WO2017146088A1 - 板状リチウム複合酸化物 - Google Patents

板状リチウム複合酸化物 Download PDF

Info

Publication number
WO2017146088A1
WO2017146088A1 PCT/JP2017/006548 JP2017006548W WO2017146088A1 WO 2017146088 A1 WO2017146088 A1 WO 2017146088A1 JP 2017006548 W JP2017006548 W JP 2017006548W WO 2017146088 A1 WO2017146088 A1 WO 2017146088A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
positive electrode
lithium
composite oxide
primary particles
Prior art date
Application number
PCT/JP2017/006548
Other languages
English (en)
French (fr)
Inventor
直人 大平
幸信 由良
茂樹 岡田
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN201780007225.1A priority Critical patent/CN108701814B/zh
Priority to EP17756526.4A priority patent/EP3352254B1/en
Priority to KR1020187024025A priority patent/KR102643570B1/ko
Priority to JP2018501730A priority patent/JP6480079B2/ja
Publication of WO2017146088A1 publication Critical patent/WO2017146088A1/ja
Priority to US15/952,540 priority patent/US10454109B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a plate-like lithium composite oxide.
  • a plate-like lithium composite oxide in which a plurality of primary particles composed of a layered rock salt structure lithium composite oxide are combined is used as a positive electrode of a lithium ion battery.
  • Patent Document 1 In order to expose a crystal plane on which lithium ions can enter and exit satisfactorily on the plate surface, a method of orienting the (003) plane of primary particles in a direction intersecting the plate surface has been proposed (Patent Document 1). reference).
  • the primary particles constituting the plate-like lithium composite oxide expand and contract in a direction perpendicular to the (003) plane according to the entry and exit of lithium ions. Therefore, when the angle of the (003) plane with respect to the plate surface direction parallel to the plate surface is increased, the amount of expansion and contraction in the plate surface direction of the plate-like lithium composite oxide increases. Therefore, there is a possibility that a defect may occur in the solid electrolyte layer in contact with the positive electrode, or the positive electrode may be separated from the solid electrolyte layer.
  • Patent Document 1 does not discuss the orientation angle of primary particles from the viewpoint of the amount of expansion and contraction of the plate-like lithium composite oxide.
  • the present invention has been made in view of the above-described situation, and an object thereof is to provide a plate-like lithium composite oxide capable of suppressing defects in the solid electrolyte layer and / or peeling of the positive electrode.
  • the plate-like lithium composite oxide according to the present invention is used as a positive electrode of a lithium ion battery provided with a solid electrolyte.
  • the plate-like lithium composite oxide is composed of a layered rock salt structure lithium composite oxide and is composed of a plurality of primary particles bonded to each other. When fully charged, the plate-like lithium composite oxide expands and contracts in the plate surface direction parallel to the plate surface.
  • the rate E is 0.5% or less.
  • the present invention it is possible to provide a plate-like lithium composite oxide capable of suppressing defects in the solid electrolyte layer and / or peeling of the positive electrode.
  • Sectional drawing which shows the structure of a lithium ion battery typically Schematic showing the cross section of the positive electrode plate The figure for demonstrating how to obtain
  • Sample No. Sectional SEM image of positive electrode plate 1
  • Sample No. Histogram showing length ratio of orientation angle for 1 Sample No.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the lithium ion battery 100.
  • the chip-type lithium ion battery 100 configured in a plate shape is a secondary battery (rechargeable battery) that can be repeatedly used by charging and discharging.
  • the lithium ion battery 100 includes a positive electrode side current collecting layer 101, a negative electrode side current collecting layer 102, exterior materials 103 and 104, a current collecting connection layer 105, a positive electrode plate 106, a solid electrolyte layer 107, and a negative electrode layer 108.
  • the lithium ion battery 100 is formed by sequentially stacking the positive electrode side current collecting layer 101, the current collecting connection layer 105, the positive electrode plate 106, the solid electrolyte layer 107, the negative electrode layer 108, and the negative electrode side current collecting layer 102. Composed.
  • the end of the lithium ion battery 100 in the plate width direction is sealed with exterior materials 103 and 104.
  • the positive electrode 110 is constituted by the positive electrode side current collecting layer 101, the current collecting connection layer 105 and the positive electrode plate 106.
  • a negative electrode 120 is constituted by the negative electrode side current collecting layer 102 and the negative electrode layer 108.
  • Positive electrode side current collecting layer 101 The positive current collecting layer 101 is disposed outside the positive electrode plate 106. The positive current collecting layer 101 is mechanically and electrically connected to the positive electrode plate 106 through the current collecting connection layer 105. The positive electrode side current collecting layer 101 functions as a positive electrode current collector.
  • the positive electrode side current collecting layer 101 can be made of metal.
  • the metal constituting the positive electrode side current collecting layer 101 include stainless steel, aluminum, copper, platinum, nickel, and the like, and stainless steel is particularly preferable.
  • the positive current collecting layer 101 can be formed in a plate shape or a foil shape, and a foil shape is particularly preferable. Therefore, it is particularly preferable to use a stainless steel foil as the positive electrode side current collecting layer 101.
  • the thickness of the positive current collecting layer 101 can be 1 to 30 ⁇ m, preferably 5 ⁇ m or more and 25 ⁇ m or less, and more preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • Negative electrode side current collecting layer 102 The negative electrode side current collecting layer 102 is disposed outside the negative electrode layer 108. The negative electrode side current collecting layer 102 is mechanically and electrically connected to the negative electrode layer 108. The negative electrode side current collecting layer 102 functions as a negative electrode current collector.
  • the negative electrode side current collection layer 102 can be comprised with a metal.
  • the negative electrode side current collecting layer 102 can be made of the same material as that of the positive electrode side current collecting layer 101. Therefore, it is preferable to use a stainless steel foil as the negative electrode side current collecting layer 102.
  • the thickness of the negative electrode side current collecting layer 102 can be 1 to 30 ⁇ m, preferably 5 ⁇ m or more and 25 ⁇ m or less, and more preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • Exterior material 103, 104 The exterior materials 103 and 104 seal a gap between the positive electrode side current collecting layer 101 and the negative electrode side current collecting layer 102.
  • the exterior materials 103 and 104 surround the side of the unit cell constituted by the positive electrode plate 106, the solid electrolyte layer 107, and the negative electrode layer 108.
  • the exterior materials 103 and 104 suppress moisture intrusion into the lithium ion battery 100.
  • the resistivity of the exterior materials 103 and 104 is preferably 1 ⁇ 10 6 ⁇ cm or more, and preferably 1 ⁇ 10 7 ⁇ cm or more in order to ensure electrical insulation between the positive electrode side current collection layer 101 and the negative electrode side current collection layer 102. Is more preferably 1 ⁇ 10 8 ⁇ cm or more.
  • Such exterior material 103,104 can be comprised with an electrically insulating sealing material.
  • As the sealing material a resin-based sealing material containing a resin can be used. By using the resin-based sealing material, the exterior materials 103 and 104 can be formed at a relatively low temperature (for example, 400 ° C. or lower), so that the destruction and deterioration of the lithium ion battery 100 due to heating can be suppressed.
  • the exterior materials 103 and 104 can be formed by laminating resin films or dispensing liquid resin.
  • the current collecting connection layer 105 is disposed between the positive electrode plate 106 and the positive electrode side current collecting layer 101.
  • the current collecting connection layer 105 mechanically joins the positive electrode plate 106 to the positive electrode side current collecting layer 101 and electrically joins the positive electrode plate 106 to the positive electrode side current collecting layer 101.
  • the current collecting connection layer 105 includes a conductive material and an adhesive.
  • conductive material conductive carbon or the like can be used.
  • adhesive an epoxy-based resin material can be used.
  • the thickness of the current collector connection layer 105 is not particularly limited, but can be 5 ⁇ m or more and 100 ⁇ m or less, and preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • Positive electrode plate 106 The positive electrode plate 106 is formed into a plate shape.
  • the positive electrode plate 106 is an example of a “plate-like lithium composite oxide” according to this embodiment. The fine structure of the positive electrode plate 106 will be described later.
  • the thickness of the positive electrode plate 106 is not particularly limited, but is preferably 20 ⁇ m or more, more preferably 25 ⁇ m or more, and further preferably 30 ⁇ m or more. In particular, by setting the thickness of the positive electrode plate 106 to 50 ⁇ m or more, the active material capacity per unit area can be sufficiently secured and the energy density of the lithium ion battery 100 can be increased. Further, the upper limit value of the thickness of the positive electrode plate 106 is not particularly limited, but is preferably less than 200 ⁇ m and more preferably 150 ⁇ m or less in consideration of suppression of deterioration of battery characteristics (particularly, increase in resistance value) due to repeated charge and discharge. 120 ⁇ m or less is more preferable, and 100 ⁇ m or less is particularly preferable.
  • the expansion / contraction rate E of the positive electrode plate 106 is suppressed to 0.5% or less as described later.
  • the thickness of the positive electrode plate 106 can be appropriately set in consideration of the discharge capacity of the lithium ion battery 100 and the expansion / contraction rate E of the positive electrode plate 106.
  • the thickness of the positive electrode plate 106 is an average distance between two plate surfaces that are observed substantially in parallel (an average value of distances at arbitrary three locations). ) Is obtained.
  • the thickness direction is a direction perpendicular to a solid electrolyte side surface 106a (an example of “plate surface”) of the positive electrode plate 106 (hereinafter referred to as “plate surface direction”). This is substantially the same as the stacking direction X.
  • the solid electrolyte side surface 106a can be defined in the cross section of the positive electrode plate 106 by a line that approximates the interface between the positive electrode plate 106 and the solid electrolyte layer 107 by a least square method.
  • Solid electrolyte layer 107 The solid electrolyte layer 107 is preferably composed of a lithium phosphate oxynitride (LiPON) ceramic material which is one of oxide ceramic materials.
  • the thickness of the solid electrolyte layer 107 is preferably thin from the viewpoint of improving lithium ion conductivity, but may be appropriately set in consideration of reliability during charge / discharge (defect suppression, separator function, cracks, etc.). it can.
  • the thickness of the solid electrolyte layer 107 is preferably, for example, 0.1 to 10 ⁇ m, more preferably 0.2 to 8.0 ⁇ m, still more preferably 0.3 to 7.0 ⁇ m, and particularly preferably 0.5 to 6. 0 ⁇ m.
  • the thickness of the solid electrolyte layer 107 can be adjusted by controlling the film formation conditions (for example, the film formation time) in the sputtering method. Even when the positive electrode plate 106 is formed into a battery by forming a solid electrolyte layer made of LiPON on the surface by a sputtering method, it does not easily cause a problem in battery performance.
