含有量(mol/t)の比(以下、「モル比」と称されることもある)を算出することができる。
 本発明において、末端変性ポリアミド樹脂中における上記モル比((I)/(II))は、例えば、末端変性ポリアミド樹脂を製造する際に用いられる、後述の一般式(III)で表される末端変性用化合物および一般式(IV)で表される末端変性用化合物の配合比により、所望の範囲に調整することができる。
 本発明の末端変性ポリアミド樹脂は、アミノ末端基とカルボキシル末端基を合計50~150mol/t(50mol/t以上150mol/t以下)含有することが好ましい。これらの末端基を末端変性ポリアミド樹脂1t中に合計50mol以上含むことにより、溶融滞留時の分子量保持率の低下をより抑制し、熱安定性をより向上させることができ、発生ガスに起因するボイドをより低減することができるとともに、表面品位を向上できる。これらの末端基の合計含有量は60mol/t以上がより好ましく、80mol/t以上がさらに好ましい。一方、末端変性ポリアミド樹脂中にアミノ末端基とカルボキシル末端基を合計150mol/t以下含有することにより、溶融滞留時における末端変性ポリアミド樹脂中の上記一般式(I)で表される構造の熱分解や分子量増加をより抑制し、熱安定性をより向上させることができ、ボイドをより抑制することができるとともに表面品位を向上できる。これらの末端基の合計含有量は135mol/t以下がより好ましく、120mol/t以下がさらに好ましい。
 さらに、本発明の末端変性ポリアミド樹脂は、アミノ末端基の含有量[mol/t]とカルボキシル末端基の含有量[mol/t]の比(アミノ末端基の含有量/カルボキシル末端基の含有量)が0.5~2.5(0.5以上2.5以下)であることが好ましい。前述のとおり、アミノ末端基量とカルボキシル末端基量の差が大きくなるほど溶融滞留時の重合は進みにくく、熱分解による分子量低下のほうが大きくなるため、溶融滞留時の溶融粘度や分子量低下が大きくなる傾向にある。また、溶融滞留時に重合が進行しにくく末端基(アミノ末端基やカルボキシル末端基)が重合反応に消費されないため、上述したようにこれらの末端基が一般式(I)の熱分解触媒となり、一般式(I)で表される末端構造中のアルキレンオキシド構造の熱分解を促進するため、溶融粘度が大きくなる傾向となる。かかるモル比(アミノ末端基の含有量/カルボキシル末端基の含有量)を0.5以上とすることにより、溶融滞留時における末端変性ポリアミド樹脂中の一般式(I)で表される構造の熱分解や分子量増加をより抑制し、熱安定性および含浸性をより向上させ、ボイドをより低減することができるとともに表面品位が向上できる。モル比(アミノ末端基/カルボキシル末端基)は0.6以上がより好ましく、0.8以上がさらに好ましい。一方、モル比(アミノ末端基/カルボキシル末端基)を2.5以下とすることにより、溶融滞留時における末端変性ポリアミド樹脂中の一般式(I)で表される構造の熱分解をより抑制し、熱安定性をより向上させることができ、発生ガスに起因する基材中のボイドをより低減することができるとともに表面品位が向上できる。モル比(アミノ末端基の含有量/カルボキシル末端基の含有量)は2.4以下がより好ましく、2.3以下がさらに好ましい。
 ここで、末端変性ポリアミド樹脂中のアミノ末端基の含有量は、フェノール/エタノール混合溶液(比率:83.5/16.5重量比)に末端変性ポリアミド樹脂を溶解し、チモールブルーを指示薬として使用し、塩酸水溶液で滴定することにより測定できる。また、末端変性ポリアミド樹脂中のカルボキシル末端基の含有量は、ベンジルアルコールに末端変性ポリアミド樹脂を195℃で溶解し、フェノールフタレインを指示薬として使用し、水酸化カリウムのエタノール溶液で滴定することにより測定できる。
 本発明において、末端変性ポリアミド樹脂のアミノ末端基の含有量とカルボキシル末端基の含有量の比は、例えば、末端変性ポリアミド樹脂を製造する際に用いられる後述の一般式(III)で表される末端変性用化合物および一般式(IV)で表される末端変性用化合物の配合比や、反応時間を調整することにより所望の範囲に調整することができる。
 本発明の末端変性ポリアミド樹脂は、樹脂濃度0.01g/mLの98%硫酸溶液の25℃における相対粘度(η)が1.3~3.0(1.3以上3.0以下)の範囲であることが好ましい。ηを1.3以上とすることにより、靭性を向上させることができ、基材の機械特性を向上させることができる。1.4以上が好ましく、1.5以上がより好ましい。一方、ηを3.0以下とすることにより、含浸性をより向上させることができる。2.5以下が好ましく、2.1以下がより好ましい。2.05以下が更に好ましく、2.0以下が最も好ましい。
 本発明において、末端変性ポリアミド樹脂の相対粘度は、例えば、末端変性ポリアミド樹脂を製造する際に用いられる後述の一般式(III)で表される末端変性用化合物および一般式(IV)で表される末端変性用化合物の配合量や、反応時間を調整することにより所望の範囲に調整することができる。
 本発明の末端変性ポリアミド樹脂の、ゲルパーミエーションクロマトグラフィー(GPC)によって測定した重量平均分子量(Mw)は、15,000以上が好ましい。Mwを15,000以上とすることにより、機械特性をより向上させることができる。Mwは18,000以上がさらに好ましく、20,000以上がさらに好ましい。また、Mwは50,000以下が好ましい。Mwを50,000以下とすることで、溶融粘度をより低減し、含浸性をより向上させることができる。Mwは45,000以下がさらに好ましく、40,000以下がさらに好ましい。なお、本発明における重量平均分子量(Mw)は、溶媒としてヘキサフルオロイソプロパノール(0.005N-トリフルオロ酢酸ナトリウム添加)を用い、カラムとして“Shodex”(登録商標)HFIP-806M(2本)およびHFIP-LGを用いて、30℃でGPC測定して得られるものである。分子量基準物質としてポリメチルメタクリレートを使用する。
 本発明において、末端変性ポリアミド樹脂の重量平均分子量は、例えば、末端変性ポリアミド樹脂を製造する際に用いられる後述の一般式(III)で表される末端変性用化合物および一般式(IV)で表される末端変性用化合物の配合量や、反応時間を調整することにより所望の範囲に調整することができる。
 本発明の末端変性ポリアミド樹脂は、融点+60℃、せん断速度9,728sec-1の条件における溶融粘度が30Pa・s以下であることが好ましい。融点+60℃、せん断速度9,728sec-1の条件における溶融粘度を30Pa・s以下とすることにより、含浸性をより向上させることができる。かかる溶融粘度は20Pa・s以下がより好ましく、15Pa・s以下がさらに好ましく、10Pa・s以下がさらに好ましい。一方、取扱い性の観点から、溶融粘度は0.1Pa・s以上がより好ましく、0.5以上がさらに好ましく、1.0以上が最も好ましい。
 なお、この溶融粘度は、末端変性ポリアミド樹脂の融点+60℃の温度で、末端変性ポリアミド樹脂を溶融させるため5分間滞留させた後に、せん断速度9,728sec-1の条件下で、キャピラリーフローメーターによって測定することができる。本発明においては、溶融粘度を評価するための指標として、溶融良流動化の効果が現れやすく、かつ、短時間の滞留では熱分解が進行しにくい温度条件として融点+60℃を選択し、樹脂含浸時を想定した高せん断条件であるせん断速度として9,728sec-1を選択した。
 本発明において、末端変性ポリアミド樹脂の溶融粘度は、例えば、末端変性ポリアミド樹脂を製造する際に用いられる後述の一般式(III)で表される末端変性用化合物および一般式(IV)で表される末端変性用化合物の配合量や、反応時間を調整することにより所望の範囲に調整することができる。
 本発明の末端変性ポリアミド樹脂は、融点+60℃の条件下60分間滞留前後における、一般式(I)で表される末端構造の含有量保持率((滞留後含有量/滞留前含有量)×100)が80%以上であることが好ましい。一般式(I)で表される末端構造の含有量保持率を80%以上とすることにより、溶融滞留時における末端変性ポリアミド樹脂中の一般式(I)で表される末端構造の熱分解により発生するガス量をより低減して溶融滞留時の熱安定性をより向上させることができ、発生ガスに起因するボイドをより低減することができるとともに表面品位が向上できる。一般式(I)で表される末端構造の含有量保持率は85%以上がより好ましく、90%以上がさらに好ましい。また、機械特性の観点から、一般式(I)で表される末端構造の含有量保持率は100%以下が好ましい。
 なお、この含有量保持率は、末端変性ポリアミド樹脂について、上述したH-NMR測定によって一般式(I)で表される末端構造の含有量を求め、次いで、キャピラリーフローメーター中において、末端変性ポリアミド樹脂の融点+60℃の温度で60分間滞留させた後に、同様に一般式(I)で表される末端構造の含有量を求め、溶融滞留前の一般式(I)で表される末端構造の含有量により除して100を乗ずることにより、算出することができる。本発明においては、溶融粘度を評価するための指標として、溶融良流動化の効果が現れやすく、かつ、短時間の滞留では熱分解が進行しにくい温度条件として融点+60℃を選択した。
 本発明において、末端変性ポリアミド樹脂における一般式(I)で表される末端構造の含有量保持率は、例えば、末端変性ポリアミド樹脂を製造する際に用いられる後述の一般式(III)で表される末端変性用化合物および一般式(IV)で表される末端変性用化合物の配合量や、反応時間を調整することにより所望の範囲に調整することができる。
 本発明の末端変性ポリアミド樹脂は、融点+60℃の条件下60分間滞留前後における重量平均分子量保持率((滞留後重量平均分子量/滞留前重量平均分子量)×100)が80~120%(80%以上120%以下)であることが好ましい。かかる重量平均分子量保持率を80%以上とすることにより、機械特性をより向上させることができる。重量平均分子量保持率は85%以上がより好ましく、90%以上がさらに好ましい。一方、重量分子量保持率を120%以下とすることにより、溶融粘度をより低減し、含浸性をより向上させることができる。重量平均分子量保持率は115%以下がより好ましく、110%以下がさらに好ましい。
 なお、この重量分子量保持率は、末端変性ポリアミド樹脂について、上述したゲルパーミエーションクロマトグラフィー(GPC)によって重量平均分子量を測定し、次いで、キャピラリーフローメーター中において、末端変性ポリアミド樹脂の融点+60℃の温度で60分間滞留させた後に、同様に重量平均分子量を測定し、溶融滞留前の重量平均分子量により除して100を乗ずることにより、算出することができる。本発明においては、溶融粘度を評価するための指標として、溶融良流動化の効果が現れやすく、かつ、短時間の滞留では熱分解が進行しにくい温度条件として融点+60℃を選択した。
 本発明において、末端変性ポリアミド樹脂の重量平均分子量保持率は、例えば、末端変性ポリアミド樹脂を製造する際に用いられる後述の一般式(III)で表される末端変性用化合物および一般式(IV)で表される末端変性用化合物の配合量や、反応時間を調整することにより所望の範囲に調整することができる。
 本発明の末端変性ポリアミド樹脂は、融点+60℃の条件下60分間滞留前後における溶融粘度保持率((滞留後溶融粘度/滞留前溶融粘度)×100)が80~120%(80%以上120%以下)であることが好ましい。かかる溶融粘度保持率を80%以上とすることにより、含浸性および機械特性をより向上させることができる。溶融粘度保持率は85%以上がより好ましく、90%以上がさらに好ましく、95%以上がさらに好ましい。一方、溶融粘度保持率を120%以下とすることにより、含浸性をより向上させることができる。溶融粘度保持率は115%以下がより好ましく、110%以下がさらに好ましい。
