WO2021235348A1 - ポリアミド樹脂及びこれを含む組成物並びにこれらを含む成形体 - Google Patents

ポリアミド樹脂及びこれを含む組成物並びにこれらを含む成形体 Download PDF

Info

Publication number
WO2021235348A1
WO2021235348A1 PCT/JP2021/018414 JP2021018414W WO2021235348A1 WO 2021235348 A1 WO2021235348 A1 WO 2021235348A1 JP 2021018414 W JP2021018414 W JP 2021018414W WO 2021235348 A1 WO2021235348 A1 WO 2021235348A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
polyamide
ηrc
μeq
ηrel
Prior art date
Application number
PCT/JP2021/018414
Other languages
English (en)
French (fr)
Inventor
秀作 和田
幸一郎 倉知
大介 堂山
洋祐 倉橋
康成 花岡
詩菜 鯵坂
地輝 辻本
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020086761A external-priority patent/JP2023089323A/ja
Priority claimed from JP2021021796A external-priority patent/JP2023089325A/ja
Priority claimed from JP2021066963A external-priority patent/JP2023089326A/ja
Priority claimed from JP2021071682A external-priority patent/JP2023089327A/ja
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Publication of WO2021235348A1 publication Critical patent/WO2021235348A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/04Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids

Definitions

  • the present invention relates to a polyamide resin, a composition containing the same, and a molded product containing these.
  • Polyamide resin has excellent strength, toughness, chemical resistance, oil resistance, etc., and is used as a material for injection molded products and materials for extruded products such as tubes, sheets, and films in various industrial fields.
  • the development of applications for molded products using polyamide resins has progressed, and the required quality requirements are becoming more sophisticated and diversified.
  • polyamide 11 and / or polyamide 12 having a terminal amide group concentration of 15 ( ⁇ eq / polymer 1 g) or more and N, N'-carbonylbislactam are blended in a predetermined ratio, and JIS K
  • a polyamide resin composition having a relative viscosity measured by 6920 of 2.3 to 3.0 has been proposed, and the composition has good extrusion moldability, and the obtained molded product has creep characteristics and impact characteristics. It has been shown to be excellent (see, for example, Patent Document 1).
  • the polyamide resin and polyamide having a relative viscosity measured by JIS K 6920 of 1.40 to 1.80, a terminal carboxyl group concentration of 90 ⁇ eq / g or less, and a terminal amino group concentration of 30 ⁇ eq / g or less.
  • a polyamide resin composition for forming a magnetic material resin composite which comprises a monomer and / or an oligomer of a polyamide having a weight of 9 or less in a predetermined ratio, has been proposed, and the composition has fluidity at the time of melting and molding. It has been shown that the orientation of the magnetic metal powder at the time is excellent, and that the obtained molded product has excellent heat resistance, mechanical properties, and the like (see, for example, Patent Document 2).
  • a magnetic resin composite material composed of a magnetic metal powder and a binder resin is known, and a polyamide resin is widely used as a binder resin for the material.
  • a magnetic material resin composite material it is necessary to fill the magnetic metal powder at a high concentration in order to improve the magnetic properties.
  • the dispersibility of the magnetic metal powder deteriorates, the fluidity of the material at the time of melting becomes extremely low when molding by a method such as injection molding, or the fluidity at the time of melting becomes extremely low. There is a problem that the orientation of the magnetic metal powder in the material is lowered.
  • Patent Document 2 proposes a polyamide resin composition for forming a magnetic material resin complex as described above.
  • Patent Documents 3 to 5 propose to set the relative viscosity of the polyamide resin to a specific range in order to improve the fluidity or moldability of the magnetic resin composite material.
  • a plastic magnetic composition containing a magnetic metal powder, a polyamide resin and a specific dihydric alcohol in a predetermined ratio has been proposed, and the composition has fluidity at the time of melting and orientation of the magnetic metal powder at the time of molding. It has been shown to be excellent (see, for example, Patent Document 6). Further, a composition for a plastic magnet composed of ferrites, a polyamide resin and a vinylidene fluoride rubber has been proposed, and the composition has excellent fluidity, does not impair mechanical strength, and forms a high magnetic force plastic magnet. It has been shown to give goods (see, eg, Patent Document 7).
  • the composition for the purpose of improving the dimensional stability and mechanical properties of the polyamide resin composition, it is known to add glass fiber, a fibrous reinforcing material, or the like to the composition.
  • a polyamide resin composition containing a glass fiber having a non-circular cross section and a polyamide resin having a structural unit having more than 6 carbon atoms per amide group and having a predetermined number average molecular weight in a predetermined ratio. It has been shown that the composition simultaneously satisfies the suppression of dimensional change during water absorption, excellent wear resistance after water absorption, excellent impact resistance, and high surface strength (). For example, see Patent Document 8).
  • a resin composition containing a polyamide resin, a polyphenylene ether resin, and a glass fiber having a specific flat shape and a weight average fiber length in a specific ratio has been proposed, and the composition is a resin molded product having a small amount of warpage. It has been shown that the above can be provided (see, for example, Patent Document 9).
  • a polyamide resin composition for engine cooling water-based parts which contains a copolymerized polyamide resin composed of a hexamethylene terephthalamide unit and an undecaneamide unit and a fibrous reinforcing material in a predetermined ratio, and has predetermined physical properties.
  • a transport equipment component comprising a polyamide resin composition containing a predetermined ratio has been proposed (see, for example, Patent Document 12).
  • An object of the present invention is to provide a polyamide resin having excellent moldability and mechanical properties (tensile elastic modulus and tensile elongation, specifically, tensile breaking point elongation) when formed into a molded product.
  • the present inventors have found that the ratio of the terminal carboxyl group concentration and the relative viscosity obtained by the two methods is in a specific range. Found that it is excellent in moldability and also excellent in mechanical properties when it is made into a molded product.
  • the present invention relates to the following [1] to [17].
  • [1] A polyamide resin having a terminal carboxyl group concentration of 100 ⁇ eq / g or more and [ ⁇ rel / ⁇ rc] of more than 0.91 and less than 1.13.
  • ⁇ rel Relative viscosity measured according to JIS K 6920 (polymer concentration 10 mg / ml in 96% sulfuric acid, 25 ° C.).
  • ⁇ rc Relative viscosity calculated from the number average molecular weight Mn by the following approximate formula (1).
  • K and ⁇ measure the number average molecular weight Mn and the relative viscosity ⁇ rel of at least three arbitrary polyamide resins of the same type as the polyamide resin, and the measured values are Mn and ⁇ rc of the formula (1), respectively.
  • Mn is the number average molecular weight of the polyamide resin, and is calculated from the terminal carboxyl group concentration ( ⁇ eq / g) and the terminal amino group concentration ( ⁇ eq / g).
  • the polyamide resin is at least one selected from the group consisting of polyamide 11, polyamide 12, polyamide 612, polyamide 610, polyamide 6/12 copolymer and polyamide 6/66/12 copolymer [1]. ] To [4]. The polyamide resin according to any one of. [6] The polyamide resin according to any one of [1] to [5], wherein the relative viscosity ⁇ rel of the polyamide resin is more than 1.35. [7] The polyamide resin according to any one of [1] to [6], wherein the concentration of the terminal amino group of the polyamide resin is less than 2.0 ⁇ eq / g.
  • a molded product having a length of 30 mm, a width of 4 mm, and a thickness of 100 ⁇ m obtained by a cooling press treatment at a pressure of 5 MPaG for 5 minutes was tensioned when measured at 23 ° C., a relative humidity of 50% RH, and a tensile speed of 1 mm / min.
  • a polyamide resin composition comprising the polyamide resin according to any one of [1] to [9] and a magnetic metal powder.
  • a polyamide resin composition comprising the polyamide resin according to any one of [1] to [9] and a reinforcing material.
  • a polyamide resin having excellent moldability and mechanical properties (tensile elastic modulus and tensile elongation, specifically, tensile breaking point elongation) when formed into a molded product.
  • the polyamide resin has an amide bond (-CONH-) in the main chain and uses a nylon salt composed of lactam, aminocarboxylic acid, or diamine and dicarboxylic acid as a raw material for melt polymerization, solution polymerization, and solidification. It means a resin obtained by polymerizing or copolymerizing by a known method such as phase polymerization. As long as the effect of the present invention is not impaired, the polyamide resin may be blended with other components to form a polyamide resin composition.
  • each component in the polyamide resin and its composition is the sum of the plurality of substances unless otherwise specified, when a plurality of substances corresponding to each component are present in the polyamide resin and its composition. Means quantity.
  • the first aspect of the present invention is a polyamide resin having a terminal carboxyl group concentration of 100 ⁇ eq / g or more and a [ ⁇ rel / ⁇ rc] of more than 0.91 and less than 1.13.
  • ⁇ rel Relative viscosity measured according to JIS K 6920 (polymer concentration 10 mg / ml in 96% sulfuric acid, 25 ° C.).
  • ⁇ rc Relative viscosity calculated from the number average molecular weight Mn by the following approximate formula (1).
  • K and ⁇ measure the number average molecular weight Mn and the relative viscosity ⁇ rel of at least three arbitrary polyamide resins of the same type as the polyamide resin, and the measured values are Mn and ⁇ rc of the formula (1), respectively.
  • Mn is the number average molecular weight of the polyamide resin, and is calculated from the terminal carboxyl group concentration ( ⁇ eq / g) and the terminal amino group concentration ( ⁇ eq / g).
  • the moldability is excellent, and the mechanical properties (tensile elastic modulus and tensile elongation, specifically, tensile breaking point elongation) when the molded product is formed. It can be an excellent polyamide resin.
  • the polyamide resin has a terminal carboxyl group concentration of 100 ⁇ eq / g or more.
  • the terminal carboxyl group concentration is preferably 125 to 280 ⁇ eq / g, more preferably 130 to 270 ⁇ eq / g, still more preferably 150 to 260 ⁇ eq / g, still more preferably 170 to 250 ⁇ eq / g, and particularly preferably 200 to 200. It is 240 ⁇ eq / g.
  • the moldability is good.
  • the terminal carboxyl group concentration of the polyamide resin is preferably 125 to 250 ⁇ eq / g, more preferably 125 to 200 ⁇ eq / g. Particularly preferably, it is 130 to 170 ⁇ eq / g.
  • the terminal carboxyl group concentration ( ⁇ eq / g) can be expressed as the equivalent of carboxyl groups per 1 g of polymer, and the polyamide resin can be dissolved in benzyl alcohol and titrated with 1 / 20N sodium hydroxide solution for measurement. can.
  • the concentration of the terminal carboxyl group of the polyamide resin can be adjusted by using a mono or polycarboxylic acid as a terminal adjusting agent.
  • the terminal adjustment can be performed during the production of the polyamide resin or after the production of the polyamide resin.
  • the acid include aliphatic monocarboxylic acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, capric acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, pivalic acid and isobutyl acid.
  • Alicyclic monocarboxylic acid such as cyclohexanecarboxylic acid; aromatic monocarboxylic acid such as benzoic acid, toluic acid, ⁇ - / ⁇ -naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, phenylacetic acid; adipic acid, trimethyladipic acid, Aliphatic dicarboxylic acids such as pimelic acid, suberic acid, azelaic acid, sebacic acid, undecandicarboxylic acid and dodecanedicarboxylic acid; fats such as 1,3-cyclopentanedicarboxylic acid and 1,3- / 1,4-cyclohexanedicarboxylic acid.
  • Cyclic dicarboxylic acids aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 1,4- / 2,6- / 2,7-naphthalenedicarboxylic acid can be mentioned. Of these, aliphatic monocarboxylic acids and aliphatic dicarboxylic acids are preferable. These can be used alone or in combination of two or more.
  • the terminal carboxyl group concentration in the polyamide resin is preferably measured by the neutralization pruning, but each polyamide resin component.
  • the average value calculated by multiplying each terminal carboxyl group concentration by the mixing ratio can be used as the terminal carboxyl group concentration of the polyamide resin. good.
  • the polyamide resin has a [ ⁇ rel / ⁇ rc] of more than 0.91 and less than 1.13.
  • [ ⁇ rel / ⁇ rc] is more preferably 0.92 to 1.12, further preferably 0.92 to 1.10, and particularly preferably 0.93 to 1.08.
  • the [ ⁇ rel / ⁇ rc] of the polyamide resin is preferably 0.92 to 0.97, more preferably 0.93 to 0.97, and even more preferably 0.93 to 0. It is 96.
  • the [ ⁇ rel / ⁇ rc] of the polyamide resin is preferably 1.00 to 1.12, more preferably 1.02 to 1.10, still more preferably 1.03 to 1.08. Is.
  • ⁇ rel and ⁇ rc are defined as follows.
  • ⁇ rel Relative viscosity measured according to JIS K 6920 (polymer concentration 10 mg / ml in 96% sulfuric acid, 25 ° C.).
  • ⁇ rc Relative viscosity calculated from the number average molecular weight Mn by the following approximate formula (1).
  • ⁇ rc K ⁇ Mn ⁇ ⁇ ⁇ Equation (1) (In the formula, K and ⁇ measure the number average molecular weight Mn and the relative viscosity ⁇ rel for at least three arbitrary polyamide resins of the same type as the polyamide resin, and the measured values are Mn and ⁇ rc of the formula (1), respectively. It is a constant determined by fitting as.)
  • ⁇ [ ⁇ rel]> ⁇ rel is a relative viscosity measured at 25 ° C. by dissolving 1 g of a polyamide resin in 100 ml of 96% sulfuric acid according to JIS K 6920.
  • the ⁇ rel is preferably more than 1.35, more preferably 1.36 to less than 2.00, still more preferably 1.36 to less than 1.80, still more preferably 1.36 to less than 1.70. Particularly preferably, it is 1.36 to less than 1.60. When ⁇ rel is in this range, the moldability tends to be good.
  • the relative viscosity of the polyamide resin is preferably measured as described above, but the relative viscosity of each polyamide resin component and its mixing ratio are If it is known, the average value calculated by summing the values obtained by multiplying each relative viscosity by the mixing ratio may be used as the relative viscosity of the polyamide resin.
  • the number average molecular weight Mn of the polyamide resin is preferably 2,000 to 16,000, more preferably 4,000 to 16,000, still more preferably 4,000 to 15,000, and particularly preferably. Is between 5,000 and 15,000. When the number average molecular weight Mn of the polyamide resin is within the above range, the moldability is easily improved, and the mechanical properties of the molded product are easily improved.
  • the number average molecular weight Mn of the polyamide resin is preferably 2,000 to 16,000, more preferably 4,000 to 4,000. It is 12,000, and particularly preferably 5,000 to 10,000.
  • the number average molecular weight Mn (g / mol) of the polyamide resin is determined by the [COOH] terminal carboxyl group concentration ( ⁇ eq / g), the [NH 2 ] terminal amino group concentration ( ⁇ eq / g), and the [U] terminal group by the terminal adjuster. It is obtained from the concentration ( ⁇ eq / g) by the following formula (2).
  • [U] is the terminal carboxyl group concentration [COOH] AA ( ⁇ eq / g) derived from adipic acid.
  • ⁇ [ ⁇ rc]> ⁇ rc is a relative viscosity calculated from the number average molecular weight by the approximate formula (1).
  • ⁇ rc is an index for theoretically estimating the relative viscosity from the number average molecular weight of the polyamide resin, and is specifically calculated as follows.
  • ⁇ rc K ⁇ Mn ⁇ between the relative viscosity [ ⁇ rc] and the number average molecular weight Mn, which is similar to the equation of Mark Howink and Sakurada, was defined. That is, ⁇ rc is a theoretical value of the relative viscosity obtained from the above correlation equation.
  • the relative viscosity ⁇ rel is measured for several types of polyamide resins having different number average molecular weights Mn, and the above correlation equation is derived from the values of the number average molecular weight Mn and the relative viscosity ⁇ rel.
  • the polyamide resin used for deriving the correlation equation the same type as the polyamide resin to be measured is used.
  • the polyamide resin used for deriving the correlation equation is also the polyamide 12 and the polyamide 6/12 copolymer, respectively.
  • the polyamide resin used for deriving the correlation equation it is necessary to use at least three polyamide resins having a wide range of number average molecular weights, and it is preferable to use four or more polyamide resins.
  • the number average molecular weight of the polyamide resin used for deriving the correlation equation is preferably distributed in the range of 2,000 to 50,000, and more preferably in the range of 4,000 to 30,000.
  • the measurement target of ⁇ rc is polyamide 12, and any four commercially available polyamides 12 having a number average molecular weight in the range of 12,000 to 24,000 are used for deriving the above correlation equation. There is.
  • the ⁇ rc is preferably 1.10 to 1.70, more preferably 1.15 to 1.70, and even more preferably 1.20 to 1.70. When ⁇ rc is in this range, it becomes easy to improve the moldability.
  • the ⁇ rc of the polyamide resin is preferably 1.10 to 1.55, more preferably 1.20 to 1.40. Is.
  • the terminal amino group concentration of the polyamide resin is preferably less than 2.0 ⁇ eq / g, more preferably 0 to 1.9 ⁇ eq / g, still more preferably 0 to 1.8 ⁇ eq / g, and particularly preferably 0 to 1.8 ⁇ eq / g. It is 0 to 1.0 ⁇ eq / g.
  • the terminal amino group concentration of the polyamide resin is preferably less than 1.7 ⁇ eq / g, more preferably 0 to 1.5 ⁇ eq. It is / g, and particularly preferably 0 to 1.0 ⁇ eq / g.
  • the terminal amino group concentration ( ⁇ eq / g) can be expressed as the equivalent of amino groups per 1 g of the polymer, and the polyamide resin can be dissolved in a phenol / methanol mixed solution and titrated with 1/50 N hydrochloric acid for measurement. can.
  • the concentration of the terminal amino group of the polyamide resin can be adjusted by using a mono or polycarboxylic acid.
  • the terminal adjustment can be performed during the production of the polyamide resin or after the production of the polyamide resin.
  • Examples of the acid include those exemplified by adjusting the terminal carboxyl group concentration of the polyamide resin. These can be used alone or in combination of two or more.
  • the terminal amino group concentration in the polyamide resin is preferably measured by the neutralization pruning, but each polyamide resin component When the terminal amino group concentration and its mixing ratio are known, the average value calculated by multiplying each terminal amino group concentration by the mixing ratio is also used as the terminal amino group concentration of the polyamide resin. good.
  • the polyamide resin is preferably at least one selected from the group consisting of the aliphatic homopolyamide resin and the aliphatic copolymerized polyamide resin.
  • the aliphatic homopolyamide resin means a polyamide resin in which one kind of monomer component constituting the aliphatic polyamide resin is alone.
  • the aliphatic homopolyamide resin may be composed of at least one of one kind of lactam and aminocarboxylic acid which is a hydrolyzate of the lactam, and one kind of aliphatic diamine and one kind of aliphatic dicarboxylic acid. It may consist of a combination of.
  • the monomer component constituting the aliphatic polyamide resin is a combination of an aliphatic diamine and an aliphatic dicarboxylic acid
  • one kind of monomer is a combination of one kind of aliphatic diamine and one kind of aliphatic dicarboxylic acid. It shall be regarded as an ingredient.
  • the monomer components constituting the aliphatic homopolyamide resin include an aliphatic diamine having 2 to 20 carbon atoms, preferably 4 to 12 carbon atoms, and an aliphatic dicarboxylic acid having 2 to 20 carbon atoms, preferably 6 to 12 carbon atoms. , Lactam having 6 to 12 carbon atoms, aminocarboxylic acid and the like can be mentioned.
  • the aliphatic diamines include ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, tridecanediamine, and tetradecane.
  • Diamine pentadecanediamine, hexadecanediamine, heptadecanediamine, octadecanediamine, nonadecandiamine, eikosandiamine, 2-methyl-1,8-octanediamine, 2,2,4 / 2,4,4-trimethylhexamethylenediamine And so on.
  • diamines having more than 6 carbon atoms are preferable.
  • the aliphatic dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecandionic acid, dodecandionic acid, tridecandionic acid, and tetradecandionic acid.
  • a dicarboxylic acid having more than 6 carbon atoms is preferable.
  • lactam examples include ⁇ -caprolactam, enantractum, undecane lactam, dodecane lactam, ⁇ -pyrrolidone, ⁇ -piperidone and the like.
  • aminocarboxylic acid examples include 6-aminocaproic acid, 7-aminoheptanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid. Among these, lactam and aminocarboxylic acid having more than 6 carbon atoms are preferable.
  • the aliphatic copolymerized polyamide resin means a polyamide resin in which two or more kinds of monomer components constituting the aliphatic polyamide resin are combined.
  • the aliphatic copolymer polyamide resin is two or more copolymers selected from the group consisting of a combination of an aliphatic diamine and an aliphatic dicarboxylic acid, lactam and an aminocarboxylic acid.
  • the combination of the aliphatic diamine and the aliphatic dicarboxylic acid is regarded as one kind of monomer component by the combination of one kind of aliphatic diamine and one kind of aliphatic dicarboxylic acid.
  • Examples of the aliphatic diamine include the same as those exemplified as the raw material of the aliphatic homopolyamide resin.
  • Examples of the aliphatic dicarboxylic acid include the same as those exemplified as the raw material of the aliphatic homopolyamide resin.
