WO2017150407A1 - 導電性高分子組成物、導電性高分子含有多孔質体及びその製造方法並びに固体電解コンデンサ及びその製造方法 - Google Patents

導電性高分子組成物、導電性高分子含有多孔質体及びその製造方法並びに固体電解コンデンサ及びその製造方法 Download PDF

Info

Publication number
WO2017150407A1
WO2017150407A1 PCT/JP2017/007319 JP2017007319W WO2017150407A1 WO 2017150407 A1 WO2017150407 A1 WO 2017150407A1 JP 2017007319 W JP2017007319 W JP 2017007319W WO 2017150407 A1 WO2017150407 A1 WO 2017150407A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
acid
salt
group
polyaniline
Prior art date
Application number
PCT/JP2017/007319
Other languages
English (en)
French (fr)
Inventor
真吾 小野寺
徹 板東
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2018503120A priority Critical patent/JP7153557B2/ja
Priority to CN201780014082.7A priority patent/CN108701546B/zh
Priority to KR1020187022114A priority patent/KR20180118618A/ko
Priority to EP17759873.7A priority patent/EP3425652A4/en
Priority to US16/080,764 priority patent/US10975200B2/en
Publication of WO2017150407A1 publication Critical patent/WO2017150407A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a conductive polymer composition, a conductive polymer-containing porous body and a manufacturing method thereof, and a solid electrolytic capacitor and a manufacturing method thereof.
  • Patent Document 1 discloses a method of forming a solid electrolyte layer by immersing a capacitor element in a conductive polymer solution so that the conductive polymer penetrates into the capacitor element and then drying.
  • One of the objects of the present invention is to provide a high-performance solid electrolytic capacitor and a method for manufacturing the same.
  • Another object of the present invention is to provide a novel porous polymer-containing porous body and a method for producing the same.
  • Another object of the present invention is to provide a conductive polymer composition capable of producing a high performance solid electrolytic capacitor.
  • the inventors of the present invention do not sufficiently penetrate the conductive polymer composition to the back (inside) of fine pores existing on the anode surface. It has been found that it is difficult to form the solid electrolyte layer uniformly and densely into the pores, so that the capacitance and ESR cannot be sufficiently improved.
  • the present inventor has intensively studied a method of sufficiently infiltrating the conductive polymer solution into the pores existing on the surface of the oxide of the valve metal such as alumina, and as a result, the oxide of the valve metal It was found that the surface of the valve metal oxide was modified by treatment with an acid or salt, the permeability of the conductive polymer was improved, and the conductive polymer solution could penetrate into the pores. .
  • the surface of the anode body is modified by applying the technique to a solid electrolytic capacitor and treating the anode body made of the valve metal of the solid electrolytic capacitor and its oxide with an acid or salt, so that the conductive polymer solution
  • the permeability can be improved and a solid electrolyte layer can be formed to the depth of the pores, and the capacitance and ESR of the solid electrolytic capacitor can be improved, and the present invention has been completed.
  • the present inventors have found that the permeability of the conductive polymer composition can be improved by adding an acid or a salt to the conductive polymer composition, and completed the present invention.
  • the following conductive polymer composition is provided. “(A) conductive polymer, A conductive polymer composition comprising (b) a solvent and (c) an acid or salt. " The following can be illustrated as one aspect
  • the following method for producing a conductive polymer-containing porous body is provided. “Conducting a conductive material comprising: contacting a porous body having an oxide of a valve metal with an acid or salt solution; and impregnating the porous body with a conductive polymer solution simultaneously with or after the contacting. Method for producing a porous material containing a functional polymer. " The following can be illustrated as one aspect
  • the following conductive polymer-containing porous body is provided.
  • the following method for producing a solid electrolytic capacitor is provided.
  • the following can be illustrated as one aspect
  • a solid electrolytic capacitor manufacturing method for forming a solid electrolyte layer made of a conductive polymer on an anode body made of a valve metal and its oxide A method for producing a solid electrolytic capacitor, comprising: contacting an anode body with an acid or salt solution; and impregnating the anode body after the contact with a conductive polymer solution. " The following can be illustrated as another aspect of this manufacturing method. “Including a step of forming a solid electrolyte layer made of a conductive polymer on the anode body by impregnating the conductive polymer composition into an anode body made of a valve metal and its oxide and drying the anode body, Manufacturing method of solid electrolytic capacitor. "
  • Solid electrolytic capacitor including the conductive polymer-containing porous body.
  • Solid electrolytic capacitor obtained by the above-described method for manufacturing a solid electrolytic capacitor is provided.
  • ADVANTAGE OF THE INVENTION According to this invention, a high performance solid electrolytic capacitor and its manufacturing method can be provided. ADVANTAGE OF THE INVENTION According to this invention, the novel conductive polymer containing porous body and its manufacturing method can be provided. ADVANTAGE OF THE INVENTION According to this invention, the conductive polymer composition which can manufacture a high performance solid electrolytic capacitor can be provided.
  • FIG. 1 It is a schematic diagram of the conductive polymer containing porous body (anode body and solid electrolyte layer) used for the solid electrolytic capacitor of this invention.
  • 2 is a photomicrograph of a cross section of a conductive polymer-containing porous body obtained in Example 1-1.
  • the method for producing a conductive polymer-containing porous body according to the present invention includes a step of bringing an acid or salt solution into contact with a porous body having an oxide of a valve metal, and a porous body simultaneously with or after the contact. A step of impregnating with a conductive polymer solution. The surface of the porous body is modified by contacting the porous body having an oxide of the valve metal with an acid or salt solution, and the conductive polymer solution is infiltrated into the pores of the porous body. Can do.
  • a solid electrolyte layer made of a conductive polymer can be formed to the back of the pores, so that a solid electrolytic capacitor excellent in capacitance and ESR can be obtained. Can be manufactured.
  • the manufacturing method will be described.
  • Step of bringing acid or salt solution into contact with porous body having valve metal oxide In this step, an acid or salt solution is brought into contact with the porous body having the valve metal oxide, and then the porous body is usually dried.
  • Examples of a porous valve metal having a valve metal oxide include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony, and aluminum or tantalum is preferable.
  • Examples of the oxide include oxides of these metals.
  • the porous body having a valve metal oxide examples include a porous body made only of the valve metal oxide and a porous body having a part of the structure made of the valve metal oxide. In the latter case, it is preferable that a valve metal oxide is present on the surface of the porous body.
  • the porous body is a material having pores, and preferably has a large number of pores having a diameter of about 1 nm to 10 ⁇ m on the surface.
  • the shape of the porous body is not particularly limited and is, for example, a molded body or a film (foil) having a certain thickness.
  • the porous body include a molded body made of only an oxide of a valve metal (for example, a sphere made of aluminum oxide having pores (alumina ball)).
  • a film (foil) made of a valve metal and its oxide for example, a film (foil) made of aluminum having etching holes by roughening and aluminum oxide formed on the surface (anode material of an aluminum electrolytic capacitor) ).
  • the acid is Arrhenius acid or Bronsted acid having an acidic group (H + ).
  • sulfonic acid and its salt, phosphoric acid and its salt, phosphoric acid ester and its salt, carboxylic acid and its salt, amino acid and its salt, boric acid and its salt, boronic acid and its salt, etc. are mentioned.
  • an ammonium salt or an alkali metal salt for example, a sodium salt, a lithium salt, or a potassium salt of a corresponding acid can be used.
  • phosphoric acid and salts thereof monomethyl phosphate, dimethyl phosphate, a mixture of monomethyl phosphate and dimethyl phosphate and salts thereof; monoethyl phosphate, diethyl phosphate, monoethyl phosphate and diethyl phosphate Mixtures and salts thereof; monoisopropyl phosphate, diisopropyl phosphate, monoisopropyl phosphate and diisopropyl phosphate and their salts; monobutyl phosphate, dibutyl phosphate, monobutyl phosphate and dibutyl phosphate And salts thereof; mono (2-ethylhexyl) phosphate, di (2-ethylhexyl) phosphate, mixtures of mono (2-ethylhexyl) phosphate and di (2-ethylhexyl) phosphate and salts thereof; acetic acid and Its salt; propionic acid and its salt; butyric acid and salt
  • phosphate esters and salts thereof, carboxylic acids and salts thereof, carboxylic acid esters and salts thereof, amino acids and salts thereof, and the like may be used.
  • the concentration of the acid or salt solution is usually 0.5 to 15.0% by mass, preferably 1.0 to 5.0% by mass. Depending on the type of acid or salt to be used, it is appropriately set within the range in which the valve metal oxide is not dissolved.
  • the solvent of the solution is not particularly limited as long as the acid or salt can be dissolved. For example, water, alcohol, ketone, ether and the like can be mentioned. Alternatively, the same solvent as that of the conductive polymer solution may be used. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the contact method is not particularly limited as long as the porous body and the acid or salt solution are in sufficient contact with each other, but a method of immersing the porous body in an acid or salt solution is preferable.
  • the contact (immersion) time with the solution is usually 1 to 30 minutes, preferably 1 to 10 minutes.
  • the contact temperature is not particularly limited, but is usually room temperature.
  • the contact is preferably performed under normal pressure or reduced pressure.
  • the porous body After contact with the acid or salt solution, the porous body is usually dried.
  • the drying conditions vary depending on the type of acid or salt solution or solvent used, but are not particularly limited as long as the solvent can be removed from the solution.
  • the drying temperature is usually 80 to 250 ° C., preferably 110 to 200 ° C., more preferably 150 to 200 ° C.
  • the drying time is usually 10 to 60 minutes, preferably 30 to 60 minutes.
  • Step of impregnating porous polymer with conductive polymer solution the conductive polymer solution is impregnated into the porous body that is in contact with the acid or salt or in contact with the acid or salt. Thereafter, usually, by drying, a solid electrolyte layer made of a conductive polymer is formed inside and on the pores of the porous body to obtain a conductive polymer-containing porous body.
  • the conductive polymer-containing porous body is a porous body containing a conductive polymer, and specifically includes a solid electrolyte (solid electrolyte layer) made of a conductive polymer inside or on the pores. For example, a porous body.
  • the conductive polymer-containing porous body for example, aluminum oxide spheres (alumina balls) containing a solid electrolyte made of a conductive polymer, and solid electrolytes (solid electrolyte layer) made of a conductive polymer were formed.
  • An anode material of an aluminum electrolytic capacitor an anode body made of a valve metal and its oxide
  • Examples of the conductive polymer include polyaniline, polythiophene, polypyrrole, and derivatives thereof. These may or may not have a substituent. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • Polyaniline is preferred as the conductive polymer.
  • the polyaniline preferably has a weight average molecular weight of 10,000 or more, more preferably 20,000 or more, still more preferably 30,000 to 1,000,000, and still more preferably 40,000 or more. It is 1,000,000 or less, and particularly preferably 52,000 or more and 1,000,000 or less.
  • the molecular weight of the conductive polymer is larger from the viewpoint of increasing the strength of the obtained electrolyte layer.
  • the viscosity becomes high, and it becomes more difficult to impregnate the pores of the porous body.
  • the molecular weight of polyaniline can be measured, for example, by the following method: 0.25 g of the polyaniline complex is dissolved in 5 g of toluene, 10 mL of 1M aqueous sodium hydroxide solution is added, and the mixture is stirred for 15 minutes and then filtered with suction. The obtained residue is washed 3 times with 10 mL of toluene, 3 times with 10 mL of ion-exchanged water and 3 times with 10 mL of methanol, the obtained solid is dried under reduced pressure, and the molecular weight of the obtained polyaniline is measured by GPC.
  • the molecular weight obtained by the said method is a polystyrene (PS) conversion value.
  • Polyaniline may or may not have a substituent, but from the viewpoint of versatility and economy, it is preferably unsubstituted polyaniline.
  • substituents in the case of having a substituent include linear or branched hydrocarbon groups such as a methyl group, an ethyl group, a hexyl group, and an octyl group; an alkoxy group such as a methoxy group and an ethoxy group; and an aryloxy group such as a phenoxy group Groups; halogenated hydrocarbons such as a trifluoromethyl group (—CF 3 group).
  • a polyaniline complex in which a polyaniline is doped with a proton donor is preferable. Whether a proton donor is doped in polyaniline can be confirmed by ultraviolet, visible, near infrared spectroscopy or X-ray photoelectron spectroscopy, and the proton donor is sufficient to generate carriers in polyaniline. If it has acidity, it can be used without any restriction on the chemical structure. It is preferable to use the polyaniline complex because solubility in a solvent is improved.
  • Examples of the proton donor include a Bronsted acid or a salt thereof, preferably an organic acid or a salt thereof, and more preferably a proton donor represented by the following formula (I).
  • M (XARn) m (I) M in the formula (I) is a hydrogen atom, an organic radical or an inorganic radical.
  • Examples of the organic free radical include a pyridinium group, an imidazolium group, and an anilinium group.
  • Examples of the inorganic free radical include lithium, sodium, potassium, cesium, ammonium, calcium, magnesium, and iron.
  • X in the formula (I) is an anion group, for example, —SO 3 — group, —PO 3 2- group, —PO 4 (OH) 2 — group, —OPO 3 2- group, —OPO 2 (OH) — Group, —COO 2 — group, and —SO 3 — group is preferable.
  • a in formula (I) (the definition of A in M (XARn) m) is a substituted or unsubstituted hydrocarbon group.
  • the hydrocarbon group is a chain or cyclic saturated aliphatic hydrocarbon group, a chain or cyclic unsaturated aliphatic hydrocarbon group, or an aromatic hydrocarbon group.
  • Examples of the chain saturated aliphatic hydrocarbon include a linear or branched alkyl group.
  • Examples of the cyclic saturated aliphatic hydrocarbon group include cycloalkyl groups such as a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • the cyclic saturated aliphatic hydrocarbon group may be a condensation of a plurality of cyclic saturated aliphatic hydrocarbon groups. Examples thereof include a norbornyl group, an adamantyl group, and a condensed adamantyl group.
  • the aromatic hydrocarbon group examples include a phenyl group, a naphthyl group, and an anthracenyl group.
  • the chain unsaturated aliphatic hydrocarbon include linear or branched alkenyl groups.
  • A is a substituted hydrocarbon group
  • the substituent is alkyl group, cycloalkyl group, vinyl group, allyl group, aryl group, alkoxy group, halogen group, hydroxy group, amino group, imino group, nitro group.
  • R in formula (I) is bonded to A, and each independently represents —H, —R 1 , —OR 1 , —COR 1 , —COOR 1 , — (C ⁇ O) — (COR 1 ). Or a substituent represented by — (C ⁇ O) — (COOR 1 ), wherein R 1 is a hydrocarbon group, silyl group, alkylsilyl group, — (R 2 O) x—R which may contain a substituent. 3 or-(OSiR 3 2 ) x-OR 3 (R 2 is independently an alkylene group, R 3 is each independently a hydrocarbon group, and x is an integer of 1 or more).
  • hydrocarbon group for R 1 examples include a methyl group, an ethyl group, a linear or branched butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, a pentadecyl group, and an eicosanyl group. Is mentioned.
  • the substituent of the hydrocarbon group is an alkyl group, a cycloalkyl group, a vinyl group, an allyl group, an aryl group, an alkoxy group, a halogen group, a hydroxy group, an amino group, an imino group, a nitro group, an ester group, or the like.
  • the hydrocarbon group for R 3 is the same as R 1 .
  • Examples of the alkylene group for R 2 include a methylene group, an ethylene group, and a propylene group.
  • N in the formula (I) is an integer of 1 or more
  • m in the formula (I) is a valence of M / a valence of X.
  • dialkylbenzenesulfonic acid dialkylnaphthalenesulfonic acid, or a compound containing two or more ester bonds is preferable.
  • the compound containing two or more ester bonds is more preferably a sulfophthalic acid ester or a compound represented by the following formula (II). (Wherein M, X and m are the same as those in formula (I). X is preferably a —SO 3 — group.)
  • R 4 , R 5 and R 6 in formula (II) are each independently a hydrogen atom, a hydrocarbon group or an R 9 3 Si— group (wherein R 9 is a hydrocarbon group and three R 9 are They may be the same or different).
  • R 9 is a hydrocarbon group and three R 9 are They may be the same or different.
  • the hydrocarbon group for R 9 is the same as in the case of R 4 , R 5 and R 6 .
  • R 7 and R 8 in formula (II) are each independently a hydrocarbon group or — (R 10 O) q —R 11 group [where R 10 is a hydrocarbon group or a silylene group, and R 11 is A hydrogen atom, a hydrocarbon group or R 12 3 Si— (wherein R 12 is a hydrocarbon group, and three R 12 may be the same or different), and q is an integer of 1 or more] .
  • hydrocarbon group when R 7 and R 8 are hydrocarbon groups include linear or branched alkyl groups having 1 to 24 carbon atoms, preferably 4 or more carbon atoms, aryl groups containing aromatic rings, and alkylaryl
  • specific examples of the hydrocarbon group when R 7 and R 8 are hydrocarbon groups include, for example, a linear or branched butyl group, pentyl group, hexyl group, octyl group, decyl group Etc.
  • Examples of the hydrocarbon group when R 10 in R 7 and R 8 is a hydrocarbon group include a linear or branched alkylene group having 1 to 24 carbon atoms, an arylene group containing an aromatic ring, an alkylarylene group, An arylalkylene group.
  • R 7 and R 8 when R 11 and R 12 are hydrocarbon groups, the hydrocarbon group is the same as in R 4 , R 5 and R 6 , and q is 1 to 10 Preferably there is.
  • the compound represented by the above formula (II) is more preferably a sulfosuccinic acid derivative represented by the following formula (III).
  • M is the same as in formula (I).
  • M ′ is the valence of M.
  • R 13 and R 14 in formula (III) are each independently a hydrocarbon group or — (R 15 O) r —R 16 group [wherein R 15 is independently a hydrocarbon group or a silylene group, R 16 is a hydrogen atom, a hydrocarbon group or an R 17 3 Si— group (wherein R 17 is independently a hydrocarbon group, and r is an integer of 1 or more).
  • the hydrocarbon group when R 13 and R 14 are hydrocarbon groups is the same as R 7 and R 8 .
  • the hydrocarbon group when R 15 is a hydrocarbon group is the same as R 10 described above.
  • the hydrocarbon group in the case where R 16 and R 17 are hydrocarbon groups is the same as R 4 , R 5 and R 6 described above.
  • r is preferably from 1 to 10.
  • R 13 and R 14 are a — (R 15 O) r —R 16 group are the same as those for — (R 10 O) q —R 11 in R 7 and R 8 .
  • the hydrocarbon group for R 13 and R 14 is the same as R 7 and R 8 and is preferably a butyl group, a hexyl group, a 2-ethylhexyl group, a decyl group, or the like.
  • the doping rate of the proton donor with respect to polyaniline is preferably 0.30 or more and 0.65 or less, more preferably 0.32 or more and 0.60 or less, and further preferably 0.33 or more and 0.57 or less. Especially preferably, it is 0.34 or more and 0.55 or less. When the doping rate is less than 0.30, the solubility of the polyaniline complex in the organic solvent may not be increased.
  • the doping rate is defined as (number of moles of proton donor doped in polyaniline) / (number of moles of monomer unit of polyaniline).
  • a doping rate of 0.5 in a polyaniline complex containing unsubstituted polyaniline and a proton donor means that one proton donor is doped with respect to two monomer unit molecules of polyaniline.
  • the dope ratio can be calculated if the number of moles of the proton donor and the polyaniline monomer unit in the polyaniline complex can be measured.
  • the proton donor is an organic sulfonic acid
  • the number of moles of sulfur atoms derived from the proton donor and the number of moles of nitrogen atoms derived from the monomer unit of polyaniline are quantified by organic elemental analysis, and the ratio of these values is determined.
  • the dope rate can be calculated by taking However, the calculation method of the dope rate is not limited to the means.
  • the polyaniline complex preferably contains unsubstituted polyaniline and a sulfonic acid that is a proton donor and satisfies the following formula (5). 0.32 ⁇ S 5 / N 5 ⁇ 0.60 (5) (In the formula, S 5 is the total number of moles of sulfur atoms contained in the polyaniline complex, and N 5 is the total number of moles of nitrogen atoms contained in the polyaniline complex. The number of moles of nitrogen and sulfur atoms is a value measured by, for example, an organic elemental analysis method. )
  • the concentration of the conductive polymer solution is usually 0.1 to 15.0% by mass, preferably 1.0 to 10.0% by mass.
  • the solvent is not particularly limited as long as it can dissolve the conductive polymer, and examples thereof include aromatic hydrocarbons, aliphatic hydrocarbons, alcohols, phenols, ketones, and ethers. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the conductive polymer solution preferably further contains a phenolic compound.
  • the phenolic compound is not particularly limited, and is a compound represented by ArOH (where Ar is an aryl group or a substituted aryl group). Specifically, phenol, o-, m- or p-cresol, o-, m- or p-ethylphenol, o-, m- or p-propylphenol, o-, m- or p-butylphenol, o Substituted phenols such as-, m- or p-chlorophenol, salicylic acid, hydroxybenzoic acid and hydroxynaphthalene; polyhydric phenolic compounds such as catechol and resorcinol; and polymers such as phenolic resins, polyphenols and poly (hydroxystyrene) A compound etc. can be illustrated.
  • n is an integer of 1 to 5.
  • R represents an alkyl group having 2 to 10 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, An alkylaryl group having 7 to 20 carbon atoms or an arylalkyl group having 7 to 20 carbon atoms.
  • Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl, and tertiary amyl.
  • Examples of the alkenyl group include a substituent having an unsaturated bond in the molecule of the alkyl group described above.
  • Examples of the cycloalkyl group include cyclopentane and cyclohexane.
  • Examples of the alkylthio group include methylthio and ethylthio.
  • Examples of the aryl group include phenyl and naphthyl.
  • Examples of the alkylaryl group and the arylalkyl group include a substituent obtained by combining the above-described alkyl group and aryl group. Of these groups, R is preferably a methyl or ethyl group.
  • the content of the phenolic compound is preferably 10 to 5000 parts by mass, more preferably 10 to 2000 parts by mass with respect to 100 parts by mass of the polyaniline complex.
  • the use of the phenolic compound is preferable because conductivity is improved and solubility in alcohol is improved.
  • the conductive polymer solution may contain an acidic substance or an acidic substance salt as a heat-resistant stabilizer.
  • the acidic substance may be an organic acid (an acid of an organic compound) or an inorganic acid (an acid of an inorganic compound) containing one or more sulfonic acid groups.
  • the acidic substance may be either an organic acid that is an acid of an organic compound or an inorganic acid that is an acid of an inorganic compound, and is preferably an organic acid.
  • the acidic substance is preferably an organic acid containing one or more sulfonic acid groups.
  • the organic acid having a sulfonic acid group is preferably a cyclic, linear or branched alkyl sulfonic acid, substituted or unsubstituted aromatic sulfonic acid, or polysulfonic acid having one or more sulfonic acid groups.
  • alkylsulfonic acid include methanesulfonic acid, ethanesulfonic acid, and di-2-ethylhexylsulfosuccinic acid.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 18 carbon atoms.
  • aromatic sulfonic acid examples include those having 6 to 20 carbon atoms, such as sulfonic acid having a benzene ring, sulfonic acid having a naphthalene skeleton, and sulfonic acid having an anthracene skeleton.
  • aromatic sulfonic acid examples include substituted or unsubstituted benzene sulfonic acid, naphthalene sulfonic acid, and anthracene sulfonic acid.
  • the substituent is, for example, selected from the group consisting of an alkyl group (for example, having 1 to 20 carbon atoms), an alkoxy group (for example, having 1 to 20 carbon atoms), a hydroxy group, a nitro group, a carboxy group, and an acyl group.
  • an alkyl group for example, having 1 to 20 carbon atoms
  • an alkoxy group for example, having 1 to 20 carbon atoms
  • a hydroxy group for example, a nitro group, a carboxy group
  • an acyl group an acyl group.
  • substituents for example, naphthalene sulfonic acid, dodecylbenzene sulfonic acid, and anthraquinone sulfonic acid can be mentioned.
  • aromatic sulfonic acid substituted or unsubstituted naphthalenesulfonic acid is preferable.
  • the content of the heat-resistant stabilizer is preferably 0.1 to 1000 parts by mass, more preferably 1 to 100 parts by mass with respect to 100 parts by mass of the polyaniline complex. It is preferable to use a heat resistance stabilizer because heat resistance is improved.
  • the solvent is not particularly limited as long as it dissolves the conductive polymer, but an organic solvent is preferable.
  • the organic solvent may be a water-soluble organic solvent or an organic solvent that is substantially immiscible with water (a water-immiscible organic solvent).
  • the water-soluble organic solvent may be a protic polar solvent or an aprotic polar solvent, such as isopropyl alcohol, 1-butanol, 2-butanol, 2-pentanol, benzyl alcohol, alkoxy alcohol (for example, 1-methoxy-2-propanol). Alcohols such as 3-methoxy-1-butanol); ketones such as acetone; ethers such as tetrahydrofuran, dioxane and ethylene glycol mono-tert-butyl ether; and aprotic polar solvents such as N-methylpyrrolidone. .
  • a protic polar solvent such as isopropyl alcohol, 1-butanol, 2-butanol, 2-pentanol, benzyl alcohol, alkoxy alcohol (for example, 1-methoxy-2-propanol). Alcohols such as 3-methoxy-1-butanol); ketones such as acetone; ethers such as tetrahydro
  • water-immiscible organic solvents include hydrocarbon solvents such as hexane, benzene, toluene, xylene, ethylbenzene, and tetralin; halogen-containing solvents such as methylene chloride, chloroform, carbon tetrachloride, dichloroethane, and tetrachloroethane; acetic acid Examples thereof include ester solvents such as ethyl, isobutyl acetate and n-butyl acetate; ketone solvents such as methyl isobutyl ketone (MIBK), methyl ethyl ketone, cyclopentanone and cyclohexanone; ether solvents such as cyclopentyl methyl ether.
  • isoparaffin type solvent containing 1 type, or 2 or more types of isoparaffin as a hydrocarbon type solvent.
  • toluene, xylene, methyl isobutyl ketone, chloroform, trichloroethane, and ethyl acetate are preferred because of the excellent solubility of the conductive polymer.
  • the polyaniline complex can be dissolved even if the solvent is an alcohol such as isopropyl alcohol, 1-butanol, 2-butanol, 2-pentanol, benzyl alcohol, and alkoxy alcohol. Alcohol is preferable from the viewpoint of reducing environmental burden compared to aromatics such as toluene.
  • a low polar organic solvent can be used as the water-immiscible organic solvent of the mixed organic solvent, and the low polar organic solvent is preferably a hydrocarbon solvent such as hexane or toluene; a halogen-containing solvent such as chloroform; or an isoparaffin solvent.
  • a highly polar organic solvent can be used, for example, methanol, ethanol, isopropyl alcohol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 3-methoxy- Alcohols such as 1-butanol; ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ethers such as tetrahydrofuran, diethyl ether, and ethylene glycol mono-tert-butyl ether are preferable.
  • the mixed organic solvent may contain one or more water-immiscible organic solvents, and may contain one or more water-soluble organic solvents.
  • the impregnation method of the conductive polymer solution is not particularly limited as long as it is a method capable of sufficiently impregnating the conductive polymer into the pores of the porous body, but the method of immersing the porous body in the conductive polymer solution Is preferred.
  • the impregnation (immersion) time is usually 1 to 30 minutes, preferably 1 to 10 minutes.
  • the drying temperature of the conductive polymer solution is usually 30 to 200 ° C., preferably 100 to 180 ° C.
  • the drying time is usually 10 to 120 minutes, preferably 30 to 90 minutes.
  • the impregnation step and the drying step of the conductive polymer solution may be repeated, for example, may be repeated 2 to 10 times.
  • the conductive polymer-containing porous body of the present invention is a porous body having a valve metal oxide, and includes a conductive polymer and an acid or salt.
  • the conductive polymer-containing porous body of the present invention can be obtained by the above method.
  • the porous body, the conductive polymer, and the acid or salt are as described above.
  • the conductive polymer composition of the present invention includes the following components (a), (b) and (c).
  • the conductive polymer-containing porous material is impregnated with the conductive polymer solution by contacting the porous material with an acid or salt.
  • To manufacture When the porous polymer is impregnated with the conductive polymer composition, contact with an acid or salt and impregnation with a conductive polymer solution can be performed simultaneously. In addition, it may be preliminarily contacted with an acid or salt solution and then impregnated again with a conductive polymer composition containing an acid or salt. If such a conductive polymer composition is used, the conductive polymer can be infiltrated only by a simple process of impregnating the object with the composition, and an additional process is not required, which is economical.
  • each component will be described.
  • the conductive polymer is as described above.
  • the concentration of the component (a) is usually from 0.3 to 20% by mass, preferably from 0.5 to 20% by mass, more preferably from 1 to 15% by mass with respect to the conductive polymer composition. More preferably, it is 1 to 10% by mass.
  • the above-mentioned solvents can be used as the solvent for dissolving the conductive polymer (a).
  • the components (c) to (e) described later are not included.
  • the content of the component (b) can be adjusted as appropriate depending on the amount of the other components and is not limited. Can be a part.
  • the component (c) As the component (c), the above acid or salt can be used. However, the component (c) does not include components (d) and (e) described later. If an acid soluble in the solvent (b) is used as the component (c), the component (c) can be more easily brought into contact with the porous body.
  • the component (c) preferably has a solubility parameter (SP value) of 13.0 (cal / cm 3 ) 1/2 or less, more preferably 11.0 (cal / cm 3 ) 1/2 or less. Moreover, it is good also as 10.0 (cal / cm ⁇ 3 >) ⁇ 1/2 > or less.
  • the SP value is usually 0 (cal / cm 3 ) 1/2 or more.
  • the SP value is calculated by the Fedors method described in “Polymer Engineering & Science”, 1974, Vol. 14, pages 147 to 154. Specifically, as described in the examples.
  • Component (c) is preferably an acid having a hydrophobic group.
  • the hydrophobic group include a linear alkyl group, a branched alkyl group, an alkylphenyl group, and an alkylnaphthyl group.
  • the alkyl group contained in the linear alkyl group, the alkyl group of the branched alkyl group, and the alkylphenyl group or alkylnaphthyl group preferably has 2 to 20 carbon atoms.
  • Examples of the component (c) include alkyl carboxylic acids, phosphoric acid monoesters, phosphoric diesters, alkyl benzene carboxylic acids, and alkyl benzene phosphonic acids.
  • the alkylbenzenecarboxylic acid is a compound represented by R—Ph—COOH
  • the alkylbenzenephosphonic acid is a compound represented by R—Ph—PO (OH) 2 (wherein R represents an alkyl group, Ph represents a phenyl group).
  • the number of carbon atoms in the alkyl group of the alkyl carboxylic acid, alkyl benzene carboxylic acid and alkyl benzene phosphonic acid is preferably 2-20.
  • the phosphoric acid monoester and phosphoric acid diester are preferably esters obtained from phosphoric acid and an alcohol having 2 to 20 carbon atoms.
  • component (c) examples include propionic acid, DL-2-methylbutyric acid, 2-methylvaleric acid, 2-ethylhexanoic acid, 3,5,5-trimethylhexanoic acid, myristic acid, monomethyl phosphate, Dimethyl phosphate, mixture of monomethyl phosphate and dimethyl phosphate, monoethyl phosphate, diethyl phosphate, mixture of monoethyl phosphate and diethyl phosphate, monoisopropyl phosphate, diisopropyl phosphate, monoisopropyl phosphate and diisopropyl phosphate Mixture, monobutyl phosphate, dibutyl phosphate, mixture of monobutyl phosphate and dibutyl phosphate, mono (2-ethylhexyl) phosphate, di (2-ethylhexyl) phosphate, mono (2-ethylhexyl) phosphate and diphosphate And a mixture of
  • the content of the component (c) is preferably 0.1 to 70% by mass, more preferably 0.5 to 70% by mass, and still more preferably based on the conductive polymer composition of the present invention.
  • the content is 1 to 30% by mass, and more preferably 2 to 20% by mass.
  • the content of the component (c) may be, for example, 20 to 200 parts by mass or 25 to 150 parts by mass with respect to 100 parts by mass of the component (a). It may be 200 to 900 parts by weight or 400 to 800 parts by weight with respect to 100 parts by weight of component (a). Further, it may be more than 1000 parts by mass with respect to 100 parts by mass of component (a), for example, 1100 to 7000 parts by mass, or 1200 to 3000 parts by mass.
  • the conductive polymer composition of the present invention may further contain (d) a heat-resistant stabilizer and / or (e) a phenolic compound in addition to the components (a) to (c).
  • the above heat stabilizer can be used as the heat stabilizer of component (d).
  • the component (d) does not include the component (e).
  • Preferred is substituted or unsubstituted naphthalene sulfonic acid.
  • component (d) is preferably 0.1 to 70 parts by weight, more preferably 1 to 55 parts by weight, and even more preferably 3 to 30 parts by weight with respect to 100 parts by weight of component (a). Particularly preferred is 5 to 10 parts by mass.
  • ((E) phenolic compound) Said phenolic compound can be used as the phenolic compound of component (e).
  • the component (e) is a component different from the components (b) to (d).
  • the content of the phenolic compound is preferably 10 to 5000 parts by mass, more preferably 100 to 4000 parts by mass with respect to 100 parts by mass of the component (a).
  • Use of the component (e) is preferable because conductivity is improved and solubility in alcohol is improved.
  • a phenolic compound may be mixed with component (b) and used as a mixed solvent.
  • the conductive polymer composition of the present invention essentially comprises one or more components selected from the group consisting of components (a), (b) and (c), and optionally (d) and (e). It may consist of. In this case, inevitable impurities may be included. For example, 70% by mass or more, 80% by mass or more, 90% by mass or more, 98% by mass or more, 99% by mass or more, 99.5% by mass or more of the conductive polymer composition of the present invention is component (a). , (B) and (c), and optionally one or more components selected from the group consisting of (d) and (e). Moreover, the conductive polymer composition of the present invention comprises only components (a), (b) and (c), and optionally one or more components selected from the group consisting of (d) and (e). It may be.
  • the method for producing a solid electrolytic capacitor of the present invention comprises a step of bringing an acid or salt solution into contact with an anode body, which is a porous body made of a valve metal, having a surface made of an oxide of the valve metal, and simultaneously with the contact.
  • anode body which is a porous body made of a valve metal, having a surface made of an oxide of the valve metal, and simultaneously with the contact.
  • a step of forming a solid electrolyte layer made of a conductive polymer on the anode body by impregnating the anode body with a conductive polymer solution and drying it is included.
  • the anode body means a film (foil) made of a valve metal (anode) and an oxide (dielectric) of the valve metal formed on the surface thereof.
  • a general method for manufacturing a solid electrolytic capacitor includes a step of roughening the surface of an anode metal (valve metal), and forming a dielectric film (valve metal oxide film) on the surface of the roughened anode metal. And a step of forming a solid electrolyte layer. Furthermore, a step of forming a cathode so as to face the anode across the solid electrolyte layer is also included.
  • All of the above steps may be performed, or a ready-made product (the anode body is already roughened and dried) on which the corresponding anode and cathode are formed is impregnated with the conductive polymer composition. You may perform a process.
  • anode polymer by impregnating the anode polymer with the conductive polymer composition described above, contact with an acid or salt and impregnation with a conductive polymer solution can be performed simultaneously. Alternatively, it may be previously contacted with an acid or salt solution, and then impregnated again with a conductive polymer composition containing an acid or salt.
  • FIG. 1 the schematic diagram of the anode body of this invention and a solid electrolyte layer is shown.
  • the anode body 10 is a porous body having pores (porous) on the surface.
  • the anode body 10 is made of a valve metal 11 and the surface thereof is made of an oxide 12 of the valve metal.
  • the solid electrolyte layer 20 is formed on the anode body 10 having an uneven surface.
  • the capacity of the capacitor including the solid electrolyte layer 20 is increased.
  • the manufacturing method will be described.
  • the effective surface area is increased by roughening (etching) the surface of the anode metal (valve metal) of the solid electrolytic capacitor.
  • the porous body which expanded the effective surface area is obtained by sintering the fine powder of an anode metal (valve metal).
  • the anode metal include valve metals such as aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony, and aluminum or tantalum is preferable.
  • Roughening can be performed by a known method. For example, a method of immersing in a hydrochloric acid solution (chemical etching), a method of electrolyzing aluminum in an aqueous hydrochloric acid solution as an anode (electrochemical etching), or the like is used. Can do.
  • a dielectric oxide film is formed on the roughened anode surface.
  • This step is usually performed by applying a voltage in the electrolytic solution and anodizing (chemical conversion). Thereby, a film made of an oxide (dielectric) of the anode metal is formed, and an anode body made of the valve metal and its oxide is obtained.
  • the electrolytic solution to be used include aqueous solutions containing adipic acid, citric acid, phosphoric acid, and salts thereof.
  • Anodization can be performed by a known method.
  • a capacitor element is formed using an anode electrode (an anode body made of a valve metal and its oxide) and a cathode electrode.
  • the element shape is not particularly limited, and is, for example, a wound element or a stacked element.
  • a capacitor element is formed by winding an anode electrode and a cathode electrode through a separator.
  • a plurality of anode electrodes and a plurality of cathode electrodes are stacked on each other to form a capacitor element.
  • the capacitor element in this step can be formed by a known method.
  • Step of bringing acid or salt solution into contact with anode body an acid or salt solution is brought into contact with the anode body made of the valve metal and its oxide.
  • the contact method is not particularly limited as long as the anode body and the acid or salt solution are sufficiently in contact with each other, but a method of immersing the capacitor element itself in the acid or salt solution is preferable.
  • the acid or salt solution is the same as described above.
  • the contact (immersion) time is usually 30 seconds to 30 minutes, preferably 1 minute to 10 minutes.
  • the drying conditions after contact are the same as described above. By drying at a higher temperature, the residual amount of the solvent and the like is reduced, the permeability of the conductive polymer solution is improved, and the performance of the obtained solid electrolytic capacitor can be improved. In addition, since sufficient capacitor characteristics can be obtained even with a small number of immersions, the number of immersions in the conductive polymer solution can be reduced. Furthermore, it is possible to reduce the concentration of the conductive polymer solution, thereby reducing the cost.
  • Step of immersing anode body in conductive polymer solution and drying In this step, the anode body treated with the acid or salt solution is immersed in a conductive polymer solution and dried to form a solid electrolyte layer made of a conductive polymer inside and on the surface of the anode body. .
  • the immersion method in the conductive polymer solution is not particularly limited as long as the conductive polymer can be sufficiently impregnated into the pores of the anode body, but the capacitor element itself is immersed in the conductive polymer solution. Is preferred.
  • the immersion time is usually 1 to 30 minutes, preferably 1 to 10 minutes.
  • the conductive polymer solution is the same as described above.
  • the drying temperature is usually 30 to 200 ° C., preferably 100 to 180 ° C.
  • the drying time is usually 10 to 120 minutes, preferably 30 to 90 minutes.
  • the impregnation step and the drying step of the conductive polymer solution may be repeated, for example, may be repeated 2 to 10 times.
  • This step is usually performed immediately after the step of contacting the acid or salt solution. That is, after the treatment, the anode body is immersed in the conductive polymer solution without performing an operation such as voltage application.
  • the solid electrolytic capacitor of the present invention includes the above-described conductive polymer-containing porous body of the present invention. Specifically, an anode material (an anode body made of a valve metal and its oxide) including a solid electrolyte (solid electrolyte layer) made of a conductive polymer is included.
  • the solid electrolytic capacitor of the present invention can be obtained by the above-described method for producing a solid electrolytic capacitor.
  • the solid electrolytic capacitor of the present invention can be used as a circuit element mounted on an electric / electronic circuit board, particularly as a circuit element mounted on an automobile or the like.
  • Toluene 1500 mL was added to the organic phase side, and washed once with 600 mL of 1M phosphoric acid and three times with 600 mL of ion-exchanged water to obtain a polyaniline complex (protonated polyaniline) toluene solution.
  • polyaniline complex 1 Some insolubles contained in the obtained polyaniline complex toluene solution were removed by # 5C filter paper, and the toluene solution of the polyaniline complex was recovered. This solution was transferred to an evaporator, heated in a hot water bath at 60 ° C., and reduced in pressure to evaporate volatile components to obtain 43.0 g of polyaniline complex (hereinafter referred to as polyaniline complex 1). . As a result of measuring the chlorine content of the prepared polyaniline complex 1 by an organic chlorine content-coulometric titration method, it was confirmed that the chlorine content was less than 5 ppm by weight.
  • the obtained polyaniline complex 1 (0.25 g) was dissolved in 4.75 g of toluene and 0.25 g of isopropyl alcohol, and 10 mL of 1M sodium hydroxide aqueous solution was added to the solution and stirred for 15 minutes. Thereafter, the whole amount was No. The residue was washed with 10 mL of toluene three times, 10 mL of ion-exchanged water three times, and 10 mL of methanol three times. The obtained solid content was dried under reduced pressure to prepare polyaniline for molecular weight measurement.
  • the flow rate was 0.40 ml / min
  • the column temperature was 60 ° C.
  • the injection amount was 100 ⁇ L
  • the UV detection wavelength was 270 nm.
  • molecular weight distribution was performed in polystyrene conversion.
  • the weight average molecular weight was 68700, and the molecular weight distribution was 2.9.
  • the doping rate of the polyaniline composite 1 was 0.36.
  • Production Example 3 Isopropyl alcohol 38 g, p-tert-amylphenol 38 g, and hexane 24 g were stirred and mixed until uniform. Thereafter, 10 g of the polyaniline complex 1 obtained in Production Example 1 was added to 90 g of the mixed solvent and dissolved uniformly. Further, 0.84 g of 2-naphthalenesulfonic acid hydrate was added to this solution and dissolved uniformly to prepare a 10% by mass polyaniline complex solution (conductive polymer solution).
  • Production Example 4 Isopropyl alcohol 38 g, p-tert-amylphenol 38 g, and hexane 24 g were stirred and mixed until uniform. Thereafter, 7 g of the polyaniline complex 1 obtained in Production Example 1 was added to 93 g of the mixed solvent and dissolved uniformly. Further, 0.59 g of 2-naphthalenesulfonic acid hydrate was added to this solution and dissolved uniformly to prepare a 7% by mass polyaniline complex solution (conductive polymer solution).
  • Example 1-1 4 g of boric acid was dissolved in 96 g of ion-exchanged water to prepare a 4% by mass boric acid aqueous solution.
  • One alumina ball (“NKHO-24” manufactured by Sumitomo Chemical Co., Ltd .: porous body made of an oxide of aluminum) having a diameter of 3 mm was immersed in 3 g of this aqueous boric acid solution for 5 minutes. Then, it dried at 150 degreeC for 30 minutes.
  • the alumina balls treated with the boric acid aqueous solution were immersed in a 1% by mass polyaniline complex solution (polyaniline complex solution obtained in Production Example 2) for 5 minutes, and then dried at 150 ° C. for 30 minutes.
  • the resulting alumina balls were cut with a nipper and observed for cross section. As a result, it was confirmed visually that the inner surface of the alumina ball was colored by the polyaniline complex solution.
  • a micrograph of the alumina ball cross section is shown in FIG.
  • Examples 1-2 to 1-61 Except that the acid or base solution shown in Table 1-1 or 1-2 was used, the alumina balls were treated in the same manner as in Example 1-1, immersed in the polyaniline complex solution, and evaluated. went. As a result, it was confirmed visually that the inner surface of the alumina ball was colored by the polyaniline complex solution.
  • mixed solvent is a solvent obtained by mixing ion-exchanged water and isopropyl alcohol at a mass ratio of 1: 1.
  • HPES refers to 2- [4- (2-hydroxyethyl) -1-biperazinyl] ethanesulfonic acid.
  • Example 1-1 Evaluations were made in the same manner as in Example 1-1 except that the treatment with the acid or salt solution was not performed. As a result, the polyaniline complex solution was not colored inside the alumina ball, and the polyaniline adhered only to the surface.
  • Example 2-1 1 g of boric acid was dissolved in 99 g of ion-exchanged water to prepare a 1% by mass boric acid aqueous solution.
  • a wound aluminum solid electrolytic capacitor was also prepared.
  • the capacitor is a capacitor element obtained by winding a roughened anode metal (an anode body made of a valve metal and its oxide) having a dielectric film and a cathode electrode through a separator.
  • One aluminum solid electrolytic capacitor (anodizing voltage: 133 V, separator: cellulose, theoretical capacity: 24.1 ⁇ F, diameter 5 mm ⁇ length 8 mm, manufactured by Nippon Advanced Science Co., Ltd.) is added to 5 g of 1% by weight boric acid aqueous solution. It was immersed for 1 minute and dried at 150 ° C. for 30 minutes. Next, this element was immersed in the 10% by mass polyaniline complex solution prepared in Production Example 2 for 2 minutes, dried at 100 ° C. for 10 minutes, and subsequently dried at 150 ° C. for 60 minutes.
  • Examples 2-2 to 2-13 A capacitor was prepared and evaluated in the same manner as in Example 2-1, except that the acid or salt solution shown in Table 2 was used instead of the 1% by mass boric acid aqueous solution. The results are shown in Table 2.
  • the solvent of the aqueous solution is ion exchange water. “IPA” refers to isopropanol. The “%” notation indicates mass%.
  • Comparative Example 2-1 A capacitor was prepared and evaluated in the same manner as in Example 2-1, except that the treatment with the acid or salt solution was not performed. The results are shown in Table 2.
  • Example 2-14 2 g of glycine was dissolved in 98 g of ion-exchanged water to prepare a 2% by mass glycine aqueous solution.
  • One aluminum solid electrolytic capacitor same as that prepared in Example 2-1 was immersed in 5 g of a 2 mass% glycine aqueous solution for 5 minutes and dried at 150 ° C. for 30 minutes.
  • this element was immersed in a 7 mass% polyaniline complex solution prepared according to Production Example 4 for 5 minutes, dried at 60 ° C. for 30 minutes, and then dried at 150 ° C. for 60 minutes. Immersion in this polyaniline complex solution and drying were repeated twice more.
  • the obtained capacitor was evaluated in the same manner as in Example 2-1. The results are shown in Table 3.
  • Example 2-15 2 g of HEPES (2- [4- (2-hydroxyethyl) -1-biperazinyl] ethanesulfonic acid) was dissolved in 98 g of ion-exchanged water to prepare a 2% by mass HEPES aqueous solution.
  • a capacitor was produced and evaluated in the same manner as in Example 2-14 except that a 2% by mass HEPES aqueous solution was used instead of the 2% by mass glycine aqueous solution. The results are shown in Table 3.
  • Comparative Example 2-2 A capacitor was prepared and evaluated in the same manner as in Example 2-14 except that the treatment with the acid or salt solution was not performed. The results are shown in Table 3.
  • Example 2-16 4 g of boric acid was dissolved in a mixed solution of 86.4 g of ion-exchanged water and 9.6 g of isopropyl alcohol to prepare a 4% by mass boric acid solution.
  • a wound aluminum solid electrolytic capacitor was also prepared.
  • the capacitor is a capacitor element obtained by winding a roughened anode metal (an anode body made of a valve metal and its oxide) having a dielectric film and a cathode electrode through a separator.
  • One aluminum solid electrolytic capacitor (anodizing voltage: 133 V, separator: PET, theoretical capacity: 24.1 ⁇ F, diameter ⁇ 5 mm ⁇ length 8 mm, manufactured by Nippon Advanced Science Co., Ltd.) is added to 5 g of 4% by weight boric acid aqueous solution. It was immersed for 5 minutes and dried at 150 ° C. for 30 minutes. Next, this element was immersed in a 7 mass% polyaniline complex solution prepared according to Production Example 4 for 5 minutes, dried at 60 ° C. for 30 minutes, and then dried at 150 ° C. for 60 minutes. Immersion in this polyaniline complex solution and drying were repeated once more. The obtained capacitor was evaluated in the same manner as in Example 2-1. The results are shown in Table 4.
  • Example 2-17 2 g of boric acid was dissolved in a mixed solution of 88.2 g of ion-exchanged water and 9.8 g of isopropyl alcohol to prepare a 2% by mass boric acid solution.
  • a capacitor was produced and evaluated in the same manner as in Example 2-16 except that a 2% by mass boric acid solution was used instead of the 4% by mass boric acid solution. The results are shown in Table 4.
  • Example 2-18 2 g of 2-ethylhexanoic acid was dissolved in a mixed solution of 49 g of ion-exchanged water and 49 g of isopropanol to prepare a 2% by mass 2-ethylhexanoic acid solution.
  • a capacitor was produced and evaluated in the same manner as in Example 2-16 except that a 2% by mass 2-ethylhexanoic acid solution was used in place of the 4% by mass boric acid aqueous solution. The results are shown in Table 4.
  • Example 2-19 2 g of 2-ethylhexyl phosphate (mono, di mixture) was dissolved in a mixed solution of 49 g of ion-exchanged water and 49 g of isopropanol to prepare a 2% by mass 2-ethylhexyl phosphate (mono, di mixture) solution.
  • a capacitor was produced and evaluated in the same manner as in Example 2-16, except that a 2% by mass 2-ethylhexyl phosphate (mono, di mixture) solution was used instead of the 4% by mass boric acid aqueous solution. The results are shown in Table 4.
  • Example 2-20 4 g of 2-ethylhexyl phosphate (mono, di mixture) was dissolved in a mixed solution of 48 g of ion-exchanged water and 48 g of isopropanol to prepare a 4 mass% 2-ethylhexyl phosphate (mono, di mixture) solution.
  • a capacitor was prepared and evaluated in the same manner as in Example 2-16, except that a 4% by mass 2-ethylhexyl phosphate (mono, di mixture) solution was used instead of the 4% by mass boric acid aqueous solution. The results are shown in Table 4.
  • Comparative Example 2-3 A capacitor was prepared and evaluated in the same manner as in Example 2-16 except that the treatment with the acid or salt solution was not performed. The results are shown in Table 4.
  • Example 2-21 2 g of glycine was dissolved in 98 g of ion-exchanged water to prepare a 2% by mass glycine aqueous solution.
  • One aluminum solid electrolytic capacitor same as that prepared in Example 2-1 was immersed in 5 g of a 2 mass% glycine aqueous solution for 5 minutes and dried at 110 ° C. under normal pressure for 30 minutes.
  • this element was immersed in a 7% by mass polyaniline solution prepared in Production Example 4 for 5 minutes, dried at 60 ° C. for 30 minutes, and subsequently dried at 150 ° C. for 60 minutes. Immersion in this polyaniline solution and drying were repeated once more.
  • the obtained capacitor was evaluated in the same manner as in Example 2-1. The results are shown in Table 5.
  • Examples 2-22 to 2-25 A capacitor was produced and evaluated in the same manner as in Example 2-21 except that the drying temperature after immersion in a 2% by mass glycine aqueous solution was changed to the temperature shown in Table 5. The results are shown in Table 5.
  • Example 2-26 4 g of boric acid was dissolved in 96 g of ion-exchanged water to prepare a 4% by mass boric acid aqueous solution.
  • a capacitor was fabricated in the same manner as in Example 2-21, except that a 4% by weight boric acid aqueous solution was used instead of the 2% by weight glycine aqueous solution, and the drying temperature after impregnation with the 4% by weight boric acid aqueous solution was 150 ° C. And evaluated. The results are shown in Table 5.
  • Examples 2-27, 2-28 A capacitor was produced and evaluated in the same manner as in Example 2-26 except that the drying temperature after impregnation with 4% by mass boric acid aqueous solution was changed to the temperature shown in Table 5. The results are shown in Table 5.
  • Comparative Example 2-4 A capacitor was produced and evaluated in the same manner as in Example 2-21 except that impregnation into a 2% by mass glycine aqueous solution and drying were not performed. The results are shown in Table 5.
  • Example 2-29 2 g of glycine was dissolved in 98 g of ion-exchanged water to prepare a 2% by mass glycine aqueous solution.
  • One aluminum solid electrolytic capacitor same as that prepared in Example 2-1 was immersed for 5 minutes in 5 g of a 2% by mass glycine aqueous solution and dried at 110 ° C. for 30 minutes.
  • this element was immersed in a 7 mass% polyaniline complex solution prepared according to Production Example 4 for 5 minutes, dried at 60 ° C. for 30 minutes, and then dried at 150 ° C. for 60 minutes.
  • the obtained capacitor was evaluated in the same manner as in Example 2-1. The results are shown in Table 6.
  • Examples 2-30 to 2-33 A capacitor was produced and evaluated in the same manner as in Example 2-29 except that the drying temperature after immersion in a 2% by mass glycine aqueous solution was changed to the temperature shown in Table 6. The results are shown in Table 6.
  • Tables 2 to 6 show that the solid electrolytic capacitors obtained by the production method of the present invention are excellent in capacitance and ESR. From Tables 5 and 6, it can be seen that when the drying temperature after immersion in an acid or salt solution is increased, the capacitor characteristics, in particular, the capacitance is excellent. Further, from Table 6, sufficiently high capacitor characteristics can be obtained by drying at a higher temperature after the treatment with the acid or salt solution even if the number of subsequent immersions in the conductive polymer solution is one. You can see that
  • Example 3 [Production and Evaluation of Conductive Polymer-Containing Porous Material Using Conductive Polymer Composition]
  • Example 3 (1) Production of conductive polymer composition 38 g of isopropyl alcohol and 24 g of hexane are mixed (component (b)), and 38 g of p-tert-amylphenol (component (e)) is added thereto until uniform.
  • the mixed solvent A was prepared by stirring and mixing.
  • 1 g of polyaniline complex 1 (component (a)) and 1 g of 2-ethylhexanoic acid (component (c)) were added and uniformly dissolved in 98 g of the mixed solvent A.
  • the solubility parameter (SP value) ⁇ of 2-ethylhexanoic acid was calculated by the Fedors method described in “Polymer Engineering & Science”, 1974, Vol. 14, pages 147 to 154. Specifically, it was calculated using the following formula (A). (In the formula (A), ⁇ e i represents the cohesive energy density of the functional group in the molecular structure, and ⁇ v i represents the molar molecular volume.)
  • the SP value of 2-ethylhexanoic acid was 9.5 (cal / cm 3 ) 1/2 .
  • the SP value of 2-naphthalenesulfonic acid hydrate was 12.4 (cal / cm 3 ) 1/2 calculated from the structure of 2-naphthalenesulfonic acid.
  • the value of SO 3 group was used for ⁇ e i and ⁇ v i of the sulfonic acid group part at the time of SP value calculation.
  • Example 1-1 is the same as Example 1-1 except that alumina balls were immersed in 3 g of the above-described conductive polymer composition instead of 3 g of boric acid aqueous solution. Evaluation was performed in the same manner. As a result, it was confirmed visually that the inner surface of the alumina ball was colored with polyaniline.
  • Examples 4 to 23 Comparative Examples 3 and 4 Preparation of conductive polymer composition, calculation of SP value, and conductivity in the same manner as in Example 3 except that the type and amount of component (c) and the amounts of other components were changed as shown in Table 7. Production and evaluation of a polymer-containing porous material were performed. In Table 7, “-” indicates that no component was added. Note that the values of PO 4 groups were used for ⁇ e i and ⁇ v i of the phosphate group portion at the time of SP value calculation regardless of mono-form or di-form. In Examples 4 to 23, it was confirmed visually that the inner surface of the alumina ball was colored with polyaniline. In Comparative Examples 3 and 4, the alumina ball was not colored by the polyaniline complex, and the polyaniline was adhered only to the surface.
  • Example 24 7 g of polyaniline complex 1 (component (a)) and 2 g of DL-2-methylbutyric acid (component (c)) were added and uniformly dissolved in 91 g of the mixed solvent A. Further, 0.588 g of 2-naphthalenesulfonic acid hydrate (component (d)) is added to this solution and dissolved uniformly, and the polyaniline is added to the total of components (a) to (c) and (e). A polyaniline complex solution (conductive polymer composition) containing 7% by mass of the complex was prepared. A conductive polymer-containing porous body was produced and evaluated in the same manner as in Example 3 using the composition. As a result, it was confirmed visually that the inner surface of the alumina ball was colored with polyaniline.
  • Examples 25 and 26 Except having changed the quantity of each component like Table 7, preparation of the conductive polymer composition, manufacture of the conductive polymer containing porous body, and evaluation were performed like Example 24. FIG. In Examples 25 and 26, it was confirmed visually that the inner side of the alumina ball was colored with polyaniline.
  • Example 27 36 g of 1-methoxy-2-propanol and 39 g of an isoparaffinic hydrocarbon (“IP Solvent 1620” manufactured by Idemitsu Kosan Co., Ltd.) consisting of components having 9 to 12 carbon atoms were mixed (component (b)), and p-tert -A mixed solvent B was prepared by adding 25 g of amylphenol (component (e)) and stirring and mixing until uniform. 1 g of polyaniline complex 1 (component (a)) and 4 g of DL-2-methylbutyric acid (component (c)) were added and uniformly dissolved in 95 g of the mixed solvent B.
  • IP Solvent 1620 manufactured by Idemitsu Kosan Co., Ltd.
  • a polyaniline complex solution (conductive polymer composition) containing 1% by mass of the complex was prepared.
  • a conductive polymer-containing porous body was produced and evaluated in the same manner as in Example 3 using the composition. As a result, it was confirmed visually that the inner surface of the alumina ball was colored with polyaniline.
  • Example 28 Comparative Example 5 A conductive polymer composition was prepared, and a conductive polymer-containing porous body was manufactured and evaluated in the same manner as in Example 27 except that the amount of each component was changed as shown in Table 8. In Table 8, “-” indicates that no component was added. In Example 28, it was confirmed visually that there was coloring with polyaniline to the inside of the alumina ball. In Comparative Example 5, the alumina ball was not colored by the polyaniline complex, and the polyaniline was adhered only to the surface.
  • Example 29 37.1 g of 3-methoxy-1-butanol and 37.1 g of ethylene glycol mono-tert-butyl ether were mixed (component (b)), and 19.8 g of p-tert-amylphenol (component (e)) was added thereto.
  • the mixed solvent C was prepared by stirring and mixing until uniform.
  • To 94.0 g of the mixed solvent C 0.7 g of polyaniline complex 1 (component (a)) and 5 g of DL-2-methylbutyric acid (component (c)) were added and dissolved uniformly.
  • a polyaniline complex solution (conductive polymer composition) of 0.7% by mass was prepared.
  • a conductive polymer-containing porous body was produced and evaluated in the same manner as in Example 3 using the composition. As a result, it was confirmed visually that the inner surface of the alumina ball was colored with polyaniline.
  • Example 30 Mix 34.65 g of 3-methoxy-1-butanol and 34.65 g of ethylene glycol mono-tert-butyl ether (component (b)), and add 19.8 g of p-tert-amylphenol (component (e)).
  • the mixed solvent D was prepared by stirring and mixing until uniform.
  • a polyaniline complex solution (conductive polymer composition) of 0.7% by mass was prepared.
  • a conductive polymer-containing porous body was produced and evaluated in the same manner as in Example 3 using the composition. As a result, it was confirmed visually that the inner surface of the alumina ball was colored with polyaniline.
  • Example 31 Mix 32.15 g of 3-methoxy-1-butanol and 32.15 g of ethylene glycol mono-tert-butyl ether (component (b)), and add 19.8 g of p-tert-amylphenol (component (e)).
  • the mixed solvent E was prepared by stirring and mixing until uniform.
  • a polyaniline complex solution (conductive polymer composition) of 0.7% by mass was prepared.
  • a conductive polymer-containing porous body was produced and evaluated in the same manner as in Example 3 using the composition. As a result, it was confirmed visually that the inner surface of the alumina ball was colored with polyaniline.
  • Comparative Example 6 40 g of 3-methoxy-1-butanol and 40 g of ethylene glycol mono-tert-butyl ether are mixed (component (b)), and 20 g of p-tert-amylphenol (component (e)) is added thereto to make uniform.
  • a mixed solvent F was prepared by stirring and mixing. To 99.3 g of the mixed solvent F, 0.7 g of polyaniline complex 1 (component (a)) was added and dissolved uniformly.
  • a polyaniline complex solution (conductive polymer composition) having a polyaniline complex content of 0.7% by mass was prepared.
  • a conductive polymer-containing porous body was produced and evaluated in the same manner as in Example 3 using the composition. As a result, the alumina ball was not colored by the polyaniline complex, and the polyaniline was adhered only to the surface.
  • Example 32 [Production and Evaluation of Conductive Polymer-Containing Porous Material and Winding Type Aluminum Solid Electrolytic Capacitor Using Conductive Polymer Composition]
  • Example 32 (1) Production and Evaluation of Conductive Polymer-Containing Porous Body To 91 g of mixed solvent, 7 g of polyaniline complex 1 (component (a)) and 2 g of DL-2-methylbutyric acid (component (c)) were added. It was dissolved uniformly. Further, 0.59 g of 2-naphthalenesulfonic acid hydrate (component (d)) is added to this solution and dissolved uniformly, and polyaniline is added to the total of components (a) to (c) and (e).
  • a polyaniline complex solution (conductive polymer composition) containing 7% by mass of the complex was prepared.
  • a conductive polymer-containing porous body was produced and evaluated in the same manner as in Example 3 using the composition. As a result, it was confirmed visually that the inner surface of the alumina ball was colored with polyaniline.
  • the capacitor is a capacitor element obtained by winding a roughened anode metal (an anode body made of a valve metal and its oxide) having a dielectric film and a cathode electrode through a separator.
  • Examples 33-38 A conductive polymer composition was prepared in the same manner as in Example 32 except that the amount of each component was changed as shown in Table 10.
  • the conductive polymer-containing porous body was manufactured, evaluated, and a wound aluminum solid. Electrolytic capacitors were manufactured and evaluated. In Examples 33 to 38, it was confirmed visually that the inside of the alumina ball was colored with polyaniline. Table 10 shows the evaluation results of the obtained capacitor.
  • Comparative Example 7 A conductive polymer composition was prepared in the same manner as in Example 32 except that the amount of each component was changed as shown in Table 10.
  • the conductive polymer-containing porous body was manufactured, evaluated, and a wound aluminum solid. Electrolytic capacitors were manufactured and evaluated. The inside of the alumina ball was not colored by the polyaniline complex, and the polyaniline was adhered only to the surface. Table 10 shows the evaluation results of the obtained capacitor.
  • Table 10 shows that the wound aluminum solid electrolytic capacitor obtained from the conductive polymer composition of the present invention has an excellent capacitance.
  • the solid electrolytic capacitor obtained by the production method of the present invention can be used as a circuit element mounted on an electric / electronic circuit board, particularly as a circuit element mounted on an automobile or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

(a)導電性高分子、(b)溶剤、及び(c)酸又は塩を含む導電性高分子組成物。

Description

導電性高分子組成物、導電性高分子含有多孔質体及びその製造方法並びに固体電解コンデンサ及びその製造方法
 本発明は、導電性高分子組成物、導電性高分子含有多孔質体及びその製造方法、並びに固体電解コンデンサ及びその製造方法に関する。
 導電性高分子の用途の1つとしてコンデンサの固体電解質が挙げられる。導電性高分子を使用することで、耐熱性が高く、抵抗の低い高性能なコンデンサを製造することができ、近年車載用途に普及しつつある。
 特許文献1には、コンデンサ素子を導電性高分子溶液に浸漬してコンデンサ素子内部に導電性高分子を浸透させ、その後乾燥することによって固体電解質層を形成する方法が開示されている。
特開2011-192983号公報
 しかしながら、従来の方法では得られたコンデンサの静電容量や等価直列抵抗(ESR)等の特性が未だ十分ではなく、改善の余地があった。
 本発明の目的の1つは、高性能な固体電解コンデンサ及びその製造方法を提供することである。
 本発明の他の目的は、新規な導電性高分子含有多孔質体及びその製造方法を提供することである。
 本発明の他の目的は、高性能な固体電解コンデンサを製造することができる導電性高分子組成物を提供することである。
 本発明者らは、コンデンサ特性が十分でない原因を検討した結果、従来の方法では、陽極表面に存在する微細な細孔の奥部(内部)まで導電性高分子組成物が十分に浸透しないため、固体電解質層を細孔内部まで均一かつ密に形成することが困難であり、そのため静電容量及びESRを十分に向上できないことを見出した。
 本発明者は、当該知見に基づき、アルミナ等の弁金属の酸化物の表面に存在する細孔内部に導電性高分子溶液を十分に浸透させる方法を鋭意検討した結果、弁金属の酸化物を酸又は塩で処理することにより弁金属の酸化物の表面が改質され、導電性高分子の浸透性が向上し、導電性高分子溶液を細孔の内部まで浸透させることができることを見出した。
 また、当該技術を固体電解コンデンサに適用し、固体電解コンデンサの弁金属とその酸化物からなる陽極体を酸又は塩によって処理することで陽極体の表面が改質され、導電性高分子溶液の浸透性が向上して細孔の奥まで固体電解質層を形成でき、固体電解コンデンサの静電容量とESRを向上できることを見出し、本発明を完成した。
 さらに、本発明者らは、導電性高分子組成物に酸又は塩を添加することによって導電性高分子組成物の浸透性を向上することができることを見出し、本発明を完成した。
 本発明によれば、以下の導電性高分子組成物が提供される。
「(a)導電性高分子、
(b)溶剤、及び
(c)酸又は塩
 を含む導電性高分子組成物。」
 この組成物の一態様として以下を例示できる。
「(a)導電性高分子、
(b)溶剤、及び
(c)前記溶剤に可溶な酸
 を含む導電性高分子組成物。」
 本発明によれば、以下の導電性高分子含有多孔質体の製造方法が提供される。
「弁金属の酸化物を有する多孔質体に酸又は塩の溶液を接触させる工程、及び
 前記接触と同時に又は前記接触後に、前記多孔質体に導電性高分子溶液を含浸させる工程
 を含む、導電性高分子含有多孔質体の製造方法。」
 この製造方法の一態様として以下を例示できる。
「弁金属の酸化物を有する多孔質体に酸又は塩の溶液を接触させる工程、及び
 前記接触後の多孔質体に導電性高分子溶液を含浸させる工程
 を含む、導電性高分子含有多孔質体の製造方法。」
 本発明によれば、以下の導電性高分子含有多孔質体が提供される。
「弁金属の酸化物を有する多孔質体であって、
 導電性高分子、及び酸又は塩を含む
 導電性高分子含有多孔質体。」
 この多孔質体の一態様として以下を例示できる。
「弁金属の酸化物を有する多孔質体であって、
 導電性高分子、及び疎水性基を有する酸を含む
 導電性高分子含有多孔質体。」
 本発明によれば、以下の固体電解コンデンサの製造方法が提供される。
「弁金属の酸化物からなる表面を有する、弁金属からなる多孔質体である陽極体に、酸又は塩の溶液を接触させる工程、及び
 前記接触と同時に又は前記接触後に、前記陽極体に導電性高分子溶液を含浸させ乾燥することによって、前記陽極体上に導電性高分子からなる固体電解質層を形成する工程
 を含む、固体電解コンデンサの製造方法。」
 この製造方法の一態様として以下を例示できる。
「弁金属とその酸化物からなる陽極体に、導電性高分子からなる固体電解質層を形成する固体電解コンデンサの製造方法であって、
 前記陽極体に酸又は塩の溶液を接触させる工程、及び
 前記接触後の陽極体に導電性高分子溶液を含浸させる工程
 を含む、固体電解コンデンサの製造方法。」
 この製造方法の他の態様として以下を例示できる。
「弁金属とその酸化物からなる陽極体に、上記導電性高分子組成物を含浸させ、乾燥することによって、前記陽極体上に導電性高分子からなる固体電解質層を形成する工程を含む、固体電解コンデンサの製造方法。」
 本発明によれば、以下の固体電解コンデンサが提供される。
「上記導電性高分子含有多孔質体を含む固体電解コンデンサ。」
「上記固体電解コンデンサの製造方法により得られた固体電解コンデンサ。」
 本発明によれば、高性能な固体電解コンデンサ及びその製造方法が提供できる。
 本発明によれば、新規な導電性高分子含有多孔質体及びその製造方法が提供できる。
 本発明によれば、高性能な固体電解コンデンサを製造することができる導電性高分子組成物が提供できる。
本発明の固体電解コンデンサに用いる導電性高分子含有多孔質体(陽極体と固体電解質層)の模式図である。 実施例1-1で得られた導電性高分子含有多孔質体の断面の顕微鏡写真である。
[導電性高分子含有多孔質体の製造方法]
 本発明の導電性高分子含有多孔質体の製造方法は、弁金属の酸化物を有する多孔質体に酸又は塩の溶液を接触させる工程、及び上記接触と同時に、又は接触後に、多孔質体に導電性高分子溶液を含浸させる工程を含む。
 弁金属の酸化物を有する多孔質体に酸又は塩の溶液を接触させることによって当該多孔質体の表面を改質し、導電性高分子溶液を多孔質体の細孔の奥まで浸透させることができる。また、後述するように、当該方法を電解コンデンサの製造に適用することにより、導電性高分子からなる固体電解質層を細孔の奥まで形成できるため、静電容量及びESRに優れる固体電解コンデンサを製造することができる。
 以下、当該製造方法について説明する。
(弁金属の酸化物を有する多孔質体に酸又は塩の溶液を接触させる工程)
 本工程では、弁金属の酸化物を有する多孔質体に酸又は塩の溶液を接触させ、その後、通常、多孔質体の乾燥を行う。
 弁金属の酸化物を有する多孔質体の弁金属としては、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられ、アルミニウム又はタンタルが好ましい。酸化物としては、これら金属の酸化物が挙げられる。
 弁金属の酸化物を有する多孔質体としては、弁金属の酸化物のみからなる多孔質体や、構造の一部が弁金属の酸化物である多孔質体が挙げられる。後者の場合、多孔質体の表面に弁金属の酸化物が存在すると好ましい。
 多孔質体は細孔が存在する材料であり、好ましくはその表面に直径1nm~10μm程度の細孔を多数有する。
 多孔質体の形状は特に制限されず、例えば成形体又は膜(箔)であって、一定の厚さを有するものである。
 当該多孔質体としては、例えば弁金属の酸化物のみからなる成形体(例えば細孔を有する酸化アルミニウムからなる球体(アルミナボール))が挙げられる。また、弁金属とその酸化物からなる膜(箔)(例えば粗面化によりエッチング孔を有するアルミニウムと、その表面に形成された酸化アルミニウムとからなる膜(箔)(アルミニウム電解コンデンサの陽極材料))が挙げられる。
 接触に用いる酸又は塩としては特に制限はない。酸とは、酸性基(H)を有するアレニウス酸又はブレンステッド酸である。例えば、スルホン酸及びその塩、リン酸及びその塩、リン酸エステル及びその塩、カルボン酸及びその塩、アミノ酸及びその塩、ホウ酸及びその塩、ボロン酸及びその塩等が挙げられる。
 塩は、対応する酸のアンモニウム塩、アルカリ金属塩(例えばナトリウム塩、リチウム塩、カリウム塩等)等を用いることができる。
 具体的には、リン酸及びその塩;リン酸モノメチル、リン酸ジメチル、リン酸モノメチルとリン酸ジメチルの混合体及びそれらの塩;リン酸モノエチル、リン酸ジエチル、リン酸モノエチルとリン酸ジエチルの混合体及びそれらの塩;リン酸モノイソプロピル、リン酸ジイソプロピル、リン酸モノイソプロピル及びリン酸ジイソプロピルの混合体及びそれらの塩;リン酸モノブチル、リン酸ジブチル、リン酸モノブチルとリン酸ジブチルの混合体及びそれらの塩;リン酸モノ(2-エチルヘキシル)、リン酸ジ(2-エチルヘキシル)、リン酸モノ(2-エチルヘキシル)とリン酸ジ(2-エチルヘキシル)の混合体及びそれらの塩;酢酸及びその塩;プロピオン酸及びその塩;酪酸及びその塩;DL-2-メチル酪酸及びその塩;2-エチルヘキサン酸及びその塩;3,5,5-トリメチルヘキサン酸及びその塩;ミリスチン酸及びその塩;2-メチル吉草酸及びその塩;アジピン酸及びその塩;グリシン及びその塩;βアラニン及びその塩;DL-アラニン及びその塩;DL-バリン及びその塩;(±)-10-カンファースルホン酸及びその塩;スルホコハク酸ジオクチル及びその塩;2-[4-(2-ヒドロキシエチル)-1-ビペラジニル]エタンスルホン酸及びその塩;ホウ酸及びホウ酸塩;ドデシルベンゼンスルホン酸及びドデシルベンゼンスルホン酸塩;フェニルボロン酸及びフェニルボロン酸塩等が挙げられる。
 これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 上記のうち、リン酸エステル及びその塩、カルボン酸及びその塩、カルボン酸エステル及びその塩、アミノ酸及びその塩等であってもよい。尚、耐熱安定化剤とは異なる酸を用いるように構成してもよい。
 酸又は塩の溶液の濃度は、通常0.5~15.0質量%であり、好ましくは1.0~5.0質量%である。使用する酸又は塩の種類に応じて、弁金属の酸化物を溶解させない範囲で適宜設定する。
 当該溶液の溶媒は、酸又は塩が溶解するものであれば特に制限はない。例えば、水、アルコール、ケトン、エーテル等が挙げられる。または導電性高分子溶液の溶媒と共通する同じ溶媒でもよい。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 接触の方法は、多孔質体と酸又は塩の溶液が十分に接触する方法であれば特に制限されないが、多孔質体を酸又は塩の溶液に浸漬する方法が好ましい。
 当該溶液との接触(浸漬)時間は、通常1~30分であり、好ましくは1~10分である。接触温度は特に制限はないが、通常、常温である。接触は常圧又は減圧下で行うことが好ましい。
 酸又は塩の溶液との接触の後、通常、多孔質体を乾燥する。乾燥条件は、用いる酸又は塩の溶液や溶媒の種類によって異なるが、当該溶液の溶媒を除去できる条件であれば特に制限はない。乾燥温度は、通常80~250℃であり、好ましくは110~200℃であり、より好ましくは150~200℃である。乾燥時間は、通常10~60分であり、好ましくは30~60分である。
 より高温で乾燥することで溶媒等の残留量が少なくなり、導電性高分子溶液の浸透性を向上することができる。
(多孔質体に導電性高分子溶液を含浸させる工程)
 本工程では、酸又は塩と接触した又は酸又は塩と接触する多孔質体に、導電性高分子溶液を含浸させる。その後、通常、乾燥を行うことにより、多孔質体の細孔内部とその上に導電性高分子からなる固体電解質層を形成して、導電性高分子含有多孔質体を得る。
 導電性高分子含有多孔質体とは、導電性高分子を含む多孔質体であり、具体的には、細孔内部やその上に導電性高分子からなる固体電解質(固体電解質層)を含む多孔質体等である。
 導電性高分子含有多孔質体としては、例えば、導電性高分子からなる固体電解質を含む酸化アルミニウムの球体(アルミナボール)や、導電性高分子からなる固体電解質(固体電解質層)が形成されたアルミニウム電解コンデンサの陽極材料(弁金属とその酸化物からなる陽極体)が挙げられる。
 導電性高分子としては、ポリアニリン、ポリチオフェン、ポリピロール及びこれらの誘導体等が挙げられる。これらは置換基を有してもよいし有していなくてもよい。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 導電性高分子としてはポリアニリンが好ましい。
 ポリアニリンは、好ましくは重量平均分子量が10,000以上であり、より好ましくは20,000以上であり、さらに好ましくは30,000以上1,000,000以下であり、よりさらに好ましくは40,000以上1,000,000以下であり、特に好ましくは52,000以上1,000,000以下である。
 例えば、固体電解コンデンサの固体電解質層に用いる場合、得られる電解質層の強度を高くできる観点から、一般に、導電性高分子の分子量が大きいほど好ましい。一方、分子量が大きいと粘度が高くなるため、多孔質体の細孔内部に含浸させることがより困難となる。
 本発明によれば、酸又は塩の溶液による処理を行うことで、粘度が高い導電性高分子であっても細孔内部に含浸させることができる。
 ポリアニリンの分子量は、例えば以下の方法により測定することができる:
 ポリアニリン複合体0.25gをトルエン5gに溶解し、1M水酸化ナトリウム水溶液を10mL加えて15分間攪拌を行った後吸引ろ過する。得られた残渣をトルエン10mLで3回、イオン交換水10mLで3回、メタノール10mLで3回洗浄を行い、得られた固形分を減圧乾燥し、得られたポリアニリンの分子量をGPCで測定する。
 尚、上記方法で得られる分子量は、ポリスチレン(PS)換算値である。
 ポリアニリンは置換基を有しても有さなくてもよいが、汎用性及び経済性の観点から、好ましくは無置換のポリアニリンである。
 置換基を有する場合の置換基としては、例えばメチル基、エチル基、ヘキシル基、オクチル基等の直鎖又は分岐の炭化水素基;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基等のアリールオキシ基;トリフルオロメチル基(-CF基)等のハロゲン化炭化水素が挙げられる。
 また、ポリアニリンにプロトン供与体がドープしたポリアニリン複合体であると好ましい。
 プロトン供与体がポリアニリンにドープしていることは、紫外・可視・近赤外分光法やX線光電子分光法によって確認することができ、当該プロトン供与体は、ポリアニリンにキャリアを発生させるに十分な酸性を有していれば、特に化学構造上の制限なく使用できる。
 当該ポリアニリン複合体を用いることにより、溶媒への溶解性が向上するため好ましい。
 プロトン供与体としては、例えばブレンステッド酸、又はそれらの塩が挙げられ、好ましくは有機酸、又はそれらの塩であり、さらに好ましくは下記式(I)で示されるプロトン供与体である。
   M(XARn)m   (I)
 式(I)のMは、水素原子、有機遊離基又は無機遊離基である。
 上記有機遊離基としては、例えば、ピリジニウム基、イミダゾリウム基、アニリニウム基が挙げられる。また、上記無機遊離基としては、例えば、リチウム、ナトリウム、カリウム、セシウム、アンモニウム、カルシウム、マグネシウム、鉄が挙げられる。
 式(I)のXは、アニオン基であり、例えば-SO 基、-PO 2-基、-PO(OH)基、-OPO 2-基、-OPO(OH)基、-COO基が挙げられ、好ましくは-SO 基である。
 式(I)のAは(M(XARn)mのAの定義は)、置換又は無置換の炭化水素基である。
 上記炭化水素基は、鎖状若しくは環状の飽和脂肪族炭化水素基、鎖状若しくは環状の不飽和脂肪族炭化水素基、又は芳香族炭化水素基である。
 鎖状の飽和脂肪族炭化水素としては、直鎖若しくは分岐状のアルキル基が挙げられる。環状の飽和脂肪族炭化水素基としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基が挙げられる。ここで環状の飽和脂肪族炭化水素基は、複数の環状の飽和脂肪族炭化水素基が縮合していてもよい。例えば、ノルボルニル基、アダマンチル基、縮合したアダマンチル基が挙げられる。芳香族炭化水素基としては、フェニル基、ナフチル基、アントラセニル基等が挙げられる。鎖状の不飽和脂肪族炭化水素としては、直鎖若しくは分岐状のアルケニル基等が挙げられる。
 ここで、Aが置換の炭化水素基である場合の置換基は、アルキル基、シクロアルキル基、ビニル基、アリル基、アリール基、アルコキシ基、ハロゲン基、ヒドロキシ基、アミノ基、イミノ基、ニトロ基、シリル基又はエステル基等である。
 式(I)のRは、Aと結合しており、それぞれ独立して、-H、-R、-OR、-COR、-COOR、-(C=O)―(COR)、又は―(C=O)―(COOR)で表わされる置換基あり、Rは、置換基を含んでもよい炭化水素基、シリル基、アルキルシリル基、-(RO)x-R基、又は-(OSiR )x-OR(Rはそれぞれ独立にアルキレン基、Rはそれぞれ独立に炭化水素基であり、xは1以上の整数である)である。
 Rの炭化水素基としては、メチル基、エチル基、直鎖若しくは分岐のブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、ペンタデシル基、エイコサニル基等が挙げられる。また、当該炭化水素基の置換基は、アルキル基、シクロアルキル基、ビニル基、アリル基、アリール基、アルコキシ基、ハロゲン基、ヒドロキシ基、アミノ基、イミノ基、ニトロ基又はエステル基等である。Rの炭化水素基もRと同様である。
 Rのアルキレン基としては、例えばメチレン基、エチレン基、プロピレン基等が挙げられる。
 式(I)のnは1以上の整数であり、式(I)のmは、Mの価数/Xの価数である。
 式(I)で示される化合物としては、ジアルキルベンゼンスルフォン酸、ジアルキルナフタレンスルフォン酸、又はエステル結合を2以上含有する化合物が好ましい。
 上記エステル結合を2以上含有する化合物は、スルホフタール酸エステル、又は下式(II)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000001
(式中、M,X及びmは、式(I)と同様である。Xは、-SO 基が好ましい。)
 式(II)のR、R及びRは、それぞれ独立して水素原子、炭化水素基又はR Si-基(ここで、Rは炭化水素基であり、3つのRは同一又は異なっていてもよい)である。
 R、R及びRが炭化水素基である場合の炭化水素基としては、炭素数1~24の直鎖若しくは分岐状のアルキル基、芳香環を含むアリール基、アルキルアリール基等が挙げられる。
 Rの炭化水素基としては、R、R及びRの場合と同様である。
 式(II)のR及びRは、それぞれ独立に、炭化水素基又は-(R10O)-R11基[ここで、R10は炭化水素基又はシリレン基であり、R11は水素原子、炭化水素基又はR12 Si-(R12は、炭化水素基であり、3つのR12は同一又は異なっていてもよい)であり、qは1以上の整数である]である。
 R及びRが炭化水素基である場合の炭化水素基としては、炭素数1~24、好ましくは炭素数4以上の直鎖若しくは分岐状のアルキル基、芳香環を含むアリール基、アルキルアリール基等が挙げられ、R及びRが炭化水素基である場合の炭化水素基の具体例としては、例えば、直鎖又は分岐状のブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基等が挙げられる。
 R及びRにおける、R10が炭化水素基である場合の炭化水素基としては、例えば炭素数1~24の直鎖若しくは分岐状のアルキレン基、芳香環を含むアリーレン基、アルキルアリーレン基、アリールアルキレン基である。また、R及びRにおける、R11及びR12が炭化水素基である場合の炭化水素基としては、R、R及びRの場合と同様であり、qは、1~10であることが好ましい。
 R及びRが-(R10O)-R11基である場合の式(II)で表わされる化合物の具体例としては、下記式で表わされる2つの化合物である。
Figure JPOXMLDOC01-appb-C000002
(式中、Xは式(I)と同様である。)
 上記式(II)で表わされる化合物は、下記式(III)で示されるスルホコハク酸誘導体であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、Mは、式(I)と同様である。m’は、Mの価数である。)
 式(III)のR13及びR14は、それぞれ独立に、炭化水素基又は-(R15O)-R16基[ここで、R15はそれぞれ独立に炭化水素基又はシリレン基であり、R16は水素原子、炭化水素基又はR17 Si-基(ここで、R17はそれぞれ独立に炭化水素基である)であり、rは1以上の整数である]である。
 R13及びR14が炭化水素基である場合の炭化水素基としては、R及びRと同様である。
 R13及びR14において、R15が炭化水素基である場合の炭化水素基としては、上記R10と同様である。また、R13及びR14において、R16及びR17が炭化水素基である場合の炭化水素基としては、上記R、R及びRと同様である。
 rは、1~10であることが好ましい。
 R13及びR14が-(R15O)-R16基である場合の具体例としては、R及びRにおける-(R10O)-R11と同様である。
 R13及びR14の炭化水素基としては、R及びRと同様であり、ブチル基、ヘキシル基、2-エチルヘキシル基、デシル基等が好ましい。
 上記プロトン供与体はその構造を変えることにより、ポリアニリン複合体の導電性や、溶剤への溶解性をコントロールできることが知られている(特許第3384566号)。本発明においては、用途毎の要求特性によって最適なプロトン供与体を選択できる。
 ポリアニリンに対するプロトン供与体のドープ率は、好ましくは0.30以上0.65以下であり、より好ましくは0.32以上0.60以下であり、さらに好ましくは0.33以上0.57以下であり、特に好ましくは0.34以上0.55以下である。ドープ率が0.30未満である場合、ポリアニリン複合体の有機溶剤への溶解性が高くならないおそれがある。
 ドープ率は(ポリアニリンにドープしているプロトン供与体のモル数)/(ポリアニリンのモノマーユニットのモル数)で定義される。例えば無置換ポリアニリンとプロトン供与体を含むポリアニリン複合体のドープ率が0.5であることは、ポリアニリンのモノマーユニット分子2個に対し、プロトン供与体が1個ドープしていることを意味する。
 尚、ドープ率は、ポリアニリン複合体中のプロトン供与体とポリアニリンのモノマーユニットのモル数が測定できれば算出可能である。例えば、プロトン供与体が有機スルホン酸の場合、プロトン供与体由来の硫黄原子のモル数と、ポリアニリンのモノマーユニット由来の窒素原子のモル数を、有機元素分析法により定量し、これらの値の比を取ることでドープ率を算出できる。但し、ドープ率の算出方法は、当該手段に限定されない。
 ポリアニリン複合体は、無置換ポリアニリンとプロトン供与体であるスルホン酸とを含み、下記式(5)を満たすことが好ましい。
0.32≦S/N≦0.60   (5)
(式中、Sはポリアニリン複合体に含まれる硫黄原子のモル数の合計であり、Nはポリアニリン複合体に含まれる窒素原子のモル数の合計である。
 尚、上記窒素原子及び硫黄原子のモル数は、例えば有機元素分析法により測定した値である。)
 導電性高分子溶液の濃度は、通常0.1~15.0質量%であり、好ましくは1.0~10.0質量%である。溶媒は導電性高分子を溶解できるものであれば特に制限はないが、例えば、芳香族系炭化水素、脂肪族炭化水素、アルコール、フェノール、ケトン、エーテル等が挙げられる。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 導電性高分子溶液は、好ましくはさらにフェノール性化合物を含む。
 フェノール性化合物は特に限定されず、ArOH(ここで、Arはアリール基又は置換アリール基である)で示される化合物である。具体的には、フェノール、o-,m-若しくはp-クレゾール、o-,m-若しくはp-エチルフェノール、o-,m-若しくはp-プロピルフェノール、o-,m-若しくはp-ブチルフェノール、o-,m-若しくはp-クロロフェノール、サリチル酸、ヒドロキシ安息香酸、ヒドロキシナフタレン等の置換フェノール類;カテコール、レゾルシノール等の多価フェノール性化合物;及びフェノール樹脂、ポリフェノール、ポリ(ヒドロキシスチレン)等の高分子化合物等を例示することができる。
 また、下記式(3)で表されるフェノール性化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000004
(式中、nは1~5の整数である。
 Rは、それぞれ炭素数2~10のアルキル基、炭素数2~20のアルケニル基、炭素数1~20のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~20のアルキルアリール基又は炭素数7~20のアリールアルキル基である。)
 上記のRについて、以下に説明する。
 アルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、ターシャルブチル、ターシャルアミル等が挙げられる。
 アルケニル基としては、上述したアルキル基の分子内に不飽和結合を有する置換基が挙げられる。
 シクロアルキル基としては、シクロペンタン、シクロヘキサン等が挙げられる。
 アルキルチオ基としては、メチルチオ、エチルチオ等が挙げられる。
 アリール基としては、フェニル、ナフチル等が挙げられる。
 アルキルアリール基、及びアリールアルキル基としては、上述したアルキル基とアリール基を組み合わせて得られる置換基等が挙げられる。
 これらの基のうち、Rとしては、メチル又はエチル基が好ましい。
 フェノール性化合物の含有量は、好ましくはポリアニリン複合体100質量部に対して10~5000質量部であり、より好ましくは10~2000質量部である。当該フェノール性化合物を用いることにより、導電性が向上したり、アルコールへの溶解性が向上するため好ましい。
 導電性高分子溶液は、耐熱安定化剤として酸性物質又は酸性物質の塩を含んでもよい。酸性物質はスルホン酸基1つ以上含む有機酸(有機化合物の酸)、無機酸(無機化合物の酸)のいずれでもよい。
 酸性物質は、有機化合物の酸である有機酸、無機化合物の酸である無機酸のいずれでもよく、好ましくは有機酸である。
 酸性物質としては、好ましくはスルホン酸基を1つ以上含む有機酸である。
 上記スルホン酸基を有する有機酸は、好ましくはスルホン酸基を1つ以上有する、環状、鎖状又は分岐のアルキルスルホン酸、置換又は無置換の芳香族スルホン酸、又はポリスルホン酸である。
 上記アルキルスルホン酸としては、例えば、メタンスルホン酸、エタンスルホン酸、ジ2-エチルヘキシルスルホコハク酸が挙げられる。ここで、アルキル基は好ましくは炭素数が1~18の直鎖又は分岐のアルキル基である。
 上記芳香族スルホン酸としては、炭素数6~20のものが挙げられ、例えば、ベンゼン環を有するスルホン酸、ナフタレン骨格を有するスルホン酸、アントラセン骨格を有するスルホン酸が挙げられる。また、上記芳香族スルホン酸としては、置換又は無置換のベンゼンスルホン酸、ナフタレンスルホン酸及びアントラセンスルホン酸が挙げられる。
 置換基としては、例えば、アルキル基(例えば炭素数1~20のもの)、アルコキシ基(例えば炭素数1~20のもの)、ヒドロキシ基、ニトロ基、カルボキシ基、アシル基からなる群から選択される置換基であり、1以上置換していてもよい。例えば、ナフタレンスルホン酸、ドデシルベンゼンスルホン酸、アントラキノンスルホン酸が挙げられる。上記芳香族スルホン酸としては、置換又は無置換のナフタレンスルホン酸が好ましい。
 耐熱安定化剤の含有量は、好ましくはポリアニリン複合体100質量部に対して0.1~1000質量部であり、より好ましくは1~100質量部である。耐熱安定化剤を用いることにより、耐熱性が向上するため好ましい。
 溶剤は、導電性高分子を溶解するものであれば特に制限はないが、有機溶剤が好ましい。
 有機溶剤は、水溶性有機溶剤でもよいし、実質的に水に混和しない有機溶剤(水不混和性有機溶剤)でもよい。
 水溶性有機溶剤は、プロトン性極性溶媒でも非プロトン性極性溶媒でもよく、例えばイソプロピルアルコール、1-ブタノール、2-ブタノール、2-ペンタノール、ベンジルアルコール、アルコキシアルコール(例えば1-メトキシ-2-プロパノール、3-メトキシ-1-ブタノール)等のアルコール類;アセトン等のケトン類;テトラヒドロフラン、ジオキサン、エチレングリコールモノ-tert-ブチルエーテル等のエーテル類;Nメチルピロリドン等の非プロトン性極性溶剤等が挙げられる。
 水不混和性有機溶剤としては、例えば、ヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン、テトラリン等の炭化水素系溶剤;塩化メチレン、クロロホルム、四塩化炭素、ジクロロエタン、テトラクロロエタン等の含ハロゲン系溶剤;酢酸エチル、酢酸イソブチル、酢酸n-ブチル等のエステル系溶剤;メチルイソブチルケトン(MIBK)、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類溶剤;シクロペンチルメチルエーテル等のエーテル類溶剤等が挙げられる。また、炭化水素系溶剤として1種又は2種以上のイソパラフィンを含むイソパラフィン系溶剤を用いてもよい。
 これらのうち、導電性高分子の溶解性に優れる点でトルエン、キシレン、メチルイソブチルケトン、クロロホルム、トリクロロエタン及び酢酸エチルが好ましい。
 尚、ポリアニリン複合体は、溶剤がイソプロピルアルコール、1-ブタノール、2-ブタノール、2-ペンタノール、ベンジルアルコール、アルコキシアルコール等のアルコール類であっても溶解することができる。アルコールは、トルエン等の芳香族に比べて環境負荷低減の観点から好ましい。
 溶剤として有機溶剤を用いる場合、水不混和性有機溶剤と水溶性有機溶剤を99~1:1~99(質量比)で混合した混合有機溶剤を用いることにより、保存時のゲル等の発生を防止でき、長期保存できることから好ましい。
 上記混合有機溶剤の水不混和性有機溶剤として低極性有機溶剤が使用でき、低極性有機溶剤は、ヘキサン、トルエン等の炭化水素系溶剤;クロロホルム等の含ハロゲン系溶剤;イソパラフィン系溶剤が好ましい。
 混合有機溶剤の水溶性有機溶剤としては、高極性有機溶剤が使用でき、例えば、メタノール、エタノール、イソプロピルアルコール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2-プロパノール、3-メトキシ-1-ブタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノ-tert-ブチルエーテル等のエーテル類が好ましい。
 混合有機溶剤は水不混和性有機溶剤を1種又は2種以上含んでもよく、水溶性有機溶剤を1種又は2種以上含んでもよい。
 導電性高分子溶液の含浸方法は、多孔質体の細孔内部へ導電性高分子を十分に含浸できる方法であれば特に制限はないが、多孔質体を導電性高分子溶液に浸漬する方法が好ましい。含浸(浸漬)時間は、通常1~30分間であり、好ましくは1~10分間である。
 導電性高分子溶液の乾燥温度は、通常30~200℃であり、好ましくは100~180℃である。乾燥時間は、通常10~120分であり、好ましくは30~90分である。
 導電性高分子溶液の含浸工程と乾燥工程を繰り返し行ってもよく、例えば、2~10回繰り返し行ってもよい。
[導電性高分子含有多孔質体]
 本発明の導電性高分子含有多孔質体は、弁金属の酸化物を有する多孔質体であって、導電性高分子、及び酸又は塩を含む。本発明の導電性高分子含有多孔質体は上記の方法で得ることができる。多孔質体、導電性高分子、及び酸又は塩については上記の通りである。
[導電性高分子組成物]
 本発明の導電性高分子組成物は、下記(a)、(b)及び(c)成分を含む。
(a)導電性高分子
(b)溶剤
(c)酸又は塩
 上述したように、導電性高分子含有多孔質体は、多孔質体に酸又は塩を接触させ、導電性高分子溶液を含浸させて製造する。上記の導電性高分子組成物を、多孔質体に含浸させると、酸又は塩との接触と、導電性高分子溶液の含浸を同時に行うことができる。尚、予め酸又は塩の溶液と接触させて、その後再度酸又は塩を含む導電性高分子組成物を含浸させてもよい。
 このような導電性高分子組成物を用いれば、対象物に組成物を含浸させるという簡便な工程のみによって導電性高分子を浸透させることができ、追加の工程を要しないため経済性に優れる。
 以下、各成分について説明する。
((a)導電性高分子)
 導電性高分子は上記の通りである。
 成分(a)の濃度は、導電性高分子組成物に対して、通常0.3~20質量%であり、好ましくは0.5~20質量%であり、より好ましくは1~15質量%であり、さらに好ましくは1~10質量%である。
((b)溶剤)
 溶剤(b)は、(a)導電性高分子を溶解する溶剤として上記のものを使用できる。ただし、後述する(c)~(e)成分は含まない。
 成分(b)の含有量は、他の成分の量により適宜調整でき限定されないが、例えば、成分(a)100質量部に対して200~20000質量部、300~17000質量部又は500~12000質量部とできる。
((c)酸又は塩)
 成分(c)として、上記の酸又は塩を用いることができる。ただし、成分(c)は、後述する成分(d)と(e)は含まない。
 成分(c)として、溶剤(b)に可溶な酸を用いれば、より容易に成分(c)を多孔質体に接触させることができる。
 成分(c)は、好ましくは溶解度パラメーター(SP値)が13.0(cal/cm1/2以下であり、より好ましくは11.0(cal/cm1/2以下である。また、10.0(cal/cm1/2以下としてもよい。SP値は通常0(cal/cm1/2以上である。
 SP値は、「Polymer Engineering & Science」、1974年、第14巻、147~154頁に記載のFedors法により算出する。具体的には実施例に記載の通りである。
 成分(c)は、疎水性基を有する酸であると好ましい。
 疎水性基としては、直鎖アルキル基、分岐鎖アルキル基、アルキルフェニル基、アルキルナフチル基等が挙げられる。直鎖アルキル基、分岐鎖アルキル基のアルキル基、及びアルキルフェニル基、アルキルナフチル基に含まれるアルキル基の炭素数は、好ましくは2~20である。
 成分(c)としては、アルキルカルボン酸,リン酸モノエステル、リン酸ジエステル、アルキルベンゼンカルボン酸、アルキルベンゼンホスホン酸等が挙げられる。尚、アルキルベンゼンカルボン酸はR-Ph-COOHで表される化合物であり、アルキルベンゼンホスホン酸はR-Ph-PO(OH)で表される化合物である(式中、Rはアルキル基を示し、Phはフェニル基を示す)。
 アルキルカルボン酸、アルキルベンゼンカルボン酸及びアルキルベンゼンホスホン酸のアルキル基の炭素数は、好ましくは2~20である。リン酸モノエステル及びリン酸ジエステルは、好ましくはリン酸と炭素数2~20のアルコールから得られるエステルである。
 成分(c)としては、具体的に、プロピオン酸、DL-2-メチル酪酸、2-メチル吉草酸、2-エチルヘキサン酸、3,5,5-トリメチルヘキサン酸、ミリスチン酸、リン酸モノメチル、リン酸ジメチル、リン酸モノメチルとリン酸ジメチルの混合物、リン酸モノエチル、リン酸ジエチル、リン酸モノエチルとリン酸ジエチルの混合物、リン酸モノイソプロピル、リン酸ジイソプロピル、リン酸モノイソプロピルとリン酸ジイソプロピルの混合物、リン酸モノブチル、リン酸ジブチル、リン酸モノブチルとリン酸ジブチルの混合物、リン酸モノ(2-エチルヘキシル)、リン酸ジ(2-エチルヘキシル)、リン酸モノ(2-エチルヘキシル)とリン酸ジ(2-エチルヘキシル)の混合物等が挙げられる。
 成分(c)の含有量は、本発明の導電性高分子組成物に対して、好ましくは0.1~70質量%であり、より好ましくは0.5~70質量%であり、さらに好ましくは1~30質量%であり、よりさらに好ましくは2~20質量%である。
 成分(c)の含有量は、成分(a)100質量部に対して、例えば20~200質量部、25~150質量部としてもよい。成分(a)100質量部に対して、200~900質量部、400~800質量部としてもよい。また、成分(a)100質量部に対して、1000質量部超としてもよく、例えば1100~7000質量部、1200~3000質量部としてもよい。
 本発明の導電性高分子組成物は、上記の(a)~(c)成分に加えてさらに(d)耐熱安定化剤、及び/又は(e)フェノール性化合物を含んでもよい。
((d)耐熱安定化剤)
 成分(d)の耐熱安定化剤として上記の耐熱安定化剤を用いることができる。ただし、成分(d)は成分(e)を含まない。好ましくは置換又は無置換のナフタレンスルホン酸である。
 成分(d)の含有量は、好ましくは成分(a)100質量部に対して0.1~70質量部であり、より好ましくは1~55質量部であり、さらに好ましくは3~30質量部であり、特に好ましくは5~10質量部である。
((e)フェノール性化合物)
 成分(e)のフェノール性化合物として上記のフェノール性化合物を用いることができる。成分(e)は成分(b)~(d)とは異なる成分である。
 フェノール性化合物の含有量は、好ましくは成分(a)100質量部に対して10~5000質量部であり、より好ましくは100~4000質量部である。成分(e)を用いることにより、導電性が向上したり、アルコールへの溶解性が向上するため好ましい。
 また、(e)フェノール性化合物を成分(b)と混合し、混合溶剤として用いてもよい。
 本発明の導電性高分子組成物は、本質的に、成分(a)、(b)及び(c)、並びに、任意に(d)及び(e)からなる群から選択される1以上の成分からなってもよい。この場合、不可避不純物を含んでもよい。本発明の導電性高分子組成物の、例えば、70質量%以上、80質量%以上、90質量%以上、98質量%以上、99質量%以上、99.5質量%以上が、成分(a)、(b)及び(c)、並びに、任意に(d)及び(e)からなる群から選択される1以上の成分であってもよい。また、本発明の導電性高分子組成物は、成分(a)、(b)及び(c)、並びに、任意に(d)及び(e)からなる群から選択される1以上の成分のみからなってもよい。
[固体電解コンデンサの製造方法]
 本発明の固体電解コンデンサの製造方法は、弁金属の酸化物からなる表面を有する、弁金属からなる多孔質体である陽極体に、酸又は塩の溶液を接触させる工程、及び上記接触と同時に又は接触後に、陽極体に導電性高分子溶液を含浸させ乾燥することによって、陽極体上に導電性高分子からなる固体電解質層を形成する工程を含む。
 陽極体とは、弁金属(陽極)とその表面に形成された弁金属の酸化物(誘電体)からなる膜(箔)を意味する。
 一般的な固体電解コンデンサの製造方法は、陽極金属(弁金属)の表面を粗面化する工程、粗面化した陽極金属の表面に誘電体皮膜(弁金属の酸化物の膜)を形成する工程、及び固体電解質層を形成する工程を含む。さらに、固体電解質層を挟んで陽極と対向するように陰極を形成する工程も含む。
 上記の工程を全て通して行ってもよいし、対応する陽極と陰極が形成された既製品(陽極体は既に粗面化されて乾燥している)について、導電性高分子組成物を含浸させる工程を行ってもよい。
 本発明の製造方法において、陽極体に上記の導電性高分子組成物を含浸させることによって、酸又は塩との接触と、導電性高分子溶液の含浸を同時に行うことができる。また、予め酸又は塩の溶液と接触させて、その後再度酸又は塩を含む導電性高分子組成物を含浸させてもよい。
 図1に、本発明の陽極体と固体電解質層の模式図を示す。陽極体10は、表面に細孔(多孔)を有する多孔質体である。陽極体10は、弁金属11からなり、その表面は弁金属の酸化物12からなる。このように表面に凹凸のある陽極体10の上に、固体電解質層20が形成される。本発明では、固体電解質層20が、陽極体10の細孔に深く入り込むため、固体電解質層20を含むコンデンサの容量が高くなる。
 以下、当該製造方法について説明する。
(陽極金属の表面を粗面化する工程)
 本工程では、固体電解コンデンサの陽極金属(弁金属)の表面を粗面化(エッチング)して実効表面積を拡大する。または、陽極金属(弁金属)の微粉末を焼結することにより実効表面積を拡大した多孔質体を得る。
 陽極金属としては、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等の弁金属が挙げられ、アルミニウム又はタンタルが好ましい。
 粗面化(エッチング)は公知の方法により行うことができ、例えば、塩酸液に浸漬する方法(化学エッチング)、塩酸水溶液中でアルミニウムを陽極として電解する方法(電気化学的エッチング)等を用いることができる。
(陽極金属の表面に誘電体皮膜を形成する工程)
 本工程では、粗面化した陽極表面に誘電体の酸化皮膜を形成する。本工程は、通常、電解液中で電圧を印加して陽極酸化することによって行う(化成)。これにより、陽極金属の酸化物(誘電体)からなる皮膜が形成され、弁金属とその酸化物からなる陽極体が得られる。
 用いる電解液としては、アジピン酸、クエン酸、リン酸及びこれらの塩等を含む水溶液が挙げられる。陽極酸化は公知の方法により行うことができる。
(コンデンサ素子の形成工程)
 通常、上記の陽極酸化を行った後に、陽極電極(弁金属とその酸化物からなる陽極体)と陰極電極を用いてコンデンサ素子を形成する。素子形状は特に限定されず、例えば、捲回型素子又は積層型素子である。
 捲回型の場合、陽極電極と陰極電極とをセパレーターを介して捲回することによりコンデンサ素子を形成する。積層型の場合、複数の陽極電極と複数の陰極電極とを互いに積層してコンデンサ素子を形成する。
 本工程のコンデンサ素子の形成は、公知の方法により行うことができる。
(陽極体に酸又は塩の溶液を接触させる工程)
 本工程では、弁金属とその酸化物からなる陽極体に酸又は塩の溶液を接触させる。
 接触の方法は、陽極体と酸又は塩の溶液が十分に接触する方法であれば特に制限されないが、コンデンサ素子自体を酸又は塩の溶液に浸漬する方法が好ましい。
 酸又は塩の溶液は、上記で説明したものと同じである。接触(浸漬)時間は、通常30秒~30分であり、好ましくは1分~10分である。
 接触後の乾燥条件も上記で説明したものと同じである。
 より高温で乾燥することで溶媒等の残留量が少なくなり、導電性高分子溶液の浸透性を向上し、得られる固体電解コンデンサの性能を向上することができる。また、少ない浸漬回数でも十分なコンデンサ特性が獲得できるため、導電性高分子溶液への浸漬回数を減らすことができる。さらに、導電性高分子溶液の濃度を低くすることも可能となり、低コスト化が可能となる。
(陽極体を導電性高分子溶液に浸漬し、乾燥する工程)
 本工程では、酸又は塩の溶液によって処理した陽極体を導電性高分子溶液に浸漬し、乾燥することにより、陽極体の細孔内部及び表面に導電性高分子からなる固体電解質層を形成する。
 導電性高分子溶液への浸漬方法は、陽極体の細孔内部へ導電性高分子を充分に含浸できる方法であれば特に制限はないが、コンデンサ素子自体を導電性高分子溶液に浸漬する方法が好ましい。浸漬時間は、通常1~30分間であり、好ましくは1~10分間である。
 導電性高分子溶液は、上記で説明したものと同じである。
 乾燥温度は、通常30~200℃であり、好ましくは100~180℃である。乾燥時間は、通常10~120分であり、好ましくは30~90分である。
 導電性高分子溶液の含浸工程と乾燥工程を繰り返し行ってもよく、例えば、2~10回繰り返し行ってもよい。
 本工程は、通常、酸又は塩の溶液を接触させる工程の直後に行う。即ち、当該処理後、電圧印加等の操作を行わずに陽極体を導電性高分子溶液に浸漬する。
[固体電解コンデンサ]
 本発明の固体電解コンデンサは、上述した本発明の導電性高分子含有多孔質体を含む。具体的には、導電性高分子からなる固体電解質(固体電解質層)を含む陽極材料(弁金属とその酸化物からなる陽極体)を含む。
 また、本発明の固体電解コンデンサは、上述した固体電解コンデンサの製造方法により得ることができる。
 本発明の固体電解コンデンサは、電気・電子回路基板に実装される回路素子、特に、自動車等に搭載される回路素子として用いることができる。
[ポリアニリン複合体の製造]
製造例1
 エーロゾルOT(ジイソオクチルスルホコハク酸ナトリウム)37.8g及びポリオキシエチレンソルビタン脂肪酸エステル構造を有する非イオン乳化剤であるソルボンT-20(東邦化学工業株式会社製)1.47gをトルエン600mLに溶解した溶液を、窒素気流下においた6Lのセパラブルフラスコに入れ、さらにこの溶液に、22.2gのアニリンを加えた。その後、1Mリン酸1800mLを溶液に添加し、トルエンと水の2つの液相を有する溶液の温度を5℃に冷却した。
 溶液内温が5℃に到達した時点で、毎分390回転で撹拌を行った。65.7gの過硫酸アンモニウムを1Mリン酸600mLに溶解した溶液を、滴下ロートを用いて2時間かけて滴下した。滴下開始から18時間、溶液内温を5℃に保ったまま反応を実施した。その後、反応温度を40℃まで上昇させ、1時間反応を継続した。その後、静置することで二相に分離した水相側を分液した。有機相側にトルエン1500mLを追加し、1Mリン酸600mLで1回、イオン交換水600mLで3回洗浄を行うことでポリアニリン複合体(プロトネーションされたポリアニリン)トルエン溶液を得た。
 得られたポリアニリン複合体トルエン溶液に含まれる若干の不溶物を#5Cの濾紙により除去し、ポリアニリン複合体のトルエン溶液を回収した。この溶液をエバポレーターに移し、60℃の湯浴で加温し、減圧することにより、揮発分を蒸発留去し、43.0gのポリアニリン複合体を得た(以下、ポリアニリン複合体1とする)。
 調製したポリアニリン複合体1を有機物塩素分-電量滴定法により塩素含有量を測定した結果、塩素含有量が5重量ppm未満であることを確認した。
 得られたポリアニリン複合体1(0.25g)をトルエン4.75g、イソプロピルアルコール0.25gに溶解し、その溶液に1M水酸化ナトリウム水溶液を10mL加えて15分間撹拌を行った。その後、全量をNo.4のろ紙にて吸引ろ過し、残渣をトルエン10mLで3回、イオン交換水10mLで3回、メタノール10mLで3回洗浄を行った。得られた固形分を減圧乾燥することで、分子量測定用ポリアニリンを作製した。
 分子量測定用ポリアニリン2mgに0.01M LiBr含有NMPを10mL加え、シェイカーを用いて溶解させた。その後、ジ-エルサイエンス社製クロマトディスク(水系/非水系、0.45μ)を用いてろ過した後、GPC(ゲルパーミエーションクロマトグラフィー)を用いて分子量分布の測定を行った。
 GPC(ゲルパーミエーションクロマトグラフィー)の測定は昭和電工株式会社製GPCカラム(Shodex KF-806Mを2本、Shodex KF-803を1本)を用いて行い、測定条件は溶媒を0.01M LiBr含有NMP、流量を0.40ml/min、カラム温度を60℃、注入量を100μL、UV検出波長を270nmとした。また、分子量分布はポリスチレン換算で行った。
 重量平均分子量は68700、分子量分布は2.9であった。
 また、ポリアニリン複合体1のドープ率は0.36であった。
[ポリアニリン複合体溶液の調製]
製造例2
 イソプロピルアルコール38g、p-tert-アミルフェノール38g、ヘキサン24gを均一になるまで撹拌混合した。その後、この混合溶剤99gに製造例1で得られたポリアニリン複合体1を1g添加し、均一に溶解させた。また、この溶液に2-ナフタレンスルホン酸水和物を0.084g添加し、均一に溶解させ、1質量%のポリアニリン複合体溶液(導電性高分子溶液)を調製した。
製造例3
 イソプロピルアルコール38g、p-tert-アミルフェノール38g、ヘキサン24gを均一になるまで撹拌混合した。その後、この混合溶剤90gに製造例1で得られたポリアニリン複合体1を10g添加し、均一に溶解させた。また、この溶液に2-ナフタレンスルホン酸水和物を0.84g添加し、均一に溶解させ、10質量%のポリアニリン複合体溶液(導電性高分子溶液)を調製した。
製造例4
 イソプロピルアルコール38g、p-tert-アミルフェノール38g、ヘキサン24gを均一になるまで撹拌混合した。その後、この混合溶剤93gに製造例1で得られたポリアニリン複合体1を7g添加し、均一に溶解させた。また、この溶液に2-ナフタレンスルホン酸水和物を0.59g添加し、均一に溶解させ、7質量%のポリアニリン複合体溶液(導電性高分子溶液)を調製した。
[導電性高分子含有多孔質体の製造及び評価]
実施例1-1
 イオン交換水96gにホウ酸4gを溶解し、4質量%ホウ酸水溶液を調製した。このホウ酸水溶液3gにアルミナボール(住友化学株式会社製「NKHO-24」:直径3mm、アルミニウムの酸化物からなる多孔質体)1個を5分間浸漬した。その後、150℃で30分乾燥した。ホウ酸水溶液による処理を行ったアルミナボールを、1質量%のポリアニリン複合体溶液(製造例2で得たポリアニリン複合体溶液)に5分間浸漬し、その後、150℃で30分乾燥を行った。得られたアルミナボールをニッパーで切断し、断面観察を行った。その結果、アルミナボールの内側までポリアニリン複合体溶液による着色があることが目視で確認できた。アルミナボール断面の顕微鏡写真を図2に示す。
実施例1-2~1-61
 酸又は塩基の溶液として表1-1、1-2に記載のものを用いた以外は、実施例1-1と同様にしてアルミナボールの処理を行い、ポリアニリン複合体溶液に浸漬し、評価を行った。その結果、アルミナボールの内側までポリアニリン複合体溶液による着色があることが目視で確認できた。
 表1中、「混合溶媒」は、イオン交換水とイソプロピルアルコールを質量比1:1で混合して得られた溶媒である。「HEPES」は、2-[4-(2-ヒドロキシエチル)-1-ビペラジニル]エタンスルホン酸を示す。
比較例1-1
 酸又は塩の溶液による処理を行わなかった他は実施例1-1と同様の操作を行い、評価した。
 その結果、アルミナボール内部にはポリアニリン複合体溶液による着色が無く、表面のみにしかポリアニリンが付着しなかった。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[捲回型アルミニウム固体電解コンデンサの製造及び評価]
実施例2-1
 イオン交換水99gにホウ酸1gを溶解し、1質量%のホウ酸水溶液を調製した。また、捲回型アルミニウム固体電解コンデンサを用意した。当該コンデンサは、粗面化し、誘電体皮膜を形成した陽極金属(弁金属とその酸化物からなる陽極体)と、陰極電極とをセパレーターを介して捲回して得られたコンデンサ素子である。1質量%ホウ酸水溶液5gに、当該アルミニウム固体電解コンデンサ(陽極化成電圧:133V、セパレーター:セルロース、理論容量:24.1μF、直径5mm×長さ8mm、日本先端科学株式会社製)1個を1分間浸漬し、150℃で30分乾燥した。次に、この素子を、製造例3で調製した10質量%のポリアニリン複合体溶液に2分間浸漬し、100℃で10分の乾燥を行い、続けて150℃で60分の乾燥を行った。
 得られたコンデンサについて、LCRメーター(Agilent製 Precision LCR Meter E4980A)を用いて、周波数120Hz時のCap(静電容量)及びtanδ(誘電損失)、周波数100kHz時のESR(等価直列抵抗)の測定を行った。結果を表2に示す。
実施例2-2~2-13
 1質量%のホウ酸水溶液に代えて、表2に記載の酸又は塩の溶液を用いた以外は実施例2-1と同様にコンデンサを作製し、評価を行った。結果を表2に示す。
 水溶液の溶媒はイオン交換水である。「IPA」はイソプロパノールを示す。「%」表記は質量%を示す。
比較例2-1
 酸又は塩の溶液による処理を行わなかった以外は実施例2-1と同様にコンデンサを作製し、評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000007
実施例2-14
 イオン交換水98gにグリシン2gを溶解し、2質量%のグリシン水溶液を調製した。2質量%のグリシン水溶液5gに、実施例2-1で用意したものと同じアルミニウム固体電解コンデンサ1個を5分間浸漬し、150℃で30分乾燥した。次に、この素子を、製造例4により調製した7質量%のポリアニリン複合体溶液に5分間浸漬し、60℃で30分の乾燥を行い、続けて150℃で60分の乾燥を行った。このポリアニリン複合体溶液への浸漬及び乾燥をさらに2回繰り返し行った。
 得られたコンデンサについて、実施例2-1と同様に評価を行った。結果を表3に示す。
実施例2-15
 イオン交換水98gにHEPES(2-[4-(2-ヒドロキシエチル)-1-ビペラジニル]エタンスルホン酸)2gを溶解し、2質量%のHEPES水溶液を調製した。2質量%のグリシン水溶液に代えて2質量%のHEPES水溶液を用いた以外は実施例2-14と同様にコンデンサを作製し、評価を行った。結果を表3に示す。
比較例2-2
 酸又は塩の溶液による処理を行わなかった以外は実施例2-14と同様にコンデンサを作製し、評価を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000008
実施例2-16
 イオン交換水86.4g、イソプロピルアルコール9.6gの混合溶液にホウ酸4gを溶解し、4質量%のホウ酸溶液を調製した。また、捲回型アルミニウム固体電解コンデンサを用意した。当該コンデンサは、粗面化し、誘電体皮膜を形成した陽極金属(弁金属とその酸化物からなる陽極体)と、陰極電極とをセパレーターを介して捲回して得られたコンデンサ素子である。4質量%のホウ酸水溶液5gに、当該アルミニウム固体電解コンデンサ(陽極化成電圧:133V、セパレーター:PET、理論容量:24.1μF、直径φ5mm×長さ8mm、日本先端科学株式会社製)1個を5分間浸漬し、150℃で30分乾燥した。次に、この素子を、製造例4により調製した7質量%のポリアニリン複合体溶液に5分間浸漬し、60℃で30分の乾燥を行い、続けて150℃で60分の乾燥を行った。このポリアニリン複合体溶液への浸漬及び乾燥をさらに1回繰り返し行った。
 得られたコンデンサについて、実施例2-1と同様に評価を行った。結果を表4に示す。
実施例2-17
 イオン交換水88.2g、イソプロピルアルコール9.8gの混合溶液にホウ酸2gを溶解し、2質量%のホウ酸溶液を調製した。4質量%のホウ酸溶液に代えて2質量%のホウ酸溶液を用いた以外は実施例2-16と同様にコンデンサを作製し、評価を行った。結果を表4に示す。
実施例2-18
 イオン交換水49g、イソプロパノール49gの混合溶液に2-エチルヘキサン酸2gを溶解し、2質量%の2-エチルヘキサン酸溶液を調製した。4質量%のホウ酸水溶液に代えて2質量%の2-エチルヘキサン酸溶液を用いた以外は実施例2-16と同様にコンデンサを作製し、評価を行った。結果を表4に示す。
実施例2-19
 イオン交換水49g、イソプロパノール49gの混合溶液にリン酸2-エチルヘキシル(モノ、ジ混合体)2gを溶解し、2質量%のリン酸2-エチルヘキシル(モノ、ジ混合体)溶液を調製した。4質量%のホウ酸水溶液に代えて2質量%のリン酸2-エチルヘキシル(モノ、ジ混合体)溶液を用いた以外は実施例2-16と同様にコンデンサを作製し、評価を行った。結果を表4に示す。
実施例2-20
 イオン交換水48g、イソプロパノール48gの混合溶液にリン酸2-エチルヘキシル(モノ、ジ混合体)4gを溶解し、4質量%のリン酸2-エチルヘキシル(モノ、ジ混合体)溶液を調製した。4質量%のホウ酸水溶液に代えて4質量%のリン酸2-エチルヘキシル(モノ、ジ混合体)溶液を用いた以外は実施例2-16と同様にコンデンサを作製し、評価を行った。結果を表4に示す。
比較例2-3
 酸又は塩の溶液による処理を行わなかった以外は実施例2-16と同様にコンデンサを作製し、評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000009
 実施例2-21
 イオン交換水98gにグリシン2gを溶解し、2質量%のグリシン水溶液を調製した。2質量%のグリシン水溶液5gに、実施例2-1で用意したものと同じアルミニウム固体電解コンデンサ1個を5分間浸漬し、常圧、110℃で30分乾燥した。次に、この素子を、製造例4により調製した7質量%のポリアニリン溶液に5分間浸漬し、60℃で30分の乾燥を行い、続けて150℃で60分の乾燥を行った。このポリアニリン溶液への浸漬及び乾燥をさらに1回繰り返し行った。
 得られたコンデンサについて、実施例2-1と同様に評価を行った。結果を表5に示す。
実施例2-22~2-25
 2質量%のグリシン水溶液に浸漬後の乾燥温度を表5に示す温度とした以外は、実施例2-21と同様にしてコンデンサを作製し、評価を行った。結果を表5に示す。
実施例2-26
 イオン交換水96gにホウ酸4gを溶解し、4質量%のホウ酸水溶液を調製した。2質量%のグリシン水溶液に代えて4質量%のホウ酸水溶液を用い、4質量%ホウ酸水溶液含浸後の乾燥温度を150℃とした以外は、実施例2-21と同様にしてコンデンサを作製し、評価を行った。結果を表5に示す。
実施例2-27、2-28
 4質量%のホウ酸水溶液含浸後の乾燥温度を表5に示す温度とした以外は実施例2-26と同様にしてコンデンサを作製し、評価を行った。結果を表5に示す。
比較例2-4
 2質量%のグリシン水溶液への含浸及び乾燥を行わなかった以外は実施例2-21と同様にしてコンデンサを作製し、評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000010
実施例2-29
 イオン交換水98gにグリシン2gを溶解し、2質量%のグリシン水溶液を調製した。2質量%のグリシン水溶液5gに、実施例2-1で用意したものと同じアルミニウム固体電解コンデンサ1個を5分間浸漬し、110℃で30分乾燥した。次に、この素子を、製造例4により調製した7質量%のポリアニリン複合体溶液に5分間浸漬し、60℃で30分の乾燥を行い、続けて150℃で60分の乾燥を行った。
 得られたコンデンサについて、実施例2-1と同様に評価を行った。結果を表6に示す。
実施例2-30~2-33
 2質量%のグリシン水溶液に浸漬後の乾燥温度を表6に示す温度とした以外は、実施例2-29と同様にしてコンデンサを作製し、評価を行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000011
 表2~6より、本発明の製造方法によって得られた固体電解コンデンサは、静電容量及びESRに優れることが分かる。表5、6より、酸又は塩の溶液に浸漬後の乾燥の温度を高くすると、コンデンサ特性、特に静電容量に優れることが分かる。また、表6より、酸又は塩の溶液による処理の後に、より高温で乾燥することによって、その後の導電性高分子溶液への浸漬回数が1回であっても十分に優れたコンデンサ特性が得られることが分かる。
[導電性高分子組成物を用いた導電性高分子含有多孔質体の製造及び評価]
実施例3
(1)導電性高分子組成物の製造
 イソプロピルアルコール38g及びヘキサン24gを混合し(成分(b))、ここにp-tert-アミルフェノール38g(成分(e))を添加し、均一になるまで撹拌混合し、混合溶剤Aを調製した。
 混合溶剤A98gに、ポリアニリン複合体1(成分(a))を1g及び2-エチルヘキサン酸(成分(c))1gを添加して均一に溶解させた。また、この溶液に2-ナフタレンスルホン酸水和物(成分(d))を0.084g添加し、均一に溶解させて、成分(a)~(c),(e)の合計に対してポリアニリン複合体が1質量%であるポリアニリン複合体溶液(導電性高分子組成物)を調製した。
 2-エチルヘキサン酸の溶解度パラメーター(SP値)δは、「Polymer Engineering & Science」、1974年、第14巻、147~154頁に記載のFedors法により算出した。具体的に、下記式(A)を用いて算出した。
Figure JPOXMLDOC01-appb-M000012
(式(A)中、Δeは分子構造中の官能基の凝集エネルギー密度を示し、Δvはモル分子容を示す。)
 式(A)より、2-エチルヘキサン酸のSP値は9.5(cal/cm1/2であった。また、2-ナフタレンスルホン酸水和物のSP値は、2-ナフタレンスルホン酸の構造から算出し、12.4(cal/cm1/2であった。尚、SP値算出時のスルホン酸基部分のΔeとΔvはSO基の値を用いた。
(2)導電性高分子含有多孔質体の製造及び評価
 ホウ酸水溶液3gにアルミナボールを浸漬した代わりに上記の導電性高分子組成物3gにアルミナボールを浸漬した他は実施例1-1と同様に評価した。その結果、アルミナボールの内側までポリアニリンによる着色があることが目視で確認できた。
実施例4~23、比較例3,4
 成分(c)の種類と量、及び他の成分の量を表7のように変更した他は、実施例3と同様にして導電性高分子組成物の調製、SP値の算出、及び導電性高分子含有多孔質体の製造、評価を行った。表7中「-」は成分を添加しなかったことを示す。尚、SP値算出時のリン酸基部分のΔeとΔvはモノ-体、ジ-体にかかわらずPO基の値を用いた。
 実施例4~23において、アルミナボールの内側までポリアニリンによる着色があることが目視で確認できた。比較例3,4において、アルミナボールの内部にはポリアニリン複合体による着色がなく、表面のみにしかポリアニリンが付着していなかった。
実施例24
 混合溶剤A91gに、ポリアニリン複合体1(成分(a))を7g及びDL-2-メチル酪酸(成分(c))2gを添加して均一に溶解させた。また、この溶液に2-ナフタレンスルホン酸水和物(成分(d))を0.588g添加し、均一に溶解させて、成分(a)~(c),(e)の合計に対してポリアニリン複合体が7質量%であるポリアニリン複合体溶液(導電性高分子組成物)を調製した。
 上記組成物を用いて実施例3と同様にして導電性高分子含有多孔質体の製造及び評価を行った。その結果、アルミナボールの内側までポリアニリンによる着色があることが目視で確認できた。
実施例25,26
 各成分の量を表7のように変更した他は、実施例24と同様にして導電性高分子組成物の調製、及び導電性高分子含有多孔質体の製造、評価を行った。実施例25,26において、アルミナボールの内側までポリアニリンによる着色があることが目視で確認できた。
Figure JPOXMLDOC01-appb-T000013
実施例27
 1-メトキシ-2-プロパノール36g及び炭素数9~12の成分からなるイソパラフィン系炭化水素(出光興産株式会社製「IPソルベント1620」)39gを混合し(成分(b))、ここにp-tert-アミルフェノール25g(成分(e))を添加し、均一になるまで撹拌混合して混合溶剤Bを調製した。
 混合溶剤B95gに、ポリアニリン複合体1(成分(a))を1g及びDL-2-メチル酪酸(成分(c))4gを添加して均一に溶解させた。また、この溶液に2-ナフタレンスルホン酸水和物(成分(d))を0.084g添加し、均一に溶解させて、成分(a)~(c),(e)の合計に対してポリアニリン複合体が1質量%であるポリアニリン複合体溶液(導電性高分子組成物)を調製した。
 上記組成物を用いて実施例3と同様にして導電性高分子含有多孔質体の製造及び評価を行った。その結果、アルミナボールの内側までポリアニリンによる着色があることが目視で確認できた。
実施例28、比較例5
 各成分の量を表8のように変更した他は、実施例27と同様にして導電性高分子組成物の調製、及び導電性高分子含有多孔質体の製造、評価を行った。表8中「-」は成分を添加しなかったことを示す。
 実施例28において、アルミナボールの内側までポリアニリンによる着色があることが目視で確認できた。比較例5において、アルミナボールの内部にはポリアニリン複合体による着色がなく、表面のみにしかポリアニリンが付着していなかった。
Figure JPOXMLDOC01-appb-T000014
実施例29
 3-メトキシ-1-ブタノール37.1g及びエチレングリコールモノ-tert-ブチルエーテル37.1gを混合し(成分(b))、ここにp-tert-アミルフェノール19.8g(成分(e))を添加し、均一になるまで撹拌混合して混合溶剤Cを調製した。
 混合溶剤C94.0gに、ポリアニリン複合体1(成分(a))を0.7g及びDL-2-メチル酪酸(成分(c))5gを添加して均一に溶解させた。また、この溶液に2-ナフタレンスルホン酸水和物(成分(d))を0.3g添加し、均一に溶解させて、成分(a)~(e)の合計に対してポリアニリン複合体が約0.7質量%であるポリアニリン複合体溶液(導電性高分子組成物)を調製した。
 上記組成物を用いて実施例3と同様にして導電性高分子含有多孔質体の製造及び評価を行った。その結果、アルミナボールの内側までポリアニリンによる着色があることが目視で確認できた。
実施例30
 3-メトキシ-1-ブタノール34.65g及びエチレングリコールモノ-tert-ブチルエーテル34.65gを混合し(成分(b))、ここにp-tert-アミルフェノール19.8g(成分(e))を添加し、均一になるまで撹拌混合して混合溶剤Dを調製した。
 混合溶剤D89.1gに、ポリアニリン複合体1(成分(a))を0.7g及びDL-2-メチル酪酸(成分(c))9.9gを添加して均一に溶解させた。また、この溶液に2-ナフタレンスルホン酸水和物(成分(d))を0.3g添加し、均一に溶解させて、成分(a)~(e)の合計に対してポリアニリン複合体が約0.7質量%であるポリアニリン複合体溶液(導電性高分子組成物)を調製した。
 上記組成物を用いて実施例3と同様にして導電性高分子含有多孔質体の製造及び評価を行った。その結果、アルミナボールの内側までポリアニリンによる着色があることが目視で確認できた。
実施例31
 3-メトキシ-1-ブタノール32.15g及びエチレングリコールモノ-tert-ブチルエーテル32.15gを混合し(成分(b))、ここにp-tert-アミルフェノール19.8g(成分(e))を添加し、均一になるまで撹拌混合して混合溶剤Eを調製した。
 混合溶剤E84.1gに、ポリアニリン複合体1(成分(a))を0.7g及びDL-2-メチル酪酸(成分(c))15gを添加して均一に溶解させた。また、この溶液に2-ナフタレンスルホン酸水和物(成分(d))を0.3g添加し、均一に溶解させて、成分(a)~(e)の合計に対してポリアニリン複合体が約0.7質量%であるポリアニリン複合体溶液(導電性高分子組成物)を調製した。
 上記組成物を用いて実施例3と同様にして導電性高分子含有多孔質体の製造及び評価を行った。その結果、アルミナボールの内側までポリアニリンによる着色があることが目視で確認できた。
比較例6
 3-メトキシ-1-ブタノール40g及びエチレングリコールモノ-tert-ブチルエーテル40gを混合し(成分(b))、ここにp-tert-アミルフェノール20g成分(成分(e))を添加し、均一になるまで撹拌混合して混合溶剤Fを調製した。
 混合溶剤F99.3gに、ポリアニリン複合体1(成分(a))0.7gを添加して均一に溶解させた。また、この溶液に2-ナフタレンスルホン酸水和物(成分(d))を0.3g添加し、均一に溶解させて、成分(a),(b),(d),(e)の合計に対してポリアニリン複合体が0.7質量%であるポリアニリン複合体溶液(導電性高分子組成物)を調製した。
 上記組成物を用いて実施例3と同様にして導電性高分子含有多孔質体の製造及び評価を行った。その結果、アルミナボールの内部にはポリアニリン複合体による着色がなく、表面のみにしかポリアニリンが付着していなかった。
Figure JPOXMLDOC01-appb-T000015
[導電性高分子組成物を用いた導電性高分子含有多孔質体と捲回型アルミニウム固体電解コンデンサの製造及び評価]
実施例32
(1)導電性高分子含有多孔質体の製造及び評価
 混合溶剤A91gに、ポリアニリン複合体1(成分(a))を7g及びDL-2-メチル酪酸(成分(c))2gを添加して均一に溶解させた。また、この溶液に2-ナフタレンスルホン酸水和物(成分(d))を0.59g添加し、均一に溶解させて、成分(a)~(c),(e)の合計に対してポリアニリン複合体が7質量%であるポリアニリン複合体溶液(導電性高分子組成物)を調製した。
 上記組成物を用いて実施例3と同様にして導電性高分子含有多孔質体の製造及び評価を行った。その結果、アルミナボールの内側までポリアニリンによる着色があることが目視で確認できた。
(2)捲回型アルミニウム固体電解コンデンサの製造及び評価
 イオン交換水96gにホウ酸4gを溶解し、4質量%のホウ酸水溶液を調製した。また、捲回型アルミニウム固体電解コンデンサを用意した。当該コンデンサは、粗面化し、誘電体皮膜を形成した陽極金属(弁金属とその酸化物からなる陽極体)と、陰極電極とをセパレーターを介して捲回して得られたコンデンサ素子である。4質量%ホウ酸水溶液5gに、当該アルミニウム固体電解コンデンサ(陽極化成電圧:133V、セパレーター:セルロース、理論容量:24.1μF、直径5mm×長さ8mm、日本先端科学株式会社製)1個を5分間浸漬し、170℃で30分乾燥した。次に、この素子を、上記導電性高分子組成物に5分間浸漬し、60℃で30分の乾燥を行い、続けて150℃で60分の乾燥を行った。
 得られたコンデンサについて、LCRメーター(Agilent製 Precision LCR Meter E4980A)を用いて、周波数120Hz時の静電容量(Cap)の測定を行った。結果を表10に示す。
実施例33~38
 各成分の量を表10のように変更した他は、実施例32と同様にして導電性高分子組成物の調製、及び導電性高分子含有多孔質体の製造、評価および捲回型アルミニウム固体電解コンデンサの製造・評価を行った。実施例33~38において、アルミナボールの内側までポリアニリンによる着色があることが目視で確認できた。得られたコンデンサの評価結果を表10に示す。
比較例7
 各成分の量を表10のように変更した他は、実施例32と同様にして導電性高分子組成物の調製、及び導電性高分子含有多孔質体の製造、評価および捲回型アルミニウム固体電解コンデンサの製造・評価を行った。アルミナボールの内部にはポリアニリン複合体による着色がなく、表面のみにしかポリアニリンが付着していなかった。得られたコンデンサの評価結果を表10に示す。
Figure JPOXMLDOC01-appb-T000016
 表10より、本発明の導電性高分子組成物から得られた捲回型アルミニウム固体電解コンデンサは、静電容量が優れることが分かる。
 本発明の製造方法によって得られた固体電解コンデンサは、電気・電子回路基板に実装される回路素子、特に、自動車等に搭載される回路素子として用いることができる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

 

Claims (29)

  1. (a)導電性高分子、
    (b)溶剤、及び
    (c)酸又は塩
     を含む導電性高分子組成物。
  2.  前記成分(c)が、疎水性基を有する酸であり、
     前記疎水性基が、直鎖アルキル基、分岐鎖アルキル基、アルキルフェニル基、及びアルキルナフチル基からなる群から選択される1以上である請求項1に記載の導電性高分子組成物。
  3.  前記成分(c)が、アルキルカルボン酸、リン酸モノエステル、リン酸ジエステル、アルキルベンゼンカルボン酸及びアルキルベンゼンホスホン酸からなる群から選択される1以上である請求項1又は2に記載の導電性高分子組成物。
  4.  前記成分(c)が、プロピオン酸、DL-2-メチル酪酸、2-メチル吉草酸、2-エチルヘキサン酸、3,5,5-トリメチルヘキサン酸、ミリスチン酸、リン酸モノメチル、リン酸ジメチル、リン酸モノメチルとリン酸ジメチルの混合物、リン酸モノエチル、リン酸ジエチル、リン酸モノエチルとリン酸ジエチルの混合物、リン酸モノイソプロピル、リン酸ジイソプロピル、リン酸モノイソプロピルとリン酸ジイソプロピルの混合物、リン酸モノブチル、リン酸ジブチル、リン酸モノブチルとリン酸ジブチルの混合物、リン酸モノ(2-エチルヘキシル)、リン酸ジ(2-エチルヘキシル)、及びリン酸モノ(2-エチルヘキシル)とリン酸ジ(2-エチルヘキシル)の混合物からなる群から選択される1以上である請求項1又は2に記載の導電性高分子組成物。
  5.  前記成分(c)の含有量が、前記導電性高分子組成物の合計に対して1.0~70質量%である請求項1~4のいずれかに記載の導電性高分子組成物。
  6.  前記成分(a)が、ポリアニリン、ポリアニリン誘導体、ポリチオフェン、ポリチオフェン誘導体、ポリピロール及びポリピロール誘導体から選択される1以上である請求項1~5のいずれかに記載の導電性高分子組成物。
  7.  前記成分(a)が、ポリアニリンとプロトン供与体とを含むポリアニリン複合体であって、前記ポリアニリンが前記プロトン供与体でドープされている請求項1~6のいずれかに記載の導電性高分子組成物。
  8.  さらに(d)耐熱安定化剤を含む請求項1~7のいずれかに記載の導電性高分子組成物。
  9.  さらに(e)フェノール性化合物を含む請求項1~8のいずれかに記載の導電性高分子組成物。
  10.  弁金属の酸化物を有する多孔質体に酸又は塩の溶液を接触させる工程、及び
     前記接触と同時に又は前記接触後に、前記多孔質体に導電性高分子溶液を含浸させる工程
     を含む、導電性高分子含有多孔質体の製造方法。
  11.  前記酸又は塩の溶液の濃度が1.0~15.0質量%である請求項10に記載の導電性高分子含有多孔質体の製造方法。
  12.  前記酸又は塩が、スルホン酸及びその塩、リン酸及びその塩、リン酸エステル及びその塩、カルボン酸及びその塩、アミノ酸及びその塩、ホウ酸及びその塩、ボロン酸及びその塩からなる群から選択される1以上である請求項10又は11に記載の導電性高分子含有多孔質体の製造方法。
  13.  前記導電性高分子が、ポリアニリン、ポリアニリン誘導体、ポリチオフェン、ポリチオフェン誘導体、ポリピロール及びポリピロール誘導体から選択される1以上である請求項10~12のいずれかに記載の導電性高分子含有多孔質体の製造方法。
  14.  前記導電性高分子が、ポリアニリンとプロトン供与体とを含むポリアニリン複合体であって、前記ポリアニリンが前記プロトン供与体でドープされている請求項10~13のいずれかに記載の導電性高分子含有多孔質体の製造方法。
  15.  前記導電性高分子溶液が、前記ポリアニリン複合体とフェノール性化合物を含む請求項14に記載の導電性高分子含有多孔質体の製造方法。
  16.  前記導電性高分子溶液が、前記ポリアニリン複合体と、耐熱安定化剤とを含む請求項14又は15記載の導電性高分子含有多孔質体の製造方法。
  17.  弁金属の酸化物を有する多孔質体に、請求項1~9のいずれかに記載の導電性高分子組成物を含浸させることにより、
     前記接触と同時に、前記多孔質体に導電性高分子溶液を含浸させる請求項10に記載の導電性高分子含有多孔質体の製造方法。
  18.  弁金属の酸化物を有する多孔質体であって、
     導電性高分子、及び酸又は塩を含む
     導電性高分子含有多孔質体。
  19.  前記酸又は塩が、リン酸、リン酸エステル、カルボン酸、アミノ酸、カンファースルホン酸、スルホコハク酸ジオクチル、2-[4-(2-ヒドロキシエチル)-1-ビペラジニル]エタンスルホン酸、ホウ酸、ドデシルベンゼンスルホン酸、フェニルボロン酸及びこれらの塩から選択される1以上である請求項18に記載の導電性高分子含有多孔質体。
  20.  請求項18又は19に記載の導電性高分子含有多孔質体を含む固体電解コンデンサ。
  21.  弁金属の酸化物からなる表面を有する、弁金属からなる多孔質体である陽極体に、酸又は塩の溶液を接触させる工程、及び
     前記接触と同時に又は前記接触後に、前記陽極体に導電性高分子溶液を含浸させ乾燥することによって、前記陽極体上に導電性高分子からなる固体電解質層を形成する工程
     を含む、固体電解コンデンサの製造方法。
  22.  前記酸又は塩の溶液の濃度が1.0~15.0質量%である請求項21に記載の固体電解コンデンサの製造方法。
  23.  前記酸又は塩が、スルホン酸及びその塩、リン酸及びその塩、リン酸エステル及びその塩、カルボン酸及びその塩、アミノ酸及びその塩、ホウ酸及びその塩、ボロン酸及びその塩からなる群から選択される1以上である請求項21又は22に記載の固体電解コンデンサの製造方法。
  24.  前記導電性高分子が、ポリアニリン、ポリアニリン誘導体、ポリチオフェン、ポリチオフェン誘導体、ポリピロール及びポリピロール誘導体から選択される1以上の化合物である請求項21~23のいずれかに記載の固体電解コンデンサの製造方法。
  25.  前記導電性高分子が、ポリアニリンとプロトン供与体とを含むポリアニリン複合体であって、前記ポリアニリンが前記プロトン供与体でドープされている請求項21~24のいずれかに記載の固体電解コンデンサの製造方法。
  26.  前記導電性高分子溶液が、前記ポリアニリン複合体とフェノール性化合物を含む請求項25に記載の固体電解コンデンサの製造方法。
  27.  前記導電性高分子溶液が、前記ポリアニリン複合体と、耐熱安定化剤とを含む請求項25又は26に記載の固体電解コンデンサの製造方法。
  28.  前記陽極体に、請求項1~9のいずれかに記載の導電性高分子組成物を含浸させることにより、
     前記接触と同時に、前記陽極体に前記導電性高分子溶液を含浸させる請求項20に記載の固体電解コンデンサの製造方法。
  29.  請求項21~28のいずれかに記載の固体電解コンデンサの製造方法により得られた固体電解コンデンサ。
PCT/JP2017/007319 2016-02-29 2017-02-27 導電性高分子組成物、導電性高分子含有多孔質体及びその製造方法並びに固体電解コンデンサ及びその製造方法 WO2017150407A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018503120A JP7153557B2 (ja) 2016-02-29 2017-02-27 導電性高分子組成物、導電性高分子含有多孔質体及びその製造方法並びに固体電解コンデンサ及びその製造方法
CN201780014082.7A CN108701546B (zh) 2016-02-29 2017-02-27 导电性高分子组合物、多孔体及其制造方法、以及固体电解电容器及其制造方法
KR1020187022114A KR20180118618A (ko) 2016-02-29 2017-02-27 도전성 고분자 조성물, 도전성 고분자 함유 다공질체 및 그 제조 방법 그리고 고체 전해 콘덴서 및 그 제조 방법
EP17759873.7A EP3425652A4 (en) 2016-02-29 2017-02-27 CONDUCTIVE POLYMER COMPOSITION, POROUS BODY CONTAINING CONDUCTIVE POLYMER, AND PROCESS FOR MANUFACTURING SAME; SOLID ELECTROLYTE CAPACITOR AND METHOD FOR MANUFACTURING SAME
US16/080,764 US10975200B2 (en) 2016-02-29 2017-02-27 Conductive polymer composition, conductive-polymer-containing porous body and manufacturing method therefor, and solid electrolytic capacitor and manufacturing method therefor

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016-037858 2016-02-29
JP2016037858 2016-02-29
JP2016-111939 2016-06-03
JP2016111945 2016-06-03
JP2016111939 2016-06-03
JP2016-111945 2016-06-03
JP2016-174881 2016-09-07
JP2016174881 2016-09-07

Publications (1)

Publication Number Publication Date
WO2017150407A1 true WO2017150407A1 (ja) 2017-09-08

Family

ID=59743017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007319 WO2017150407A1 (ja) 2016-02-29 2017-02-27 導電性高分子組成物、導電性高分子含有多孔質体及びその製造方法並びに固体電解コンデンサ及びその製造方法

Country Status (7)

Country Link
US (1) US10975200B2 (ja)
EP (1) EP3425652A4 (ja)
JP (1) JP7153557B2 (ja)
KR (1) KR20180118618A (ja)
CN (1) CN108701546B (ja)
TW (2) TWI833510B (ja)
WO (1) WO2017150407A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112499A (ja) * 2017-12-21 2019-07-11 出光興産株式会社 組成物、導電性膜、導電性膜の製造方法、及びコンデンサ
WO2019142943A1 (ja) * 2018-01-22 2019-07-25 出光興産株式会社 組成物、及びそれを用いた酸化還元材
WO2020033817A1 (en) * 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor containing polyaniline
WO2020096028A1 (ja) 2018-11-09 2020-05-14 出光興産株式会社 導電性高分子含有多孔質体の製造方法
WO2021149575A1 (ja) * 2020-01-20 2021-07-29 出光興産株式会社 ポリアニリン組成物、塗膜、ポリアニリン含有多孔質体、及び塗膜又はポリアニリン含有多孔質体の製造方法
WO2024090320A1 (ja) * 2022-10-24 2024-05-02 出光興産株式会社 導電性高分子含有多孔質体の製造方法、固体電解コンデンサ及び固体電解質コンデンサの製造方法
KR102675458B1 (ko) * 2018-08-10 2024-06-17 교세라 에이브이엑스 컴포넌츠 코포레이션 폴리아닐린을 포함하는 고체 전해 커패시터

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7289059B2 (ja) * 2017-12-28 2023-06-09 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
US11189429B2 (en) * 2017-12-28 2021-11-30 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and method for manufacturing same
CN117912850A (zh) 2018-08-10 2024-04-19 京瓷Avx元器件公司 包含本征导电聚合物的固体电解电容器
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
CN118213199A (zh) 2018-12-11 2024-06-18 京瓷Avx元器件公司 含有本征导电聚合物的固体电解电容器
CN114521278A (zh) 2019-09-18 2022-05-20 京瓷Avx元器件公司 用于高电压下使用的固体电解电容器
WO2021119088A1 (en) 2019-12-10 2021-06-17 Avx Corporation Tantalum capacitor with increased stability
WO2021119065A1 (en) 2019-12-10 2021-06-17 Avx Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer
US11776760B2 (en) * 2020-02-13 2023-10-03 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing polyaniline
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012497A (ja) * 1996-06-27 1998-01-16 Nec Corp 導電性高分子を用いた固体電解コンデンサの製造方法
WO2002037536A2 (en) * 2000-10-30 2002-05-10 Al-Coat Ltd. Solutions of conducting polyaniline
WO2010143450A1 (ja) * 2009-06-12 2010-12-16 出光興産株式会社 π共役高分子組成物
JP2014037504A (ja) * 2012-08-20 2014-02-27 Sanyo Chem Ind Ltd 導電性組成物及び導電性被膜

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3753635A (en) * 1971-03-25 1973-08-21 L Barnett Apparatus for precision bending of plastic pipe
JPH08255730A (ja) * 1995-03-17 1996-10-01 Hitachi Chem Co Ltd 固体電解コンデンサ
JP2919371B2 (ja) * 1996-08-16 1999-07-12 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
JP2004253537A (ja) * 2003-02-19 2004-09-09 Matsushita Electric Ind Co Ltd 固体電解コンデンサ
JP2005294504A (ja) * 2004-03-31 2005-10-20 Nippon Chemicon Corp 固体電解コンデンサの製造方法
JP4813158B2 (ja) * 2005-03-08 2011-11-09 信越ポリマー株式会社 コンデンサ及びその製造方法
US8223473B2 (en) * 2009-03-23 2012-07-17 Avx Corporation Electrolytic capacitor containing a liquid electrolyte
JP5983977B2 (ja) 2010-02-22 2016-09-06 三菱レイヨン株式会社 固体電解コンデンサの製造方法
JP5710388B2 (ja) * 2010-08-17 2015-04-30 出光興産株式会社 ポリアニリン導電性組成物
JP5642455B2 (ja) * 2010-08-30 2014-12-17 三洋電機株式会社 導電性高分子膜の形成方法ならびに導電性高分子の形成方法
EP2669315B1 (en) 2011-01-27 2021-06-02 Idemitsu Kosan Co., Ltd. Polyaniline composite, method for producing same, and composition
WO2012137969A1 (ja) * 2011-04-08 2012-10-11 Necトーキン株式会社 導電性高分子溶液、導電性高分子材料およびその製造方法、並びに固体電解コンデンサ
JP2013089648A (ja) * 2011-10-14 2013-05-13 Nec Tokin Corp 導電性高分子懸濁液およびその製造方法、導電性高分子材料、固体電解コンデンサおよびその製造方法
JP2013247312A (ja) * 2012-05-29 2013-12-09 Sanyo Chem Ind Ltd 固体電解コンデンサ用導電性高分子
JP2014037508A (ja) * 2012-08-20 2014-02-27 Sanyo Chem Ind Ltd 導電性組成物及び導電性被膜
JP5988824B2 (ja) * 2012-10-22 2016-09-07 テイカ株式会社 電解コンデンサの製造方法
WO2014163202A1 (ja) * 2013-04-05 2014-10-09 昭和電工株式会社 固体電解コンデンサの製造方法
JP6521433B2 (ja) * 2015-03-30 2019-05-29 カーリットホールディングス株式会社 導電性高分子分散液及びその用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012497A (ja) * 1996-06-27 1998-01-16 Nec Corp 導電性高分子を用いた固体電解コンデンサの製造方法
WO2002037536A2 (en) * 2000-10-30 2002-05-10 Al-Coat Ltd. Solutions of conducting polyaniline
WO2010143450A1 (ja) * 2009-06-12 2010-12-16 出光興産株式会社 π共役高分子組成物
JP2014037504A (ja) * 2012-08-20 2014-02-27 Sanyo Chem Ind Ltd 導電性組成物及び導電性被膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3425652A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112499A (ja) * 2017-12-21 2019-07-11 出光興産株式会社 組成物、導電性膜、導電性膜の製造方法、及びコンデンサ
JP7020902B2 (ja) 2017-12-21 2022-02-16 出光興産株式会社 組成物、導電性膜、導電性膜の製造方法、及びコンデンサ
WO2019142943A1 (ja) * 2018-01-22 2019-07-25 出光興産株式会社 組成物、及びそれを用いた酸化還元材
CN111601855A (zh) * 2018-01-22 2020-08-28 出光兴产株式会社 组合物、和使用其的氧化还原材料
JPWO2019142943A1 (ja) * 2018-01-22 2021-01-28 出光興産株式会社 組成物、及びそれを用いた酸化還元材
US20210079160A1 (en) * 2018-01-22 2021-03-18 Idemitsu Kosan Co.,Ltd. Composition, and redox material using the same
JP7303123B2 (ja) 2018-01-22 2023-07-04 出光興産株式会社 組成物、及びそれを用いた酸化還元材
JP2021534577A (ja) * 2018-08-10 2021-12-09 エイブイエックス コーポレイション ポリアニリンを含有する固体電解コンデンサ
WO2020033817A1 (en) * 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor containing polyaniline
KR102675458B1 (ko) * 2018-08-10 2024-06-17 교세라 에이브이엑스 컴포넌츠 코포레이션 폴리아닐린을 포함하는 고체 전해 커패시터
JP7426986B2 (ja) 2018-08-10 2024-02-02 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション ポリアニリンを含む固体電解キャパシタ
CN112805798A (zh) * 2018-08-10 2021-05-14 阿维科斯公司 包含聚苯胺的固体电解电容器
EP3878901A4 (en) * 2018-11-09 2022-08-10 Idemitsu Kosan Co., Ltd. METHOD FOR PRODUCING A POROUS BODY CONTAINING A CONDUCTIVE POLYMER
US20210403729A1 (en) * 2018-11-09 2021-12-30 Idemitsu Kosan Co.,Ltd. Method for producing conductive polymer-containing porous body
JP7120887B2 (ja) 2018-11-09 2022-08-17 出光興産株式会社 導電性高分子含有多孔質体の製造方法
KR20210088539A (ko) 2018-11-09 2021-07-14 이데미쓰 고산 가부시키가이샤 도전성 고분자 함유 다공질체의 제조 방법
JP2020077830A (ja) * 2018-11-09 2020-05-21 出光興産株式会社 導電性高分子含有多孔質体の製造方法
WO2020096028A1 (ja) 2018-11-09 2020-05-14 出光興産株式会社 導電性高分子含有多孔質体の製造方法
JP2021113286A (ja) * 2020-01-20 2021-08-05 出光興産株式会社 ポリアニリン組成物、塗膜、ポリアニリン含有多孔質体、及び塗膜又はポリアニリン含有多孔質体の製造方法
WO2021149575A1 (ja) * 2020-01-20 2021-07-29 出光興産株式会社 ポリアニリン組成物、塗膜、ポリアニリン含有多孔質体、及び塗膜又はポリアニリン含有多孔質体の製造方法
JP7349373B2 (ja) 2020-01-20 2023-09-22 出光興産株式会社 ポリアニリン組成物、塗膜、ポリアニリン含有多孔質体、及び塗膜又はポリアニリン含有多孔質体の製造方法
WO2024090320A1 (ja) * 2022-10-24 2024-05-02 出光興産株式会社 導電性高分子含有多孔質体の製造方法、固体電解コンデンサ及び固体電解質コンデンサの製造方法

Also Published As

Publication number Publication date
TW201741394A (zh) 2017-12-01
CN108701546A (zh) 2018-10-23
JP7153557B2 (ja) 2022-10-14
EP3425652A1 (en) 2019-01-09
TWI833510B (zh) 2024-02-21
TW202313846A (zh) 2023-04-01
EP3425652A4 (en) 2019-10-23
CN108701546B (zh) 2022-03-08
JPWO2017150407A1 (ja) 2018-12-20
US10975200B2 (en) 2021-04-13
TWI802535B (zh) 2023-05-21
US20190062501A1 (en) 2019-02-28
KR20180118618A (ko) 2018-10-31

Similar Documents

Publication Publication Date Title
WO2017150407A1 (ja) 導電性高分子組成物、導電性高分子含有多孔質体及びその製造方法並びに固体電解コンデンサ及びその製造方法
JP5808796B2 (ja) 導電性高分子溶液、導電性高分子材料およびその製造方法、並びに固体電解コンデンサ
JP6539270B2 (ja) ポリアニリン複合体組成物の製造方法及びポリアニリン複合体組成物
TW201426790A (zh) 電容器中自摻雜及外摻雜傳導性聚合物之混合物的用途
TW201243887A (en) A method for improving electrical parameters in capacitors comprising PEDOT/PSS as a solid electrolyte through a polyalkylene glycol
KR102511644B1 (ko) 도전성 고분자 함유 다공질체의 제조 방법
JP7020902B2 (ja) 組成物、導電性膜、導電性膜の製造方法、及びコンデンサ
WO2021149575A1 (ja) ポリアニリン組成物、塗膜、ポリアニリン含有多孔質体、及び塗膜又はポリアニリン含有多孔質体の製造方法
JP7279031B2 (ja) 組成物、導電性膜の製造方法、導電性膜及びコンデンサ
WO2024090320A1 (ja) 導電性高分子含有多孔質体の製造方法、固体電解コンデンサ及び固体電解質コンデンサの製造方法
CN114945632B (zh) 聚苯胺组合物、涂膜、含聚苯胺的多孔质体以及涂膜或含聚苯胺的多孔质体的制造方法
EP4276150A1 (en) Electric conductive polymer composition
TW201609951A (zh) 原位聚合反應中聚合物對噻吩單體之添加
JP6702186B2 (ja) 電解コンデンサおよびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018503120

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187022114

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017759873

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759873

Country of ref document: EP

Effective date: 20181001

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759873

Country of ref document: EP

Kind code of ref document: A1