WO2020017392A1 - 繊維強化ポリマーアロイ基材およびそれを用いた成形品 - Google Patents

繊維強化ポリマーアロイ基材およびそれを用いた成形品 Download PDF

Info

Publication number
WO2020017392A1
WO2020017392A1 PCT/JP2019/027109 JP2019027109W WO2020017392A1 WO 2020017392 A1 WO2020017392 A1 WO 2020017392A1 JP 2019027109 W JP2019027109 W JP 2019027109W WO 2020017392 A1 WO2020017392 A1 WO 2020017392A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
polymer alloy
reinforced polymer
base material
resin
Prior art date
Application number
PCT/JP2019/027109
Other languages
English (en)
French (fr)
Inventor
越政之
直也 大内山
成瀬恵寛
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to AU2019304719A priority Critical patent/AU2019304719A1/en
Priority to BR112020024334-5A priority patent/BR112020024334A2/pt
Priority to US17/258,234 priority patent/US11739185B2/en
Priority to CN201980028497.9A priority patent/CN112041379B/zh
Priority to KR1020207033892A priority patent/KR20210032308A/ko
Priority to JP2019548080A priority patent/JP7496058B2/ja
Priority to EP19837810.1A priority patent/EP3825349A4/en
Priority to CA3100465A priority patent/CA3100465A1/en
Publication of WO2020017392A1 publication Critical patent/WO2020017392A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2471/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/06Polysulfones; Polyethersulfones

Definitions

  • the present invention relates to a fiber-reinforced polymer alloy base material and a molded product using the same.
  • Fiber reinforced thermoplastic resin base material made by impregnating thermoplastic resin into continuous reinforcing fiber is excellent in specific strength, specific rigidity, high weight reduction effect, heat resistance, chemical resistance, aircraft, It is preferably used for various applications such as transportation equipment such as automobiles, sports, and electric / electronic parts.
  • transportation equipment such as automobiles, sports, and electric / electronic parts.
  • a fiber-reinforced thermoplastic resin prepreg comprising a carbon fiber in a polyamide resin (for example, see Patent Document 1) is known.
  • Such prepregs are expected as lightweight materials because of their high mechanical properties.However, in order to stably develop mechanical properties, the prepreg has excellent matrix resin impregnating properties between fiber bundles and reinforced fibers. It is necessary to disperse uniformly in the fiber reinforced thermoplastic resin base material.
  • thermoplastic resin prepregs have been required to have high heat resistance mainly for aircraft applications, and in addition to the above-mentioned moldability and mechanical properties, have been used as matrix resins used for fiber-reinforced thermoplastic resin base materials. Are required to have conflicting characteristics.
  • an object of the present invention is to provide a fiber-reinforced polymer alloy base material having a polymer alloy as a matrix, in which the reinforcing fibers are more uniformly dispersed, and high mechanical properties and heat resistance are stably expressed with small variations.
  • An object of the present invention is to provide a fiber-reinforced polymer alloy base material.
  • the present invention mainly has the following configurations.
  • a fiber reinforced polymer alloy base material in which continuous reinforcing fibers are aligned in parallel and impregnated with a polymer alloy, wherein a polymer alloy in which two or more thermoplastic resins are combined is used as the polymer alloy.
  • a cross section perpendicular to the reinforcing fiber orientation direction of the fiber-reinforced polymer alloy substrate is divided into a plurality of sections, and one section is photographed.
  • the captured image of the section is divided into a plurality of square units having a side length t defined by the equation (1).
  • the dispersion parameter d defined by the equation (2) is calculated.
  • the procedure of (i) to (iii) is repeated for different sections, and the average value of the dispersion parameters d of the plurality of sections obtained from the cross section is set as the dispersion parameter D.
  • the polymer alloy is at least two members selected from polyphenylene sulfide resin (PPS), polyarylene ether ketone resin (PAEK), polyether sulfone resin (PES), polyetherimide (PEI), and liquid crystal polymer (LCP).
  • a fiber-reinforced polymer alloy base material in which reinforcing fibers are dispersed with high uniformity, impregnated with a polymer alloy, have high mechanical properties and heat resistance, and are stably expressed with small variations. can get.
  • the fiber reinforced polymer alloy base material according to the present invention is obtained by impregnating a continuous reinforcing fiber aligned in parallel with a thermoplastic polymer alloy.
  • the continuous reinforcing fiber refers to a continuous reinforcing fiber in a fiber-reinforced polymer alloy base material.
  • the form and arrangement of the reinforcing fibers in the present invention include, for example, ones aligned in one direction, woven fabric (cloth), knit, braid, tow, and the like. Above all, it is preferable that the reinforcing fibers are arranged in one direction because the mechanical properties in a specific direction can be efficiently enhanced.
  • the type of reinforcing fiber is not particularly limited, and examples thereof include carbon fiber, metal fiber, organic fiber, and inorganic fiber. Two or more of these may be used.
  • carbon fibers as the reinforcing fibers, a fiber-reinforced polymer alloy base material having high mechanical properties while being lightweight can be obtained.
  • the carbon fiber examples include PAN-based carbon fiber made from polyacrylonitrile (PAN) fiber, pitch-based carbon fiber made from petroleum tar and oil pitch, and cellulosic carbon made from viscose rayon and cellulose acetate. Vapor-grown carbon fibers made from fibers, hydrocarbons and the like, and graphitized fibers thereof. Among these carbon fibers, PAN-based carbon fibers are preferably used because they have an excellent balance between strength and elastic modulus.
  • PAN-based carbon fibers are preferably used because they have an excellent balance between strength and elastic modulus.
  • metal fibers examples include fibers made of metal such as iron, gold, silver, copper, aluminum, brass, and stainless steel.
  • Examples of the organic fibers include fibers made of organic materials such as aramid, polybenzoxazole (PBO), polyphenylene sulfide, polyester, polyamide, and polyethylene.
  • Examples of the aramid fiber include a para-aramid fiber excellent in strength and elastic modulus and a meta-aramid fiber excellent in flame retardancy and long-term heat resistance.
  • Examples of the para-aramid fiber include polyparaphenylene terephthalamide fiber and copolyparaphenylene-3,4'-oxydiphenylene terephthalamide fiber, and examples of the meta-aramid fiber include polymetaphenylene isophthalamide fiber. Is mentioned.
  • As the aramid fiber a para-aramid fiber having a higher elastic modulus than a meta-aramid fiber is preferably used.
  • the inorganic fibers include fibers made of inorganic materials such as glass, basalt, silicon carbide, and silicon nitride.
  • the glass fiber include E glass fiber (for electric use), C glass fiber (for corrosion resistance), S glass fiber, and T glass fiber (high strength and high elastic modulus).
  • Basalt fiber is a fiber made of basalt, which is a mineral, and has extremely high heat resistance.
  • Basalt generally the FeO or FeO 2 is a compound of iron 9-25% by weight, but containing TiO or TiO 2 which is a compound of titanium 1-6% by weight, increase of these components in the molten state It is also possible to make the fibers.
  • the fiber-reinforced polymer alloy base material according to the present invention is often expected to serve as a reinforcing material, it is desirable to exhibit high mechanical properties. Preferably, it contains fibers.
  • the reinforcing fibers are usually formed by arranging one or more reinforcing fiber bundles in which many single fibers are bundled.
  • the total number of reinforcing fiber filaments is preferably 1,000 to 2,000,000. From the viewpoint of productivity, the total number of reinforcing fibers is preferably 1,000 to 1,000,000, more preferably 1,000 to 600,000, and 1,000 to 300,000. Particularly preferred.
  • the upper limit of the total number of filaments of the reinforcing fibers may be determined in consideration of the balance between the dispersibility and the handleability so as to maintain good productivity, dispersibility, and handleability.
  • a single reinforcing fiber bundle is formed by bundling 1,000 to 50,000 single fibers of reinforcing fibers having an average diameter of preferably 5 to 10 ⁇ m.
  • polyesters such as polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate (PTT) resin, polyethylene naphthalate (PEN) resin, and liquid crystal polyester resin.
  • polyolefins such as polyethylene (PE) resin, polypropylene (PP) resin and polybutylene resin, styrene-based resins, polyoxymethylene (POM) resin, polyamide (PA) resin, polycarbonate (PC) resin, polymethylene Methacrylate (PMMA) resin, polyvinyl chloride (PVC) resin, polyphenylene sulfide (PPS) resin, polyphenylene ether (PPE) resin, modified PPE resin, polyimide (PI) resin, polyamide (PAI) resin, polyetherimide (PEI) resin, polysulfone (PSU) resin, modified PSU resin, polyethersulfone resin, polyketone (PK) resin, polyarylene etherketone resin (PAEK), polyarylate (PAR) resin , Polyether nitrile (PEN) resin, phenol resin, phenoxy resin, fluorine resin such as polytetrafluoroethylene resin, and also polystyrene resin, polyolef
  • the polymer alloy is made of polyphenylene sulfide resin (PPS), polyarylene ether ketone resin (PAEK), polyether sulfone resin (PES), polyetherimide (PEI), liquid crystal polymer (LCP)
  • PPS polyphenylene sulfide resin
  • PAEK polyarylene ether ketone resin
  • PES polyether sulfone resin
  • PEI polyetherimide
  • LCP liquid crystal polymer
  • PAEK polyarylene ether ketone resin
  • PEEK polyether ketone
  • PEEK polyether ether ketone
  • PEEKK polyether ether ketone ketone
  • PEKK polyether ketone ketone
  • PEEK polyether diphenyl ether ketone
  • PDEK polyether diphenyl ether ketone
  • the polymer alloy of the present invention in a fiber-reinforced polymer alloy base material, the polymer alloy has a biphasic continuous structure having a structural period of 0.001 to 10 ⁇ m or an island phase having a particle diameter of 0.001 to 10 ⁇ m. It is preferable to form a sea-island structure composed of a sea phase. High mechanical properties and heat resistance can be exhibited by controlling the structure to have a biphasic continuous structure in the range of 0.001 ⁇ m to 10 ⁇ m or a sea-island structure composed of an island phase and a sea phase having a particle size in the range of 0.001 to 10 ⁇ m.
  • a biphasic continuous structure in the range of 0.01 ⁇ m to 5 ⁇ m or a sea-island structure composed of an island phase and a sea phase having a particle size in the range of 0.01 to 5 ⁇ m. It is more preferable to form a phase-continuous structure or a sea-island structure composed of an island phase and a sea phase having a particle diameter of 0.1 to 1 ⁇ m.
  • thermoplastic resins for example, (i) a combination of a biphasic continuous structure and a sea-island structure, (ii) a combination of different types of biphasic continuous structures, and (iii) Various structures such as a continuous structure of a plurality of phases composed of three or more resins can be appropriately combined.
  • a regular periodic structure In order to confirm these two-phase continuous structure or dispersion structure, it is preferable to confirm a regular periodic structure.
  • the existence of a scattering maximum in this scattering measurement is a proof that a regular phase-separated structure having a certain period is present.
  • the period ⁇ m (nm) corresponds to the structural period in the case of a biphasic continuous structure, and in the case of a dispersed structure. Corresponds to the distance between particles.
  • the uniformity of the structural period in the biphasic continuous structure of the polymer alloy or the uniformity of the interparticle distance in the dispersed structure is important. This uniformity can be evaluated by the above-mentioned small angle X-ray scattering measurement or light scattering measurement of the polymer alloy.
  • the small-angle X-ray scattering measurement and the light scattering measurement have different phase separation structure sizes that can be analyzed. Therefore, it is necessary to appropriately use the phase separation structure size according to the phase separation structure size of the polymer alloy to be analyzed.
  • the small-angle X-ray scattering measurement and the light scattering measurement in addition to the structure period in the biphasic continuous structure or the size of the distance between particles in the dispersed structure, information on the distribution can be obtained.
  • the peak position of the scattering maximum in the spectrum obtained by these measurements corresponds to the structural period in the biphasic continuous structure or the size of the interparticle distance in the dispersed structure, and the peak The way of spreading corresponds to the uniformity of the structure.
  • the structural uniformity is high.
  • the scattering spectrum obtained by small-angle X-ray scattering measurement or light scattering measurement has a maximum value. It is characterized by.
  • the fiber-reinforced polymer alloy base material according to the present invention is obtained by impregnating the above-mentioned thermoplastic polymer alloy into continuous reinforcing fibers, and, if necessary, further contains a filler, various additives and the like. Good.
  • any filler generally used as a resin filler can be used, and the strength, rigidity, heat resistance, and dimensional stability of a fiber-reinforced polymer alloy base material and a molded product using the same can be further improved.
  • the filler include glass fiber, carbon fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone fiber, metal fiber, and the like.
  • Fibrous inorganic filler wollastenite, zeolite, sericite, kaolin, mica, talc, clay, pyrophyllite, bentonite, montmorillonite, asbestos, aluminosilicate, alumina, silicon oxide, magnesium oxide, zirconium oxide, titanium oxide, oxide Iron, calcium carbonate, magnesium carbonate, dolomite, calcium sulfate, barium sulfate, magnesium hydroxide, calcium hydroxide, aluminum hydroxide, glass beads, ceramic beads, boron nitride, silicon carbide, silica, etc.
  • the fibrous filler is made of discontinuous fibers, the function can be provided without impairing the reinforcing effect of the reinforcing fibers made of continuous fibers.
  • antioxidants and heat stabilizers hindered phenols, hydroquinones, phosphites and their substitutes, copper halides, iodine compounds, etc.
  • weathering agents resorcinols, salicylates
  • Benzotriazoles Benzotriazoles
  • benzophenones hindered amines, etc.
  • release agents and lubricants aliphatic alcohols, aliphatic amides, aliphatic bisamides, bisureas, polyethylene waxes, etc.
  • pigments cadmium sulfide, phthalocyanine, carbon black, etc.
  • Dyes eg, nigrosine, aniline black
  • plasticizers eg, octyl p-oxybenzoate, N-butylbenzenesulfonamide
  • antistatic agents eg, alkyl sulfate-type anionic antistatic agents, and quaternary ammonium salt-type cationic charges
  • the fiber-reinforced polymer alloy base material according to the present invention can be obtained by impregnating a continuous reinforcing fiber with a polymer alloy.
  • Examples of the impregnation method include, for example, a film method in which a polymer alloy in the form of a film is melted and impregnated with a polymer alloy in a reinforcing fiber bundle by applying pressure, and a fibrous polymer alloy and a reinforcing fiber bundle are blended, and then the fibrous After the polymer alloy is melted, the Commingle method of impregnating the reinforcing fiber bundle with the polymer alloy by applying pressure, the powdery polymer alloy is dispersed in the gaps between the fibers in the reinforcing fiber bundle, and then the powdery polymer alloy is melted.
  • a powder method in which the reinforcing fiber bundle is impregnated with the polymer alloy by pressing, and a drawing method in which the reinforcing fiber bundle is dipped in the molten polymer alloy and impregnated with the polymer alloy by pressing, are exemplified.
  • the drawing method is preferred because various types of fiber-reinforced polymer alloy base materials having various thicknesses and fiber volume contents can be produced.
  • the thickness of the fiber reinforced polymer alloy base material according to the present invention is preferably 0.01 to 1.5 mm.
  • the thickness is 0.01 mm or more, the strength of a molded product obtained using the fiber-reinforced polymer alloy base material can be improved.
  • 0.05 mm or more is more preferable.
  • the thickness is 1.5 mm or less, it is easier to impregnate the reinforcing fibers with the polymer alloy. 1 mm or less is more preferable, 0.7 mm or less is further preferable, and 0.6 mm or less is further preferable.
  • the fiber-reinforced polymer alloy base material according to the present invention contains 40% by volume or more and 70% by volume or less of the reinforcing fibers in 100% by volume of the entire fiber-reinforced polymer alloy base material.
  • 40% by volume or more of the reinforcing fiber the strength of a molded product obtained by using the fiber-reinforced polymer alloy base material can be further improved. It is more preferably at least 45% by volume, even more preferably at least 50% by volume.
  • 70% by volume or less of the reinforcing fibers it is easier to impregnate the reinforcing fibers with the polymer alloy. 65 volume% or less is more preferable, and 60 volume% or less is further preferable.
  • the reinforcing fiber volume content Vf of the fiber reinforced polymer alloy base material is measured by measuring the mass W0 (g) of the fiber reinforced polymer alloy base material, and then heating the fiber reinforced polymer alloy base material in air at 500 ° C. for 30 minutes. Then, the polymer alloy component was burned off, the mass W1 (g) of the remaining reinforcing fiber was measured, and calculated by the formula (3).
  • Vf (% by volume) (W1 / ⁇ f) / ⁇ W1 / ⁇ f + (W0 ⁇ W1) / ⁇ 1 ⁇ ⁇ 100 (3)
  • ⁇ f density of reinforcing fiber (g / cm 3 )
  • ⁇ 1 density of polymer alloy (g / cm 3 )
  • the fiber reinforced polymer alloy substrate of the present invention preferably has a void content (void ratio) of 2% or less contained in the fiber reinforced polymer alloy substrate.
  • void ratio 2% or less
  • the void fraction is more preferably 1.5% or less, and still more preferably 1% or less.
  • the void fraction of the fiber-reinforced polymer alloy substrate in the present invention was determined by observing a cross section in the thickness direction of the fiber-reinforced polymer alloy substrate as follows. A sample in which a fiber-reinforced polymer alloy substrate was embedded in an epoxy resin was prepared, and the sample was polished until a cross section in the thickness direction of the fiber-reinforced polymer alloy substrate could be observed well. The polished sample was photographed at a magnification of 400 times using an ultra-depth color 3D shape measuring microscope VHX-9500 (controller unit) / VHZ-100R (measuring unit) (manufactured by Keyence Corporation).
  • VHX-9500 controller unit
  • VHZ-100R measuring unit
  • the photographing range was a range of thickness of fiber-reinforced polymer alloy substrate ⁇ width of 500 ⁇ m.
  • the cross-sectional area of the base material and the area of the void (void) were determined, and the impregnation rate was calculated by equation (4).
  • Void rate (%) (total area of void occupied area) / (total area of fiber reinforced polymer alloy base material) ⁇ 100 (4)
  • the dispersion parameter D defined by the following method is 90% or more.
  • the dispersion parameter D is 90% or more, variation in mechanical properties of the fiber-reinforced polymer alloy base material can be reduced.
  • the fiber reinforced polymer alloy base material as a sample is embedded in an epoxy resin “Epoquick” (registered trademark: manufactured by Bühler Co., Ltd.), and cured at room temperature for 24 hours. Then, in the orientation direction of the reinforcing fibers in the fiber reinforced polymer alloy base material, A substantially vertical cross section is polished, and the polished surface is photographed while changing the position with an ultra-depth color 3D shape measuring microscope VHX-9500 (controller unit) / VHZ-100R (measuring unit) (manufactured by Keyence Corporation). .
  • Image analysis was performed on the photograph of the cross section of the fiber reinforced polymer alloy substrate taken, and the image was divided into a plurality of substantially square units that do not overlap with each other and have the length of one side of Formula (1). Image analysis was performed on the substantially square units in order, and the units containing reinforcing fibers in the substantially square units were counted, and the dispersion parameter d was calculated from the equation (2).
  • the dispersion parameter d is obtained by calculating the number of units including the reinforcing fibers in the unit with respect to the total number of the divided substantially square units.
  • the binarization employs a discriminant analysis method in principle, it may be manually performed in some cases while comparing with a photograph.
  • the reinforcing fibers included in the square unit are counted if even a part of the reinforcing fibers is included, and even if two or more reinforcing fibers are included, they are counted as one unit.
  • One polished surface was photographed over 20 times while changing the photographing position, and the average value of the dispersion parameter d of the fiber-reinforced polymer alloy base material obtained from each cross-sectional photograph was calculated as the dispersion parameter D.
  • the distribution of the reinforcing fibers in the fiber-reinforced polymer alloy base material can be quantitatively evaluated from the value.
  • the dispersion parameter d is calculated, and finally the dispersion parameter D is obtained. It is also possible.
  • the size of the unit determined by the equation (1) is defined by the relationship with the diameter of the observed reinforcing fiber. If the size of the unit is smaller than the range of the formula (1), the dispersion parameter converges to the volume content and the dispersibility cannot be accurately represented. On the other hand, if it is larger than the range of the expression (1), the value is constant regardless of the quality of the dispersibility, and the value is not accurate. Therefore, the size of the unit needs to be within the range of Expression (1).
  • the center-to-center distance between adjacent reinforcing fibers is preferably in the range of 5 ⁇ m to 15 ⁇ m.
  • the center-to-center distance between adjacent reinforcing fibers is 5 ⁇ m or more, the polymer alloy can be uniformly present between the reinforcing fibers, so that high mechanical properties and excellent heat resistance are obtained. 6 ⁇ m or more is more preferable.
  • the thickness is 15 ⁇ m or less, the reinforcing fibers effectively reinforce the polymer alloy, and thus have excellent mechanical properties and heat resistance. It is preferably 10 ⁇ m or less, more preferably 9 ⁇ m or less.
  • the fiber reinforced polymer alloy base material as a sample is embedded in an epoxy resin “Epoquick” (registered trademark: manufactured by Bühler Co., Ltd.), and cured at room temperature for 24 hours. Then, in the orientation direction of the reinforcing fibers in the fiber reinforced polymer alloy base material, A substantially vertical cross section is polished, and then the polished surface is photographed with an ultra-depth color 3D shape measuring microscope VHX-9500 (controller) / VHZ-100R (manufactured by Keyence Corporation) while changing the position.
  • VHX-9500 controller
  • VHZ-100R manufactured by Keyence Corporation
  • the selection of single yarn is performed so that the measurement from the cross-sectional photograph does not overlap. Specifically, the thickness of the fiber-reinforced polymer alloy base material is divided into square sections each having a size that divides the base material into three, and a single yarn is selected near the center of each block. At least 50 or more single yarns are selected, and 200 or more points between adjacent fibers are evaluated, and the average value is used as a representative value.
  • the distance between fibers is measured by approximating a single yarn to a perfect circle, and the distance between the centers of the single yarns is measured to evaluate the distance between fibers.
  • the selected single yarn and the adjacent fiber are two fibers that do not interfere with other fibers on the straight line when the center of the single yarn is connected by a straight line.
  • the structural period of the polymer alloy or the particle diameter of the resin forming the island phase is smaller than the distance between the reinforcing fibers represented by the following formula (6).
  • z y ⁇ 2r (z: distance between reinforcing fibers, y: distance between centers of reinforcing fibers, r: fiber radius) (6)
  • the fiber-reinforced polymer alloy base material Since the polymer alloy can form a sea-island structure between the reinforcing fibers because the structural period of the polymer alloy or the particle size of the resin forming the island phase is smaller than the distance between the reinforcing fibers, the fiber-reinforced polymer alloy base material has high mechanical properties. In addition, heat resistance can be stably exhibited with small variation.
  • a creel portion capable of holding one or more bobbins wound with a reinforcing fiber bundle before impregnation with a matrix resin
  • a feed portion for continuously feeding a reinforcing fiber bundle from the creel portion
  • a continuous portion The molten matrix resin is adhered to the reinforcing fiber bundle sent out, and is impregnated by applying pressure, while an impregnation die for shaping into a predetermined shape, and the molten matrix resin are cooled and solidified to form a fiber-reinforced thermoplastic polymer alloy. It is composed of a cooling roll for forming a substrate.
  • the reinforcing fiber bundles continuously fed are impregnated with the molten matrix resin.
  • the continuously delivered reinforcing fiber bundle usually has a thin layered form.
  • a plurality of bobbins around which a bundle of reinforcing fibers is wound by collecting 1,000 to 50,000 continuous monofilaments of reinforcing fibers are prepared.
  • the reinforcing fiber bundle is made to enter into the impregnation die in which the molten matrix resin is stored through a plurality of yarn path guides. Further, it is preferable that the laminar reinforcing fiber bundles enter the impregnation die in a state of being laminated in two or more layers.
  • the size can be easily adjusted. It is preferable that the layered reinforcing fiber bundle be guided to the liquid pool after smoothing treatment, since the fiber dispersibility can be improved.
  • the method of smoothing is not particularly limited, and examples thereof include a method of physically pressing with a facing roll or the like, and a method of moving a reinforcing fiber using an air flow. The physical pressing method is preferred because it is simple and does not easily disturb the arrangement of the reinforcing fibers.
  • the impregnation die provided in the manufacturing apparatus is a rectangular parallelepiped that faces in the direction of transport of the reinforcing fiber bundle, and inside this impregnation die, the matrix resin supplied from the feeder is stored in a molten state.
  • an inlet hole through which the reinforcing fiber bundle can pass is formed, and through this inlet hole, the reinforcing fiber bundle passes through the inside of the impregnating die. Go into.
  • the inside of the impregnating die has a configuration in which the cross-sectional area decreases intermittently in the direction of fiber advancement, is located at the outlet of the impregnating die, and is smaller than the cross-sectional area of the resin storage section on the introduction side of the reinforcing fiber bundle.
  • a slit-shaped nozzle having a cross-sectional area is formed. Since the reinforcing fiber bundle is taken in the nozzle direction with the accompanying flow of the matrix resin, the pressure of the resin increases as approaching the nozzle, and the matrix resin is impregnated.
  • the fiber-reinforced polymer alloy base material In order to improve the impregnating property of the fiber-reinforced polymer alloy base material, it is possible to impregnate the reinforcing fiber bundle while applying tension by providing a bar or a roll inside the impregnating die. It is also possible to provide a re-impregnation device such as a roll and a press process. It is preferable to provide an additional impregnation device from the viewpoint of dispersibility. When performing an impregnation operation such as a bar, a roll, and a pressing step, it is preferable to provide a mechanism for regulating the width of the reinforcing fiber from the viewpoint of dispersibility. By restricting the width, excessive spreading of the reinforcing fiber bundle can be suppressed, and the dispersibility can be improved.
  • the production can be performed without disturbing the arrangement of the reinforcing fiber bundle, and the dispersibility of the reinforcing fiber can be improved.
  • Methods to reduce the force applied for impregnation include applying ultrasonic waves to the molten resin in the impregnation die, vibrating the reinforcing fiber bundle, and laminating each layer after impregnating the thin reinforcing fiber bundle layer with the resin.
  • the molten matrix resin is cooled and solidified to form a fiber-reinforced thermoplastic resin having a predetermined shape.
  • the shaping step and the cooling and solidifying step may be performed simultaneously.
  • a die nozzle is provided at the outlet of the impregnating die and the additional impregnating device.
  • the die nozzle is drawn out by a take-off roll, and the reinforcing fiber bundle impregnated with the matrix resin is shaped into a predetermined sectional shape.
  • the dimension of the die nozzle in the transfer direction of the reinforcing fiber bundle is preferably a length in which the time required for the reinforcing fiber bundle to pass through the die nozzle is 0.1 second or more. 0.4 second or more is more preferable, and 1.0 second or more is more preferable.
  • the take-up tension of the reinforcing fiber bundle impregnated with the matrix resin is preferably 5 to 200 N, more preferably 5 to 150 N per 12,000 single fibers. If the take-up tension is less than 5N, the reinforcing fiber bundles are likely to move, so that the reinforcing fiber bundles tend to overlap with adjacent reinforcing fiber bundles or to form gaps between adjacent fiber bundles, so that the dispersibility of the reinforcing fiber bundles deteriorates. . If it exceeds 200 N, the reinforcing fiber bundle converges, so that the impregnation property of the matrix resin decreases.
  • the take-up tension can be appropriately adjusted according to the setting conditions of the preliminary tension and the transport speed. The take-up tension can be increased by increasing the transport speed. Further, the take-up tension can be appropriately adjusted by the shape and arrangement of the rolls.
  • a molded article is obtained by laminating one or more sheets of the fiber-reinforced polymer alloy base material according to the present invention in an optional configuration and then applying heat and / or pressure as necessary.
  • Examples of the method of applying heat and / or pressure include, for example, a press molding method in which a fiber-reinforced polymer alloy base material laminated in an arbitrary configuration is placed in a mold or on a press plate, and then the mold or the press plate is closed and pressed.
  • An autoclave molding method in which a molding material laminated in an arbitrary configuration is put into an autoclave and pressurized and heated, the molding material laminated in an arbitrary configuration is wrapped in a film or the like, and the inside is depressurized and pressurized at atmospheric pressure.
  • Bag forming method of heating in an oven, wrapping tape method of winding a tape while applying tension to a fiber reinforced polymer alloy substrate laminated in an optional configuration, and heating in an oven, fiber reinforced polymer alloy group of an optional configuration An internal pressure molding method in which a material is placed in a mold and a gas or liquid is injected into the core also placed in the mold and pressurized. It is. In particular, a molding method in which pressing is performed using a mold is preferably used, since a molded article obtained is small in voids and a molded article having excellent appearance quality can be obtained.
  • the fiber-reinforced polymer alloy base material of the present invention or a molded product thereof is excellent in productivity such as integral molding such as insert molding and outsert molding, and correction treatment by heating, heat welding, vibration welding, and ultrasonic welding. Integration using a construction method or an adhesive can be performed, and a composite molded article can be obtained by the integration.
  • the molding substrate or its molded product integrated with the fiber-reinforced polymer alloy substrate of the present invention or its molded product examples thereof include a resin material or its molded product, a metal material or its molded product, and an inorganic material. Materials or molded articles thereof are exemplified. Above all, the resin material or the molded product thereof or the metal material or the molded product thereof can effectively exert the reinforcing effect of the fiber-reinforced polymer alloy base material according to the present invention. A resin material or a molded product thereof is preferable in terms of adhesive strength to a fiber reinforced polymer alloy base material.
  • a fiber reinforced resin obtained by impregnating a matrix resin into a reinforced fiber mat having a fiber length of 5 to 100 mm is excellent in moldability and mechanical properties. It is more preferable from the viewpoint.
  • the metal material or its molded product high-tensile steel, an aluminum alloy, a titanium alloy, a magnesium alloy, or the like can be used, and may be selected according to the characteristics required for the metal layer, the metal member, and the metal component.
  • the matrix resin of the molding material or the molded product thereof integrated with the fiber-reinforced polymer alloy base material of the present invention may be the same kind of resin as the fiber-reinforced polymer alloy base material or the molded product thereof, or may be a different resin. There may be. In order to further increase the adhesive strength, it is preferable that the resins are of the same type. In the case of different kinds of resins, it is more preferable to provide a resin layer at the interface.
  • the fiber-reinforced polymer alloy base material of the present invention or a molded product thereof is used for various applications such as aircraft parts, automobile parts, electric / electronic parts, building members, various containers, daily necessities, household goods and sanitary goods by utilizing its excellent properties. Can be used.
  • the fiber-reinforced polymer alloy base material or the molded product thereof according to the present invention is, inter alia, an aircraft engine peripheral part where stable mechanical properties are required, an exterior part of an aircraft part, a vehicle skeleton as an automobile body part, an automobile engine peripheral part, It is particularly preferably used for automobile underhood parts, automobile gear parts, automobile interior parts, automobile exterior parts, intake / exhaust system parts, engine cooling water system parts, automobile electric parts, and electric / electronic parts.
  • the fiber-reinforced polymer alloy base material of the present invention or a molded product thereof includes an aircraft engine peripheral part such as a fan blade, a landing gear pod, a winglet, a spoiler, an edge, a ladder, an elevator, a failing, a rib, and the like.
  • Aircraft related parts various seats, front body, underbody, various pillars, various members, various frames, various beams, various supports, various rails, various body parts such as hinges, engine covers, air intake pipes, timing belt covers, Automotive engine peripheral parts such as intake manifold, filler cap, throttle body, cooling fan, cooling fan, top and base of radiator tank, cylinder head cover, oil pan, vibration Automotive underhood parts such as pipes, fuel piping tubes, exhaust gas system parts, etc., automotive gear parts such as gears, actuators, bearing retainers, bearing cages, chain guides, chain tensioners, shift lever brackets, steering lock brackets, key cylinders, Door inner handle, door handle cowl, interior mirror bracket, air conditioner switch, instrument interior panel, console box, glove box, steering wheel, trim and other automotive interior parts, front fender, rear fender, fuel lid, door panel, cylinder head cover, door mirror stay , Tailgate panel, license garnish, roof rail, engine mount bracket, rear garni Car, rear spoiler, trunk lid, rocker molding, molding, lamp housing
  • the fiber-reinforced polymer alloy base material and the fiber-reinforced thermoplastic resin base material obtained in each of the examples and the comparative examples were aligned so that the fiber direction was one direction, and laminated so as to have a thickness of 1 ⁇ 0.2 mm.
  • the laminate was put into a mold heated to a mold temperature + 30 ° C. of the melting temperature of the matrix resin. Subsequently, the laminated body was heated and pressed at a pressure of 3 MPa for 1 minute, and then cooled and pressed at a pressure of 3 MPa to obtain a molded plate.
  • a test piece of 250 mm ⁇ 15 mm was cut out from the formed plate with the fiber axis direction as a long side.
  • the obtained test piece was subjected to a tensile test in accordance with JIS K7165-2008 by using an “Instron” (registered trademark) universal tester model 4201 (manufactured by Instron), and the tensile strength was measured. The measurement was performed three times, and the coefficient of variation was calculated from the average value and the standard deviation. The coefficient of variation of the tensile strength was used as a criterion for the stability of the mechanical properties. :: Coefficient of variation is less than 5%. X: The coefficient of variation is 5% or more.
  • Example 1 The raw materials having the composition shown in Table 1 were mixed and charged into a feed port of a twin-screw extruder.
  • Melt kneading was performed at a predetermined kneading temperature and screw rotation speed, and a strand-like molten resin was discharged from a discharge port.
  • the discharged strand-shaped molten resin was cooled by passing through a cooling bath, and was cut while being collected by a pelletizer, thereby obtaining a pellet-shaped sample of a polymer alloy.
  • the obtained polymer alloy was subjected to the above evaluation. Table 1 shows the evaluation results.
  • the carbon fibers impregnated with the polymer alloy as the matrix resin with a weak force that does not deteriorate the dispersion of the reinforcing fiber bundle in the impregnation die are continuously taken out from the nozzle of the impregnation die using a take-off roll at a speed of 1 m / min. I pulled it out.
  • the passage time of the carbon fiber bundle through the nozzle was 4.0 seconds.
  • the drawn-out carbon fiber bundle passed through a cooling roll to cool and solidify the polymer alloy, and was wound up by a winder as a continuous fiber-reinforced polymer alloy base tape.
  • the thickness of the obtained fiber-reinforced polymer alloy base material was 0.1 mm, the width was 50 mm, and the reinforcing fiber directions were arranged in one direction.
  • the obtained fiber-reinforced polymer alloy base material was subjected to the evaluation. Table 1 shows the evaluation results.
  • Example 2 A fiber-reinforced polymer alloy base material was obtained in the same manner as in Example 1 except that the matrix resin was changed to the conditions shown in Table 1. The obtained fiber-reinforced polymer alloy base material was subjected to the evaluation. Table 1 shows the evaluation results.
  • Carbon fibers (represented by CF in Table 1) were used as reinforcing fibers, and six bobbins around which carbon fiber bundles were wound were prepared, and the carbon fiber bundles were continuously fed from the bobbins through a thread guide.
  • the carbon fiber bundle continuously fed out was passed through a fixed roll in an S-shape to perform a smoothing process.
  • Matrix resin (“Torelina” (registered trademark) manufactured by Toray Industries, Inc .: polyphenylene sulfide [denoted as PPS in Table 1]) supplied from the smoothed carbon fiber bundle and the filled feeder, and “ULTEM” manufactured by Subic Corporation "(R): a polymer alloy of polyetherimide (denoted as PEI in Table 1)).
  • the carbon fibers impregnated with the polymer alloy by the resin pressure in the impregnation die were impregnated with the polymer alloy as a matrix resin by a supplemental impregnation device with a small force that does not deteriorate the dispersion of the reinforcing fiber bundle.
  • the width of the reinforcing fiber bundle was regulated so as not to deteriorate the dispersibility. It was continuously pulled out from the slit of the additional impregnation device at a pulling speed of 1 m / min using a pulling roll. The drawn-out carbon fiber bundle passed through a cooling roll to cool and solidify the polymer alloy, and was wound up as a continuous fiber-reinforced polymer alloy base tape by a winder. The width of the obtained fiber-reinforced polymer alloy base material was 50 mm, and the reinforcing fiber directions were arranged in one direction. The obtained fiber-reinforced polymer alloy base material was subjected to the evaluation. Table 1 shows the evaluation results.
  • Example 10 A fiber-reinforced polymer alloy base material was obtained in the same manner as in Example 7, except that the conditions for the matrix resin were changed to those shown in Table 1. The obtained fiber-reinforced polymer alloy base material was subjected to the evaluation. Table 1 shows the evaluation results.
  • thermoplastic resin substrate was obtained in the same manner as in Example 7, except that a matrix resin ("Torelina” (registered trademark) manufactured by Toray Industries, Inc .: polyphenylene sulfide [denoted as PPS in Table 2]) was used.
  • the obtained fiber reinforced thermoplastic resin substrate was subjected to the above evaluation. Table 2 shows the evaluation results.
  • Comparative Examples 2 to 4 In Comparative Example 2, the fiber volume content was set to 30% as compared with the conditions in Example 1, and in Comparative Examples 3 and 4, the range of the various preferable manufacturing conditions for the fiber-reinforced polymer alloy base material according to the present invention as described above. In particular, because the dispersion parameter D could not attain 90% or more, the evaluation of the obtained fiber-reinforced polymer alloy base material, particularly the evaluation of the tensile strength, did not reach the acceptable level. Table 2 shows the evaluation results.
  • the fiber-reinforced polymer alloy base material according to the present invention can be formed into a desired shape by any forming method such as autoclave molding, press molding, and film molding.
  • Molded articles obtained by molding using the fiber-reinforced polymer alloy base material according to the present invention include, for example, aircraft engine peripheral parts, aircraft interior parts, aircraft exterior parts, vehicle frames, automobile engine peripheral parts, automobile underhood parts, automobiles It is effective for automotive parts such as gear parts, car interior parts, car exterior parts, intake / exhaust system parts, engine cooling water system parts, car electric parts, etc., and electric / electronic parts such as LED reflectors and SMT connectors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

連続した強化繊維が平行に引き揃えられるとともに、ポリマーアロイが含浸された繊維強化ポリマーアロイ基材であって、前記ポリマーアロイが2種類以上の熱可塑性樹脂を組み合わせたポリマーアロイを使用し、繊維体積含有率が40~70体積%の範囲内にあり、且つ繊維の分散パラメーターDが90%以上であることを特徴とする繊維強化ポリマーアロイ基材。強化繊維が高い均一性をもって分散し、高い機械特性と耐熱性を有しかつそれが小さいばらつきをもって安定的に発現される繊維強化ポリマーアロイ基材が得られる。

Description

繊維強化ポリマーアロイ基材およびそれを用いた成形品
 本発明は、繊維強化ポリマーアロイ基材およびそれを用いた成形品に関する。
 連続した強化繊維に熱可塑性樹脂を含浸させてなる繊維強化熱可塑性樹脂基材は、比強度、比剛性に優れ、軽量化効果が高い上に、耐熱性、耐薬品性が高いため、航空機、自動車等の輸送機器や、スポーツ、電気・電子部品などの各種用途へ好ましく用いられている。近年、軽量化に対する需要の高まりにより、航空機、自動車用途を中心に、金属部品から樹脂部品への代替や、部品の小型化、モジュール化が進みつつあることから、より成形性に優れ、かつ、機械特性に優れる材料開発が求められている。
 成形性と機械特性に優れた構造材用複合材料としては、例えば、ポリアミド樹脂に炭素繊維を含有してなる繊維強化熱可塑性樹脂プリプレグ(例えば、特許文献1参照)が知られている。このようなプリプレグは、高い機械特性のために軽量化材料として期待されているが、安定して機械特性を発現するためには、繊維束間へのマトリックス樹脂の含浸性に優れ、強化繊維が繊維強化熱可塑性樹脂基材中に均一に分散することが必要である。
 さらに、近年、繊維強化熱可塑性樹脂プリプレグは航空機用途を中心に高い耐熱性が要求されており、前述の成形性と機械特性と併せて、繊維強化熱可塑性樹脂基材に使用されるマトリックス樹脂には相反する特性を両立することが求められている。
特開2013-159675号公報
 前述した特性の両立は、単一樹脂では困難であり、このため異なった物性を持つポリマー同士を組み合わせることにより、それぞれのポリマーの持つ長所を互いに引き出し、短所を補うことによって、単一のポリマーと比較し優れた物性を発現させる技術、すなわちポリマーアロイ技術が注目されている。
 そこで本発明の課題は、ポリマーアロイをマトリックスとした繊維強化ポリマーアロイ基材に関して、強化繊維がより確実に均一に分散し、高い機械特性と耐熱性が小さいばらつきを持って安定して発現される繊維強化ポリマーアロイ基材を提供することにある。
 上記課題を解決するために、本発明は、主として、以下の構成を有する。
[1]連続した強化繊維が平行に引き揃えられるとともに、ポリマーアロイが含浸された繊維強化ポリマーアロイ基材であって、前記ポリマーアロイとして2種類以上の熱可塑性樹脂を組み合わせたポリマーアロイが使用され、繊維体積含有率が40~70体積%の範囲内にあり、且つ下記の方法によって求められる繊維の分散パラメーターDが90%以上であることを特徴とする繊維強化ポリマーアロイ基材。
(i)前記繊維強化ポリマーアロイ基材の強化繊維配向方向と垂直な横断面を複数の区画に分割し、その中の1つの区画を撮影する。
(ii)前記区画の撮影画像を、式(1)で規定された一辺の長さtを有する複数の正方形ユニットに分割する。
(iii)式(2)で定義する分散パラメーターdを算出する。
(iv)異なる区画について(i)~(iii)の手順を繰り返し、前記横断面から得られる複数の区画の分散パラメーターdの平均値を分散パラメーターDとする。
 1.5a≦t≦2.5a  (a:繊維直径、t:ユニットの一辺の長さ)・・・(1)
 分散パラメーターd=1つの区画内における強化繊維が含まれるユニットの個数/1つの区画内におけるユニットの総個数×100(%)・・・(2)
[2]前記分散パラメーターdの変動係数が4%以下である、[1]に記載の繊維強化ポリマーアロイ基材。
[3]前記ポリマーアロイがポリフェニレンスルフィド樹脂(PPS)、ポリアリーレンエーテルケトン樹脂(PAEK)、ポリエーテルスルホン樹脂(PES)、ポリエーテルイミド(PEI)、液晶ポリマー(LCP)から選ばれる少なくとも2種以上の樹脂を組み合わせたポリマーアロイである、[1]または[2]に記載の繊維強化ポリマーアロイ基材。
[4]構造周期が0.001~10μmの両相連続構造、または粒子径0.001~10μmの島相と海相とからなる海島構造を形成するポリマーアロイを含有する、[1]~[3]のいずれかに記載の繊維強化ポリマーアロイ基材。
[5]隣接する強化繊維の中心距離が5μm~15μmの範囲にある、[1]~[4]のいずれかに記載の繊維強化ポリマーアロイ基材。
[6]前記繊維強化ポリマーアロイ基材中のポリマーアロイの構造周期、または島相を形成する樹脂の粒子径が下記式(6)で表される強化繊維間距離より小さい、[4]または[5]に記載の繊維強化ポリマーアロイ基材。
z=y-2r(z:強化繊維間距離、y:強化繊維の中心間距離、r:繊維半径)・・・(6)
[7]厚みが0.01mm~1.5mmの範囲にある、[1]~[6]のいずれかに記載の繊維強化ポリマーアロイ基材。
[8]
前記強化繊維が炭素繊維である、[1]~[7]のいずれかに記載の繊維強化ポリマーアロイ基材。
[9]ボイド率が2%以下である、[1]~[8]のいずれかに記載の繊維強化ポリマーアロイ基材。
[10]引き抜き成形によって得られたものである、[1]~[9]のいずれかに繊維強化ポリマーアロイ基材。
[11][1]~[10]のいずれかに記載の繊維強化ポリマーアロイ基材からなる成形品。
[12][1]~[10]のいずれかに記載の繊維強化ポリマーアロイ基材または[11]に記載の成形品と、金属材料またはその成形品、もしくは樹脂材料またはその成形品とを一体化してなる複合成形品。
 本発明によれば、強化繊維が高い均一性をもって分散し、ポリマーアロイが含浸した、高い機械特性と耐熱性を有しかつそれが小さいばらつきをもって安定的に発現される繊維強化ポリマーアロイ基材が得られる。
 以下に、本発明について、実施形態とともに詳細に説明する。
 本発明に係る繊維強化ポリマーアロイ基材は、平行に引き揃えられた連続した強化繊維に、熱可塑ポリマーアロイを含浸させたものである。本発明において、連続した強化繊維とは、繊維強化ポリマーアロイ基材中で当該強化繊維が途切れのないものをいう。本発明における強化繊維の形態および配列としては、例えば、一方向に引き揃えられたもの、織物(クロス)、編み物、組み紐、トウ等が挙げられる。中でも、特定方向の機械特性を効率よく高められることから、強化繊維が一方向に配列してなることが好ましい。
 強化繊維の種類としては特に限定されず、炭素繊維、金属繊維、有機繊維、無機繊維が例示される。これらを2種以上用いてもよい。強化繊維に炭素繊維を用いることで、軽量でありながら高い機械特性を有する繊維強化ポリマーアロイ基材が得られる。
 炭素繊維としては、例えば、ポリアクリロニトリル(PAN)繊維を原料とするPAN系炭素繊維、石油タールや石油ピッチを原料とするピッチ系炭素繊維、ビスコースレーヨンや酢酸セルロースなどを原料とするセルロース系炭素繊維、炭化水素などを原料とする気相成長系炭素繊維、これらの黒鉛化繊維などが挙げられる。これら炭素繊維のうち、強度と弾性率のバランスに優れる点で、PAN系炭素繊維が好ましく用いられる。
 金属繊維としては、例えば、鉄、金、銀、銅、アルミニウム、黄銅、ステンレスなどの金属からなる繊維が挙げられる。
 有機繊維としては、例えば、アラミド、ポリベンゾオキサゾール(PBO)、ポリフェニレンスルフィド、ポリエステル、ポリアミド、ポリエチレンなどの有機材料からなる繊維が挙げられる。アラミド繊維としては、例えば、強度や弾性率に優れるパラ系アラミド繊維と、難燃性、長期耐熱性に優れるメタ系アラミド繊維が挙げられる。パラ系アラミド繊維としては、例えば、ポリパラフェニレンテレフタルアミド繊維、コポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド繊維などが挙げられ、メタ系アラミド繊維としては、ポリメタフェニレンイソフタルアミド繊維などが挙げられる。アラミド繊維としては、メタ系アラミド繊維に比べて弾性率の高いパラ系アラミド繊維が好ましく用いられる。
 無機繊維としては、例えば、ガラス、バサルト、シリコンカーバイト、シリコンナイトライドなどの無機材料からなる繊維が挙げられる。ガラス繊維としては、例えば、Eガラス繊維(電気用)、Cガラス繊維(耐食用)、Sガラス繊維、Tガラス繊維(高強度、高弾性率)などが挙げられる。バサルト繊維は、鉱物である玄武岩を繊維化した物で、耐熱性の非常に高い繊維である。玄武岩は、一般的に、鉄の化合物であるFeOまたはFeOを9~25重量%、チタンの化合物であるTiOまたはTiOを1~6重量%含有するが、溶融状態でこれらの成分を増量して繊維化することも可能である。
 本発明に係る繊維強化ポリマーアロイ基材は、補強材としての役目を期待されることが多いため、高い機械特性を発現することが望ましく、高い機械特性を発現するためには、強化繊維として炭素繊維を含むことが好ましい。
 繊維強化ポリマーアロイ基材において、強化繊維は、通常、多数本の単繊維を束ねた強化繊維束を1本または複数本並べて構成される。1本または複数本の強化繊維束を並べたときの強化繊維の総フィラメント数(単繊維の本数)は、1,000~2,000,000本が好ましい。生産性の観点からは、強化繊維の総フィラメント数は、1,000~1,000,000本がより好ましく、1,000~600,000本がさらに好ましく、1,000~300,000本が特に好ましい。強化繊維の総フィラメント数の上限は、分散性や取り扱い性とのバランスも考慮して、生産性と分散性、取り扱い性を良好に保てるように決められればよい。
 1本の強化繊維束は、好ましくは平均直径5~10μmである強化繊維の単繊維を1,000~50,000本束ねて構成される。
 本発明に使用されるポリマーアロイとしては例えば、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート(PTT)樹脂、ポリエチレンナフタレート(PEN)樹脂、液晶ポリエステル樹脂等のポリエステルや、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリブチレン樹脂等のポリオレフィンや、スチレン系樹脂の他や、ポリオキシメチレン(POM)樹脂、ポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂、ポリメチレンメタクリレート(PMMA)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリフェニレンエーテル(PPE)樹脂、変性PPE樹脂、ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリスルホン(PSU)樹脂、変性PSU樹脂、ポリエーテルスルホン樹脂、ポリケトン(PK)樹脂、ポリアリーレンエーテルケトン樹脂(PAEK)、ポリアリレート(PAR)樹脂、ポリエーテルニトリル(PEN)樹脂、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレン樹脂などのフッ素系樹脂、更にポリスチレン系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリブタジエン系樹脂、ポリイソプレン系樹脂、フッ素系樹脂等の熱可塑エラストマー等から選ばれる2種類以上の樹脂の組み合わせが挙げられる。とりわけ、機械特性および耐熱性の観点からポリマーアロイがポリフェニレンスルフィド樹脂(PPS)、ポリアリーレンエーテルケトン樹脂(PAEK)、ポリエーテルスルホン樹脂(PES)、ポリエーテルイミド(PEI)、液晶ポリマー(LCP)から選ばれる少なくとも2種以上の樹脂を組み合わせた熱可塑ポリマーアロイがより好ましく用いられる。
 上記ポリアリーレンエーテルケトン樹脂(PAEK)としては、例えば、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルエーテルケトンケトン(PEEKK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルケトンエーテルケトンケトン(PEKEKK)、ポリエーテルエーテルケトンエーテルケトン(PEEKEK)、ポリエーテルエーテルエーテルケトン(PEEEK)、及びポリエーテルジフェニルエーテルケトン(PEDEK)等やこれらの共重合体、変性体、および2種以上ブレンドした樹脂などであってもよい。
 本発明のポリマーアロイは、繊維強化ポリマーアロイ基材中で、前記ポリマーアロイが、構造周期0.001~10μmの両相連続構造、または前記ポリマーアロイが粒子径0.001~10μmの島相と海相からなる海島構造を形成することが好ましい。0.001μm~10μmの範囲の両相連続構造、または粒子径0.001~10μmの範囲の島相と海相からなる海島構造に制御することにより、高い機械特性および耐熱性を発現できる。0.01μm~5μmの範囲の両相連続構造、または粒子径0.01~5μmの範囲の島相と海相からなる海島構造を形成することがより好ましく、0.1μm~1μmの範囲の両相連続構造、または粒子径0.1~1μmの範囲の島相と海相からなる海島構造を形成することがさらに好ましい。
 3種以上の熱可塑性樹脂を組み合わせたポリマーアロイの場合には、例えば、(i)両相連続構造と海島構造の組合せ、(ii)異なる種類の両相連続構造が組み合わさったもの、(iii)3種以上の樹脂から構成される複数相の連続構造等、各種構造を適宜組み合わせることができる。
 またこれらの両相連続構造、もしくは分散構造を確認するためには、規則的な周期構造が確認されることが好ましい。これは例えば、光学顕微鏡観察や透過型電子顕微鏡観察により、両相連続構造が形成されることの確認に加えて、小角X線散乱装置または光散乱装置を用いて行う散乱測定において、散乱極大が現れることの確認が必要である。この散乱測定における散乱極大の存在は、ある周期を持った規則正しい相分離構造を持つ証明であり、その周期Λm(nm)は、両相連続構造の場合、構造周期に対応し、分散構造の場合粒子間距離に対応する。またその値は、散乱光の散乱体内での波長λ(nm)、散乱極大を与える散乱角θm(deg°)を用いて次式(7)
Λm=(λ/2)/sin(θm/2)・・・(7)
により計算することができる。
 また、両相連続構造における構造周期または分散構造における粒子間距離のサイズが上記の範囲にあっても、一部構造的に粗大な部分などがあると、例えば衝撃を受けた際そこを起点として破壊が進行するなど、本来のポリマーアロイの特性が得られないことがある。したがって、ポリマーアロイの両相連続構造における構造周期または分散構造における粒子間距離の均一性が重要となる。この均一性は、上述のポリマーアロイの小角X線散乱測定または、光散乱測定により評価することが可能である。小角X線散乱測定と光散乱測定では、分析可能な相分離構造サイズが異なるので、分析するポリマーアロイの相分離構造サイズに応じて適宜使い分ける必要がある。小角X線散乱測定および光散乱測定は両相連続構造における構造周期または分散構造における粒子間距離のサイズに加え、その分布に関する情報が得られる。具体的には、それら測定で得られるスペクトルにおける散乱極大のピーク位置、すなわち散乱角θm(deg°)が両相連続構造における構造周期または分散構造における粒子間距離のサイズに対応し、そのピークの拡がり方が、構造の均一性に対応する。優れた機械特性等の物理特性を得るためには、構造均一性が高い方が好ましく、本発明におけるポリマーアロイは小角X線散乱測定または光散乱測定により得られた散乱スペクトルが極大値を有することを特徴とする。
 本発明に係る繊維強化ポリマーアロイ基材は、連続した強化繊維に前述の熱可塑ポリマーアロイを含浸させたものであり、必要に応じて、さらに、充填材、各種添加剤などを含有してもよい。
 充填材としては、一般に樹脂用フィラーとして用いられる任意のものを用いることができ、繊維強化ポリマーアロイ基材やそれを用いた成形品の強度、剛性、耐熱性、寸法安定性をより向上させることができる。充填材としては、例えば、ガラス繊維、炭素繊維、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状無機充填材、ワラステナイト、ゼオライト、セリサイト、カオリン、マイカ、タルク、クレー、パイロフィライト、ベントナイト、モンモリロナイト、アスベスト、アルミノシリケート、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄、炭酸カルシウム、炭酸マグネシウム、ドロマイト、硫酸カルシウム、硫酸バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、ガラスビーズ、セラミックビーズ、窒化ホウ素、炭化珪素、シリカなどの非繊維状無機充填材などが挙げられる。これらを2種以上含有してもよい。これら充填材は中空であってもよい。また、イソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ化合物などのカップリング剤で処理されていてもよい。また、モンモリロナイトとして、有機アンモニウム塩で層間イオンをカチオン交換した有機化モンモリロナイトを用いてもよい。なお、繊維状充填材は、不連続繊維からなるものであれば、連続繊維からなる強化繊維の補強効果を損なうことなく機能を付与できる。
 各種添加剤としては、例えば、酸化防止剤や耐熱安定剤(ヒンダードフェノール系、ヒドロキノン系、ホスファイト系およびこれらの置換体、ハロゲン化銅、ヨウ素化合物等)、耐候剤(レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系等)、離型剤および滑剤(脂肪族アルコール、脂肪族アミド、脂肪族ビスアミド、ビス尿素およびポリエチレンワックス等)、顔料(硫化カドミウム、フタロシアニン、カーボンブラック等)、染料(ニグロシン、アニリンブラック等)、可塑剤(p-オキシ安息香酸オクチル、N-ブチルベンゼンスルホンアミド等)、帯電防止剤(アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートなどの非イオン系帯電防止剤、ベタイン系両性帯電防止剤等)、難燃剤(メラミンシアヌレート、水酸化マグネシウム、水酸化アルミニウム等の水酸化物、ポリリン酸アンモニウム、臭素化ポリスチレン、臭素化ポリフェニレンオキシド、臭素化ポリカーボネート、臭素化エポキシ樹脂あるいはこれらの臭素系難燃剤と三酸化アンチモンとの組み合わせ等)などが挙げられる。これらを2種以上配合してもよい。
 本発明に係る繊維強化ポリマーアロイ基材は、連続した強化繊維にポリマーアロイを含浸させることにより得ることができる。
 含浸方法としては、例えば、フィルム状のポリマーアロイを溶融し、加圧することで強化繊維束にポリマーアロイを含浸させるフィルム法、繊維状のポリマーアロイと強化繊維束とを混紡した後、繊維状のポリマーアロイを溶融し、加圧することで強化繊維束にポリマーアロイを含浸させるコミングル法、粉末状のポリマーアロイを強化繊維束における繊維の隙間に分散させた後、粉末状のポリマーアロイを溶融し、加圧することで強化繊維束にポリマーアロイを含浸させる粉末法、溶融したポリマーアロイ中に強化繊維束を浸し、加圧することで強化繊維束にポリマーアロイを含浸させる引き抜き法が挙げられる。様々な厚み、繊維体積含有率など多品種の繊維強化ポリマーアロイ基材を作製できることから、引き抜き法が好ましい。
 本発明に係る繊維強化ポリマーアロイ基材の厚さとしては、0.01~1.5mmが好ましい。厚さが0.01mm以上であれば、繊維強化ポリマーアロイ基材を用いて得られる成形品の強度を向上させることができる。0.05mm以上がより好ましい。一方、厚さが1.5mm以下であれば、強化繊維にポリマーアロイをより含浸させやすい。1mm以下がより好ましく、0.7mm以下がさらに好ましく、0.6mm以下が一層好ましい。
 また、本発明に係る繊維強化ポリマーアロイ基材では、繊維強化ポリマーアロイ基材全体100体積%中、強化繊維を40体積%以上70体積%以下含有する。強化繊維を40体積%以上含有することにより、繊維強化ポリマーアロイ基材を用いて得られる成形品の強度をより向上させることができる。45体積%以上がより好ましく、50体積%以上がさらに好ましい。一方、強化繊維を70体積%以下含有することにより、強化繊維にポリマーアロイをより含浸させやすい。65体積%以下がより好ましく、60体積%以下がさらに好ましい。
 なお、繊維強化ポリマーアロイ基材の強化繊維体積含有率Vfは、繊維強化ポリマーアロイ基材の質量W0(g)を測定したのち、該繊維強化ポリマーアロイ基材を空気中500℃で30分間加熱してポリマーアロイ成分を焼き飛ばし、残った強化繊維の質量W1(g)を測定し、式(3)により算出した。
Vf(体積%)=(W1/ρf)/{W1/ρf+(W0-W1)/ρ1}×100・・・(3)
 ρf:強化繊維の密度(g/cm
 ρ1:ポリマーアロイの密度(g/cm
 本発明の繊維強化ポリマーアロイ基材は繊維強化ポリマーアロイ基材に含まれるボイドの含有率(ボイド率)が2%以下であることが好ましい。ボイド率が2%以下であることにより、強化繊維の機械特性を損なうことなく、繊維強化ポリマーアロイ基材の機械特性を発現することができる。ボイド率としては、1.5%以下がより好ましく、1%以下がさらに好ましい。
 本発明における繊維強化ポリマーアロイ基材のボイド率は、繊維強化ポリマーアロイ基材の厚み方向断面を以下のように観察して求めた。繊繊維強化ポリマーアロイ基材をエポキシ樹脂で包埋したサンプルを用意し、繊維強化ポリマーアロイ基材の厚み方向断面が良好に観察できるようになるまで、前記サンプルを研磨した。研磨したサンプルを、超深度カラー3D形状測定顕微鏡VHX-9500(コントローラー部)/VHZ-100R(測定部)((株)キーエンス製)を使用して、拡大倍率400倍で撮影した。撮影範囲は、繊維強化ポリマーアロイ基材の厚み×幅500μmの範囲とした。撮影画像において、基材の断面積および空隙(ボイド)となっている部位の面積を求め、式(4)により含浸率を算出した。
ボイド率(%)=(ボイドが占める部位の総面積)/(繊維強化ポリマーアロイ基材の総面積)×100・・・(4)
 本発明に係る繊維強化ポリマーアロイ基材では下記の方法で定義される分散パラメーターDが90%以上である。分散パラメーターDが90%以上であることにより、繊維強化ポリマーアロイ基材の機械特性のバラつきを低減することができる。
 (分散パラメーターDの算出)
(i)繊維強化ポリマーアロイ基材の強化繊維配向方向と垂直な横断面を複数の区画に分割し、その中の1つの区画を撮影する。
(ii)上記区画の撮影画像を、式(1)で規定された一辺の長さtを有する複数の正方形ユニットに分割する。
(iii)式(2)で定義する分散パラメーターdを算出する。
(iv)異なる区画について(i)~(iii)の手順を繰り返し、上記横断面から得られる複数の区画の分散パラメーターdの平均値を分散パラメーターDとする。
 1.5a≦t≦2.5a  (a:繊維直径、t:ユニットの一辺の長さ)・・・(1)
 分散パラメーターd=1つの区画内における強化繊維が含まれるユニットの個数/1つの区画内におけるユニットの総個数×100(%)・・・(2)
 (評価方法)
 試料である繊維強化ポリマーアロイ基材を、エポキシ樹脂「エポクイック」(登録商標:ビューラー社製)に埋め込み、室温で24時間硬化させた後、繊維強化ポリマーアロイ基材における強化繊維の配向方向にほぼ垂直な横断面を研磨し、次いで研磨面を超深度カラー3D形状測定顕微鏡VHX-9500(コントローラー部)/VHZ-100R(測定部)((株)キーエンス製)で、位置を変えながら撮影する。
 撮影された繊維強化ポリマーアロイ基材の横断面写真について画像解析を行い、式(1)を1辺の長さとする、相互に重なり合わない略正方形の複数のユニットに分割した。この略正方形ユニットを順に画像解析し、略正方形ユニット内に強化繊維を含むユニットをカウントして、式(2)より分散パラメーターdを算出した。
 上記の画像処理は、区画された略正方形ユニットの総数に対するユニット内に強化繊維を含むユニットの数を算出することによって分散パラメーターdが求められる。2値化は原則として判別分析法を採用するが、場合によっては撮影写真と対比しつつ手動で実施することも可能である。
 また、正方形のユニット内に含まれる強化繊維は、強化繊維の一部でも含まれていればカウントされ、二つ以上の強化繊維が含まれていてもユニットとしては1つとしてカウントされる。
 1つの研磨面について、撮影位置を変えながら20回以上の枚数に亘って撮影し、各々の横断面写真から得られる繊維強化ポリマーアロイ基材の分散パラメーターdに対し、その平均値を分散パラメーターDとして求めればよく、その値から、繊維強化ポリマーアロイ基材における強化繊維の分布状態を定量的に評価することが可能となる。なお、横断面の撮影枚数が十分に確保できない場合には、繊維強化ポリマーアロイ基材の異なる横断面の研磨面を複数枚撮影し、分散パラメーターdを算出し、最終的に分散パラメーターDを求めることも可能である。
 式(1)で求められるユニットの大きさは、観察される強化繊維の直径との関係により規定される。ユニットの大きさが式(1)の範囲より小さければ、分散パラメーターは体積含有率に収斂され分散性を正確に表現できない。一方、式(1)の範囲より大きければ、分散性の良否に関わらず値は一定となり、正確ではない。従って、ユニットの大きさは式(1)の範囲であることが必要である。
 さらに、分散パラメーターdの変動係数は式(5)より求められる。変動係数が4%を超えると繊維強化ポリマーアロイ基材の各箇所により強化繊維の疎密が大きくなる。したがって変動係数は4%以下が好ましく、3%以下がより好ましい。
変動係数=分散パラメーターdの平均値/分散パラメーターdの標準偏差×100・・・(5)
 本発明に係る繊維強化ポリマーアロイ基材では、隣接する強化繊維の中心間距離が5μm~15μmの範囲にあることが好ましい。隣接する強化繊維の中心間距離が5μm以上であることにより、ポリマーアロイが強化繊維間に均一に存在することができるため、高い機械特性と耐熱性に優れる。6μm以上がより好ましい。15μm以下であることにより、強化繊維がポリマーアロイを効果的に補強するため、機械特性および耐熱性に優れる。10μm以下が好ましく、9μm以下がさらに好ましい。
 (評価方法)
 試料である繊維強化ポリマーアロイ基材を、エポキシ樹脂「エポクイック」(登録商標:ビューラー社製)に埋め込み、室温で24時間硬化させた後、繊維強化ポリマーアロイ基材における強化繊維の配向方向にほぼ垂直な横断面を研磨し、次いで研磨面を超深度カラー3D形状測定顕微鏡VHX-9500(コントローラー部)/VHZ-100R((株)キーエンス製)で、位置を変えながら撮影する。
 (測定部)
 撮影された繊維強化ポリマーアロイ基材の横断面写真について、強化繊維の単糸を所定本数選択し、選択した単糸と隣接する繊維すべてについて、画像処理を用いてその繊維間距離を測定する。
 単糸の選択は横断面写真から測定が重複しないように行われる。具体的には繊維強化ポリマーアロイ基材の厚みを3分割する大きさでなる正方形の区画に分割し、各ブロックの中心付近から単糸を選択する。単糸は少なくとも50本以上を選択し、隣接する繊維との繊維間が200点以上評価され、その平均値を代表値とする。
 繊維間距離の測定は単糸を真円に近似して行い、単糸の中心間距離を測定して繊維間距離を評価する。
 選択した単糸と隣接する繊維とは、単糸の中心間を直線で結んだ際に、直線上に他の繊維が干渉しない二つの繊維をいう。
 本発明の繊維強化ポリマーアロイ基材において、前記ポリマーアロイの構造周期、または島相を形成する樹脂の粒子径が下記式(6)で表される強化繊維間距離より小さいことが好ましい。
 z=y-2r(z:強化繊維間距離、y:強化繊維の中心間距離、r:繊維半径)・・・(6)
 ポリマーアロイの構造周期、または島相を形成する樹脂の粒子径が強化繊維間距離より小さいことにより、強化繊維間においてポリマーアロイが海島構造を形成できるため、繊維強化ポリマーアロイ基材は高い機械特性、耐熱性を小さいバラつきをもって安定的に発現できる。
 ここで、本発明に係る繊維強化熱可塑性ポリマーアロイ基材の製造方法について詳細に説明する。
 製造装置としては、例えば、マトリックス樹脂を含浸させる前の強化繊維束が巻き取られたボビンを1つまたは複数保持できるクリール部、このクリール部から強化繊維束を連続的に送り出すフィード部、連続的に送り出された強化繊維束に、溶融したマトリックス樹脂を付着させ、圧力を加えて含浸するとともに、所定の形状へ賦形する含浸ダイ、溶融したマトリックス樹脂を冷却固化して繊維強化熱可塑性ポリマーアロイ基材を形成するための冷却ロールから構成される。
 含浸工程では、連続的に送り出されてくる強化繊維束に、溶融したマトリックス樹脂を含浸させる。連続的に送り出される強化繊維束は通常、薄い層状の形態を有している。製造装置において、強化繊維の連続した単繊維を1,000~50,000本集めて束状とした強化繊維束を巻き付けたボビンを複数準備し、これら複数のボビンから強化繊維束を引き出し、横に並べて全体として薄い層状(テープ状)の形態とし、複数の糸道ガイドを介して、強化繊維束を、溶融したマトリックス樹脂が貯留された含浸ダイ内に進入させる。また、層状の強化繊維束は2層以上に積層した状態で含浸ダイに進入させることが好ましい。層状の強化繊維束を2層以上に積層することにより、寸法の調整が容易となる。層状の強化繊維束は平滑化処理した後、液溜り部に導くことが繊維分散性を向上でき好ましい。平滑化処理法は特に制限は無いが、対向ロールなどで物理的に押しつける方法や空気流を用いて強化繊維を動かす方法などを例示できる。物理的に押しつける方法は簡便かつ、強化繊維の配列を乱しにくいため好ましい。
 製造装置に備えられた含浸ダイは、強化繊維束の移送方向を向く直方体となっており、この含浸ダイの内部には、フィーダーから供給されたマトリックス樹脂が溶融した状態で貯留されている。強化繊維束の移送方向において上流側に位置する含浸ダイの入口には、前記強化繊維束が通過可能な入口孔が形成されており、この入口孔を介して、強化繊維束は含浸ダイの内部に入ってゆく。含浸ダイ内部は繊維の進行方向に向けて断続的に断面積が減少する構成を有しており、含浸ダイの出口に位置し、樹脂貯留部の強化繊維束の導入側の断面積よりも小さい断面積を有するスリット状のノズルが形成されている。強化繊維束は、マトリックス樹脂の随伴流を伴ってノズル方向に引き取られることから、ノズルに近づくにつれて樹脂の圧力が増大し、マトリックス樹脂が含浸される。任意の厚みに賦形するために複数枚の強化繊維束を単層の状態で含浸ダイに導入し、各層にマトリックス樹脂を付着・含浸させた状態で積層することも可能である。
 繊維強化ポリマーアロイ基材の含浸性を向上させるために、含浸ダイ内部にバーやロールを設けることで強化繊維束に張力を与えながら含浸させることも可能であるし、含浸ダイの通過後にバーやロール、プレス工程などの追含浸装置を設けることも可能である。分散性の観点から追含浸装置を設けることが好ましい。バーやロール、プレス工程などの含浸操作を行う際は、分散性の観点から強化繊維の幅を規制する機構を設けることが好ましい。幅を規制することにより強化繊維束の過度の拡がりを抑制することができ分散性を向上することが可能である。
 また、含浸工程において、含浸のために加える力が小さければ、強化繊維束の配列を乱すことなく生産が可能であり、強化繊維の分散性が向上できる。含浸のために加える力を小さくする方法としては、含浸ダイ内の溶融樹脂に超音波を印加する方法や強化繊維束を振動する方法、薄い強化繊維束層に樹脂を含浸させた後に各層を積層する方法が挙げられる。
 溶融したマトリックス樹脂が含浸された強化繊維束を含浸ダイもしくは追含浸装置から連続して引き抜くことで、強化繊維束に含浸したマトリックス樹脂が固化する前に、所定の形状に賦形し、その後、冷却固化工程で、溶融したマトリックス樹脂を冷却固化し、一定形状の繊維強化熱可塑性樹脂を形成する。賦形工程と冷却固化工程は同時に行ってもよい。含浸ダイおよび追含浸装置の出口にはダイノズルが設けられており、引取ロールによって引き出され、マトリックス樹脂が含浸した強化繊維束を、所定の断面形状に賦形させる。ダイノズルの強化繊維束の移送方向における寸法は強化繊維束がダイノズルを通過する時間が0.1秒以上の通過時間である長さが好ましい。0.4秒以上がより好ましく、1.0秒以上がさらに好ましい。通過時間が0.1秒以上のダイノズル寸法であることにより、強化繊維束の分散に要する時間が確保され、強化繊維束の分散性が良い繊維強化ポリマーアロイ基材を得ることができる。
 ここで、マトリックス樹脂を含浸した強化繊維束の引き取り張力は、単繊維12,000本当たり、好ましくは5~200N、より好ましくは5~150Nとする。引取張力が5N未満では、強化繊維束が動きやすくなることにより隣接する強化繊維束との重なりや隣接する繊維束との間でギャップを生じやすくなることにより、強化繊維束の分散性が悪化する。また、200Nを超えると、強化繊維束が収束することにより、マトリックス樹脂の含浸性が低下する。引き取り張力は予備張力の設定条件や、搬送速度により、適宜調整可能である。搬送速度を高めることで引き取り張力を高くすることができる。また、引き取り張力はロールの形状やロールの配置によって適宜調整可能である。
 本発明においては、本発明に係る繊維強化ポリマーアロイ基材を、任意の構成で1枚以上積層後、必要に応じて熱および/または圧力を付与しながら成形することにより成形品が得られる。
 熱および/または圧力を付与する方法としては、例えば、任意の構成で積層した繊維強化ポリマーアロイ基材を型内もしくはプレス板上に設置した後、型もしくはプレス板を閉じて加圧するプレス成形法、任意の構成で積層した成形材料をオートクレーブ内に投入して加圧・加熱するオートクレーブ成形法、任意の構成で積層した成形材料をフィルムなどで包み込み、内部を減圧にして大気圧で加圧しながらオーブン中で加熱するバッギング成形法、任意の構成で積層した繊維強化ポリマーアロイ基材に張力をかけながらテープを巻き付け、オーブン内で加熱するラッピングテープ法、任意の構成で積層した繊維強化ポリマーアロイ基材を型内に設置し、同じく型内に設置した中子内に気体や液体などを注入して加圧する内圧成形法等が挙げられる。とりわけ、得られる成形品内のボイドが少なく、外観品位にも優れる成形品が得られることから、金型を用いてプレスする成形方法が好ましく用いられる。
 本発明の繊維強化ポリマーアロイ基材またはその成形品は、インサート成形、アウトサート成形などの一体化成形や、加熱による矯正処置、熱溶着、振動溶着、超音波溶着などの生産性に優れた接着工法や接着剤を用いた一体化を行うことができ、一体化により複合成形品を得ることができる。
 本発明の繊維強化ポリマーアロイ基材またはその成形品と一体化される成形用基材またはその成形品には特に制限はなく、例えば、樹脂材料またはその成形品、金属材料またはその成形品、無機材料またはその成形品などが挙げられる。中でも、樹脂材料またはその成形品もしくは金属材料またはその成形品が本発明に係る繊維強化ポリマーアロイ基材による補強効果を効果的に発現することができる。樹脂材料またはその成形品は繊維強化ポリマーアロイ基材との接着強度の点で好ましく、繊維長が5~100mmの強化繊維マットにマトリックス樹脂を含浸してなる繊維強化樹脂が成形性と機械特性の点からより好ましい。金属材料またはその成形品としては、高張力鋼やアルミニウム合金、チタン合金およびマグネシウム合金等が使用可能であり、金属層や金属部材、金属部品に要求される特性に応じて選択すればよい。
 本発明の繊維強化ポリマーアロイ基材と一体化される成形材料またはその成形品のマトリックス樹脂は、繊維強化ポリマーアロイ基材またはその成形品と同種の樹脂であってもよいし、異種の樹脂であってもよい。接着強度をより高めるためには、同種の樹脂であることが好ましい。異種の樹脂である場合は、界面に樹脂層を設けるとより好適である。
 本発明の繊維強化ポリマーアロイ基材またはその成形品は、その優れた特性を活かし、航空機部品、自動車部品、電気・電子部品、建築部材、各種容器、日用品、生活雑貨および衛生用品など各種用途に利用することができる。本発明における繊維強化ポリマーアロイ基材またはその成形品は、とりわけ、安定した機械特性が要求される航空機エンジン周辺部品、航空機用部品の外装部品、自動車ボディー部品としての車両骨格、自動車エンジン周辺部品、自動車アンダーフード部品、自動車ギア部品、自動車内装部品、自動車外装部品、吸排気系部品、エンジン冷却水系部品や、自動車電装部品、電気・電子部品用途に特に好ましく用いられる。
 具体的には、本発明における繊維強化ポリマーアロイ基材またはその成形品は、ファンブレードなどの航空機エンジン周辺部品、ランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブなどの航空機関連部品、各種シート、フロントボディー、アンダーボディー、各種ピラー、各種メンバ、各種フレーム、各種ビーム、各種サポート、各種レール、各種ヒンジなどの自動車ボディー部品、エンジンカバー、エアインテークパイプ、タイミングベルトカバー、インテークマニホールド、フィラーキャップ、スロットルボディ、クーリングファンなどの自動車エンジン周辺部品、クーリングファン、ラジエータータンクのトップおよびベース、シリンダーヘッドカバー、オイルパン、ブレーキ配管、燃料配管用チューブ、排ガス系統部品などの自動車アンダーフード部品、ギア、アクチュエーター、ベアリングリテーナー、ベアリングケージ、チェーンガイド、チェーンテンショナなどの自動車ギア部品、シフトレバーブラケット、ステアリングロックブラケット、キーシリンダー、ドアインナーハンドル、ドアハンドルカウル、室内ミラーブラケット、エアコンスイッチ、インストルメンタルパネル、コンソールボックス、グローブボックス、ステアリングホイール、トリムなどの自動車内装部品、フロントフェンダー、リアフェンダー、フューエルリッド、ドアパネル、シリンダーヘッドカバー、ドアミラーステイ、テールゲートパネル、ライセンスガーニッシュ、ルーフレール、エンジンマウントブラケット、リアガーニッシュ、リアスポイラー、トランクリッド、ロッカーモール、モール、ランプハウジング、フロントグリル、マッドガード、サイドバンパーなどの自動車外装部品、エアインテークマニホールド、インタークーラーインレット、ターボチャージャ、エキゾーストパイプカバー、インナーブッシュ、ベアリングリテーナー、エンジンマウント、エンジンヘッドカバー、リゾネーター、及びスロットルボディなどの吸排気系部品、チェーンカバー、サーモスタットハウジング、アウトレットパイプ、ラジエータータンク、オルタネーター、及びデリバリーパイプなどのエンジン冷却水系部品、コネクタやワイヤーハーネスコネクタ、モーター部品、ランプソケット、センサー車載スイッチ、コンビネーションスイッチなどの自動車電装部品、電気・電子部品としては、例えば、発電機、電動機、変圧器、変流器、電圧調整器、整流器、抵抗器、インバーター、継電器、電力用接点、開閉器、遮断機、スイッチ、ナイフスイッチ、多極ロッド、モーターケース、テレビハウジング、ノートパソコンハウジングおよび内部部品、CRTディスプレーハウジングおよび内部部品、プリンターハウジングおよび内部部品、携帯電話、モバイルパソコン、ハンドヘルド型モバイルなどの携帯端末ハウジングおよび内部部品、ICやLED対応ハウジング、コンデンサー座板、ヒューズホルダー、各種ギヤー、各種ケース、キャビネットなどの電気部品、コネクタ、SMT対応のコネクタ、カードコネクタ、ジャック、コイル、コイルボビン、センサー、LEDランプ、ソケット、抵抗器、リレー、リレーケース、リフレクタ、小型スイッチ、電源部品、コイルボビン、コンデンサー、バリコンケース、光ピックアップシャーシ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、SiパワーモジュールやSiCパワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、トランス部材、パラボラアンテナ、コンピューター関連部品などの電子部品などに好ましく用いられる。
 以下に実施例を示し、本発明を更に具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。各実施例および比較例における特性評価は下記の方法にしたがって行った。
(耐熱性)
 実施例および比較例により得られたポリマーアロイおよび熱可塑性樹脂をプレスし、プレスフィルムを作製した。(長さ)40mm×(幅)8mm×(厚み)0.1mmに切削加工し、セイコーインスツルメンツ社製動的粘弾性測定装置(DMS6100)を用いて、下記に示す測定条件で貯蔵弾性率E'を測定した。この貯蔵弾性率E'の測定値は、3サンプルの平均値である。尚、この貯蔵弾性率E'の値が大きいほど材料の高温剛性が優れており、且つ耐熱性が向上しているといえる。
・測定モード:引張モード
・温度条件:第1ステップ50℃×2分保持、第2ステップ50℃→270℃まで昇温
・昇温速度:2℃/min
・測定周波数:1Hz
・最小張力:200mN
・歪振幅:10μm
・張力ゲイン:1.5
・力振幅初期値:2000mN
(引張強度)
 各実施例および比較例により得られた繊維強化ポリマーアロイ基材および繊維強化熱可塑性樹脂基材を繊維方向が一方向となるように揃えて、厚さ1±0.2mmとなるように積層した積層体を、型温度がマトリックス樹脂の溶融温度+30℃に加熱された成形型に投入した。続いて、積層体を、圧力3MPaで1分間加熱加圧プレスした後、圧力3MPaで冷却プレスを行い、成形板を得た。成形板から、繊維軸方向を長辺として、250mm×15mmの試験片を切り出した。得られた試験片に対して、“インストロン”(登録商標)万能試験機4201型(インストロン社製)を用いて、JIS K7165-2008に準拠した引張試験を行い、引張強度を測定した。3回測定を行い、その平均値と標準偏差より変動係数を算出した。
 引張強度の変動係数を機械特性の安定性に対する判断基準とし、以下の2段階で評価し、○を合格とした。
○ :変動係数が5%未満である。
× :変動係数が5%以上である。
(原料)
 実施例および比較例において、原料は以下に示すものを用いた。
熱可塑樹脂および熱可塑ポリマーアロイ
ポリフェニレンスルフィド(PPS)  :東レ(株)製“トレリナ”(登録商標)
ポリエーテルエーテルケトン(PEEK):ビクトレックス・ジャパン(株)製“VICTREX”(登録商標)
ポリエーテルケトンケトン(PEKK)  :アルケマ(株)製“KEPSTAN”(登録商標)
ポリエーテルスルホン(PES)       :住友化学(株)製“スミカエクセル”(登録商標)
ポリエーテルイミド      (PEI)   :サビック(株)製“ULTEM”(登録商標)
(実施例1)
 表1に示す配合組成で、原料を混合し、二軸押出機のフィード口に投入した。二軸押出機としては、スクリュー径が25mm、L/D=41の同方向回転二軸押出機((株)パーカーコーポレーション社製、HK-25D(41D))を使用した。所定の混練温度、スクリュー回転数で溶融混錬を行い吐出口よりストランド状の溶融樹脂を吐出した。吐出されたストランド状の溶融樹脂を、冷却バスを通過させて冷却し、ペレタイザーにより引取ながら裁断することにより、ポリマーアロイのペレット状のサンプルを得た。得られたポリマーアロイを前記評価に供した。評価結果を表1に示す。
 強化繊維として炭素繊維(表1ではCFと表記)を使用し、炭素繊維束が巻かれたボビンを6本準備し、それぞれボビンから連続的に糸道ガイドを通じて炭素繊維束を送り出した。連続的に送り出された炭素繊維束に、含浸ダイ内において、充填したフィーダーから定量供給されたマトリックス樹脂(東レ(株)製“トレリナ”(登録商標):ポリフェニレンスルフィド[表1ではPPSと表記]とサビック(株)製“ULTEM”(登録商標):ポリエーテルイミド[表1ではPEIと表記]とのポリマーアロイ)を含浸させた。含浸ダイ内で強化繊維束の分散が悪化しない程度の弱い力でマトリックス樹脂としてのポリマーアロイを含浸した炭素繊維を、引取ロールを用いて含浸ダイのノズルから1m/minの引き抜き速度で連続的に引き抜いた。炭素繊維束のノズルの通過時間は4.0秒であった。引き抜かれた炭素繊維束は、冷却ロールを通過してポリマーアロイが冷却固化され、連続した繊維強化ポリマーアロイ基材のテープとして巻取機に巻き取られた。得られた繊維強化ポリマーアロイ基材の厚さは0.1mm、幅は50mmであり、強化繊維方向は一方向に配列していた。得られた繊維強化ポリマーアロイ基材を前記評価に供した。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
(実施例2~6)
 マトリックス樹脂を表1に示す条件に変更した以外は実施例1と同様にして繊維強化ポリマーアロイ基材を得た。得られた繊維強化ポリマーアロイ基材を前記評価に供した。評価結果を表1に示す。
(実施例7~9)
 強化繊維として炭素繊維(表1ではCFと表記)を使用し、炭素繊維束が巻かれたボビンを6本準備し、それぞれボビンから連続的に糸道ガイドを通じて炭素繊維束を送り出した。連続的に送り出された炭素繊維束を、固定したロールにS字状に通過させることで平滑化処理を施した。平滑にされた炭素繊維束と充填したフィーダーから定量供給されたマトリックス樹脂(東レ(株)製“トレリナ”(登録商標):ポリフェニレンスルフィド[表1ではPPSと表記]とサビック(株)製“ULTEM”(登録商標):ポリエーテルイミド[表1ではPEIと表記]とのポリマーアロイ)を含浸させた。含浸ダイ内で樹脂圧によりポリマーアロイを含浸した炭素繊維を、追含浸装置で強化繊維束の分散が悪化しない程度の弱い力でマトリックス樹脂としてのポリマーアロイを含浸させた。含浸ダイおよび追含浸装置では分散性が悪化しないように強化繊維束の幅を規制した。引取ロールを用いて追含浸装置のスリットから1m/minの引き抜き速度で連続的に引き抜いた。引き抜かれた炭素繊維束は、冷却ロールを通過してポリマーアロイが冷却固化され、連続した繊維強化ポリマーアロイ基材のテープとして巻取機に巻き取られた。得られた繊維強化ポリマーアロイ基材の幅は50mmであり、強化繊維方向は一方向に配列していた。得られた繊維強化ポリマーアロイ基材を前記評価に供した。評価結果を表1に示す。
(実施例10~12)
 マトリックス樹脂を表1に示す条件に変更した以外は実施例7と同様にして繊維強化ポリマーアロイ基材を得た。得られた繊維強化ポリマーアロイ基材を前記評価に供した。評価結果を表1に示す。
(比較例1)
 マトリックス樹脂(東レ(株)製“トレリナ”(登録商標):ポリフェニレンスルフィド[表2ではPPSと表記])を使用した以外は実施例7と同様にして繊維強化熱可塑性樹脂基材を得た。得られた繊維強化熱可塑性樹脂基材を前記評価に供した。評価結果を表2に示す。
(比較例2~4)
 比較例2では、実施例1の条件に比べ、繊維体積含有率を30%とし、比較例3、4では、本発明に係る繊維強化ポリマーアロイ基材の前述したような各種好ましい製造条件の範囲を外れたことにより、とくに分散パラメーターDが90%以上を達成できなかったので、得られた繊維強化ポリマーアロイ基材の評価、とくに引張強度の評価が合格レベルに達しなかった。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 実施例1~12と比較例1~4との比較により、強化繊維とポリマーアロイが均一に分散した本発明に係る繊維強化ポリマーアロイ基材は高い耐熱性と均一な所望の機械特性を有することが分かる。
 本発明に係る繊維強化ポリマーアロイ基材は、オートクレーブ成形、プレス成形、フィルム成形などの任意の成形方法により、所望の形状に成形することが可能である。本発明に係る繊維強化ポリマーアロイ基材を用いた成形により得られる成形品は、例えば、航空機エンジン周辺部品、航空機内装部品、航空機外装部品、車両骨格、自動車エンジン周辺部品、自動車アンダーフード部品、自動車ギア部品、自動車内装部品、自動車外装部品、吸排気系部品、エンジン冷却水系部品、自動車電装部品などの自動車用途、LEDリフレクタやSMTコネクタなどの電気・電子部品用途などに有効である。
 

Claims (12)

  1.  連続した強化繊維が平行に引き揃えられるとともに、ポリマーアロイが含浸された繊維強化ポリマーアロイ基材であって、前記ポリマーアロイとして2種類以上の熱可塑性樹脂を組み合わせたポリマーアロイが使用され、繊維体積含有率が40~70体積%の範囲内にあり、且つ下記の方法によって求められる繊維の分散パラメーターDが90%以上であることを特徴とする繊維強化ポリマーアロイ基材。
    (i)前記繊維強化ポリマーアロイ基材の強化繊維配向方向と垂直な横断面を複数の区画に分割し、その中の1つの区画を撮影する。
    (ii)前記区画の撮影画像を、式(1)で規定された一辺の長さtを有する複数の正方形ユニットに分割する。
    (iii)式(2)で定義する分散パラメーターdを算出する。
    (iv)異なる区画について(i)~(iii)の手順を繰り返し、前記横断面から得られる複数の区画の分散パラメーターdの平均値を分散パラメーターDとする。
     1.5a≦t≦2.5a  (a:繊維直径、t:ユニットの一辺の長さ)・・・(1)
     分散パラメーターd=1つの区画内における強化繊維が含まれるユニットの個数/1つの区画内におけるユニットの総個数×100(%)・・・(2)
  2.  前記分散パラメーターdの変動係数が4%以下である、請求項1に記載の繊維強化ポリマーアロイ基材。
  3.  前記ポリマーアロイがポリフェニレンスルフィド樹脂(PPS)、ポリアリーレンエーテルケトン樹脂(PAEK)、ポリエーテルスルホン樹脂(PES)、ポリエーテルイミド(PEI)、液晶ポリマー(LCP)から選ばれる少なくとも2種以上の樹脂を組み合わせたポリマーアロイである、請求項1または2に記載の繊維強化ポリマーアロイ基材。
  4.  構造周期が0.001~10μmの両相連続構造、または粒子径0.001~10μmの島相と海相とからなる海島構造を形成するポリマーアロイを含有する、請求項1~3のいずれかに記載の繊維強化ポリマーアロイ基材。
  5.  隣接する強化繊維の中心距離が5μm~15μmの範囲にある、請求項1~4のいずれかに記載の繊維強化ポリマーアロイ基材。
  6.  前記繊維強化ポリマーアロイ基材中のポリマーアロイの構造周期、または島相を形成する樹脂の粒子径が下記式(6)で表される強化繊維間距離より小さい、請求項4または5に記載の繊維強化ポリマーアロイ基材。
    z=y-2r(z:強化繊維間距離、y:強化繊維の中心間距離、r:繊維半径)・・・(6)
  7.  厚みが0.01mm~1.5mmの範囲にある、請求項1~6のいずれかに記載の繊維強化ポリマーアロイ基材。
  8.  前記強化繊維が炭素繊維である、請求項1~7のいずれかに記載の繊維強化ポリマーアロイ基材。
  9.  ボイド率が2%以下である、請求項1~8のいずれかに記載の繊維強化ポリマーアロイ基材。
  10.  引き抜き成形によって得られたものである、請求項1~9のいずれかに繊維強化ポリマーアロイ基材。
  11.  請求項1~10のいずれかに記載の繊維強化ポリマーアロイ基材からなる成形品。
  12.  請求項1~10のいずれかに記載の繊維強化ポリマーアロイ基材または請求項11に記載の成形品と、金属材料またはその成形品、もしくは樹脂材料またはその成形品とを一体化してなる複合成形品。
     
PCT/JP2019/027109 2018-07-17 2019-07-09 繊維強化ポリマーアロイ基材およびそれを用いた成形品 WO2020017392A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2019304719A AU2019304719A1 (en) 2018-07-17 2019-07-09 Fiber-reinforced polymer alloy substrate and molded article using same
BR112020024334-5A BR112020024334A2 (pt) 2018-07-17 2019-07-09 substrato de liga de polímero reforçado com fibra, artigo moldado e artigo moldado de compósito
US17/258,234 US11739185B2 (en) 2018-07-17 2019-07-09 Fiber-reinforced polymer alloy substrate and molded article using same
CN201980028497.9A CN112041379B (zh) 2018-07-17 2019-07-09 纤维增强聚合物合金基材及使用其的成型品
KR1020207033892A KR20210032308A (ko) 2018-07-17 2019-07-09 섬유 강화 폴리머 알로이 기재 및 그것을 사용한 성형품
JP2019548080A JP7496058B2 (ja) 2018-07-17 2019-07-09 繊維強化ポリマーアロイ基材およびそれを用いた成形品
EP19837810.1A EP3825349A4 (en) 2018-07-17 2019-07-09 FIBER REINFORCED POLYMER ALLOY SUBSTRATE AND MOLDED ARTICLE THEREOF
CA3100465A CA3100465A1 (en) 2018-07-17 2019-07-09 Fiber-reinforced polymer alloy substrate and molded article using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-134281 2018-07-17
JP2018134281 2018-07-17
JP2018184572 2018-09-28
JP2018-184572 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020017392A1 true WO2020017392A1 (ja) 2020-01-23

Family

ID=69163679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027109 WO2020017392A1 (ja) 2018-07-17 2019-07-09 繊維強化ポリマーアロイ基材およびそれを用いた成形品

Country Status (9)

Country Link
US (1) US11739185B2 (ja)
EP (1) EP3825349A4 (ja)
JP (1) JP7496058B2 (ja)
KR (1) KR20210032308A (ja)
CN (1) CN112041379B (ja)
AU (1) AU2019304719A1 (ja)
BR (1) BR112020024334A2 (ja)
CA (1) CA3100465A1 (ja)
WO (1) WO2020017392A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111169047A (zh) * 2020-02-12 2020-05-19 连云港中复连众复合材料集团有限公司 用厚窄条拉挤型材与玻璃纤维织物混合制造风电叶片主梁、辅梁的方法
WO2022167082A1 (en) 2021-02-05 2022-08-11 Cemex Innovation Holding Ag Targeted addition of grinding aids during a grinding process

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112334519A (zh) * 2018-07-17 2021-02-05 东丽株式会社 纤维增强树脂基材
EP3981015A4 (en) * 2019-06-05 2023-07-05 Yazaki Corporation ALUMINUM-CARBON NANOTUBE (AL-CNT) WIRES IN TRANSMISSION OR DISTRIBUTION LINE CABLES
WO2023164725A2 (en) * 2022-02-28 2023-08-31 Greene Tweed Technologies, Inc. Modified long fiber reinforced polymeric composite flakes having progressive ends, methods of providing the same, and articles formed therefrom having enhanced strength and impact resistance
CN115368692B (zh) * 2022-09-26 2023-09-15 苏州瑞高新材料有限公司 一种阻燃汽车内饰革及其制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305779A (ja) * 2002-04-16 2003-10-28 Asahi Fiber Glass Co Ltd 長繊維強化熱可塑性樹脂材料の製造装置および製造方法
JP2008231249A (ja) * 2007-03-20 2008-10-02 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物およびその製造方法
JP2013159675A (ja) 2012-02-03 2013-08-19 Toyobo Co Ltd 炭素長繊維強化ポリアミド樹脂プレプリグ及び成形品
WO2018061597A1 (ja) * 2016-09-29 2018-04-05 東レ株式会社 繊維強化熱可塑性樹脂基材およびそれを用いた成形品

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3216428B2 (ja) * 1994-06-13 2001-10-09 チッソ株式会社 長繊維強化ポリマーアロイ樹脂組成物
JP2006083355A (ja) 2004-09-17 2006-03-30 Sekisui Chem Co Ltd 繊維強化樹脂構造物、並びに、まくら木
CN102660118B (zh) * 2007-03-20 2015-04-29 东丽株式会社 模塑材料,预浸料和纤维增强复合材料,以及生产纤维增强模塑基材的方法
BR112014010946A2 (pt) * 2011-12-27 2017-12-05 Toray Industries composição de resina epóxi, resina epóxi curada, pré-impregnado e materiais compósitos
JPWO2015046290A1 (ja) * 2013-09-26 2017-03-09 東レ株式会社 一方向性繊維強化テープおよびその製造方法、ならびにそれを用いた成形体およびその製造方法
JP6528782B2 (ja) 2015-01-29 2019-06-12 王子ホールディングス株式会社 繊維強化プラスチック成形体用シート
KR20210045990A (ko) * 2018-08-22 2021-04-27 도레이 카부시키가이샤 섬유 강화 열가소성 수지 기재 및 그것을 사용한 적층품
EP3960411A4 (en) * 2019-04-25 2023-01-18 Toray Industries, Inc. FIBER-REINFORCED THERMOPLASTIC RESIN FILAMENT FOR 3D PRINTING, AND THEREOF MOLDED ARTICLE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305779A (ja) * 2002-04-16 2003-10-28 Asahi Fiber Glass Co Ltd 長繊維強化熱可塑性樹脂材料の製造装置および製造方法
JP2008231249A (ja) * 2007-03-20 2008-10-02 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物およびその製造方法
JP2013159675A (ja) 2012-02-03 2013-08-19 Toyobo Co Ltd 炭素長繊維強化ポリアミド樹脂プレプリグ及び成形品
WO2018061597A1 (ja) * 2016-09-29 2018-04-05 東レ株式会社 繊維強化熱可塑性樹脂基材およびそれを用いた成形品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111169047A (zh) * 2020-02-12 2020-05-19 连云港中复连众复合材料集团有限公司 用厚窄条拉挤型材与玻璃纤维织物混合制造风电叶片主梁、辅梁的方法
WO2022167082A1 (en) 2021-02-05 2022-08-11 Cemex Innovation Holding Ag Targeted addition of grinding aids during a grinding process

Also Published As

Publication number Publication date
US20210277194A1 (en) 2021-09-09
BR112020024334A2 (pt) 2021-02-23
CN112041379B (zh) 2023-02-21
JPWO2020017392A1 (ja) 2021-06-03
EP3825349A1 (en) 2021-05-26
EP3825349A4 (en) 2022-04-13
CN112041379A (zh) 2020-12-04
CA3100465A1 (en) 2020-01-23
JP7496058B2 (ja) 2024-06-06
AU2019304719A1 (en) 2021-01-14
US11739185B2 (en) 2023-08-29
KR20210032308A (ko) 2021-03-24

Similar Documents

Publication Publication Date Title
CN109642036B (zh) 纤维增强热塑性树脂基材及使用其的成型品
WO2020040121A1 (ja) 繊維強化熱可塑性樹脂基材およびそれを用いた積層品
WO2020017392A1 (ja) 繊維強化ポリマーアロイ基材およびそれを用いた成形品
JP7336079B2 (ja) 3dプリンタ用繊維強化熱可塑性樹脂フィラメントおよびその成形品
JP7284930B2 (ja) 繊維強化熱可塑性樹脂フィラメントおよびその成形品
JP7196464B2 (ja) 繊維強化熱可塑性樹脂基材およびそれを用いた成形品
JP7268467B2 (ja) 繊維強化熱可塑性樹脂フィラメントおよびその成形品
EP4122667A1 (en) Laminated body and welded body using same
WO2023162811A1 (ja) 繊維強化熱可塑性樹脂フィラメントおよびその成形品
JP2022098043A (ja) 3dプリンタ用繊維強化熱可塑性樹脂フィラメントおよびその成形品
JP2022098042A (ja) 3dプリンタ用繊維強化熱可塑性樹脂フィラメントおよびその成形品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019548080

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837810

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3100465

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020024334

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019304719

Country of ref document: AU

Date of ref document: 20190709

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019837810

Country of ref document: EP

Effective date: 20210217

ENP Entry into the national phase

Ref document number: 112020024334

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201127