  • lactam examples include the same as those exemplified as the raw material of the aliphatic homopolyamide resin.
  • aminocarboxylic acid examples include the same as those exemplified as the raw material of the aliphatic homopolyamide resin.
  • aliphatic diamines aliphatic dicarboxylic acids, lactams and aminocarboxylic acids may be used alone or in combination of two or more.
  • the polyamide resin contains a structural unit having more than 6 carbon atoms per amide group, it becomes easy to improve the moldability, and since the obtained molded product has low water absorption, it is easy to adopt it as a water resistant molded product. Moreover, it is preferable because it facilitates improvement of mechanical properties.
  • the constituent unit of the polyamide resin preferably has 7 to 12 carbon atoms per amide group, and more preferably 10 to 12 carbon atoms.
  • the ratio of the structural units having more than 6 carbon atoms to one amide group in the polyamide resin is preferably 30 mol% or more, more preferably 50 mol% or more, and further preferably 50 mol% or more with respect to all the structural units of the polyamide resin. It is preferably 80 mol% or more.
  • the upper limit of the ratio of the structural units having more than 6 carbon atoms to one amide group in the polyamide resin is 100 mol%, that is, all the structural units of the polyamide resin have more than 6 carbon atoms to one amide group. It is a thing.
  • Examples of the aliphatic homopolyamide resin containing a structural unit having more than 6 carbon atoms per amide group include polyenantractum (polyamide 7), polyundecanelactam (polyamide 11), polylauryllactam (polyamide 12), and polytetra.
  • polyamide 412 polypentamethylene azelamide (polyamide 59), polypentamethylene sebacamide (polyamide 510), polypentamethylene dodecamide (polyamide 512), polyhexamethylene azelamide (polyamide 69), poly Hexamethylene sebacamide (polyamide 610), polyhexamethylene dodecamide (polyamide 612), polynonamethylene adipamide (polyamide 96), polynonamethylene azelamide (polyamide 99), polynonamethylene sebacamide (polyamide 910) ), Polynonamethylene dodecamide (polyamide 912), polydecamethylene adipamide (polyamide 106), polydecamethylene azelamide (polyamide 109), polydecamethylene decamide (polyamide 1010), polydecamethylene dodecamide (polyamide 1010).
  • polydodecamethylene adipamide polydodecamethylene adipamide
  • polydodecamethylene azelamide polydodecamethylene azelamide
  • polydodecamethylene sebacamide polyamide 1210
  • polydodecamethylene dodecamide polyamide 1212
  • Examples of the aliphatic copolymerized polyamide resin containing a structural unit having more than 6 carbon atoms per amide group include caprolactam / hexamethylenediaminoazelineic acid copolymer (polyamide 6/69) and caprolactam / hexamethylenediaminosevacinic acid.
  • the polyamide resin is selected from the group consisting of polyamide 11, polyamide 12, polyamide 612, polyamide 610, polyamide 6/12 copolymer and polyamide 6/66/12 copolymer from the viewpoint of low water absorption. It is particularly preferable that the amount is at least one. These polyamide resins may be used alone or in combination of two or more.
  • the polyamide resin is a molded product having a thickness of 100 ⁇ m obtained by pressing the polyamide resin at a press temperature of 200 ° C. and a pressure of 10 MPaG for 1 minute, and then performing a cooling press treatment at a press temperature of 80 ° C. and a pressure of 5 MPaG for 5 minutes.
  • a strip-shaped test piece having a length of 30 mm and a width of 4 mm was cut out and measured at 23 ° C., a relative humidity of 50% RH, and a tensile speed of 1 mm / min, a tensile elastic modulus of 1,000 to 1,500 MPa and a tensile elastic modulus of 1,000 to 1,500 MPa were obtained.
  • the tensile elastic modulus is more preferably 1,100 to 1,500 MPa. Further, the tensile break point elongation is more preferably 8 to 300%, further preferably 10 to 300%.
  • MPaG means a gauge pressure.
  • Polyamide resin manufacturing equipment includes batch type reaction kettles, single-tank or multi-tank continuous reaction equipment, tubular continuous reaction equipment, uniaxial kneading extruders, kneading reaction extruders such as twin-screw kneading extruders, etc.
  • a known polyamide production apparatus can be mentioned.
  • As a polymerization method known methods such as melt polymerization, solution polymerization, and solid phase polymerization can be used, and polymerization can be carried out by repeating normal pressure, reduced pressure, and pressurization operations.
  • the reaction temperature is usually 150 to 300 ° C., and the reaction pressure is not particularly limited.
  • the acid for adjusting the terminal carboxyl group concentration may be added at the time of mixing the raw materials, or may be reacted separately after the polyamide resin is produced. These polymerization methods can be used alone or in combination as appropriate.
  • the polyamide resin produced by the above method can be in the form of pellets, beads, powder, paste, film or the like by a known method.
  • the polyamide resin can be made into a polyamide resin composition by containing other components as long as the effects of the present invention are not impaired.
  • Other components include plasticizers, antioxidants, UV absorbers, heat resistant agents, foaming agents, weather resistant agents, crystal nucleating agents, crystallization accelerators, mold release agents, lubricants, antistatic agents, flame retardants, flame retardants. Examples thereof include functional agents such as auxiliaries, stabilizers, pigments and dyes.
  • Polyamide resin compositions containing these other components can be in the form of pellets, films and the like.
  • the polyamide resin or polyamide resin composition obtained as described above contains the above-mentioned other components, a polyamide resin other than the polyamide resin of the present invention, and a polyamide.
  • a resin composition may be further blended with any resin component other than the resin.
  • the method for producing the polyamide resin composition is not particularly limited, and for example, a known melt-kneader for mixing a polyamide resin and other components with a single-screw or twin-screw extruder, a Banbury mixer, a kneader, a mixing roll, or the like can be used. Can be manufactured using.
  • polyamide resin Since the polyamide resin and the polyamide resin composition obtained by blending the polyamide resin with other components have excellent fluidity at the time of melting, they can be used in the production of molded products using a known method. Specifically, the polyamide resin and its composition can be used in the production of molded products by press molding, blow molding, extrusion molding, injection molding, rotary molding and the like.
  • the polyamide resin and its composition can be suitably used for producing a molded product by press molding.
  • the press molding is a first press step performed at a temperature higher than the melting point of the polyamide resin by 10 ° C. or higher, and a second press step performed at a temperature lower than the above temperature (also referred to as a cooling press step). It is preferable to include at least two steps of.
  • the pressing temperature is usually 150 to 300 ° C.
  • the pressing pressure is 1 to 15 MPa
  • the pressing time is 1 to 10 minutes.
  • the pressing temperature is usually 10 to 100 ° C.
  • the pressing pressure is 1 to 15 MPa
  • the pressing time is 1 to 10 minutes.
  • the molded product containing the polyamide resin and its composition has a high tensile elastic modulus and tensile break point elongation, and is used in applications requiring high mechanical properties, for example, a light-reflecting resin material for a light-emitting device, a light-emitting semiconductor. It can be used for package members, conductive layer binder resins for conductive coating films, anchor coat resins on insulating substrates, resins for conductive rolls, members for slip bearings, and the like.
  • a second aspect of the present invention is a polyamide resin composition containing the polyamide resin and magnetic metal powder.
  • a polyamide resin composition containing the polyamide resin and magnetic metal powder.
  • the dispersibility of the magnetic metal powder is poor, and the fluidity of the composition is greatly reduced.
  • the mechanical properties of the molded product were insufficient.
  • the polyamide resin composition has excellent fluidity and moldability even when the blending amount of the magnetic metal powder is increased, and also has excellent mechanical properties when formed into a molded product. Can provide things.
  • the polyamide resin is the same as the polyamide resin of the first aspect, including a preferred embodiment. Specifically, the concentration of the terminal carboxyl group of the polyamide resin is 100 ⁇ eq / g or more, and [ ⁇ rel / ⁇ rc] is more than 0.91 and less than 1.13.
  • the concentration of the terminal carboxyl group of the polyamide resin is 100 ⁇ eq / g or more, and [ ⁇ rel / ⁇ rc] is more than 0.91 and less than 1.13.
  • the concentration of the terminal carboxyl group of the polyamide resin is 100 ⁇ eq / g or more
  • [ ⁇ rel / ⁇ rc] is more than 0.91 and less than 1.13.
  • the polyamide resin has a terminal carboxyl group concentration of 100 ⁇ eq / g or more.
  • the terminal carboxyl group concentration is preferably 125 to 280 ⁇ eq / g, more preferably 130 to 270 ⁇ eq / g, still more preferably 150 to 260 ⁇ eq / g, still more preferably 170 to 250 ⁇ eq / g, and particularly preferably 200 to 200. It is 240 ⁇ eq / g.
  • the terminal carboxyl group concentration is in this range, the dispersibility of the magnetic metal powder is improved, and the fluidity and moldability of the composition are improved even when the blending amount of the magnetic metal powder is increased.
  • Polyamide resin has [ ⁇ rel / ⁇ rc] of more than 0.91 and less than 1.13.
  • [ ⁇ rel / ⁇ rc] is more preferably 0.92 to 1.12, further preferably 0.92 to 1.10, and particularly preferably 0.93 to 1.08.
  • the number average molecular weight Mn of the polyamide resin is preferably 2,000 to 16,000, more preferably 4,000 to 16,000, still more preferably 4,000 to 15,000, and particularly preferably. Is between 5,000 and 15,000.
  • Mn of the polyamide resin is within the above range, it becomes easy to improve the fluidity and moldability of the composition even when the blending amount of the magnetic metal powder is increased, and the mechanical properties when the molded product is formed. It becomes easy to improve.
  • the ⁇ rc of the polyamide resin is preferably 1.10 to 1.70, more preferably 1.15 to 1.70, and even more preferably 1.20 to 1.70.
  • ⁇ rc is in this range, the fluidity and moldability of the composition can be easily improved even when the blending amount of the magnetic metal powder is increased.
  • the terminal amino group concentration of the polyamide resin is preferably less than 2.0 ⁇ eq / g, more preferably 0 to 1.9 ⁇ eq / g, still more preferably 0 to 1.8 ⁇ eq / g, and particularly preferably 0 to 1.8 ⁇ eq / g. It is 0 to 1.0 ⁇ eq / g.
  • the polyamide resin is a molded product having a thickness of 100 ⁇ m obtained by pressing the polyamide resin at a press temperature of 200 ° C. and a pressure of 10 MPaG for 1 minute, and then performing a cooling press treatment at a press temperature of 80 ° C. and a pressure of 5 MPaG for 5 minutes.
  • a strip-shaped test piece having a length of 30 mm and a width of 4 mm was cut out and measured at 23 ° C., a relative humidity of 50% RH, and a tensile speed of 1 mm / min, a tensile elastic modulus of 1,000 to 1,500 MPa and a tensile elastic modulus of 1,000 to 1,500 MPa were obtained.
  • the tensile elastic modulus is more preferably 1,100 to 1,500 MPa. Further, the tensile break point elongation is more preferably 8 to 300%, further preferably 10 to 300%.
  • MPaG means a gauge pressure.
  • the polyamide resin production apparatus and polymerization method are the same as those described in the first aspect.
  • the polyamide resin can be in the form of pellets, beads, powder, paste, film or the like by a known method, but a fine-grained form is desirable from the viewpoint of enhancing homogeneity when mixed with the magnetic metal powder.
  • the magnetic metal powder has a function of imparting magnetism, and is not particularly limited as long as it is a known magnetic metal powder.
  • Examples thereof include ferritic magnetic powder, alnico-based magnetic powder, and rare earth magnetic powder.
  • Examples of the ferritic magnetic powder include barium ferritic magnetic powder such as iron oxide and barium carbonate; and strontium ferritic magnetic powder such as iron oxide and strontium carbonate.
  • Examples of the alnico-based magnetic powder include alnico composed of nickel, aluminum, cobalt, iron and copper; alnico composed of nickel, aluminum, cobalt, iron, copper and titanium.
  • rare earth magnetic powder examples include samarium cobalt, rare earth cobalt magnetic powder in which the cobalt component of samarium cobalt is replaced with copper, iron, titanium, zirconium, naphthium, niobium, tantalum and the like, neodium-iron-boron magnetic powder and the like. These can be used alone or in combination of two or more.
  • the average particle size of the magnetic metal powder is preferably 0.1 to 300 ⁇ m, more preferably 0.1 to 200 ⁇ m, and even more preferably 0.5 to 100 ⁇ m. If the average particle size of the magnetic metal powder exceeds 300 ⁇ m, the magnetic properties and mechanical properties of the molded product obtained from the polyamide resin composition may deteriorate.
  • the magnetic metal powder may be pretreated with a coupling agent or a surface modifier.
  • the coupling agent and the surface modifier may be used alone or in combination of two or more.
  • the coupling agent include organic phosphorus compounds such as silane-based, titanate-based, aluminum-based and phosphite esters, and conventional coupling agents such as chromium-based and methacrylate-based.
  • a surface modifier water glass, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, starch, polyvinyl alcohol, acrylic resin, epoxy resin, phenol resin, polyvinyl acetate, polyurethane resin, epoxy compound, isocyanate type
  • examples thereof include compounds, colloidal silica, colloidal alumina, fatty acids, and surfactants.
  • amino group-containing silane compound examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, and N- ⁇ - (aminoethyl) - ⁇ -aminopropyl.
  • Trimethoxysilane N- ⁇ - (aminoethyl) - ⁇ -aminopropyltriethoxysilane, ⁇ -aminodithiopropyltrihydroxysilane, ⁇ - (polyethyleneamino) propyltrimethoxysilane, N- ⁇ - (aminopropyl)- Examples thereof include ⁇ -aminopropylmethyldimethoxysilane, N- (trimethoxysilylpropyl) -ethylenediamine, and ⁇ -dibutylaminopropyltrimethoxysilane. These can be used alone or in combination of two or more.
  • titanate compound examples include isopropyltriisostearoyl titanate, isopropyltri (N-aminoethyl) titanate, isopropyltris (dioctylpyrophosphate) titanate, tetraisopropylbis (dioctylphosphite) titanate, tetraisopropyltitanate, tetrabutyltitanate, and tetra.
  • Octylbis (ditridecylphosphite) titanate isopropyltrioctanoyl titanate, isopropyltridodecylbenzenesulfonyl titanate, isopropyltri (dioctylphosphate) titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyldimethacrylisostearoyltitanate, tetra (2) , 2-Diallyloxymethyl-1-butyl) bis (ditridecylphosphite) titanate, isopropyltricylphenyl titanate, bis (dioctylpyrophosphate) oxyacetate titanate, isopropylisostearoyl dialicyl titanate and the like. These can be used alone or in combination of two or more.
  • the content of the magnetic metal powder in 100% by mass of the total of the polyamide resin and the magnetic metal powder is 50 to 98% by mass. It is preferably 60 to 97% by mass, more preferably 80 to 95% by mass, and particularly preferably 80 to 95% by mass.
  • the polyamide resin 5% by mass or more the fluidity and moldability of the composition and the mechanical properties of the molded product can be further improved, and by making it 20% by mass or less, the residual magnetic flux density of the molded product can be further improved. Can be further improved.
  • the polyamide resin composition may contain other components as long as the effects of the present invention are not impaired.
  • Other components include plastics, antioxidants, UV absorbers, heat resistant agents, foaming agents, weather resistant agents, crystal nucleating agents, crystallization accelerators, mold release agents, lubricants, antistatic agents, flame retardants, and flame retardants.
  • functional agents such as auxiliaries, stabilizers, pigments and dyes, polyamide resins other than the polyamide resin of the present invention, and arbitrary resin components other than the polyamide resin.
  • the other components are not the polyamide resin and the magnetic metal powder according to the present invention.
  • the method for producing the polyamide resin composition and the molded product thereof will be described, but the present invention is not limited to the production method described below.
  • the polyamide resin composition is produced through a mixing step and / or a kneading step.
  • the molded product of the polyamide resin composition is manufactured through a step of molding the polyamide resin composition obtained as described above.
  • the mixing step the polyamide resin, the magnetic metal powder, and other components, if necessary, are mixed and mixed by a known method.
  • the mixing step is preferably performed before the kneading step.
  • the use of a solvent at the time of mixing is an effective means for uniformly adding the coupling agent and the lubricant, but it is not always necessary.
  • the mixer is not particularly limited, and examples thereof include a ribbon mixer, a V-type mixer, a rotary mixer, a Henschel mixer, a flash mixer, a Nauta mixer, and a tumbler.
  • the mixture obtained in the mixing step can also be granulated by granulation.
  • the mixture obtained in the mixing step is mixed in a temperature range of 50 to 400 ° C. using a batch kneader such as brabender, a Banbury mixer, a Henschel mixer, a helical rotor, a roll, a single-screw extruder, a twin-screw extruder, or the like. It is a process of kneading with.
  • the kneading temperature is generally selected from a temperature range in which the polyamide resin melts and does not decompose.
  • the kneaded product is extruded into a strand shape and then cooled and cut, or a block-shaped product that has been cooled and solidified is placed in a crusher to form pellets, powder, or the like. In this way, the polyamide resin composition can be obtained.
  • the molded product of the polyamide resin composition is formed by a one-step molding method in which the mixture obtained in the mixing step is melt-kneaded and molded into a desired shape as it is, and pellets, powder, etc. obtained in the kneading step are molded by various molding methods. It can be manufactured by either of the step forming methods.
  • a method for producing a molded product having high magnetic properties a method of heating and melting a pellet-shaped or powder-shaped polyamide resin composition and performing injection molding, extrusion molding, press molding, etc. while applying a magnetic field as necessary can be mentioned. Be done. In the case of extrusion molding, it can also be performed together with kneading.
  • the injection molding method is particularly preferable because it can obtain a magnetic material resin composite having excellent surface smoothness and magnetic properties and has a large degree of freedom in molding shape.
  • the molding temperature is the same as the kneading temperature.
  • the molded body is usually further magnetized to enhance its performance as a permanent magnet. Magnetization is performed by a method usually performed, for example, an electromagnet that generates a static magnetic field, a condenser magnetizer that generates a pulse magnetic field, or the like.
  • the magnetic field strength at this time is preferably 15 kOe or more, and more preferably 30 kOe or more.
  • the polyamide resin composition Since the polyamide resin composition is excellent in fluidity and moldability at the time of melting, it can be used for producing a molded product using a known method. Specifically, the polyamide resin composition can be used in the production of molded products by injection molding, extrusion molding, press molding, blow molding, rotary molding and the like.
  • the molded product containing the polyamide resin composition has excellent magnetic properties and mechanical properties, is expected to suppress the occurrence of bleed-out, and has an excellent appearance.
  • the molded product containing the polyamide resin composition can be suitably used for various magnet products such as plastic magnets.
  • a third aspect of the present invention is a polyamide resin composition containing the polyamide resin and a reinforcing material.
  • a reinforcing material such as glass fiber
  • the fluidity and moldability of the composition are significantly lowered.
  • the polyamide resin composition has excellent fluidity and moldability even when the blending amount of the reinforcing material is increased, and also has excellent mechanical properties when formed into a molded product. Can be provided.
  • the polyamide resin is the same as the polyamide resin of the first aspect, including a preferred embodiment.
  • the concentration of the terminal carboxyl group of the polyamide resin is 100 ⁇ eq / g or more, and [ ⁇ rel / ⁇ rc] is more than 0.91 and less than 1.13.
  • the composition is excellent in fluidity and moldability even when the blending amount of the reinforcing material is increased, and a molded product is obtained.
  • a polyamide resin composition having excellent mechanical properties can be obtained.
  • the polyamide resin one kind or two or more kinds can be used.
  • the polyamide resin has a terminal carboxyl group concentration of 100 ⁇ eq / g or more.
  • the terminal carboxyl group concentration is preferably 125 to 280 ⁇ eq / g, more preferably 130 to 270 ⁇ eq / g, still more preferably 150 to 260 ⁇ eq / g, still more preferably 170 to 250 ⁇ eq / g, and particularly preferably 200 to 200. It is 240 ⁇ eq / g.
  • the terminal carboxyl group concentration is in this range, the fluidity and moldability of the composition are improved even when the blending amount of the reinforcing material is increased.
  • Polyamide resin has [ ⁇ rel / ⁇ rc] of more than 0.91 and less than 1.13.
  • [ ⁇ rel / ⁇ rc] is more preferably 0.92 to 1.12, further preferably 0.92 to 1.10, and particularly preferably 0.93 to 1.08.
  • the number average molecular weight Mn of the polyamide resin is preferably 2,000 to 16,000, more preferably 4,000 to 16,000, still more preferably 4,000 to 15,000, and particularly preferably. Is between 5,000 and 15,000.
