WO2019078043A1 - リチウム二次電池、及び電池内蔵デバイスの製造方法 - Google Patents
リチウム二次電池、及び電池内蔵デバイスの製造方法 Download PDFInfo
- Publication number
- WO2019078043A1 WO2019078043A1 PCT/JP2018/037431 JP2018037431W WO2019078043A1 WO 2019078043 A1 WO2019078043 A1 WO 2019078043A1 JP 2018037431 W JP2018037431 W JP 2018037431W WO 2019078043 A1 WO2019078043 A1 WO 2019078043A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secondary battery
- lithium secondary
- lithium
- positive electrode
- plate
- Prior art date
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 118
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 117
- 238000000034 method Methods 0.000 title claims description 47
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 21
- GEWWCWZGHNIUBW-UHFFFAOYSA-N 1-(4-nitrophenyl)propan-2-one Chemical compound CC(=O)CC1=CC=C([N+]([O-])=O)C=C1 GEWWCWZGHNIUBW-UHFFFAOYSA-N 0.000 claims abstract description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229920003048 styrene butadiene rubber Polymers 0.000 claims abstract description 16
- 239000002131 composite material Substances 0.000 claims abstract description 12
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 11
- 239000011164 primary particle Substances 0.000 claims description 77
- 230000008569 process Effects 0.000 claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 26
- 229910013063 LiBF 4 Inorganic materials 0.000 claims description 12
- 239000003125 aqueous solvent Substances 0.000 claims description 12
- 239000003792 electrolyte Substances 0.000 claims description 12
- 238000003475 lamination Methods 0.000 claims description 11
- 229920001721 polyimide Polymers 0.000 claims description 11
- 239000004642 Polyimide Substances 0.000 claims description 10
- 238000005476 soldering Methods 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 claims description 5
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 claims description 5
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 claims description 4
- 229920002678 cellulose Polymers 0.000 claims description 4
- 239000001913 cellulose Substances 0.000 claims description 4
- 229920000728 polyester Polymers 0.000 claims description 3
- -1 lithium tetrafluoroborate Chemical compound 0.000 abstract description 16
- 239000002904 solvent Substances 0.000 abstract description 2
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 abstract 2
- 150000002641 lithium Chemical class 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 72
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 37
- 239000010410 layer Substances 0.000 description 23
- 239000002033 PVDF binder Substances 0.000 description 21
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 21
- 239000011159 matrix material Substances 0.000 description 20
- 230000001965 increasing effect Effects 0.000 description 18
- 239000011230 binding agent Substances 0.000 description 17
- 238000010304 firing Methods 0.000 description 15
- 239000011347 resin Substances 0.000 description 15
- 229920005989 resin Polymers 0.000 description 15
- 238000001887 electron backscatter diffraction Methods 0.000 description 14
- 238000007789 sealing Methods 0.000 description 14
- 239000000843 powder Substances 0.000 description 13
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 239000012046 mixed solvent Substances 0.000 description 11
- 239000011148 porous material Substances 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 10
- 239000004743 Polypropylene Substances 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 229920001155 polypropylene Polymers 0.000 description 10
- 239000011888 foil Substances 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 239000005001 laminate film Substances 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 239000007774 positive electrode material Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 6
- 229910013870 LiPF 6 Inorganic materials 0.000 description 6
- 239000002174 Styrene-butadiene Substances 0.000 description 6
- 239000012790 adhesive layer Substances 0.000 description 6
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 6
- 238000000227 grinding Methods 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229920006280 packaging film Polymers 0.000 description 4
- 239000012785 packaging film Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000011883 electrode binding agent Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- 229910018871 CoO 2 Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910021314 NaFeO 2 Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- DISRHZHEEAYQQD-UHFFFAOYSA-N [Mn](=O)(=O)([O-])[O-].[Mn+2].[Co+2].[Mn](=O)(=O)([O-])[O-] Chemical compound [Mn](=O)(=O)([O-])[O-].[Mn+2].[Co+2].[Mn](=O)(=O)([O-])[O-] DISRHZHEEAYQQD-UHFFFAOYSA-N 0.000 description 1
- IIHAFXIJPJUSHE-UHFFFAOYSA-N [Mn](=O)(=O)([O-])[O-].[Ni+2].[Ni+2].[Co+2].[Mn](=O)(=O)([O-])[O-].[Mn](=O)(=O)([O-])[O-] Chemical compound [Mn](=O)(=O)([O-])[O-].[Ni+2].[Ni+2].[Co+2].[Mn](=O)(=O)([O-])[O-].[Mn](=O)(=O)([O-])[O-] IIHAFXIJPJUSHE-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011884 anode binding agent Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- BDKWOJYFHXPPPT-UHFFFAOYSA-N lithium dioxido(dioxo)manganese nickel(2+) Chemical compound [Mn](=O)(=O)([O-])[O-].[Ni+2].[Li+] BDKWOJYFHXPPPT-UHFFFAOYSA-N 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000011302 mesophase pitch Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920006284 nylon film Polymers 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0563—Liquid materials, e.g. for Li-SOCl2 cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/446—Initial charging measures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/615—Heating or keeping warm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6554—Rods or plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
- H01M4/801—Sintered carriers
- H01M4/803—Sintered carriers of only powdered material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/002—Inorganic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/117—Inorganic material
- H01M50/119—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/121—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
- H01M50/126—Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
- H01M50/129—Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/131—Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
- H01M50/133—Thickness
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a lithium secondary battery and a method of manufacturing a battery built-in device.
- a battery built-in smart card is being put to practical use.
- An example of a smart card with a built-in primary battery is a credit card with a one-time password display function.
- Examples of a smart card having a built-in secondary battery include a card with a fingerprint authentication / wireless communication function, which is equipped with a wireless communication IC, an ASIC for fingerprint analysis, and a fingerprint sensor.
- the smart card battery is generally required to have characteristics such as a thickness of less than 0.45 mm, high capacity and low resistance, bending resistance, and resistance to process temperature.
- Patent Literature 1 Japanese Patent Laid-Open No. 2013-97931
- Patent Literature 2 Japanese Patent Laid-Open No. 2012-209124 disclose an electrode stack including a positive electrode current collector, a positive electrode, a separator, a negative electrode, and a negative electrode current collector.
- a film-clad battery is disclosed in which the body is contained and sealed in a laminate film container.
- the film-clad batteries disclosed in Patent Documents 1 and 2 are all lithium primary batteries.
- a powder of a lithium composite oxide typically, a lithium transition metal oxide
- a binder typically, a conductive agent, etc.
- a powder-dispersed positive electrode obtained by kneading and molding an object is widely known.
- Such a powder-dispersed positive electrode contains a relatively large amount (eg, about 10% by weight) of a binder that does not contribute to the volume, so the packing density of the lithium composite oxide as a positive electrode active material is low. For this reason, the powder-dispersed positive electrode has a large room for improvement in terms of capacity and charge / discharge efficiency.
- Patent Document 3 Japanese Patent No. 55867052
- Patent Document 3 Japanese Patent No. 55867052
- the positive electrode active material layer is made of a sintered lithium complex oxide plate having a thickness of 30 ⁇ m or more, a porosity of 3 to 30%, and an open pore ratio of 70% or more.
- Patent Document 4 Japanese Patent Application Laid-Open No. 10-312825
- 10 to 40% by volume of ethylene carbonate and 60 to 90% by volume of ⁇ -butyrolactone are used as non-aqueous solvents for electrolytes.
- a lithium secondary battery using a mixed solvent comprising
- hot lamination may be performed.
- the card production by hot lamination is performed, for example, by pressing and bonding a card base and a resin film at a temperature of 110 ° C. or higher (eg, 120 to 150 ° C.). Therefore, it is convenient if hot lamination processing can be used as a method for incorporating a thin lithium battery in a thin device such as a smart card. In this case, it is conceivable to sequentially laminate a thin lithium battery and a protective film on a card substrate and press at a high temperature of 110 ° C. or higher.
- conventional liquid-type thin lithium batteries have insufficient heat resistance, and when heated to 110 ° C. or more, they cause expansion and breakage of the batteries and an increase in battery resistance.
- a reflow soldering process can be considered as a method for mounting a thin lithium battery on a printed wiring board, but this also involves heating to a high temperature, so the same problem as described above may occur.
- a positive electrode plate which is a sintered lithium complex oxide plate, a negative electrode containing carbon and styrene butadiene rubber (SBR), ⁇ -butyrolactone (GBL) and optionally ethylene carbonate (EC). It has been found that a lithium secondary battery excellent in heat resistance can be provided by selectively combining an electrolyte containing lithium borofluoride (LiBF 4 ) in a non-aqueous solvent.
- SiBF 4 lithium borofluoride
- an object of the present invention is to provide a lithium secondary battery excellent in heat resistance.
- a positive electrode plate which is a lithium complex oxide sintered plate, A negative electrode comprising carbon and styrene butadiene rubber (SBR), an electrolyte comprising lithium borofluoride (LiBF 4 ) in a non-aqueous solvent consisting of ⁇ -butyrolactone (GBL) or consisting of ⁇ -butyrolactone (GBL) and ethylene carbonate (EC);
- SBR styrene butadiene rubber
- LiBF 4 lithium borofluoride
- GBL ⁇ -butyrolactone
- EC ethylene carbonate
- Preparing the lithium secondary battery Preparing the lithium secondary battery; Mounting the lithium secondary battery on a substrate through a process involving heating at 110 ° C. or more and less than 260 ° C .; A method of manufacturing a battery built-in device is provided.
- FIG. 2B It is a schematic cross section of an example of the lithium secondary battery of the present invention. It is a figure which shows the first half of an example of the manufacturing process of a lithium secondary battery. It is a second half of an example of the manufacturing process of a lithium secondary battery, and is a figure showing the process of following the process shown in Drawing 2A.
- the right end of FIG. 2B includes a picture of the film-clad battery.
- FIG. 1 schematically shows an example of the lithium secondary battery of the present invention.
- the lithium secondary battery 10 shown in FIG. 1 includes a positive electrode plate 16, a negative electrode 20, and an electrolytic solution 24.
- the positive electrode plate 16 is a lithium complex oxide sintered plate.
- the negative electrode 20 contains carbon and styrene butadiene rubber (SBR).
- the electrolytic solution 24 contains lithium borofluoride (LiBF 4 ) in a non-aqueous solvent composed of ⁇ -butyrolactone (GBL) and optionally ethylene carbonate (EC).
- the positive electrode plate 16 which is a lithium complex oxide sintered plate, the negative electrode 20 containing carbon and styrene butadiene rubber (SBR), non-composed of ⁇ -butyrolactone (GBL) and optionally ethylene carbonate (EC)
- SBR styrene butadiene rubber
- GBL non-composed of ⁇ -butyrolactone
- EC ethylene carbonate
- hot lamination may be considered as a method for incorporating a thin lithium battery into a thin device such as a smart card.
- the reflow soldering process can be considered as a method of mounting a thin lithium battery on a printed wiring board.
- all of these methods involve heating to high temperatures of 110 ° C. or higher, conventional liquid-based thin lithium batteries have insufficient heat resistance, and when heated to 110 ° C. or higher, the cells expand and It causes damage and an increase in battery resistance.
- the lithium secondary battery 10 of the present invention has excellent heat resistance such that expansion or breakage of the battery does not occur even if the battery is heated to 110 ° C. or higher, and no increase in battery resistance is observed.
- Such excellent heat resistance is provided by selectively adopting and combining those described above as the components of the positive electrode plate 16, the negative electrode 20 and the electrolytic solution 24.
- lithium secondary battery 10 is preferably scheduled to be mounted on a substrate by a process involving heating at 110 ° C. or higher, and more preferably the process involving heating is a hot lamination process or a reflow soldering process It is.
- the battery includes the steps of: preparing a lithium secondary battery; and mounting the lithium secondary battery on a substrate through a process involving heating at 110 ° C. or higher.
- a method of manufacturing an embedded device is provided, more preferably the process involving heating is a hot lamination process or a reflow soldering process.
- the process involving heating is hot lamination and the battery built-in device is a battery built-in smart card.
- the preferred heating temperature is 110 ° C. or more and less than 260 ° C., more preferably 110 ° C. or more and less than 240 ° C., still more preferably 110 ° C. or more and less than 220 ° C., particularly preferably 110 ° C. or more and less than 200 ° C.
- it is 110 degreeC or more and less than 150 degreeC.
- the positive electrode plate 16 is a lithium complex oxide sintered plate.
- the fact that the positive electrode plate 16 is a sintered plate means that the positive electrode plate 16 does not contain a binder. This is because, even if the green sheet contains a binder, the binder disappears or burns off at the time of firing. And since the positive electrode plate 16 does not contain a binder, there exists an advantage that deterioration of the positive electrode by electrolyte solution can be avoided.
- a binder called polyvinylidene fluoride (PVDF) is widely used for the positive electrode of a conventional lithium battery, and this PVDF is used as the electrolyte of the present invention.
- the positive electrode plate 16 used in the present invention is a sintered body not containing such a binder, the above problems do not occur.
- the lithium composite oxide constituting the sintered body plate is lithium cobaltate (typically, LiCoO 2 (hereinafter sometimes abbreviated as LCO)).
- LCO lithium cobaltate
- Various lithium complex oxide sintered compact plates or LCO sintered compact boards are known, and for example, those disclosed in Patent Document 3 (Japanese Patent No. 5587052) can be used.
- positive electrode plate 16 that is, a sintered lithium composite oxide plate contains a plurality of primary particles composed of lithium composite oxide, and the plurality of primary particles are on the plate surface of the positive electrode plate.
- it is an oriented positive electrode plate which is oriented at an average orientation angle of more than 0 ° and 30 ° or less.
- FIG. 3 shows an example of a cross-sectional SEM image perpendicular to the plate surface of the oriented positive electrode plate 16, while FIG. 4 shows an electron backscatter diffraction (EBSD) image in a cross section perpendicular to the plate surface of the oriented positive electrode plate 16.
- EBSD electron backscatter diffraction
- the histogram which shows distribution of the orientation angle of the primary particle 11 in the EBSD image of FIG. 4 on an area basis in FIG. 5 is shown.
- the orientation angle of each primary particle 11 is indicated by light and shade of color, and it is shown that the darker the color, the smaller the orientation angle.
- the orientation angle is an inclination angle formed by the (003) plane of each primary particle 11 with respect to the plate surface direction.
- the portions that are black-displayed inside the alignment positive plate 16 are pores.
- the oriented positive electrode plate 16 is an oriented sintered body composed of a plurality of primary particles 11 bonded to one another.
- each primary particle 11 is mainly plate-shaped, what was formed in rectangular solid shape, cube shape, spherical shape, etc. may be contained.
- the cross-sectional shape of each primary particle 11 is not particularly limited, and may be a rectangle, a polygon other than a rectangle, a circle, an ellipse, or a complex shape other than these.
- Each primary particle 11 is composed of a lithium composite oxide.
- the lithium complex oxide is Li x MO 2 (0.05 ⁇ x ⁇ 1. 10, M is at least one transition metal, and M is typically at least one of Co, Ni and Mn.
- an oxide represented by The lithium composite oxide has a layered rock salt structure.
- the layered rock salt structure is a crystal structure in which a lithium layer and a transition metal layer other than lithium are alternately stacked with an oxygen layer interposed therebetween, that is, a transition metal ion layer and a lithium single layer are alternately interposed via oxide ions.
- a stacked crystal structure typically, an ⁇ -NaFeO 2 type structure, ie, a structure in which a transition metal and lithium are regularly arranged in the [111] axis direction of a cubic rock salt type structure.
- lithium composite oxides include Li x CoO 2 (lithium cobaltate), Li x NiO 2 (lithium nickelate), Li x MnO 2 (lithium manganate), Li x NiMnO 2 (lithium nickel manganate) , Li x NiCoO 2 (lithium nickel cobaltate), Li x CoNiMnO 2 (cobalt nickel nickel manganate), Li x CoMnO 2 (cobalt manganese manganate), etc., and particularly preferably Li x CoO 2 (Lithium cobaltate, typically LiCoO 2 ).
- lithium composite oxides include Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, and Ba.
- Bi, and W may contain one or more elements.
- the average value of the orientation angles of the primary particles 11, that is, the average orientation angle is more than 0 ° and not more than 30 °.
- the average orientation angle of the primary particles 11 is obtained by the following method. First, in an EBSD image obtained by observing a rectangular area of 95 ⁇ m ⁇ 125 ⁇ m at a magnification of 1000, as shown in FIG. 4, three horizontal lines dividing the alignment positive plate 16 into four in the thickness direction, and the alignment positive plate 16 Draw three vertical lines that divide four in the direction of the surface of the board. Next, the average orientation angle of the primary particles 11 is obtained by arithmetically averaging the orientation angles of all the primary particles 11 that intersect at least one of the three horizontal lines and the three vertical lines. The average orientation angle of the primary particles 11 is preferably 30 ° or less, more preferably 25 ° or less, from the viewpoint of further improving the rate characteristics. The average orientation angle of the primary particles 11 is preferably 2 ° or more, more preferably 5 ° or more, from the viewpoint of further improving the rate characteristics.
- the orientation angle of each primary particle 11 may be widely distributed from 0 ° to 90 °, but most of it is distributed in the region of more than 0 ° and 30 ° or less Is preferred. That is, when the cross section of the oriented sintered body 16 constituting the oriented positive electrode plate 16 is analyzed by EBSD, the orientation angle of the primary particles 11 included in the analyzed cross section with respect to the plate surface of the oriented positive electrode plate 16 is 0 °.
- Primary particles 11 (specifically, 30 primary particles 11 used for calculation of average orientation angle), the total area of primary particles 11 (hereinafter referred to as low-angle primary particles) being over 30 ° or less is included in the cross section It is preferable that it is 70% or more with respect to the total area of, and more preferably 80% or more. Thereby, since the ratio of the primary particles 11 having high mutual adhesion can be increased, the rate characteristics can be further improved. Further, the total area of low-angle primary particles having an orientation angle of 20 ° or less is more preferably 50% or more with respect to the total area of 30 primary particles 11 used for calculating the average orientation angle. . Furthermore, the total area of low-angle primary particles having an orientation angle of 10 ° or less is more preferably 15% or more with respect to the total area of 30 primary particles 11 used for calculating the average orientation angle. .
- each primary particle 11 is mainly plate-shaped, as shown in FIGS. 3 and 4, the cross section of each primary particle 11 extends in a predetermined direction, and typically becomes substantially rectangular. That is, in the oriented sintered body, when the cross section is analyzed by EBSD, the total area of the primary particles 11 having an aspect ratio of 4 or more among the primary particles 11 included in the analyzed cross section is included in the cross section.
- the total area of the particles 11 (specifically, the 30 primary particles 11 used to calculate the average orientation angle) is preferably 70% or more, and more preferably 80% or more. Specifically, in the EBSD image as shown in FIG. 4, this can further improve the mutual adhesion of the primary particles 11 with each other, and as a result, the rate characteristics can be further improved.
- the aspect ratio of the primary particle 11 is a value obtained by dividing the maximum Feret diameter of the primary particle 11 by the minimum Feret diameter.
- the maximum Feret diameter is the maximum distance between the straight lines when the primary particle 11 is sandwiched between two parallel straight lines on the EBSD image when cross-sectional observation is performed.
- the minimum Feret diameter is the minimum distance between the straight lines when the primary particle 11 is sandwiched between two parallel straight lines on the EBSD image.
- the average particle diameter of the plurality of primary particles constituting the oriented sintered body is preferably 5 ⁇ m or more.
- the average particle diameter of the 30 primary particles 11 used for calculating the average orientation angle is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and still more preferably 12 ⁇ m or more.
- the average particle diameter of the primary particles 11 is a value obtained by arithmetically averaging the equivalent circle diameter of each primary particle 11.
- the equivalent circle diameter is the diameter of a circle having the same area as each primary particle 11 on the EBSD image.
- the density of the oriented sintered body constituting the oriented positive electrode plate 16 is preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more. Thereby, the mutual adhesion between the primary particles 11 can be further improved, and hence the rate characteristics can be further improved.
- the degree of compactness of the oriented sintered body is calculated by polishing the cross section of the positive electrode plate by CP (cross section polisher) polishing and then observing it with a SEM at 1000 magnification and binarizing the obtained SEM image.
- the average equivalent circle diameter of the pores formed inside the oriented sintered body is not particularly limited, but is preferably 8 ⁇ m or less.
- the average equivalent circular diameter of the pores is a value obtained by arithmetically averaging the equivalent circular diameters of 10 pores on the EBSD image.
- the equivalent circle diameter is the diameter of a circle having the same area as each pore on the EBSD image.
- Each pore formed inside the oriented sintered body may be an open pore connected to the outside of the oriented positive electrode plate 16, but it is preferable that the oriented positive electrode plate 16 is not penetrated.
- Each pore may be a closed pore.
- the thickness of the oriented positive electrode plate 16 is preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more, particularly preferably 50 ⁇ m, from the viewpoint of enhancing the energy density of the lithium secondary battery 10 by increasing the active material capacity per unit area.
- the above most preferably 55 ⁇ m or more.
- the thickness of the alignment positive plate 16 is preferably less than 200 ⁇ m, It is 150 ⁇ m or less, more preferably 120 ⁇ m or less, particularly preferably 100 ⁇ m or less, and most preferably 90 ⁇ m or less, 80 ⁇ m or less, or 70 ⁇ m or less.
- the size of the oriented positive electrode plate is preferably 5 mm ⁇ 5 mm square or more, more preferably 10 mm ⁇ 10 mm to 200 mm ⁇ 200 mm square, and still more preferably 10 mm ⁇ 10 mm to 100 mm ⁇ 100 mm square. if, preferably 25 mm 2 or more, more preferably 100 ⁇ 40000 mm 2, more preferably from 100 ⁇ 10000 mm 2.
- the negative electrode 20 contains carbon and styrene butadiene rubber (SBR). That is, carbon is a negative electrode active material, and SBR is a binder. Examples of carbon include graphite (graphite), pyrolytic carbon, coke, a resin fired body, mesophase small spheres, mesophase pitch and the like, with preference given to graphite.
- the graphite may be any of natural graphite and artificial graphite.
- the negative electrode 20 has an advantage that deterioration of the negative electrode due to the electrolytic solution can be avoided by containing styrene butadiene rubber (SBR) as a binder.
- SBR styrene butadiene rubber
- PVDF polyvinylidene fluoride
- SBR styrene butadiene rubber
- the electrolytic solution 24 contains lithium borofluoride (LiBF 4 ) in a non-aqueous solvent.
- the non-aqueous solvent may be a single solvent composed of ⁇ -butyrolactone (GBL) or a mixed solvent composed of ⁇ -butyrolactone (GBL) and ethylene carbonate (EC).
- the non-aqueous solvent contains ⁇ -butyrolactone (GBL) to increase the boiling point, resulting in a significant improvement in heat resistance.
- the volume ratio of EC: GBL in the non-aqueous solvent is preferably 0: 1 to 1: 1 (GBL ratio 50 to 100% by volume), more preferably 0: 1 to 1: 1.5 GBL ratio 60 to 100% by volume), more preferably 0: 1 to 1: 2 (GBL ratio 66.6 to 100% by volume), particularly preferably 0: 1 to 1: 3 (GBL ratio 75 to 100% by volume)
- Lithium borofluoride (LiBF 4 ) dissolved in a non-aqueous solvent is a high decomposition temperature electrolyte, which also leads to a significant improvement in heat resistance.
- the concentration of LiBF 4 in the electrolyte solution 24 is preferably 0.5 to 2 mol / L, more preferably 0.6 to 1.9 mol / L, still more preferably 0.7 to 1.7 mol / L, particularly preferably It is 0.8 to 1.5 mol / L.
- the electrolyte solution 24 preferably further contains vinylene carbonate (VC) and / or fluoroethylene carbonate (FEC) and / or vinylethylene carbonate (VEC) as additives. Both VC and FEC have excellent heat resistance. Therefore, when the electrolytic solution 24 contains such an additive, a SEI film having excellent heat resistance can be formed on the surface of the negative electrode 20, whereby the heat resistance of the lithium secondary battery 10 can be further improved. .
- VC vinylene carbonate
- FEC fluoroethylene carbonate
- VEC vinylethylene carbonate
- the lithium secondary battery 10 preferably further includes a separator 18.
- the separator 18 is preferably a polyimide, polyester (for example, polyethylene terephthalate (PET)) or cellulose separator, more preferably a polyimide separator.
- a separator made of polyimide, polyester (for example, polyethylene terephthalate (PET)) or cellulose is widely used, and unlike a separator made of polypropylene (PP), polyethylene (PE), etc., which is inferior in heat resistance, its own heat resistance As well as having excellent properties, it is also excellent in wettability to ⁇ -butyrolactone (GBL). Therefore, the electrolyte solution 24 containing GBL can be sufficiently penetrated into the separator 18 (without being repelled).
- PP polypropylene
- PE polyethylene
- a particularly preferred separator is a polyimide separator.
- Polyimide separators are commercially available, but have an extremely complicated microstructure, and therefore have the advantage of being able to more effectively prevent or delay the extension of lithium dendrite deposited during overcharge and the resulting short circuit.
- cellulose separators have the advantage of being cheaper than polyimide separators.
- the thickness of the lithium secondary battery 10 is preferably 0.45 mm or less, more preferably 0.1 to 0.45 mm, still more preferably 0.2 to 0.45 mm, and particularly preferably 0.3 to 0. It is 40 mm. If the thickness is in such a range, a thin lithium battery suitable for being incorporated in a thin device such as a smart card can be obtained.
- the battery element 12 and the electrolyte 24 which are the contents of the lithium secondary battery 10 are preferably packaged and sealed with an exterior film 26. That is, the lithium secondary battery 10 is preferably in the form of a so-called film-clad battery.
- the battery element 12 is defined as including the positive electrode plate 16, the separator 18, and the negative electrode 20, and typically further includes the positive electrode current collector 14 and the negative electrode current collector 22.
- the positive electrode current collector 14 and the negative electrode current collector 22 are not particularly limited, but are preferably copper foils.
- the positive electrode current collector 14 is preferably provided with the positive electrode terminal 15 extending from the positive electrode current collector 14, and the negative electrode current collector 22 is provided with the negative electrode terminal 23 extending from the negative electrode current collector 22. Preferably provided.
- FIG. 1 the battery element 12 and the electrolyte 24 which are the contents of the lithium secondary battery 10 are preferably packaged and sealed with an exterior film 26. That is, the lithium secondary battery 10 is preferably in the form of a so-called film-clad battery.
- the lithium secondary battery 10 is drawn with a space in the laminated structure and the sealing structure in order to show the presence of the electrolyte 24 in an easy-to-understand manner. Is desired to be minimized.
- the outer edge of the lithium secondary battery 10 is sealed by heat fusion of the exterior films 26 with each other. Sealing by heat sealing is preferably performed using a heat bar (also referred to as a heating bar) commonly used in heat sealing applications.
- the exterior film 26 may be a commercially available exterior film.
- the thickness of the packaging film 26 is preferably 20 to 160 ⁇ m, more preferably 40 to 120 ⁇ m, and still more preferably 40 to 65 ⁇ m.
- the preferable exterior film 26 is a laminate film containing a resin film and a metal foil, and more preferably an aluminum laminate film containing a resin film and an aluminum foil.
- the laminate film is preferably provided with a resin film on both sides of a metal foil such as an aluminum foil.
- the resin film on one side of the metal foil (hereinafter referred to as a surface protective film) is made of a material having excellent reinforcement such as nylon, polyamide, polyethylene terephthalate, polyimide, polytetrafluoroethylene, polychlorotrifluoroethylene, etc. It is preferable that the resin film on the other side of the metal foil (hereinafter referred to as a sealing resin film) be made of a heat seal material such as polypropylene.
- a sealing resin film of a commercially available aluminum laminate film has a two-layer constitution of polypropylene resin.
- this two-layer construction is generally composed of a main layer having a softening point of 150 to 160 ° C. and an adhesive layer existing on the outside of the main layer having a softening point of 130 to 140 ° C.
- the adhesive layer having a softening point of 130 to 140 ° C. has a softening point lower than that of the main layer, it can be easily softened or fluidized by heating, and hence it can be said that the heat resistance is inferior. Therefore, from the viewpoint of improving the heat resistance of the lithium secondary battery 10, it is preferable to improve the following i) or ii) with respect to the sealing resin film having a two-layered structure of polypropylene resin.
- the adhesive layer is eliminated, and a sealing resin film having a one-layer constitution of only the main layer is obtained.
- the adhesive layer having a softening point of 130 to 140 ° C. is eliminated, so the heat resistance is improved.
- the main layer having a softening point of 150 to 160 ° C. also serves as an adhesive layer.
- a heat-resistant polypropylene film having a high softening temperature is used as the main layer by eliminating the adhesive layer.
- a heat-resistant polypropylene film with a high softening temperature of 160 to 170 ° C. is known, and by setting the sealing resin film to a single-layer structure of such a heat-resistant polypropylene film, it is possible to ensure the highest level of heat resistance with polypropylene. .
- the exterior film 26 in heating press, such as a hot lamination process, it protects on the edge part of at least any one of the positive electrode collector 14, the positive electrode terminal 15, the negative electrode collector 22, and the negative electrode terminal 23. You may stick a tape. By doing this, it is possible to effectively prevent the tearing of the exterior film 26 due to the burr that may be formed at the member end.
- a polyimide tape is mentioned as a preferable example of a protective tape from the point which is excellent in heat resistance.
- the oriented positive electrode plate or oriented sintered plate preferably used in the lithium secondary battery of the present invention may be produced by any production method, but preferably is exemplified as follows: It is manufactured through (1) preparation of LiCoO 2 template particle, (2) preparation of matrix particle, (3) preparation of green sheet, and (4) preparation of oriented sintered plate.
- LiCoO 2 Template Particles The Co 3 O 4 raw material powder and the Li 2 CO 3 raw material powder are mixed. The obtained mixed powder is calcined at 500 to 900 ° C. for 1 to 20 hours to synthesize LiCoO 2 powder. The obtained LiCoO 2 powder is pulverized in a pot mill to a volume-based D 50 particle diameter of 0.1 to 10 ⁇ m to obtain plate-like LiCoO 2 particles capable of conducting lithium ions parallel to the plate surface. The obtained LiCoO 2 particles are in a state of being easily cleaved along the cleavage plane. LiCoO 2 template particles are prepared by cleaving the LiCoO 2 particles.
- Such LiCoO 2 particles are produced by grain growth of a green sheet using LiCoO 2 powder slurry, followed by crushing, flux method, hydrothermal synthesis, single crystal growth using melt, plate shape such as sol gel method, etc. It can also be obtained by a method of synthesizing crystals.
- the profile of the primary particles 11 constituting the oriented positive electrode plate 16 can be controlled as follows.
- the profile of the primary particles 11 constituting the oriented positive electrode plate 16 can be controlled as follows.
- the aspect ratio and the particle size of the LiCoO 2 template particles it is possible to control the total area percentage of low-angle primary particles having an orientation angle of more than 0 ° and 30 ° or less.
- the larger the aspect ratio of LiCoO 2 template particles also, the larger the particle size of the LiCoO 2 template particles, it is possible to increase the total area ratio of the low-angle primary particles.
- the aspect ratio and particle size of the LiCoO 2 template particle are respectively the particle size of the Co 3 O 4 raw material powder and the Li 2 CO 3 raw material powder, the grinding conditions at the time of grinding (grinding time, grinding energy, grinding method, etc.), and grinding Control can be performed by adjusting at least one of the later classifications.
- By adjusting the aspect ratio of the LiCoO 2 template particle it is possible to control the total area ratio of primary particles 11 having an aspect ratio of 4 or more. Specifically, as the aspect ratio of the LiCoO 2 template particle is increased, the total area ratio of primary particles 11 having an aspect ratio of 4 or more can be increased.
- the method of adjusting the aspect ratio of the LiCoO 2 template particle is as described above.
- the average particle size of the primary particles 11 can be controlled.
- the particle size of the LiCoO 2 template particle it is possible to control the density of the oriented positive electrode plate 16. Specifically, as the particle size of the LiCoO 2 template particle is reduced, the density of the oriented positive electrode plate 16 can be increased.
- Co 3 O 4 raw material powder is used as matrix particles.
- the volume-based D50 particle size of the Co 3 O 4 raw material powder is not particularly limited, and may be, for example, 0.1 to 1.0 ⁇ m, but is preferably smaller than the volume-based D50 particle size of LiCoO 2 template particles.
- the matrix particles can also be obtained by heat treating a Co (OH) 2 raw material at 500 to 800 ° C. for 1 to 10 hours.
- Co (OH) 2 particles may be used as matrix particles, or LiCoO 2 particles may be used.
- the profile of the primary particles 11 constituting the oriented positive electrode plate 16 can be controlled as follows.
- -Low-angle primary having an orientation angle of more than 0 ° and 30 ° or less by adjusting the ratio of the particle size of matrix particles to the particle size of LiCoO 2 template particles (hereinafter referred to as "matrix / template particle size ratio")
- matrix / template particle size ratio the ratio of the particle size of matrix particles to the particle size of LiCoO 2 template particles
- the total area fraction of particles can be controlled. Specifically, as the matrix / template particle size ratio decreases, that is, as the matrix particle size decreases, the matrix particles are more easily taken into the LiCoO 2 template particles in the later-described firing step, so that low-angle primary particles are obtained.
- the total area percentage can be increased.
- the matrix / template particle size ratio By adjusting the matrix / template particle size ratio, it is possible to control the total area fraction of primary particles 11 having an aspect ratio of 4 or more. Specifically, the smaller the matrix / template particle size ratio, that is, the smaller the matrix particle size, the higher the total area ratio of primary particles 11 having an aspect ratio of 4 or more.
- the density of the oriented positive electrode plate 16 By adjusting the matrix / template particle size ratio, the density of the oriented positive electrode plate 16 can be controlled. Specifically, the smaller the matrix / template particle size ratio, that is, the smaller the particle size of the matrix particles, the higher the density of the oriented positive electrode plate 16 can be.
- the profile of the primary particles 11 constituting the oriented positive electrode plate 16 can be controlled as follows.
- By adjusting the forming speed it is possible to control the total area percentage of low-angle primary particles whose orientation angle is more than 0 ° and not more than 30 °. Specifically, the higher the molding speed, the higher the total area ratio of the low-angle primary particles can be.
- By adjusting the density of the moldings it is possible to control the average particle size of the primary particles 11. Specifically, the average particle diameter of the primary particles 11 can be increased as the density of the formed body is increased.
- the density of the oriented positive electrode plate 16 can also be controlled by adjusting the mixing ratio of LiCoO 2 template particles and matrix particles. Specifically, as the number of LiCoO 2 template particles increases, the density of the alignment positive plate 16 can be lowered.
- Oriented Sintered Plate The formed compact of the slurry is placed on a zirconia setter and heat treated (primary firing) at 500 to 900 ° C. for 1 to 10 hours to obtain a sintered plate as an intermediate. .
- This sintered plate is placed on top of the zirconia setter in a state of being vertically sandwiched by lithium sheets (for example, Li 2 CO 3 -containing sheets) and secondary firing is performed to obtain a LiCoO 2 sintered plate.
- a setter on which a sintered plate sandwiched by lithium sheets is placed is placed in an alumina sheath and fired at 700 to 850 ° C.
- the sheet is sandwiched between the upper and lower sides and sintered at 750 to 900 ° C. for 1 to 40 hours to obtain a LiCoO 2 sintered plate.
- This firing step may be performed twice or once. In the case of firing in two separate steps, the first firing temperature is preferably lower than the second firing temperature.
- the total amount of lithium sheet used in the secondary firing may be such that the Li / Co ratio, which is the molar ratio of the amount of Li in the green sheet and lithium sheet to the amount of Co in the green sheet, is 1.0. .
- the profile of the primary particles 11 constituting the oriented positive electrode plate 16 can be controlled as follows.
- the temperature rising rate at the time of firing it is possible to control the total area ratio of low-angle primary particles having an orientation angle of more than 0 ° and 30 ° or less.
- the temperature raising rate is increased, sintering between matrix particles is suppressed, and the total area ratio of low-angle primary particles can be increased.
- the heat treatment temperature of the intermediate it is also possible to control the total area percentage of low angle primary particles having an orientation angle of more than 0 ° and 30 ° or less.
- the average particle size of the primary particles 11 can be controlled by adjusting at least one of the temperature rising rate at the time of firing and the heat treatment temperature of the intermediate. Specifically, the average particle diameter of the primary particles 11 can be increased as the temperature raising rate is increased and as the heat treatment temperature of the intermediate is decreased. -Controlling the average particle size of the primary particles 11 also by adjusting at least one of the amount of Li (for example, Li 2 CO 3 ) and the amount of a sintering aid (for example, boric acid or bismuth oxide) at the time of firing Can.
- Li for example, Li 2 CO 3
- a sintering aid for example, boric acid or bismuth oxide
- the average particle diameter of the primary particles 11 can be increased as the amount of Li is increased and as the amount of the sintering aid is increased.
- the density of the oriented positive electrode plate 16 can be controlled. Specifically, as the firing temperature is delayed and as the firing time is lengthened, the density of the alignment positive plate 16 can be increased.
- Example A1 Preparation of Lithium Secondary Battery
- a lithium secondary battery 10 in the form of a film-covered battery as schematically shown in FIG. 1 was prepared by the procedure as shown in FIGS. 2A and 2B. Specifically, it is as follows.
- a 90 ⁇ m-thick LiCoO 2 sintered body plate (hereinafter referred to as an LCO sintered body plate) was prepared.
- the LCO sintered body plate is manufactured according to the method for manufacturing a lithium complex oxide sintered body plate described above, and satisfies the various preferable conditions of the lithium complex oxide sintered body plate described above.
- the sintered body plate was cut into a square of 10 mm ⁇ 10 mm by a laser processing machine to obtain a plurality of chip-shaped positive electrode plates 16.
- the exterior film 26 two aluminum laminate films (made by Showa Denko, thickness 61 ⁇ m, three-layer structure of polypropylene film / aluminum foil / nylon film) were prepared. As shown in FIG. 2A, a plurality of chip-shaped positive electrode plates 16 are stacked on one outer packaging film 26 via a positive electrode current collector 14 (copper foil with a thickness of 9 ⁇ m) to obtain a positive electrode assembly 17. . At this time, the positive electrode current collector 14 was fixed to the exterior film 26 with an adhesive. The positive electrode terminal 15 is fixed to the positive electrode current collector 14 so as to extend from the positive electrode current collector 14 by welding.
- the negative electrode 20 (carbon layer of 130 ⁇ m in thickness) was laminated on another outer packaging film 26 via the negative electrode current collector 22 (copper foil of 10 ⁇ m in thickness) to obtain a negative electrode assembly 19.
- the negative electrode current collector 22 was fixed to the exterior film 26 with an adhesive.
- a negative electrode terminal 23 is fixed to the negative electrode current collector 22 so as to extend from the negative electrode current collector 22 by welding.
- the carbon layer as the negative electrode 20 was a coating film containing a mixture of graphite as an active material and styrene butadiene rubber (SBR) as a binder.
- SBR styrene butadiene rubber
- a porous polyimide film manufactured by Tokyo Ohka Kogyo Co., Ltd., thickness 23 ⁇ m, porosity 80%
- the positive electrode assembly 17, the separator 18 and the negative electrode assembly 19 are sequentially laminated so that the positive electrode plate 16 and the negative electrode 20 face the separator 18, and both surfaces are covered with an exterior film 26
- the laminate 28 in which the outer peripheral portion of the film 26 protruded from the outer edge of the battery element 12 was obtained.
- the thickness of the battery element 12 (the positive electrode current collector 14, the positive electrode plate 16, the separator 18, the negative electrode 20 and the negative electrode current collector 22) thus constructed in the laminate 28 is 0.33 mm, and the shape and size thereof are It was a square of 2.3 cm ⁇ 3.2 cm.
- sealing of three sides A of the obtained laminate 28 was performed. This sealing was performed by heat-pressing the outer peripheral portion of the laminate 28 at 200 ° C. and 1.5 MPa for 10 seconds to thermally fuse the exterior films 26 (aluminum laminated films) at the outer peripheral portion. After sealing of the three sides A, the laminate 28 was placed in a vacuum dryer 34 to remove moisture and dry the adhesive.
- a gap is formed between the pair of exterior films 26 at the remaining unsealed one side B of the laminate 28 in which the three outer sides A are sealed.
- the injection tool 36 was inserted into the gap, the electrolyte 24 was injected, and the side B was temporarily sealed using a simple sealer under a reduced pressure atmosphere of 5 kPa absolute pressure.
- As an electrolytic solution one obtained by dissolving LiBF 4 in a concentration of 1.5 mol / L in a mixed solvent containing ethylene carbonate (EC) and ⁇ -butyrolactone (GBL) in a ratio of 1: 3 (volume ratio) is used. Using. Thus, initial charging was performed on the laminate whose side B was temporarily sealed, and aging was performed for 7 days. Finally, the outer peripheral portion (the end portion not including the battery element) of the remaining one side B sealed was cut off and degassing was performed.
- EC ethylene carbonate
- GBL ⁇ -butyrolactone
- the side B 'generated by the removal of the temporary seal was sealed in a reduced pressure atmosphere of 5 kPa absolute pressure. This sealing was also performed by heat-pressing the outer peripheral portion of the laminate 28 at 200 ° C. and 1.5 MPa for 10 seconds to thermally fuse the exterior films 26 (aluminum laminated films) at the outer peripheral portion.
- the side B ′ was sealed with a pair of outer packaging films 26 to obtain a lithium secondary battery 10 in the form of a film-covered battery.
- the lithium secondary battery 10 was taken out of the glove box 38, and the extra portion of the outer periphery of the exterior film 26 was cut away to adjust the shape of the lithium secondary battery 10.
- the lithium secondary battery 10 was obtained, in which the four outer edges of the battery element 12 were sealed with the pair of exterior films 26 and the electrolyte solution 24 was injected.
- the obtained lithium secondary battery 10 was a rectangle having a size of 38 mm ⁇ 27 mm, a thickness of 0.45 mm or less, and a capacity of 30 mAh.
- the battery resistance of the above-described heated lithium secondary battery was measured by an AC impedance method using an electrochemical measurement system SP-150 manufactured by Biologic.
- the measured battery resistance was calculated as a relative value when the battery resistance of the battery heated at 20 ° C. was 1.
- the results are as shown in Table 1A, and no change in cell resistance was observed at any heating temperature in comparison with the battery at a heating temperature of 20 ° C.
- Example A2 (comparison) i) A coated film of a mixture of LiCoO 2 powder and polyvinylidene fluoride (PVDF) (hereinafter referred to as LCO coated electrode) instead of an LCO sintered plate as a positive electrode, ii) Ethylene as an electrolyte LiPF 6 was dissolved in a mixed solvent containing carbonate (EC) and ethyl methyl carbonate (EMC) in a ratio of 3: 7 (volume ratio) to a concentration of 1 mol / L, iii) Anode binder A battery was prepared and evaluated in the same manner as in Example A1 except that polyvinylidene fluoride (PVDF) was used instead of SBR. The results were as shown in Table 1A.
- PVDF polyvinylidene fluoride
- Example A3 (comparison) Other than electrolytic solution, one obtained by dissolving LiPF 6 in a concentration of 1 mol / L in a mixed solvent containing ethylene carbonate (EC) and diethyl carbonate (DEC) in a ratio of 3: 7 (volume ratio) was used. In the same manner as in Example A2, preparation and evaluation of a battery were performed. The results were as shown in Table 1A.
- Example A4 (comparison) i) as the electrolytic solution, ethylene carbonate (EC) and ethyl methyl carbonate (EMC) 3: 7 (use a mixed solvent containing a volume ratio), what the LiPF 6 was dissolved at a concentration of 1 mol / L
- PVDF polyvinylidene fluoride
- Example A5 (comparison) Other than electrolytic solution, one obtained by dissolving LiPF 6 in a concentration of 1 mol / L in a mixed solvent containing ethylene carbonate (EC) and diethyl carbonate (DEC) in a ratio of 3: 7 (volume ratio) was used. In the same manner as in Example A4, preparation and evaluation of a battery were performed. The results were as shown in Table 1A.
- Example A6 (comparison) What used LiPF 6 dissolved at a concentration of 1 mol / L in a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a ratio of 3: 7 (volume ratio) as the electrolytic solution
- EC ethylene carbonate
- EMC ethyl methyl carbonate
- Example A7 (comparison) Other than electrolytic solution, one obtained by dissolving LiPF 6 in a concentration of 1 mol / L in a mixed solvent containing ethylene carbonate (EC) and diethyl carbonate (DEC) in a ratio of 3: 7 (volume ratio) was used. The same procedure as in Example A1 was followed to prepare and evaluate a battery. The results were as shown in Table 1A.
- Example A8 (comparison) i) A coated film of a mixture of LiCoO 2 powder and polyvinylidene fluoride (PVDF) (i.e., an LCO coated electrode) instead of an LCO sintered plate as a positive electrode, and ii) an alternative to SBR as a negative electrode binder A battery was prepared and evaluated in the same manner as in Example A1 except that polyvinylidene fluoride (PVDF) was used. The results were as shown in Table 1B.
- PVDF polyvinylidene fluoride
- Example A9 (comparison) A battery was prepared in the same manner as in Example A1, except that a coated film of a mixture of LiCoO 2 powder and polyvinylidene fluoride (PVDF) (ie, LCO coated electrode) was used instead of the LCO sintered body plate as the positive electrode. And evaluated. The results were as shown in Table 1B.
- PVDF polyvinylidene fluoride
- Example A10 (comparison) A battery was fabricated and evaluated in the same manner as in Example A1, except that polyvinylidene fluoride (PVDF) was used instead of SBR as the negative electrode binder. The results were as shown in Table 1B.
- PVDF polyvinylidene fluoride
- Example A11 As an electrolytic solution, one obtained by dissolving LiBF 4 to a concentration of 1.5 mol / L in a mixed solvent containing propylene carbonate (PC) and ⁇ -butyrolactone (GBL) in a ratio of 1: 3 (volume ratio) is used. A battery was prepared and evaluated in the same manner as in Example A10 except that The results were as shown in Table 1B.
- PC propylene carbonate
- GBL ⁇ -butyrolactone
- Example A12 As an electrolytic solution, one obtained by dissolving LiBF 4 to a concentration of 1.5 mol / L in a mixed solvent containing propylene carbonate (PC) and ⁇ -butyrolactone (GBL) in a ratio of 1: 3 (volume ratio) is used. Production and evaluation of the battery were carried out in the same manner as in Example A1 except for the above. The results were as shown in Table 1B.
- PC propylene carbonate
- GBL ⁇ -butyrolactone
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Separators (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
Description
リチウム複合酸化物焼結体板である正極板と、
カーボン及びスチレンブタジエンゴム(SBR)を含む負極と、
γ-ブチロラクトン(GBL)からなる、又はγ-ブチロラクトン(GBL)及びエチレンカーボネート(EC)からなる非水溶媒中にホウフッ化リチウム(LiBF4)を含む電解液と、
を備えた、リチウム二次電池が提供される。
前記リチウム二次電池を用意する工程と、
前記リチウム二次電池を110℃以上260℃未満の加熱を伴うプロセスを経て基板に実装する工程と、
を含む、電池内蔵デバイスの製造方法が提供される。
i)接着層を無くし、主層のみの1層構成の封止樹脂膜とする。こうすることで、軟化点130~140℃の接着層が無くなるので、耐熱性が向上する。この場合、軟化点150~160℃の主層が接着層の役割を兼ねることなる。
ii)接着層を無くし、かつ、主層として軟化温度の高い耐熱ポリプロピレン膜を用いる。軟化温度が160~170℃と高い耐熱ポリプロピレン膜が知られており、封止樹脂膜をかかる耐熱ポリプロピレン膜の単層構造とすることで、ポリプロピレン系で最高レベルの耐熱性を確保することができる。
本発明のリチウム二次電池に好ましく用いられる配向正極板ないし配向焼結板は、いかなる製法によって製造されてもよいが、好ましくは、以下に例示されるように、(1)LiCoO2テンプレート粒子の作製、(2)マトリックス粒子の作製、(3)グリーンシートの作製、及び(4)配向焼結板の作製を経て製造される。
Co3O4原料粉末とLi2CO3原料粉末とを混合する。得られた混合粉末を500~900℃で1~20時間焼成して、LiCoO2粉末を合成する。得られたLiCoO2粉末をポットミルにて体積基準D50粒径0.1~10μmに粉砕して、板面と平行にリチウムイオンを伝導可能な板状のLiCoO2粒子を得る。得られたLiCoO2粒子は、劈開面に沿って劈開しやすい状態となっている。LiCoO2粒子を解砕によって劈開させることで、LiCoO2テンプレート粒子を作製する。このようなLiCoO2粒子は、LiCoO2粉末スラリーを用いたグリーンシートを粒成長させた後に解砕する手法や、フラックス法や水熱合成、融液を用いた単結晶育成、ゾルゲル法など板状結晶を合成する手法によっても得ることができる。
‐ LiCoO2テンプレート粒子のアスペクト比及び粒径の少なくとも一方を調整することによって、配向角度が0°超30°以下である低角一次粒子の合計面積割合を制御することができる。具体的には、LiCoO2テンプレート粒子のアスペクト比を大きくするほど、また、LiCoO2テンプレート粒子の粒径を大きくするほど、低角一次粒子の合計面積割合を高めることができる。LiCoO2テンプレート粒子のアスペクト比と粒径は、それぞれ、Co3O4原料粉末及びLi2CO3原料粉末の粒径、粉砕時の粉砕条件(粉砕時間、粉砕エネルギー、粉砕手法等)、並びに粉砕後の分級のうち少なくとも1つを調整することによって制御することができる。
‐ LiCoO2テンプレート粒子のアスペクト比を調整することによって、アスペクト比が4以上である一次粒子11の合計面積割合を制御することができる。具体的には、LiCoO2テンプレート粒子のアスペクト比を大きくするほど、アスペクト比が4以上である一次粒子11の合計面積割合を高めることができる。LiCoO2テンプレート粒子のアスペクト比の調整手法は上述のとおりである。
‐ LiCoO2テンプレート粒子の粒径を調整することによって、一次粒子11の平均粒径を制御することができる。
‐ LiCoO2テンプレート粒子の粒径を調整することによって、配向正極板16の緻密度を制御することができる。具体的には、LiCoO2テンプレート粒子の粒径を小さくするほど、配向正極板16の緻密度を高めることができる。
Co3O4原料粉末をマトリックス粒子として用いる。Co3O4原料粉末の体積基準D50粒径は特に制限されず、例えば0.1~1.0μmとすることができるが、LiCoO2テンプレート粒子の体積基準D50粒径より小さいことが好ましい。このマトリックス粒子は、Co(OH)2原料を500~800℃で1~10時間熱処理を行なうことによっても得ることができる。また、マトリックス粒子には、Co3O4の他、Co(OH)2粒子を用いてもよいし、LiCoO2粒子を用いてもよい。
‐ LiCoO2テンプレート粒子の粒径に対するマトリックス粒子の粒径の比(以下、「マトリックス/テンプレート粒径比」という。)を調整することによって、配向角度が0°超30°以下である低角一次粒子の合計面積割合を制御することができる。具体的には、マトリックス/テンプレート粒径比を小さくするほど、すなわちマトリックス粒子の粒径が小さいほど、後述する焼成工程においてマトリックス粒子がLiCoO2テンプレート粒子に取り込まれやすくなるため、低角一次粒子の合計面積割合を高めることができる。
‐ マトリックス/テンプレート粒径比を調整することによって、アスペクト比が4以上である一次粒子11の合計面積割合を制御することができる。具体的には、マトリックス/テンプレート粒径比を小さくするほど、すなわちマトリックス粒子の粒径が小さいほど、アスペクト比が4以上である一次粒子11の合計面積割合を高めることができる。
‐ マトリックス/テンプレート粒径比を調整することによって、配向正極板16の緻密度を制御することができる。具体的には、マトリックス/テンプレート粒径比を小さくするほど、すなわち、マトリックス粒子の粒径が小さいほど、配向正極板16の緻密度を高めることができる。
LiCoO2テンプレート粒子とマトリックス粒子を100:3~3:97に混合して混合粉末を得る。この混合粉末、分散媒、バインダー、可塑剤及び分散剤を混合しながら、減圧下で撹拌して脱泡し且つ所望の粘度に調整してスラリーとする。次に、LiCoO2テンプレート粒子にせん断力を印加可能な成形手法を用いて、調製したスラリーを成形することによって成形体を形成する。こうして、各一次粒子11の平均配向角度を0°超30°以下とすることができる。LiCoO2テンプレート粒子にせん断力を印加可能な成形手法としては、ドクターブレード法が好適である。ドクターブレード法を用いる場合には、調製したスラリーをPETフィルムの上に成形することによって、成形体としてのグリーンシートが形成される。
‐ 成形速度を調整することによって、配向角度が0°超30°以下である低角一次粒子の合計面積割合を制御することができる。具体的には、成形速度が速いほど、低角一次粒子の合計面積割合を高めることができる。
‐ 成形体の密度を調整することによって、一次粒子11の平均粒径を制御することができる。具体的には、成形体の密度を大きくするほど、一次粒子11の平均粒径を大きくすることができる。
‐ LiCoO2テンプレート粒子とマトリックス粒子との混合比を調整することによっても、配向正極板16の緻密度を制御することができる。具体的には、LiCoO2テンプレート粒子を多くするほど、配向正極板16の緻密度を下げることができる。
スラリーの成形体をジルコニア製セッターに載置し、500~900℃で1~10時間て加熱処理(一次焼成)して、中間体としての焼結板を得る。この焼結板をリチウムシート(例えばLi2CO3含有シート)で上下挟み込んだ状態でジルコニアセッター上に載置して二次焼成することで、LiCoO2焼結板を得る。具体的には、リチウムシートで挟み込まれた焼結板が載置されたセッターをアルミナ鞘に入れ、大気中にて700~850℃で1~20時間焼成した後、この焼結板をさらにリチウムシートで上下挟み込んで750~900℃で1~40時間焼成して、LiCoO2焼結板を得る。この焼成工程は、2度に分けて行ってもよいし、1度に行なってもよい。2度に分けて焼成する場合には、1度目の焼成温度が2度目の焼成温度より低いことが好ましい。なお、二次焼成におけるリチウムシートの総使用量はグリーンシート中のCo量に対する、グリーンシート及びリチウムシート中のLi量のモル比であるLi/Co比が1.0になるようにすればよい。
‐ 焼成時の昇温速度を調整することによって、配向角度が0°超30°以下である低角一次粒子の合計面積割合を制御することができる。具体的には、昇温速度を速くするほど、マトリックス粒子同士の焼結が抑えられて、低角一次粒子の合計面積割合を高めることができる。
‐ 中間体の加熱処理温度を調整することによっても、配向角度が0°超30°以下である低角一次粒子の合計面積割合を制御することができる。具体的には、中間体の加熱処理温度を低くするほど、マトリックス粒子同士の焼結が抑えられて、低角一次粒子の合計面積割合を高めることができる。
‐ 焼成時の昇温速度及び中間体の加熱処理温度の少なくとも一方を調整することによって、一次粒子11の平均粒径を制御することができる。具体的には、昇温速度を速くするほど、また、中間体の加熱処理温度を低くするほど、一次粒子11の平均粒径を大きくすることができる。
‐ 焼成時のLi(例えば、Li2CO3)量及び焼結助剤(例えば、ホウ酸や酸化ビスマス)量の少なくとも一方を調整することによっても、一次粒子11の平均粒径を制御することができる。具体的には、Li量多くするほど、また、焼結助剤量を多くするほど、一次粒子11の平均粒径を大きくすることができる。
‐ 焼成時のプロファイルを調整することによって、配向正極板16の緻密度を制御することができる。具体的には、焼成温度を遅くするほど、また、焼成時間を長くするほど、配向正極板16の緻密度を高めることができる。
(1)リチウム二次電池の作製
図1に模式的に示されるようなフィルム外装電池の形態のリチウム二次電池10を図2A及び2Bに示されるような手順で作製した。具体的には以下のとおりである。
作製されたリチウム二次電池に、ホットプレス装置において、表1に示される各種温度(20℃、100℃、110℃、120℃、又は150℃)での30分間の加熱及び圧力0.7MPaでの加圧を施した後、以下の評価を行った。
上記加熱が施されたリチウム二次電池を目視にて観察することにより、電池外観の変化の有無を観察した。結果は表1Aに示されるとおり、いずれの加熱温度においても電池の外観変化は見られなかった。
上記加熱が施されたリチウム二次電池の電池抵抗を、バイオロジック社製電気化学測定システムSP-150を用いて交流インピーダンス法にて測定した。測定された電池抵抗を、20℃で加熱された電池の電池抵抗を1とした場合における相対値として算出した。結果は表1Aに示されるとおりであり、いずれの加熱温度においても、加熱温度20℃の電池との比較において、電池抵抗の変化は見られなかった。
i)正極としてLCO焼結体板の代わりに、LiCoO2粉末及びポリフッ化ビニリデン(PVDF)の混合物の塗工膜(以下、LCO塗工電極という)を用いたこと、ii)電解液として、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)を3:7(体積比)で含む混合溶媒に、LiPF6を1mol/Lの濃度となるように溶解させたものを用いたこと、iii)負極バインダーとしてSBRの代わりにポリフッ化ビニリデン(PVDF)を用いたこと以外は、例A1と同様にして電池の作製及び評価を行った。結果は表1Aに示されるとおりであった。
電解液として、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を3:7(体積比)で含む混合溶媒に、LiPF6を1mol/Lの濃度となるように溶解させたものを用いたこと以外は、例A2と同様にして電池の作製及び評価を行った。結果は表1Aに示されるとおりであった。
i)電解液として、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)を3:7(体積比)で含む混合溶媒に、LiPF6を1mol/Lの濃度となるように溶解させたものを用いたこと、及びii)負極バインダーとしてSBRの代わりにポリフッ化ビニリデン(PVDF)を用いたこと以外は、例A1と同様にして電池の作製及び評価を行った。結果は表1Aに示されるとおりであった。
電解液として、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を3:7(体積比)で含む混合溶媒に、LiPF6を1mol/Lの濃度となるように溶解させたものを用いたこと以外は、例A4と同様にして電池の作製及び評価を行った。結果は表1Aに示されるとおりであった。
電解液として、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)を3:7(体積比)で含む混合溶媒に、LiPF6を1mol/Lの濃度となるように溶解させたものを用いたこと以外は、例A1と同様にして電池の作製及び評価を行った。結果は表1Aに示されるとおりであった。
電解液として、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を3:7(体積比)で含む混合溶媒に、LiPF6を1mol/Lの濃度となるように溶解させたものを用いたこと以外は、例A1と同様にして電池の作製及び評価を行った。結果は表1Aに示されるとおりであった。
i)正極としてLCO焼結体板の代わりに、LiCoO2粉末及びポリフッ化ビニリデン(PVDF)の混合物の塗工膜(すなわちLCO塗工電極)を用いたこと、及びii)負極バインダーとしてSBRの代わりにポリフッ化ビニリデン(PVDF)を用いたこと以外は、例A1と同様にして電池の作製及び評価を行った。結果は表1Bに示されるとおりであった。
正極としてLCO焼結体板の代わりに、LiCoO2粉末及びポリフッ化ビニリデン(PVDF)の混合物の塗工膜(すなわちLCO塗工電極)を用いたこと以外は、例A1と同様にして電池の作製及び評価を行った。結果は表1Bに示されるとおりであった。
負極バインダーとしてSBRの代わりにポリフッ化ビニリデン(PVDF)を用いたこと以外は、例A1と同様にして電池の作製及び評価を行った。結果は表1Bに示されるとおりであった。
電解液として、プロピレンカーボネート(PC)及びγ-ブチロラクトン(GBL)を1:3(体積比)で含む混合溶媒に、LiBF4を1.5mol/Lの濃度となるように溶解させたものを用いたこと以外は、例A10と同様にして電池の作製及び評価を行った。結果は表1Bに示されるとおりであった。
電解液として、プロピレンカーボネート(PC)及びγ-ブチロラクトン(GBL)を1:3(体積比)で含む混合溶媒に、LiBF4を1.5mol/Lの濃度となるように溶解させたものを用いたこと以外は、例A1と同様にして電池の作製及び評価を行った。結果は表1Bに示されるとおりであった。
Claims (14)
- リチウム複合酸化物焼結体板である正極板と、
カーボン及びスチレンブタジエンゴム(SBR)を含む負極と、
γ-ブチロラクトン(GBL)からなる、又はγ-ブチロラクトン(GBL)及びエチレンカーボネート(EC)からなる非水溶媒中にホウフッ化リチウム(LiBF4)を含む電解液と、
を備えた、リチウム二次電池。 - ポリイミド、ポリエステル又はセルロース製のセパレータをさらに備えた、請求項1に記載のリチウム二次電池。
- 前記セパレータがポリイミド製である、請求項2に記載のリチウム二次電池。
- 前記電解液がビニレンカーボネート(VC)及び/又はフルオロエチレンカーボネート(FEC)及び/又はビニルエチレンカーボネート(VEC)をさらに含む、請求項1~3のいずれか一項に記載のリチウム二次電池。
- 前記非水溶媒におけるEC:GBLの体積比が0:1~1:1である、請求項1~4のいずれか一項に記載のリチウム二次電池。
- 前記電解液におけるLiBF4濃度が0.5~2mol/Lである、請求項1~5のいずれか一項に記載のリチウム二次電池。
- 前記リチウム二次電池の厚さが0.45mm以下である、請求項1~6のいずれか一項に記載のリチウム二次電池。
- 前記リチウム複合酸化物がコバルト酸リチウムである、請求項1~7のいずれか一項に記載のリチウム二次電池。
- リチウム複合酸化物焼結体板が、前記リチウム複合酸化物で構成される複数の一次粒子を含み、前記複数の一次粒子が前記正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向正極板である、請求項1~8のいずれか一項に記載のリチウム二次電池。
- 前記リチウム二次電池は、110℃以上260℃未満の加熱を伴うプロセスにより基板に実装されることが予定されている、請求項1~9のいずれか一項に記載のリチウム二次電池。
- 前記加熱を伴うプロセスがホットラミネート加工又はリフローはんだ付けプロセスである、請求項10に記載のリチウム二次電池。
- 請求項1~11のいずれか一項に記載のリチウム二次電池を用意する工程と、
前記リチウム二次電池を110℃以上260℃未満の加熱を伴うプロセスを経て基板に実装する工程と、
を含む、電池内蔵デバイスの製造方法。 - 前記加熱を伴うプロセスがホットラミネート加工又はリフローはんだ付けプロセスである、請求項12に記載の方法。
- 前記加熱を伴うプロセスがホットラミネート加工であり、前記電池内蔵デバイスが電池内蔵スマートカードである、請求項13に記載の方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18867785.0A EP3699999A4 (en) | 2017-10-17 | 2018-10-05 | LITHIUM SECONDARY BATTERY AND METHOD OF MANUFACTURING A DEVICE WITH THE BATTERY |
CN201880054323.5A CN111194503A (zh) | 2017-10-17 | 2018-10-05 | 锂二次电池和电池内置器件的制造方法 |
KR1020207010881A KR102368342B1 (ko) | 2017-10-17 | 2018-10-05 | 리튬 이차 전지 및 전지 내장 디바이스의 제조 방법 |
JP2019549212A JP6943970B2 (ja) | 2017-10-17 | 2018-10-05 | リチウム二次電池、及び電池内蔵デバイスの製造方法 |
US16/808,550 US11757134B2 (en) | 2017-10-17 | 2020-03-04 | Lithium secondary battery and method for manufacturing battery-incorporating device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017201105 | 2017-10-17 | ||
JP2017-201105 | 2017-10-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/808,550 Continuation US11757134B2 (en) | 2017-10-17 | 2020-03-04 | Lithium secondary battery and method for manufacturing battery-incorporating device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019078043A1 true WO2019078043A1 (ja) | 2019-04-25 |
Family
ID=66174512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/037431 WO2019078043A1 (ja) | 2017-10-17 | 2018-10-05 | リチウム二次電池、及び電池内蔵デバイスの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11757134B2 (ja) |
EP (1) | EP3699999A4 (ja) |
JP (1) | JP6943970B2 (ja) |
KR (1) | KR102368342B1 (ja) |
CN (1) | CN111194503A (ja) |
TW (1) | TWI761610B (ja) |
WO (1) | WO2019078043A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021131930A (ja) * | 2020-02-18 | 2021-09-09 | 本田技研工業株式会社 | リチウムイオン二次電池用電極、およびリチウムイオン二次電池 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111899256B (zh) * | 2020-08-12 | 2023-10-03 | 南京工程学院 | 一种基于红外图像热点特征聚类分析的退役锂电池筛选方法 |
US12132227B2 (en) | 2021-01-19 | 2024-10-29 | Lg Energy Solution, Ltd. | Battery, and battery pack and vehicle comprising the same |
US20220271405A1 (en) | 2021-02-19 | 2022-08-25 | Lg Energy Solution, Ltd. | Riveting structure of electrode terminal, and cylindrical battery cell, battery pack and vehicle including the same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08250153A (ja) * | 1995-03-08 | 1996-09-27 | Yuasa Corp | 薄形電池 |
JPH1131525A (ja) * | 1997-07-09 | 1999-02-02 | Toyota Central Res & Dev Lab Inc | リチウム二次電池 |
JP2002100408A (ja) * | 2000-09-21 | 2002-04-05 | Toshiba Battery Co Ltd | 扁平形非水電解質二次電池 |
JP2012209124A (ja) | 2011-03-29 | 2012-10-25 | Fdk Tottori Co Ltd | 電気化学素子及びその製造方法、素子製造用の封止金型 |
JP2013084521A (ja) * | 2011-10-12 | 2013-05-09 | National Institute Of Advanced Industrial & Technology | 耐熱性リチウムイオン二次電池 |
JP2013097931A (ja) | 2011-10-28 | 2013-05-20 | Fdk Tottori Co Ltd | 薄膜型電気化学素子の製造方法 |
JP5587052B2 (ja) | 2010-06-23 | 2014-09-10 | 日本碍子株式会社 | リチウム二次電池の正極及びリチウム二次電池 |
JP2015230789A (ja) * | 2014-06-04 | 2015-12-21 | トヨタ自動車株式会社 | 非水電解液二次電池および該電池の製造方法 |
WO2017146088A1 (ja) * | 2016-02-24 | 2017-08-31 | 日本碍子株式会社 | 板状リチウム複合酸化物 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2940015B2 (ja) * | 1989-09-25 | 1999-08-25 | 日本電池株式会社 | 有機電解液二次電池 |
JP3427570B2 (ja) * | 1994-10-26 | 2003-07-22 | ソニー株式会社 | 非水電解質二次電池 |
JPH10312825A (ja) | 1997-05-09 | 1998-11-24 | Toshiba Battery Co Ltd | 非水溶媒二次電池 |
JP4318800B2 (ja) * | 1998-12-24 | 2009-08-26 | セイコーインスツル株式会社 | リフローハンダ付け用非水電解質二次電池 |
JP4147442B2 (ja) * | 1999-09-30 | 2008-09-10 | ソニー株式会社 | 非水電解液型二次電池 |
JP3243239B2 (ja) * | 1999-11-11 | 2002-01-07 | 花王株式会社 | 非水系二次電池用正極の製造方法 |
JP2002117841A (ja) * | 2000-02-01 | 2002-04-19 | Seiko Instruments Inc | 非水電解質二次電池 |
KR100444410B1 (ko) * | 2001-01-29 | 2004-08-16 | 마쯔시다덴기산교 가부시키가이샤 | 비수전해액이차전지 |
JP4042034B2 (ja) | 2002-02-01 | 2008-02-06 | 株式会社ジーエス・ユアサコーポレーション | 非水電解質電池 |
JP4197237B2 (ja) * | 2002-03-01 | 2008-12-17 | パナソニック株式会社 | 正極活物質の製造方法 |
US6936377B2 (en) * | 2003-05-13 | 2005-08-30 | C. Glen Wensley | Card with embedded IC and electrochemical cell |
JP2005005113A (ja) * | 2003-06-11 | 2005-01-06 | Toshiba Corp | 非水電解質二次電池 |
KR100709207B1 (ko) * | 2004-06-30 | 2007-04-18 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
JP5196938B2 (ja) * | 2007-09-28 | 2013-05-15 | 三洋電機株式会社 | アルカリ蓄電池システム |
CN102171865A (zh) * | 2008-12-24 | 2011-08-31 | 日本碍子株式会社 | 锂二次电池的正极活性物质用的板状粒子以及锂二次电池 |
JP5526368B2 (ja) * | 2009-02-04 | 2014-06-18 | 三洋電機株式会社 | 非水電解質二次電池 |
WO2010101308A2 (ja) * | 2009-06-25 | 2010-09-10 | 日本碍子株式会社 | 正極活物質及びリチウム二次電池 |
KR101450978B1 (ko) * | 2009-12-18 | 2014-10-15 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | 리튬 이온 전지용 정극 및 그 제조 방법, 그리고 리튬 이온 전지 |
CN101867059B (zh) * | 2010-05-25 | 2012-05-23 | 陈性保 | 一种超薄锂锰聚合物电池及其加工方法 |
JP2014086242A (ja) * | 2012-10-23 | 2014-05-12 | Panasonic Corp | 密閉型二次電池 |
EP2990199B1 (en) * | 2013-04-22 | 2018-11-14 | Tokyo Ohka Kogyo Co., Ltd. | Method for producing porous polyimide film, porous polyimide film and separator using same |
JP5811156B2 (ja) * | 2013-10-21 | 2015-11-11 | 三洋電機株式会社 | 非水電解質二次電池 |
KR102568787B1 (ko) * | 2015-09-21 | 2023-08-21 | 삼성전자주식회사 | 3차원 리튬 이차전지용 양극 및 그 제조방법 |
-
2018
- 2018-10-05 JP JP2019549212A patent/JP6943970B2/ja active Active
- 2018-10-05 KR KR1020207010881A patent/KR102368342B1/ko active IP Right Grant
- 2018-10-05 WO PCT/JP2018/037431 patent/WO2019078043A1/ja unknown
- 2018-10-05 EP EP18867785.0A patent/EP3699999A4/en active Pending
- 2018-10-05 CN CN201880054323.5A patent/CN111194503A/zh active Pending
- 2018-10-16 TW TW107136259A patent/TWI761610B/zh active
-
2020
- 2020-03-04 US US16/808,550 patent/US11757134B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08250153A (ja) * | 1995-03-08 | 1996-09-27 | Yuasa Corp | 薄形電池 |
JPH1131525A (ja) * | 1997-07-09 | 1999-02-02 | Toyota Central Res & Dev Lab Inc | リチウム二次電池 |
JP2002100408A (ja) * | 2000-09-21 | 2002-04-05 | Toshiba Battery Co Ltd | 扁平形非水電解質二次電池 |
JP5587052B2 (ja) | 2010-06-23 | 2014-09-10 | 日本碍子株式会社 | リチウム二次電池の正極及びリチウム二次電池 |
JP2012209124A (ja) | 2011-03-29 | 2012-10-25 | Fdk Tottori Co Ltd | 電気化学素子及びその製造方法、素子製造用の封止金型 |
JP2013084521A (ja) * | 2011-10-12 | 2013-05-09 | National Institute Of Advanced Industrial & Technology | 耐熱性リチウムイオン二次電池 |
JP2013097931A (ja) | 2011-10-28 | 2013-05-20 | Fdk Tottori Co Ltd | 薄膜型電気化学素子の製造方法 |
JP2015230789A (ja) * | 2014-06-04 | 2015-12-21 | トヨタ自動車株式会社 | 非水電解液二次電池および該電池の製造方法 |
WO2017146088A1 (ja) * | 2016-02-24 | 2017-08-31 | 日本碍子株式会社 | 板状リチウム複合酸化物 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021131930A (ja) * | 2020-02-18 | 2021-09-09 | 本田技研工業株式会社 | リチウムイオン二次電池用電極、およびリチウムイオン二次電池 |
JP7078658B2 (ja) | 2020-02-18 | 2022-05-31 | 本田技研工業株式会社 | リチウムイオン二次電池用電極、およびリチウムイオン二次電池 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019078043A1 (ja) | 2020-10-01 |
JP6943970B2 (ja) | 2021-10-06 |
TWI761610B (zh) | 2022-04-21 |
US11757134B2 (en) | 2023-09-12 |
EP3699999A4 (en) | 2021-07-14 |
KR102368342B1 (ko) | 2022-03-03 |
CN111194503A (zh) | 2020-05-22 |
KR20200053584A (ko) | 2020-05-18 |
TW201924127A (zh) | 2019-06-16 |
US20200203773A1 (en) | 2020-06-25 |
EP3699999A1 (en) | 2020-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11757134B2 (en) | Lithium secondary battery and method for manufacturing battery-incorporating device | |
US11658280B2 (en) | Lithium secondary battery and card with built-in battery | |
WO2020079819A1 (ja) | リチウム二次電池 | |
JP6957737B2 (ja) | リチウム二次電池及び電池内蔵カード | |
JP6919064B2 (ja) | リチウム二次電池及び電池内蔵カード | |
JP6905148B2 (ja) | リチウム二次電池及び電池内蔵カード | |
US11424455B2 (en) | Lithium secondary battery and card with built-in battery | |
JP6959281B2 (ja) | リチウム二次電池及び電池内蔵カード |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18867785 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019549212 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207010881 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018867785 Country of ref document: EP Effective date: 20200518 |