  • LiPON is a group of compounds represented by the composition of Li 2.9 PO 3.3 N 0.46 .
  • Li a PO b N c (wherein a is 2 to 4 and b is 3 to 5 , C is 0.1 to 0.9). Therefore, the formation of the LiPON-based solid electrolyte layer by sputtering is performed by using a lithium phosphate sintered body target as a Li source, a P source and an O source, and introducing N 2 as a gas species as an N source.
  • the sputtering method is not particularly limited, but the RF magnetron method is preferable. Further, a film forming method such as MOCVD method, sol-gel method, aerosol deposition method, screen printing method, or the like can be used instead of the sputtering method.
  • the solid electrolyte layer 107 may be made of an oxide ceramic material other than the LiPON ceramic material.
  • the oxide ceramic material other than the LiPON ceramic material is at least one selected from the group consisting of garnet ceramic materials, nitride ceramic materials, perovskite ceramic materials, phosphate ceramic materials, and zeolite materials. Can be mentioned.
  • a Li—La—Zr—O-based material specifically, Li 7 La 3 Zr 2 O 12 or the like
  • a Li—La—Ta—O-based material can also be used.
  • perovskite ceramic materials include Li—La—Ti—O materials (specifically, LiLa 1-x Ti x O 3 (0.04 ⁇ x ⁇ 0.14), etc.).
  • phosphate ceramic materials include Li-Al-Ti-PO, Li-Al-Ge-PO, and Li-Al-Ti-Si-PO (specifically, Li 1 + x + y Al x Ti 2 -x Si y P 3-y O 12 (0 ⁇ x ⁇ 0.4,0 ⁇ y ⁇ 0.6) , and the like).
  • the solid electrolyte layer 107 may be made of a sulfide-based material.
  • the sulfide-based materials Li 2 S-P 2 S 5 based, LiI-Li 2 S-P 2 S 5 based, LiI-Li 2 S-B 2 S 32 system, or LiI-Li 2 S-SiS 2
  • a material selected from a solid electrolyte of the system, thiolithicone, Li10GeP2S12, and the like can be used. Since the sulfide-based material is relatively soft, a solid electrolyte layer can be formed by pressing and pressing the sulfide-based material powder on the surface of the positive electrode plate 106 to form a battery.
  • a sulfide-based material powder formed into a sheet form using a binder or the like is laminated on the positive electrode plate 106 and pressed, or a slurry in which the sulfide-based material powder is dispersed is added to the positive electrode plate 106.
  • the solid electrolyte layer can be formed by applying the material to the substrate and drying it, followed by pressing.
  • Negative electrode layer 108 The negative electrode layer 108 is disposed on the solid electrolyte layer 107.
  • the negative electrode layer 108 contains lithium metal as a main component.
  • the negative electrode layer 108 may be a lithium-containing metal film formed on the solid electrolyte layer 107.
  • the lithium-containing metal film can be formed by a vacuum deposition method, a sputtering method, a CVD method, or the like.
  • the thickness of the negative electrode layer 108 is not particularly limited, but can be 200 ⁇ m or less.
  • the thickness of the negative electrode layer 108 is preferably 10 ⁇ m or more, more preferably 10 ⁇ m or more and 50 ⁇ m or less, and further preferably 10 ⁇ m or more and 40 ⁇ m or less. It is preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • FIG. 2 is a schematic view showing a cross section of the positive electrode plate 106.
  • the positive electrode plate 106 is configured by combining a plurality of primary particles 20.
  • the outer shape of each primary particle 20 is not particularly limited, and may be a plate shape, a rectangular parallelepiped shape, a cubic shape, a spherical shape, or the like.
  • the positive electrode plate 106 may include primary particles 20 having different external shapes.
  • each primary particle 20 is bonded in the plate surface direction of the positive electrode plate 106 and also in the thickness direction.
  • Each primary particle 20 is a region having a uniform orientation angle surrounded by crystal grain boundaries in the SEM image of the cross section of the positive electrode plate 106.
  • the cross-sectional shape of each primary particle 20 is not particularly limited, and may be a rectangle, a polygon other than a rectangle, a circle, an ellipse, or a complex shape other than these.
  • the material which comprises the primary particle 20 is comprised by lithium complex oxide.
  • the lithium composite oxide is Li x MO 2 (0.05 ⁇ x ⁇ 1.10, M is at least one transition metal, and M is typically one of Co, Ni, and Mn. Including the above.)
  • the lithium composite oxide has a layered rock salt structure.
  • the layered rock salt structure is a crystal structure in which lithium layers and transition metal layers other than lithium are alternately stacked with oxygen layers in between, that is, the transition metal ion layers and lithium single layers are alternately arranged via oxide ions.
  • an ⁇ -NaFeO 2 type structure, ie a structure in which transition metals and lithium are regularly arranged in the [111] axis direction of a cubic rock salt type structure.
  • lithium composite oxide examples include Li x CoO 2 (lithium cobaltate), Li x NiO 2 (lithium nickelate), Li x MnO 2 (lithium manganate), and Li x NiMnO 2 (nickel / lithium manganate).
  • the lithium composite oxide includes Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te. , Ba, Bi, W, etc. may contain one or more elements.
  • each primary particle 20 expands and contracts in the direction (“Lb direction” in FIG. 2) perpendicular to the (003) plane as lithium ions enter and exit during charging and discharging. It expands and contracts in a direction parallel to the solid electrolyte side surface 106a (hereinafter referred to as “plate surface direction”).
  • plate surface direction As described above, when the shape of the entire positive electrode plate 106 changes in the plate surface direction, tensile stress and shear stress are generated on the solid electrolyte side surface 106 a that is an interface with the solid electrolyte layer 107. If such tensile stress and shear stress are large, the positive electrode plate 106 may be peeled off from the solid electrolyte layer 107.
  • the expansion / contraction rate E of the positive electrode plate 106 in the plate surface direction during full charge is suppressed to 0.5% or less. This can reduce the tensile stress and the shear stress generated on the solid electrolyte side surface 106 a, thereby suppressing defects in the solid electrolyte layer 107 and peeling of the positive electrode plate 106 from the solid electrolyte layer 107. .
  • the expansion / contraction rate E of the positive electrode plate 106 is preferably 0.41% or less, more preferably 0.35% or less, and particularly preferably 0.30% or less.
  • the orientation angle ⁇ of each primary particle 20 with respect to the plate surface direction can be set to a desired value from 0 degrees to 90 degrees.
  • the orientation angle ⁇ is an inclination angle formed by the (003) plane of the primary particle 20 with respect to the plate surface direction.
  • a suitable value of the average value of the orientation angles ⁇ of the plurality of primary particles 20 (hereinafter referred to as “average orientation angle ⁇ ”) is a decrease in the composition ratio x of the material constituting each primary particle 20 and Li during charging. It is determined based on the quantity ⁇ .
  • each primary particle 20 is composed of Li x CoO 2 (lithium cobaltate) and the reduction amount ⁇ of the Li composition ratio x at full charge is 0.1 or more and 0.7 or less.
  • the average orientation angle ⁇ preferably satisfies the following formula (1).
  • the average orientation angle ⁇ can be set to be greater than 0 degree and 90 degrees or less.
  • the average orientation angle ⁇ is preferably larger than 0 degree and 20 degrees or less.
  • the average orientation angle ⁇ can be obtained from the length distribution of the orientation angle ⁇ of each primary particle 20 exposed on the solid electrolyte side surface 106 a in the EBSD (backscattered electron diffraction) image of the cross section of the positive electrode plate 106. .
  • FIG. 3 is an image view of the vicinity of the solid electrolyte side surface 106a in the cross section of the positive electrode plate 106 observed by EBSD.
  • FIG. 3 ten cross-sectional EBSD images that allow observation of 10 or more primary particles 20 exposed on the solid electrolyte side surface 106a in contact with the solid electrolyte layer 107 are acquired.
  • ten primary particles 20 exposed on the solid electrolyte side surface 106a are shown.
  • each cross-sectional EBSD image ten primary particles 20 exposed on the solid electrolyte side surface 106a are arbitrarily selected. Subsequently, in each cross-sectional EBSD image, the length distribution on the solid electrolyte side surface 106a is shown for each orientation angle ⁇ of the ten selected primary particles 20 (that is, the inclination angle of the (003) plane with respect to the plate surface direction). Ask. In FIG. 3, the length of the orientation angle 30 ° on the solid electrolyte side surface 106a is indicated by a solid line, and the length of the orientation angle 40 ° on the solid electrolyte side surface 106a is indicated by a broken line.
  • the arithmetic average value of the orientation angles calculated from the length distribution of a total of 100 primary particles 20 is defined as the average orientation angle ⁇ .
  • the distribution of the orientation angle ⁇ of each primary particle 20 is preferably narrow (that is, the spread width is small). Specifically, of the 100 primary particles 20 used for calculating the average orientation angle ⁇ , primary particles 20 having an orientation angle ⁇ within an average orientation angle ⁇ ⁇ 15 degrees are on the line segment of the solid electrolyte side surface 106a.
  • the “length ratio” occupied is preferably 40% or more, more preferably 51% or more, and particularly preferably 70% or more. As a result, the tensile stress and the shear stress generated on the solid electrolyte side surface 106a can be further reduced, so that the positive electrode plate 106 can be further suppressed from peeling from the solid electrolyte layer 107.
  • Average number of primary particles 20 in the thickness direction The number of primary particles 20 arranged in the thickness direction is preferably small. As a result, the number of grain boundaries between the primary particles 20 that inhibit lithium ion conduction in the lithium ion conduction direction can be reduced, so that lithium ion conductivity can be improved. As a result, the rate characteristics and cycle characteristics of the lithium ion battery 100 can be improved. In particular, when the positive electrode plate 106 is thick, not only rate characteristics and cycle characteristics, but also the energy density of the lithium ion battery 100 can be increased.
  • the average number of primary particles 20 arranged in the thickness direction is preferably 6 or less, and more preferably 5 or less.
  • the average number of primary particles 20 in the thickness direction is the number of primary particles 20 that overlaps each of the five lines by drawing five lines parallel to the thickness direction at arbitrary positions. Obtained by arithmetic averaging.
  • This first manufacturing method is suitable when the average orientation angle ⁇ is 30 degrees or more. 1. Mixing the produced Co 3 O 4 material powder of the green sheet a mixed powder obtained by adding Bi 2 O 3 and a dispersion medium and a binder and a plasticizer and dispersing agent. And this slurry is stirred under reduced pressure and deaerated, and a slurry is prepared by adjusting to a desired viscosity.
  • the prepared slurry is formed on a PET film by a doctor blade method to form a green sheet.
  • a green sheet peeled from the PET film is placed on a zirconia setter and fired (900 ° C. to 1400 ° C., 1 hour to 10 hours) to form a Co 3 O 4 sintered plate.
  • Lithium Sheet Li 3 CO 4 raw material powder, a binder, a plasticizer, and a dispersant are mixed. And this slurry is stirred under reduced pressure and deaerated, and a slurry is prepared by adjusting to a desired viscosity.
  • the prepared slurry is formed on a PET film by a doctor blade method to form a lithium sheet.
  • the average orientation angle ⁇ of the primary particles 20 constituting the positive electrode plate 106 can be controlled by adjusting the concentration of the lithium atmosphere in the firing sheath. Specifically, when the concentration in the lithium atmosphere is increased, the average orientation angle ⁇ can be decreased, and when the concentration in the lithium atmosphere is decreased, the average orientation angle ⁇ can be increased.