  • Mn of the polyamide resin is within the above range, it becomes easy to improve the fluidity and moldability of the composition even when the blending amount of the reinforcing material is increased, and the mechanical properties of the molded product can be improved. It will be easier to improve.
  • the ⁇ rc of the polyamide resin is preferably 1.10 to 1.70, more preferably 1.15 to 1.70, and even more preferably 1.20 to 1.70. When ⁇ rc is in this range, it becomes easy to improve the fluidity and moldability of the composition even when the blending amount of the reinforcing material is increased.
  • the terminal amino group concentration of the polyamide resin is preferably less than 2.0 ⁇ eq / g, more preferably 0 to 1.9 ⁇ eq / g, still more preferably 0 to 1.8 ⁇ eq / g, and particularly preferably 0 to 1.8 ⁇ eq / g. It is 0 to 1.0 ⁇ eq / g.
  • the polyamide resin is a molded product having a thickness of 100 ⁇ m obtained by pressing the polyamide resin at a press temperature of 200 ° C. and a pressure of 10 MPaG for 1 minute, and then performing a cooling press treatment at a press temperature of 80 ° C. and a pressure of 5 MPaG for 5 minutes.
  • a strip-shaped test piece having a length of 30 mm and a width of 4 mm was cut out and measured at 23 ° C., a relative humidity of 50% RH, and a tensile speed of 1 mm / min, a tensile elastic modulus of 1,000 to 1,500 MPa and a tensile elastic modulus of 1,000 to 1,500 MPa were obtained.
  • the tensile elastic modulus is more preferably 1,100 to 1,500 MPa. Further, the tensile break point elongation is more preferably 8 to 300%, further preferably 10 to 300%.
  • MPaG means a gauge pressure.
  • the polyamide resin production apparatus and polymerization method are the same as those described in the first aspect.
  • the polyamide resin can be in the form of pellets, beads, powder, paste, film or the like by a known method, but from the viewpoint of enhancing the homogeneity when mixed with the reinforcing material, a fine-grained form is desirable.
  • Reinforcing materials include glass fiber, carbon fiber, boron fiber, ceramic fiber, metal fiber, wallastonite, inorganic fiber such as potassium titanate whisker, organic fiber such as aramid fiber, montmorillonite, talc, mica, calcium carbonate, silica, etc.
  • inorganic fillers such as clay, kaolin, glass powder, glass beads, and flake-shaped glass.
  • inorganic fibers or organic fibers are preferable, and glass fibers are particularly preferable, from the viewpoint of improving mechanical properties when formed into a molded product.
  • the reinforcing material one kind or two or more kinds can be used.
  • the cross section of the inorganic fiber or the organic fiber may be circular or non-circular.
  • Non-circular cross sections include, for example, a rectangle, an oval close to a rectangle, an ellipse, and a cocoon-shaped central constriction in the longitudinal direction.
  • the average fiber diameter of the inorganic fiber or the organic fiber is preferably 0.1 to 25 ⁇ m, more preferably 1 to 20 ⁇ m, and further. It is preferably 4 to 15 ⁇ m.
  • the cross section of the fiber is non-circular, the diameter equivalent to a circle equal to the cross-sectional area is defined as the fiber diameter.
  • the average fiber length of the inorganic fiber or the organic fiber is preferably 10 ⁇ m to 10 mm, more preferably 10 ⁇ m to 5 mm, still more preferably. It is 100 ⁇ m to 4 mm.
  • the fiber was observed at a magnification of 10 to 30,000 using an optical microscope, and 400 fiber lengths and fiber diameters were measured using image analysis software. It is the average value of the time.
  • the average fiber length and average fiber diameter of the inorganic fiber or the organic fiber may be catalog values.
  • the values of the average fiber length and the average fiber diameter of the above-mentioned inorganic fiber or organic fiber are the values of the raw materials before being melt-kneaded with the polyamide resin.
  • an inorganic fiber such as glass fiber or an organic fiber is used as a reinforcing material, at least a part of the fiber may be crushed when the polyamide resin and the fiber are melt-kneaded to produce a polyamide resin composition. ..
  • the average fiber length of the glass fiber after melt-kneading is preferably 10 ⁇ m to 5 mm, preferably 50 ⁇ m to 4 mm, from the viewpoint of mechanical properties and dimensional stability of the molded product. More preferably, it is more preferably 100 ⁇ m to 2 mm.
  • the average fiber diameter of the glass fiber after melt-kneading is preferably in the range of the average fiber diameter of the raw material glass fiber.
  • the reinforcing material may be treated in advance with a coupling agent or a surface modifier. Further, in order to improve workability, a convergence treatment may be performed with a coupling agent or a surface modifier.
  • the coupling agent and the surface modifier may be used alone or in combination of two or more.
  • the coupling agent or surface treatment agent may be applied to the reinforcing material in advance and dried to be subjected to surface treatment or convergence treatment, or may be added at the same time as the reinforcing material when preparing the resin composition.
  • a converging-treated reinforcing material is used and melt-kneaded together with a polyamide resin to produce a polyamide resin composition
  • the reinforcing materials in the resin composition are all unraveled and individually, even if they remain in a converged state. It may be a reinforcing material of the above, or it may be partially unraveled and a part of it may remain converged, or the individual unraveled reinforcing materials may be further crushed.
  • the coupling agent and the surface modifier exemplified in the treatment of the magnetic metal powder in the second aspect
  • the coupling agent and the surface modifier may be used alone or in combination of two or more. Among these, it is preferable to use an amino group-containing silane compound and a titanate compound in order to enhance the compatibility with the polyamide resin.
  • the convergence treatment may be performed using a polyurethane resin, an acrylic resin, or the like.
  • amino group-containing silane compound and the titanate compound As the amino group-containing silane compound and the titanate compound, the amino group-containing silane compound and the titanate compound exemplified in the treatment of the magnetic metal powder in the second aspect can be exemplified. These can be used alone or in combination of two or more.
  • the content of the reinforcing material with respect to the total 100% by mass of the polyamide resin and the reinforcing material is preferably 5 to 90% by mass, 20 It is more preferably to 80% by mass, and particularly preferably 30 to 80% by mass.
  • the polyamide resin composition may contain other components as long as the effects of the present invention are not impaired.
  • Other components include plastics, antioxidants, UV absorbers, heat resistant agents, foaming agents, weather resistant agents, crystal nucleating agents, crystallization accelerators, mold release agents, lubricants, antistatic agents, flame retardants, and flame retardants.
  • functional agents such as auxiliaries, stabilizers and dyes, polyamide resins other than the polyamide resin of the present invention, and arbitrary resin components other than the polyamide resin.
  • the other components are not the polyamide resin and the reinforcing material according to the present invention.
  • the method for producing the polyamide resin composition and the molded product thereof will be described, but the present invention is not limited to the production method described below.
  • the polyamide resin composition is produced through a mixing step and / or a kneading step.
  • the molded product of the polyamide resin composition is manufactured through a step of molding the polyamide resin composition obtained as described above.
  • the mixing step the polyamide resin, the reinforcing material, and other components as necessary are mixed and mixed by a known method.
  • the mixing step is preferably performed before the kneading step.
  • the use of a solvent at the time of mixing is an effective means for uniformly adding the coupling agent and the lubricant, but it is not always necessary.
  • the mixer is not particularly limited, and examples thereof include a ribbon mixer, a V-type mixer, a rotary mixer, a Henschel mixer, a flash mixer, a Nauta mixer, and a tumbler.
  • the mixture obtained in the mixing step can also be granulated by granulation.
  • the mixture obtained in the mixing step is mixed in a temperature range of 50 to 400 ° C. using a batch kneader such as brabender, a Banbury mixer, a Henschel mixer, a helical rotor, a roll, a single-screw extruder, a twin-screw extruder, or the like. It is a process of kneading with.
  • the kneading temperature is generally selected from a temperature range in which the polyamide resin melts and does not decompose.
  • the kneaded product is extruded into a strand shape and then cooled and cut, or a block-shaped product that has been cooled and solidified is placed in a crusher to form pellets, powder, or the like. In this way, the polyamide resin composition can be obtained.
  • the molded product of the polyamide resin composition is formed by a one-step molding method in which the mixture obtained in the mixing step is melt-kneaded and molded into a desired shape as it is, and pellets, powder, etc. obtained in the kneading step are molded by various molding methods. It can be manufactured by either of the step forming methods.
  • a method for producing a molded body a method of heating and melting a pellet-shaped or powder-shaped polyamide resin composition and performing injection molding, extrusion molding, press molding, or the like can be mentioned.
  • extrusion molding it can also be performed together with kneading.
  • the injection molding method is particularly preferable because a molded body having excellent surface smoothness can be obtained and the degree of freedom in the molding shape is large.
  • the molding temperature is the same as the kneading temperature.
  • the polyamide resin composition Since the polyamide resin composition is excellent in fluidity and moldability at the time of melting, it can be used for producing a molded product using a known method. Specifically, the polyamide resin composition can be used in the production of molded products by injection molding, extrusion molding, press molding, blow molding, rotary molding and the like.
  • the molded product containing the polyamide resin composition has a high tensile elastic modulus and is excellent in mechanical strength.
  • the molded product containing the polyamide resin composition can be suitably used for gears, pulleys, cams, bearings, cable housings, housings and the like of automobiles, machines, electronic products and the like.
  • Relative viscosity ( ⁇ rel) According to JIS K 6920, the measurement was carried out at 25 ° C. using an Ostwald type viscometer at a 96% sulfuric acid solution and a polymer concentration of 10 mg / ml.
  • Terminal amino group concentration Put a predetermined amount of polyamide resin in an Erlenmeyer flask with a stopper, add 40 mL of the solvent phenol / methanol (volume ratio 7/3) prepared in advance, and then stir and dissolve with a magnetic stirrer. Then, titration was performed with 1/50 N hydrochloric acid using Timor Blue as an indicator to determine the terminal amino group concentration ( ⁇ eq / g).
  • polyamide 12 As a standard product of the polyamide 12, the commercially available polyamide 12 shown below was used.
  • Polyamide 12 (manufactured by Ube Industries, Ltd., UBESTA (registered trademark) 3012U, relative viscosity ( ⁇ rel) 1.60, number average molecular weight 12,000)
  • Polyamide 12 (manufactured by Ube Industries, Ltd., UBESTA (registered trademark) 3014U, relative viscosity ( ⁇ rel) 1.68, number average molecular weight 14,000)
  • Polyamide 12 (manufactured by Ube Industries, Ltd., UBESTA® 3020U, relative viscosity ( ⁇ rel) 1.86, number average molecular weight 20,000)
  • Polyamide 12 (manufactured by Ube Industries, Ltd., UBESTA (registered trademark) 3024U, relative viscosity ( ⁇ rel) 1.99, number average molecular weight 24,000)
  • Example 1-1 19.3 kg of 12-aminododecanoic acid (manufactured by Ube Industries, Ltd.) and 715 g of stearic acid are charged in a 70-liter pressure-resistant container, the inside of the container is replaced with nitrogen, and then heated to 190 ° C., and the inside of the reaction system is heated to 190 ° C. Was stirred so that the temperature became uniform. Next, the temperature was raised to 250 ° C. while adjusting the pressure inside the container to 0.5 MPaG. Then, the pressure was released to normal pressure over about 2 hours, and polymerization was carried out for 2 hours while adjusting to 0.05 MPaG.
  • Example 1-2 Pellets were obtained in the same manner as in Example 1-1 except that they were changed to 19.4 kg of 12-aminododecanoic acid (manufactured by Ube Industries, Ltd.) and 602 g of stearic acid in Example 1-1. The above evaluation was performed on the polyamide 12 obtained by drying the pellets. The results are shown in Table 1.
  • Example 1-3 19.7 kg of 12-aminododecanoic acid (manufactured by Ube Industries, Ltd.) and 313 g of adipic acid were charged in a 70-liter pressure-resistant container, the inside of the container was replaced with nitrogen, and then heated to 190 ° C., and the inside of the reaction system was heated to 190 ° C. Was stirred so as to be in a uniform state. Then, the temperature was raised to 230 ° C. and polymerization was carried out for 3 hours while adjusting to 0.05 MPaG. Then, the pressure was restored to normal pressure, and the strands were extracted from the lower part of the reaction vessel and cut to obtain pellets. The above evaluation was performed on the polyamide 12 obtained by drying the pellets under reduced pressure. The results are shown in Table 1.
  • Example 1-4 Pellets were obtained in the same manner as in Example 1-3 except that they were changed to 19.7 kg of 12-aminododecanoic acid (manufactured by Ube Industries, Ltd.) and 257 g of adipic acid in Examples 1-3. The above evaluation was performed on the polyamide 12 obtained by drying the pellets under reduced pressure. The results are shown in Table 1.
  • Example 1-5 Pellets were obtained in the same manner as in Example 1-3 except that they were changed to 19.8 kg of 12-aminododecanoic acid (manufactured by Ube Industries, Ltd.) and 210 g of adipic acid in Examples 1-3. The above evaluation was performed on the polyamide 12 obtained by drying the pellets under reduced pressure. The results are shown in Table 1.
  • Example 1-6 Pellets were obtained in the same manner as in Example 1-3 except that they were changed to 19.8 kg of 12-aminododecanoic acid (manufactured by Ube Industries, Ltd.) and 187 g of adipic acid in Examples 1-3. The above evaluation was performed on the polyamide 12 obtained by drying the pellets under reduced pressure. The results are shown in Table 1.
  • Comparative Example 1-1 22.4 g of polyamide 12 (UBESTA® 3014U manufactured by Ube Industries, Ltd.) and 1.6 g of stearic acid were placed in a pressure-resistant container of 80 cc, sufficiently substituted with nitrogen, and then reacted at 260 ° C. for 2 hours in a closed system. rice field.
  • the recovered resin was further charged into a glass test tube, and while nitrogen was circulated at 50 mL / min, the mixture was stirred at 260 ° C. and normal pressure for 1 hour, cooled, and then the glass test tube was broken to take out the obtained resin and cut it. And pellets were obtained.
  • the pellets were dried and molded using a vacuum heat press forming machine (tabletop vacuum hydraulic forming machine TMB-10 manufactured by Toho Machinery Co., Ltd.), but they were brittle and did not form a sheet. Therefore, the tensile test could not be performed on the polyamide resin of Comparative Example 1-1.
  • Table 1 shows the evaluation results of the polyamide resin of Comparative Example 1-1.
  • Comparative Example 1-2 Pellets were obtained in the same manner as in Example 1-1 except that they were changed to 19.2 kg of 12-aminododecanoic acid (manufactured by Ube Industries, Ltd.) and 830 g of stearic acid in Example 1-1. The above evaluation was performed on the polyamide 12 obtained by drying the pellets. The results are shown in Table 1.
  • Examples 1-1 to 1-6 using a polyamide resin having a terminal carboxyl group concentration of 100 ⁇ eq / g or more and a [ ⁇ rel / ⁇ rc] of more than 0.91 to less than 1.13 are molded. It can be seen that the properties are excellent, and the obtained molded product is excellent in tensile elastic modulus and tensile breaking point elongation.
  • Comparative Examples 1-1 and 1-2 having a terminal carboxyl group concentration of 100 ⁇ eq / g or more but a [ ⁇ rel / ⁇ rc] of 1.13 or more were inferior in formability in press molding. Further, the tensile break point elongation of Comparative Example 1-2 was 4.5%, which was inferior to that of Examples.
  • Polyamide resin composition containing a polyamide resin and a magnetic metal powder> The following polyamide resin was used.
  • Magnetic metal powder The following magnetic metal powder was used. ⁇ Strontium ferrite ⁇ Ferrite
  • Example 2-1 40% by mass of the polyamide resin A and 60% by mass of the strontium ferrite were charged in a glass test tube, and while nitrogen was circulated at 50 mL / min, they were melt-mixed at 200 ° C. and normal pressure for 1 hour. After cooling this, the molten kneaded product obtained by breaking a glass test tube was taken out and cut to obtain pellets of a polyamide resin composition. The following evaluation was performed using the pellets thus obtained. The results are shown in Table 2. The unit of the composition in Table 2 is mass%, and the total of the polyamide resin and the magnetic metal powder is 100% by mass.
  • Example 2-2 In a mixture consisting of 20% by mass of polyamide resin A and 80% by mass of ferrite, triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate] was added to 100 parts by mass of polyamide resin A. 1 part by mass was added to the mixture, and the mixture was further mixed.
  • the mixture obtained in this way is mounted on an R-40 type rotor and preheated to 220 ° C., and the rotor is rotated at a rotation speed of 60 rpm into the kneading chamber of a lavender type twin-screw kneader manufactured by Toyo Seiki Seisakusho Co., Ltd. However, it was added little by little.
  • Examples 2-3, 2-5 and 2-6 Pellets of Examples 2-3, 2-5 and 2-6 were prepared in the same manner as in Example 2-2 except that the types and blending ratios of the polyamide resin and the magnetic metal powder were changed as shown in Table 2. .. The following evaluation was performed using the pellets thus obtained. The results are shown in Table 2.
  • Example 2-4 and Comparative Example 2-1 Pellets of Example 2-4 and Comparative Example 2-1 were prepared in the same manner as in Example 2-1 except that the types and blending ratios of the polyamide resin and the magnetic metal powder were changed as shown in Table 2. The following evaluation was performed using the pellets thus obtained. The results are shown in Table 2.
  • Examples 2-1 to 2-6 using a polyamide resin having a terminal carboxyl group concentration of 100 ⁇ eq / g or more and a [ ⁇ rel / ⁇ rc] of more than 0.91 to less than 1.13 are molded. It can be seen that the properties are excellent, and the obtained molded product is excellent in bending strength and bending elastic modulus. Further, since the polyamide resin compositions of Examples 2-1 to 2-6 have improved dispersibility of the magnetic metal powder, it is expected to suppress bleed-out of low molecular weight components in the case of a molded product.
  • Comparative Example 2-1 using a polyamide resin having a terminal carboxyl group concentration of 100 ⁇ eq / g or more but a [ ⁇ rel / ⁇ rc] of 1.13 was inferior in film formability and did not become a self-supporting film. Therefore, the bending test could not be performed for Comparative Example 2-1.
  • Polyamide resin composition containing a polyamide resin and a reinforcing material> The following polyamide resin was used.
  • Polyamide resin A Polyamide resin of Example 1-1
  • Polyamide resin B Polyamide resin of Example 1-3
  • Polyamide resin C Polyamide resin of Comparative Example 1-1
  • Example 3-1 70% by mass of the polyamide resin A and 30% by mass of the glass fiber were charged in a glass test tube, and the mixture was melt-mixed at 200 ° C. and normal pressure for 1 hour while circulating nitrogen at 50 mL / min. After cooling this, the molten kneaded product obtained by breaking a glass test tube was taken out and cut to obtain pellets. The following evaluation was performed using the pellets thus obtained. The results are shown in Table 3. The unit of the composition in Table 3 is mass%, and the total of the polyamide resin and the glass fiber is 100% by mass.
  • Examples 3-2 to 3-4 and Comparative Examples 3-1 to 3-3 are the same as in Example 3-1 except that the type of the polyamide resin and the mixing ratio of the polyamide resin and the glass fiber are changed as shown in Table 3. ⁇ 3-3 pellets were prepared. The following evaluation was performed using the pellets thus obtained. The results are shown in Table 3.
  • the pellets had good fluidity when melted, the film became a sheet, and although the strength was weak, it became a self-supporting film.
  • X The pellets had good fluidity when melted, and although the film became a sheet, it was brittle and did not become a self-supporting film.
  • Examples 3-1 to 3-4 using a polyamide resin having a terminal carboxyl group concentration of 100 ⁇ eq / g or more and a [ ⁇ rel / ⁇ rc] of more than 0.91 to less than 1.13 are molded. It can be seen that the properties are excellent and the tensile elastic modulus of the obtained molded product is excellent. Examples 3-1 to 3-4 in which the content of the reinforcing material is 30 to 80% by mass with respect to the total 100% by mass of the polyamide resin and the reinforcing material are excellent in tensile elastic modulus.
  • Comparative Examples 3-1 to 3-3 a polyamide resin having a terminal carboxyl group concentration of 100 ⁇ eq / g or more but a [ ⁇ rel / ⁇ rc] of 1.13 is used. Comparing Comparative Examples 3-1 and 3-2, in Comparative Example 3-1 the tensile modulus was larger than that of Comparative Example 3-2, even though the content of the reinforcing material was increased to 60% by mass. The result was inferior. In Comparative Example 3-2 in which the content of the reinforcing material was 30% by mass, the tensile elastic modulus was less than 3,000 MPa, which was insufficient. Comparative Example 3-3 in which the content of the reinforcing material was 80% by mass was inferior in formability, and the tensile elastic modulus was broken before the detection, so that the measurement could not be performed.
  • the polyamide resin composition of the present invention can be used for manufacturing various molded products by injection molding, extrusion molding, press molding and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

成形性に優れ、成形体とした場合の機械的特性(引張弾性率及び引張伸び、具体的には引張破断点伸び)に優れるポリアミド樹脂を提供する。 末端カルボキシル基濃度が100μeq/g以上であり、[ηrel/ηrc]が0.91超~1.13未満である、ポリアミド樹脂。 ηrel:JIS K 6920(96%硫酸中、ポリマー濃度10mg/ml、25℃)に準じて測定される相対粘度。 ηrc:数平均分子量Mnから以下の近似式(1)によって算出される相対粘度。 ηrc = K × Mnα ・・・式(1) (式中、K及びαは、前記ポリアミド樹脂と同種類の少なくとも3つの任意のポリアミド樹脂について、数平均分子量Mn及び相対粘度ηrelを測定し、該測定値がそれぞれ式(1)のMn及びηrcであるとしてフィッティングすることにより決定される定数である。式中、Mnは前記ポリアミド樹脂の数平均分子量であり、末端カルボキシル基濃度(μeq/g)及び末端アミノ基濃度(μeq/g)から算出される。)

Description

ポリアミド樹脂及びこれを含む組成物並びにこれらを含む成形体
 本発明は、ポリアミド樹脂及びこれを含む組成物並びにこれらを含む成形体に関する。
 ポリアミド樹脂は、強度、靭性、耐薬品性、耐油性等に優れており、各種産業分野で射出成形体用材料やチューブ、シート、フィルム等の押出成形体用材料として使用されている。近年、ポリアミド樹脂を使用した成形体の用途開発が進み、求められる品質要求は高度化、多様化の一途である。
 そのようなポリアミド樹脂として、末端アミド基濃度が15(μeq/ポリマー1g)以上であるポリアミド11及び/又はポリアミド12並びにN,N’-カルボニルビスラクタムを所定の比率で配合してなり、JIS K 6920により測定した相対粘度が2.3~3.0であるポリアミド樹脂組成物が提案されており、該組成物は、押出成形性が良好であり、得られる成形体がクリープ特性や衝撃特性に優れることが示されている(例えば、特許文献1を参照)。また、JIS K 6920により測定された相対粘度が1.40~1.80であって、末端カルボキシル基濃度が90μeq/g以下、末端アミノ基濃度が30μeq/g以下であるポリアミド樹脂、並びにポリアミドのモノマー及び/又は9量体以下のポリアミドのオリゴマーを所定の比率で配合してなる磁性材樹脂複合体成形用ポリアミド樹脂組成物が提案されており、該組成物は、溶融時の流動性及び成形時の磁性金属粉末の配向性に優れ、得られる成形体が優れた耐熱性、機械的特性等を有することが示されている(例えば、特許文献2を参照)。
 また、磁性金属粉末及びバインダー樹脂からなる磁性材樹脂複合材料が知られており、該材料のバインダー樹脂としてポリアミド樹脂が広く使用されている。このような磁性材樹脂複合材料において、磁気特性を向上させるために磁性金属粉末を高濃度に充填する必要がある。しかし、磁性金属粉末の配合量を多くしようとすると、磁性金属粉末の分散性が悪くなったり、射出成形等の方法で成形する時に溶融時の材料の流動性が極めて低下したり、溶融時における材料中の磁性金属粉末の配向性が低下するという問題があった。
 上記問題を解決するために、特許文献2では、前記のとおりの磁性材樹脂複合体成形用ポリアミド樹脂組成物が提案されている。同様に、特許文献3~5には、磁性材樹脂複合材料の流動性又は成形性を改善するために、ポリアミド樹脂の相対粘度等を特定の範囲とすることが提案されている。
 また、磁性金属粉末、ポリアミド樹脂及び特定の二価アルコールを所定の割合で含むプラスチック磁性組成物が提案されており、該組成物は、溶融時の流動性及び成形時の磁性金属粉末の配向性に優れることが示されている(例えば、特許文献6を参照)。さらに、フェライト類、ポリアミド樹脂及びフッ化ビニリデン系ゴムからなるプラスチック磁石用組成物が提案されており、該組成物は、流動性に優れ、機械的強度を損なわずにかつ高磁力なプラスチック磁石成形品を与えることが示されている(例えば、特許文献7を参照)。
 さらに、ポリアミド樹脂組成物の寸法安定性及び機械的特性を向上させることを目的に、該組成物にガラス繊維、繊維状強化材等を配合することが知られている。例えば、非円形断面を有するガラス繊維と、アミド基1個に対する炭素原子数が6を超える構成単位を含み、所定の数平均分子量を有するポリアミド樹脂とを所定の比率で含むポリアミド樹脂組成物が提案されており、該組成物は、吸水時の寸法変化の抑制と、吸水後の優れた耐摩耗性と、優れた耐衝撃強度と、高い表面強度とを同時に満足することが示されている(例えば、特許文献8を参照)。さらに、ポリアミド樹脂、ポリフェニレンエーテル樹脂、並びに特定の扁平形状及び重量平均繊維長を有するガラス繊維を特定の比率で含む樹脂組成物が提案されており、該組成物は、そり量の少ない樹脂成型品を提供できることが示されている(例えば、特許文献9を参照)。
 耐熱性、摺動性、より高い機械的特性等の付与を目的に、脂環式基又は芳香族基を有するポリアミド樹脂にガラス繊維、繊維状強化材等を配合させたポリアミド樹脂組成物も知られている。例えば、1,4-シクロヘキサンジカルボン酸単位と炭素数8以上のジアミン単位とを含有するポリアミドと、無機充填剤とを含有する摺動部品が提案されている(例えば、特許文献10を参照)。また、ヘキサメチレンテレフタルアミド単位とウンデカンアミド単位とからなる共重合ポリアミド樹脂及び繊維状強化材を所定の割合で含有し、所定の物性を有するエンジン冷却水系部品用ポリアミド樹脂組成物が提案されている(例えば、特許文献11を参照)。さらに、パラキシリレンジアミン単位を70モル%以上含むジアミン単位と、炭素数6~18の直鎖脂肪族ジカルボン酸単位を70モル%以上含むジカルボン酸単位とからなるポリアミド、及び繊維状充填剤を所定の割合で含むポリアミド樹脂組成物からなる輸送機器部品が提案されている(例えば、特許文献12を参照)。
特開2006-282950号公報 特開2010-222394号公報 特開2005-162802号公報 特開昭60-156751号公報 特開平09―71721号公報 特開平08-217970号公報 特開平09-180932号公報 国際公開第2017/061363号 特開2014-34606号公報 特開2015―129244号公報 特開2012-153798号公報 特開2011-57932号公報
 特許文献1~12に記載されたポリアミド樹脂組成物の成形体は、一定の機械的特性(引張弾性率及び引張伸び、具体的には引張破断点伸び)を示すものの、発光装置用光反射性樹脂材料等のより高い機械的特性が求められる用途では不十分であった。そのため、機械的特性と成形性を兼ね備えたポリアミド樹脂組成物が求められている。
 本発明は、成形性に優れ、成形体とした場合の機械的特性(引張弾性率及び引張伸び、具体的には引張破断点伸び)に優れるポリアミド樹脂を提供することを目的とする。
 本発明者らは、ポリアミド樹脂の末端カルボキシル基濃度と相対粘度に着目し、鋭意検討した結果、末端カルボキシル基濃度、及び2種類の方法で得られる相対粘度の比が特定の範囲にあるポリアミド樹脂は、成形性に優れ、また、成形体とした場合の機械的特性に優れることを見出した。
 本発明は、以下の[1]~[17]に関する。
[1]末端カルボキシル基濃度が100μeq/g以上であり、[ηrel/ηrc]が0.91超~1.13未満である、ポリアミド樹脂。
 ηrel:JIS K 6920(96%硫酸中、ポリマー濃度10mg/ml、25℃)に準じて測定される相対粘度。
 ηrc:数平均分子量Mnから以下の近似式(1)によって算出される相対粘度。
   ηrc = K × Mnα  ・・・式(1)
(式中、K及びαは、前記ポリアミド樹脂と同種類の少なくとも3つの任意のポリアミド樹脂について、数平均分子量Mn及び相対粘度ηrelを測定し、該測定値がそれぞれ式(1)のMn及びηrcであるとしてフィッティングすることにより決定される定数である。式中、Mnは前記ポリアミド樹脂の数平均分子量であり、末端カルボキシル基濃度(μeq/g)及び末端アミノ基濃度(μeq/g)から算出される。)
[2]ポリアミド樹脂の末端カルボキシル基濃度が125~280μeq/gであり、[ηrel/ηrc]が0.92~1.12である、[1]に記載のポリアミド樹脂。
[3]ポリアミド樹脂が、脂肪族ホモポリアミド樹脂及び脂肪族共重合ポリアミド樹脂からなる群より選ばれる少なくとも1種である、[1]又は[2]に記載のポリアミド樹脂。
[4]ポリアミド樹脂が、アミド基1個に対する炭素原子数が6を超える構成単位を含む、[1]~[3]のいずれか1つに記載のポリアミド樹脂。
[5]ポリアミド樹脂が、ポリアミド11、ポリアミド12、ポリアミド612、ポリアミド610、ポリアミド6/12共重合体及びポリアミド6/66/12共重合体からなる群より選ばれる少なくとも1種である、[1]~[4]のいずれか1つに記載のポリアミド樹脂。
[6]ポリアミド樹脂の相対粘度ηrelが1.35超である、[1]~[5]のいずれか1つに記載のポリアミド樹脂。
[7]ポリアミド樹脂の末端アミノ基濃度が2.0μeq/g未満である、[1]~[6]のいずれか1つに記載のポリアミド樹脂。
[8]ポリアミド樹脂の数平均分子量が2,000~16,000である、[1]~[7]のいずれか1つに記載のポリアミド樹脂。
[9][1]~[8]のいずれか1つに記載のポリアミド樹脂であって、前記ポリアミド樹脂について、プレス温度200℃、圧力10MPaGで1分間プレス処理をした後、プレス温度80℃、圧力5MPaGで5分間冷却プレス処理をして得られた長さ30mm、幅4mm、厚さ100μmの成形体が、23℃、相対湿度50%RH、引張速度1mm/分で測定したときに、引張弾性率1,000~1,500MPa、かつ、引張破断点伸び5~300%を有する、ポリアミド樹脂。
[10][1]~[9]のいずれか1つに記載のポリアミド樹脂と磁性金属粉末とを含む、ポリアミド樹脂組成物。
[11]ポリアミド樹脂と磁性金属粉末との合計100質量%に対する磁性金属粉末の含有量が50~98質量%である、[10]に記載のポリアミド樹脂組成物。
[12][1]~[9]のいずれか1つに記載のポリアミド樹脂と強化材とを含む、ポリアミド樹脂組成物。
[13]強化材がガラス繊維である、[12]に記載のポリアミド樹脂組成物。
[14][1]~[9]のいずれか1つに記載のポリアミド樹脂を含む、成形体。
[15][10]又は[11]に記載のポリアミド樹脂組成物を含む、成形体。
[16]プラスチック磁石である、[15]に記載の成形体。
[17][12]又は[13]に記載のポリアミド樹脂組成物を含む、成形体。
 本発明によれば、成形性に優れ、成形体とした場合の機械的特性(引張弾性率及び引張伸び、具体的には引張破断点伸び)に優れるポリアミド樹脂を提供することができる。
 本発明において、ポリアミド樹脂は、主鎖中にアミド結合(-CONH-)を有し、ラクタム、アミノカルボン酸、又はジアミンとジカルボン酸とからなるナイロン塩を原料として、溶融重合、溶液重合、固相重合等の公知の方法で重合、又は共重合することにより得られる樹脂を意味する。本発明の効果を損なわない限り、ポリアミド樹脂に他の成分を配合してポリアミド樹脂組成物としてもよい。
 本明細書においてポリアミド樹脂及びその組成物中の各成分の含有量は、ポリアミド樹脂及びその組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、当該複数の物質の合計量を意味する。
{本発明の第一の態様}
 本発明の第一の態様は、末端カルボキシル基濃度が100μeq/g以上であり、[ηrel/ηrc]が0.91超~1.13未満である、ポリアミド樹脂である。
 ηrel:JIS K 6920(96%硫酸中、ポリマー濃度10mg/ml、25℃)に準じて測定される相対粘度。
 ηrc:数平均分子量Mnから以下の近似式(1)によって算出される相対粘度。
   ηrc = K × Mnα  ・・・式(1)
(式中、K及びαは、前記ポリアミド樹脂と同種類の少なくとも3つの任意のポリアミド樹脂について、数平均分子量Mn及び相対粘度ηrelを測定し、該測定値がそれぞれ式(1)のMn及びηrcであるとしてフィッティングすることにより決定される定数である。式中、Mnは前記ポリアミド樹脂の数平均分子量であり、末端カルボキシル基濃度(μeq/g)及び末端アミノ基濃度(μeq/g)から算出される。)
 末端カルボキシル基濃度及び[ηrel/ηrc]を上記範囲とすることにより、成形性に優れ、成形体とした場合の機械的特性(引張弾性率及び引張伸び、具体的には引張破断点伸び)に優れるポリアミド樹脂とすることができる。
[ポリアミド樹脂の物性]
<末端カルボキシル基濃度>
 ポリアミド樹脂は、末端カルボキシル基濃度が100μeq/g以上である。末端カルボキシル基濃度は、125~280μeq/gであることが好ましく、より好ましくは130~270μeq/g、さらに好ましくは150~260μeq/g、さらになお好ましくは170~250μeq/g、特に好ましくは200~240μeq/gである。末端カルボキシル基濃度がこの範囲にあることで、成形性が良好となる。
 一実施態様において、ポリアミド樹脂の[ηrel/ηrc]が1.0以上の場合、ポリアミド樹脂の末端カルボキシル基濃度は、125~250μeq/gであることが好ましく、より好ましくは125~200μeq/g、特に好ましくは130~170μeq/gである。
 末端カルボキシル基濃度(μeq/g)は、ポリマー1g当たりのカルボキシル基の当量として表すことができ、ポリアミド樹脂をベンジルアルコールに溶解し、1/20Nの水酸化ナトリウム溶液で滴定して測定することができる。
 ポリアミド樹脂の末端カルボキシル基濃度の調整は、末端調整剤であるモノ又はポリカルボン酸を用いて行うことができる。末端調整はポリアミド樹脂製造時、又はポリアミド樹脂製造後に行うことができる。
 前記酸としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソブチル酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸等の脂環式モノカルボン酸;安息香酸、トルイル酸、α-/β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸;アジピン酸、トリメチルアジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸等の脂肪族ジカルボン酸;1,3-シクロペンタンジカルボン酸、1,3-/1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;テレフタル酸、イソフタル酸、1,4-/2,6-/2,7-ナフタレンジカルボン酸等の芳香族ジカルボン酸が挙げられる。なかでも、脂肪族モノカルボン酸及び脂肪族ジカルボン酸が好ましい。これらは1種又は2種以上を用いることができる。
 ポリアミド樹脂が、末端カルボキシル基濃度の異なる2種以上のポリアミド樹脂成分を含む場合、前記ポリアミド樹脂における末端カルボキシル基濃度は、上記中和摘定で測定されるのが好ましいが、各ポリアミド樹脂成分の末端カルボキシル基濃度とその混合比が判明している場合、それぞれの末端カルボキシル基濃度にその混合比を乗じた値を合計して算出される平均値を、前記ポリアミド樹脂の末端カルボキシル基濃度としてもよい。
<[ηrel/ηrc]>
 ポリアミド樹脂は、 [ηrel/ηrc]が0.91超~1.13未満である。[ηrel/ηrc]は、0.92~1.12であることがより好ましく、0.92~1.10であることがさらに好ましく、0.93~1.08であることが特に好ましい。[ηrel/ηrc]を上記範囲とすることにより、ポリアミド樹脂の流動性が高く、成形性が良好となり、さらに成形体としたときの引張弾性率及び引張破断点伸びを向上させることができる。
 一実施態様において、ポリアミド樹脂の[ηrel/ηrc]は、0.92~0.97であることが好ましく、より好ましくは0.93~0.97であり、さらに好ましくは0.93~0.96である。別の実施態様において、ポリアミド樹脂の[ηrel/ηrc]は、1.00~1.12であることが好ましく、より好ましくは1.02~1.10、さらに好ましくは1.03~1.08である。
 ηrel及びηrcは、以下のように定義される。
 ηrel:JIS K 6920(96%硫酸中、ポリマー濃度10mg/ml、25℃)に準じて測定される相対粘度。
 ηrc:数平均分子量Mnから以下の近似式(1)によって算出される相対粘度。
   ηrc = K × Mnα  ・・・式(1)
(式中、K及びαは、前記ポリアミド樹脂と同種類の少なくとも3つの任意のポリアミド樹脂について、数平均分子量Mn及び相対粘度ηrelを測定し、該測定値がそれぞれ式(1)のMn及びηrcであるとしてフィッティングすることにより決定される定数である。)
<[ηrel]>
 ηrelは、JIS K 6920に準じて、ポリアミド樹脂1gを96%硫酸100mlに溶解させ、25℃で測定される相対粘度である。ηrelは、1.35超であることが好ましく、より好ましくは1.36~2.00未満、さらに好ましくは1.36~1.80未満、さらになお好ましくは1.36~1.70未満、特に好ましくは1.36~1.60未満である。ηrelがこの範囲にあることで成形性が良好となりやすい。
 ポリアミド樹脂が、相対粘度が異なる2種以上のポリアミド樹脂成分を含む場合、前記ポリアミド樹脂の相対粘度は、上記内容で測定されるのが好ましいが、各ポリアミド樹脂成分の相対粘度とその混合比が判明している場合、それぞれの相対粘度にその混合比を乗じた値を合計して算出される平均値を、前記ポリアミド樹脂の相対粘度としてもよい。
<数平均分子量Mn>
 ポリアミド樹脂の数平均分子量Mnは、2,000~16,000であることが好ましく、より好ましくは4,000~16,000であり、さらに好ましくは4,000~15,000であり、特に好ましくは5,000~15,000である。ポリアミド樹脂の数平均分子量Mnが上記範囲内にあることにより、成形性を向上させやすくなり、成形体としたときの機械的特性を向上させやすくなる。
 一実施態様において、ポリアミド樹脂の[ηrel/ηrc]が1.0以上の場合、ポリアミド樹脂の数平均分子量Mnは、2,000~16,000であることが好ましく、より好ましくは4,000~12,000であり、特に好ましくは5,000~10,000である。
 ポリアミド樹脂の数平均分子量Mn(g/mol)は、[COOH]末端カルボキシル基濃度(μeq/g)と[NH]末端アミノ基濃度(μeq/g)と[U]末端調整剤による末端基濃度(μeq/g)から、以下の式(2)によって求められる。(Nylon Plastics Handbook,M.I.Kohan,Hanser Publishers,1995)
   Mn=2×10/([COOH]+[NH]+[U])  ・・・式(2)
 末端調整剤がモノカルボン酸、例えばステアリン酸の場合には、[U]は末端ステアリル基濃度(μeq/g)となる。理想的には、末端アミノ基を持つ分子鎖のもう一方の分子鎖末端はカルボキシル基であり、末端ステアリル基を持つ分子鎖のもう一方の分子鎖末端もカルボキシル基であるため、[NH]+[U]は、測定することができるカルボキシル基濃度(μeq/g)と等しい。従って、数平均分子量Mn(g/mol)は、[NH]+[U]は考慮せず、1分子鎖当たりひとつの末端カルボキシル基濃度(μeq/g)のみから、式(3)によって求められる。
   Mn=1×10/[COOH]  ・・・式(3)
 末端調整剤がジカルボン酸、例えばアジピン酸の場合には、[U]はアジピン酸由来の末端カルボキシル基濃度[COOH]AA(μeq/g)となる。末端アミノ基を持つ分子鎖のもう一方の分子鎖末端のカルボキシル基、及びアジピン酸由来の末端カルボキシル基を持つ分子鎖のもう一方の分子鎖末端のカルボキシル基の合計濃度[COOH]PA(μeq/g)と、アジピン酸由来の末端カルボキシル基濃度[COOH]AA(μeq/g)は、測定されるカルボキシル基濃度[COOH](μeq/g)で区別されない。このため、数平均分子量Mn(g/mol)は、式(4)によって求められる。
   Mn=2×10/([COOH]PA+[NH]+[COOH]AA
     =2×10/([COOH]+[NH])  ・・・式(4)
<[ηrc]>
 ηrcは、数平均分子量から近似式(1)によって算出される相対粘度である。ηrcは、ポリアミド樹脂の数平均分子量から相対粘度を理論的に推定するための指標であり、具体的には、以下のようにして算出される。
 一般的に、極限粘度[η]と粘度平均分子量Mvとの相関である、マーク・ホーウィンク・桜田の式が知られている。ここで、マーク・ホーウィンク・桜田の式に類似した、相対粘度[ηrc]と数平均分子量Mnとの相関式ηrc=K×Mnαを定義した。すなわち、ηrcは、上記相関式から得られる相対粘度の理論値である。
 まず、数平均分子量Mnが異なる数種類のポリアミド樹脂について、相対粘度ηrelを測定し、数平均分子量Mn及び相対粘度ηrelの値から、上記相関式の導出を行う。相関式の導出に用いるポリアミド樹脂は、測定対象のポリアミド樹脂と同種類のものを用いる。例えば、測定対象がポリアミド12及びポリアミド6/12共重合体である場合、相関式の導出に用いるポリアミド樹脂もそれぞれ、ポリアミド12及びポリアミド6/12共重合体とする。また、相関式の導出に用いるポリアミド樹脂は、数平均分子量が広い範囲で分布した、少なくとも3つのポリアミド樹脂を用いる必要があり、4つ以上のポリアミド樹脂を用いることが好ましい。相関式の導出に用いるポリアミド樹脂の数平均分子量は、2,000~50,000の範囲に分布していることが好ましく、より好ましくは4,000~30,000の範囲である。
 実施例では、ηrcの測定対象はポリアミド12であり、上記相関式の導出には、数平均分子量が12,000~24,000の範囲に分布した、任意の4つの市販のポリアミド12を用いている。
 このようにして得た数平均分子量及び相対粘度(ηrel)を用い、該測定値がそれぞれ式(1)のMn及びηrcであるとして、最小二乗法等の公知のフィッティング方法により、近似式を求め、K及びαを決定する。
 このようにして得られた相関式ηrc=K×Mnαに、測定対象のポリアミド樹脂の数平均分子量Mn(g/mol)を代入して、測定対象のポリアミド樹脂の相対粘度[ηrc]を求める。
 ηrcは、1.10~1.70であることが好ましく、より好ましくは1.15~1.70、さらに好ましくは1.20~1.70である。ηrcがこの範囲であると、成形性を向上させやすくなる。
 一実施態様において、ポリアミド樹脂の[ηrel/ηrc]が1.0以上の場合、ポリアミド樹脂のηrcは、1.10~1.55であることが好ましく、より好ましくは1.20~1.40である。
<末端アミノ基濃度>
 ポリアミド樹脂の末端アミノ基濃度は、2.0μeq/g未満であることが好ましく、より好ましくは0~1.9μeq/gであり、さらに好ましくは0~1.8μeq/gであり、特に好ましくは0~1.0μeq/gである。末端アミノ基濃度をこの範囲にすることで、成形性を向上させやすくなる。
 一実施態様において、ポリアミド樹脂の[ηrel/ηrc]が1.0以上の場合、ポリアミド樹脂の末端アミノ基濃度は、1.7μeq/g未満であることが好ましく、より好ましくは0~1.5μeq/gであり、特に好ましくは0~1.0μeq/gである。
 末端アミノ基濃度(μeq/g)は、ポリマー1g当たりのアミノ基の当量として表すことができ、ポリアミド樹脂をフェノール/メタノール混合溶液に溶解し、1/50Nの塩酸で滴定して測定することができる。
 ポリアミド樹脂の末端アミノ基濃度の調整は、モノ又はポリカルボン酸を用いて行うことができる。末端調整はポリアミド樹脂製造時、又はポリアミド樹脂製造後に行うことができる。
 前記酸としては、ポリアミド樹脂の末端カルボキシル基濃度の調整で例示したものが挙げられる。これらは1種又は2種以上を用いることができる。
 ポリアミド樹脂が、末端アミノ基濃度の異なる2種以上のポリアミド樹脂成分を含む場合、前記ポリアミド樹脂における末端アミノ基濃度は、上記中和摘定で測定されるのが好ましいが、各ポリアミド樹脂成分の末端アミノ基濃度とその混合比が判明している場合、それぞれの末端アミノ基濃度にその混合比を乗じた値を合計して算出される平均値を、前記ポリアミド樹脂の末端アミノ基濃度としてもよい。
[ポリアミド樹脂の種類]
 ポリアミド樹脂は、成形性の観点から、脂肪族ホモポリアミド樹脂及び脂肪族共重合ポリアミド樹脂からなる群より選ばれる少なくとも1種であることが好ましい。
<脂肪族ホモポリアミド樹脂>
 脂肪族ホモポリアミド樹脂は、脂肪族ポリアミド樹脂を構成するモノマー成分が、1種単独であるポリアミド樹脂を意味する。脂肪族ホモポリアミド樹脂は、1種類のラクタム及び当該ラクタムの加水分解物であるアミノカルボン酸の少なくとも一方からなるものであってもよく、1種類の脂肪族ジアミンと1種類の脂肪族ジカルボン酸との組合せからなるものであってもよい。ここで、脂肪族ポリアミド樹脂を構成するモノマー成分が、脂肪族ジアミン及び脂肪族ジカルボン酸の組合せである場合は、1種類の脂肪族ジアミンと1種類の脂肪族ジカルボン酸の組合せで1種類のモノマー成分とみなすものとする。
 脂肪族ホモポリアミド樹脂を構成するモノマー成分としては、炭素数2~20、好ましくは炭素数4~12の脂肪族ジアミンと、炭素数2~20、好ましくは炭素数6~12の脂肪族ジカルボン酸の組合せ、炭素数6~12のラクタム又はアミノカルボン酸等を挙げることができる。
 脂肪族ジアミンとしては、エチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、トリデカンジアミン、テトラデカンジアミン、ペンタデカンジアミン、ヘキサデカンジアミン、ヘプタデカンジアミン、オクタデカンジアミン、ノナデカンジアミン、エイコサンジアミン、2-メチル-1,8-オクタンジアミン、2,2,4/2,4,4-トリメチルヘキサメチレンジアミン等が挙げられる。これらの中でも、炭素原子数が6より多いジアミンが好ましい。
 脂肪族ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジオン酸、ドデカンジオン酸、トリデカンジオン酸、テトラデカンジオン酸、ペンタデカンジオン酸、ヘキサデカンジオン酸、オクタデカンジオン酸、エイコサンジオン酸等が挙げられる。これらの中でも、炭素原子数が6より多いジカルボン酸が好ましい。
 ラクタムとしては、ε-カプロラクタム、エナントラクタム、ウンデカンラクタム、ドデカンラクタム、α-ピロリドン、α-ピペリドン等が挙げられる。また、アミノカルボン酸としては6-アミノカプロン酸、7-アミノヘプタン酸、9-アミノノナン酸、11-アミノウンデカン酸、12-アミノドデカン酸が挙げられる。これらの中でも、炭素原子数が6より多いラクタム及びアミノカルボン酸が好ましい。
<脂肪族共重合ポリアミド樹脂>
 脂肪族共重合ポリアミド樹脂は、脂肪族ポリアミド樹脂を構成するモノマー成分が、2種以上の組合せであるポリアミド樹脂を意味する。脂肪族共重合ポリアミド樹脂は、脂肪族ジアミンと脂肪族ジカルボン酸の組合せ、ラクタム及びアミノカルボン酸からなる群から選択される2種以上の共重合体である。ここで、脂肪族ジアミンと脂肪族ジカルボン酸の組合せは、1種類の脂肪族ジアミンと1種類の脂肪族ジカルボン酸の組合せで1種類のモノマー成分とみなす。
 脂肪族ジアミンとしては、脂肪族ホモポリアミド樹脂の原料として例示したものと同様のものが挙げられる。
 脂肪族ジカルボン酸としては、脂肪族ホモポリアミド樹脂の原料として例示したものと同様のものが挙げられる。
 ラクタムとしては、脂肪族ホモポリアミド樹脂の原料として例示したものと同様のものが挙げられる。また、アミノカルボン酸としては脂肪族ホモポリアミド樹脂の原料として例示したものと同様のものが挙げられる。
 これらの脂肪族ジアミン、脂肪族ジカルボン酸、ラクタム及びアミノカルボン酸は1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
[ポリアミド樹脂の好ましい態様]
 ポリアミド樹脂は、アミド基1個に対する炭素原子数が6を超える構成単位を含むと、成形性を向上させやすくなり、得られる成形体が低吸水性であるため、耐水性成形品として採用しやすく、かつ、機械的特性を向上させやすくなるため、好ましい。ポリアミド樹脂の構成単位は、アミド基1個に対する炭素原子数が7~12のものが好ましく、より好ましくは10~12のものである。また、ポリアミド樹脂における、アミド基1個に対する炭素原子数が6を超える構成単位の割合は、ポリアミド樹脂の全構成単位に対し、30mol%以上であることが好ましく、より好ましくは50mol%以上、さらに好ましくは80mol%以上である。ポリアミド樹脂における、アミド基1個に対する炭素原子数が6を超える構成単位の割合の上限は、100mol%、すなわち、ポリアミド樹脂のすべての構成単位が、アミド基1個に対する炭素原子数が6を超えるものである。
 アミド基1個に対する炭素原子数が6を超える構成単位を含む脂肪族ホモポリアミド樹脂としては、ポリエナントラクタム(ポリアミド7)、ポリウンデカンラクタム(ポリアミド11)、ポリラウリルラクタム(ポリアミド12)、ポリテトラメチレンドデカミド(ポリアミド412)、ポリペンタメチレンアゼラミド(ポリアミド59)、ポリペンタメチレンセバカミド(ポリアミド510)、ポリペンタメチレンドデカミド(ポリアミド512)、ポリヘキサメチレンアゼラミド(ポリアミド69)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンアジパミド(ポリアミド96)、ポリノナメチレンアゼラミド(ポリアミド99)、ポリノナメチレンセバカミド(ポリアミド910)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンアジパミド(ポリアミド106)、ポリデカメチレンアゼラミド(ポリアミド109)、ポリデカメチレンデカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリドデカメチレンアジパミド(ポリアミド126)、ポリドデカメチレンアゼラミド(ポリアミド129)、ポリドデカメチレンセバカミド(ポリアミド1210)、ポリドデカメチレンドデカミド(ポリアミド1212)等が挙げられる。
 アミド基1個に対する炭素原子数が6を超える構成単位を含む脂肪族共重合ポリアミド樹脂としては、カプロラクタム/ヘキサメチレンジアミノアゼライン酸共重合体(ポリアミド6/69)、カプロラクタム/ヘキサメチレンジアミノセバシン酸共重合体(ポリアミド6/610)、カプロラクタム/ヘキサメチレンジアミノウンデカンジカルボン酸共重合体(ポリアミド6/611)、カプロラクタム/ヘキサメチレンジアミノドデカンジカルボン酸共重合体(ポリアミド6/612)、カプロラクタム/アミノウンデカン酸共重合体(ポリアミド6/11)、カプロラクタム/ラウリルラクタム共重合体(ポリアミド6/12)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ラウリルラクタム共重合体(ポリアミド6/66/12)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノセバシン酸共重合体(ポリアミド6/66/610)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノドデカンジカルボン酸共重合体(ポリアミド6/66/612)等が挙げられる。
 これらの中でも、低吸水性の観点から、ポリアミド樹脂は、ポリアミド11、ポリアミド12、ポリアミド612、ポリアミド610、ポリアミド6/12共重合体及びポリアミド6/66/12共重合体からなる群より選ばれる少なくとも1種であることが特に好ましい。これらのポリアミド樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 ポリアミド樹脂は、前記ポリアミド樹脂について、プレス温度200℃、圧力10MPaGで1分間プレス処理をした後、プレス温度80℃、圧力5MPaGで5分間冷却プレス処理をして得られた厚さ100μmの成形体から、長さ30mm、幅4mmの短冊状の試験片を切り出し、23℃、相対湿度50%RH、引張速度1mm/分で測定したときに、引張弾性率1,000~1,500MPa、かつ、引張破断点伸び5~300%を有することが好ましい。引張弾性率は、1,100~1,500MPaであることがより好ましい。また、引張破断点伸びは、8~300%であることがより好ましく、10~300%であることがさらに好ましい。このようにして得た成形体の引張弾性率及び引張破断点伸びが上記範囲内にあると、発光装置用光反射性樹脂材料等のより高い機械的特性が求められている用途にも使用可能である。なお、プレス処理時の圧力及び実施例のポリアミド樹脂の調製における容器内の圧力の単位:MPaGは、ゲージ圧を意味する。
[ポリアミド樹脂の製造]
 ポリアミド樹脂の製造装置としては、バッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置、一軸型混練押出機、二軸型混練押出機等の混練反応押出機等、公知のポリアミド製造装置が挙げられる。重合方法としては溶融重合、溶液重合、固相重合等の公知の方法を用い、常圧、減圧及び加圧操作を繰り返して重合することができる。反応温度は通常150~300℃であり、反応圧力は特に制限されない。末端カルボキシル基濃度を調整するための酸は、原料混合時に投入してもよく、又はポリアミド樹脂製造後に別途反応させてもよい。これらの重合方法は単独で、あるいは適宜、組合せて用いることができる。
 上記の方法により製造されたポリアミド樹脂は、公知の方法により、ペレット、ビーズ、パウダー、ペースト、フィルム等の形態とすることができる。
[ポリアミド樹脂組成物]
 ポリアミド樹脂には、本発明の効果を損なわない範囲で、他の成分を含有させて、ポリアミド樹脂組成物とすることができる。他の成分としては、可塑剤、酸化防止剤、紫外線吸収剤、耐熱剤、発泡剤、耐候剤、結晶核剤、結晶化促進剤、離型剤、滑剤、帯電防止剤、難燃剤、難燃助剤、安定剤、顔料、染料等の機能性付与剤等が挙げられる。これらの他の成分を含むポリアミド樹脂組成物をペレット、フィルム等の形態とすることができる。
 各種機能、特性等が付与された成形品の製造を目的に、上記のようにして得たポリアミド樹脂又はポリアミド樹脂組成物に、上記の他の成分、本発明のポリアミド樹脂以外のポリアミド樹脂、ポリアミド樹脂以外の任意の樹脂成分等をさらに配合した樹脂組成物とすることもできる。
 ポリアミド樹脂組成物の製造方法は特に制限されるものではなく、例えば、ポリアミド樹脂と他の成分とを単軸、二軸の押出機、バンバリーミキサー、ニーダー、及びミキシングロール等公知の溶融混練機を用いて、製造することができる。
[ポリアミド樹脂の用途]
 ポリアミド樹脂、及びポリアミド樹脂に他の成分を配合したポリアミド樹脂組成物は、溶融時の流動性に優れるため、公知の方法を利用する成形品の製造に用いることができる。具体的には、ポリアミド樹脂及びその組成物は、プレス成形、ブロー成形、押出成形、射出成形、回転成形等による成形品の製造に用いることができる。
 なかでも、ポリアミド樹脂及びその組成物は、プレス成形による成形品の製造に好適に用いることができる。プレス成形は、成形性の点で、ポリアミド樹脂の融点より10℃以上高い温度で行われる第1プレス工程、及び上記温度よりも低い温度で行われる第2プレス工程(冷却プレス工程ともいう。)の少なくとも2工程を含むことが好ましい。第1プレス工程において、通常、プレス温度は150~300℃であり、プレス圧は1~15MPaであり、プレス時間は1~10分である。第2プレス工程において、通常、プレス温度は10~100℃であり、プレス圧は1~15MPaであり、プレス時間は1~10分である。
 ポリアミド樹脂及びその組成物を含む成形体は、高い引張弾性率及び引張破断点伸びを有しており、高い機械的特性が要求される用途、例えば、発光装置用光反射性樹脂材料、発光半導体用パッケージ部材、導電性塗膜用導電層バインダー樹脂、絶縁基板上アンカーコート樹脂、導電ロール用樹脂、滑り軸受用部材等に使用できる。
{本発明の第二の態様}
 本発明の第二の態様は、前記ポリアミド樹脂と磁性金属粉末とを含む、ポリアミド樹脂組成物である。従来の磁性材樹脂複合材料において、ポリアミド樹脂組成物を用いて磁性金属粉末の配合量を高めようとすると、磁性金属粉末の分散性が悪く、組成物の流動性が大きく低下する、また、得られる成形体の機械的特性が不十分となる問題があった。
 本発明の第二の態様によれば、磁性金属粉末の配合量を高めた場合でも組成物の流動性及び成形性に優れ、かつ、成形体とした場合に機械的特性に優れたポリアミド樹脂組成物を提供することができる。
[ポリアミド樹脂]
 ポリアミド樹脂は、好ましい態様を含めて、第一の態様のポリアミド樹脂と同様である。具体的には、ポリアミド樹脂の末端カルボキシル基濃度は、100μeq/g以上であり、[ηrel/ηrc]は、0.91超~1.13未満である。末端カルボキシル基濃度及び[ηrel/ηrc]を上記範囲としたポリアミド樹脂を使用することにより、磁性金属粉末の配合量を高めた場合でも組成物の流動性及び成形性に優れ、かつ、成形体とした場合に機械的特性に優れたポリアミド樹脂組成物とすることができる。
 ポリアミド樹脂は、1種又は2種以上を用いることができる。
 ポリアミド樹脂は、末端カルボキシル基濃度が100μeq/g以上である。末端カルボキシル基濃度は、125~280μeq/gであることが好ましく、より好ましくは130~270μeq/g、さらに好ましくは150~260μeq/g、さらになお好ましくは170~250μeq/g、特に好ましくは200~240μeq/gである。末端カルボキシル基濃度がこの範囲にあることで、磁性金属粉末の分散性が向上し、磁性金属粉末の配合量を高めた場合でも組成物の流動性及び成形性が良好となる。
 ポリアミド樹脂は、 [ηrel/ηrc]が0.91超~1.13未満である。[ηrel/ηrc]は、0.92~1.12であることがより好ましく、0.92~1.10であることがさらに好ましく、0.93~1.08であることが特に好ましい。[ηrel/ηrc]を上記範囲とすることにより、磁性金属粉末の分散性が向上し、磁性金属粉末の配合量を高めた場合でも組成物の流動性及び成形性が良好となり、さらに成形体としたときの機械的特性を向上させることができる。
 ポリアミド樹脂の数平均分子量Mnは、2,000~16,000であることが好ましく、より好ましくは4,000~16,000であり、さらに好ましくは4,000~15,000であり、特に好ましくは5,000~15,000である。ポリアミド樹脂の数平均分子量Mnが上記範囲内にあることにより、磁性金属粉末の配合量を高めた場合でも組成物の流動性及び成形性を向上させやすくなり、成形体としたときの機械的特性を向上させやすくなる。
 ポリアミド樹脂のηrcは、1.10~1.70であることが好ましく、より好ましくは1.15~1.70、さらに好ましくは1.20~1.70である。ηrcがこの範囲であると、磁性金属粉末の配合量を高めた場合でも組成物の流動性及び成形性を向上させやすくなる。
 ポリアミド樹脂の末端アミノ基濃度は、2.0μeq/g未満であることが好ましく、より好ましくは0~1.9μeq/gであり、さらに好ましくは0~1.8μeq/gであり、特に好ましくは0~1.0μeq/gである。末端アミノ基濃度をこの範囲にすることで、磁性金属粉末の配合量を高めた場合でも組成物の流動性及び成形性を向上させやすくなる。
 ポリアミド樹脂は、前記ポリアミド樹脂について、プレス温度200℃、圧力10MPaGで1分間プレス処理をした後、プレス温度80℃、圧力5MPaGで5分間冷却プレス処理をして得られた厚さ100μmの成形体から、長さ30mm、幅4mmの短冊状の試験片を切り出し、23℃、相対湿度50%RH、引張速度1mm/分で測定したときに、引張弾性率1,000~1,500MPa、かつ、引張破断点伸び5~300%を有することが好ましい。引張弾性率は、1,100~1,500MPaであることがより好ましい。また、引張破断点伸びは、8~300%であることがより好ましく、10~300%であることがさらに好ましい。このようにして得た成形体の引張弾性率及び引張破断点伸びが上記範囲内にあると、磁性金属粉末を含むポリアミド樹脂組成物の成形体の機械的特性を向上させることが可能である。なお、プレス処理時の圧力及び実施例のポリアミド樹脂の調製における容器内の圧力の単位:MPaGは、ゲージ圧を意味する。
 ポリアミド樹脂の製造装置及び重合方法は、第一の態様で記載したのと同様である。ポリアミド樹脂は、公知の方法により、ペレット、ビーズ、パウダー、ペースト、フィルム等の形態とすることができるが、磁性金属粉末と混合する際の均質性を高める観点から、粒度の細かい形態が望ましい。
[磁性金属粉末]
 磁性金属粉末は、磁性を付与する機能を有し、公知の磁性金属粉末であれば、特に制限はなく、例えば、フェライト系磁性粉、アルニコ系磁性粉、希土類磁性粉等が挙げられる。フェライト系磁性粉としては、酸化鉄、炭酸バリウム等のバリウムフェライト系磁性粉;酸化鉄、炭酸ストロンチウム等のストロンチウムフェライト系磁性粉等が挙げられる。アルニコ系磁性粉としては、ニッケル、アルミニウム、コバルト、鉄及び銅から成るアルニコ;ニッケル、アルミニウム、コバルト、鉄、銅及びチタンから成るアルニコ等が挙げられる。希土類磁性粉としては、サマリウムコバルト、サマリウムコバルトのコバルト成分を銅、鉄、チタン、ジルコニウム、ナフニウム、ニオブ、タンタル等で置換した希土類コバルト磁性粉、ネオジウム-鉄-ホウ素磁性粉等が挙げられる。これらは1種又は2種以上を用いることができる。
 磁性金属粉末の平均粒径は、0.1~300μmであることが好ましく、0.1~200μmであることがより好ましく、0.5~100μmであることがさらに好ましい。磁性金属粉末の平均粒径が、300μmを超えると、ポリアミド樹脂組成物から得られる成形体の磁気特性及び機械的特性が低下する場合がある。
 ポリアミド樹脂との相溶性を高めるために、磁性金属粉末をカップリング剤又は表面改質剤であらかじめ処理してもよい。カップリング剤及び表面改質剤は、それぞれ、単独でも、2種以上を併用してもよい。
 カップリング剤として、シラン系、チタネート系、アルミニウム系、亜リン酸エステル等の有機リン化合物、クロム系、メタクリレート系等の慣用のカップリング剤を挙げることができる。また、表面改質剤として、水ガラス、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、澱粉、ポリビニルアルコール、アクリル樹脂、エポキシ樹脂、フェノール樹脂、ポリ酢酸ビニル、ポリウレタン樹脂、エポキシ系化合物、イソシアネート系化合物、コロイダルシリカ、コロイダルアルミナ、脂肪酸、界面活性剤等を挙げることができる。
 これらの中でも、ポリアミド樹脂との相溶性を高めるため、アミノ基含有シラン系化合物及びチタネート系化合物で磁性金属粉末を処理することがより好ましい。
 アミノ基含有シラン系化合物としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-アミノジチオプロピルトリヒドロキシシラン、γ-(ポリエチレンアミノ)プロピルトリメトキシシラン、N-β-(アミノプロピル)-γ-アミノプロピルメチルジメトキシシラン、N-(トリメトキシシリルプロピル)-エチレンジアミン、γ-ジブチルアミノプロピルトリメトキシシラン等が挙げられる。これらは1種又は2種以上を用いることができる。
 チタネート系化合物としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリ(N-アミノエチル)チタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトライソプロピルチタネート、テトラブチルチタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルジメタクリルイソステアロイルチタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシルホスファイト)チタネート、イソプロピルトリクミルフェニルチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、イソプロピルイソステアロイルジアクリルチタネート等が挙げられる。これらは1種又は2種以上を用いることができる。
 組成物の流動性及び成形性並びに成形体の残留磁束密度及び機械的特性の観点から、ポリアミド樹脂と磁性金属粉末との合計100質量%に対する磁性金属粉末の含有量は、50~98質量%であることが好ましく、60~97質量%であることがより好ましく、80~95質量%であることが特に好ましい。ポリアミド樹脂を5質量%以上とすることにより、組成物の流動性及び成形性並びに成形体の機械的特性をいっそう向上させることができ、20質量%以下とすることにより、成形体の残留磁束密度をいっそう向上させることができる。
[他の成分]
 ポリアミド樹脂組成物は、本発明の効果を損なわない範囲で、他の成分を含むことができる。他の成分としては、可塑剤、酸化防止剤、紫外線吸収剤、耐熱剤、発泡剤、耐候剤、結晶核剤、結晶化促進剤、離型剤、滑剤、帯電防止剤、難燃剤、難燃助剤、安定剤、顔料、染料等の機能性付与剤、本発明のポリアミド樹脂以外のポリアミド樹脂、ポリアミド樹脂以外の任意の樹脂成分等が挙げられる。なお、他の成分は、本発明に係るポリアミド樹脂及び磁性金属粉末ではない。
[ポリアミド樹脂組成物及びその成形体の製造方法]
 ポリアミド樹脂組成物及びその成形体の製造方法について説明するが、以下に記載した製造方法に限定されるものではない。ポリアミド樹脂組成物は、混合工程及び/又は混練工程を経て製造される。ポリアミド樹脂組成物の成形体は、上記のようにして得たポリアミド樹脂組成物を成形する工程を経て製造される。
 混合工程では、ポリアミド樹脂及び磁性金属粉末、並びに必要に応じて他の成分を配合し、公知の方法で混合する。混合工程は、混練工程の前に行うことが好ましい。混合時に溶媒を使用することは、カップリング剤及び滑剤を使用する際、均一に添加する意味で有効な手段となるが、必ずしも必要ではない。混合機は特に限定されるものではなく、リボンミキサー、V型ミキサー、ロータリーミキサー、ヘンシェルミキサー、フラッシュミキサー、ナウタミキサー、タンブラー等が挙げられる。また、回転ボールミル、振動ボールミル、遊星ボールミル、ウェットミル、ジェットミル、ハンマーミル、カッターミル等を用いて、添加及び粉砕混合をする方法も有効である。混合工程で得られた混合物は、造粒により粉粒化することもできる。
 混練工程は、混合工程で得られた混合物をブラベンダー等のバッチ式ニーダー、バンバリーミキサー、ヘンシェルミキサー、ヘリカルローター、ロール、一軸押出機、二軸押出機等を用いて50~400℃の温度領域で混練する工程である。混練温度は、一般にポリアミド樹脂が溶融し、分解しない温度領域から選ばれる。混練物は、ストランド状に押し出した後、冷却してカッティングする、又は冷却固化したブロック状の物を粉砕機にかける、といった方法でペレット、パウダー等の形態とする。こうしてポリアミド樹脂組成物を得ることができる。
 混練工程で得られたポリアミド樹脂組成物から、成形体を得るためには、更に成形加工処理を施す(成形工程)。ポリアミド樹脂組成物の成形体は、混合工程で得られた混合物を溶融混練しながらそのまま所望の形状に成形する一段成形法、混練工程で得られたペレット、パウダー等を各種成形法により成形する二段成形法のどちらでも製造可能である。
 中でも高い磁気特性をもつ成形体を製造する方法として、ペレット状又はパウダー状のポリアミド樹脂組成物を加熱溶融し、必要に応じ磁場をかけながら、射出成形、押出成形、プレス成形等する方法が挙げられる。押出成形の場合には、混練と共に行うこともできる。これらの成形法のなかで、特に射出成形法は、表面平滑性及び磁気特性に優れた磁性材樹脂複合体が得られると共に、成形形状の自由度が大きいことから好ましい。成形温度は、前記混練温度と同様である。
 成形体は、通常さらに着磁を行って、永久磁石としての性能を高める。着磁は通常行われる方法、例えば静磁場を発生する電磁石、パルス磁場を発生するコンデンサー着磁機等によって行われる。このときの磁場強度は、15kOe以上であることが好ましく、30kOe以上であることがより好ましい。
[ポリアミド樹脂組成物の用途]
 ポリアミド樹脂組成物は、溶融時の流動性及び成形性に優れるため、公知の方法を利用する成形品の製造に用いることができる。具体的には、ポリアミド樹脂組成物は、射出成形、押出成形、プレス成形、ブロー成形、回転成形等による成形品の製造に用いることができる。
 ポリアミド樹脂組成物を含む成形体は、磁気特性及び機械的特性に優れており、ブリードアウトの発生の抑制が期待され、外観に優れている。ポリアミド樹脂組成物を含む成形体は、プラスチック磁石等の各種磁石製品に好適に使用できる。
{本発明の第三の態様}
 本発明の第三の態様は、前記ポリアミド樹脂と強化材とを含む、ポリアミド樹脂組成物である。従来のポリアミド樹脂を用いて、ガラス繊維等の強化材の配合量を高めようとすると、組成物の流動性及び成形性が大きく低下する問題があった。組成物の流動性及び成形性が低下しない範囲で強化材を配合した樹脂組成物では、機械的特性の改善が不十分なものであった。
 本発明の第三の態様によれば、強化材の配合量を高めた場合でも組成物の流動性及び成形性に優れ、かつ、成形体とした場合に機械的特性に優れたポリアミド樹脂組成物を提供することができる。
 ポリアミド樹脂は、好ましい態様を含めて、第一の態様のポリアミド樹脂と同様である。具体的には、ポリアミド樹脂の末端カルボキシル基濃度は、100μeq/g以上であり、[ηrel/ηrc]は、0.91超~1.13未満である。末端カルボキシル基濃度及び[ηrel/ηrc]を上記範囲としたポリアミド樹脂を使用することにより、強化材の配合量を高めた場合でも組成物の流動性及び成形性に優れ、かつ、成形体とした場合に機械的特性に優れたポリアミド樹脂組成物とすることができる。
 ポリアミド樹脂は、1種又は2種以上を用いることができる。
 ポリアミド樹脂は、末端カルボキシル基濃度が100μeq/g以上である。末端カルボキシル基濃度は、125~280μeq/gであることが好ましく、より好ましくは130~270μeq/g、さらに好ましくは150~260μeq/g、さらになお好ましくは170~250μeq/g、特に好ましくは200~240μeq/gである。末端カルボキシル基濃度がこの範囲にあることで、強化材の配合量を高めた場合でも組成物の流動性及び成形性が良好となる。
 ポリアミド樹脂は、 [ηrel/ηrc]が0.91超~1.13未満である。[ηrel/ηrc]は、0.92~1.12であることがより好ましく、0.92~1.10であることがさらに好ましく、0.93~1.08であることが特に好ましい。[ηrel/ηrc]を上記範囲とすることにより、強化材の配合量を高めた場合でも組成物の流動性及び成形性が良好となり、さらに成形体としたときの機械的特性を向上させることができる。
 ポリアミド樹脂の数平均分子量Mnは、2,000~16,000であることが好ましく、より好ましくは4,000~16,000であり、さらに好ましくは4,000~15,000であり、特に好ましくは5,000~15,000である。ポリアミド樹脂の数平均分子量Mnが上記範囲内にあることにより、強化材の配合量を高めた場合でも組成物の流動性及び成形性を向上させやすくなり、成形体としたときの機械的特性を向上させやすくなる。
 ポリアミド樹脂のηrcは、1.10~1.70であることが好ましく、より好ましくは1.15~1.70、さらに好ましくは1.20~1.70である。ηrcがこの範囲であると、強化材の配合量を高めた場合でも組成物の流動性及び成形性を向上させやすくなる。
 ポリアミド樹脂の末端アミノ基濃度は、2.0μeq/g未満であることが好ましく、より好ましくは0~1.9μeq/gであり、さらに好ましくは0~1.8μeq/gであり、特に好ましくは0~1.0μeq/gである。末端アミノ基濃度をこの範囲にすることで、強化材の配合量を高めた場合でも組成物の流動性及び成形性を向上させやすくなる。
 ポリアミド樹脂は、前記ポリアミド樹脂について、プレス温度200℃、圧力10MPaGで1分間プレス処理をした後、プレス温度80℃、圧力5MPaGで5分間冷却プレス処理をして得られた厚さ100μmの成形体から、長さ30mm、幅4mmの短冊状の試験片を切り出し、23℃、相対湿度50%RH、引張速度1mm/分で測定したときに、引張弾性率1,000~1,500MPa、かつ、引張破断点伸び5~300%を有することが好ましい。引張弾性率は、1,100~1,500MPaであることがより好ましい。また、引張破断点伸びは、8~300%であることがより好ましく、10~300%であることがさらに好ましい。このようにして得た成形体の引張弾性率及び引張破断点伸びが上記範囲内にあると、強化材を含むポリアミド樹脂組成物の成形体の機械的特性を向上させることが可能である。なお、プレス処理時の圧力及び実施例のポリアミド樹脂の調製における容器内の圧力の単位:MPaGは、ゲージ圧を意味する。
 ポリアミド樹脂の製造装置及び重合方法は、第一の態様で記載したのと同様である。ポリアミド樹脂は、公知の方法により、ペレット、ビーズ、パウダー、ペースト、フィルム等の形態とすることができるが、強化材と混合する際の均質性を高める観点から、粒度の細かい形態が望ましい。
[強化材]
 強化材は、ガラス繊維、炭素繊維、ホウ素繊維、セラミック繊維、金属繊維、ワラストナイト、チタン酸カリウムウイスカー等の無機繊維、アラミド繊維等の有機繊維、モンモリロナイト、タルク、マイカ、炭酸カルシウム、シリカ、クレイ、カオリン、ガラスパウダー、ガラスビーズ、フレーク状ガラス等の無機充填材が挙げられる。これらの中でも、成形体としたときの機械的特性の向上の観点から、無機繊維又は有機繊維であることが好ましく、ガラス繊維が特に好ましい。強化材は、1種又は2種以上を用いることができる。
 無機繊維又は有機繊維の断面は、円形でも非円形でもよい。非円形の断面としては、例えば、長方形、長方形に近い長円形、楕円形、及び長手方向の中央部がくびれた繭型が挙げられる。
 ポリアミド樹脂との相溶性及び成形品の機械的特性向上の観点から、無機繊維又は有機繊維の平均繊維径は、0.1~25μmであることが好ましく、より好ましくは1~20μmであり、さらに好ましくは4~15μmである。なお、繊維の断面が非円形である場合、その断面積に等しい円相当径を繊維径とする。
 ポリアミド樹脂との相溶性及び成形品の機械的特性向上の観点から、無機繊維又は有機繊維の平均繊維長は、10μm~10mmであることが好ましく、より好ましくは10μm~5mmであり、さらに好ましくは100μm~4mmである。
 無機繊維又は有機繊維の平均繊維長及び平均繊維径は、光学顕微鏡を使用して、該繊維を10~30000倍で観察し、画像解析ソフトを用いて400本の繊維長及び繊維径を測定したときの平均値である。無機繊維又は有機繊維の平均繊維長及び平均繊維径は、カタログ値であってもよい。
 上述の無機繊維又は有機繊維の平均繊維長及び平均繊維径の値は、ポリアミド樹脂とともに溶融混練する前の原料の値である。強化材としてガラス繊維等の無機繊維又は有機繊維を用いた場合、ポリアミド樹脂と前記繊維を溶融混練してポリアミド樹脂組成物を製造した際に、前記繊維の少なくとも一部が粉砕される場合がある。
 強化材としてガラス繊維を用いた場合、成形品の機械的特性及び寸法安定性の点から、溶融混練後のガラス繊維の平均繊維長は、10μm~5mmであることが好ましく、50μm~4mmであることがより好ましく、100μm~2mmであることがさらに好ましい。溶融混練後のガラス繊維の平均繊維径は、原料のガラス繊維の平均繊維径の範囲にあることが好ましい。
 ポリアミド樹脂との相溶性を高めるために、強化材をカップリング剤又は表面改質剤であらかじめ処理してもよい。また、作業性を高めるために、カップリング剤又は表面改質剤により収束処理が施されていてもよい。カップリング剤及び表面改質剤は、それぞれ、単独でも、2種以上を併用してもよい。
 カップリング剤又は表面処理剤は、予め強化材に適用し、乾燥させて表面処理若しくは収束処理を施しておくか、又は樹脂組成物の調製の際に、強化材と同時に添加してもよい。収束処理された強化材を使用し、ポリアミド樹脂とともに溶融混練してポリアミド樹脂組成物を製造する場合、樹脂組成物中の強化材は、収束した状態のままであっても、すべてが解れて個々の強化材になっていても、部分的に解れて一部が収束したまま残っていてもよく、解れた個々の強化材がさらに粉砕されていてもよい。
 カップリング剤及び表面改質剤としては、第二の態様における磁性金属粉末の処理において例示したカップリング剤及び表面改質剤を例示することができる。カップリング剤及び表面改質剤は、それぞれ、単独でも、2種以上を併用してもよい。これらの中でも、ポリアミド樹脂との相溶性を高めるため、アミノ基含有シラン系化合物及びチタネート系化合物を用いることが好ましい。また、強化材がガラス繊維である場合、ポリウレタン樹脂、アクリル樹脂等を用いて、収束処理を行ってもよい。
 アミノ基含有シラン系化合物及びチタネート系化合物としては、第二の態様における磁性金属粉末の処理において例示したアミノ基含有シラン系化合物及びチタネート系化合物を例示することができる。これらは1種又は2種以上を用いることができる。
 組成物の流動性及び成形性並びに成形体の機械的特性の観点から、ポリアミド樹脂と強化材との合計100質量%に対する強化材の含有量は、5~90質量%であることが好ましく、20~80質量%であることがより好ましく、30~80質量%であることが特に好ましい。強化材の含有量を上記範囲とすることにより、組成物の流動性及び成形性並びに成形体の機械的特性のバランスを図ることができる。
[他の成分]
 ポリアミド樹脂組成物は、本発明の効果を損なわない範囲で、他の成分を含むことができる。他の成分としては、可塑剤、酸化防止剤、紫外線吸収剤、耐熱剤、発泡剤、耐候剤、結晶核剤、結晶化促進剤、離型剤、滑剤、帯電防止剤、難燃剤、難燃助剤、安定剤、染料等の機能性付与剤、本発明のポリアミド樹脂以外のポリアミド樹脂、ポリアミド樹脂以外の任意の樹脂成分等が挙げられる。なお、他の成分は、本発明に係るポリアミド樹脂及び強化材ではない。
[ポリアミド樹脂組成物及びその成形体の製造方法]
 ポリアミド樹脂組成物及びその成形体の製造方法について説明するが、以下に記載した製造方法に限定されるものではない。ポリアミド樹脂組成物は、混合工程及び/又は混練工程を経て製造される。ポリアミド樹脂組成物の成形体は、上記のようにして得たポリアミド樹脂組成物を成形する工程を経て製造される。
 混合工程では、ポリアミド樹脂及び強化材、並びに必要に応じて他の成分を配合し、公知の方法で混合する。混合工程は、混練工程の前に行うことが好ましい。混合時に溶媒を使用することは、カップリング剤及び滑剤を使用する際、均一に添加する意味で有効な手段となるが、必ずしも必要ではない。混合機は特に限定されるものではなく、リボンミキサー、V型ミキサー、ロータリーミキサー、ヘンシェルミキサー、フラッシュミキサー、ナウタミキサー、タンブラー等が挙げられる。また、回転ボールミル、振動ボールミル、遊星ボールミル、ウェットミル、ジェットミル、ハンマーミル、カッターミル等を用いて、添加及び粉砕混合をする方法も有効である。混合工程で得られた混合物は、造粒により粉粒化することもできる。
 混練工程は、混合工程で得られた混合物をブラベンダー等のバッチ式ニーダー、バンバリーミキサー、ヘンシェルミキサー、ヘリカルローター、ロール、一軸押出機、二軸押出機等を用いて50~400℃の温度領域で混練する工程である。混練温度は、一般にポリアミド樹脂が溶融し、分解しない温度領域から選ばれる。混練物は、ストランド状に押し出した後、冷却してカッティングする、又は冷却固化したブロック状の物を粉砕機にかける、といった方法でペレット、パウダー等の形態とする。こうしてポリアミド樹脂組成物を得ることができる。
 混練工程で得られたポリアミド樹脂組成物から、成形体を得るためには、更に成形加工処理を施す(成形工程)。ポリアミド樹脂組成物の成形体は、混合工程で得られた混合物を溶融混練しながらそのまま所望の形状に成形する一段成形法、混練工程で得られたペレット、パウダー等を各種成形法により成形する二段成形法のどちらでも製造可能である。
 中でも成形体を製造する方法として、ペレット状又はパウダー状のポリアミド樹脂組成物を加熱溶融し、射出成形、押出成形、プレス成形等する方法が挙げられる。押出成形の場合には、混練と共に行うこともできる。これらの成形法のなかで、特に射出成形法は、表面平滑性に優れた成形体が得られると共に、成形形状の自由度が大きいことから好ましい。成形温度は、前記混練温度と同様である。
[ポリアミド樹脂組成物の用途]
 ポリアミド樹脂組成物は、溶融時の流動性及び成形性に優れるため、公知の方法を利用する成形品の製造に用いることができる。具体的には、ポリアミド樹脂組成物は、射出成形、押出成形、プレス成形、ブロー成形、回転成形等による成形品の製造に用いることができる。
 ポリアミド樹脂組成物を含む成形体は、高い引張弾性率を有しており、機械的強度に優れている。ポリアミド樹脂組成物を含む成形体は、自動車や機械、電子製品等のギア、プーリー、カム、軸受、ケーブルハウジング、筐体等に好適に使用できる。
 以下において実施例及び比較例を掲げて本発明をさらに詳しく説明するが、本発明の要旨を越えない限り以下の例に限定されるものではない。以下に、各種評価方法、使用した材料を示す。
[ポリアミド樹脂の物性測定]
 実施例1-1~1-6並びに比較例1-1及び1-2のポリアミド樹脂(ポリアミド12)について、以下の物性を評価した。
(1)相対粘度(ηrel)
 JIS K 6920に準じて、96%硫酸溶液、ポリマー濃度10mg/mlにてオストワルド型粘度計を用いて25℃で測定した。
(2)末端カルボキシル基濃度
 三つ口ナシ型フラスコに所定量のポリアミド樹脂を入れ、ベンジルアルコール40mLを加えた後、窒素気流下、180℃に設定したオイルバスに浸漬した。上部に取り付けた撹拌モーターにより撹拌溶解し、指示薬にフェノールフタレインを用いて1/20Nの水酸化ナトリウム溶液で滴定を行い、末端カルボキシル基濃度(μeq/g)を求めた。
(3)末端アミノ基濃度
 活栓付三角フラスコに所定量のポリアミド樹脂を入れ、あらかじめ調整しておいた溶媒フェノール/メタノール(体積比7/3)の40mLを加えた後、マグネチックスターラーで撹拌溶解し、指示薬にチモールブルーを用いて1/50Nの塩酸で滴定を行い、末端アミノ基濃度(μeq/g)を求めた。
(4)数平均分子量
 (2)で得られた末端カルボキシル基濃度(μeq/g)及び(3)で得られた末端アミノ基濃度(μeq/g)より、上記式(3)及び(4)を用いて、ポリアミド樹脂の数平均分子量Mn(g/mol)を求めた。
(5)相対粘度(ηrc)
 (4)で得られた数平均分子量(g/mol)を用い、数平均分子量から算出される相対粘度(ηrc)を以下のようにして求めた。
1.市販のポリアミド樹脂
 ポリアミド12の標準品として下記に示す市販のポリアミド12を使用した。
・ポリアミド12(宇部興産株式会社製、UBESTA(登録商標)3012U、相対粘度(ηrel)1.60、数平均分子量12,000)
・ポリアミド12(宇部興産株式会社製、UBESTA(登録商標)3014U、相対粘度(ηrel)1.68、数平均分子量14,000)
・ポリアミド12(宇部興産株式会社製、UBESTA(登録商標)3020U、相対粘度(ηrel)1.86、数平均分子量20,000)
・ポリアミド12(宇部興産社株式会製、UBESTA(登録商標)3024U、相対粘度(ηrel)1.99、数平均分子量24,000)
2.数平均分子量Mnと相対粘度[ηrc]との相関式(1)の導出
 一般的に、極限粘度[η]と粘度平均分子量Mvとの相関である、マーク・ホーウィンク・桜田の式が知られている。ここで、マーク・ホーウィンク・桜田の式に類似した、相対粘度[ηrc]と数平均分子量Mnとの相関式ηrc=K×Mnαを定義した。
 前記ポリアミド12の数平均分子量Mn及び相対粘度(ηrel)を用い、最小二乗法により上記相関式に基づき近似式を求めたところ、ポリアミド12についてK=0.088及びα=0.3088が得られた。すなわち、ポリアミド12について、数平均分子量Mnと相対粘度[ηrc]との相関式(5)を得た。
 ηrc=0.088×Mn0.3088  ・・・式(5)
(式中、Mnは数平均分子量であり、ηrcは相対粘度である。)
3.実施例及び比較例のポリアミド樹脂の相対粘度[ηrc]の算出
 実施例及び比較例のポリアミド樹脂(ポリアミド12)について、上記(4)により数平均分子量Mn(g/mol)を求めた。こうして得た数平均分子量Mn及び上記相関式(5)により、実施例及び比較例のポリアミド樹脂の相対粘度[ηrc]を算出した。
(6)成形性
 実施例及び比較例のポリアミド樹脂について、真空熱プレス成形機(東邦マシナリー株式会社製、卓上真空油圧成形機TMB-10)を用い、プレス温度200℃、圧力10MPaGで1分間プレス処理をした後、プレス温度80℃、圧力5MPaGで5分間冷却プレス処理をして、厚さ100μmの成形体を製造した。このときの成形体の成形状況を以下の基準で判定した。
 ○:成形体は十分な強度を有し、シート状となった。
 △:成形体は強度を有し、シート状となった。
 ×:成形体は脆く、シート状にならなかった。
(7)引張試験
 (6)で得られた成形体を長さ30mm×幅4mmの短冊状試験片として打ち抜き、23℃相対湿度50%RHで1日保存した後、株式会社エー・アンド・デイ製、TENSILON万能試験機RTF-1350を用いて、23℃、相対湿度50%RH、引張速度1mm/分で、引張弾性率及び引張破断点伸びを測定した。
実施例1-1
 70リットルの耐圧容器に、12-アミノドデカン酸(宇部興産株式会社製)19.3kgとステアリン酸715gを仕込み、前記容器内を窒素置換した後、190℃まで加熱し、この温度で反応系内が均一な状態になるように撹拌した。次いで容器内を0.5MPaGに調圧しながら、250℃まで昇温した。その後、約2時間かけて常圧まで放圧し、0.05MPaGに調整しながら2時間重合した。次いで、530torrまで減圧し、1時間重合を行なった後、常圧に復圧し、反応容器の下部からストランドとして抜き出し、カッティングしてペレットを得た。このペレットを乾燥して得たポリアミド12について上記評価を行った。その結果を表1に示す。
実施例1-2
 実施例1-1において、12-アミノドデカン酸(宇部興産株式会社製)19.4kg及びステアリン酸602gに変更した以外は、実施例1-1と同様の方法にてペレットを得た。このペレットを乾燥して得たポリアミド12について上記評価を行った。その結果を表1に示す。
実施例1-3
 70リットルの耐圧容器に、12-アミノドデカン酸(宇部興産株式会社製)19.7kgとアジピン酸313gを仕込み、前記容器内を窒素置換した後、190℃まで加熱し、この温度で反応系内が均一な状態になるように撹拌した。次いで230℃まで昇温し0.05MPaGに調整しながら3時間重合した。その後、常圧に復圧し、反応容器の下部からストランドとして抜き出し、カッティングしてペレットを得た。このペレットを減圧乾燥して得たポリアミド12について上記評価を行った。その結果を表1に示す。
実施例1-4
 実施例1-3において、12-アミノドデカン酸(宇部興産株式会社製)19.7kg及びアジピン酸257gに変更した以外は、実施例1-3と同様の方法にてペレットを得た。このペレットを減圧乾燥して得たポリアミド12について上記評価を行った。その結果を表1に示す。
実施例1-5
 実施例1-3において、12-アミノドデカン酸(宇部興産株式会社製)19.8kg及びアジピン酸210gに変更した以外は、実施例1-3と同様の方法にてペレットを得た。このペレットを減圧乾燥して得たポリアミド12について上記評価を行った。その結果を表1に示す。
実施例1-6
 実施例1-3において、12-アミノドデカン酸(宇部興産株式会社製)19.8kg及びアジピン酸187gに変更した以外は、実施例1-3と同様の方法にてペレットを得た。このペレットを減圧乾燥して得たポリアミド12について上記評価を行った。その結果を表1に示す。
比較例1-1
 ポリアミド12(宇部興産株式会社製、UBESTA(登録商標)3014U)22.4g及びステアリン酸1.6gを80ccの耐圧容器に仕込み、充分に窒素置換した後、密閉系で260℃、2時間反応させた。回収した樹脂を、更にガラス試験管に仕込み、窒素を50mL/分で流通させながら、260℃常圧で1時間撹拌し、冷却した後、ガラス試験管を割って得られた樹脂を取出し、カッティングしてペレットを得た。このペレットを乾燥し、真空熱プレス成形機(東邦マシナリー株式会社製、卓上真空油圧成形機TMB-10)を用いて成形したが、脆く、シート状にならなかった。そのため、比較例1-1のポリアミド樹脂については引張試験を行えなかった。比較例1-1のポリアミド樹脂の評価結果を表1に示す。
比較例1-2
 実施例1-1において、12-アミノドデカン酸(宇部興産株式会社製)19.2kg及びステアリン酸830gに変更した以外は、実施例1-1と同様の方法にてペレットを得た。このペレットを乾燥して得たポリアミド12について上記評価を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、末端カルボキシル基濃度が100μeq/g以上であり、[ηrel/ηrc]が0.91超~1.13未満であるポリアミド樹脂を用いた実施例1-1~1-6は、成形性に優れ、得られた成形体の引張弾性率及び引張破断点伸びに優れることがわかる。
 末端カルボキシル基濃度が100μeq/g以上であるものの、[ηrel/ηrc]が1.13以上である比較例1-1及び1-2は、プレス成形における成形性に劣っていた。また、比較例1-2の引張破断点伸びは4.5%であり、実施例に比べ、劣っていた。
<ポリアミド樹脂と磁性金属粉末とを含む、ポリアミド樹脂組成物>
[ポリアミド樹脂]
 以下のポリアミド樹脂を使用した。
・ポリアミド樹脂A:実施例1-1のポリアミド樹脂
・ポリアミド樹脂B:実施例1-3のポリアミド樹脂
・ポリアミド樹脂C:比較例1-1のポリアミド樹脂
[磁性金属粉末]
 以下の磁性金属粉末を使用した。
・ストロンチウムフェライト
・フェライト
実施例2-1
 ポリアミド樹脂A 40質量%及びストロンチウムフェライト 60質量%をガラス試験管に仕込み、窒素を50mL/分で流通させながら、200℃常圧で1時間溶融混合した。これを冷却した後、ガラス試験管を割って得られた溶融混練物を取り出し、カッティングしてポリアミド樹脂組成物のペレットを得た。こうして得たペレットを使用して下記評価を行った。その結果を表2に示す。なお、表2中の組成の単位は質量%であり、ポリアミド樹脂及び磁性金属粉末の合計を100質量%とする。
実施例2-2
 ポリアミド樹脂A 20質量%及びフェライト 80質量%からなる混合物に、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]をポリアミド樹脂A 100質量部に対して1質量部加え、さらに混合した。こうして得た混合物を、R-40型ローターを装着し、予め220℃に加熱してある株式会社東洋精機製作所製のブラベンダー型二軸混練機の混練チャンバーに、60rpmの回転数でローターを回しながら少量ずつ投入した。材料の投入開始2分後を混練開始0分とし、混練時間5分後にローターを止め、溶融混練物を取り出し、カッティングしてペレットを得た。こうして得たペレットを使用して下記評価を行った。その結果を表2に示す。
実施例2-3、2-5及び2-6
 ポリアミド樹脂及び磁性金属粉末の種類及び配合割合を表2のように変更した以外は、実施例2-2と同様にして、実施例2-3、2-5及び2-6のペレットを作製した。こうして得たペレットを使用して下記評価を行った。その結果を表2に示す。
実施例2-4及び比較例2-1
 ポリアミド樹脂及び磁性金属粉末の種類及び配合割合を表2のように変更した以外は、実施例2-1と同様にして、実施例2-4及び比較例2-1のペレットを作製した。こうして得たペレットを使用して下記評価を行った。その結果を表2に示す。
[評価方法]
(1)フィルム成形性
 実施例及び比較例のペレットについて、真空熱プレス成形機(東邦マシナリー株式会社製、卓上真空油圧成形機TMB-10)を用い、プレス温度210℃、圧力10MPaGで3分間プレス処理をした後、プレス温度80℃、圧力5MPaGで5分間冷却プレス処理をして、厚さ100μmのフィルムを製造した。このときのフィルムの成形状況を以下の基準で判定した。
 〇:ペレットは溶融時の流動性が良好であり、フィルムはシート状となり、強度を有した。
 ×:ペレットは溶融時の流動性が良好であり、フィルムはシート状になったものの、脆く自立膜にならなかった。
(2)曲げ強さ及び曲げ弾性率
 実施例及び比較例のペレットについて、真空熱プレス成形機(東邦マシナリー株式会社製、卓上真空油圧成形機TMB-10)を用い、プレス温度220℃、圧力10MPaGで5分間プレス処理した後、プレス温度80℃、圧力5MPaGで3分間冷却プレス処理をして、試験片寸法:6.8mm×100mm×3.0mmの成形体を得た。こうして得た成形体を試験片として用い、株式会社エー・アンド・デイ製、TENSILON万能試験機RTF-1350を用いて、23℃、相対湿度50%RH、曲げ速度2mm/分で、曲げ強さ及び曲げ弾性率を測定した。曲げ強さ及び曲げ弾性率は、それぞれ40MPa以上及び2GPa以上30GPa未満であれば、良好である。
Figure JPOXMLDOC01-appb-T000002
 表2から、末端カルボキシル基濃度が100μeq/g以上であり、[ηrel/ηrc]が0.91超~1.13未満であるポリアミド樹脂を用いた実施例2-1~2-6は、成形性に優れ、得られた成形体の曲げ強さ及び曲げ弾性率に優れることがわかる。また、実施例2-1~2-6のポリアミド樹脂組成物は、磁性金属粉末の分散性が改善されているため、成形体とした場合の低分子量成分のブリードアウトの抑制が期待される。
 末端カルボキシル基濃度が100μeq/g以上であるものの、[ηrel/ηrc]が1.13であるポリアミド樹脂を用いた比較例2-1は、フィルム成形性に劣り、自立膜にならなかった。そのため、比較例2-1については曲げ試験を行えなかった。
<ポリアミド樹脂と強化材とを含む、ポリアミド樹脂組成物>
[ポリアミド樹脂]
 以下のポリアミド樹脂を使用した。
・ポリアミド樹脂A:実施例1-1のポリアミド樹脂
・ポリアミド樹脂B:実施例1-3のポリアミド樹脂
・ポリアミド樹脂C:比較例1-1のポリアミド樹脂
[強化材]
 ガラス繊維(日本電気硝子株式会社製、T-249H、平均繊維径:10.5μm、平均繊維長:3.0mm)
実施例3-1
 ポリアミド樹脂A 70質量%及びガラス繊維 30質量%をガラス試験管に仕込み、窒素を50mL/分で流通させながら、200℃常圧で1時間溶融混合した。これを冷却した後、ガラス試験管を割って得られた溶融混練物を取り出し、カッティングしてペレットを得た。こうして得たペレットを使用して下記評価を行った。その結果を表3に示す。なお、表3中の組成の単位は質量%であり、ポリアミド樹脂及びガラス繊維の合計を100質量%とする。
実施例3-2~3-4及び比較例3-1~3-3
 ポリアミド樹脂の種類及びポリアミド樹脂とガラス繊維との配合割合を表3のように変更した以外は、実施例3-1と同様にして、実施例3-2~3-4及び比較例3-1~3-3のペレットを作製した。こうして得たペレットを使用して下記評価を行った。その結果を表3に示す。
[評価方法]
(1)フィルム成形性
 実施例及び比較例のペレットについて、真空熱プレス成形機(東邦マシナリー株式会社製、卓上真空油圧成形機TMB-10)を用い、プレス温度210℃、圧力10MPaGで3分間プレス処理をした後、プレス温度80℃、圧力5MPaGで5分間冷却プレス処理をして、厚さ100μmのフィルムを製造した。このときのフィルムの成形状況を以下の基準で判定した。
 ○:ペレットは溶融時の流動性が良好であり、フィルムはシート状となり、強度を有した。
 △:ペレットは溶融時の流動性が良好であり、フィルムはシート状となり、強度は弱いものの自立膜になった。
 ×:ペレットは溶融時の流動性が良好であり、フィルムはシート状になったものの、脆く自立膜にならなかった。
(2)引張弾性率
 (1)で得られたフィルムを長さ30mm×幅4mmの短冊状試験片として打ち抜き、23℃、相対湿度50%RHで1日保存した後、株式会社エー・アンド・デイ製、TENSILON万能試験機RTF-1350を用いて、23℃、相対湿度50%RH、引張速度1mm/分で、引張弾性率を測定した。引張弾性率は、3,000MPa以上あれば優れている。
Figure JPOXMLDOC01-appb-T000003
 表3から、末端カルボキシル基濃度が100μeq/g以上であり、[ηrel/ηrc]が0.91超~1.13未満であるポリアミド樹脂を用いた実施例3-1~3-4は、成形性に優れ、得られた成形体の引張弾性率に優れることがわかる。ポリアミド樹脂と強化材との合計100質量%に対する強化材の含有量が30~80質量%である実施例3-1~3-4は、引張弾性率が優れている。
 比較例3-1~3-3では、末端カルボキシル基濃度が100μeq/g以上であるものの、[ηrel/ηrc]が1.13であるポリアミド樹脂を用いている。比較例3-1と3-2を対比すると、比較例3-1では、強化材の含有量を60質量%に増やしているにも関わらず、引張弾性率が比較例3-2よりも大きく劣る結果となった。強化材の含有量が30質量%である比較例3-2は、引張弾性率が3,000MPa未満であり、不十分であった。強化材の含有量が80質量%である比較例3-3は、成形性に劣り、引張弾性率はその検知前に破断したため、測定できなかった。
 本発明のポリアミド樹脂組成物は、射出成形、押出成形、プレス成形等による各種成形品の製造に用いることができる。

Claims (17)

  1.  末端カルボキシル基濃度が100μeq/g以上であり、[ηrel/ηrc]が0.91超~1.13未満である、ポリアミド樹脂。
     ηrel:JIS K 6920(96%硫酸中、ポリマー濃度10mg/ml、25℃)に準じて測定される相対粘度。
     ηrc:数平均分子量Mnから以下の近似式(1)によって算出される相対粘度。
       ηrc = K × Mnα  ・・・式(1)
    (式中、K及びαは、前記ポリアミド樹脂と同種類の少なくとも3つの任意のポリアミド樹脂について、数平均分子量Mn及び相対粘度ηrelを測定し、該測定値がそれぞれ式(1)のMn及びηrcであるとしてフィッティングすることにより決定される定数である。式中、Mnは前記ポリアミド樹脂の数平均分子量であり、末端カルボキシル基濃度(μeq/g)及び末端アミノ基濃度(μeq/g)から算出される。)
  2.  ポリアミド樹脂の末端カルボキシル基濃度が125~280μeq/gであり、 [ηrel/ηrc]が0.92~1.12である、請求項1記載のポリアミド樹脂。
  3.  ポリアミド樹脂が、脂肪族ホモポリアミド樹脂及び脂肪族共重合ポリアミド樹脂からなる群より選ばれる少なくとも1種である、請求項1又は2に記載のポリアミド樹脂。
  4.  ポリアミド樹脂が、アミド基1個に対する炭素原子数が6を超える構成単位を含む、請求項1~3のいずれか1項に記載のポリアミド樹脂。
  5.  ポリアミド樹脂が、ポリアミド11、ポリアミド12、ポリアミド612、ポリアミド610、ポリアミド6/12共重合体及びポリアミド6/66/12共重合体からなる群より選ばれる少なくとも1種である、請求項1~4のいずれか1項に記載のポリアミド樹脂。
  6.  ポリアミド樹脂の相対粘度ηrelが1.35超である、請求項1~5のいずれか1項に記載のポリアミド樹脂。
  7.  ポリアミド樹脂の末端アミノ基濃度が2.0μeq/g未満である、請求項1~6のいずれか1項に記載のポリアミド樹脂。
  8.  ポリアミド樹脂の数平均分子量が2,000~16,000である、請求項1~7のいずれか1項に記載のポリアミド樹脂。
  9.  請求項1~8のいずれか1項に記載のポリアミド樹脂であって、
     前記ポリアミド樹脂について、プレス温度200℃、圧力10MPaGで1分間プレス処理をした後、プレス温度80℃、圧力5MPaGで5分間冷却プレス処理をして得られた長さ30mm、幅4mm、厚さ100μmの成形体が、23℃、相対湿度50%RH、引張速度1mm/分で測定したときに、引張弾性率1,000~1,500MPa、かつ、引張破断点伸び5~300%を有する、ポリアミド樹脂。
  10.  請求項1~9のいずれか1項に記載のポリアミド樹脂と磁性金属粉末とを含む、ポリアミド樹脂組成物。
  11.  ポリアミド樹脂と磁性金属粉末との合計100質量%に対する磁性金属粉末の含有量が50~98質量%である、請求項10に記載のポリアミド樹脂組成物。
  12.  請求項1~9のいずれか1項に記載のポリアミド樹脂と強化材とを含む、ポリアミド樹脂組成物。
  13.  強化材がガラス繊維である、請求項12に記載のポリアミド樹脂組成物。
  14.  請求項1~9のいずれか1項に記載のポリアミド樹脂を含む、成形体。
  15.  請求項10又は11に記載のポリアミド樹脂組成物を含む、成形体。
  16.  プラスチック磁石である、請求項15に記載の成形体。
  17.  請求項12又は13に記載のポリアミド樹脂組成物を含む、成形体。
PCT/JP2021/018414 2020-05-18 2021-05-14 ポリアミド樹脂及びこれを含む組成物並びにこれらを含む成形体 WO2021235348A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020-086761 2020-05-18
JP2020086761A JP2023089323A (ja) 2020-05-18 2020-05-18 ポリアミド樹脂及びこれを含む成形体
JP2021-021796 2021-02-15
JP2021021796A JP2023089325A (ja) 2021-02-15 2021-02-15 ポリアミド樹脂及びこれを含む成形体
JP2021066963A JP2023089326A (ja) 2021-04-12 2021-04-12 ポリアミド樹脂組成物及びこれを含む成形体
JP2021-066963 2021-04-12
JP2021071682A JP2023089327A (ja) 2021-04-21 2021-04-21 ポリアミド樹脂組成物及びこれを含む成形体
JP2021-071682 2021-04-21

Publications (1)

Publication Number Publication Date
WO2021235348A1 true WO2021235348A1 (ja) 2021-11-25

Family

ID=78708399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018414 WO2021235348A1 (ja) 2020-05-18 2021-05-14 ポリアミド樹脂及びこれを含む組成物並びにこれらを含む成形体

Country Status (1)

Country Link
WO (1) WO2021235348A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262978A (ja) * 1992-03-18 1993-10-12 Daicel Huels Ltd 高比重ポリアミド樹脂
JPH10292042A (ja) * 1997-04-18 1998-11-04 Ube Ind Ltd ポリアミドおよびその製造方法
JPH1192657A (ja) * 1997-09-19 1999-04-06 Daicel Huels Ltd 金属粉体複合成形品用ポリアミド樹脂
JP2010222394A (ja) * 2009-03-19 2010-10-07 Ube Ind Ltd 磁性材樹脂複合体成形用ポリアミド樹脂組成物、磁性材樹脂複合材料、及び磁性材樹脂複合体
WO2015182693A1 (ja) * 2014-05-30 2015-12-03 東レ株式会社 末端変性ポリアミド樹脂、その製造方法および成形品の製造方法
WO2016031257A1 (ja) * 2014-08-29 2016-03-03 旭化成ケミカルズ株式会社 ポリアミド、ポリアミドの製造方法、ポリアミド組成物、ポリアミド組成物成形品及びその製造方法
WO2017077901A1 (ja) * 2015-11-02 2017-05-11 東洋紡株式会社 半芳香族ポリアミド樹脂及びその製造方法
JP2017155150A (ja) * 2016-03-02 2017-09-07 旭化成株式会社 ポリアミド組成物、ポリアミド組成物成形品およびポリアミド組成物の製造方法
WO2017170248A1 (ja) * 2016-03-30 2017-10-05 東レ株式会社 繊維強化ポリアミド樹脂基材、その製造方法、それを含む成形品および複合成形品

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262978A (ja) * 1992-03-18 1993-10-12 Daicel Huels Ltd 高比重ポリアミド樹脂
JPH10292042A (ja) * 1997-04-18 1998-11-04 Ube Ind Ltd ポリアミドおよびその製造方法
JPH1192657A (ja) * 1997-09-19 1999-04-06 Daicel Huels Ltd 金属粉体複合成形品用ポリアミド樹脂
JP2010222394A (ja) * 2009-03-19 2010-10-07 Ube Ind Ltd 磁性材樹脂複合体成形用ポリアミド樹脂組成物、磁性材樹脂複合材料、及び磁性材樹脂複合体
WO2015182693A1 (ja) * 2014-05-30 2015-12-03 東レ株式会社 末端変性ポリアミド樹脂、その製造方法および成形品の製造方法
WO2016031257A1 (ja) * 2014-08-29 2016-03-03 旭化成ケミカルズ株式会社 ポリアミド、ポリアミドの製造方法、ポリアミド組成物、ポリアミド組成物成形品及びその製造方法
WO2017077901A1 (ja) * 2015-11-02 2017-05-11 東洋紡株式会社 半芳香族ポリアミド樹脂及びその製造方法
JP2017155150A (ja) * 2016-03-02 2017-09-07 旭化成株式会社 ポリアミド組成物、ポリアミド組成物成形品およびポリアミド組成物の製造方法
WO2017170248A1 (ja) * 2016-03-30 2017-10-05 東レ株式会社 繊維強化ポリアミド樹脂基材、その製造方法、それを含む成形品および複合成形品

Similar Documents

Publication Publication Date Title
AU2011275035B2 (en) Polyamide resin compositions
EP2792714B2 (en) Molded products
TW593540B (en) Filled polyamide moulding materials having improved processing behavior
JP5964964B2 (ja) ポリアミド、ポリアミド組成物及び成形品
JP5708487B2 (ja) ポリアミド樹脂組成物及び成形品
JP5451880B2 (ja) ポリアミド及びポリアミド組成物
JP5667983B2 (ja) ポリアミド共重合体及び成形品
JP2011068873A (ja) 摺動部材
EP2985316A1 (en) Polyamide resin composition and molded article using same
WO2021235348A1 (ja) ポリアミド樹脂及びこれを含む組成物並びにこれらを含む成形体
JP5979860B2 (ja) 長繊維強化ポリアミド樹脂組成物ペレット及び成形品
WO2015029780A1 (ja) 吸水時の振動性と外観に優れた高融点ポリアミド樹脂組成物
JP5669623B2 (ja) ポリアミド樹脂組成物及び成形品
JP5669627B2 (ja) ポリアミド樹脂組成物及び成形品
JP5637772B2 (ja) ポリアミド溶着成形品
JP2023089326A (ja) ポリアミド樹脂組成物及びこれを含む成形体
JP2017206639A (ja) ポリアミド樹脂組成物
JP2023089327A (ja) ポリアミド樹脂組成物及びこれを含む成形体
JP2023089325A (ja) ポリアミド樹脂及びこれを含む成形体
JP5972088B2 (ja) ポリアミド樹脂組成物及び成形体
JP2023089323A (ja) ポリアミド樹脂及びこれを含む成形体
JP5959190B2 (ja) ポリアミド樹脂組成物及び成形品
JP7249738B2 (ja) ポリアミド樹脂ペレット及びその製造方法、並びに、ポリアミド組成物の製造方法
JP5806920B2 (ja) ヒケを改善する方法
JP2024074668A (ja) ポリアミド樹脂組成物及び成型体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21809851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP