WO2018061597A1 - 繊維強化熱可塑性樹脂基材およびそれを用いた成形品 - Google Patents

繊維強化熱可塑性樹脂基材およびそれを用いた成形品 Download PDF

Info

Publication number
WO2018061597A1
WO2018061597A1 PCT/JP2017/031321 JP2017031321W WO2018061597A1 WO 2018061597 A1 WO2018061597 A1 WO 2018061597A1 JP 2017031321 W JP2017031321 W JP 2017031321W WO 2018061597 A1 WO2018061597 A1 WO 2018061597A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
thermoplastic resin
reinforced thermoplastic
polyamide
reinforcing
Prior art date
Application number
PCT/JP2017/031321
Other languages
English (en)
French (fr)
Inventor
越政之
大目裕千
金野栄太
石田翔馬
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61762798&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018061597(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US16/335,782 priority Critical patent/US10723088B2/en
Priority to EP17855555.3A priority patent/EP3521345A4/en
Priority to KR1020197005843A priority patent/KR102412262B1/ko
Priority to CN201780050819.0A priority patent/CN109642036B/zh
Priority to JP2017550951A priority patent/JP7033271B2/ja
Publication of WO2018061597A1 publication Critical patent/WO2018061597A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/04Polyamides derived from alpha-amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a fiber reinforced thermoplastic resin base material and a molded product using the same.
  • a fiber reinforced thermoplastic resin base material made by impregnating a continuous reinforcing fiber with a thermoplastic resin is excellent in specific strength and specific rigidity, has a high weight reduction effect, and has high heat resistance and chemical resistance. It is preferably used for various applications such as transportation equipment such as automobiles, sports, and electric / electronic parts.
  • transportation equipment such as automobiles, sports, and electric / electronic parts.
  • replacement of metal parts to resin parts, miniaturization of parts, and modularization are progressing. Development of materials with excellent mechanical properties is required.
  • a fiber reinforced thermoplastic resin prepreg for example, see Patent Document 1 in which carbon fiber is contained in a polyamide resin is known.
  • a prepreg is expected as a light weight material because of its high mechanical properties.
  • it in order to stably exhibit mechanical properties, it has excellent matrix resin impregnation between fiber bundles, and reinforcing fibers It is necessary to disperse uniformly in the fiber reinforced thermoplastic resin substrate.
  • an object of the present invention is to provide a fiber-reinforced thermoplastic resin base material in which the reinforcing fibers are more uniformly dispersed and the mechanical property variation is small with respect to the fiber-reinforced thermoplastic resin base material using a thermoplastic resin as a matrix.
  • the present invention mainly has the following configuration.
  • a fiber-reinforced thermoplastic resin base material in which continuous reinforcing fibers are aligned in parallel and impregnated with a thermoplastic resin, the fiber volume content is in the range of 40 to 65% by volume, and A fiber-reinforced thermoplastic resin base material, wherein a fiber dispersion parameter D obtained by the following method is 90% or more.
  • a cross section perpendicular to the reinforcing fiber orientation direction of the fiber-reinforced thermoplastic resin substrate is divided into a plurality of sections, and one section is photographed.
  • the captured image of the section is divided into a plurality of square units having a length t of one side defined by Equation (1).
  • the dispersion parameter d defined by the equation (2) is calculated.
  • the procedures (i) to (iii) are repeated for different sections, and the average value of the dispersion parameters d of the plurality of sections obtained from the cross section is set as the dispersion parameter D.
  • Dispersion parameter d number of units containing reinforcing fibers in the compartment / total number of units in the compartment ⁇ 100 (2)
  • thermoplastic resin substrate according to [1] or [2], wherein the thickness is in the range of 0.15 mm to 1.5 mm.
  • thermoplastic resin substrate according to any one of [1] to [3], wherein the thermoplastic resin is any one of polyamide 6 or polyamide 66, or a mixture thereof.
  • thermoplastic resin includes a polyamide copolymer composed of 30 to 90% by weight of polyamide 6 component and 70 to 10% by weight of polyamide 66 component. Reinforced thermoplastic resin substrate.
  • a molded article comprising the fiber-reinforced thermoplastic resin substrate according to any one of [1] to [8].
  • thermoplastic resin in which reinforcing fibers are dispersed with high uniformity and excellent mechanical properties are stably expressed with small variations can be obtained.
  • the fiber-reinforced thermoplastic resin base material according to the present invention is formed by impregnating a thermoplastic resin base material into continuous reinforcing fibers arranged in parallel.
  • the continuous reinforcing fiber refers to a fiber-reinforced thermoplastic resin base material in which the reinforcing fiber is not interrupted.
  • Examples of the form and arrangement of the reinforcing fibers in the present invention include, for example, those arranged in one direction, woven fabric (cross), knitted fabric, braid, tow, and the like. Among them, it is preferable that the reinforcing fibers are arranged in one direction because the mechanical properties in a specific direction can be efficiently improved.
  • the type of reinforcing fiber is not particularly limited, and examples thereof include carbon fiber, metal fiber, organic fiber, and inorganic fiber. Two or more of these may be used.
  • carbon fiber as the reinforcing fiber, a fiber-reinforced thermoplastic resin base material having high mechanical properties while being lightweight can be obtained.
  • carbon fibers examples include PAN-based carbon fibers made from polyacrylonitrile (PAN) fibers, pitch-based carbon fibers made from petroleum tar and petroleum pitch, cellulose-based carbon made from viscose rayon, cellulose acetate, and the like. Examples thereof include vapor-grown carbon fibers made from fibers and hydrocarbons, and graphitized fibers thereof. Of these carbon fibers, PAN-based carbon fibers are preferably used in that they have an excellent balance between strength and elastic modulus.
  • PAN-based carbon fibers made from polyacrylonitrile (PAN) fibers
  • pitch-based carbon fibers made from petroleum tar and petroleum pitch
  • cellulose-based carbon made from viscose rayon, cellulose acetate, and the like. Examples thereof include vapor-grown carbon fibers made from fibers and hydrocarbons, and graphitized fibers thereof.
  • PAN-based carbon fibers are preferably used in that they have an excellent balance between strength and elastic modulus.
  • metal fibers include fibers made of metal such as iron, gold, silver, copper, aluminum, brass, and stainless steel.
  • organic fibers include fibers made of organic materials such as aramid, polybenzoxazole (PBO), polyphenylene sulfide, polyester, polyamide, and polyethylene.
  • aramid fiber examples include a para-aramid fiber excellent in strength and elastic modulus and a meta-aramid fiber excellent in flame retardancy and long-term heat resistance.
  • para-aramid fiber examples include polyparaphenylene terephthalamide fiber and copolyparaphenylene-3,4'-oxydiphenylene terephthalamide fiber.
  • meta-aramid fiber include polymetaphenylene isophthalamide fiber. Is mentioned.
  • As the aramid fiber a para-aramid fiber having a higher elastic modulus than the meta-aramid fiber is preferably used.
  • the fiber which consists of inorganic materials such as glass, a basalt, a silicon carbide, a silicon nitride
  • glass fiber examples include E glass fiber (for electricity), C glass fiber (for corrosion resistance), S glass fiber, and T glass fiber (high strength, high elastic modulus).
  • Basalt fiber is a fiber made from basalt, a mineral, and is extremely heat-resistant. Basalt, generally the FeO or FeO 2 is a compound of iron 9-25% by weight, but containing TiO or TiO 2 which is a compound of titanium 1-6% by weight, increase of these components in the molten state It is also possible to fiberize.
  • the fiber reinforced thermoplastic resin substrate according to the present invention is often expected to serve as a reinforcing material, it is desirable to exhibit high mechanical properties. To exhibit high mechanical properties, It is preferable that carbon fiber is included.
  • the reinforcing fiber is usually configured by arranging one or a plurality of reinforcing fiber bundles in which a large number of single fibers are bundled.
  • the total number of reinforcing fiber filaments (number of single fibers) when one or a plurality of reinforcing fiber bundles are arranged is preferably 1,000 to 2,000,000. From the viewpoint of productivity, the total number of reinforcing fibers is preferably 1,000 to 1,000,000, more preferably 1,000 to 600,000, and more preferably 1,000 to 300,000. Particularly preferred.
  • the upper limit of the total number of filaments in the reinforcing fibers may be determined so that the productivity, dispersibility, and handleability can be kept good in consideration of the balance between dispersibility and handleability.
  • One reinforcing fiber bundle is preferably formed by bundling 1,000 to 50,000 single fibers of reinforcing fibers having an average diameter of 5 to 10 ⁇ m.
  • thermoplastic resin used in the present invention examples include polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate (PTT) resin, polyethylene naphthalate (PEN) resin, and liquid crystal polyester resin.
  • Polyester Polyethylene (PE) resin, Polypropylene (PP) resin, Polybutylene resin and other polyolefins, Styrenic resin, Polyoxymethylene (POM) resin, Polyamide (PA) resin, Polycarbonate (PC) resin, Poly Methylene methacrylate (PMMA) resin, polyvinyl chloride (PVC) resin, polyphenylene sulfide (PPS) resin, polyphenylene ether (PPE) resin, modified PPE resin, polyimide (PI) resin, polyamide (PAI) resin, polyetherimide (PEI) resin, polysulfone (PSU) resin, modified PSU resin, polyethersulfone resin, polyketone (PK) resin, polyetherketone (PEK) resin, polyetheretherketone (PEEK) resin , Fluorinated resins such as polyether ketone ketone (PEKK) resin, polyarylate (PAR) resin, polyether nitrile (PEN) resin, phenolic resin, phenoxy resin, polyt
  • polyamide resin is used from the viewpoint of heat resistance and chemical resistance
  • polycarbonate resin and styrene resin are used from the viewpoint of molded product appearance and dimensional stability
  • polyamide resin is used from the viewpoint of strength and impact resistance of the molded product.
  • polyamide 6 and polyamide 66 are more preferable in terms of strength and heat resistance.
  • Polyamide 6 and polyamide 66 may be blended, but a polyamide 6/66 copolymer having a copolymerization ratio of 30 to 90% by weight of the polyamide 6 component and 70 to 10% by weight of the polyamide 66 component is particularly preferable in terms of fiber dispersibility. More preferably, the polyamide 6 component is 35 to 85% by weight, the polyamide 66 component is 65 to 15% by weight, the polyamide 6 component is 40 to 80% by weight, and the polyamide 66 component is 60 to 20% by weight.
  • the fiber reinforced thermoplastic resin substrate according to the present invention is obtained by impregnating continuous thermoplastic fibers with the above-mentioned thermoplastic resin, and further contains a filler, other kinds of polymers, various additives, and the like as necessary. May be.
  • any material generally used as a filler for resin can be used, and the strength, rigidity, heat resistance, and dimensional stability of the fiber reinforced thermoplastic resin substrate and a molded product using the same are further improved. be able to.
  • the filler include glass fiber, carbon fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone koji fiber, and metal fiber.
  • Fibrous inorganic filler wollastonite, zeolite, sericite, kaolin, mica, talc, clay, pyrophyllite, bentonite, montmorillonite, asbestos, aluminosilicate, alumina, silicon oxide, magnesium oxide, zirconium oxide, titanium oxide, oxidation Iron, calcium carbonate, magnesium carbonate, dolomite, calcium sulfate, barium sulfate, magnesium hydroxide, calcium hydroxide, aluminum hydroxide, glass beads, ceramic beads, boron nitride, silicon carbide, silica, etc.
  • a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, or an epoxy compound.
  • a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, or an epoxy compound.
  • montmorillonite an organic montmorillonite obtained by cation exchange of interlayer ions with an organic ammonium salt may be used.
  • a fibrous filler consists of discontinuous fibers, a function can be provided without impairing the reinforcing effect of the reinforcing fibers composed of continuous fibers.
  • polymers include, for example, polyolefins such as polyethylene and polypropylene, elastomers such as polyamide elastomer and polyester elastomer, polyester, polycarbonate, polyphenylene ether, polyphenylene sulfide, liquid crystal polymer, polysulfone, polyethersulfone, ABS resin, SAN Examples thereof include resins and polystyrene. Two or more of these may be contained.
  • modified polyolefins such as (co) polymers of olefin compounds and / or conjugated diene compounds, polyamide elastomers
  • An impact resistance improver such as a polyester elastomer is preferably used.
  • Examples of (co) polymers of olefin compounds and / or conjugated diene compounds include ethylene copolymers, conjugated diene polymers, conjugated diene-aromatic vinyl hydrocarbon copolymers, and the like.
  • Examples of the ethylene copolymer include copolymers of ethylene and ⁇ -olefins having 3 or more carbon atoms, non-conjugated dienes, vinyl acetate, vinyl alcohol, ⁇ , ⁇ -unsaturated carboxylic acids and derivatives thereof. Can be mentioned.
  • Examples of the ⁇ -olefin having 3 or more carbon atoms include propylene and butene-1.
  • Examples of the non-conjugated diene include 5-methylidene-2-norbornene, 5-ethylidene-2-norbornene, dicyclopentadiene, 1,4-hexadiene, and the like.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid include acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, and butenedicarboxylic acid.
  • Examples of the derivatives of ⁇ , ⁇ -unsaturated carboxylic acids include alkyl esters, aryl esters, glycidyl esters, acid anhydrides, imides and the like of the ⁇ , ⁇ -unsaturated carboxylic acids.
  • the conjugated diene polymer refers to at least one conjugated diene polymer.
  • the conjugated diene include 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and the like. Further, some or all of the unsaturated bonds of these polymers may be reduced by hydrogenation.
  • the conjugated diene-aromatic vinyl hydrocarbon copolymer refers to a copolymer of conjugated diene and aromatic vinyl hydrocarbon, and may be a block copolymer or a random copolymer.
  • Examples of the conjugated diene include 1,3-butadiene and isoprene.
  • Examples of the aromatic vinyl hydrocarbon include styrene.
  • a part or all of unsaturated bonds other than double bonds other than the aromatic ring of the conjugated diene-aromatic vinyl hydrocarbon copolymer may be reduced by hydrogenation.
  • impact modifiers include ethylene / methacrylic acid copolymers and some or all of the carboxylic acid moieties in these copolymers as salts with sodium, lithium, potassium, zinc, calcium, Examples include ethylene / propylene-g-maleic anhydride copolymer, ethylene / butene-1-g-maleic anhydride copolymer, and the like.
  • additives include, for example, antioxidants and heat stabilizers (hindered phenols, hydroquinones, phosphites and their substitutes, copper halides, iodine compounds, etc.), weathering agents (resorcinols, salicylates).
  • antioxidants and heat stabilizers hindered phenols, hydroquinones, phosphites and their substitutes, copper halides, iodine compounds, etc.
  • weathering agents resorcinols, salicylates.
  • Benzotriazole series, benzophenone series, hindered amine series, etc.), mold release agents and lubricants aliphatic alcohol, aliphatic amide, aliphatic bisamide, bisurea, polyethylene wax, etc.
  • pigments cadmium sulfide, phthalocyanine, carbon black, etc.
  • Dye nigrosine, aniline black, etc.
  • plasticizer octyl p-oxybenzoate, N-butylbenzenesulfonamide, etc.
  • antistatic agent alkyl sulfate type anionic antistatic agent, quaternary ammonium salt type cationic charging
  • Inhibitor polyoxyethylene Nonionic antistatic agents such as rubitan monostearate, betaine amphoteric antistatic agents, etc.
  • flame retardants hydramines such as melamine cyanurate, magnesium hydroxide, aluminum hydroxide, ammonium polyphosphate, brominated polystyrene
  • the fiber-reinforced thermoplastic resin substrate according to the present invention can be obtained by impregnating a continuous reinforcing fiber with a thermoplastic resin.
  • Examples of the impregnation method include, for example, a film method in which a thermoplastic resin is impregnated into a reinforcing fiber bundle by melting and pressurizing a film-like thermoplastic resin, and after blending a fibrous thermoplastic resin and a reinforcing fiber bundle, Combing method in which a fibrous thermoplastic resin is melted and pressed to impregnate the reinforcing fiber bundle with the thermoplastic resin.
  • the powdery A powder method in which a thermoplastic fiber is impregnated with a thermoplastic resin by melting and pressurizing the thermoplastic resin, and the reinforcing fiber bundle is impregnated with a thermoplastic resin by immersing the reinforcing fiber bundle in the molten thermoplastic resin and applying pressure.
  • the pulling method to make is mentioned. Since various types of fiber reinforced thermoplastic resin substrates such as various thicknesses and fiber volume contents can be produced, the drawing method is preferable.
  • the thickness of the fiber reinforced thermoplastic resin substrate according to the present invention is preferably 0.15 to 1.5 mm. If thickness is 0.15 mm or more, the intensity
  • the fiber reinforced thermoplastic resin substrate according to the present invention 20% by volume or more and 65% by volume or less of reinforcing fiber is contained in 100% by volume of the entire fiber reinforced thermoplastic resin substrate.
  • 20% by volume or more of reinforcing fibers the strength of the molded product obtained using the fiber-reinforced thermoplastic resin substrate can be further improved.
  • 30 volume% or more is more preferable, and 40 volume% or more is further more preferable.
  • 65% by volume or less of reinforcing fibers it is easier to impregnate the reinforcing fibers with thermoplasticity. 60 volume% or less is more preferable, and 55 volume% or less is further more preferable.
  • the reinforcing fiber volume content Vf of the fiber reinforced thermoplastic resin substrate is determined by measuring the mass W0 (g) of the fiber reinforced thermoplastic resin substrate, and then removing the continuous fiber reinforced thermoplastic resin substrate in the air at 500 ° C. Was heated for 30 minutes to burn off the thermoplastic resin component, and the mass W1 (g) of the remaining reinforcing fiber was measured and calculated by the formula (3).
  • Vf (volume%) (W1 / ⁇ f) / ⁇ W1 / ⁇ f + (W0 ⁇ W1) / ⁇ 1 ⁇ ⁇ 100 (3)
  • ⁇ f density of reinforcing fiber (g / cm 3 )
  • ⁇ r Density of thermoplastic resin (g / cm 3 )
  • the fiber reinforced thermoplastic resin substrate of the present invention preferably has a void content (void ratio) of 2% or less in the fiber reinforced thermoplastic substrate.
  • void ratio 2% or less
  • the void ratio is more preferably 1.5% or less, and further preferably 1% or less.
  • the void ratio of the fiber reinforced thermoplastic resin substrate in the present invention was determined by observing the thickness direction cross section of the fiber reinforced thermoplastic resin substrate as follows. A sample in which a fiber reinforced thermoplastic resin base material was embedded with an epoxy resin was prepared, and the sample was polished until the cross section in the thickness direction of the fiber reinforced thermoplastic resin base material could be observed well. The polished sample was photographed at a magnification of 400 times using an ultra-deep color 3D shape measuring microscope VHX-9500 (controller part) / VHZ-100R (measuring part) (manufactured by Keyence Corporation). The photographing range was set to a range of the thickness of the fiber-reinforced thermoplastic resin substrate ⁇ the width of 500 ⁇ m.
  • the dispersion parameter D defined by the following method is 90% or more.
  • variations in mechanical properties of the fiber-reinforced thermoplastic resin substrate can be reduced.
  • (Calculation of dispersion parameter D) (I) A cross section perpendicular to the reinforcing fiber orientation direction of the fiber-reinforced thermoplastic resin base material is divided into a plurality of sections, and one of the sections is photographed. (Ii) The captured image of the section is divided into a plurality of square units having a length t of one side defined by Expression (1). (Iii) The dispersion parameter d defined by the equation (2) is calculated.
  • the fiber reinforced thermoplastic resin base material which is a sample, is embedded in an epoxy resin “Epoquick” (registered trademark: manufactured by Buehler), cured at room temperature for 24 hours, and then the orientation of the reinforced fibers in the fiber reinforced thermoplastic resin base material. Polishing the cross section almost perpendicular to the direction, and then changing the position of the polished surface with an ultra-deep color 3D shape measurement microscope VHX-9500 (controller part) / VHZ-100R (measuring part) (manufactured by Keyence Corporation) Take a picture.
  • VHX-9500 controller part
  • VHZ-100R measuring part
  • Image analysis was performed on the cross-sectional photograph of the photographed fiber thermoplastic resin base material, and it was divided into a plurality of substantially square units that have a length of one side and that do not overlap each other. Images of the substantially square units were sequentially analyzed, and units containing reinforcing fibers were counted in the approximately square units, and the dispersion parameter d was calculated from the equation (2).
  • the dispersion parameter d is obtained by calculating the number of units including reinforcing fibers in the unit with respect to the total number of the substantially square units partitioned.
  • binarization employs a discriminant analysis method, but in some cases, it can also be manually performed while comparing with a photograph.
  • the reinforcing fibers included in the square unit are counted if they are included in a part of the reinforcing fibers as shown in FIG. 2, and two or more reinforcing fibers are included as shown in FIG. However, it is counted as one unit.
  • the size of the unit obtained by Equation (1) is defined by the relationship with the diameter of the reinforcing fiber observed. If the unit size is smaller than the range of the formula (1), the dispersion parameter is converged on the volume content, and the dispersibility cannot be expressed accurately. On the other hand, if it is larger than the range of the formula (1), the value is constant regardless of whether the dispersibility is good or not, and is not accurate. Therefore, the size of the unit needs to be in the range of the formula (1).
  • the coefficient of variation of the dispersion parameter d is obtained from equation (5).
  • the coefficient of variation exceeds 4%, the density of the reinforcing fibers increases at each location in the fiber-reinforced thermoplastic resin substrate. Therefore, the coefficient of variation is preferably 4% or less, and more preferably 3% or less.
  • Coefficient of variation average value of dispersion parameter d / standard deviation of dispersion parameter d ⁇ 100 (5)
  • the manufacturing method of the fiber reinforced thermoplastic resin base material which concerns on this invention is demonstrated in detail.
  • the manufacturing apparatus include a creel portion that can hold one or more bobbins around which the reinforcing fiber bundle before being impregnated with the matrix resin is wound, a feed portion that continuously feeds the reinforcing fiber bundle from the creel portion, A molten matrix resin is attached to the reinforced fiber bundle sent to the substrate and impregnated by applying pressure, and an impregnation die for shaping into a predetermined shape, and the molten matrix resin is cooled and solidified to form a fiber reinforced thermoplastic resin base. It is comprised from the cooling roll for forming material.
  • the molten fiber bundle continuously fed out is impregnated with the molten matrix resin.
  • a continuous bundle of reinforcing fibers usually has a thin layered form.
  • a plurality of bobbins each having a bundle of reinforcing fibers bundled by collecting 1,000 to 50,000 continuous fibers of reinforcing fibers are prepared, and the reinforcing fiber bundles are pulled out from the plurality of bobbins.
  • the reinforcing fiber bundles are made to enter the impregnation die in which the molten matrix resin is stored through a plurality of yarn path guides.
  • the layered reinforcing fiber bundle is preferably allowed to enter the impregnation die in a state where two or more layers are laminated. By laminating the layered reinforcing fiber bundle into two or more layers, the dimensions can be easily adjusted.
  • the impregnation die provided in the manufacturing apparatus is a rectangular parallelepiped facing the transfer direction of the reinforcing fiber bundle, and the matrix resin supplied from the feeder is stored in a melted state inside the impregnation die.
  • An inlet hole through which the reinforcing fiber bundle can pass is formed at the inlet of the impregnation die located upstream in the transfer direction of the reinforcing fiber bundle, and the reinforcing fiber bundle passes through the inlet hole to the inside of the impregnation die. Enter.
  • the opened reinforcing fiber bundle is tensioned by a bar or roll provided inside the impregnation die, while the single fibers constituting the reinforcing fiber bundle are aligned, bent in the traveling direction, or rubbed. While passing through the impregnation die, the molten matrix resin is impregnated between the single fibers constituting the reinforcing fiber bundle.
  • Methods for reducing the force applied for impregnation include applying ultrasonic waves to the molten resin in the impregnation die, vibrating the reinforcing fiber bundle, and laminating each layer after impregnating the resin into a thin reinforcing fiber bundle layer. The method of doing is mentioned.
  • the reinforcing fiber bundle impregnated with the molten matrix resin By continuously pulling out the reinforcing fiber bundle impregnated with the molten matrix resin from the impregnation die, it is shaped into a predetermined shape before the matrix resin impregnated in the reinforcing fiber bundle is solidified, and then in the cooling and solidifying step.
  • the molten matrix resin is cooled and solidified to form a fiber reinforced thermoplastic resin having a fixed shape.
  • a die nozzle is provided at the exit of the impregnation die, and the reinforcing fiber bundle drawn out by the take-up roll and impregnated with the matrix resin is shaped into a predetermined cross-sectional shape.
  • the dimension in the transfer direction of the reinforcing fiber bundle of the die nozzle is preferably a length in which the time for the reinforcing fiber bundle to pass through the die nozzle is a passage time of 0.1 seconds or more. 0.4 second or more is more preferable, and 1.0 second or more is more preferable.
  • the die nozzle dimensions have a passage time of 0.1 seconds or more, a time required for dispersion of the reinforcing fiber bundle is ensured, and a fiber-reinforced thermoplastic resin base material having good dispersibility of the reinforcing fiber bundle can be obtained.
  • the shaped reinforcing fiber bundle is passed through a cooling roll through which cooling water is passed, so that the molten matrix resin is cooled and solidified to form a fiber reinforced thermoplastic resin substrate having a fixed shape.
  • the take-up tension of the reinforcing fiber bundle impregnated with the matrix resin is preferably 5 to 200 N, more preferably 5 to 150 N per 12,000 single fibers.
  • the take-up tension is less than 5N, the reinforcing fiber bundle is easy to move, so that it is easy to cause an overlap with the adjacent reinforcing fiber bundle or a gap between the adjacent fiber bundles, thereby deteriorating the dispersibility of the reinforcing fiber bundle.
  • the take-up tension can be appropriately adjusted depending on the setting conditions of the preliminary tension and the conveyance speed.
  • the take-up tension can be increased by increasing the conveying speed.
  • the take-up tension can be adjusted as appropriate depending on the roll shape and roll arrangement.
  • a molded article can be obtained by laminating one or more fiber-reinforced thermoplastic resin substrates according to the present invention in an arbitrary configuration and then molding while applying heat and / or pressure as necessary. .
  • thermoplastic resin base material laminated in an arbitrary configuration is placed in a mold or on a press plate, and then the mold or press plate is closed and pressurized.
  • the fiber reinforced thermoplastic resin substrate of the present invention or a molded product thereof is excellent in productivity such as integral molding such as insert molding and outsert molding, correction treatment by heating, thermal welding, vibration welding, ultrasonic welding and the like. Integration using an adhesive method or an adhesive can be performed, and a composite can be obtained.
  • the molding base material or molded article integrated with the fiber-reinforced thermoplastic resin base material or molded article thereof of the present invention for example, a resin material or molded article thereof, a metal material or molded article thereof, An inorganic material or a molded product thereof can be used.
  • the resin material, the molded product thereof, the metal material, or the molded product thereof can effectively express the reinforcing effect of the fiber-reinforced thermoplastic substrate according to the present invention.
  • a resin material or a molded product thereof is preferable in terms of adhesive strength with a fiber reinforced thermoplastic resin substrate, and a fiber reinforced resin obtained by impregnating a matrix resin into a reinforced fiber mat having a fiber length of 5 to 100 mm is excellent in moldability and mechanical properties. From the point of view, it is more preferable.
  • the metal material or a molded product thereof high-tensile steel, aluminum alloy, titanium alloy, magnesium alloy, or the like can be used, and may be selected according to characteristics required for the metal layer, metal member, and metal part.
  • the matrix resin of the molding material integrated with the fiber reinforced thermoplastic resin base material of the present invention or the molded product thereof may be the same type of resin as the fiber reinforced thermoplastic resin base material or the molded product thereof, or a different kind of resin. Resin may be used. In order to further increase the adhesive strength, the same kind of resin is preferable. In the case of a different kind of resin, it is more preferable to provide a resin layer at the interface.
  • the fiber-reinforced thermoplastic resin base material or molded article of the present invention utilizes its excellent characteristics, and is used in various applications such as aircraft parts, automobile parts, electrical / electronic parts, building members, various containers, daily necessities, daily necessities and sanitary goods. Can be used.
  • the fiber-reinforced terminal-modified thermoplastic resin base material or molded product thereof according to the present invention includes, among other things, aircraft engine peripheral parts that require stable mechanical properties, exterior parts for aircraft parts, vehicle skeletons as automobile body parts, and automobile engines. It is particularly preferably used for peripheral parts, automobile underhood parts, automobile gear parts, automobile interior parts, automobile exterior parts, intake / exhaust system parts, engine cooling water system parts, automotive electrical parts, and electrical / electronic parts.
  • the fiber-reinforced terminal-modified polyamide resin or the molded product thereof in the present invention includes peripheral parts for aircraft engines such as fan blades, landing gear pods, winglets, spoilers, edges, ladders, elevators, failings, ribs, and the like.
  • Aircraft-related parts various seats, front body, underbody, various pillars, various members, various frames, various beams, various supports, various rails, various hinges, and other automobile body parts, engine covers, air intake pipes, timing belt covers, Car engine peripheral parts such as intake manifold, filler cap, throttle body, cooling fan, cooling fan, top and base of radiator tank, cylinder head cover, oil pan, Automobile hood parts such as rake piping, fuel piping tubes, exhaust gas system parts, gears, actuators, bearing retainers, bearing cages, chain guides, chain tensioners, shift lever brackets, steering lock brackets, key cylinders, Door inner handle, door handle cowl, interior mirror bracket, air conditioner switch, instrument panel, console box, glove box, steering wheel, trim and other automotive interior parts, front fender, rear fender, fuel lid, door panel, cylinder head cover, door mirror stay , Tailgate panel, license garnish, roof rail, engine mount bracket, rear gun Nis, rear spoiler, trunk lid, rocker molding, molding, lamp housing, front grill
  • Vf Volume content
  • the volume content Vf of the fiber reinforced thermoplastic resin base material obtained in each of the examples and comparative examples was determined by measuring the mass W0 of the fiber reinforced thermoplastic resin base material and then removing the fiber reinforced thermoplastic resin base material in the air. The thermoplastic resin component was burned off by heating at 500 ° C. for 30 minutes, and the mass W1 of the remaining reinforcing fiber was measured and calculated by the formula (3).
  • Vf (volume%) (W1 / ⁇ f) / ⁇ W1 / ⁇ f + (W0 ⁇ W1) / ⁇ 1 ⁇ ⁇ 100 (3)
  • ⁇ f density of reinforcing fiber (g / cm 3 )
  • ⁇ r Density of thermoplastic resin (g / cm 3 )
  • the obtained test piece was subjected to a tensile test according to JIS K7165-2008 using an “Instron” (registered trademark) universal testing machine 4201 type (manufactured by Instron), and the tensile strength was measured. The measurement was performed three times, and the coefficient of variation was calculated from the average value and the standard deviation. The coefficient of variation in tensile strength was used as a criterion for the stability of mechanical properties, and was evaluated in the following two stages. ⁇ : The coefficient of variation is less than 5%. X: The coefficient of variation is 5% or more.
  • Impregnation property A cross section in the thickness direction of the fiber-reinforced thermoplastic resin substrate obtained in each of the examples and comparative examples was observed as follows. A sample in which a fiber reinforced thermoplastic resin base material was embedded with an epoxy resin was prepared, and the sample was polished until the cross section in the thickness direction of the fiber reinforced thermoplastic resin base material could be observed well. The polished sample was photographed at a magnification of 400 times using an ultra-deep color 3D shape measuring microscope VHX-9500 (controller part) / VHZ-100R (measuring part) (manufactured by Keyence Corporation). The photographing range was set to a range of the thickness of the fiber-reinforced thermoplastic resin substrate ⁇ the width of 500 ⁇ m.
  • Void ratio (%) (total area occupied by voids) / (total area of fiber-reinforced thermoplastic resin substrate) ⁇ 100 (4)
  • the fiber reinforced thermoplastic resin base material which is a sample, is embedded in an epoxy resin “Epoquick” (registered trademark: manufactured by Buehler), cured at room temperature for 24 hours, and then the orientation of the reinforced fibers in the fiber reinforced thermoplastic resin base material.
  • Epoquick registered trademark: manufactured by Buehler
  • the cross section almost perpendicular to the direction was polished, and then the polished surface was photographed with an ultra-deep color 3D shape measuring microscope VHX-9500 (controller unit) / VHZ-100R (measuring unit) (manufactured by Keyence Corporation).
  • the photographed cross-sectional photographs of the respective fiber thermoplastic resin base materials were divided into units of substantially squares each having the length of one side of the formula (1) that does not overlap each other using image analysis software.
  • the substantially square unit image processing was performed, a unit including reinforcing fibers in the approximately square unit was measured, and the dispersion parameter d was calculated from the equation (2).
  • the dispersion parameter d thus obtained was photographed over 20 or more sheets, and the average value and coefficient of variation were calculated.
  • Carbon fiber bundle T700S-12K manufactured by Toray Industries, Inc.
  • Thermoplastic resin polyamide 6 and polyamide 6/66, “Amilan” (registered trademark) manufactured by Toray Industries, Inc.
  • Example 1 Carbon fibers (represented as CF in Table 1) were used as reinforcing fibers, 16 bobbins each having a carbon fiber bundle wound thereon were prepared, and each carbon fiber bundle was continuously fed from the bobbin through a yarn path guide.
  • Matrix resin (“Amilan” (registered trademark) manufactured by Toray Industries, Inc.): Polyamide 6 [denoted as PA6 in Table 1] supplied in a constant amount from a feeder filled in a carbon fiber bundle continuously fed into an impregnation die ).
  • Carbon fibers impregnated with polyamide 6 resin as a matrix resin with a weak force that does not deteriorate the dispersion of reinforcing fiber bundles in the impregnation die are continuously extracted from the nozzle of the impregnation die using a take-off roll at a speed of 1 m / min. Pulled out.
  • the passing time of the carbon fiber bundle through the nozzle was 4.0 seconds.
  • the drawn carbon fiber bundle passed through a cooling roll, and the polyamide 6 resin was cooled and solidified, and was wound around a winder as a continuous fiber-reinforced polyamide resin base material.
  • the obtained fiber-reinforced polyamide resin base material had a thickness of 0.3 mm and a width of 50 mm, and the reinforcing fiber directions were arranged in one direction.
  • the obtained fiber reinforced polyamide resin substrate was subjected to the above evaluation. The evaluation results are shown in Table 1.
  • Example 2 to 7 The product thickness, volume content, and matrix resin ("Amilan” (registered trademark) manufactured by Toray Industries, Inc .: polyamide 6 or polyamide 6/66 [referred to as PA6, PA6 / 66 in Table 1]) under the conditions shown in Table 1
  • a fiber-reinforced polyamide resin substrate was obtained in the same manner as in Example 1 except that the change was made.
  • the obtained fiber reinforced polyamide resin substrate was subjected to the above evaluation. The evaluation results are shown in Table 1.
  • thermoplastic resin film (“Amilan” (registered trademark): polyamide 6) was laminated from both sides of the continuously fed carbon fiber bundle to obtain a laminate.
  • the laminate was heated to a predetermined temperature, and a thermoplastic resin film was melt impregnated into a sheet of carbon fiber bundles, and pressurized and cooled to obtain a fiber reinforced polyamide resin substrate.
  • the obtained fiber-reinforced polyamide resin base material had a thickness of 0.3 mm and a width of 50 mm, and the reinforcing fiber directions were arranged in one direction.
  • the evaluation results are shown in Table 1.
  • Comparative Examples 2 to 4 Fiber in the same manner as in Comparative Example 1 except that the product thickness, volume content, and matrix resin (“Amilan” (registered trademark): polyamide 6 or polyamide 6/66 manufactured by Toray Industries, Inc.) were changed to the conditions shown in Table 1. A reinforced polyamide resin substrate was obtained. The obtained fiber reinforced polyamide resin substrate was subjected to the above evaluation. The evaluation results are shown in Table 1.
  • the fiber reinforced thermoplastic resin substrate according to the present invention can be molded into a desired shape by any molding method such as autoclave molding, press molding, film molding, etc., but is weak enough not to deteriorate the dispersion. It is preferable that the matrix resin is impregnated with force and formed into a desired shape by pultrusion.
  • Molded articles obtained by molding using the fiber reinforced thermoplastic resin substrate according to the present invention include, for example, aircraft engine peripheral parts, aircraft interior parts, aircraft exterior parts, vehicle skeleton, automobile engine peripheral parts, automobile underhood parts, It is effective for automobile gear parts, automobile interior parts, automobile exterior parts, intake / exhaust system parts, engine cooling water system parts, automotive electrical parts, and other electrical / electronic parts applications such as LED reflectors and SMT connectors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

連続した強化繊維に熱可塑性樹脂が含浸され、繊維体積含有率が40~65体積%の範囲内にあり、且つ次の方法によって求められる繊維の分散パラメーターDが90%以上である繊維強化熱可塑性樹脂基材、およびそれを用いた成形品。(i)維強化熱可塑性樹脂基材の強化繊維配向方向と垂直な横断面を複数の区画に分割し、その中の1つの区画を撮影する。(ii)前記区画の撮影画像を、式(1)で規定された一辺の長さtを有する複数の正方形ユニットに分割する。(iii)式(2)で定義する分散パラメーターdを算出する。(iv)異なる区画について(i)~(iii)の手順を繰り返し、前記横断面から得られる複数の区画の分散パラメーターdの平均値を分散パラメーターDとする。(1)1.5a≦t≦2.5a(a:繊維直径、t:ユニットの一辺の長さ)、(2)分散パラメーターd=区画内における強化繊維が含まれるユニットの個数/区画内におけるユニットの総個数×100。強化繊維が高い均一性をもって分散し、優れた機械特性が小さなばらつきをもって安定して発現される繊維強化熱可塑性樹脂が得られる。

Description

繊維強化熱可塑性樹脂基材およびそれを用いた成形品
 本発明は、繊維強化熱可塑性樹脂基材およびそれを用いた成形品に関する。
 連続した強化繊維に熱可塑性樹脂を含浸させてなる繊維強化熱可塑性樹脂基材は、比強度、比剛性に優れ、軽量化効果が高い上に、耐熱性、耐薬品性が高いため、航空機、自動車等の輸送機器や、スポーツ、電気・電子部品などの各種用途へ好ましく用いられている。近年、軽量化に対する需要の高まりにより、航空機、自動車用途を中心に、金属部品から樹脂部品への代替や、部品の小型化、モジュール化が進みつつあることから、より成形性に優れ、かつ、機械特性に優れる材料開発が求められている。
 成形性と機械特性に優れた構造材用複合材料としては、例えば、ポリアミド樹脂に炭素繊維を含有してなる繊維強化熱可塑性樹脂プリプレグ(例えば、特許文献1参照)が知られている。このようなプリプレグは、高い機械特性のために軽量化材料として期待されているが、安定して機械特性を発現するためには、繊維束間へのマトリックス樹脂の含浸性に優れ、強化繊維が繊維強化熱可塑性樹脂基材中に均一に分散することが必要である。
 強化繊維の分散の均一性を求める方法としては、例えば特許文献2に記載されているように、繊維強化複合材料の断面画像を適当な大きさに分割し、分割された各区画における強化繊維の面積率のバラつきから求める方法が挙げられる。しかし、このような方法では、例えば図1に示すように強化繊維が分布する場合には、各区画内における強化繊維の疎密を適切に評価できず、実際には強化繊維が不均一に分散している可能性がある。従って、強化繊維がより均一に分散した繊維強化熱可塑性樹脂基材が求められている。
特開2013-159675号公報 特開平8-164521号公報
 そこで本発明の課題は、熱可塑性樹脂をマトリックスとした繊維強化熱可塑性樹脂基材に関して、強化繊維がより確実に均一に分散し、機械特性のばらつきの小さい繊維強化熱可塑性樹脂基材を提供することにある。
 上記課題を解決するために、本発明は、主として、以下の構成を有する。
[1]連続した強化繊維が平行に引き揃えられるとともに、熱可塑性樹脂が含浸された繊維強化熱可塑性樹脂基材であって、繊維体積含有率が40~65体積%の範囲内にあり、且つ下記の方法によって求められる繊維の分散パラメーターDが90%以上であることを特徴とする繊維強化熱可塑性樹脂基材。
(i)前記繊維強化熱可塑性樹脂基材の強化繊維配向方向と垂直な横断面を複数の区画に分割し、その中の1つの区画を撮影する。
(ii)前記区画の撮影画像を、式(1)で規定された一辺の長さtを有する複数の正方形ユニットに分割する。
(iii)式(2)で定義する分散パラメーターdを算出する。
(iv)異なる区画について(i)~(iii)の手順を繰り返し、前記横断面から得られる複数の区画の分散パラメーターdの平均値を分散パラメーターDとする。
 1.5a≦t≦2.5a  (a:繊維直径、t:ユニットの一辺の長さ)・・・(1)
 分散パラメーターd=区画内における強化繊維が含まれるユニットの個数/区画内におけるユニットの総個数×100・・・(2)
[2]前記分散パラメーターdの変動係数が4%以下である、[1]に記載の繊維強化熱可塑性樹脂基材。
[3]厚みが0.15mm~1.5mmの範囲にある、[1]または[2]に記載の繊維強化熱可塑性樹脂基材。
[4]前記熱可塑性樹脂がポリアミド6もしくはポリアミド66、またはこれらの混合物のいずれかである、[1]~[3]のいずれかに記載の繊維強化熱可塑性樹脂基材。
[5]前記熱可塑性樹脂が、ポリアミド6成分30~90重量%とポリアミド66成分70~10重量%とからなるポリアミド共重合体を含む、[1]~[4]のいずれかに記載の繊維強化熱可塑性樹脂基材。
[6]前記強化繊維が炭素繊維である、[1]~[5]のいずれかに記載の繊維強化熱可塑性樹脂基材。
[7]ボイド率が2%以下である、[1]~[6]のいずれかに記載の繊維強化熱可塑性樹脂基材。
[8]引き抜き成形によって得られたものである、[1]~[7]のいずれかに繊維強化熱可塑性樹脂基材。
[9][1]~[8]のいずれかに記載の繊維強化熱可塑性樹脂基材からなる成形品。
[10][1]~[8]のいずれかに記載の繊維強化熱可塑性樹脂基材またはその成形品と、金属材料またはその成形品、もしくは樹脂材料またはその成形品とを一体化してなる複合成形品。
 本発明によれば、強化繊維が高い均一性をもって分散し、優れた機械特性が小さなばらつきをもって安定して発現される繊維強化熱可塑性樹脂が得られる。
繊維強化熱可塑性樹脂の断面における強化繊維の分布状態の一例を示す模式図である。 本発明における正方形ユニット中に強化繊維が存在する状態の一例を示す拡大模式図である。 本発明における正方形ユニット中に強化繊維が存在する状態の他の例を示す拡大模式図である。
 以下に、本発明について、実施形態とともに詳細に説明する。
 本発明に係る繊維強化熱可塑性樹脂基材は、平行に引き揃えられた連続した強化繊維に、熱可塑性樹脂基材を含浸させてなる。本発明において、連続した強化繊維とは、繊維強化熱可塑性樹脂基材中で当該強化繊維が途切れのないものをいう。本発明における強化繊維の形態および配列としては、例えば、一方向に引き揃えられたもの、織物(クロス)、編み物、組み紐、トウ等が挙げられる。中でも、特定方向の機械特性を効率よく高められることから、強化繊維が一方向に配列してなることが好ましい。
 強化繊維の種類としては特に限定されず、炭素繊維、金属繊維、有機繊維、無機繊維が例示される。これらを2種以上用いてもよい。強化繊維に炭素繊維を用いることで、軽量でありながら高い機械特性を有する繊維強化熱可塑性樹脂基材が得られる。
 炭素繊維としては、例えば、ポリアクリロニトリル(PAN)繊維を原料とするPAN系炭素繊維、石油タールや石油ピッチを原料とするピッチ系炭素繊維、ビスコースレーヨンや酢酸セルロースなどを原料とするセルロース系炭素繊維、炭化水素などを原料とする気相成長系炭素繊維、これらの黒鉛化繊維などが挙げられる。これら炭素繊維のうち、強度と弾性率のバランスに優れる点で、PAN系炭素繊維が好ましく用いられる。
 金属繊維としては、例えば、鉄、金、銀、銅、アルミニウム、黄銅、ステンレスなどの金属からなる繊維が挙げられる。
 有機繊維としては、例えば、アラミド、ポリベンゾオキサゾール(PBO)、ポリフェニレンスルフィド、ポリエステル、ポリアミド、ポリエチレンなどの有機材料からなる繊維が挙げられる。アラミド繊維としては、例えば、強度や弾性率に優れるパラ系アラミド繊維と、難燃性、長期耐熱性に優れるメタ系アラミド繊維が挙げられる。パラ系アラミド繊維としては、例えば、ポリパラフェニレンテレフタルアミド繊維、コポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド繊維などが挙げられ、メタ系アラミド繊維としては、ポリメタフェニレンイソフタルアミド繊維などが挙げられる。アラミド繊維としては、メタ系アラミド繊維に比べて弾性率の高いパラ系アラミド繊維が好ましく用いられる。
 無機繊維としては、例えば、ガラス、バサルト、シリコンカーバイト、シリコンナイトライドなどの無機材料からなる繊維が挙げられる。ガラス繊維としては、例えば、Eガラス繊維(電気用)、Cガラス繊維(耐食用)、Sガラス繊維、Tガラス繊維(高強度、高弾性率)などが挙げられる。バサルト繊維は、鉱物である玄武岩を繊維化した物で、耐熱性の非常に高い繊維である。玄武岩は、一般的に、鉄の化合物であるFeOまたはFeOを9~25重量%、チタンの化合物であるTiOまたはTiOを1~6重量%含有するが、溶融状態でこれらの成分を増量して繊維化することも可能である。
 本発明に係る繊維強化熱可塑性樹脂基材は、補強材としての役目を期待されることが多いため、高い機械特性を発現することが望ましく、高い機械特性を発現するためには、強化繊維として炭素繊維を含むことが好ましい。
 繊維強化熱可塑性樹脂基材において、強化繊維は、通常、多数本の単繊維を束ねた強化繊維束を1本または複数本並べて構成される。1本または複数本の強化繊維束を並べたときの強化繊維の総フィラメント数(単繊維の本数)は、1,000~2,000,000本が好ましい。生産性の観点からは、強化繊維の総フィラメント数は、1,000~1,000,000本がより好ましく、1,000~600,000本がさらに好ましく、1,000~300,000本が特に好ましい。強化繊維の総フィラメント数の上限は、分散性や取り扱い性とのバランスも考慮して、生産性と分散性、取り扱い性を良好に保てるように決められればよい。
 1本の強化繊維束は、好ましくは平均直径5~10μmである強化繊維の単繊維を1,000~50,000本束ねて構成される。
 本発明に使用される熱可塑性樹脂としては例えば、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート(PTT)樹脂、ポリエチレンナフタレート(PEN)樹脂、液晶ポリエステル樹脂等のポリエステルや、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリブチレン樹脂等のポリオレフィンや、スチレン系樹脂の他や、ポリオキシメチレン(POM)樹脂、ポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂、ポリメチレンメタクリレート(PMMA)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリフェニレンエーテル(PPE)樹脂、変性PPE樹脂、ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリスルホン(PSU)樹脂、変性PSU樹脂、ポリエーテルスルホン樹脂、ポリケトン(PK)樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリアリレート(PAR)樹脂、ポリエーテルニトリル(PEN)樹脂、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレン樹脂などのフッ素系樹脂、更にポリスチレン系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリブタジエン系樹脂、ポリイソプレン系樹脂、フッ素系樹脂等の熱可塑エラストマー等や、これらの共重合体、変性体、および2種類以上ブレンドした樹脂などであってもよい。とりわけ、耐熱性、耐薬品性の観点からはPPS樹脂が、成形品外観、寸法安定性の観点からはポリカーボネート樹脂やスチレン系樹脂が、成形品の強度、耐衝撃性の観点からはポリアミド樹脂がより好ましく用いられる。なかでも、強度や耐熱性の点からポリアミド6、ポリアミド66がより好ましい。また、これらのポリアミド樹脂を流動性、成形加工性などの必要特性に応じて混合することも実用上好適である。ポリアミド6、ポリアミド66はブレンドでもよいが、特に、共重合比がポリアミド6成分30~90重量%、ポリアミド66成分70~10重量%のポリアミド6/66共重合体が繊維分散性の点で好ましく、ポリアミド6成分35~85重量%、ポリアミド66成分65~15重量%がより好ましく、ポリアミド6成分40~80重量%、ポリアミド66成分60~20重量%が更に好ましい。
 本発明に係る繊維強化熱可塑性樹脂基材は、連続した強化繊維に前述の熱可塑性樹脂を含浸させてなり、必要に応じて、さらに、充填材、他種ポリマー、各種添加剤などを含有してもよい。
 充填材としては、一般に樹脂用フィラーとして用いられる任意のものを用いることができ、繊維強化熱可塑性樹脂基材やそれを用いた成形品の強度、剛性、耐熱性、寸法安定性をより向上させることができる。充填材としては、例えば、ガラス繊維、炭素繊維、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状無機充填材、ワラステナイト、ゼオライト、セリサイト、カオリン、マイカ、タルク、クレー、パイロフィライト、ベントナイト、モンモリロナイト、アスベスト、アルミノシリケート、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄、炭酸カルシウム、炭酸マグネシウム、ドロマイト、硫酸カルシウム、硫酸バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、ガラスビーズ、セラミックビーズ、窒化ホウ素、炭化珪素、シリカなどの非繊維状無機充填材などが挙げられる。これらを2種以上含有してもよい。これら充填材は中空であってもよい。また、イソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ化合物などのカップリング剤で処理されていてもよい。また、モンモリロナイトとして、有機アンモニウム塩で層間イオンをカチオン交換した有機化モンモリロナイトを用いてもよい。なお、繊維状充填材は、不連続繊維からなるものであれば、連続繊維からなる強化繊維の補強効果を損なうことなく機能を付与できる。
 他種ポリマーとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド系エラストマー、ポリエステル系エラストマーなどのエラストマーや、ポリエステル、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ABS樹脂、SAN樹脂、ポリスチレンなどを挙げることができる。これらを2種以上含有してもよい。ポリアミド樹脂組成物から得られる繊維強化末端変性ポリアミド樹脂基材の耐衝撃性を向上させるためには、オレフィン系化合物および/または共役ジエン系化合物の(共)重合体などの変性ポリオレフィン、ポリアミド系エラストマー、ポリエステル系エラストマーなどの耐衝撃性改良剤が好ましく用いられる。
 オレフィン系化合物および/または共役ジエン系化合物の(共)重合体としては、エチレン系共重合体、共役ジエン系重合体、共役ジエン-芳香族ビニル炭化水素系共重合体などが挙げられる。
 エチレン系共重合体としては、例えば、エチレンと、炭素数3以上のα-オレフィン、非共役ジエン、酢酸ビニル、ビニルアルコール、α,β-不飽和カルボン酸およびその誘導体などとの共重合体が挙げられる。炭素数3以上のα-オレフィンとしては、例えば、プロピレン、ブテン-1などが挙げられる。非共役系ジエンとしては、例えば、5-メチリデン-2-ノルボルネン、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン、1,4-ヘキサジエンなどが挙げられる。α,β-不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、エタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、ブテンジカルボン酸などが挙げられる。α,β-不飽和カルボン酸の誘導体としては、例えば、前記α,β-不飽和カルボン酸のアルキルエステル、アリールエステル、グリシジルエステル、酸無水物、イミドなどが挙げられる。
 共役ジエン系重合体とは、少なくとも1種の共役ジエンの重合体を指す。共役ジエンとしては、例えば、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどが挙げられる。また、これらの重合体の不飽和結合の一部または全部が水添により還元されていてもよい。
 共役ジエン-芳香族ビニル炭化水素系共重合体とは、共役ジエンと芳香族ビニル炭化水素との共重合体を指し、ブロック共重合体でもランダム共重合体でもよい。共役ジエンとしては、例えば、1,3-ブタジエン、イソプレンなどが挙げられる。芳香族ビニル炭化水素としては、例えば、スチレンなどが挙げられる。また、共役ジエン-芳香族ビニル炭化水素系共重合体の芳香環以外の二重結合以外の不飽和結合の一部または全部が水添により還元されていてもよい。
 耐衝撃性改良剤の具体例としては、エチレン/メタクリル酸共重合体およびこれら共重合体中のカルボン酸部分の一部または全てをナトリウム、リチウム、カリウム、亜鉛、カルシウムとの塩としたもの、エチレン/プロピレン-g-無水マレイン酸共重合体、エチレン/ブテン-1-g-無水マレイン酸共重合体などが挙げられる。
 各種添加剤としては、例えば、酸化防止剤や耐熱安定剤(ヒンダードフェノール系、ヒドロキノン系、ホスファイト系およびこれらの置換体、ハロゲン化銅、ヨウ素化合物等)、耐候剤(レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系等)、離型剤および滑剤(脂肪族アルコール、脂肪族アミド、脂肪族ビスアミド、ビス尿素およびポリエチレンワックス等)、顔料(硫化カドミウム、フタロシアニン、カーボンブラック等)、染料(ニグロシン、アニリンブラック等)、可塑剤(p-オキシ安息香酸オクチル、N-ブチルベンゼンスルホンアミド等)、帯電防止剤(アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートなどの非イオン系帯電防止剤、ベタイン系両性帯電防止剤等)、難燃剤(メラミンシアヌレート、水酸化マグネシウム、水酸化アルミニウム等の水酸化物、ポリリン酸アンモニウム、臭素化ポリスチレン、臭素化ポリフェニレンオキシド、臭素化ポリカーボネート、臭素化エポキシ樹脂あるいはこれらの臭素系難燃剤と三酸化アンチモンとの組み合わせ等)などが挙げられる。これらを2種以上配合してもよい。
 本発明に係る繊維強化熱可塑性樹脂基材は、連続した強化繊維に熱可塑性樹脂を含浸させることにより得ることができる。
 含浸方法としては、例えば、フィルム状の熱可塑性樹脂を溶融し、加圧することで強化繊維束に熱可塑性樹脂を含浸させるフィルム法、繊維状の熱可塑性樹脂と強化繊維束とを混紡した後、繊維状の熱可塑性樹脂を溶融し、加圧することで強化繊維束に熱可塑性樹脂を含浸させるコミングル法、粉末状の熱可塑性樹脂を強化繊維束における繊維の隙間に分散させた後、粉末状の熱可塑性樹脂を溶融し、加圧することで強化繊維束に熱可塑性樹脂を含浸させる粉末法、溶融した熱可塑性樹脂中に強化繊維束を浸し、加圧することで強化繊維束に熱可塑性樹脂を含浸させる引き抜き法が挙げられる。様々な厚み、繊維体積含有率など多品種の繊維強化熱可塑性樹脂基材を作製できることから、引き抜き法が好ましい。
 本発明に係る繊維強化熱可塑性樹脂基材の厚さとしては、0.15~1.5mmが好ましい。厚さが0.15mm以上であれば、繊維強化熱可塑性樹脂基材を用いて得られる成形品の強度を向上させることができる。0.2mm以上がより好ましい。一方、厚さが1.5mm以下であれば、強化繊維に熱可塑性樹脂をより含浸させやすい。1mm以下がより好ましく、0.7mm以下がさらに好ましく、0.6mm以下がさらに好ましい。
 また、本発明に係る繊維強化熱可塑性樹脂基材では、繊維強化熱可塑性樹脂基材全体100体積%中、強化繊維を20体積%以上65体積%以下含有する。強化繊維を20体積%以上含有することにより、繊維強化熱可塑性樹脂基材を用いて得られる成形品の強度をより向上させることができる。30体積%以上がより好ましく、40体積%以上がさらに好ましい。一方、強化繊維を65体積%以下含有することにより、強化繊維に熱可塑性をより含浸させやすい。60体積%以下がより好ましく、55体積%以下がさらに好ましい。
 なお、繊維強化熱可塑性樹脂基材の強化繊維体積含有率Vfは、繊維強化熱可塑性樹脂基材の質量W0(g)を測定したのち、該連続繊維強化熱可塑性樹脂基材を空気中500℃で30分間加熱して熱可塑性樹脂成分を焼き飛ばし、残った強化繊維の質量W1(g)を測定し、式(3)により算出した。
Vf(体積%)=(W1/ρf)/{W1/ρf+(W0-W1)/ρ1}×100・・・(3)
 ρf:強化繊維の密度(g/cm
 ρr:熱可塑性樹脂の密度(g/cm
 本発明の繊維強化熱可塑性樹脂基材は繊維強化熱可塑基材中に含まれるボイドの含有率(ボイド率)が2%以下であることが好ましい。ボイド率が2%以下であることにより、強化繊維の機械特性を損なうことなく、繊維強化熱可塑性樹脂の機械特性を発現することができる。ボイド率としては、1.5%以下がより好ましく、1%以下がさらに好ましい。
 本発明における繊維強化熱可塑性樹脂基材のボイド率は、繊維強化熱可塑性樹脂基材の厚み方向断面を以下のように観察して求めた。繊維強化熱可塑性樹脂基材をエポキシ樹脂で包埋したサンプルを用意し、繊維強化熱可塑性樹脂基材の厚み方向断面が良好に観察できるようになるまで、前記サンプルを研磨した。研磨したサンプルを、超深度カラー3D形状測定顕微鏡VHX-9500(コントローラー部)/VHZ-100R(測定部)((株)キーエンス製)を使用して、拡大倍率400倍で撮影した。撮影範囲は、繊維強化熱可塑性樹脂基材の厚み×幅500μmの範囲とした。撮影画像において、基材の断面積および空隙(ボイド)となっている部位の面積を求め、式(4)により含浸率を算出した。
ボイド率(%)=(ボイドが占める部位の総面積)/(繊維強化熱可塑性樹脂基材の総面積)×100・・・(4)
 本発明に係る繊維強化熱可塑性樹脂基材では下記の方法で定義される分散パラメーターDが90%以上である。分散パラメーターDが90%以上であることにより、繊維強化熱可塑性樹脂基材の機械特性のバラつきを低減することができる。
 (分散パラメーターDの算出)
(i)繊維強化熱可塑性樹脂基材の強化繊維配向方向と垂直な横断面を複数の区画に分割し、その中の1つの区画を撮影する。
(ii)上記区画の撮影画像を、式(1)で規定された一辺の長さtを有する複数の正方形ユニットに分割する。
(iii)式(2)で定義する分散パラメーターdを算出する。
(iv)異なる区画について(i)~(iii)の手順を繰り返し、上記横断面から得られる複数の区画の分散パラメーターdの平均値を分散パラメーターDとする。
 1.5a≦t≦2.5a  (a:繊維直径、t:ユニットの一辺の長さ)・・・(1)
 分散パラメーターd=区画内における強化繊維が含まれるユニットの個数/区画内におけるユニットの総個数×100・・・(2)
 (評価方法)
 試料である繊維強化熱可塑性樹脂基材を、エポキシ樹脂「エポクイック」(登録商標:ビューラー社製)に埋め込み、室温で24時間硬化させた後、繊維強化熱可塑性樹脂基材における強化繊維の配向方向にほぼ垂直な横断面を研磨し、次いで研磨面を超深度カラー3D形状測定顕微鏡VHX-9500(コントローラー部)/VHZ-100R(測定部)((株)キーエンス製)で、位置を変えながら撮影する。
 撮影された繊維熱可塑性樹脂基材の横断面写真について画像解析を行い、式(1)を1辺の長さとする、相互に重なり合わない略正方形の複数のユニットに分割した。この略正方形ユニットを順に画像解析し、略正方形ユニット内に強化繊維を含むユニットをカウントして、式(2)より分散パラメーターdを算出した。
 上記の画像処理は、区画された略正方形ユニットの総数に対するユニット内に強化繊維を含むユニットの数を算出することによって分散パラメーターdが求められる。2値化は原則として判別分析法を採用するが、場合によっては撮影写真と対比しつつ手動で実施することも可能である。
 また、正方形のユニット内に含まれる強化繊維は、図2に示すように強化繊維の一部でも含まれていれば、カウントされ、図3に示すように二つ以上の強化繊維が含まれていてもユニットとしては1つとしてカウントされる。
 1つの研磨面について、撮影位置を変えながら20回以上の枚数に亘って撮影し、各々の横断面写真から得られる繊維強化熱可塑性樹脂基材の分散パラメーターdに対し、その平均値を分散パラメーターDとして求めればよく、その値から、繊維強化熱可塑性樹脂基材における強化繊維の分布状態を定量的に評価することが可能となる。なお、横断面の撮影枚数が十分に確保できない場合には、繊維強化熱可塑性樹脂基材の異なる横断面の研磨面を複数枚撮影し、分散パラメーターdを算出し、最終的に分散パラメーターDを求めることも可能である。
 式(1)で求められるユニットの大きさは、観察される強化繊維の直径との関係により規定される。ユニットの大きさが式(1)の範囲より小さければ、分散パラメーターは体積含有率に収斂され分散性を正確に表現できない。一方、式(1)の範囲より大きければ、分散性の良否に関わらず値は一定となり、正確ではない。従って、ユニットの大きさは式(1)の範囲であることが必要である。
 さらに、分散パラメーターdの変動係数は式(5)より求められる。変動係数が4%を超えると繊維強化熱可塑性樹脂基材中の各箇所により強化繊維の疎密が大きくなる。したがって変動係数は4%以下が好ましく、3%以下がより好ましい。
変動係数=分散パラメーターdの平均値/分散パラメーターdの標準偏差×100・・・(5)
 ここで、本発明に係る繊維強化熱可塑性樹脂基材の製造方法について詳細に説明する。
 製造装置としては、例えば、マトリックス樹脂を含浸させる前の強化繊維束が巻き取られたボビンを1つまたは複数保持できるクリール部、このクリール部から強化繊維束を連続的に送り出すフィード部、連続的に送り出された強化繊維束に、溶融したマトリックス樹脂を付着させ、圧力を加えて含浸するとともに、所定の形状へ賦形する含浸ダイ、溶融したマトリックス樹脂を冷却固化して繊維強化熱可塑性樹脂基材を形成するための冷却ロールから構成される。
 含浸工程では、連続的に送り出される強化繊維束に、溶融したマトリックス樹脂を含浸させる。連続的に送り出される強化繊維束は通常、薄い層状の形態を有している。製造装置において、強化繊維の連続した単繊維を1,000~50,000本集めて束状とした強化繊維束を巻き付けたボビンを複数準備し、これら複数のボビンから強化繊維束を引き出し、横に並べて全体として薄い層状(テープ状)の形態とし、複数の糸道ガイドを介して、強化繊維束を、溶融したマトリックス樹脂が貯留された含浸ダイ内に進入させる。また、層状の強化繊維束は2層以上に積層した状態で含浸ダイに進入させることが好ましい。層状の強化繊維束を2層以上に積層することにより、寸法の調整が容易となる。
 製造装置に備えられた含浸ダイは、強化繊維束の移送方向を向く直方体となっており、この含浸ダイの内部には、フィーダーから供給されたマトリックス樹脂が溶融した状態で貯留されている。強化繊維束の移送方向において上流側に位置する含浸ダイの入口には、前記強化繊維束が通過可能な入口孔が形成されており、この入口孔を介して、強化繊維束は含浸ダイの内部に入ってゆく。開繊された強化繊維束は、含浸ダイ内部に設けられたバーやロールで張力を与えられながら、強化繊維束を構成する単繊維が引き揃えられたり、進行方向に屈曲されたり、しごかれたりしながら、含浸ダイ内を通過することで、溶融したマトリックス樹脂が、強化繊維束を構成する単繊維間にまで含浸される。
 また、含浸工程において、含浸のために加える力が小さければ、強化繊維束の配列を乱すことなく生産が可能であり、強化繊維の分散性が向上できる。含浸のために加える力を小さくする方法としては、含浸ダイ内の溶融樹脂に超音波を印加する方法や強化繊維束を振動する方法、薄い強化繊維束層に樹脂を含浸させた後に各層を積層する方法が挙げられる。
 溶融したマトリックス樹脂が含浸された強化繊維束を含浸ダイから連続して引き抜くことで、強化繊維束に含浸したマトリックス樹脂が固化する前に、所定の形状に賦形し、その後、冷却固化工程で、溶融したマトリックス樹脂を冷却固化し、一定形状の繊維強化熱可塑性樹脂を形成する。含浸ダイの出口にはダイノズルが設けられており、引取ロールによって引き出され、マトリックス樹脂が含浸した強化繊維束を、所定の断面形状に賦形させる。ダイノズルの強化繊維束の移送方向における寸法は強化繊維束がダイノズルを通過する時間が0.1秒以上の通過時間である長さが好ましい。0.4秒以上がより好ましく、1.0秒以上がさらに好ましい。通過時間が0.1秒以上のダイノズル寸法であることにより、強化繊維束の分散に要する時間が確保され、強化繊維束の分散性が良い繊維強化熱可塑性樹脂基材を得ることができる。
 賦形された強化繊維束は、内部に冷却水が通水されている冷却ロールを通過させることで、溶融したマトリックス樹脂が冷却固化され、一定形状の繊維強化熱可塑性樹脂基材が形成される。
 ここで、マトリックス樹脂を含浸した強化繊維束の引き取り張力は、単繊維12,000本当たり、好ましくは5~200N、より好ましくは5~150Nとする。引取張力が5N未満では、強化繊維束が動きやすくなることにより隣接する強化繊維束との重なりや隣接する繊維束との間でギャップを生じやすくなることにより、強化繊維束の分散性が悪化する。また、200Nを超えると、強化繊維束が収束することにより、マトリックス樹脂の含浸性が低下する。引き取り張力は予備張力の設定条件や、搬送速度により適宜調整可能である。搬送速度を高めることで引き取り張力を高くすることができる。また、引き取り張力はロールの形状やロールの配置によって適宜調整可能である。
 本発明においては、本発明に係る繊維強化熱可塑性樹脂基材を、任意の構成で1枚以上積層後、必要に応じて熱および/または圧力を付与しながら成形することにより成形品が得られる。
 熱および/または圧力を付与する方法としては、例えば、任意の構成で積層した繊維強化熱可塑性樹脂基材を型内もしくはプレス板上に設置した後、型もしくはプレス板を閉じて加圧するプレス成形法、任意の構成で積層した成形材料をオートクレーブ内に投入して加圧・加熱するオートクレーブ成形法、任意の構成で積層した成形材料をフィルムなどで包み込み、内部を減圧にして大気圧で加圧しながらオーブン中で加熱するバッギング成形法、任意の構成で積層した繊維強化熱可塑性樹脂基材に張力をかけながらテープを巻き付け、オーブン内で加熱するラッピングテープ法、任意の構成で積層した繊維強化熱可塑性樹脂基材を型内に設置し、同じく型内に設置した中子内に気体や液体などを注入して加圧する内圧成形法等が挙げられる。とりわけ、得られる成形品内のボイドが少なく、外観品位にも優れる成形品が得られることから、金型を用いてプレスする成形方法が好ましく用いられる。
 本発明の繊維強化熱可塑性樹脂基材またはその成形品は、インサート成形、アウトサート成形などの一体化成形や、加熱による矯正処置、熱溶着、振動溶着、超音波溶着などの生産性に優れた接着工法や接着剤を用いた一体化を行うことができ、複合体を得ることができる。
 本発明の繊維強化熱可塑性樹脂基材またはその成形品と一体化される成形用基材またはその成形品には特に制限はなく、例えば、樹脂材料またはその成形品、金属材料またはその成形品、無機材料またはその成形品などが挙げられる。なかでも、樹脂材料またはその成形品もしくは金属材料またはその成形品が本発明に係る繊維強化熱可塑性基材の補強効果を効果的に発現することができる。樹脂材料またはその成形品は繊維強化熱可塑性樹脂基材との接着強度の点で好ましく、繊維長が5~100mmの強化繊維マットにマトリックス樹脂を含浸してなる繊維強化樹脂が成形性と機械特性の点からより好ましい。金属材料またはその成形品としては、高張力鋼やアルミニウム合金、チタン合金およびマグネシウム合金等が使用可能であり、金属層や金属部材、金属部品に要求される特性に応じて選択すればよい。
 本発明の繊維強化熱可塑性樹脂基材と一体化される成形材料またはその成形品のマトリックス樹脂は、繊維強化熱可塑性樹脂基材またはその成形品と同種の樹脂であってもよいし、異種の樹脂であってもよい。接着強度をより高めるためには、同種の樹脂であることが好ましい。異種の樹脂である場合は、界面に樹脂層を設けるとより好適である。
 本発明の繊維強化熱可塑性樹脂基材またはその成形品は、その優れた特性を活かし、航空機部品、自動車部品、電気・電子部品、建築部材、各種容器、日用品、生活雑貨および衛生用品など各種用途に利用することができる。本発明における繊維強化末端変性熱可塑性樹脂基材またはその成形品は、とりわけ、安定した機械特性が要求される航空機エンジン周辺部品、航空機用部品の外装部品、自動車ボディー部品としての車両骨格、自動車エンジン周辺部品、自動車アンダーフード部品、自動車ギア部品、自動車内装部品、自動車外装部品、吸排気系部品、エンジン冷却水系部品や、自動車電装部品、電気・電子部品用途に特に好ましく用いられる。
 具体的には、本発明における繊維強化末端変性ポリアミド樹脂またはその成形品は、ファンブレードなどの航空機エンジン周辺部品、ランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブなどの航空機関連部品、各種シート、フロントボディー、アンダーボディー、各種ピラー、各種メンバ、各種フレーム、各種ビーム、各種サポート、各種レール、各種ヒンジなどの自動車ボディー部品、エンジンカバー、エアインテークパイプ、タイミングベルトカバー、インテークマニホールド、フィラーキャップ、スロットルボディ、クーリングファンなどの自動車エンジン周辺部品、クーリングファン、ラジエータータンクのトップおよびベース、シリンダーヘッドカバー、オイルパン、ブレーキ配管、燃料配管用チューブ、排ガス系統部品などの自動車アンダーフード部品、ギア、アクチュエーター、ベアリングリテーナー、ベアリングケージ、チェーンガイド、チェーンテンショナなどの自動車ギア部品、シフトレバーブラケット、ステアリングロックブラケット、キーシリンダー、ドアインナーハンドル、ドアハンドルカウル、室内ミラーブラケット、エアコンスイッチ、インストルメンタルパネル、コンソールボックス、グローブボックス、ステアリングホイール、トリムなどの自動車内装部品、フロントフェンダー、リアフェンダー、フューエルリッド、ドアパネル、シリンダーヘッドカバー、ドアミラーステイ、テールゲートパネル、ライセンスガーニッシュ、ルーフレール、エンジンマウントブラケット、リアガーニッシュ、リアスポイラー、トランクリッド、ロッカーモール、モール、ランプハウジング、フロントグリル、マッドガード、サイドバンパーなどの自動車外装部品、エアインテークマニホールド、インタークーラーインレット、ターボチャージャ、エキゾーストパイプカバー、インナーブッシュ、ベアリングリテーナー、エンジンマウント、エンジンヘッドカバー、リゾネーター、及びスロットルボディなどの吸排気系部品、チェーンカバー、サーモスタットハウジング、アウトレットパイプ、ラジエータータンク、オイルネーター、及びデリバリーパイプなどのエンジン冷却水系部品、コネクタやワイヤーハーネスコネクタ、モーター部品、ランプソケット、センサー車載スイッチ、コンビネーションスイッチなどの自動車電装部品、電気・電子部品としては、例えば、発電機、電動機、変圧器、変流器、電圧調整器、整流器、抵抗器、インバーター、継電器、電力用接点、開閉器、遮断機、スイッチ、ナイフスイッチ、他極ロッド、モーターケース、テレビハウジング、ノートパソコンハウジングおよび内部部品、CRTディスプレーハウジングおよび内部部品、プリンターハウジングおよび内部部品、携帯電話、モバイルパソコン、ハンドヘルド型モバイルなどの携帯端末ハウジングおよび内部部品、ICやLED対応ハウジング、コンデンサー座板、ヒューズホルダー、各種ギヤー、各種ケース、キャビネットなどの電気部品、コネクタ、SMT対応のコネクタ、カードコネクタ、ジャック、コイル、コイルボビン、センサー、LEDランプ、ソケット、抵抗器、リレー、リレーケース、リフレクタ、小型スイッチ、電源部品、コイルボビン、コンデンサー、バリコンケース、光ピックアップシャーシ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、SiパワーモジュールやSiCパワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、トランス部材、パラボラアンテナ、コンピューター関連部品などの電子部品などに好ましく用いられる。
 以下に実施例を示し、本発明を更に具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。各実施例および比較例における特性評価は下記の方法にしたがって行った。
(1)体積含有率(Vf)
 各実施例および比較例により得られた繊維強化熱可塑性樹脂基材の体積含有率Vfは、繊維強化熱可塑性樹脂基材の質量W0を測定したのち、該繊維強化熱可塑性樹脂基材を空気中500℃で30分間加熱して熱可塑性樹脂成分を焼き飛ばし、残った強化繊維の質量W1を測定し、式(3)により算出した。
Vf(体積%)=(W1/ρf)/{W1/ρf+(W0-W1)/ρ1}×100・・・(3)
 ρf:強化繊維の密度(g/cm
 ρr:熱可塑性樹脂の密度(g/cm
(2)引張強度
 各実施例および比較例により得られた繊維強化熱可塑性樹脂基材を繊維方向が一方向となるように揃えて、厚さ1±0.2mmとなるように積層した積層体を、型温度がマトリックス樹脂の溶融温度+30℃に加熱された成形型に投入した。続いて、積層体を、圧力3MPaで1分間加熱加圧プレスした後、圧力3MPaで冷却プレスを行い、成形板を得た。成形板から、繊維軸方向を長辺として、250mm×15mmの試験片を切り出した。得られた試験片に対して、“インストロン”(登録商標)万能試験機4201型(インストロン社製)を用いて、JIS K7165-2008に準拠した引張試験を行い、引張強度を測定した。3回測定を行い、その平均値と標準偏差より変動係数を算出した。
 引張強度の変動係数を機械特性の安定性に対する判断基準とし、以下の2段階で評価し、○を合格とした。
○ :変動係数が5%未満である。
× :変動係数が5%以上である。
(3)含浸性
 各実施例および比較例により得られた繊維強化熱可塑性樹脂基材の厚み方向断面を以下のように観察した。繊維強化熱可塑性樹脂基材をエポキシ樹脂で包埋したサンプルを用意し、繊維強化熱可塑性樹脂基材の厚み方向断面が良好に観察できるようになるまで、前記サンプルを研磨した。研磨したサンプルを、超深度カラー3D形状測定顕微鏡VHX-9500(コントローラー部)/VHZ-100R(測定部)((株)キーエンス製)を使用して、拡大倍率400倍で撮影した。撮影範囲は、繊維強化熱可塑性樹脂基材の厚み×幅500μmの範囲とした。撮影画像において、繊維強化熱可塑性樹脂基材の面積および空隙(ボイド)となっている部位の面積を求め、式(4)によりボイド率を算出した。
ボイド率(%)=(ボイドが占める部位の総面積)/(繊維強化熱可塑性樹脂基材の総面積)×100・・・(4)
(4)均一性
(i)繊維強化熱可塑性樹脂基材の強化繊維配向方向と垂直な横断面を複数の区画に分割し、その中の1つの区画を撮影する。
(ii)前記区画の撮影画像を、式(1)で規定された一辺の長さtを有する複数の正方形ユニットに分割する。
(iii)式(2)で定義する分散パラメーターdを算出する。
(iv)異なる区画について(i)~(iii)の手順を繰り返し、前記横断面から得られる複数の区画の分散パラメーターdの平均値を分散パラメーターDとする。
 1.5a≦t≦2.5a  (a:繊維直径、t:ユニットの一辺の長さ)・・・(1)
 分散パラメーターd=区画内における強化繊維が含まれるユニットの個数/区画内におけるユニットの総個数×100・・・(2)
 (評価方法)
 試料である繊維強化熱可塑性樹脂基材を、エポキシ樹脂「エポクイック」(登録商標:ビューラー社製)に埋め込み、室温で24時間硬化させた後、繊維強化熱可塑性樹脂基材における強化繊維の配向方向にほぼ垂直な横断面を研磨し、次いで該研磨面を超深度カラー3D形状測定顕微鏡VHX-9500(コントローラー部)/VHZ-100R(測定部)((株)キーエンス製)で撮影した。
 撮影された各繊維熱可塑性樹脂基材の横断面写真を画像解析ソフトを用いて相互に重なり合わない式(1)を1辺の長さとする略正方形にユニットに分割した。該略正方形ユニット画像処理を行い、略正方形ユニット内に強化繊維を含むユニットを測定し、式(2)より分散パラメーターdを算出した。
 かくして得られる分散パラメーターdを20枚以上の枚数にわたって撮影し、その平均値と変動係数を算出した。
 実施例および比較例において、原料としては以下に示すものを用いた。
炭素繊維束 :東レ(株)製 T700S-12K
熱可塑性樹脂:ポリアミド6およびポリアミド6/66、東レ(株)製“アミラン”(登録商標)
(実施例1)
 強化繊維として炭素繊維(表1ではCFと表記)を使用し、炭素繊維束が巻かれたボビンを16本準備し、それぞれボビンから連続的に糸道ガイドを通じて炭素繊維束を送り出した。連続的に送り出された炭素繊維束に、含浸ダイ内において、充填したフィーダーから定量供給されたマトリックス樹脂(東レ(株)製“アミラン”(登録商標):ポリアミド6[表1ではPA6と表記])を含浸させた。含浸ダイ内で強化繊維束の分散が悪化しない程度の弱い力でマトリックス樹脂としてのポリアミド6樹脂を含浸した炭素繊維を、引取ロールを用いて含浸ダイのノズルから1m/minの引き抜き速度で連続的に引き抜いた。炭素繊維束のノズルの通過時間は4.0秒であった。引き抜かれた炭素繊維束は、冷却ロールを通過してポリアミド6樹脂が冷却固化され、連続した繊維強化ポリアミド樹脂基材として巻取機に巻き取られた。得られた繊維強化ポリアミド樹脂基材の厚さは0.3mm、幅は50mmであり、強化繊維方向は一方向に配列していた。得られた繊維強化ポリアミド樹脂基材を前記評価に供した。評価結果を表1に示す。
(実施例2~7)
 製品厚み、体積含有率及びマトリックス樹脂(東レ(株)製“アミラン”(登録商標):ポリアミド6またはポリアミド6/66[表1ではPA6、PA6/66と表記])を表1に示す条件に変更した以外は実施例1と同様にして繊維強化ポリアミド樹脂基材を得た。得られた繊維強化ポリアミド樹脂基材を前記評価に供した。評価結果を表1に示す。
(比較例1)
 炭素繊維束が巻かれたボビンを16本準備し、それぞれボビンから連続的に糸道ガイドを通じて炭素繊維束を送り出した。連続的に送り出された炭素繊維束の両側より熱可塑性樹脂フィルム(“アミラン”(登録商標):ポリアミド6)を積層して積層体を得た。この積層体を所定温度まで加熱して、熱可塑性樹脂フィルムを炭素繊維束のシート状物に溶融含浸させ、加圧、冷却することにより、繊維強化ポリアミド樹脂基材を得た。得られた繊維強化ポリアミド樹脂基材の厚さは0.3mm、幅は50mmであり、強化繊維方向は一方向に配列していた。評価結果を表1に示す。
(比較例2~4)
 製品厚み、体積含有率及びマトリックス樹脂(東レ(株)製“アミラン”(登録商標):ポリアミド6またはポリアミド6/66)を表1に示す条件に変更した以外は比較例1と同様にして繊維強化ポリアミド樹脂基材を得た。得られた繊維強化ポリアミド樹脂基材を前記評価に供した。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~3と比較例1~2との比較により、強化繊維が均一に分散した繊維強化ポリアミド樹脂基材は機械特性を安定して発現できることがわかる。
 本発明に係る繊維強化熱可塑性樹脂基材は、オートクレーブ成形、プレス成形、フィルム成形などの任意の成形方法により、所望の形状に成形することが可能であるが、特に分散が悪化しない程度の弱い力でマトリックス樹脂を含侵させ、引き抜き成形により所望の形状に成形することが好ましい。本発明に係る繊維強化熱可塑性樹脂基材を用いた成形により得られる成形品は、例えば、航空機エンジン周辺部品、航空機内装部品、航空機外装部品、車両骨格、自動車エンジン周辺部品、自動車アンダーフード部品、自動車ギア部品、自動車内装部品、自動車外装部品、吸排気系部品、エンジン冷却水系部品、自動車電装部品などの自動車用途、LEDリフレクタやSMTコネクタなどの電気・電子部品用途などに有効である。
1 強化繊維
2 熱可塑性樹脂
3 繊維強化熱可塑性樹脂基材

Claims (10)

  1.  連続した強化繊維が平行に引き揃えられるとともに、熱可塑性樹脂が含浸された繊維強化熱可塑性樹脂基材であって、繊維体積含有率が40~65体積%の範囲内にあり、且つ下記の方法によって求められる繊維の分散パラメーターDが90%以上であることを特徴とする繊維強化熱可塑性樹脂基材。
    (i)前記繊維強化熱可塑性樹脂基材の強化繊維配向方向と垂直な横断面を複数の区画に分割し、その中の1つの区画を撮影する。
    (ii)前記区画の撮影画像を、式(1)で規定された一辺の長さtを有する複数の正方形ユニットに分割する。
    (iii)式(2)で定義する分散パラメーターdを算出する。
    (iv)異なる区画について(i)~(iii)の手順を繰り返し、前記横断面から得られる複数の区画の分散パラメーターdの平均値を分散パラメーターDとする。
     1.5a≦t≦2.5a  (a:繊維直径、t:ユニットの一辺の長さ)・・・(1)
     分散パラメーターd=区画内における強化繊維が含まれるユニットの個数/区画内におけるユニットの総個数×100・・・(2)
  2.  前記分散パラメーターdの変動係数が4%以下である、請求項1に記載の繊維強化熱可塑性樹脂基材。
  3.  厚みが0.15mm~1.5mmの範囲にある、請求項1または2に記載の繊維強化熱可塑性樹脂基材。
  4.  前記熱可塑性樹脂がポリアミド6もしくはポリアミド66、またはこれらの混合物のいずれかである、請求項1~3のいずれかに記載の繊維強化熱可塑性樹脂基材。
  5.  前記熱可塑性樹脂が、ポリアミド6成分30~90重量%とポリアミド66成分70~10重量%とからなるポリアミド共重合体を含む、請求項1~4のいずれかに記載の繊維強化熱可塑性樹脂基材。
  6.  前記強化繊維が炭素繊維である、請求項1~5のいずれかに記載の繊維強化熱可塑性樹脂基材。
  7.  ボイド率が2%以下である、請求項1~6のいずれかに記載の繊維強化熱可塑性樹脂基材。
  8.  引き抜き成形によって得られたものである、請求項1~7のいずれかに繊維強化熱可塑性樹脂基材。
  9.  請求項1~8のいずれかに記載の繊維強化熱可塑性樹脂基材からなる成形品。
  10.  請求項1~8のいずれかに記載の繊維強化熱可塑性樹脂基材またはその成形品と、金属材料またはその成形品、もしくは樹脂材料またはその成形品とを一体化してなる複合成形品。
PCT/JP2017/031321 2016-09-29 2017-08-31 繊維強化熱可塑性樹脂基材およびそれを用いた成形品 WO2018061597A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/335,782 US10723088B2 (en) 2016-09-29 2017-08-31 Fiber-reinforced thermoplastic-resin base and molded article obtained therefrom
EP17855555.3A EP3521345A4 (en) 2016-09-29 2017-08-31 FIBER-REINFORCED THERMOPLASTIC RESIN BASE AND MOLDING OBTAINED FROM IT
KR1020197005843A KR102412262B1 (ko) 2016-09-29 2017-08-31 섬유 강화 열가소성 수지 기재 및 그것을 사용한 성형품
CN201780050819.0A CN109642036B (zh) 2016-09-29 2017-08-31 纤维增强热塑性树脂基材及使用其的成型品
JP2017550951A JP7033271B2 (ja) 2016-09-29 2017-08-31 繊維強化熱可塑性樹脂基材およびそれを用いた成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016191088 2016-09-29
JP2016-191088 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018061597A1 true WO2018061597A1 (ja) 2018-04-05

Family

ID=61762798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031321 WO2018061597A1 (ja) 2016-09-29 2017-08-31 繊維強化熱可塑性樹脂基材およびそれを用いた成形品

Country Status (7)

Country Link
US (1) US10723088B2 (ja)
EP (1) EP3521345A4 (ja)
JP (1) JP7033271B2 (ja)
KR (1) KR102412262B1 (ja)
CN (1) CN109642036B (ja)
TW (1) TW201819482A (ja)
WO (1) WO2018061597A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099603A (ja) * 2017-11-29 2019-06-24 東レ株式会社 連続繊維強化ポリアミド樹脂基材およびその成形品
JP2019209640A (ja) * 2018-06-07 2019-12-12 東洋紡株式会社 熱可塑性プリプレグシート
WO2020017392A1 (ja) * 2018-07-17 2020-01-23 東レ株式会社 繊維強化ポリマーアロイ基材およびそれを用いた成形品
JP2020029534A (ja) * 2018-08-24 2020-02-27 東レ株式会社 繊維強化熱可塑性樹脂基材およびそれを用いた成形品
JP2020179593A (ja) * 2019-04-25 2020-11-05 東レ株式会社 繊維強化熱可塑性樹脂フィラメントおよびその成形品
EP3842478A4 (en) * 2018-08-22 2022-05-11 Toray Industries, Inc. FIBER REINFORCED AND LAMINATED THERMOPLASTIC RESIN SUBSTRATE USING THE SAME

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061597A1 (ja) 2016-09-29 2018-04-05 東レ株式会社 繊維強化熱可塑性樹脂基材およびそれを用いた成形品
JP2018157285A (ja) * 2017-03-16 2018-10-04 パナソニックIpマネジメント株式会社 スピーカ用振動板およびこれを用いたスピーカ
KR20200031604A (ko) * 2017-07-18 2020-03-24 도레이 카부시키가이샤 일방향으로 배향된 테이프상 프리프레그 및 그의 성형품
JP6719495B2 (ja) * 2018-03-06 2020-07-08 株式会社Subaru プリフォーム賦形方法、複合材成形方法及び複合材
EP3960411A4 (en) 2019-04-25 2023-01-18 Toray Industries, Inc. FIBER-REINFORCED THERMOPLASTIC RESIN FILAMENT FOR 3D PRINTING, AND THEREOF MOLDED ARTICLE
US11905733B2 (en) * 2019-05-24 2024-02-20 ASSA ABLOY Accessories and Door Controls Group, Inc. Dampener for an exit device
US20240166840A1 (en) * 2019-11-11 2024-05-23 Toray Industries, Inc. Molding material and molded article
JP7335144B2 (ja) * 2019-11-26 2023-08-29 旭化成株式会社 連続繊維強化樹脂複合材料及びその製造方法
US20230112590A1 (en) * 2020-03-02 2023-04-13 Mitsui Chemicals, Inc. Unidirectional fiber-reinforced thermoplastic resin sheet and method for manufacturing same
EP4122667A4 (en) * 2020-03-18 2024-04-10 Toray Industries, Inc. LAMINATED BODY AND WELDED BODY USING SAME
JPWO2021187459A1 (ja) * 2020-03-18 2021-09-23

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193833A (ja) * 1985-02-22 1986-08-28 Mitsubishi Rayon Co Ltd 引抜成形方法
JPS6360738A (ja) * 1986-09-02 1988-03-16 Toray Ind Inc Frpの成形方法
JPH03140365A (ja) * 1989-10-18 1991-06-14 Bayer Ag 半製品/複合材料製造のための改良法
JP2007138177A (ja) * 2005-11-18 2007-06-07 Ems Chemie Ag 強化ポリアミド成形材料
WO2009045191A1 (en) 2007-10-02 2009-04-09 Ocv Intellectual Capital, Llc Method for manufacturing long fiber reinforced thermoplastic resin molding material
JP2011245756A (ja) * 2010-05-27 2011-12-08 Teijin Ltd 炭素繊維の樹脂含浸ストランドおよびペレットの製造方法
WO2012133013A1 (ja) * 2011-03-29 2012-10-04 東洋紡績株式会社 繊維強化熱可塑性樹脂の積層成形品
WO2012141689A1 (en) 2011-04-12 2012-10-18 Ticona Llc Impregnation section of die and method for impregnating fiber rovings
JP2013185117A (ja) * 2012-03-09 2013-09-19 Teijin Ltd 複合材料の製造方法と製造装置
WO2015046290A1 (ja) * 2013-09-26 2015-04-02 東レ株式会社 一方向性繊維強化テープおよびその製造方法、ならびにそれを用いた成形体およびその製造方法
EP2939832A1 (en) 2012-12-27 2015-11-04 Posco Method for preparing continuous carbon fiber-reinforced thermoplastic prepreg
WO2016071266A1 (de) 2014-11-04 2016-05-12 Protec Polymer Processing Gmbh Verfahren zum herstellen von unidirektional faserverstärktem kunststoffmaterial und vorrichtung zur durchführung des verfahrens
EP3521345A1 (en) 2016-09-29 2019-08-07 Toray Industries, Inc. Fiber-reinforced thermoplastic-resin base and molded article obtained therefrom

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08164521A (ja) 1994-12-14 1996-06-25 Kobe Steel Ltd 繊維強化樹脂組成物
JP4032037B2 (ja) * 2004-03-31 2008-01-16 オーウェンスコーニング製造株式会社 長繊維強化ポリアミド樹脂成形材料、その製造方法、及び成形体
CN100351312C (zh) * 2004-12-31 2007-11-28 中国兵器工业集团第五三研究所 一种纤维填充酚醛泡沫塑料
TWI414543B (zh) * 2006-02-24 2013-11-11 Toray Industries 纖維強化熱可塑性樹脂成形體、成形材料及其製法
CN102021503B (zh) * 2010-12-15 2012-08-15 江苏大学 一种连续纤维增强金属基复合材料的制备方法
JP5987335B2 (ja) 2012-02-03 2016-09-07 東洋紡株式会社 炭素長繊維強化ポリアミド樹脂プレプリグ及び成形品
US20130260131A1 (en) * 2012-03-28 2013-10-03 Satoshi Seike Thermoplastic molding preform
CN102719059B (zh) * 2012-07-06 2015-02-25 上海日之升新技术发展有限公司 一种聚酯纤维增强聚酯材料及其制备方法
JP2015055740A (ja) * 2013-09-11 2015-03-23 株式会社リコー 導電性樹脂ベルトおよびその製造方法、並びに該導電性樹脂ベルトを用いた中間転写ベルトおよび画像形成装置
JP5969714B2 (ja) * 2014-01-22 2016-08-17 帝人株式会社 射出成形、押出成形、又は引抜成形用の成形材料の集合体、炭素繊維強化熱可塑性樹脂ペレット、成形体、及び射出成形体の製造方法
US20170190123A1 (en) * 2014-02-14 2017-07-06 Mitsubishi Rayon Co., Ltd. Fiber-reinforced plastic and production method therefor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193833A (ja) * 1985-02-22 1986-08-28 Mitsubishi Rayon Co Ltd 引抜成形方法
JPS6360738A (ja) * 1986-09-02 1988-03-16 Toray Ind Inc Frpの成形方法
JPH03140365A (ja) * 1989-10-18 1991-06-14 Bayer Ag 半製品/複合材料製造のための改良法
JP2007138177A (ja) * 2005-11-18 2007-06-07 Ems Chemie Ag 強化ポリアミド成形材料
WO2009045191A1 (en) 2007-10-02 2009-04-09 Ocv Intellectual Capital, Llc Method for manufacturing long fiber reinforced thermoplastic resin molding material
JP2011245756A (ja) * 2010-05-27 2011-12-08 Teijin Ltd 炭素繊維の樹脂含浸ストランドおよびペレットの製造方法
WO2012133013A1 (ja) * 2011-03-29 2012-10-04 東洋紡績株式会社 繊維強化熱可塑性樹脂の積層成形品
WO2012141689A1 (en) 2011-04-12 2012-10-18 Ticona Llc Impregnation section of die and method for impregnating fiber rovings
JP2013185117A (ja) * 2012-03-09 2013-09-19 Teijin Ltd 複合材料の製造方法と製造装置
EP2939832A1 (en) 2012-12-27 2015-11-04 Posco Method for preparing continuous carbon fiber-reinforced thermoplastic prepreg
WO2015046290A1 (ja) * 2013-09-26 2015-04-02 東レ株式会社 一方向性繊維強化テープおよびその製造方法、ならびにそれを用いた成形体およびその製造方法
WO2016071266A1 (de) 2014-11-04 2016-05-12 Protec Polymer Processing Gmbh Verfahren zum herstellen von unidirektional faserverstärktem kunststoffmaterial und vorrichtung zur durchführung des verfahrens
EP3521345A1 (en) 2016-09-29 2019-08-07 Toray Industries, Inc. Fiber-reinforced thermoplastic-resin base and molded article obtained therefrom

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOANG DUC MINH: "Procedure for making flat thermoplastic composite plates by Automated Fiber Placement and their mechanical properties", THESIS, 1 April 2015 (2015-04-01), pages 1 - 82, XP093021130
JENSEN BRIAN J.: "Materials for heated head automated thermoplastic tape placement", NASA LANGLEY RESEARCH CENTER HAMPTON,VA, 21 May 2012 (2012-05-21), pages 1 - 10, XP093021170
See also references of EP3521345A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099603A (ja) * 2017-11-29 2019-06-24 東レ株式会社 連続繊維強化ポリアミド樹脂基材およびその成形品
JP2019209640A (ja) * 2018-06-07 2019-12-12 東洋紡株式会社 熱可塑性プリプレグシート
JP7176236B2 (ja) 2018-06-07 2022-11-22 東洋紡株式会社 熱可塑性プリプレグシート
JPWO2020017392A1 (ja) * 2018-07-17 2021-06-03 東レ株式会社 繊維強化ポリマーアロイ基材およびそれを用いた成形品
CN112041379A (zh) * 2018-07-17 2020-12-04 东丽株式会社 纤维增强聚合物合金基材及使用其的成型品
EP3825349A4 (en) * 2018-07-17 2022-04-13 Toray Industries, Inc. FIBER REINFORCED POLYMER ALLOY SUBSTRATE AND MOLDED ARTICLE THEREOF
WO2020017392A1 (ja) * 2018-07-17 2020-01-23 東レ株式会社 繊維強化ポリマーアロイ基材およびそれを用いた成形品
CN112041379B (zh) * 2018-07-17 2023-02-21 东丽株式会社 纤维增强聚合物合金基材及使用其的成型品
US11739185B2 (en) 2018-07-17 2023-08-29 Toray Industries, Inc. Fiber-reinforced polymer alloy substrate and molded article using same
JP7496058B2 (ja) 2018-07-17 2024-06-06 東レ株式会社 繊維強化ポリマーアロイ基材およびそれを用いた成形品
EP3842478A4 (en) * 2018-08-22 2022-05-11 Toray Industries, Inc. FIBER REINFORCED AND LAMINATED THERMOPLASTIC RESIN SUBSTRATE USING THE SAME
JP2020029534A (ja) * 2018-08-24 2020-02-27 東レ株式会社 繊維強化熱可塑性樹脂基材およびそれを用いた成形品
JP7196464B2 (ja) 2018-08-24 2022-12-27 東レ株式会社 繊維強化熱可塑性樹脂基材およびそれを用いた成形品
JP2020179593A (ja) * 2019-04-25 2020-11-05 東レ株式会社 繊維強化熱可塑性樹脂フィラメントおよびその成形品
JP7268467B2 (ja) 2019-04-25 2023-05-08 東レ株式会社 繊維強化熱可塑性樹脂フィラメントおよびその成形品

Also Published As

Publication number Publication date
TW201819482A (zh) 2018-06-01
JP7033271B2 (ja) 2022-03-10
US20200016844A1 (en) 2020-01-16
JPWO2018061597A1 (ja) 2019-07-11
EP3521345A4 (en) 2020-06-03
US10723088B2 (en) 2020-07-28
CN109642036A (zh) 2019-04-16
KR102412262B1 (ko) 2022-06-24
EP3521345A1 (en) 2019-08-07
CN109642036B (zh) 2021-08-20
KR20190055797A (ko) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2018061597A1 (ja) 繊維強化熱可塑性樹脂基材およびそれを用いた成形品
EP3842478A1 (en) Fiber-reinforced thermoplastic resin substrate and laminate using same
JP7496058B2 (ja) 繊維強化ポリマーアロイ基材およびそれを用いた成形品
JP7284930B2 (ja) 繊維強化熱可塑性樹脂フィラメントおよびその成形品
JP7336079B2 (ja) 3dプリンタ用繊維強化熱可塑性樹脂フィラメントおよびその成形品
JP7196464B2 (ja) 繊維強化熱可塑性樹脂基材およびそれを用いた成形品
JP7268467B2 (ja) 繊維強化熱可塑性樹脂フィラメントおよびその成形品
WO2021187043A1 (ja) 積層体およびそれを用いた溶着体
WO2023162811A1 (ja) 繊維強化熱可塑性樹脂フィラメントおよびその成形品
JP2019099603A (ja) 連続繊維強化ポリアミド樹脂基材およびその成形品
JP2022098043A (ja) 3dプリンタ用繊維強化熱可塑性樹脂フィラメントおよびその成形品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017550951

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197005843

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017855555

Country of ref document: EP

Effective date: 20190429