 なお、この溶融粘度保持率は、末端変性ポリアミド樹脂の融点+60℃の温度で、末端変性ポリアミド樹脂を溶融させるため5分間滞留させた後に、せん断速度9,728sec-1の条件下で、キャピラリーフローメーターによって測定した溶融粘度(滞留前溶融粘度)と、末端変性ポリアミド樹脂の融点+60℃の温度で、末端変性ポリアミド樹脂を60分間滞留させた後に、せん断速度9,728sec-1の条件下で、キャピラリーフローメーターによって測定した溶融粘度(滞留後溶融粘度)から、(滞留後溶融粘度/滞留前溶融粘度)×100により算出することができる。本発明においては、溶融粘度保持率を評価するための指標として、溶融良流動化の効果が現れやすく、かつ、短時間の滞留では熱分解が進行しにくい温度条件として融点+60℃を選択し、樹脂含浸を想定した高せん断条件であるせん断速度として9,728sec-1を選択した。
 本発明において、末端変性ポリアミド樹脂の溶融粘度保持率は、例えば、末端変性ポリアミド樹脂を製造する際に用いられる後述の一般式(III)で表される末端変性用化合物および一般式(IV)で表される末端変性用化合物の配合量や、反応時間を調整することにより所望の範囲に調整することができる。
 本発明の末端変性ポリアミド樹脂は、窒素雰囲気下、融点+60℃の条件下40分間滞留前後における重量減少率が4%以下であることが好ましい。かかる重量減少率を4%以下とすることにより、加工時の熱分解によって発生したガス起因による繊維強化末端変性ポリアミド樹脂中のボイドなどを抑制することができ、機械特性をより向上させることができるとともに、樹脂の劣化などによる表面品位の悪化を抑制することができる。重量減少率は3%以下がより好ましく、2%以下がさらに好ましい。
 なお、この重量減少率は、熱重量分析装置(TGA)を用いて測定することができる。本発明においては、重量減少率を評価するための指標として、溶融良流動化の効果が現れやすく、かつ、短時間の滞留では熱分解が進行しにくい温度条件として融点+60℃を選択した。
 本発明において、末端変性ポリアミド樹脂の重量減少率は、例えば、末端変性ポリアミド樹脂を製造する際に用いられる後述の一般式(III)で表される末端変性用化合物および一般式(IV)で表される末端変性用化合物の配合量や、反応時間を調整することにより所望の範囲に調整することができる。
 次に、本発明の実施形態において用いられる末端変性ポリアミド樹脂の製造方法について説明する。
 本発明の実施形態に用いられるポリアミド樹脂の製造方法としては、
(1)ポリアミド樹脂、末端変性用化合物、および必要に応じてその他の成分を、ポリアミド樹脂の融点以上において溶融混練し、反応せしめる方法や、これらを溶液中において混合し、反応せしめた後に溶媒を除く方法、および(2)ポリアミド樹脂の主たる構造単位を構成する原料(ポリアミド樹脂の主たる原料)、末端変性用化合物、および必要に応じてその他の成分を添加して反応させる方法(反応時添加方法)などが挙げられる。
 本発明の実施形態において、末端変性用化合物としては、例えば、飽和脂肪族化合物、不飽和脂肪族化合物、芳香族化合物などが挙げられる。これらを2種以上用いてもよい。流動性をより向上させる観点から、この末端変性用化合物は、飽和脂肪族化合物または芳香族化合物が好ましく、飽和脂肪族化合物がより好ましい。
 飽和脂肪族化合物としては、例えば、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン、シクロウンデカン、シクロドデカンなどの単環シクロアルカン化合物や、デカヒドロナフタレンなどの二環式シクロアルカン化合物などの環式飽和脂肪族化合物や、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ヘプタデカンなどの炭素数が1~15の炭化水素化合物などの鎖式飽和脂肪族化合物などが挙げられる。環式飽和脂肪族化合物は分岐構造を有してもよく、鎖式飽和脂肪族化合物は直鎖康応であっても分岐構造であってもよい。
 本発明の実施形態における末端変性用化合物としては、下記一般式(V)で表される末端構造を一つ以上有する飽和脂肪族化合物が好ましい。
 -(a-A)-W                        (V)
 上記一般式(V)において、Aは炭素原子数1~12のアルキレン基または炭素数6~24のアリーレン基を表す。aは炭素原子と水素原子以外の原子または単結合を表す。rは(a-A)で表される構造単位の繰り返し数を表し、1以上である。Wは、水酸基、アルデヒド基、カルボキシル基、スルホ基、アミノ基、グリシジル基、イソシアネート基、カルボジイミド基、オキサゾリン基、オキサジン基、エステル基、アミド基、シラノール基またはシリルエーテル基を表す。
 本発明の実施形態において、含浸性をより向上させる観点から、前記一般式(V)におけるAが、鎖式飽和脂肪族化合物から2つの水素原子を除いた残基であり、rが1~100であり、Wが水酸基であることが好ましい。rが1以上であれば、含浸性をより向上させることができる。rは3以上がより好ましく、5以上がさらに好ましい。一方、rが100未満であれば、機械特性をより向上させることができる。rは70以下がより好ましい。また、含浸性および機械特性をより向上させる観点から、aは酸素原子または単結合が好ましく、酸素原子がより好ましい。
 本発明の実施形態における末端変性用化合物は、上記一般式(V)で表される末端構造を1つ有してもよいし、2つ以上有してもよいが、含浸性および機械特性をより向上させる観点から、前記一般式(V)で表される構造を1~4つ有することが好ましく、1~3つ有することがより好ましい。
 以下、本発明の実施形態の末端変性ポリアミド樹脂が前記一般式(I)で表される末端構造および前記(II)で表される末端構造を有する場合を例に説明する。このような末端変性ポリアミド樹脂の製造方法としては、例えば、ポリアミド樹脂の原料と前記一般式(III)で表される末端変性用化合物および下記一般式(IV)で表される末端変性用化合物を重合時に反応させる方法や、ポリアミド樹脂と末端変性用化合物とを溶融混練する方法などが挙げられる。重合時に反応させる方法としては、例えば、ポリアミド樹脂の原料と末端変性用化合物をあらかじめ混合した後、加熱して縮合を進行させる方法や、主成分となる原料の重合途中に末端変性用化合物を添加して結合させる方法などが挙げられる。
 前記一般式(I)で表される末端構造を有する末端変性ポリアミド樹脂は、下記一般式(III)で表される末端変性用化合物を用いて重合することができる。例えば、アミノ酸、ラクタム、ならびに/もしくは、ジアミンおよびジカルボン酸を重合する際に(言い換えると、ジアミンおよびジカルボン酸からなる組合せ、アミノ酸、ならびにラクタムからなる群より選ばれる少なくとも1種を主たる原料として用いて重合する際に)、下記一般式(III)で表される末端変性用化合物をアミノ酸、ラクタム、ジアミンおよびジカルボン酸(主たる原料)の合計に対して1~20質量%(1質量%以上20質量%以下)含有させて、ポリアミド樹脂の末端に末端変性用化合物を結合させることにより、前記一般式(I)で表される末端構造を1~20質量%含有する末端変性ポリアミド樹脂を得ることができる。
 H-X-(R-O)-R                  (III)
 上記一般式(III)中、nは2~100の範囲を表す。前記一般式(I)におけるmと同様に、5以上が好ましく、8以上がより好ましく、16以上がさらに好ましい。一方、nは70以下が好ましく、50以下がより好ましい。Rは炭素数2~10の2価の炭化水素基、Rは炭素数1~30の1価の炭化水素基を表す。それぞれ、一般式(I)におけるRおよびRとして例示したものが挙げられる。X-は-NH-、-N(CH)-または-O(C=O)-を示す。ポリアミドの末端との反応性に優れる-NH-がより好ましい。
 前記一般式(II)で表される末端構造を有する末端変性ポリアミド樹脂は、下記一般式(IV)で表される末端変性用化合物を用いて重合することができる。例えば、アミノ酸、ラクタム、ならびに/もしくは、ジアミンおよびジカルボン酸を重合する際に(言い換えると、ジアミンおよびジカルボン酸からなる組合せ、アミノ酸、ならびにラクタムからなる群より選ばれる少なくとも1種を主たる原料として用いて重合する際に)、下記一般式(IV)で表される末端変性用化合物をアミノ酸、ラクタム、ジアミンおよびジカルボン酸(主たる原料)の合計に対して0.1~5質量%(0.1質量%以上5質量%以下)含有させて、ポリアミド樹脂の末端に末端変性用化合物を結合させることにより、前記一般式(II)で表される末端構造を0.1~5質量%含有する末端変性ポリアミド樹脂を得ることができる。
 H-Y-R                         (IV)
 上記一般式(IV)中、Rは炭素数1~30の1価の炭化水素基を表す。前記一般式(II)と同様に、末端変性ポリアミド樹脂の熱安定性および着色防止の観点から、Rは1価の飽和炭化水素基がさらに好ましい。前記一般式(III)におけるXが-NH-または-N(CH)-の場合、上記一般式(IV)における-Y-は-O(C=O)-を表し、前記一般式(III)におけるXが-O(C=O)-の場合、上記一般式(IV)におけるYは-NH-または-N(CH)-を表す。
 一般式(III)で表される末端変性用化合物の数平均分子量は、500~10,000が好ましい。数平均分子量を500以上とすることにより、溶融粘度をより低減し、含浸性をより向上させることができる。より好ましくは800以上、さらに好ましくは900以上である。一方、数平均分子量を10,000以下とすることにより、ポリアミド樹脂の主たる構造単位との親和性をより向上させることができ、基材の機械特性をより向上させることができる。より好ましくは5,000以下、さらに好ましくは2,500以下、さらに好ましくは1,500以下である。
 一般式(III)で表される末端変性用化合物の具体的な例としては、メトキシポリ(エチレングリコール)アミン、メトキシポリ(トリメチレングリコール)アミン、メトキシポリ(プロピレングリコール)アミン、メトキシポリ(テトラメチレングリコール)アミン、メトキシポリ(エチレングリコール)ポリ(プロピレングリコール)アミン、メトキシポリ(エチレングリコール)カルボン酸、メトキシポリ(トリメチレングリコール)カルボン酸、メトキシポリ(プロピレングリコール)カルボン酸、メトキシポリ(テトラメチレングリコール)カルボン酸、メトキシポリ(エチレングリコール)ポリ(プロピレングリコール)カルボン酸などが挙げられる。2種類のポリアルキレングリコールが含まれる場合、ブロック重合構造をとっていてもよいし、ランダム共重合構造をとっていてもよい。上記した末端変性用化合物を2種以上用いてもよい。
 一般式(IV)で表される末端変性用化合物の具体的な例としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、ウンデカン酸、ラウリル酸、トリデカン酸、ミリスチン酸、ミリストレイン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、アラキン酸、セロチン酸などの脂肪族モノカルボン酸、シクロヘキサンカルボン酸、メチルシクロヘキサンカルボン酸などの脂環式モノカルボン酸、安息香酸、トルイル酸、エチル安息香酸、フェニル酢酸などの芳香族モノカルボン酸、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、2-エチルヘキシルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、オクタデシルアミン、ノナデシルアミン、イコシルアミンなどの脂肪族モノアミン、シクロヘキシルアミン、メチルシクロヘキシルアミンなどの脂環式モノアミン、ベンジルアミン、およびβ-フェニルエチルアミンなどの芳香族モノアミンなどが挙げられる。上記した末端変性用化合物を、2種以上用いることもできる。 次に、本発明の末端変性ポリアミド樹脂が、前記の一般式(I)で表される末端構造および前記の一般式(II)で表される末端構造を有する、末端変性ポリアミド樹脂を得るための方法の例を説明する。先に(1)および(2)の方法を先述したが、以下により詳細に説明する。
(1)ポリアミド樹脂と末端変性用化合物とを溶融混練することにより末端変性ポリアミド樹脂を製造する場合には、溶融混練温度をポリアミド樹脂の融点(Tm)よりも10℃以上40℃以下高い温度で反応させることが好ましい。例えば、押出機を用いて溶融混練する場合、押出機のシリンダー温度を前記範囲とすることが好ましい。溶融混練温度をこの範囲にすることで、末端変性用化合物の揮発、ポリアミド樹脂の分解を抑制しつつ、ポリアミド樹脂の末端と末端変性用化合物とを効率的に結合させることができる。ポリアミド樹脂としては、前述のポリアミド樹脂が例示される。
(2)ポリアミド樹脂の原料と末端変性用化合物とを重合時に反応させる方法により末端変性ポリアミド樹脂を製造する場合には、ポリアミド樹脂の融点以上で反応させる溶融重合法、ポリアミド樹脂の融点未満で反応させる固相重合法のいずれを用いてもよい。ポリアミド樹脂を与える原料としては、前述のアミノ酸、ラクタムおよび「ジアミンとジカルボン酸との混合物」が例示される。
 具体的には、末端変性ポリアミド樹脂の原料を反応容器に仕込み、窒素置換して、加熱をすることにより反応させることが好ましい。この際の反応時間が短すぎると、分子量が上がらないだけでなく、オリゴマー成分が増加することから、機械的物性が低下することがある。そのため、反応時間に占める窒素フローの時間は15分以上であることが好ましい。一方、反応時間が長すぎると、熱分解が進行し着色などが生じるため、反応時間に占める窒素フローの時間は8時間以下であることが好ましい。
 ポリアミド樹脂の原料と末端変性用化合物とを重合時に反応させる方法により末端変性ポリアミド樹脂を製造する際、必要に応じて、重合促進剤を添加することができる。重合促進剤としては、例えば、リン酸、亜リン酸、次亜リン酸、ピロリン酸、ポリリン酸およびこれらのアルカリ金属塩、アルカリ土類金属塩などの無機系リン化合物などが好ましく、特に亜リン酸ナトリウム、次亜リン酸ナトリウムが好適に用いられる。重合促進剤は、ポリアミド樹脂の原料(末端変性用化合物を除く)100質量部に対して、0.001~1質量部の範囲で使用することが好ましい。重合促進剤の添加量を0.001~1質量部とすることにより、機械特性と含浸性のバランスにより優れる末端変性ポリアミド樹脂を得ることができる。
 本発明の実施形態の繊維強化ポリアミド樹脂基材は、連続した強化繊維に、または不連続繊維の強化繊維が分散した強化繊維基材に前述の末端変性ポリアミド樹脂を含浸させてなるが、必要に応じて、さらに、充填材、他種ポリマー、各種添加剤などを含有してもよい。
 充填材としては、一般に樹脂用フィラーとして用いられる任意のものを用いることができ、繊維強化ポリアミド樹脂基材や成形品の強度、剛性、耐熱性、寸法安定性をより向上させることができる。充填材としては、例えば、ガラス繊維、炭素繊維、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状無機充填材、ワラステナイト、ゼオライト、セリサイト、カオリン、マイカ、タルク、クレー、パイロフィライト、ベントナイト、モンモリロナイト、アスベスト、アルミノシリケート、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄、炭酸カルシウム、炭酸マグネシウム、ドロマイト、硫酸カルシウム、硫酸バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、ガラスビーズ、セラミックビーズ、窒化ホウ素、炭化珪素、シリカなどの非繊維状無機充填材などが挙げられる。これらを2種以上含有してもよい。これら充填材は中空であってもよい。また、イソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ化合物などのカップリング剤で処理されていてもよい。また、モンモリロナイトとして、有機アンモニウム塩で層間イオンをカチオン交換した有機化モンモリロナイトを用いてもよい。なお、第一の態様における繊維強化ポリアミド樹脂基材おいては、繊維状充填材として不連続繊維からなるものであれば、繊維強化ポリアミド樹脂基材中の強化繊維の補強効果を損なうことなく機能を付与できる。一方、第二の態様における繊維強化ポリアミド樹脂基材においては、繊維状充填材は、不連続繊維基材の補強効果を損なわない範囲で用いることができる。
 他種ポリマーとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド系エラストマー、ポリエステル系エラストマーなどのエラストマーや、ポリエステル、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ABS樹脂、SAN樹脂、ポリスチレンなどを挙げることができる。これらを2種以上含有してもよい。繊維強化ポリアミド樹脂基材の耐衝撃性を向上させるためには、オレフィン系化合物および/または共役ジエン系化合物の(共)重合体などの変性ポリオレフィン、ポリアミド系エラストマー、ポリエステル系エラストマーなどの耐衝撃性改良剤が好ましく用いられる。
 オレフィン系化合物および/または共役ジエン系化合物の(共)重合体としては、エチレン系共重合体、共役ジエン系重合体、共役ジエン-芳香族ビニル炭化水素系共重合体などが挙げられる。
 エチレン系共重合体としては、例えば、エチレンと、炭素数3以上のα-オレフィン、非共役ジエン、酢酸ビニル、ビニルアルコール、α,β-不飽和カルボン酸およびその誘導体などとの共重合体が挙げられる。炭素数3以上のα-オレフィンとしては、例えば、プロピレン、ブテン-1などが挙げられる。非共役系ジエンとしては、例えば、5-メチリデン-2-ノルボルネン、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン、1,4-ヘキサジエンなどが挙げられる。α,β-不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、エタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、ブテンジカルボン酸などが挙げられる。α,β-不飽和カルボン酸の誘導体としては、例えば、前記α,β-不飽和カルボン酸のアルキルエステル、アリールエステル、グリシジルエステル、酸無水物、イミドなどが挙げられる。
 共役ジエン系重合体とは、少なくとも1種の共役ジエンの重合体を指す。共役ジエンとしては、例えば、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどが挙げられる。また、これらの重合体の不飽和結合の一部または全部が水添により還元されていてもよい。
 共役ジエン-芳香族ビニル炭化水素系共重合体とは、共役ジエンと芳香族ビニル炭化水素との共重合体を指し、ブロック共重合体でもランダム共重合体でもよい。共役ジエンとしては、例えば、1,3-ブタジエン、イソプレンなどが挙げられる。芳香族ビニル炭化水素としては、例えば、スチレンなどが挙げられる。また、共役ジエン-芳香族ビニル炭化水素系共重合体の芳香環以外の二重結合以外の不飽和結合の一部または全部が水添により還元されていてもよい。
 耐衝撃性改良剤の具体例としては、エチレン/メタクリル酸共重合体およびこれら共重合体中のカルボン酸部分の一部または全てをナトリウム、リチウム、カリウム、亜鉛、カルシウムとの塩としたもの、エチレン/プロピレン-g-無水マレイン酸共重合体、エチレン/ブテン-1-g-無水マレイン酸共重合体などが挙げられる。
 各種添加剤としては、例えば、酸化防止剤や耐熱安定剤(ヒンダードフェノール系、ヒドロキノン系、ホスファイト系およびこれらの置換体、ハロゲン化銅、ヨウ素化合物等)、耐候剤(レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系等)、離型剤および滑剤(脂肪族アルコール、脂肪族アミド、脂肪族ビスアミド、ビス尿素およびポリエチレンワックス等)、顔料(硫化カドミウム、フタロシアニン、カーボンブラック等)、染料(ニグロシン、アニリンブラック等)、可塑剤(p-オキシ安息香酸オクチル、N-ブチルベンゼンスルホンアミド等)、帯電防止剤(アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートなどの非イオン系帯電防止剤、ベタイン系両性帯電防止剤等)、難燃剤(メラミンシアヌレート、水酸化マグネシウム、水酸化アルミニウム等の水酸化物、ポリリン酸アンモニウム、臭素化ポリスチレン、臭素化ポリフェニレンオキシド、臭素化ポリカーボネート、臭素化エポキシ樹脂あるいはこれらの臭素系難燃剤と三酸化アンチモンとの組合せ等)などが挙げられる。これらを2種以上配合してもよい。
 本発明の実施形態の繊維強化ポリアミド樹脂基材は、連続した強化繊維に末端変性ポリアミド樹脂を含浸させることにより得ることができる(第一の態様)。または不連続繊維の強化繊維が分散した強化繊維基材に末端変性ポリアミド樹脂を含浸させることにより得ることができる(第二の態様)。
 第一の態様における、連続した強化繊維に末端変性ポリアミド樹脂を含浸させる方法としては、例えば、フィルム状の末端変性ポリアミド樹脂を溶融し、加圧することで強化繊維束に末端変性ポリアミド樹脂を含浸させるフィルム法、繊維状の末端変性ポリアミド樹脂と強化繊維束とを混紡した後、繊維状の末端変性ポリアミド樹脂を溶融し、加圧することで強化繊維束に末端変性ポリアミド樹脂を含浸させるコミングル法、粉末状の末端変性ポリアミド樹脂を強化繊維束における繊維の隙間に分散させた後、粉末状の末端変性ポリアミド樹脂を溶融し、加圧することで強化繊維束に末端変性ポリアミド樹脂を含浸させる粉末法、溶融した末端変性ポリアミド樹脂中に強化繊維束を浸し、加圧することで強化繊維束に末端変性ポリアミド樹脂を含浸させる引き抜き法が挙げられる。様々な厚み、繊維体積含有率など多品種の繊維強化ポリアミド樹脂基材を作製できることから、引き抜き法が好ましい。
 本発明の第一の態様における繊維強化ポリアミド樹脂基材の厚さは、0.1~10mmが好ましい。厚さが0.1mm以上であれば、繊維強化ポリアミド樹脂基材を用いて得られる成形品の強度を向上させることができる。0.2mm以上がより好ましい。一方、厚さが1.5mm以下であれば、強化繊維に末端変性ポリアミド樹脂をより含浸させやすい。1mm以下がより好ましく、0.7mm以下がさらに好ましく、0.6mm以下がさらに好ましい。
 また、本発明の第一の態様における、繊維強化ポリアミド樹脂基材の体積含有率は20~70体積%が好ましい。言い換えると、繊維強化ポリアミド樹脂基材全体(100体積%)に対して、強化繊維を20~70体積%(20体積%以上70体積%以下)含有することが好ましい。強化繊維を20体積%以上含有することにより、繊維強化ポリアミド樹脂基材を用いて得られる成形品の強度をより向上させることができる。30体積%以上がより好ましく、40体積%以上がさらに好ましい。一方、強化繊維を70体積%以下含有することにより、強化繊維に末端変性ポリアミド樹脂をより含浸させやすい。60体積%以下がより好ましく、55体積%以下がさらに好ましい。体積含有率は強化繊維と末端変性ポリアミド樹脂の投入量を調整することにより、所望の範囲に調整することが可能である。
 繊維強化ポリアミド樹脂基材における強化繊維の体積含有率(V)は、繊維強化ポリアミド樹脂基材の質量Wを測定したのち、該繊維強化ポリアミド樹脂基材を空気中500℃で30分間加熱してポリアミド樹脂成分を焼き飛ばし、残った強化繊維の質量Wを測定し、次式により算出することができる。
 V(体積%)=(W/ρ)/{W/ρ+(W-W)/ρ}×100
 ρ:強化繊維の密度(g/cm
 ρ:末端変性ポリアミド樹脂の密度(g/cm
 また、本発明の実施形態の繊維強化ポリアミド樹脂基材は、その用法や目的に応じて、所望の含浸性を選択することができる。例えば、より含浸性を高めたプリプレグや、半含浸のセミプレグ、含浸性の低いファブリックなどが挙げられる。一般的に、含浸性の高い成形材料ほど、短時間の成形で力学特性に優れる成形品が得られるため好ましい。
本発明の第二の態様における、不連続繊維が分散した強化繊維基材に末端変性ポリアミド樹脂を含浸させる方法としては、例えば、末端変性ポリアミド樹脂を押出機により供給して強化繊維基材に含浸させる方法、粉末の末端変性ポリアミド樹脂を強化繊維基材の繊維層に分散し溶融させる方法、末端変性ポリアミド樹脂をフィルム化して強化繊維基材とラミネートする方法、末端変性ポリアミド樹脂を溶剤に溶かし溶液の状態で強化繊維基材に含浸させた後に溶剤を揮発させる方法、末端変性ポリアミド樹脂を繊維化して不連続繊維との混合糸にする方法、末端変性ポリアミド樹脂の前駆体を強化繊維基材に含浸させた後に重合させて末端変性ポリアミド樹脂にする方法、メルトブロー不織布を用いてラミネートする方法などが挙げられる。いずれの方法を用いてもよいが、末端変性ポリアミド樹脂を押出機により供給して強化繊維基材に含浸させる方法は、末端変性ポリアミド樹脂を加工する必要がないという利点があり、粉末の末端変性ポリアミド樹脂を強化繊維基材の繊維層に分散し溶融させる方法は、含浸がしやすいという利点があり、末端変性ポリアミド樹脂をフィルム化して強化繊維基材とラミネートする方法は、比較的品質の良いものが得られるという利点がある。
 本発明の第二の態様における繊維強化ポリアミド樹脂基材の厚さは、0.1~10mmが好ましい。厚さが0.1mm以上であれば、繊維強化ポリアミド樹脂基材を用いて得られる成形品の強度を向上させることができる。1mm以上がより好ましい。一方、厚さが10mm以下であれば、強化繊維に末端変性ポリアミド樹脂をより含浸させやすい。7mm以下がより好ましく、5mm以下がさらに好ましい。
 また、本発明の第二の態様における繊維強化ポリアミド樹脂基材の体積含有率は20~70体積%が好ましい。言い換えると、繊維強化ポリアミド樹脂基材全体(100体積%)中、不連続繊維を20体積%以上70体積%以下含有することが好ましい。不連続繊維を20体積%以上含有することにより、繊維強化ポリアミド樹脂基材を用いて得られる成形品の強度をより向上させることができる。30体積%以上がより好ましい。一方、不連続繊維を70体積%以下含有することにより、不連続繊維に末端変性ポリアミド樹脂をより含浸させやすい。60体積%以下がより好ましく、50体積%以下がさらに好ましい。前記体積含有率は、前記した式(VI)により算出することができる。
 また、本発明の第二の態様における繊維強化ポリアミド樹脂基材は、その用法や目的に応じて、所望の含浸性を選択することができる。一般的に、含浸性の高い成形材料ほど、短時間の成形で力学特性に優れる成形品が得られるため好ましい。
 本発明の第二の態様における繊維強化ポリアミド樹脂基材を製造するに際し、前記基材を所望の厚みや体積含有率に調整する方法としてはプレス機を用いて加熱加圧する方法が挙げられる。プレス機としては、末端変性ポリアミド樹脂の含浸に必要な温度、圧力を実現できるものであれば特に制限はなく、上下する平面状のプラテンを有する通常のプレス機や、1対のエンドレススチールベルトが走行する機構を有するいわゆるダブルベルトプレス機を用いることができる。
 本発明の第一および第二の形態における繊維強化ポリアミド樹脂基材を、任意の構成で1枚以上積層後、必要に応じて熱および/または圧力を付与しながら成形することにより成形品が得られる。
 熱および/または圧力を付与する方法としては、例えば、任意の構成で積層した繊維強化末端変性ポリアミド樹脂を型内もしくはプレス板上に設置した後、型もしくはプレス板を閉じて加圧するプレス成形法、任意の構成で積層した成形材料をオートクレーブ内に投入して加圧・加熱するオートクレーブ成形法、任意の構成で積層した成形材料をフィルムなどで包み込み、内部を減圧にして大気圧で加圧しながらオーブン中で加熱するバッギング成形法、任意の構成で積層した繊維強化末端変性ポリアミド樹脂に張力をかけながらテープを巻き付け、オーブン内で加熱するラッピングテープ法、任意の構成で積層した繊維強化末端変性ポリアミド樹脂を型内に設置し、同じく型内に設置した中子内に気体や液体などを注入して加圧する内圧成形法等が挙げられる。とりわけ、得られる成形品内のボイドが少なく、外観品位にも優れる成形品が得られることから、金型を用いてプレスする成形方法が好ましく用いられる。
 プレス成形法としては、繊維強化ポリアミド樹脂基材を型内に予め配置しておき、型締めとともに加圧、加熱を行い、次いで型締めを行ったまま、金型の冷却により繊維強化ポリアミド樹脂基材の冷却を行い成形品を得るホットプレス法や、予め繊維強化ポリアミド樹脂基材を末端変性ポリアミド樹脂の溶融温度以上に、遠赤外線ヒーター、加熱板、高温オーブン、誘電加熱などの加熱装置で加熱し、末端変性ポリアミド樹脂を溶融・軟化させた状態で、前記成形型の下面となる型の上に配置し、次いで型を閉じて型締めを行い、その後加圧冷却する方法であるスタンピング成形を採用することができる。プレス成形方法については特に制限はないが、成形サイクルを早めて生産性を高める観点からは、スタンピング成形であることが望ましい。 本発明の第一および第二の形態における繊維強化ポリアミド樹脂基材および成形品は、インサート成形、アウトサート成形などの一体化成形や、加熱による矯正処置、熱溶着、振動溶着、超音波溶着などの生産性に優れた接着工法や接着剤を用いた一体化を行うことができ、複合体を得ることができる。
 本発明の第一および第二の形態における繊維強化ポリアミド樹脂基材と、熱可塑性樹脂を含む成形品とが少なくとも一部で接合された複合成形品が好ましい。
 本発明の第一および第ニの形態における繊維強化ポリアミド樹脂基材と一体化される熱可塑性樹脂を含む成形品(成形用基材および成形品)には特に制限はなく、例えば、樹脂材料および成形品、金属材料および成形品、無機材料および成形品などが挙げられる。なかでも、樹脂材料および成形品が、本発明における繊維強化末端変性ポリアミド樹脂との接着強度の点で好ましい。
 本発明の第一および第二の形態における繊維強化ポリアミド樹脂基材と一体化される成形材料および成形品のマトリックス樹脂は、繊維強化ポリアミド樹脂基材およびその成形品と同種の樹脂であってもよいし、異種の樹脂であってもよい。接着強度をより高めるためには、同種の樹脂であることが好ましい。異種の樹脂である場合は、界面に樹脂層を設けるとより好適である。
 以下に実施例を示し、本発明を更に具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。各実施例および比較例における特性評価は下記の方法にしたがって行った。
 [体積含有率(V)]」
 各実施例および比較例により得られた繊維強化ポリアミド樹脂基材の質量W0を測定したのち、該繊維強化ポリアミド樹脂基材を空気中500℃で30分間加熱してポリアミド樹脂成分を焼き飛ばし、残った強化繊維の質量W1を測定し、下記式(VI)により繊維強化ポリアミド樹脂基材の体積含有率(V)を算出した。
 V(体積%)=(W/ρ)/{W/ρ+(W-W)/ρ}×100
 ρ:強化繊維の密度(g/cm
 ρ:末端変性ポリアミド樹脂の密度(g/cm
 [相対粘度(η)]
 各実施例および比較例により得られた末端変性ポリアミド樹脂またはポリアミド樹脂の、樹脂濃度0.01g/mLの98%硫酸溶液について、25℃でオストワルド式粘度計を用いて相対粘度を測定した。
 [分子量]
 各実施例および比較例により得られた末端変性ポリアミド樹脂またはポリアミド樹脂2.5mgを、ヘキサフルオロイソプロパノール(0.005N-トリフルオロ酢酸ナトリウム添加)4mlに溶解し、得られた溶液を0.45μmのフィルターでろ過した。得られた溶液を用いて、GPC測定により数平均分子量(Mn)および重量平均分子量(Mw)(溶融滞留前重量平均分子量)を測定した。測定条件を以下に示す。
 ポンプ:e-Alliance GPC system(Waters製)
 検出器:示差屈折率計 Waters 2414(Waters製)
 カラム:Shodex HFIP-806M(2本)+HFIP-LG
 溶媒:ヘキサフルオロイソプロパノール(0.005N-トリフルオロ酢酸ナトリウム添加)
 流速:1mL/min
 試料注入量:0.1mL
 温度:30℃
 分子量基準物質:ポリメチルメタクリレート。
 [アミノ末端基量[NH]]
 各実施例および比較例により得られた末端変性ポリアミド樹脂またはポリアミド樹脂0.5gを精秤し、フェノール/エタノール混合溶液(比率:83.5/16.5質量比)25mLを加えて室温で溶解した後、チモールブルーを指示薬として、0.02規定の塩酸で滴定してアミノ末端基量(mol/t)を求めた。
 [カルボキシル末端基量[COOH]]
 各実施例および比較例により得られた末端変性ポリアミド樹脂またはポリアミド樹脂0.5gを精秤し、ベンジルアルコール20mLを加えて195℃の温度で溶解した後、フェノールフタレインを指示薬として、0.02規定の水酸化カリウムのエタノール溶液を用いて、195℃の状態で滴定してカルボキシル末端基量(mol/t)を求めた。
 [末端構造の同定、ならびに、一般式(I)の末端構造の含有量および一般式(II)の末端構造の含有量の定量]
 実施例および比較例により得られた末端変性ポリアミド樹脂またはポリアミド樹脂について、日本電子(株)製FT-NMR:JNM-AL400を用いてH-NMR測定を実施した。まず、測定溶媒として重水素化硫酸を用いて、試料濃度50mg/mLの溶液を調製した。積算回数256回にて、ポリアミド樹脂のH-NMR測定を実施した。一般式(I)で表される末端構造におけるRおよびR由来部分のピーク、一般式(II)で表される末端構造におけるR部分由来のピークおよびポリアミド樹脂骨格の繰り返し構造単位由来のピークを同定した。各ピークの積分強度を算出し、算出した積分強度と、それぞれの構造単位中の水素原子数とから、末端変性ポリアミド樹脂における一般式(I)で表される末端構造の含有量[I](mol/t、質量%)(滞留前含有量)および一般式(II)で表される末端構造の含有量[II](mol/t、質量%)をそれぞれ算出した。
 [融点]
 TAインスツルメント社製示差走査熱量計(DSC Q20)を用いて、各実施例および比較例により得られた末端変性ポリアミド樹脂またはポリアミド樹脂5~7mgを秤量し、窒素雰囲気下、20℃から昇温速度20℃/minで250℃まで昇温した。昇温したときに現れる吸熱ピークの頂点をTm(融点)とした。
 [溶融粘度]
 各実施例および比較例により得られた末端変性ポリアミド樹脂またはポリアミド樹脂を、80℃真空乾燥器中で12時間以上乾燥した。溶融粘度の測定装置として、キャピラリーフローメーター((株)東洋精機製作所製、キャピログラフ1C型)を用いて、径0.5mm、長さ5mmのオリフィスにて、融点+60℃、せん断速度9,728sec-1の条件で溶融粘度(滞留前溶融粘度)を測定した。ただし、末端変性ポリアミド樹脂またはポリアミド樹脂を溶融させるため、5分間滞留させた後に測定を行った。この溶融粘度の値が小さいほど、高い流動性を有することを示す。
 [溶融粘度保持率]
 各実施例および比較例により得られた末端変性ポリアミド樹脂またはポリアミド樹脂を、80℃真空乾燥器中で12時間以上乾燥した。キャピラリーフローメーター((株)東洋精機製作所製、キャピログラフ1C型)を用いて、径0.5mm、長さ5mmのオリフィスにて、融点+60℃で60分間溶融滞留後、せん断速度9,728sec-1の条件で溶融粘度(滞留後溶融粘度)を測定した。前述の方法により測定した溶融粘度(滞留前溶融粘度)と溶融粘度(滞留後溶融粘度)から、(滞留後溶融粘度/滞留前溶融粘度)×100により溶融粘度保持率[%]を算出した。
 [重量平均分子量保持率]
 各実施例および比較例により得られた末端変性ポリアミド樹脂またはポリアミド樹脂を、80℃真空乾燥器中で12時間以上乾燥した。キャピラリーフローメーター((株)東洋精機製作所製、キャピログラフ1C型)を用いて、径0.5mm、長さ5mmのオリフィスにて、融点+60℃で60分間溶融滞留を行った。溶融滞留後の末端変性ポリアミド樹脂またはポリアミド樹脂について、前述の分子量測定方法と同様のGPC測定により重量平均分子量(Mw)(滞留後重量平均分子量)を測定した。前述の方法により測定した重量平均分子量(溶融滞留前重量平均分子量)と重量平均分子量(滞留後重量平均分子量)から、(滞留後重量平均分子量/滞留前重量平均分子量)×100により重量平均分子量保持率[%]を算出した。
 [含有量保持率]
 各実施例および比較例により得られた末端変性ポリアミド樹脂またはポリアミド樹脂を、80℃真空乾燥器中で12時間以上乾燥した。キャピラリーフローメーター((株)東洋精機製作所製、キャピログラフ1C型)を用いて、径0.5mm、長さ5mmのオリフィスにて、融点+60℃で60分間溶融滞留を行った。溶融滞留後の末端変性ポリアミド樹脂またはポリアミド樹脂について、前述の末端構造含有量測定方法と同様のH-NMR測定により末端変性ポリアミド樹脂における一般式(I)で表される末端構造の含有量[I](mol/t)(滞留後含有量)を算出した。前述の方法により測定した一般式(I)で表される末端構造の含有量[I](mol/t)(滞留前含有量)と一般式(I)で表される末端構造の含有量[I](mol/t)(滞留後含有量)から、(滞留後含有量/滞留前含有量)×100により含有量保持率を算出した。
 [重量減少率]
 各実施例および比較例により得られた末端変性ポリアミド樹脂またはポリアミド樹脂を、80℃真空乾燥器中で12時間以上乾燥した。任意部分を20mg切り出し、熱重量分析装置(パーキンエルマー社製、TGA7)を用い、窒素ガス雰囲気下、末端変性ポリアミド樹脂またはポリアミド樹脂の融点+60℃の温度で40分間保持し、熱処理前後の重量減少率[%]を測定した。
 [引張破断伸度]
 各実施例および比較例により得られた末端変性ポリアミド樹脂またはポリアミド樹脂を、80℃真空乾燥器中で12時間以上乾燥した。東芝機械(株)製IS55EPN射出成形機を用いて、シリンダー温度は、末端変性ポリアミド樹脂またはポリアミド樹脂の融点(Tm)+60℃とし、金型温度は80℃とし、射出時間と保圧時間は合わせて10秒、冷却時間は10秒の成形サイクル条件で、試験片厚み1/25インチ(約1.0mm)のASTM4号ダンベルの評価用試験片を射出成形した。得られたASTM4号ダンベル型試験片を、“テンシロン”(登録商標)UTA-2.5T(オリエンテック社製)に供し、ASTM-D638に準じて、23℃、湿度50%の雰囲気下で、歪み速度10mm/minで引張試験を行い、引張破断伸度を測定した。
 [含浸性および熱安定性]
 各実施例および比較例により得られた繊維強化ポリアミド樹脂基材の厚み方向断面を以下のように観察した。繊維強化末端変性ポリアミド樹脂をエポキシ樹脂で包埋したサンプルを用意し、繊維強化末端変性ポリアミド樹脂の厚み方向断面が良好に観察できるようになるまで、前記サンプルを研磨した。研磨したサンプルを、超深度カラー3D形状測定顕微鏡VHX-9500(コントローラー部)/VHZ-100R(測定部)((株)キーエンス製)を使用して、拡大倍率400倍で撮影した。撮影範囲は、繊維強化末端変性ポリアミド樹脂の厚み×幅500μmの範囲とした。撮影画像において、樹脂が占める部位の面積および空隙(ボイド)となっている部位の面積を求め、次式により含浸率を算出した。
 含浸率(%)=100×(樹脂が占める部位の総面積)/{(樹脂が占める部位の総面積)+(空隙となっている部位の総面積)}
 含浸性および熱安定性が高い場合はボイドが低減され、含浸性または熱安定性の少なくとも一方が低い場合はボイドが増加することから、繊維強化ポリアミド樹脂基材の含浸性および熱安定性は、この含浸率を判断基準とし、以下の2段階で評価し、良を合格とした。第一の態様における繊維強化ポリアミド樹脂基材は、融点+30℃、60℃、100℃の加工温度にて製造した。第二の態様における繊維強化ポリアミド樹脂基材は、融点+10℃、20℃、30℃の加工温度にて製造した。
良:含浸率が98%以上である。
 不良:含浸率が98%未満である。
 [表面品位]
 各実施例および比較例により得られた繊維強化末端変性ポリアミド樹脂または繊維強化ポリアミド樹脂基材の表面品位を目視により観察した。表面品位は、以下の2段階で評価し、良を合格とした。
 良:表面にわれ、マトリックス樹脂の変色、強化繊維の露出なし
 不良:表面にわれ、マトリックス樹脂の変色、強化繊維の露出有り
第一の態様における繊維強化ポリアミド樹脂基材は、融点+30℃、60℃、100℃の加工温度にて製造した。第二の態様における繊維強化ポリアミド樹脂基材は、融点+10℃、20℃、30℃の加工温度にて製造した。
 [原料]
 実施例および比較例において、原料は以下に示すものを用いた。
炭素繊維束:東レ(株)製 T700S-12K
 ・ε-カプロラクタム:和光純薬工業(株)製、和光特級。
 ・ヘキサメチレンジアミン:和光純薬工業(株)製、和光一級。
 ・アジピン酸:和光純薬工業(株)製、和光特級。
 ・セバシン酸:和光純薬工業(株)製、和光一級。
 [一般式(III)で表される末端変性用化合物]
 ・下記の構造式(化学式1)で表されるメトキシポリ(エチレングリコール)ポリ(プロピレングリコール)アミン:HUNTSMAN製“JEFFAMINE”(登録商標)M1000(数平均分子量Mn1,000)。
Figure JPOXMLDOC01-appb-C000001
 ・下記の構造式(化学式2)で表されるメトキシポリ(エチレングリコール)ポリ(プロピレングリコール)アミン:HUNTSMAN製“JEFFAMINE”(登録商標)M2070(数平均分子量Mn2,000)。
Figure JPOXMLDOC01-appb-C000002
 ・下記の構造式(化学式3)で表されるメトキシエチレングリコールポリ(プロピレングリコール)アミン:HUNTSMAN製“JEFFAMINE”(登録商標)M600(数平均分子量Mn600)。
Figure JPOXMLDOC01-appb-C000003
 [一般式(IV)で表される末端変性用化合物]
 ・安息香酸:和光純薬工業(株)製、試薬特級
 ・酢酸:和光純薬工業(株)製、試薬特級
 ・ステアリン酸:和光純薬工業(株)製、試薬特級
 ・セロチン酸:東京化成工業(株)製。
[実施例1]
 ε-カプロラクタム20g、イオン交換水20g、“JEFFAMINE”M1000を1.6g、安息香酸0.14gを反応容器に仕込み密閉し、窒素置換した。反応容器外周にあるヒーターの設定温度を290℃とし、加熱を開始した。缶内圧力が1.0MPaに到達した後、水分を系外へ放出させながら缶内圧力1.0MPaに保持し、缶内温度が240℃になるまで昇温した。缶内温度が240℃に到達した後、ヒーターの設定温度を270℃に変更し、1時間かけて常圧となるよう缶内圧力を調節した(常圧到達時の缶内温度:243℃)。続けて、缶内に窒素を流しながら(窒素フロー)240分間保持して末端変性ポリアミド6樹脂を得た(最高到達温度:253℃)。続いて得られた末端変性ポリアミド6樹脂を、イオン交換水でソックスレー抽出を行い、未反応の末端変性用化合物を除去した。このようにして得られた末端変性ポリアミド6樹脂の相対粘度は1.81、重量平均分子量は3.0万、融点(Tm)は220℃、溶融粘度は5.5Pa・sであった。また、得られた末端変性ポリアミド6樹脂は以下の化学式4にて示される構造と以下の化学式5で示される構造を末端に有する末端変性ポリアミド6樹脂を含むものであった。その他の物性を表1に示す。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 炭素繊維束が巻かれたボビンを16本準備し、それぞれボビンから連続的に糸道ガイドを通じて炭素繊維束を送り出した。連続的に送り出された炭素繊維束に、含浸ダイ内において、充填したフィーダーから定量供給された、前述の方法により得られた末端変性ポリアミド6樹脂を含浸させた。含浸ダイ内で末端変性ポリアミド6樹脂を含浸した炭素繊維を、引取ロールを用いて含浸ダイのノズルから1m/minの引き抜き速度で連続的に引き抜いた。炭素繊維を引き抜く際の温度を加工温度という。引き抜かれた炭素繊維束は、冷却ロールを通過して末端変性ポリアミド6樹脂が冷却固化され、連続した繊維強化ポリアミド樹脂基材として巻取機に巻き取られた。得られた繊維強化ポリアミド樹脂基材の厚さは0.3mm、幅は50mmであり、強化繊維方向は一方向に配列し、体積含有率が30%、数平均繊維長15mmの繊維強化ポリアミド樹脂基材を得た。得られた繊維強化ポリアミド樹脂基材を前記評価に供した。評価結果を表1に示す。
[実施例2~39、比較例1~3]
 原料を表1~5に示す組成に変更し、かつ缶内圧力を常圧とした後、缶内に窒素を流しながら保持する時間(窒素フロー時間)を表1~5に示す時間に変更したこと以外は実施例1と同様にして末端変性ポリアミド6樹脂を得た。実施例1により得られた末端変性ポリアミド6樹脂にかえて、各実施例および比較例により得られた末端変性ポリアミド6樹脂またはポリアミド6樹脂を用いたこと以外は実施例1と同様にして繊維強化ポリアミド樹脂基材を得た。得られた末端変性ポリアミド6樹脂の物性および、繊維強化ポリアミド樹脂基材の物性を表1~5に示す。
[実施例40]
 ヘキサメチレンジアミン9.46g、アジピン酸11.92g、イオン交換水20g、“JEFFAMINE”(登録商標)M1000を1.6g、安息香酸0.14gを反応容器に仕込み密閉し、窒素置換した。反応容器外周にあるヒーターの設定温度を290℃とし、加熱を開始した。缶内圧力が1.75MPaに到達した後、水分を系外へ放出させながら缶内圧力1.75MPaに保持し、缶内温度が260℃になるまで昇温した。缶内温度が260℃に到達した後、ヒーターの設定温度を290℃に変更し、1時間かけて常圧となるよう缶内圧力を調節した(常圧到達時の缶内温度:270℃)。続けて、缶内に窒素を流しながら(窒素フロー)240分間保持して末端変性ポリアミド66樹脂を得た(最高到達温度:275℃)。ここで、得られたポリアミド樹脂は実施例1で示す構造を末端に有する末端変性ポリアミド66樹脂を含むものであった。
加工温度を320℃とした以外は実施例1と同様にして、得られた末端変性ポリアミド66樹脂を用いて繊維強化ポリアミド66樹脂基材を得た。得られた末端変性ポリアミド66樹脂の物性および繊維強化ポリアミド66樹脂基材の物性を表6に示す。
[実施例41]
 ヘキサメチレンジアミン7.74g、セバシン酸13.46g、イオン交換水20g、“JEFFAMINE”(登録商標)M1000を1.6g、安息香酸0.14gを反応容器に仕込み密閉し、窒素置換した。反応容器外周にあるヒーターの設定温度を290℃とし、加熱を開始した。缶内圧力が1.0MPaに到達した後、水分を系外へ放出させながら缶内圧力1.0MPaに保持し、缶内温度が240℃になるまで昇温した。缶内温度が240℃に到達した後、ヒーターの設定温度を290℃に変更し、1時間かけて常圧となるよう缶内圧力を調節した(常圧到達時の缶内温度:243℃)。続けて、缶内に窒素を流しながら(窒素フロー)240分間保持して末端変性ポリアミド610樹脂を得た(最高到達温度:253℃)。ここで、得られたポリアミド樹脂は以下の実施例1で示す構造を末端に有する末端変性ポリアミド610樹脂を含むものであった。
 加工温度を280℃とした以外は実施例1と同様にして、得られた末端変性ポリアミド610樹脂を用いて繊維強化ポリアミド610樹脂基材を得た。得られた末端変性ポリアミド610樹脂の物性および繊維強化ポリアミド610樹脂基材の物性を表6に示す。
[実施例42]
 実施例1と同様にして末端変性ポリアミド樹脂を得た。得られた末端変性ポリアミド樹脂を押出機に投入し、溶融混練した後フィルムダイから膜状に押出し、樹脂フィルムを得た。
 強化繊維として用いた炭素繊維を繊維長15mmにカットして、エアレイド装置に投入し、目付け100g/mのマット状の強化繊維基材を得た。
 前記した強化繊維基材と樹脂フィルムを炭素繊維の含有量が30体積%、厚みが1.0mmとなるように積層した後に、型温度(加工温度)が250℃に加熱された成形型に投入した。続いて、圧力3MPaで10分間加熱加圧プレスした後、圧力3MPaで冷却プレスを行い、体積含有率が30%の繊維強化ポリアミド樹脂基材を得た。得られた繊維強化ポリアミド樹脂基材を前記評価に供した。評価結果を表7に示す。
[実施例43~80、比較例4~6]
 原料を表7~11に示す組成に変更し、かつ缶内圧力を常圧とした後、缶内に窒素を流しながら保持する時間(窒素フロー時間)を表7~11に示す時間に変更したこと以外は実施例40と同様にして末端変性ポリアミド6樹脂を得た。実施例42により得られた末端変性ポリアミド6樹脂にかえて、各実施例および比較例により得られた末端変性ポリアミド6樹脂またはポリアミド6樹脂を用いたこと以外は実施例42と同様にして繊維強化ポリアミド樹脂基材を得た。得られた末端変性ポリアミド6樹脂の物性および、繊維強化ポリアミド樹脂基材の物性を表7~11に示す。
[実施例81]
 実施例40と同様にして末端変性ポリアミド66樹脂を得た。加工温度を290℃とした以外は実施例42と同様にして、得られた末端変性ポリアミド610樹脂を用いて繊維強化ポリアミド610樹脂基材を得た。得られた末端変性ポリアミド610樹脂の物性および繊維強化ポリアミド610樹脂基材の物性を表12に示す。
[実施例82]
 実施例41と同様にして末端変性ポリアミド610樹脂を得た。加工温度を250℃とした以外は実施例42と同様にして、得られた末端変性ポリアミド610樹脂を用いて繊維強化ポリアミド610樹脂基材を得た。得られた末端変性ポリアミド610樹脂の物性および繊維強化ポリアミド610樹脂基材の物性を表12に示す。
 なお、実施例10~12、51~53で得られる末端変性ポリアミド樹脂は、以下の化学式6にて示される構造と、化学式5にて示される構造を末端に有する末端変性ポリアミドを含むものであった。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 実施例13、54で得られる末端変性ポリアミド樹脂は、以下の化学式7にて示される構造と、化学式5にて示される構造を末端に有する末端変性ポリアミドを含むものであった。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 実施例30、71で得られる末端変性ポリアミド樹脂は、以下の化学式4にて示される構造を末端に有する末端変性ポリアミドを含むものであった。
Figure JPOXMLDOC01-appb-C000010
 実施例31、72で得られる末端変性ポリアミド樹脂は、以下の化学式4にて示される構造と、化学式8にて示される構造を末端に有する末端変性ポリアミドを含むものであった。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 実施例32、33、73および74で得られる末端変性ポリアミド樹脂は、以下の化学式4にて示される構造と、化学式9にて示される構造を末端に有する末端変性ポリアミドを含むものであった。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 実施例34、75で得られる末端変性ポリアミド樹脂は、以下の化学式4にて示される構造と、化学式10にて示される構造を末端に有する末端変性ポリアミドを含むものであった。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 実施例35、76で得られる末端変性ポリアミド樹脂は、以下の化学式6にて示される構造と、化学式10にて示される構造を末端に有する末端変性ポリアミドを含むものであった。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 実施例1~9、14~29、36~37、40~50、55~70、77~82で得られる末端変性ポリアミド樹脂は、実施例1で示す構造を末端に有する末端変性ポリアミドを含むものであった。
 比較例1~3、4~6で得られるポリアミド樹脂は、末端変性ポリアミドを含まないものであった。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 実施例1~41と比較例1~3との比較により、ポリマーの主鎖を構成する繰り返し構造単位とは異なる構造単位から構成される構造をポリマーの末端基に含有する繊維強化末端変性ポリアミド6樹脂を用いて得られる連続繊維強化ポリアミド樹脂基材は、含浸性および溶融滞留時の熱安定性に優れ、ボイドの低減と表面品位の向上を達成できることがわかる。
 実施例42~82と比較例4~6との比較により、ポリマーの主鎖を構成する繰り返し構造単位とは異なる構造単位から構成される構造をポリマーの末端基に含有する繊維強化末端変性ポリアミド6樹脂を用いて得られる不連続繊維強化ポリアミド樹脂基材は、含浸性および溶融滞留時の熱安定性に優れ、ボイドの低減と表面品位の向上を達成できることがわかる。
 本発明の第一および第二の形態における繊維強化ポリアミド樹脂基材およびその成形品は、その優れた特性を活かし、航空機部品、自動車部品、電気・電子部品、建築部材、各種容器、日用品、生活雑貨および衛生用品など各種用途に利用することができる。本発明の実施形態の繊維強化ポリアミド樹脂基材およびその成形品は、とりわけ、含浸性、耐熱老化性、表面外観が要求される航空機エンジン周辺部品、航空機用部品外装部品、自動車ボディー部品車両骨格、自動車エンジン周辺部品、自動車アンダーフード部品、自動車ギア部品、自動車内装部品、自動車外装部品、吸排気系部品、エンジン冷却水系部品や、自動車電装部品、電気・電子部品用途に特に好ましく用いられる。具体的には、本発明の実施形態の繊維強化末端変性ポリアミド樹脂およびその成形品は、ファンブレードなどの航空機エンジン周辺部品、ランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブなどの航空機関連部品、各種シート、フロントボディー、アンダーボディー、各種ピラー、各種メンバ、各種フレーム、各種ビーム、各種サポート、各種レール、各種ヒンジなどの自動車ボディー部品、エンジンカバー、エアインテークパイプ、タイミングベルトカバー、インテークマニホールド、フィラーキャップ、スロットルボディ、クーリングファンなどの自動車エンジン周辺部品、クーリングファン、ラジエータータンクのトップおよびベース、シリンダーヘッドカバー、オイルパン、ブレーキ配管、燃料配管用チューブ、廃ガス系統部品などの自動車アンダーフード部品、ギア、アクチュエーター、ベアリングリテーナー、ベアリングケージ、チェーンガイド、チェーンテンショナなどの自動車ギア部品、シフトレバーブラケット、ステアリングロックブラケット、キーシリンダー、ドアインナーハンドル、ドアハンドルカウル、室内ミラーブラケット、エアコンスイッチ、インストルメンタルパネル、コンソールボックス、グローブボックス、ステアリングホイール、トリムなどの自動車内装部品、フロントフェンダー、リアフェンダー、フューエルリッド、ドアパネル、シリンダーヘッドカバー、ドアミラーステイ、テールゲートパネル、ライセンスガーニッシュ、ルーフレール、エンジンマウントブラケット、リアガーニッシュ、リアスポイラー、トランクリッド、ロッカーモール、モール、ランプハウジング、フロントグリル、マッドガード、サイドバンパーなどの自動車外装部品、エアインテークマニホールド、インタークーラーインレット、ターボチャージャ、エキゾーストパイプカバー、インナーブッシュ、ベアリングリテーナー、エンジンマウント、エンジンヘッドカバー、リゾネーター、及びスロットルボディなどの吸排気系部品、チェーンカバー、サーモスタットハウジング、アウトレットパイプ、ラジエータータンク、オイルネーター、及びデリバリーパイプなどのエンジン冷却水系部品、コネクタやワイヤーハーネスコネクタ、モーター部品、ランプソケット、センサー車載スイッチ、コンビネーションスイッチなどの自動車電装部品、電気・電子部品としては、例えば、発電機、電動機、変圧器、変流器、電圧調整器、整流器、抵抗器、インバーター、継電器、電力用接点、開閉器、遮断機、スイッチ、ナイフスイッチ、他極ロッド、モーターケース、テレビハウジング、ノートパソコンハウジングおよび内部部品、CRTディスプレーハウジングおよび内部部品、プリンターハウジングおよび内部部品、携帯電話、モバイルパソコン、ハンドヘルド型モバイルなどの携帯端末ハウジングおよび内部部品、ICやLED対応ハウジング、コンデンサー座板、ヒューズホルダー、各種ギヤー、各種ケース、キャビネットなどの電気部品、コネクタ、SMT対応のコネクタ、カードコネクタ、ジャック、コイル、コイルボビン、センサー、LEDランプ、ソケット、抵抗器、リレー、リレーケース、リフレクタ、小型スイッチ、電源部品、コイルボビン、コンデンサー、バリコンケース、光ピックアップシャーシ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、SiパワーモジュールやSiCパワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、トランス部材、パラボラアンテナ、コンピューター関連部品などの電子部品などに好ましく用いられる。

Claims (17)

  1.  連続した強化繊維に、または不連続の強化繊維が分散した強化繊維基材にポリアミド樹脂を含浸させてなる繊維強化ポリアミド樹脂基材であって、前記ポリアミド樹脂が、ポリアミド樹脂を構成するポリマーの少なくとも一部が、ポリマーの主鎖を構成する繰り返し構造単位とは異なる構造単位から構成される構造をポリマーの末端基に有する末端変性ポリアミド樹脂である繊維強化ポリアミド樹脂基材。
  2.   前記末端変性ポリアミド樹脂が、下記一般式(I)で表される末端構造を1~20質量%含有する請求項1に記載の繊維強化ポリアミド樹脂基材。
      -X-(R-O)-R                                  (I)
      上記一般式(I)中、mは2~100の範囲を表す。Rは炭素数2~10の2価の炭化水素基、Rは炭素数1~30の1価の炭化水素基を表す。-X-は-NH-、-N(CH)-または-(C=O)-を表す。一般式(I)中に含まれるm個のRは同じでも異なってもよい。
  3.   前記末端変性ポリアミド樹脂が、さらに下記一般式(II)で表される末端構造を0.1~5質量%含有する請求項2に記載の繊維強化ポリアミド樹脂基材。
      -Y-R                                                (II)
      上記一般式(II)中、Rは炭素数1~30の1価の炭化水素基を表す。前記一般式(I)におけるXが-NH-または-N(CH)-の場合、上記一般式(II)における-Y-は-(C=O)-を表し、前記一般式(I)におけるXが-(C=O)-の場合、上記一般式(II)におけるYは-NH-または-N(CH)-を表す。
  4.  前記強化繊維が一方向に連続して配列している、または、数平均繊維長が3~100mmの不連続繊維である請求項1~3のいずれかに記載の繊維強化ポリアミド樹脂基材。
  5.   前記強化繊維が炭素繊維を含み、強化繊維を20~70体積%含有する請求項1~4のいずれかに記載の繊維強化ポリアミド樹脂基材。
  6.   前記末端変性ポリアミド樹脂が、前記一般式(I)で表される末端構造と前記一般式(II)で表される末端構造を合計60~250[mol/t]含有し、かつ前記一般式(I)で表される末端構造の含有量[mol/t]と前記一般式(II)で表される末端構造の含有量[mol/t]の比((I)/(II))が0.3~2.5である請求項1~5のいずれかに記載の繊維強化ポリアミド樹脂基材。
  7.   前記末端変性ポリアミド樹脂が、アミノ末端基とカルボキシル末端基を合計50~150[mol/t]含有し、かつアミノ末端基の含有量[mol/t]とカルボキシル末端基の含有量[mol/t]の比(アミノ末端基/カルボキシル末端基)が0.5~2.5である請求項1~6のいずれかに記載の繊維強化ポリアミド樹脂基材。
  8.   前記末端変性ポリアミド樹脂の、樹脂濃度0.01g/mLの98%硫酸溶液の25℃における相対粘度(η)が1.3~3.0である請求項1~7のいずれかに記載の繊維強化ポリアミド樹脂基材。
  9.   前記末端変性ポリアミド樹脂の、ゲルパーミエーションクロマトグラフィーにより測定した重量平均分子量Mwが15,000~50,000である請求項1~8のいずれかに記載の繊維強化ポリアミド樹脂基材。
  10.   前記末端変性ポリアミド樹脂の、融点+60℃、せん断速度9,728sec-1の条件における溶融粘度が30Pa・s以下である請求項1~9のいずれかに記載の繊維強化ポリアミド樹脂基材。
  11.   前記末端変性ポリアミド樹脂の、融点+60℃の条件下60分間滞留前後における前記一般式(I)で表される末端構造の含有量保持率((滞留後含有量/滞留前含有量)×100)が80%以上である請求項1~10のいずれかに記載の繊維強化ポリアミド樹脂基材。
  12.   前記末端変性ポリアミド樹脂の、融点+60℃の条件下60分間滞留前後における重量平均分子量保持率((滞留後重量平均分子量/滞留前重量平均分子量)×100)が80%~120%である請求項1~11のいずれかに記載の繊維強化ポリアミド樹脂基材。
  13.   前記末端変性ポリアミド樹脂の、融点+60℃の条件下60分間滞留前後における溶融粘度保持率((滞留後溶融粘度/滞留前溶融粘度)×100)が80%~120%である請求項1~12のいずれかに記載の繊維強化ポリアミド樹脂基材。
  14.   前記末端変性ポリアミド樹脂の、窒素雰囲気下、融点+60℃の条件下40分間滞留前後における重量減少率が4%以下である請求項1~13のいずれかに記載の繊維強化ポリアミド樹脂基材。
  15.   アミノ酸、ラクタム、ならびに/もしくは、ジアミンおよびジカルボン酸を重合する際に、下記一般式(III)で表される末端変性用化合物をアミノ酸、ラクタム、ジアミンおよびジカルボン酸の合計に対して1~20質量%含有させて、ポリアミド樹脂の末端に末端変性用化合物を結合させることにより、下記一般式(I)で表される末端構造を1~20質量%含有する末端変性ポリアミド樹脂を得る工程と、連続した強化繊維に、または不連続の強化繊維が分散した強化繊維基材に前記末端変性ポリアミド樹脂を含浸させる工程を少なくとも有する請求項2~14のいずれかに記載の繊維強化ポリアミド樹脂基材の製造方法。
      H-X-(R-O)-R                                (III)
      -X-(R-O)m-R                                  (I)
      上記一般式(III)および(I)中、mは2~100の範囲を表す。Rは炭素数2~10の2価の炭化水素基、Rは炭素数1~30の1価の炭化水素基を表す。上記一般式が(III)の場合、-X-は-NH-、-N(CH)-または-O(C=O)-を表す。上記一般式が(I)の場合、-X-は-NH-、-N(CH)-または-(C=O)-を表す。一般式(III)中に含まれるm個のRは同じでも異なってもよい。
  16.   請求項1~15のいずれかに記載の繊維強化ポリアミド樹脂基材を含む成形品。
  17.   請求項1~14のいずれかに記載の繊維強化ポリアミド樹脂基材と、熱可塑性樹脂を含む成形品とが、少なくとも一部で接合された複合成形品。
PCT/JP2017/012084 2016-03-30 2017-03-24 繊維強化ポリアミド樹脂基材、その製造方法、それを含む成形品および複合成形品 WO2017170248A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017517126A JP6841221B2 (ja) 2016-03-30 2017-03-24 繊維強化ポリアミド樹脂基材、その製造方法、それを含む成形品および複合成形品
US16/085,694 US11155686B2 (en) 2016-03-30 2017-03-24 Fiber-reinforced polyamide resin base, method for producing same, molded article containing same, and composite molded article
KR1020187025391A KR102329010B1 (ko) 2016-03-30 2017-03-24 섬유 강화 폴리아미드 수지 기재, 그의 제조 방법, 그것을 포함하는 성형품 및 복합 성형품
EP17774785.4A EP3438163B1 (en) 2016-03-30 2017-03-24 Fiber-reinforced polyamide resin base, method for producing same, molded article containing same, and composite molded article
CN201780017411.3A CN108779271B (zh) 2016-03-30 2017-03-24 纤维增强聚酰胺树脂基材、其制造方法、包含其的成型品及复合成型品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016067762 2016-03-30
JP2016-067761 2016-03-30
JP2016067761 2016-03-30
JP2016-067762 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017170248A1 true WO2017170248A1 (ja) 2017-10-05

Family

ID=59965565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012084 WO2017170248A1 (ja) 2016-03-30 2017-03-24 繊維強化ポリアミド樹脂基材、その製造方法、それを含む成形品および複合成形品

Country Status (7)

Country Link
US (1) US11155686B2 (ja)
EP (1) EP3438163B1 (ja)
JP (1) JP6841221B2 (ja)
KR (1) KR102329010B1 (ja)
CN (1) CN108779271B (ja)
TW (1) TW201805333A (ja)
WO (1) WO2017170248A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019054454A1 (ja) * 2017-09-14 2020-10-29 Agc株式会社 樹脂組成物、成形品及びその製造方法、プリプレグ、及びその製造方法、ならびに繊維強化成形品及びそれらの製造方法
JP2021504562A (ja) * 2017-11-28 2021-02-15 ハンファ ソリューションズ コーポレーション 二重活性基を持つ分子量調節剤を用いたポリアマイド製造方法及びそれにより製造されたポリアマイド
WO2021235348A1 (ja) * 2020-05-18 2021-11-25 宇部興産株式会社 ポリアミド樹脂及びこれを含む組成物並びにこれらを含む成形体

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3263639A1 (en) * 2016-06-27 2018-01-03 Clariant International Ltd Use of an additive composition for the preparation of polycondensation polymers
JP2018157285A (ja) * 2017-03-16 2018-10-04 パナソニックIpマネジメント株式会社 スピーカ用振動板およびこれを用いたスピーカ
CN114106369A (zh) * 2018-04-25 2022-03-01 旭化成株式会社 连续纤维增强树脂成型体、及其制造方法
FR3081370B1 (fr) * 2018-05-22 2020-06-05 Safran Aircraft Engines Corps d'aube et aube en materiau composite ayant un renfort fibreux compose d'un tissage tridimensionnel et de fibres courtes et leur procede de fabrication
JP7276429B2 (ja) * 2019-03-26 2023-05-18 東レ株式会社 繊維強化樹脂基材
WO2022044920A1 (ja) * 2020-08-28 2022-03-03 東レ株式会社 繊維強化ポリアミド樹脂組成物成形品
US11946391B2 (en) * 2021-03-11 2024-04-02 General Electric Company Turbine engine with composite airfoil having a non-metallic leading edge protective wrap
CN115873240B (zh) * 2021-09-29 2024-08-20 万华化学集团股份有限公司 一种高复用率3d打印用尼龙粉末
EP4281494B1 (en) * 2022-02-09 2024-05-29 Domo Engineering Plastics GmbH Fiber-reinforced thermoplastic composite
CN117944337B (zh) * 2024-03-27 2024-07-09 成都鲲鹏云智科技有限公司 一种阻燃隔热复合纤维面料及其制备方法、在防火服中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03292327A (ja) * 1990-04-11 1991-12-24 Mitsui Toatsu Chem Inc 芳香族ポリアミド
JP2000086759A (ja) * 1998-09-11 2000-03-28 Kuraray Co Ltd ポリアミドおよびその組成物
JP2012041526A (ja) * 2010-07-23 2012-03-01 Mitsubishi Gas Chemical Co Inc ポリアミド樹脂組成物
WO2012140785A1 (ja) * 2011-04-12 2012-10-18 三菱瓦斯化学株式会社 ポリアミド樹脂系複合材およびその製造方法
JP2013532757A (ja) * 2010-08-06 2013-08-19 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 天然繊維を含有する複合材料
JP2013538265A (ja) * 2010-08-10 2013-10-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリアミド複合材構造およびそれらの調製方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254668A (en) 1992-06-29 1993-10-19 Texaco Chemical Company Polyamidopolyfunctional amine from lactam and ether amine
JPH0737527B2 (ja) 1993-01-22 1995-04-26 三菱化学株式会社 ポリアミド樹脂の製造法
US5342918A (en) 1993-04-30 1994-08-30 Texaco Chemical Company Carboxyl-terminated polyetheramines
EP2301985A4 (en) * 2008-07-11 2012-10-17 Kingfa Science & Technology Co SEMI-AROMATIC POLYAMIDE AND PREPARATION METHOD DISCHARGING A LOW AMOUNT OF WASTEWATER
KR101796967B1 (ko) 2010-07-08 2017-11-13 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리아미드 수지 조성물
JP5718089B2 (ja) * 2011-02-22 2015-05-13 旭化成ケミカルズ株式会社 長繊維強化ポリアミド樹脂組成物及び成形体
US20140127521A1 (en) * 2011-04-05 2014-05-08 Toray Industries, Inc. Composite molded body and method for producing same
EP2716715B2 (en) * 2011-05-27 2019-03-27 Asahi Kasei Chemicals Corporation Reinforced polyamide resin pellets
JP2013049793A (ja) * 2011-08-31 2013-03-14 Unitika Ltd 半芳香族ポリアミド樹脂組成物ペレットおよびそれを成形してなる成形体
KR101469264B1 (ko) * 2011-12-23 2014-12-04 제일모직주식회사 폴리아미드 수지, 이의 제조 방법 및 이를 포함하는 제품
JP5987335B2 (ja) 2012-02-03 2016-09-07 東洋紡株式会社 炭素長繊維強化ポリアミド樹脂プレプリグ及び成形品
WO2015182693A1 (ja) 2014-05-30 2015-12-03 東レ株式会社 末端変性ポリアミド樹脂、その製造方法および成形品の製造方法
KR102000896B1 (ko) * 2015-12-25 2019-07-16 도레이 카부시키가이샤 말단 변성 폴리아미드 수지 및 그의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03292327A (ja) * 1990-04-11 1991-12-24 Mitsui Toatsu Chem Inc 芳香族ポリアミド
JP2000086759A (ja) * 1998-09-11 2000-03-28 Kuraray Co Ltd ポリアミドおよびその組成物
JP2012041526A (ja) * 2010-07-23 2012-03-01 Mitsubishi Gas Chemical Co Inc ポリアミド樹脂組成物
JP2013532757A (ja) * 2010-08-06 2013-08-19 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 天然繊維を含有する複合材料
JP2013538265A (ja) * 2010-08-10 2013-10-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリアミド複合材構造およびそれらの調製方法
WO2012140785A1 (ja) * 2011-04-12 2012-10-18 三菱瓦斯化学株式会社 ポリアミド樹脂系複合材およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019054454A1 (ja) * 2017-09-14 2020-10-29 Agc株式会社 樹脂組成物、成形品及びその製造方法、プリプレグ、及びその製造方法、ならびに繊維強化成形品及びそれらの製造方法
JP6992814B2 (ja) 2017-09-14 2022-01-13 Agc株式会社 樹脂組成物、成形品及びその製造方法、プリプレグ、及びその製造方法、ならびに繊維強化成形品及びそれらの製造方法
JP2021504562A (ja) * 2017-11-28 2021-02-15 ハンファ ソリューションズ コーポレーション 二重活性基を持つ分子量調節剤を用いたポリアマイド製造方法及びそれにより製造されたポリアマイド
JP7091466B2 (ja) 2017-11-28 2022-06-27 ハンファ ソリューションズ コーポレーション 二重活性基を持つ分子量調節剤を用いたポリアマイド製造方法及びそれにより製造されたポリアマイド
WO2021235348A1 (ja) * 2020-05-18 2021-11-25 宇部興産株式会社 ポリアミド樹脂及びこれを含む組成物並びにこれらを含む成形体

Also Published As

Publication number Publication date
EP3438163A4 (en) 2019-11-27
EP3438163B1 (en) 2022-02-23
US11155686B2 (en) 2021-10-26
EP3438163A1 (en) 2019-02-06
KR102329010B1 (ko) 2021-11-19
US20190071549A1 (en) 2019-03-07
JPWO2017170248A1 (ja) 2019-02-07
JP6841221B2 (ja) 2021-03-10
CN108779271B (zh) 2024-03-19
KR20180132048A (ko) 2018-12-11
CN108779271A (zh) 2018-11-09
TW201805333A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
JP6841221B2 (ja) 繊維強化ポリアミド樹脂基材、その製造方法、それを含む成形品および複合成形品
TWI472552B (zh) 聚醯胺及聚醯胺組成物
WO2018061597A1 (ja) 繊維強化熱可塑性樹脂基材およびそれを用いた成形品
WO2007132733A1 (ja) ポリアミド樹脂
JP5942229B2 (ja) ポリアミド及びポリアミド組成物
WO2005113643A1 (ja) ポリアミド樹脂およびヒンジ付き成形品
JP5964964B2 (ja) ポリアミド、ポリアミド組成物及び成形品
AU2011283795A1 (en) Polyamide resin
CN110964316B (zh) 聚酰胺组合物、成型品和半芳香族聚酰胺
JP5620204B2 (ja) ポリアミド及びポリアミド組成物
JP2014111758A (ja) ポリアミド樹脂
JP2007332353A (ja) ポリアミド樹脂
JP5942122B2 (ja) 長繊維強化ポリアミド樹脂組成物ペレット及び成形品
JP6843698B2 (ja) ポリアミド組成物及び成形品
JP2016203401A (ja) 繊維強化複合成形品およびその製造方法
JP7087716B2 (ja) ポリアミド樹脂製複合成形品およびその製造方法
JP2019059852A (ja) 繊維強化ポリアミド樹脂基材、その製造方法、それを含む成形品および複合成形品
JP2019178261A (ja) ポリアミド組成物及び成形品
JP2014231594A (ja) ポリエチレンテレフタレート樹脂組成物および成形品
JP7023723B2 (ja) ポリアミド組成物及び成形品
JP2018168287A (ja) 長繊維強化ポリアミド樹脂組成物ペレットおよびその成形品
JP7524361B2 (ja) ポリアミド組成物、成形体、及び装置の振動又は音の伝搬を抑制する方法
JP2014005407A (ja) 共重合ポリアミド
JP2013095788A (ja) 車両部品成形用ポリアミド樹脂組成物及びそれを成形して得た車両部品
JP2019099603A (ja) 連続繊維強化ポリアミド樹脂基材およびその成形品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017517126

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187025391

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201780017411.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017774785

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017774785

Country of ref document: EP

Effective date: 20181030

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774785

Country of ref document: EP

Kind code of ref document: A1