  • the average number of primary particles 20 constituting the positive electrode plate 106 in the thickness direction can be controlled. Specifically, when the concentration of the lithium atmosphere is increased, in the lithium introduction process, the lithium compound is prevented from volatilizing from between the primary particles 20 during the reaction between the positive electrode plate and lithium, and the grain growth of each primary particle 20 is increased. Since it can be promoted, the average number of primary particles 20 in the thickness direction can be reduced. On the other hand, when the concentration of the lithium atmosphere is lowered, the lithium compound is volatilized from between the primary particles 20 and grain growth of each primary particle 20 is suppressed, so that the average number of primary particles 20 in the thickness direction can be increased.
  • the average number of primary particles 20 in the thickness direction can be controlled by adjusting the firing temperature. Specifically, since the grain growth is promoted when the firing temperature is increased, the average number of primary particles 20 in the thickness direction can be reduced, and when the firing temperature is lowered, the grain growth is suppressed and the primary particles 20 in the thickness direction are reduced. The average number can be increased.
  • the length ratio of the primary particles whose orientation angle is within the range of the average orientation angle ⁇ ⁇ 15 degrees can be adjusted.
  • the number of primary particles 20 can be controlled by adjusting the concentration of the lithium atmosphere in the fired sheath, similarly to the average number of primary particles 20 in the thickness direction described above.
  • the concentration of lithium atmosphere in the firing sheath can be adjusted by Li concentration in the lithium sheet, a LiCoO 2 powder as an atmosphere powder can also be adjusted by placing intrathecally. However, if the amount of atmospheric powder is too large, the positive electrode plate 106 may stick to the setter due to the lithium compound remaining without volatilizing.
  • LiCoO 2 particles, and the green sheet using LiCoO 2 powder slurry grain growth It can also be obtained by a method of pulverizing later, a method of synthesizing plate crystals such as a flux method, hydrothermal synthesis, single crystal growth using a melt, or a sol-gel method.
  • Co 3 O 4 raw material powder is used as matrix particles.
  • the volume-based D50 particle size of the Co 3 O 4 raw material powder is not particularly limited and can be, for example, 0.1 to 1.0 ⁇ m, but is preferably smaller than the volume-based D50 particle size of the template particles.
  • the matrix particles can also be obtained by subjecting a Co (OH) 2 raw material to heat treatment at 500 ° C. to 800 ° C. for 1 to 10 hours.
  • Co (OH) 2 particles or LiCoO 2 particles may be used as matrix particles.
  • a Co 3 O 4 sintered plate is obtained by placing the green sheet peeled from the PET film on a zirconia setter and firing (500 ° C. to 900 ° C., 1 to 10 hours). Next, the Co 3 O 4 sintered plate is sandwiched between lithium sheets so that the Li / Co ratio (molar ratio) is greater than 0 and 1.0 or less, and is placed on a zirconia setter. The setter was placed in an alumina sheath and heat-treated in the atmosphere (700 to 850 ° C., 1 to 20 hours), and then the Co 3 O 4 sintered plate was sandwiched between lithium sheets and further heat-treated (750 to 900 ° C. 1 to 40 hours) to obtain a LiCoO 2 sintered plate. This firing step may be performed in two steps or may be performed once.
  • Li in the lithium sheet sandwiching the Co 3 O 4 sintered plate is preferably about 0.1 to 1.5 times in excess of Co in terms of Li / Co ratio. Thereby, the grain growth of the primary particles 20 can be promoted.
  • the temperature rising rate is set to 50 ° C./h to 200 ° C./h, or once heated to 600 ° C. to 850 ° C. It is preferable to hold the molten lithium sheet in the Co 3 O 4 sintered plate by holding for a period of time. Thereby, the particle diameter of the primary particles 20 can be increased, and the average number of primary particles 20 in the thickness direction can be reduced.
  • the plate-like lithium composite oxide according to the present invention is applied to the positive electrode plate 106 of the lithium ion battery 100 .
  • the plate-like lithium composite oxide can be applied to other battery configurations. it can.
  • the plate-like lithium composite oxide according to the present invention can be used in a lithium ion battery using an ionic liquid, a polymer electrolyte, a gel electrolyte, a liquid electrolyte, or the like as an electrolyte.
  • the ionic liquid is also called a room temperature molten salt, and is a salt composed of a combination of a cation and an anion.
  • Examples of the ionic liquid include an ionic liquid containing a quaternary ammonium cation and an ionic liquid containing an imidazolium cation.
  • Example No. 1 Production of Green Sheet Co 3 O 4 raw material powder (volume basis D50 particle size 0.3 ⁇ m, manufactured by Shodo Chemical Industry Co., Ltd.) at a rate of 5 wt% Bi 2 O 3 (volume basis D50 particle size 0.3 ⁇ m, solar ore Kogyo Co., Ltd.) was added to obtain a mixed powder.
  • a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • a plasticizer DOP : 4 parts by weight of Di (2-ethylhexyl) phthalate (manufactured by Kurokin Kasei Co., Ltd.) and 2 parts by weight of a dispersant (product name: Leodol SP-O30, manufactured by Kao Corporation) were mixed.
  • the mixture was defoamed by stirring under reduced pressure and adjusted to a viscosity of 4000 cP to prepare a slurry.
  • the viscosity was measured with an LVT viscometer manufactured by Brookfield.
  • the slurry prepared as described above was formed into a sheet shape on a PET film so that the thickness after drying was 52 ⁇ m by a doctor blade method to obtain a green sheet.
  • Lithium Sheet 100 parts by weight of Li 2 CO 3 raw material powder (volume basis D50 particle size 2.5 ⁇ m, manufactured by Honjo Chemical) and 5 parts by weight of binder (polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.) Then, 2 parts by weight of a plasticizer (DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurokin Kasei Co., Ltd.) and 2 parts by weight of a dispersant (product name: Leodol SP-O30, manufactured by Kao Corporation) were mixed.
  • a plasticizer DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurokin Kasei Co., Ltd.
  • a dispersant product name: Leodol SP-O30, manufactured by Kao Corporation
  • the mixture was defoamed by stirring under reduced pressure and adjusted to a viscosity of 4000 cP to prepare a slurry.
  • the viscosity was measured with an LVT viscometer manufactured by Brookfield.
  • the slurry prepared as described above was formed into a sheet shape on a PET film so that the thickness after drying was 25 ⁇ m by a doctor blade method to obtain a lithium sheet.
  • FIG. 1 is a cross-sectional SEM image of 1 LiCoO 2 sintered plate.
  • a positive electrode was produced by fixing a LiCoO 2 sintered plate to a stainless steel current collector plate using an epoxy-based conductive adhesive in which conductive carbon was dispersed.
  • a Li metal foil and a Cu foil were placed on the Au film, and pressure-bonded on a 200 ° C. hot plate placed in a glove box in an Ar atmosphere.
  • a unit cell (size: 10 mm ⁇ 10 mm square) of positive electrode plate / solid electrolyte layer / negative electrode layer was obtained.
  • the lithium ion battery was formed by enclosing a unit battery in Al laminated film in Ar atmosphere.
  • Example No. 2 Sample No. 2 sample No. 2 except that the amount of LiCoO 2 powder contained in the sheath as the atmosphere powder at the time of lithium introduction was 10 g. A lithium ion battery was formed in the same process as in step 1.
  • Example No. 3 Sample No. 3 except that the amount of LiCoO 2 powder contained in the sheath as an atmosphere powder at the time of introducing lithium was 15 g and the heat treatment temperature was 840 ° C. A lithium ion battery was formed in the same process as in step 1.
  • Example No. 4 Sample No. 4 except that the amount of LiCoO 2 powder contained in the sheath as the atmosphere powder at the time of lithium introduction was 10 g and the heat treatment temperature was 840 ° C. A lithium ion battery was formed in the same process as in step 1.
  • Example No. 5 Sample No. In Sample No. 4, except that the heat treatment temperature at the time of introducing lithium was 840 ° C. A lithium ion battery was formed in the same process as in step 1.
  • Example No. 6 Sample No. In Sample No. 6, except that the heat treatment temperature at the time of lithium introduction was 840 ° C. and the sheath atmosphere was an O 2 atmosphere. A lithium ion battery was formed in the same process as in step 1.
  • Example No. 7 Sample No. In No. 7, sample no. was used except that no atmospheric powder was added when lithium was introduced and the heat treatment temperature was 840 ° C. A lithium ion battery was formed in the same process as in step 1.
  • Example No. 8 Sample No. In Sample No. 8, except that the sheath lid was opened without introducing atmospheric powder when lithium was introduced, and the heat treatment temperature was 840 ° C. A lithium ion battery was formed in the same process as in step 1.
  • sample No. 9 Sample No. In Sample No. 9, sample powder No. 1 was used except that no atmosphere powder was added when lithium was introduced and the heat treatment temperature was 880 ° C. A lithium ion battery was formed in the same process as in step 1.
  • Example No. 10 Preparation of template particles Co 3 O 4 raw material powder (volume basis D50 particle size 0.8 ⁇ m, manufactured by Shodo Chemical Co., Ltd.) and Li 2 CO 3 raw material powder (volume basis D50 particle size 2.5 ⁇ m, manufactured by Honjo Chemical) LiCoO 2 powder was synthesized by mixing and baking at 800 ° C. for 5 hours. The obtained LiCoO 2 powder was pulverized in a pot mill for 40 hours to obtain plate-like LiCoO 2 particles having a volume standard D50 particle size of 1.0 ⁇ m.
  • Matrix Particles Co 3 O 4 raw material powder (volume basis D50 particle size 0.3 ⁇ m, manufactured by Shodo Chemical Industry Co., Ltd.) was used as matrix particles.
  • Green Sheet Template particles and matrix particles were mixed so that the weight ratio was 60:40.
  • a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • DOP 4 parts by weight of Di (2-ethylhe
  • the mixture was defoamed by stirring under reduced pressure, and a slurry was prepared by adjusting the viscosity to 10,000 cP.
  • the viscosity was measured with an LVT viscometer manufactured by Brookfield.
  • the prepared slurry was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 40 ⁇ m to obtain a green sheet.
  • FIG. 11 is a cross-sectional SEM image of 11 LiCoO 2 sintered plates.
  • Example No. 12 Sample No. was changed except that the plate thickness was 30 ⁇ m. LiCoO 2 sintered plate was obtained in the same process as in No. 9.
  • sample no. 13 First, sample no. In the same manner as in Example 10, plate-like LiCoO 2 particles were produced as template particles.
  • sample No. was adjusted so that the Li / Co ratio was 1.0.
  • Mix LiOH ⁇ H 2 O powder (manufactured by Wako Pure Chemical Industries, Ltd.) with 10 Co 3 O 4 raw material powder, put it in a 90 mm square alumina sheath and heat-treat it in the atmosphere (650 ° C., 5 hours).
  • LiCoO 2 particles having a volume standard D50 particle size of 0.3 ⁇ m were obtained as matrix particles.
  • Li / Co ratio 1.0 is a green sheet, and the remaining Li / Co ratio 0.5 is a lithium sheet).
  • heat treatment was performed at 900 ° C. for 20 hours to obtain a LiCoO 2 sintered plate.
  • FIG. 2 is a histogram showing a length ratio for each orientation angle with respect to 1.
  • FIG. 7 is a diagram for explaining a method of calculating the average number of primary particles using the cross-sectional SEM image of FIG.
  • sample No. 1 in which the length ratio of primary particles having an orientation angle within an average orientation angle ⁇ ⁇ 15 degrees is 51% or more is used.
  • sample No. with a positive electrode plate thickness of 50 ⁇ m or more was used.
  • Sample No. 1 to 4 by setting the average number of primary particles per 50 ⁇ m thickness to 5 or less, Sample No. Compared to 5, the discharge capacity could be improved. This is because the lithium ion conductivity in the thickness direction could be improved by reducing the average number of primary particles arranged in the thickness direction.
  • the plate-like lithium composite oxide according to the present invention is useful in the field of lithium ion batteries because defects in the solid electrolyte layer and / or separation of the positive electrode can be suppressed.

Abstract

本発明は、固体電解質層の欠陥又は/及び正極の剥離を抑制可能な板状リチウム複合酸化物を提供することを目的とする。本発明に係る板状リチウム複合酸化物は、固体電解質を備えるリチウムイオン電池の正極として用いられる。板状リチウム複合酸化物は、層状岩塩構造のリチウム複合酸化物によってそれぞれ構成され、互いに結合した複数の一次粒子によって構成されており、満充電時において、板面と平行な板面方向における膨張収縮率E は、0.5%以下である。

Description

板状リチウム複合酸化物
 本発明は、板状リチウム複合酸化物に関する。
 従来、層状岩塩構造のリチウム複合酸化物によって構成される複数の一次粒子が結合した板状リチウム複合酸化物が、リチウムイオン電池の正極として用いられている。
 ここで、リチウムイオンの出入りが良好に行われる結晶面を板面に露出させるために、一次粒子の(003)面を板面と交差する方向に配向する手法が提案されている(特許文献1参照)。
国際公開第2010/074304号
 一方、板状リチウム複合酸化物を構成する一次粒子は、リチウムイオンの出入りに応じて、(003)面と垂直な方向に伸縮する。従って、板面に平行な板面方向に対する(003)面の角度を大きくすると、板状リチウム複合酸化物の板面方向における膨張収縮量が増大する。そのため、正極に接する固体電解質層に欠陥が生じたり、正極が固体電解質層から剥離したりするおそれがある。
 しかしながら、特許文献1では、板状リチウム複合酸化物の膨張収縮量という観点から一次粒子の配向角度について検討されていない。
 本発明は、上述の状況に鑑みてなされたものであり、固体電解質層の欠陥又は/及び正極の剥離を抑制可能な板状リチウム複合酸化物を提供することを目的とする。
 本発明に係る板状リチウム複合酸化物は、固体電解質を備えるリチウムイオン電池の正極として用いられる。板状リチウム複合酸化物は、層状岩塩構造のリチウム複合酸化物によってそれぞれ構成され、互いに結合した複数の一次粒子によって構成されており、満充電時において、板面と平行な板面方向における膨張収縮率Eは、0.5%以下である。
 本発明によれば、固体電解質層の欠陥又は/及び正極の剥離を抑制可能な板状リチウム複合酸化物を提供することができる。
リチウムイオン電池の構成を模式的に示す断面図 正極板の断面を示す模式図 正極板の固体電解質側表面における平均配向角度の求め方を説明するための図 サンプルNo.1の正極板の断面SEM像 サンプルNo.11の正極板の断面SEM画像 サンプルNo.1についての配向角度の長さ割合を示すヒストグラム サンプルNo.1についての厚み方向における一次粒子の平均個数の算出方法を説明するための図
 (リチウムイオン電池100)
 図1は、リチウムイオン電池100の構成を模式的に示す断面図である。板片状に構成されたチップ型のリチウムイオン電池100は、充放電によって繰り返し使用可能な二次電池(充電式電池)である。
 リチウムイオン電池100は、正極側集電層101、負極側集電層102、外装材103,104、集電接続層105、正極板106、固体電解質層107及び負極層108を含む。リチウムイオン電池100は、積層方向Xにおいて、正極側集電層101、集電接続層105、正極板106、固体電解質層107、負極層108及び負極側集電層102が順次積層されることによって構成される。
 リチウムイオン電池100の板幅方向の端部は外装材103,104によって封止されている。正極側集電層101、集電接続層105及び正極板106によって正極110が構成される。負極側集電層102及び負極層108によって負極120が構成される。
 1.正極側集電層101
 正極側集電層101は、正極板106の外側に配置される。正極側集電層101は、集電接続層105を介して正極板106と機械的かつ電気的に接続される。正極側集電層101は、正極集電体として機能する。
 正極側集電層101は、金属によって構成することができる。正極側集電層101を構成する金属としては、ステンレス、アルミニウム、銅、白金、ニッケルなどが挙げられ、特にステンレスが好適である。正極側集電層101は、板状又は箔状に形成することができ、特に箔状が好ましい。従って、正極側集電層101としてステンレス箔を用いることが特に好ましい。正極側集電層101が箔状に形成される場合、正極側集電層101の厚さは1~30μmとすることができ、5μm以上25μm以下が好ましく、10μm以上20μm以下がより好ましい。
 2.負極側集電層102
 負極側集電層102は、負極層108の外側に配置される。負極側集電層102は、負極層108と機械的かつ電気的に接続される。負極側集電層102は、負極集電体として機能する。負極側集電層102は、金属によって構成することができる。負極側集電層102は、正極側集電層101と同様の材料によって構成することができる。従って、負極側集電層102としてステンレス箔を用いることが好ましい。負極側集電層102が箔状に形成される場合、負極側集電層102の厚さは1~30μmとすることができ、5μm以上25μm以下が好ましく、10μm以上20μm以下がより好ましい。
 3.外装材103,104
 外装材103,104は、正極側集電層101と負極側集電層102の隙間を封止する。外装材103,104は、正極板106、固体電解質層107及び負極層108によって構成される単電池の側方を取り囲む。外装材103,104は、リチウムイオン電池100内への水分の侵入を抑制する。
 外装材103,104の抵抗率は、正極側集電層101と負極側集電層102の間の電気的絶縁性を確保するために1×10Ωcm以上が好ましく、1×10Ωcm以上がより好ましく、1×10Ωcm以上がさらに好ましい。このような外装材103,104は、電気絶縁性の封着材によって構成することができる。封着材としては、樹脂を含む樹脂系封着材を用いることができる。樹脂系封着材を用いることによって、外装材103,104の形成を比較的低温(例えば400℃以下)で行うことができるため、加熱によるリチウムイオン電池100の破壊や変質を抑制できる。
 外装材103,104は、樹脂フィルムの積層や液状樹脂のディスペンスなどによって形成することができる。
 4.集電接続層105
 集電接続層105は、正極板106と正極側集電層101の間に配置される。集電接続層105は、正極板106を正極側集電層101に機械的に接合するとともに、正極板106を正極側集電層101に電気的に接合する。
 集電接続層105は、導電性材料と接着剤を含む。導電性材料としては、導電性カーボンなどを用いることができる。接着剤としては、エポキシ系などの樹脂材料を用いることができる。集電接続層105の厚さは特に制限されないが、5μm以上100μm以下とすることができ、10μm以上50μm以下であることが好ましい。
 5.正極板106
 正極板106は、板状に成形される。正極板106は、本実施形態に係る「板状リチウム複合酸化物」の一例である。正極板106の微構造については後述する。
 正極板106の厚みは特に制限されないが、20μm以上が好ましく、25μm以上がより好ましく、30μm以上がさらに好ましい。特に、正極板106の厚みを50μm以上にすることによって、単位面積当りの活物質容量を十分に確保してリチウムイオン電池100のエネルギー密度を高めることができる。また、正極板106の厚みの上限値は特に制限されないが、充放電の繰り返しに伴う電池特性の劣化(特に、抵抗値の上昇)の抑制を考慮すると、200μm未満が好ましく、150μm以下がより好ましく、120μm以下がさらに好ましく、100μm以下が特に好ましい。
 ここで、本実施形態に係る正極板106の膨張収縮率Eは、後述するように、0.5%以下に抑えられている。このように、正極板106の膨張収縮率Eが十分に低ければ、リチウムイオン電池100のレート特性の向上を目的として正極板106の厚みを30μm以下にしたとしても、固体電解質層107の欠陥又は/及び正極板106の剥離を抑制することができる。従って、正極板106の厚みは、リチウムイオン電池100の放電容量と正極板106の膨張収縮率Eを考慮して適宜設定することができる。
 正極板106の厚さは、正極板106の断面をSEM(走査電子顕微鏡)によって観察した場合に、略平行に観察される2つの板面間の平均距離(任意の3箇所における距離の平均値)を測定することによって得られる。
 なお、本実施形態において、厚み方向とは、正極板106の固体電解質側表面106a(「板面」の一例)と平行な方向(以下、「板面方向」という。)に垂直な方向であり、積層方向Xと略同じである。固体電解質側表面106aは、正極板106の断面において、正極板106と固体電解質層107の界面を最小二乗法によって直線近似した線によって規定することができる。
 6.固体電解質層107
 固体電解質層107は、酸化物系セラミックス材料の1つであるリン酸リチウムオキシナイトライド(LiPON)系セラミックス材料によって構成されることが好ましい。固体電解質層107の厚さは、リチウムイオン伝導性の向上という観点からは薄いことが好ましいが、充放電時の信頼性(欠陥抑制、セパレータ機能、クラックなど)を考慮して適宜設定することができる。固体電解質層107の厚さは、例えば、0.1~10μmが好ましく、より好ましくは0.2~8.0μm、さらに好ましくは0.3~7.0μm、特に好ましくは0.5~6.0μmである。
 正極板106の固体電解質側表面106aにセラミックス材料からなる固体電解質層107を被着させる成膜法として、スパッタリング法を用いるのが好ましい。この際、スパッタリング法での成膜条件(例えば、成膜時間)を制御することによって、固体電解質層107の厚さを調整することができる。正極板106は、表面にLiPONからなる固体電解質層をスパッタリング法により形成して電池化した場合であっても電池性能の不具合を生じにくい。
 LiPONは、Li2.9PO3.30.46の組成によって代表されるような化合物群であり、例えばLiPO(式中、aは2~4、bは3~5、cは0.1~0.9である)で表される化合物群である。従って、スパッタリングによるLiPON系固体電解質層の形成は、Li源、P源及びO源としてリン酸リチウム焼結体ターゲットを用いて、N源としてのガス種としてNを導入することにより公知の条件に従って行えばよい。スパッタリング法は特に限定されないが、RFマグネトロン方式が好ましい。また、スパッタリング法に代えて、MOCVD法、ゾルゲル法、エアロゾルデポジション法、スクリーン印刷法、などの成膜法を用いることもできる。
 固体電解質層107は、LiPON系セラミックス材料以外の酸化物系セラミックス材料によって構成されてもよい。LiPON系セラミックス材料以外の酸化物系セラミックス材料としては、ガーネット系セラミックス材料、窒化物系セラミックス材料、ペロブスカイト系セラミックス材料、及びリン酸系セラミックス材料、ゼオライト系材料からなる群から選択される少なくとも一種が挙げられる。ガーネット系セラミックス材料の例としては、Li-La-Zr-O系材料(具体的には、LiLaZr12など)、Li-La-Ta-O系材料も用いることができる。ペロブスカイト系セラミックス材料の例としては、Li-La-Ti-O系材料(具体的には、LiLa1-xTi(0.04≦x≦0.14)など)が挙げられる。リン酸系セラミックス材料の例としては、Li-Al-Ti-P-O,Li-Al-Ge-P-O、及びLi-Al-Ti-Si-P-O(具体的には、Li1+x+yAlTi2-xSi3―y12(0≦x≦0.4、0<y≦0.6)など)が挙げられる。
 固体電解質層107は、硫化物系材料によって構成されていてもよい。硫化物系材料としては、LiS-P系、LiI-LiS-P系、LiI-LiS-B32系、若しくはLiI-LiS-SiS系の固体電解質、チオリシコン、及びLi10GeP2S12等の中から選択される材料を用いることができる。硫化物系材料は比較的柔らかいので、正極板106の表面に硫化物系材料粉末をプレスして押し付けることで固体電解質層を形成し、電池化することができる。より具体的には、バインダーなどを用いてシート状にした硫化物系材料粉体を正極板106に積層してプレスすることによって、或いは、硫化物系材料粉末を分散させたスラリーを正極板106に塗布して乾燥させた後にプレスすることによって固体電解質層を形成できる。
 7.負極層108
 負極層108は、固体電解質層107上に配置される。負極層108は、リチウム金属を主成分として含有する。負極層108は、固体電解質層107上に形成されるリチウム含有金属膜であってもよい。リチウム含有金属膜は、真空蒸着法、スパッタリング法、CVD法などによって形成することができる。
 負極層108の厚さは特に限定されないが、200μm以下とすることができる。リチウムイオン電池100におけるリチウム総量を多く確保することとエネルギー密度を高くすることとを考慮すると、負極層108の厚さは10μm以上が好ましく、10μm以上50μm以下がより好ましく、10μm以上40μm以下がさらに好ましく、10μm以上20μm以下が特に好ましい。
 (正極板106の微構造)
 図2は、正極板106の断面を示す模式図である。正極板106は、複数の一次粒子20が結合することによって構成されている。各一次粒子20の外形は特に制限されるものではなく、板状、直方体状、立方体状、或いは球状などであってもよい。正極板106には、外形の異なる一次粒子20が含まれていてもよい。本実施形態において、各一次粒子20は、正極板106の板面方向に結合するとともに、厚み方向にも結合している。各一次粒子20は、正極板106の断面のSEM像において、結晶粒界に囲まれた配向角度の揃った領域である。各一次粒子20の断面形状は特に制限されるものではなく、矩形、矩形以外の多角形、円形、楕円形、或いはこれら以外の複雑形状であってもよい。
 1.一次粒子20を構成する材料
 各一次粒子20は、リチウム複合酸化物によって構成される。リチウム複合酸化物とは、LiMO(0.05<x<1.10であり、Mは少なくとも1種類の遷移金属であり、Mは典型的にCo,Ni,Mnのうちの1種以上を含む。)で表される酸化物である。リチウム複合酸化物は、層状岩塩構造を有する。層状岩塩構造とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち、酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的には、α-NaFeO型構造、すなわち立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。
 リチウム複合酸化物としては、例えば、LiCoO(コバルト酸リチウム)、LiNiO(ニッケル酸リチウム)、LiMnO(マンガン酸リチウム)、LiNiMnO(ニッケル・マンガン酸リチウム)、LiNiCoO(ニッケル・コバルト酸リチウム)、LiCoNiMnO(コバルト・ニッケル・マンガン酸リチウム)、LiCoMnO(コバルト・マンガン酸リチウム)などが挙げられ、LiCoOが特に好ましい。
 なお、リチウム複合酸化物には、Mg,Al,Si,Ca,Ti,V,Cr,Fe,Cu,Zn,Ga,Ge,Sr,Y,Zr,Nb,Mo,Ag,Sn,Sb,Te,Ba,Bi、Wなどのうち一種以上の元素が含まれていてもよい。
 2.正極板106の膨張収縮
 リチウムイオン電池100の充放電時、リチウムイオンは、各一次粒子20の内部を(003)面と平行な方向(図2中の「La方向」)に移動する。この際、充放電時のリチウムイオンの出入りに伴って、各一次粒子20が(003)面と垂直な方向(図2中の「Lb方向」)に伸縮するため、正極板106の全体は、固体電解質側表面106aと平行な方向(以下、「板面方向」という。)に膨張収縮する。このように、正極板106の全体が板面方向に形状変化すると、固体電解質層107との界面である固体電解質側表面106aにおいて引張応力とせん断応力が生じてしまう。このような引張応力とせん断応力が大きければ、正極板106が固体電解質層107から剥離するおそれがある。
 そこで、本実施形態では、満充電時の板面方向における正極板106の膨張収縮率Eは、0.5%以下に抑えられている。これによって、固体電解質側表面106aに生じる引張応力とせん断応力を低減できるため、固体電解質層107に欠陥が生じたり、正極板106が固体電解質層107から剥離したりすることを抑制することができる。正極板106の膨張収縮率Eは、0.41%以下が好ましく、0.35%以下がより好ましく、0.30%以下が特に好ましい。
 図2に示すように、板面方向に対する各一次粒子20の配向角度γは、0度~90度までの所望の値に設定できる。配向角度γとは、一次粒子20の(003)面が板面方向に対して成す傾斜角度である。複数の一次粒子20の配向角度γの平均値(以下、「平均配向角度θ」という。)の好適な値は、各一次粒子20を構成する材料と、充電時におけるLiの組成比xの減少量αとに基づいて決定される。
 例えば、各一次粒子20がLiCoO(コバルト酸リチウム)によって構成される場合であって、満充電時におけるLiの組成比xの減少量αが0.1以上0.7以下であるとき、平均配向角度θは、下記式(1)を満たすことが好ましい。
 E=2.56α×sinθ・・・式(1)
 上述のとおり膨張収縮率Eは0.5%以下であるため、例えば、減少量αが0.1のときには平均配向角度θを0度より大きく90度以下とすることができ、減少量αが0.7のときには平均配向角度θを0度より大きく20度以下とすることが好ましい。
 ここで、平均配向角度θは、正極板106の断面のEBSD(後方散乱電子回折)像において、固体電解質側表面106aに露出する各一次粒子20の配向角度γの長さ分布から求めることができる。
 以下、平均配向角度θの求め方について、図3を参照しながら説明する。図3は、正極板106の断面において固体電解質側表面106a付近をEBSDで観察したイメージ図である。
 まず、図3に示すように、固体電解質層107と接する固体電解質側表面106aに露出する10個以上の一次粒子20を観察できる断面EBSD像を10枚取得する。図3のイメージ図では、固体電解質側表面106aに露出する10個の一次粒子20が示されている。
 次に、各断面EBSD像において、固体電解質側表面106aに露出する10個の一次粒子20を任意に選択する。続いて、各断面EBSD像において、選択された10個の一次粒子20の配向角度γ(すなわち、(003)面の板面方向に対する傾斜角度)ごとに、固体電解質側表面106aにおける長さ分布を求める。図3では、固体電解質側表面106aにおける配向角度30°の長さが実線で示され、固体電解質側表面106aにおける配向角度40°の長さが破線で示されている。
 そして、合計100個の一次粒子20の長さ分布から算出される配向角度の算術平均値を平均配向角度θとする。
 3.配向角度γの分布
 各一次粒子20の配向角度γの分布は、狭い(すなわち、広がり幅が小さい)ことが好ましい。具体的に、平均配向角度θの算出に用いた100個の一次粒子20のうち平均配向角度θ±15度以内の配向角度γを有する一次粒子20が、固体電解質側表面106aの線分上で占める「長さ割合」は、40%以上が好ましく、51%以上がより好ましく、70%以上が特に好ましい。これによって、固体電解質側表面106aに生じる引張応力とせん断応力をより低減できるため、正極板106が固体電解質層107から剥離することをより抑制することができる。
 4.厚み方向における一次粒子20の平均個数
 厚み方向に配置された一次粒子20の個数は少ないことが好ましい。これによって、リチウムイオン伝導方向において、リチウムイオン伝導を阻害する一次粒子20どうしの粒界数を少なくできるため、リチウムイオン伝導性を向上できる。これによって、リチウムイオン電池100のレート特性とサイクル特性を向上させることができる。特に、正極板106の厚みが厚い場合には、レート特性とサイクル特性だけでなく、リチウムイオン電池100のエネルギー密度も高めることができる。
 具体的には、正極板106の厚みが50μm以上である場合、厚み方向に配置された一次粒子20の平均個数は、6個以下であることが好ましく、5個以下がより好ましい。厚み方向における一次粒子20の平均個数は、正極板106の断面のSEM像において、任意の位置に厚み方向に平行な5本の線を引き、5本の線それぞれと重なる一次粒子20の個数を算術平均することによって得られる。
 (正極板106の製造方法)
 次に、正極板106の一例としてLiCoO焼結板の製造方法について説明する。まず、一次粒子20の平均配向角度θを比較的大きくしやすい第1製造方法について説明した後、一次粒子20の平均配向角度θを比較的小さくしやすい第2製造方法について説明する。
 [第1製造方法]
 この第1製造方法は、平均配向角度θを30度以上にする場合に適している。
 1.グリーンシートの作製
 Co原料粉末にBiを添加した混合粉末と分散媒とバインダーと可塑剤と分散剤とを混合する。そして、この混合物を減圧下で撹拌して脱泡するとともに所望の粘度に調整することによってスラリーを調製する。
 次に、ドクターブレード法によって、調製したスラリーをPETフィルムの上に成形してグリーンシートを形成する。
 2.配向焼結板の作製
 PETフィルムから剥がしたグリーンシートをジルコニア製セッターに載置して焼成(900℃~1400℃、1時間~10時間)することによってCo焼結板を形成する。
 3.リチウムシートの作製
 LiCO原料粉末とバインダーと可塑剤と分散剤とを混合する。そして、この混合物を減圧下で撹拌して脱泡するとともに所望の粘度に調整することによってスラリーを調製する。
 次に、ドクターブレード法によって、調製したスラリーをPETフィルムの上に成形してリチウムシートを形成する。
 4.リチウムの導入
 Co焼結板をリチウムシートで上下挟み込み、ジルコニア製セッター上に載置して焼成(800℃~950℃、5時間~30時間)することによってLiCoO焼結板(正極板106)を形成する。
 この際、焼成鞘内のリチウム雰囲気の濃度を調整することによって、正極板106を構成する一次粒子20の平均配向角度θを制御できる。具体的には、リチウム雰囲気の濃度を高くすると平均配向角度θを小さくでき、リチウム雰囲気の濃度を低くすると平均配向角度θを大きくできる。
 また、焼成鞘内のリチウム雰囲気の濃度を調整することによって、正極板106を構成する一次粒子20の厚み方向における平均個数を制御できる。具体的には、リチウム雰囲気の濃度を高くすると、リチウムの導入過程において、正極板とリチウムとの反応中に一次粒子20間からリチウム化合物が揮発することを抑えて各一次粒子20の粒成長を促進させることができるため、厚み方向における一次粒子20の平均個数を少なくできる。一方で、リチウム雰囲気の濃度を低くすると、一次粒子20間からリチウム化合物が揮発して各一次粒子20の粒成長が抑えられるため、厚み方向における一次粒子20の平均個数を多くできる。
 また、焼成温度を調整することによっても、厚み方向における一次粒子20の平均個数を制御できる。具体的には、焼成温度を高くすると粒成長が促進されるため、厚み方向における一次粒子20の平均個数を少なくでき、焼成温度を低くすると粒成長が抑えられて、厚み方向における一次粒子20の平均個数を多くできる。
 さらに、正極板106を構成する一次粒子20の個数を制御することによって、配向角度が平均配向角度θ±15度の範囲内に入っている一次粒子の長さ割合を調整できる。一次粒子20の個数は、上述した厚み方向における一次粒子20の平均個数と同様、焼成鞘内のリチウム雰囲気の濃度を調整することによって制御できる。
 なお、焼成鞘内におけるリチウム雰囲気の濃度は、リチウムシートに含まれるLi濃度によって調整できるが、雰囲気粉としてのLiCoO粉末を鞘内に配置することによっても調整できる。ただし、雰囲気粉の量が多すぎると、揮発せずに残留したリチウム化合物によって正極板106がセッターに貼り付いてしまう場合がある。
 [第2製造方法]
 この第2製造方法は、平均配向角度θを0度より大きく30度以下にする場合に適している。
 1.LiCoOテンプレート粒子の作製
 Co原料粉末とLiCO原料粉末を混合して焼成(500~900℃、1~20時間することでLiCoO粉末を合成する。得られたLiCoO粉末をポットミルにて体積基準D50粒径0.2μm~3μmに粉砕することで板状のLiCoO粒子を得る。このようなLiCoO粒子は、LiCoO粉末スラリーを用いたグリーンシートを粒成長させた後に解砕する手法や、フラックス法や水熱合成、融液を用いた単結晶育成、ゾルゲル法など板状結晶を合成する手法によっても得ることができる。
 2.マトリックス粒子の作製
 Co原料粉末をマトリックス粒子として用いる。Co原料粉末の体積基準D50粒径は特に制限されず、例えば0.1~1.0μmとすることができるが、テンプレート粒子の体積基準D50粒径より小さいことが好ましい。このマトリックス粒子は、Co(OH)原料を500℃~800℃で1~10時間熱処理を行なうことによっても得ることができる。また、マトリックス粒子には、Coのほか、Co(OH)粒子を用いてもよいし、LiCoO粒子を用いてもよい。
 3.グリーンシートの作製
 テンプレート粒子とマトリックス粒子を100:3~3:97に混合した粉末と分散媒とバインダーと可塑剤と分散剤とを混合する。そして、この混合物を減圧下で撹拌して脱泡するとともに所望の粘度に調整することによってスラリーを調製する。続いて、ドクターブレード法によって、調製したスラリーをPETフィルムの上に成形してグリーンシートを形成する。
 4.配向焼結板の作製
 PETフィルムから剥がしたグリーンシートをジルコニア製セッターに載置して焼成(500℃~900℃、1~10時間)することによってCo焼結板を得る。次に、Li/Co比(モル比)が0より大きく1.0以下になるように、Co焼結板をリチウムシートで上下挟み込み、ジルコニアセッター上に載せる。このセッターをアルミナ鞘に入れ、大気中にて加熱処理(700~850℃、1~20時間)した後、Co焼結板をリチウムシートで上下挟み、さらに加熱処理(750~900℃、1~40時間)することによって、LiCoO焼結板を得る。この焼成工程は、2度に分けて行ってもよいし、1度に行なってもよい。
 なお、Co焼結板を挟むリチウムシートにおけるLiは、Coに対してLi/Co比で0.1倍~1.5倍程度過剰であることが好ましい。これによって、一次粒子20の粒成長を促進させることができる。
 また、Co粒子径に応じて、加熱処理における加熱条件を調整することが好ましい。例えば、Co粒子径が1μm以下である場合、昇温速度を50℃/h~200℃/hにすることによって、又は、600℃~850℃まで昇温した後に一旦1時間~10時間保持することによって、溶融したリチウムシートをCo焼結板内に保持することが好ましい。これによって、一次粒子20の粒径を大きくするとともに、厚み方向における一次粒子20の平均個数を減らすことができる。
 (他の実施形態)
 本発明は上記実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で種々の変形又は変更が可能である。
 上記実施形態では、本発明に係る板状リチウム複合酸化物をリチウムイオン電池100の正極板106に適用した例について説明したが、板状リチウム複合酸化物はその他の電池構成にも適用することができる。
 例えば、本発明に係る板状リチウム複合酸化物は、電解質としてイオン液体、ポリマー電解質、ゲル電解質、液系電解質等を用いたリチウムイオン電池に用いることができる。イオン液体は、常温溶融塩とも呼ばれ、カチオンおよびアニオンの組み合わせからなる塩である。イオン液体として、例えば、四級アンモニウム系カチオンを含むイオン液体およびイミダゾリウム系カチオンを含むイオン液体などが挙げられる。
 以下において本発明に係るリチウムイオン電池の実施例について説明するが、本発明は以下に説明する実施例に限定されるものではない。
 (サンプルNo.1)
 1.グリーンシートの作製
 Co原料粉末(体積基準D50粒径0.3μm、正同化学工業株式会社製)に5wt%の割合でBi(体積基準D50粒径0.3μm、太陽鉱工株式会社製)を添加して混合粉末を得た。この混合粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。この混合物を、減圧下で撹拌することで脱泡するとともに4000cPの粘度に調整することによって、スラリーを調製した。なお、粘度は、ブルックフィールド社製LVT型粘度計で測定した。上記のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが52μmとなるように、シート状に成形してグリーンシートを得た。
 2.配向焼結板の作製
 PETフィルムから剥がしたグリーンシートを、カッターで30mm角に切り出した。そして、突起の大きさが300μmのエンボス加工を施したジルコニア製セッター(寸法90mm角、厚さ1mm)の中央に切り出したグリーンシートを載置し、1300℃で5時間焼成後、降温速度50℃/hにて降温し、セッターに溶着していない部分をCo焼結板として取り出した。
 3.リチウムシートの作製
 LiCO原料粉末(体積基準D50粒径2.5μm、本荘ケミカル製)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)5重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)2重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。この混合物を、減圧下で撹拌することで脱泡するとともに4000cPの粘度に調整することによって、スラリーを調製した。なお、粘度は、ブルックフィールド社製LVT型粘度計で測定した。上記のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが25μmとなるように、シート状に成形してリチウムシートを得た。
 4.リチウムの導入
 Li/Co比が1.3になるように、Co焼結板をリチウムシートで上下挟み込み、ジルコニアセッター上に載せた。このセッターを90mm角のアルミナ鞘に入れ、さらに雰囲気粉としてのLiCoO粉末を鞘内に5g入れてフタをした。この鞘を大気中にて900℃で20時間加熱処理してLiCoO焼結板を得た。図4は、サンプルNo.1のLiCoO焼結板の断面SEM像である。
 5.正極の作製
 導電性カーボンを分散させたエポキシ系の導電接着剤を用いて、LiCoO焼結板をステンレス集電板に固定することによって正極を作製した。
 6.固体電解質層の作製
 直径4インチ(約10cm)のリン酸リチウム焼結体ターゲットを準備し、スパッタリング装置(キャノンアネルバ社製 SPF-430H)を用いてRFマグネトロン方式にてガス種Nを0.2Pa、出力0.2kWにて膜厚2μmとなるようにスパッタリングを行なった。こうして、厚さ2μmのLiPON系固体電解質スパッタ膜をLiCoO焼結板上に形成した。
 7.リチウムイオン電池の作製
 イオンスパッタリング装置(日本電子社製 JFC-1500)を用いたスパッタリングにより、固体電解質層上に厚さ500ÅのAu膜を形成した。
 Au膜上にLi金属箔とCu箔を載置し、Ar雰囲気のグローブボックス中に配置した200℃のホットプレート上で加圧圧着した。
 このようにして、正極板/固体電解質層/負極層の単位電池(サイズ:10mm×10mm平方)を得た。そして、単位電池をAr雰囲気中でAlラミネートフィルムに封入することでリチウムイオン電池を形成した。
 (サンプルNo.2)
 サンプルNo.2では、リチウム導入時の雰囲気粉として鞘に入れたLiCoO粉末の量を10gとした以外は、サンプルNo.1と同じ工程にてリチウムイオン電池を形成した。
 (サンプルNo.3)
 サンプルNo.3では、リチウム導入時の雰囲気粉として鞘に入れたLiCoO粉末の量を15gとし、かつ、加熱処理温度を840℃とした以外は、サンプルNo.1と同じ工程にてリチウムイオン電池を形成した。
 (サンプルNo.4)
 サンプルNo.4では、リチウム導入時の雰囲気粉として鞘に入れたLiCoO粉末の量を10gとし、かつ、加熱処理温度を840℃とした以外は、サンプルNo.1と同じ工程にてリチウムイオン電池を形成した。
 (サンプルNo.5)
 サンプルNo.4では、リチウム導入時の加熱処理温度を840℃とした以外は、サンプルNo.1と同じ工程にてリチウムイオン電池を形成した。
 (サンプルNo.6)
 サンプルNo.6では、リチウム導入時の加熱処理温度を840℃とし、かつ、鞘内雰囲気をO雰囲気とした以外は、サンプルNo.1と同じ工程にてリチウムイオン電池を形成した。
 (サンプルNo.7)
 サンプルNo.7では、リチウム導入時に雰囲気粉を入れず、かつ、加熱処理温度を840℃とした以外は、サンプルNo.1と同じ工程にてリチウムイオン電池を形成した。
 (サンプルNo.8)
 サンプルNo.8では、リチウム導入時に雰囲気粉を入れずに鞘のフタを開けた状態にし、かつ、加熱処理温度を840℃とした以外は、サンプルNo.1と同じ工程にてリチウムイオン電池を形成した。
 (サンプルNo.9)
 サンプルNo.9では、リチウム導入時に雰囲気粉を入れず、かつ、加熱処理温度を880℃とした以外は、サンプルNo.1と同じ工程にてリチウムイオン電池を形成した。
 (サンプルNo.10)
 1.テンプレート粒子の作製
 Co原料粉末(体積基準D50粒径0.8μm、正同化学工業株式会社製)とLiCO原料粉末(体積基準D50粒径2.5μm、本荘ケミカル製)を混合し、800℃で5時間焼成することでLiCoO粉末を合成した。得られたLiCoO粉末をポットミルにて40時間粉砕することによって、体積基準D50粒径1.0μmの板状LiCoO粒子を得た。
 2.マトリックス粒子の作製
 Co原料粉末(体積基準D50粒径0.3μm、正同化学工業株式会社製)をマトリックス粒子とした。
 3.グリーンシートの作製
 テンプレート粒子とマトリックス粒子を重量比が60:40になるように混合した。この混合粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。この混合物を、減圧下で撹拌することで脱泡するとともに粘度を10000cPに調整することによってスラリーを調製した。なお、粘度は、ブルックフィールド社製LVT型粘度計で測定した。調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが40μmとなるようにシート状に成形してグリーンシートを得た。
 4.配向焼結板の作製
 PETフィルムから剥がしたグリーンシートをジルコニア製セッターに載置して焼成(900℃、5時間)することによってCo焼結板を得た。そして、合成したリチウムシートをLi/Co比が1.0になるように、Co焼結板をリチウムシートで上下挟み込み、ジルコニアセッター上に載せた。このセッターを90mm角のアルミナ鞘に入れ、大気中にて加熱処理(800℃、5時間)した後、さらにリチウムシートで上下挟んで加熱処理(900℃、20時間)することによってLiCoO焼結板を得た。
 (サンプルNo.11)
 テンプレート粒子の粉砕時間を30時間とし、テンプレート粒子とマトリックス粒子の重量比を50:50とした以外は、サンプルNo.10と同様の工程にてLiCoO焼結板を得た。図5は、サンプルNo.11のLiCoO焼結板の断面SEM像である。
(サンプルNo.12)
 板厚を30μmとした以外は、サンプルNo.9と同様の工程にてLiCoO焼結板を得た。
(サンプルNo.13)
 まず、サンプルNo.10と同様に、テンプレート粒子として板状LiCoO粒子を作製した。
 次に、Li/Co比が1.0となるように、サンプルNo.10のCo原料粉末にLiOH・HO粉末(和光純薬工業株式会社製)を混合し、90mm角のアルミナ鞘に入れて大気中で加熱処理(650℃、5時間)することによって、マトリックス粒子として体積基準D50粒径0.3μmのLiCoO粒子を得た。
 次に、テンプレート粒子とマトリックス粒子の重量比を75:25としたスラリーを調製し、サンプルNo.10と同様の手法でグリーンシートを得た。
 次に、Li/Co比が1.5(Li/Co比1.0はグリーンシート、残りのLi/Co比0.5はリチウムシート)となるようにグリーンシートをリチウムシートで挟み、800℃で5時間保持した後に900℃で20時間加熱処理を行うことによって、LiCoO焼結板を得た。
 (配向角度の測定)
 まず、LiCoO焼結板のうち固体電解質層と接する固体電解質側表面に露出する10個以上の一次粒子を観察できる断面EBSD像を10枚取得した。次に、各断面EBSD像において、固体電解質側表面に露出する10個の一次粒子を任意に選択した。各断面EBSD像の取得には、日立ハイテクノロジーズ製FE-SEM、SU5000およびオックスフォード・インストゥルメンツ製EBSD検出器、NordlyNanoを使用し、倍率1000倍(観察範囲約130μm×約100μm)で行った。
 次に、各断面EBSD像において、選択した10個の一次粒子の配向角度ごとに、固体電解質側表面における長さ分布を求めた。そして、合計100個の一次粒子の長さ分布から算出される配向角度の算術平均値を平均配向角度として求めた。図6は、サンプルNo.1についての配向角度ごとの長さ割合を示すヒストグラムである。
 次に、下記式(1)に、満充電時におけるLiの組成比xの減少量αを0.3として、算出した平均配向角度θを代入することによって、正極板の板面方向における膨張収縮率Eを算出した。算出結果を表1に示す。
 E=2.56α×sinθ・・・式(1)
 また、平均配向角度θの算出に用いた100個の一次粒子のうち配向角度が平均配向角度θ±15度の範囲に入っている一次粒子の長さ割合を算出した。算出結果を表1に示す。
 (厚み方向における一次粒子の平均個数)
 図7は、図4の断面SEM像を用いた一次粒子の平均個数の算出方法を説明するための図である。
 CP研磨加工によって正極板の厚み方向の断面を露出させた後、断面をSEMで観察した。そして、断面のSEM像において、任意の位置に厚み方向に平行な5本の線を引き、5本の線それぞれと重なる一次粒子の個数を算術平均した。算出結果を表1にまとめて示す。
 (電池評価)
 サンプルNo.1~9に係るリチウムイオン電池を0.1[mA]定電流で4.05[V]まで充電した後、定電圧で電流が0.05[mA]になるまで充電した。そして、0.02[mA]定電流で3.0[V]まで放電し、放電容量W0を測定した。さらに、この操作を10回繰り返した後の放電容量W10を測定した。放電容量W10を放電容量W0で除することによって容量維持率を算出した。算出結果を表1にまとめて示す。
 サンプルNo.10~13に係るリチウムイオン電池を0.1[mA]定電流で4.2[V]まで充電した後、定電圧で電流が0.05[mA]になるまで充電した。そして、0.1[mA]定電流で3.0[V]まで放電し、放電容量W0を測定した。さらに、この操作を10回繰り返した後の放電容量W10を測定した。放電容量W10を放電容量W0で除することによって容量維持率を算出した。算出結果を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、正極板の板面方向における膨張収縮率Eが0.5%以下であるサンプルNo.1~6,10~11,13では、90%以上の良好な容量維持率を達成することができた。これは、正極板の板面方向における膨張収縮率Eを小さくして、正極板と固体電解質層との界面に生じる応力を抑制することによって、固体電解質層の欠陥や固体電解質層からの正極板の剥離を抑制できたためである。
 また、表1に示すように、平均配向角度θ±15度内の配向角度を有する一次粒子の長さ割合が51%以上であるサンプルNo.1~3,5~6,10~11,13では、当該割合が42%であるサンプルNo.4に比べて、容量維持率をより向上させることができた。これは、各一次粒子の配向角度の分布を狭くすることによって、正極板表面に露出する配向角度の大きい粒子を少なくし、配向角度の大きい粒子が存在する箇所での局所的な膨張による固体電解質層の欠陥や正極板の剥離を抑制できたためである。
 また、表1に示すように、平均配向角度を10.5度以上としたサンプルNo.1~5,10~11,13では、平均配向角度が5.6度であるサンプルNo.6に比べて、放電容量を向上させることができた。これは、平均配向角度を10.5度以上とすることによって、厚み方向におけるリチウムイオンの出入りを良好にできたためである。
 また、表1に示すように、正極板の厚みが50μm以上のサンプルNo.1~4では、厚み50μm当たりにおける一次粒子の平均個数を5以下とすることによって、当該平均個数が12個であるサンプルNo.5に比べて、放電容量を向上させることができた。これは、厚み方向に配置された一次粒子の平均個数を少なくすることによって、厚み方向におけるリチウムイオン伝導性を向上させることができたためである。
 本発明に係る板状リチウム複合酸化物によれば、固体電解質層の欠陥又は/及び正極の剥離を抑制することができるため、リチウムイオン電池分野において有用である。
100     リチウムイオン電池
101     正極側集電層
102     負極側集電層
103,104 外装材
105     集電接続層
106     正極板
107     固体電解質層
108     負極層
 

Claims (5)

  1.  固体電解質を備えるリチウムイオン電池の正極として用いられる板状リチウム複合酸化物であって、
     層状岩塩構造のリチウム複合酸化物によってそれぞれ構成され、互いに結合した複数の一次粒子によって構成されており、
     満充電時において、板面と平行な板面方向における膨張収縮率Eは、0.5%以下である、
    板状リチウム複合酸化物。
  2.  前記リチウム複合酸化物は、LiCoOであり、
     前記板面方向に対する前記複数の一次粒子の平均配向角度θは、充電時におけるLiの組成比xの減少量αを0.1以上0.7以下とした場合に下記式(1)を満たす、
    請求項1に記載の板状リチウム複合酸化物。
     (数1)E=2.56α×sinθ・・・(1)
  3.  板面の断面において、前記複数の一次粒子のうち前記平均配向角度θ±15度以内の配向角度を有する一次粒子の長さ割合は、51%以上である、
    請求項1又は2に記載の板状リチウム複合酸化物。
  4.  前記板面方向に垂直な厚み方向における厚みは、50μm以上であり、
     厚み50μm当たりに配置される前記一次粒子の平均個数は、6以下である、
    請求項1乃至3のいずれかに記載の板状リチウム複合酸化物。
  5.  前記板面方向に対する前記複数の一次粒子の平均配向角度θは、0度より大きく30度以下である、
    請求項1乃至4のいずれかに記載の板状リチウム複合酸化物。
     
PCT/JP2017/006548 2016-02-24 2017-02-22 板状リチウム複合酸化物 WO2017146088A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780007225.1A CN108701814B (zh) 2016-02-24 2017-02-22 板状锂复合氧化物
EP17756526.4A EP3352254B1 (en) 2016-02-24 2017-02-22 Plate-shaped lithium composite oxide
KR1020187024025A KR102643570B1 (ko) 2016-02-24 2017-02-22 판형 리튬 복합 산화물
JP2018501730A JP6480079B2 (ja) 2016-02-24 2017-02-22 板状リチウム複合酸化物
US15/952,540 US10454109B2 (en) 2016-02-24 2018-04-13 Plate-shaped lithium composite oxide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016032944 2016-02-24
JP2016-032944 2016-02-24
JP2016087110 2016-04-25
JP2016-087110 2016-04-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/952,540 Continuation US10454109B2 (en) 2016-02-24 2018-04-13 Plate-shaped lithium composite oxide

Publications (1)

Publication Number Publication Date
WO2017146088A1 true WO2017146088A1 (ja) 2017-08-31

Family

ID=59686182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006548 WO2017146088A1 (ja) 2016-02-24 2017-02-22 板状リチウム複合酸化物

Country Status (6)

Country Link
US (1) US10454109B2 (ja)
EP (1) EP3352254B1 (ja)
JP (1) JP6480079B2 (ja)
KR (1) KR102643570B1 (ja)
CN (1) CN108701814B (ja)
WO (1) WO2017146088A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078043A1 (ja) * 2017-10-17 2019-04-25 日本碍子株式会社 リチウム二次電池、及び電池内蔵デバイスの製造方法
WO2019093222A1 (ja) 2017-11-10 2019-05-16 日本碍子株式会社 全固体リチウム電池及びその製造方法
WO2019093221A1 (ja) 2017-11-10 2019-05-16 日本碍子株式会社 二次電池
KR20190061064A (ko) 2016-11-11 2019-06-04 엔지케이 인슐레이터 엘티디 이차 전지
WO2019116857A1 (ja) * 2017-12-12 2019-06-20 日本碍子株式会社 全固体リチウム電池及びその製造方法
WO2019187916A1 (ja) 2018-03-28 2019-10-03 日本碍子株式会社 リチウム二次電池及び電池内蔵カード
JP2019175604A (ja) * 2018-03-27 2019-10-10 日本碍子株式会社 リチウム二次電池
WO2019221144A1 (ja) 2018-05-17 2019-11-21 日本碍子株式会社 リチウム二次電池
WO2019221142A1 (ja) * 2018-05-17 2019-11-21 日本碍子株式会社 リチウム二次電池
WO2019221143A1 (ja) 2018-05-17 2019-11-21 日本碍子株式会社 リチウム二次電池
WO2019221140A1 (ja) 2018-05-17 2019-11-21 日本碍子株式会社 リチウム二次電池
WO2019221146A1 (ja) 2018-05-17 2019-11-21 日本碍子株式会社 リチウム二次電池
WO2020090803A1 (ja) 2018-10-30 2020-05-07 日本碍子株式会社 回路基板アセンブリ
WO2020090801A1 (ja) 2018-10-30 2020-05-07 日本碍子株式会社 コイン形リチウム二次電池
WO2020090802A1 (ja) 2018-10-30 2020-05-07 日本碍子株式会社 コイン形二次電池
WO2020217579A1 (ja) 2019-04-26 2020-10-29 日本碍子株式会社 リチウム二次電池
WO2020217749A1 (ja) * 2019-04-25 2020-10-29 日本碍子株式会社 リチウム二次電池
JPWO2021100283A1 (ja) * 2019-11-20 2021-05-27
US11424455B2 (en) 2018-03-28 2022-08-23 Ngk Insulators, Ltd. Lithium secondary battery and card with built-in battery
WO2022209049A1 (ja) 2021-03-30 2022-10-06 日本碍子株式会社 リチウム二次電池
US11658280B2 (en) 2018-03-28 2023-05-23 Ngk Insulators, Ltd. Lithium secondary battery and card with built-in battery
US11664499B2 (en) 2018-03-28 2023-05-30 Ngk Insulators, Ltd. Lithium rechargeable battery and card with built-in battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132887A (ja) * 2001-10-29 2003-05-09 Matsushita Electric Ind Co Ltd 固体リチウム二次電池およびその製造方法
WO2010074314A1 (ja) * 2008-12-24 2010-07-01 日本碍子株式会社 リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池
WO2015029289A1 (ja) * 2013-08-29 2015-03-05 パナソニックIpマネジメント株式会社 全固体リチウム二次電池
WO2016117499A1 (ja) * 2015-01-23 2016-07-28 日本碍子株式会社 全固体電池用正極板、全固体電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337156B1 (en) * 1997-12-23 2002-01-08 Sri International Ion battery using high aspect ratio electrodes
JP2005243371A (ja) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd 正極とそれを用いた捲回型電気化学素子
DE602006020912D1 (de) * 2005-11-07 2011-05-05 Panasonic Corp Elektrode für eine wiederaufladbare lithium-batterie, wiederaufladbare lithium-batterie und verfahren zur herstellung besagter wiederaufladbarer lithium-batterie
JP2010074304A (ja) 2008-09-16 2010-04-02 Ricoh Co Ltd 画像形成装置及び起動制御方法
US9099738B2 (en) * 2008-11-03 2015-08-04 Basvah Llc Lithium secondary batteries with positive electrode compositions and their methods of manufacturing
CN102239587B (zh) 2008-12-24 2015-11-25 日本碍子株式会社 锂二次电池的正极活性物质用的板状粒子、锂二次电池的正极活性物质膜、它们的制造方法、锂二次电池的正极活性物质的制造方法以及锂二次电池
EP2369662A1 (en) * 2008-12-24 2011-09-28 NGK Insulators, Ltd. Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
JP2011108407A (ja) * 2009-11-13 2011-06-02 Sumitomo Electric Ind Ltd 非水電解質電池用正極の製造方法と非水電解質電池用正極ならびに非水電解質電池
JP5149920B2 (ja) * 2010-02-05 2013-02-20 トヨタ自動車株式会社 リチウム二次電池用電極の製造方法
JP5564649B2 (ja) * 2010-06-23 2014-07-30 日本碍子株式会社 リチウム二次電池の正極及びリチウム二次電池
JP5587052B2 (ja) * 2010-06-23 2014-09-10 日本碍子株式会社 リチウム二次電池の正極及びリチウム二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132887A (ja) * 2001-10-29 2003-05-09 Matsushita Electric Ind Co Ltd 固体リチウム二次電池およびその製造方法
WO2010074314A1 (ja) * 2008-12-24 2010-07-01 日本碍子株式会社 リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池
WO2015029289A1 (ja) * 2013-08-29 2015-03-05 パナソニックIpマネジメント株式会社 全固体リチウム二次電池
WO2016117499A1 (ja) * 2015-01-23 2016-07-28 日本碍子株式会社 全固体電池用正極板、全固体電池

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190061064A (ko) 2016-11-11 2019-06-04 엔지케이 인슐레이터 엘티디 이차 전지
US11387454B2 (en) 2016-11-11 2022-07-12 Ngk Insulators, Ltd. Secondary battery
WO2019078043A1 (ja) * 2017-10-17 2019-04-25 日本碍子株式会社 リチウム二次電池、及び電池内蔵デバイスの製造方法
JPWO2019078043A1 (ja) * 2017-10-17 2020-10-01 日本碍子株式会社 リチウム二次電池、及び電池内蔵デバイスの製造方法
US11757134B2 (en) 2017-10-17 2023-09-12 Ngk Insulators, Ltd. Lithium secondary battery and method for manufacturing battery-incorporating device
WO2019093222A1 (ja) 2017-11-10 2019-05-16 日本碍子株式会社 全固体リチウム電池及びその製造方法
WO2019093221A1 (ja) 2017-11-10 2019-05-16 日本碍子株式会社 二次電池
CN111279538A (zh) * 2017-11-10 2020-06-12 日本碍子株式会社 全固体锂电池及其制造方法
KR20200057047A (ko) 2017-11-10 2020-05-25 엔지케이 인슐레이터 엘티디 2차 전지
US11515570B2 (en) 2017-11-10 2022-11-29 Ngk Insulators, Ltd. Secondary battery
US11837699B2 (en) 2017-11-10 2023-12-05 Ngk Insulators, Ltd. All-solid lithium battery and method of manufacturing same
CN111279538B (zh) * 2017-11-10 2023-07-25 日本碍子株式会社 全固体锂电池及其制造方法
WO2019116857A1 (ja) * 2017-12-12 2019-06-20 日本碍子株式会社 全固体リチウム電池及びその製造方法
JPWO2019116857A1 (ja) * 2017-12-12 2020-12-24 日本碍子株式会社 全固体リチウム電池及びその製造方法
JP7126518B2 (ja) 2017-12-12 2022-08-26 日本碍子株式会社 全固体リチウム電池及びその製造方法
US11404683B2 (en) 2017-12-12 2022-08-02 Ngk Insulators, Ltd. All-solid-state lithium battery and method for manufacturing same
JP2019175604A (ja) * 2018-03-27 2019-10-10 日本碍子株式会社 リチウム二次電池
US11664499B2 (en) 2018-03-28 2023-05-30 Ngk Insulators, Ltd. Lithium rechargeable battery and card with built-in battery
US11424455B2 (en) 2018-03-28 2022-08-23 Ngk Insulators, Ltd. Lithium secondary battery and card with built-in battery
WO2019187916A1 (ja) 2018-03-28 2019-10-03 日本碍子株式会社 リチウム二次電池及び電池内蔵カード
US11658280B2 (en) 2018-03-28 2023-05-23 Ngk Insulators, Ltd. Lithium secondary battery and card with built-in battery
CN112088458A (zh) * 2018-05-17 2020-12-15 日本碍子株式会社 锂二次电池
WO2019221140A1 (ja) 2018-05-17 2019-11-21 日本碍子株式会社 リチウム二次電池
JPWO2019221142A1 (ja) * 2018-05-17 2021-02-12 日本碍子株式会社 リチウム二次電池
KR102589670B1 (ko) * 2018-05-17 2023-10-13 엔지케이 인슐레이터 엘티디 리튬 이차 전지
KR20200131316A (ko) * 2018-05-17 2020-11-23 엔지케이 인슐레이터 엘티디 리튬 이차 전지
TWI785239B (zh) * 2018-05-17 2022-12-01 日商日本碍子股份有限公司 鋰二次電池
WO2019221143A1 (ja) 2018-05-17 2019-11-21 日本碍子株式会社 リチウム二次電池
WO2019221142A1 (ja) * 2018-05-17 2019-11-21 日本碍子株式会社 リチウム二次電池
WO2019221144A1 (ja) 2018-05-17 2019-11-21 日本碍子株式会社 リチウム二次電池
JP7104148B2 (ja) 2018-05-17 2022-07-20 日本碍子株式会社 リチウム二次電池
WO2019221146A1 (ja) 2018-05-17 2019-11-21 日本碍子株式会社 リチウム二次電池
WO2020090803A1 (ja) 2018-10-30 2020-05-07 日本碍子株式会社 回路基板アセンブリ
WO2020090802A1 (ja) 2018-10-30 2020-05-07 日本碍子株式会社 コイン形二次電池
WO2020090801A1 (ja) 2018-10-30 2020-05-07 日本碍子株式会社 コイン形リチウム二次電池
WO2020217749A1 (ja) * 2019-04-25 2020-10-29 日本碍子株式会社 リチウム二次電池
JPWO2020217749A1 (ja) * 2019-04-25 2021-11-11 日本碍子株式会社 リチウム二次電池
JP7193622B2 (ja) 2019-04-25 2022-12-20 日本碍子株式会社 リチウム二次電池
JP7268142B2 (ja) 2019-04-26 2023-05-02 日本碍子株式会社 リチウム二次電池
WO2020217579A1 (ja) 2019-04-26 2020-10-29 日本碍子株式会社 リチウム二次電池
JPWO2020217579A1 (ja) * 2019-04-26 2021-12-23 日本碍子株式会社 リチウム二次電池
JP7280379B2 (ja) 2019-11-20 2023-05-23 日本碍子株式会社 リチウム二次電池及びその充電状態の測定方法
WO2021100283A1 (ja) 2019-11-20 2021-05-27 日本碍子株式会社 リチウム二次電池及びその充電状態の測定方法
JPWO2021100283A1 (ja) * 2019-11-20 2021-05-27
KR20220038141A (ko) 2019-11-20 2022-03-25 엔지케이 인슐레이터 엘티디 리튬 이차 전지 및 그 충전 상태의 측정 방법
EP4064403A4 (en) * 2019-11-20 2024-01-17 Ngk Insulators Ltd LITHIUM SECONDARY BATTERY AND METHOD FOR MEASURING THE STATE OF CHARGE SAME
KR102656021B1 (ko) 2019-11-20 2024-04-08 엔지케이 인슐레이터 엘티디 리튬 이차 전지 및 그 충전 상태의 측정 방법
WO2022209049A1 (ja) 2021-03-30 2022-10-06 日本碍子株式会社 リチウム二次電池

Also Published As

Publication number Publication date
CN108701814B (zh) 2021-01-22
US10454109B2 (en) 2019-10-22
EP3352254A1 (en) 2018-07-25
JPWO2017146088A1 (ja) 2018-06-07
JP6480079B2 (ja) 2019-03-06
US20180233744A1 (en) 2018-08-16
KR20180116279A (ko) 2018-10-24
EP3352254B1 (en) 2020-10-21
CN108701814A (zh) 2018-10-23
EP3352254A4 (en) 2018-07-25
KR102643570B1 (ko) 2024-03-04

Similar Documents

Publication Publication Date Title
JP6480079B2 (ja) 板状リチウム複合酸化物
JP6914285B2 (ja) リチウムイオン電池
JP6820960B2 (ja) リチウムイオン電池
WO2018123479A1 (ja) リチウムイオン電池及びその製造方法
JP6430065B2 (ja) 正極の製造方法
WO2018025594A1 (ja) 全固体リチウム電池
CN111279538A (zh) 全固体锂电池及其制造方法
WO2018025595A1 (ja) 全固体リチウム電池の使用方法
JP7126518B2 (ja) 全固体リチウム電池及びその製造方法
WO2017104363A1 (ja) 板状リチウム複合酸化物、及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501730

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187024025

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE