WO2019221143A1 - リチウム二次電池 - Google Patents

リチウム二次電池 Download PDF

Info

Publication number
WO2019221143A1
WO2019221143A1 PCT/JP2019/019173 JP2019019173W WO2019221143A1 WO 2019221143 A1 WO2019221143 A1 WO 2019221143A1 JP 2019019173 W JP2019019173 W JP 2019019173W WO 2019221143 A1 WO2019221143 A1 WO 2019221143A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
positive electrode
negative electrode
secondary battery
lithium secondary
Prior art date
Application number
PCT/JP2019/019173
Other languages
English (en)
French (fr)
Inventor
幸信 由良
茂樹 岡田
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2020519870A priority Critical patent/JP6966639B2/ja
Priority to EP19803434.0A priority patent/EP3796457A4/en
Priority to CN201980017204.7A priority patent/CN112074987B/zh
Publication of WO2019221143A1 publication Critical patent/WO2019221143A1/ja
Priority to US17/076,159 priority patent/US20210043965A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium secondary battery.
  • Lithium secondary batteries are widely used for various devices that require charging. Many existing lithium secondary batteries employ powder-dispersed positive electrodes (so-called coated electrodes) produced by applying and drying a positive electrode mixture containing a positive electrode active material, a conductive additive, a binder, and the like. Yes.
  • a powder-dispersed positive electrode contains a relatively large amount (for example, about 10% by weight) of a component that does not contribute to capacity (eg, about 10% by weight).
  • the packing density is lowered.
  • the powder-dispersed positive electrode has much room for improvement in terms of capacity and charge / discharge efficiency. Therefore, attempts have been made to improve capacity and charge / discharge efficiency by forming the positive electrode or the positive electrode active material layer with a lithium composite oxide sintered plate.
  • the positive electrode or the positive electrode active material layer does not contain a binder or a conductive additive, it is expected that a high capacity and good charge / discharge efficiency can be obtained by increasing the packing density of the lithium composite oxide.
  • Patent Literature 1 Japanese Patent No. 5587052 discloses a lithium secondary battery including a positive electrode current collector and a positive electrode active material layer bonded to the positive electrode current collector through a conductive bonding layer.
  • a positive electrode is disclosed.
  • This positive electrode active material layer is said to be composed of a lithium composite oxide sintered plate having a thickness of 30 ⁇ m or more, a porosity of 3 to 30%, and an open pore ratio of 70% or more.
  • Patent Document 2 International Publication No. 2017/146088 discloses a plurality of primary particles composed of a lithium composite oxide such as lithium cobaltate (LiCoO 2 ) as a positive electrode of a lithium secondary battery including a solid electrolyte. And a plurality of primary particles are oriented with an average orientation angle of more than 0 ° and not more than 30 ° with respect to the plate surface of the positive electrode plate.
  • Patent Document 3 Japanese Patent Laid-Open No. 2015-185337 discloses a lithium secondary battery using a lithium titanate (Li 4 Ti 5 O 12 ) sintered body as a positive electrode or a negative electrode.
  • this lithium secondary battery is an all-solid battery having a solid electrolyte layer between the positive electrode and the negative electrode, and is not a secondary battery using a non-aqueous electrolyte.
  • lithium secondary batteries with high capacity and high output while being small and thin have been desired. Accordingly, it is conceivable to use a lithium composite oxide sintered body for the positive electrode in anticipation of high capacity and good charge / discharge efficiency. For the same reason, it is conceivable to use a titanium-containing sintered plate for the negative electrode.
  • a lithium secondary battery is actually manufactured using these sintered body plates, that is, a ceramic positive electrode plate and a ceramic negative electrode plate, the capacity as expected cannot be obtained.
  • the positive electrode layer, the ceramic separator, and the negative electrode layer as a whole constitute one integral sintered body plate, it has a high discharge capacity and is charged.
  • a lithium secondary battery having excellent discharge cycle performance can be provided. Nonetheless, such an integrated sintered plate type battery tends to have a low yield at the time of manufacture, and therefore there is a problem that it is difficult to achieve both a high yield and excellent battery performance (for example, output performance). .
  • the inventors of the present invention in an integrally sintered plate-type lithium secondary battery in which a positive electrode layer, a ceramic separator, and a negative electrode layer are bonded to each other, are composed of MgO and glass, and their particle sizes are It was found that a lithium secondary battery capable of achieving both a high yield and excellent battery performance can be provided by controlling.
  • an object of the present invention is to provide a lithium secondary battery capable of achieving both high yield and excellent battery performance while being an integrally sintered plate type battery in which a positive electrode layer, a ceramic separator and a negative electrode layer are bonded to each other. There is to do.
  • a positive electrode layer composed of a lithium composite oxide sintered body, A negative electrode layer composed of a titanium-containing sintered body; A ceramic separator interposed between the positive electrode layer and the negative electrode layer; An electrolyte solution impregnated in the positive electrode layer, the negative electrode layer, and the ceramic separator; An exterior body that includes a sealed space, and in which the positive electrode layer, the negative electrode layer, the ceramic separator, and the electrolytic solution are accommodated in the sealed space;
  • a lithium secondary battery comprising: The positive electrode layer, the ceramic separator and the negative electrode layer are bonded together;
  • the ceramic separator is composed of MgO and glass, the glass has an average particle diameter of 0.5 to 25 ⁇ m, and the ratio of the average particle diameter of the glass to the average particle diameter of the MgO is 1.5 to 85 A lithium secondary battery is provided.
  • FIG. 1 schematically shows an example of the lithium secondary battery of the present invention.
  • the lithium secondary battery 10 shown in FIG. 1 is in the form of a coin-type battery.
  • the present invention is not limited to this, and other forms of batteries such as a thin secondary battery that can be built in a card are used. There may be.
  • the lithium secondary battery 10 includes a positive electrode layer 12, a negative electrode layer 16, a ceramic separator 20, an electrolytic solution 22, and an exterior body 24.
  • the positive electrode layer 12 is composed of a lithium composite oxide sintered body.
  • the negative electrode layer 16 is composed of a titanium-containing sintered body.
  • the ceramic separator 20 is interposed between the positive electrode layer 12 and the negative electrode layer 16.
  • the electrolytic solution 22 is impregnated in the positive electrode layer 12, the negative electrode layer 16, and the ceramic separator 20.
  • the exterior body 24 includes a sealed space, and the positive electrode layer 12, the negative electrode layer 16, the ceramic separator 20, and the electrolytic solution 22 are accommodated in the sealed space.
  • the positive electrode layer 12, the ceramic separator 20 and the negative electrode layer 16 as a whole form one integrated sintered body plate, whereby the positive electrode layer 12, the ceramic separator 20 and the negative electrode layer 16 are bonded to each other.
  • the ceramic separator is composed of MgO and glass, the glass has an average particle diameter of 0.5 to 25 ⁇ m, and the ratio of the average particle diameter of the glass to the average particle diameter of MgO is 1.5 to 85.
  • the ceramic separator 20 is composed of MgO and glass, and the particle diameters thereof. As described above, it is possible to provide a lithium secondary battery that can achieve both high yield and excellent battery performance (for example, output performance).
  • the sintered body plate constituting the electrode plate may be wavy or warped, and if such waviness or warpage exists, variations occur in the distance between the positive and negative electrodes, and such variations are caused by charge / discharge cycles. It will lead to performance degradation.
  • the positive electrode layer 12, the ceramic separator 20 and the negative electrode layer 16 as a whole form one integral sintered body plate, whereby the positive electrode layer 12, the ceramic separator 20 are formed.
  • the negative electrode layer 16 are bonded to each other. That is, the positive electrode layer 12, the ceramic separator 20, and the negative electrode layer 16 are bonded to each other without depending on other bonding methods such as an adhesive.
  • “to form one integral sintered body plate as a whole” means a positive electrode green sheet that provides the positive electrode layer 12, a separator green sheet that provides the ceramic separator 20, and a negative electrode green sheet that provides the negative electrode layer 16. It means that a green sheet having a layer structure is fired to sinter each layer.
  • the positive electrode layer 12 and the negative electrode layer 16 are formed in the final sintered body plate. There will be no gap between them. That is, since the end face of the positive electrode layer 12 and the end face of the negative electrode layer 16 are aligned, the capacity can be maximized. Alternatively, even if there is a deviation, the integrally sintered body plate is suitable for processing such as laser processing, cutting, and polishing. Therefore, the end face may be finished so as to minimize or eliminate such deviation.
  • a predetermined shape for example, a coin shape or a chip shape
  • the positive electrode layer 12, the ceramic separator 20, and the negative electrode layer 16 are bonded to each other as long as it is an integral sintered body plate, a displacement between the positive electrode layer 12 and the negative electrode layer 16 may occur afterwards. Absent. By minimizing or eliminating the deviation between the positive electrode layer 12 and the negative electrode layer 16 as described above, a high discharge capacity as expected (that is, close to the theoretical capacity) can be obtained.
  • the area deviation rate of the positive electrode layer 12 and the negative electrode layer 16 is preferably less than 1%, more preferably less than 0.5%, and even more preferably 0%.
  • the area deviation rate of the positive electrode layer 12 and the negative electrode layer 16 is defined as S pn in the area where the positive electrode layer 12 and the negative electrode layer 16 overlap, and S p in the area where the positive electrode layer 12 protrudes from the negative electrode layer 16.
  • S pn in the area where the positive electrode layer 12 and the negative electrode layer 16 overlap
  • S p in the area where the positive electrode layer 12 protrudes from the negative electrode layer 16.
  • the region protruding from the positive electrode layer 12 and the area S n is defined as [(S p + S n) / S pn] value calculated based on the formula of ⁇ 100 (%).
  • the ratio of the discharge capacity to the theoretical capacity is preferably 99% or more, more preferably 99.5% or more, and further preferably 100%.
  • the integrated sintered plate type battery has a great advantage, but as described above, the production yield tends to be low. Therefore, both the high yield and the excellent output performance are compatible. There is a problem that is difficult.
  • the problem is that a ceramic separator composed of MgO and glass is employed, the average particle diameter of the glass is 0.5 to 25 ⁇ m, and the ratio of the average particle diameter of the glass to the average particle diameter of MgO is 1.5 to Setting it to 85 eliminates it conveniently.
  • the mechanism is not clear, but it is presumed as follows. First, the glass contained in the ceramic separator 20 functions as an adhesive at the interface between the positive electrode layer 12 and the ceramic separator 20 and at the interface between the negative electrode layer 16 and the ceramic separator 20 to provide excellent interface adhesion.
  • the average particle diameter of the glass particles are MgO, whereby the components of the positive electrode layer 12 and the negative electrode layer 16 diffuse into the ceramic separator 20, and the composition of the positive electrode layer 12, the negative electrode layer 16, and the ceramic separator 20 is increased. There is also an advantage that the change can be suppressed.
  • the lithium secondary battery 10 of the present invention is preferably a battery for an IoT device. That is, according to another preferred aspect of the present invention, an IoT device including a coin-type lithium secondary battery is provided.
  • the lithium secondary battery 10 of the present invention is also suitably used for applications such as smart keys, RFID tags, wearable terminals, multifunction solar watches, memory backup power supplies, and in-vehicle distributed power supplies.
  • IoT is an abbreviation for Internet of Things
  • IoT device means any device connected to the Internet and exhibiting a specific function.
  • the lithium secondary battery of this invention is not limited to a coin-type battery, The battery of another form may be sufficient.
  • the lithium secondary battery may be a thin secondary battery that can be built in a card.
  • the positive electrode layer 12 is composed of a lithium composite oxide sintered body.
  • the fact that the positive electrode layer 12 is composed of a sintered body means that the positive electrode layer 12 does not contain a binder or a conductive additive. This is because even if the binder is contained in the green sheet, the binder disappears or burns out during firing. And since the positive electrode layer 12 does not contain a binder, there exists an advantage that the deterioration of the positive electrode by the electrolyte solution 22 can be avoided.
  • the lithium composite oxide constituting the sintered body is particularly preferably lithium cobaltate (typically LiCoO 2 (hereinafter sometimes abbreviated as LCO)).
  • LCO lithium cobaltate
  • Various lithium composite oxide sintered plates or LCO sintered plates are known, and disclosed in, for example, Patent Document 1 (Japanese Patent No. 5587052) and Patent Document 2 (International Publication No. 2017/146088). Things can be helpful.
  • the positive electrode layer 12 that is, the lithium composite oxide sintered plate includes a plurality of primary particles composed of a lithium composite oxide, and the plurality of primary particles are in relation to the layer surface of the positive electrode layer.
  • the orientation positive electrode layer is oriented at an average orientation angle of more than 0 ° and not more than 30 °.
  • FIG. 2 shows an example of a cross-sectional SEM image perpendicular to the layer surface of the aligned positive electrode layer 12, while FIG. 3 shows an electron backscatter diffraction (EBSD) image in a cross section perpendicular to the layer surface of the aligned positive electrode layer 12. .
  • FIG. 1 shows an example of a cross-sectional SEM image perpendicular to the layer surface of the aligned positive electrode layer 12
  • FIG. 3 shows an electron backscatter diffraction (EBSD) image in a cross section perpendicular to the layer surface of the aligned positive electrode layer 12.
  • FIG. 4 is a histogram showing the orientation angle distribution of the primary particles 11 in the EBSD image of FIG.
  • the orientation angle of each primary particle 11 is shown in shades of color, and the darker the color, the smaller the orientation angle.
  • the orientation angle is an inclination angle formed by the (003) plane of each primary particle 11 with respect to the layer surface direction.
  • the black portions in the alignment positive electrode layer 12 are pores.
  • the oriented positive electrode layer 12 is an oriented sintered body composed of a plurality of primary particles 11 bonded to each other.
  • Each primary particle 11 is mainly plate-shaped, but may include particles formed in a rectangular parallelepiped shape, a cubic shape, a spherical shape, or the like.
  • the cross-sectional shape of each primary particle 11 is not particularly limited, and may be a rectangle, a polygon other than a rectangle, a circle, an ellipse, or a complex shape other than these.
  • Each primary particle 11 is composed of a lithium composite oxide.
  • the lithium composite oxide is Li x MO 2 (0.05 ⁇ x ⁇ 1.10, M is at least one transition metal, and M is typically one or more of Co, Ni, and Mn. It is an oxide represented by.
  • the lithium composite oxide has a layered rock salt structure.
  • the layered rock salt structure is a crystal structure in which lithium layers and transition metal layers other than lithium are alternately stacked with oxygen layers in between, that is, the transition metal ion layer and the lithium single layer are alternately arranged via oxide ions.
  • lithium composite oxide examples include Li x CoO 2 (lithium cobaltate), Li x NiO 2 (lithium nickelate), Li x MnO 2 (lithium manganate), Li x NiMnO 2 (nickel / lithium manganate) , Li x NiCoO 2 (nickel / lithium cobaltate), Li x CoNiMnO 2 (cobalt / nickel / lithium manganate), Li x CoMnO 2 (cobalt / lithium manganate), and the like, particularly preferably Li x CoO 2.
  • Lithium cobaltate typically LiCoO 2
  • Lithium composite oxide includes F, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te , Ba, Bi, and W may contain one or more elements.
  • the composition may be uniform throughout the positive electrode layer 12 or may be unevenly distributed on the surface. By including such elements, battery performance (for example, high temperature durability and storage performance) is expected to be improved.
  • the average value of the orientation angles of the primary particles 11, that is, the average orientation angle is more than 0 ° and not more than 30 °.
  • the average orientation angle of the primary particles 11 can be obtained by the following method. First, in an EBSD image obtained by observing a 95 ⁇ m ⁇ 125 ⁇ m rectangular region at a magnification of 1000 times as shown in FIG. 3, three horizontal lines that equally divide the alignment positive electrode layer 12 in the thickness direction, and the alignment positive electrode layer 12 Draw three vertical lines that divide the line into four layers in the layer direction. Next, the average orientation angle of the primary particles 11 is obtained by arithmetically averaging the orientation angles of all the primary particles 11 intersecting at least one of the three horizontal lines and the three vertical lines. The average orientation angle of the primary particles 11 is preferably 30 ° or less, more preferably 25 ° or less, from the viewpoint of further improving the rate characteristics. The average orientation angle of the primary particles 11 is preferably 2 ° or more, more preferably 5 ° or more, from the viewpoint of further improving the rate characteristics.
  • the orientation angle of each primary particle 11 may be widely distributed from 0 ° to 90 °, but most of it is distributed in a region of more than 0 ° and not more than 30 °. Is preferred. That is, when the cross section of the oriented sintered body constituting the oriented positive electrode layer 12 is analyzed by EBSD, the orientation angle with respect to the layer surface of the oriented positive electrode layer 12 of the primary particles 11 included in the analyzed cross section exceeds 0 °.
  • the total area of primary particles 11 (hereinafter, referred to as low-angle primary particles) that are 30 ° or less is the primary particles 11 included in the cross section (specifically, 30 primary particles 11 used for calculating the average orientation angle).
  • the total area is preferably 70% or more, and more preferably 80% or more. Thereby, since the ratio of the primary particle 11 with high mutual adhesiveness can be increased, rate characteristics can be further improved.
  • the total area of the low-angle primary particles having an orientation angle of 20 ° or less is more preferably 50% or more with respect to the total area of the 30 primary particles 11 used for calculating the average orientation angle. .
  • the total area of the low-angle primary particles having an orientation angle of 10 ° or less is more preferably 15% or more with respect to the total area of the 30 primary particles 11 used for calculating the average orientation angle. .
  • each primary particle 11 is mainly plate-shaped, the cross-section of each primary particle 11 extends in a predetermined direction as shown in FIGS. 2 and 3, and typically has a substantially rectangular shape. That is, when the cross section of the oriented sintered body is analyzed by EBSD, the total area of the primary particles 11 having an aspect ratio of 4 or more among the primary particles 11 included in the analyzed cross section is included in the cross section.
  • the total area of the particles 11 (specifically, 30 primary particles 11 used for calculating the average orientation angle) is preferably 70% or more, more preferably 80% or more. Specifically, in the EBSD image as shown in FIG. 3, this makes it possible to further improve the mutual adhesion between the primary particles 11, and as a result, the rate characteristics can be further improved.
  • the aspect ratio of the primary particles 11 is a value obtained by dividing the maximum ferret diameter of the primary particles 11 by the minimum ferret diameter.
  • the maximum ferret diameter is the maximum distance between the straight lines when the primary particle 11 is sandwiched between two parallel straight lines on the EBSD image when the cross section is observed.
  • the minimum ferret diameter is the minimum distance between the straight lines when the primary particle 11 is sandwiched between two parallel lines on the EBSD image.
  • the average particle size of the plurality of primary particles constituting the oriented sintered body is preferably 5 ⁇ m or more.
  • the average particle diameter of the 30 primary particles 11 used for calculating the average orientation angle is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and further preferably 12 ⁇ m or more.
  • the average particle diameter of the primary particles 11 is a value obtained by arithmetically averaging the equivalent circle diameters of the primary particles 11.
  • the equivalent circle diameter is the diameter of a circle having the same area as each primary particle 11 on the EBSD image.
  • the positive electrode layer 12 preferably contains pores.
  • the sintered body includes pores, particularly open pores, when the positive electrode layer is incorporated in the battery, the electrolyte can be infiltrated into the sintered body, thereby improving lithium ion conductivity. be able to. This is because there are two types of conduction of lithium ions in the sintered body: conduction through the constituent particles of the sintered body and conduction through the electrolyte solution in the pores, and conduction through the electrolyte solution in the pores is better. This is because it is overwhelmingly fast.
  • the positive electrode layer 12, that is, the lithium composite oxide sintered body preferably has a porosity of 20 to 60%, more preferably 25 to 55%, still more preferably 30 to 50%, and particularly preferably 30 to 45%. is there.
  • the stress release effect due to the pores, the improvement of lithium ion conductivity due to the internal penetration of the electrolyte solution due to the pores, and the increase in capacity can be expected, and the mutual adhesion between the primary particles 11 can be further improved, so that the rate characteristics are further improved be able to.
  • the porosity of the sintered body is calculated by binarizing the obtained SEM image by performing SEM observation at 1000 magnifications after polishing the cross section of the positive electrode layer by CP (cross section polisher) polishing.
  • the average equivalent circle diameter of each pore formed inside the oriented sintered body is not particularly limited, but is preferably 8 ⁇ m or less. As the average equivalent circle diameter of each pore is smaller, the mutual adhesion between the primary particles 11 can be further improved, and as a result, the rate characteristics can be further improved.
  • the average equivalent circle diameter of the pores is a value obtained by arithmetically averaging the equivalent circle diameters of the ten pores on the EBSD image.
  • the equivalent circle diameter is the diameter of a circle having the same area as each pore on the EBSD image.
  • Each pore formed inside the oriented sintered body is preferably an open pore connected to the outside of the positive electrode layer 12.
  • the average pore size of the positive electrode layer 12, that is, the lithium composite oxide sintered body is preferably 0.1 to 10.0 ⁇ m, more preferably 0.2 to 5.0 ⁇ m, and still more preferably 0.25 to 3. 0 ⁇ m.
  • the occurrence of stress concentration in large pores is suppressed, and the stress in the sintered body is easily released uniformly.
  • the improvement of lithium ion conductivity by the internal penetration of the electrolyte solution by the pores can be realized more effectively.
  • the thickness of the positive electrode layer 12 is preferably 60 to 600 ⁇ m, more preferably 60 to 500 ⁇ m, still more preferably 70 to 400 ⁇ m. Within such a range, the active material capacity per unit area is increased to improve the energy density of the lithium secondary battery 10, and the battery characteristics are deteriorated (particularly, the resistance value is increased) due to repeated charge and discharge. Can be suppressed.
  • the negative electrode layer 16 is composed of a titanium-containing sintered body.
  • the titanium-containing sintered body preferably contains lithium titanate Li 4 Ti 5 O 12 (hereinafter, LTO) or niobium titanium composite oxide Nb 2 TiO 7 , and more preferably contains LTO.
  • LTO lithium titanate Li 4 Ti 5 O 12
  • Nb 2 TiO 7 niobium titanium composite oxide
  • LTO is typically known to have a spinel structure, but other structures may be employed during charging and discharging.
  • the reaction of LTO proceeds in a two-phase coexistence of Li 4 Ti 5 O 12 (spinel structure) and Li 7 Ti 5 O 12 (rock salt structure) during charge and discharge. Therefore, LTO is not limited to a spinel structure.
  • LTO may be partially substituted with other elements, and examples of such other elements include Nb, Ta, W, Al, Mg, and the like.
  • the negative electrode layer 16 is composed of a sintered body means that the negative electrode layer 16 does not contain a binder or a conductive additive. This is because even if the binder is contained in the green sheet, the binder disappears or burns out during firing. Since the negative electrode layer does not contain a binder, high capacity and good charge / discharge efficiency can be obtained by increasing the packing density of the negative electrode active material (for example, LTO or Nb 2 TiO 7 ).
  • the LTO sintered body can be manufactured according to the method described in Patent Document 3 (Japanese Patent Laid-Open No. 2015-185337).
  • the negative electrode layer 16, that is, the titanium-containing sintered body has a structure in which a plurality of (that is, a large number) primary particles are bonded. Therefore, these primary particles are preferably composed of LTO or Nb 2 TiO 7 .
  • the thickness of the negative electrode layer 16 is preferably 70 to 800 ⁇ m, more preferably 70 to 700 ⁇ m, still more preferably 85 to 600 ⁇ m, and particularly preferably 95 to 500 ⁇ m.
  • the thickness of the negative electrode layer 16 is obtained, for example, by measuring the distance between the layer surfaces that are observed substantially in parallel when the cross section of the negative electrode layer 16 is observed with an SEM (scanning electron microscope).
  • the primary particle size which is the average particle size of the plurality of primary particles constituting the negative electrode layer 16, is preferably 1.2 ⁇ m or less, more preferably 0.02 to 1.2 ⁇ m, and even more preferably 0.05 to 0.7 ⁇ m. . Within such a range, it is easy to achieve both lithium ion conductivity and electronic conductivity, which contributes to an improvement in rate performance.
  • the negative electrode layer 16 preferably contains pores.
  • the sintered body includes pores, particularly open pores, when the negative electrode layer is incorporated in the battery, the electrolyte can be infiltrated into the sintered body, thereby improving lithium ion conductivity. be able to.
  • conduction through the constituent particles of the sintered body and conduction through the electrolyte solution in the pores conduction through the electrolyte solution in the pores is better. This is because it is overwhelmingly fast.
  • the porosity of the negative electrode layer 16 is preferably 20 to 60%, more preferably 30 to 55%, and still more preferably 35 to 50%. Within such a range, it is easy to achieve both lithium ion conductivity and electronic conductivity, which contributes to an improvement in rate performance.
  • the average pore diameter of the negative electrode layer 16 is preferably 0.08 to 5.0 ⁇ m, more preferably 0.1 to 3.0 ⁇ m, and further preferably 0.12 to 1.5 ⁇ m. Within such a range, it is easy to achieve both lithium ion conductivity and electronic conductivity, which contributes to an improvement in rate performance.
  • the ceramic separator 20 is a ceramic microporous film.
  • the ceramic separator 20 is not only excellent in heat resistance, but also has an advantage that it can be manufactured as a single integrally sintered body plate together with the positive electrode layer 12 and the negative electrode layer 16.
  • the ceramic separator 20 is made of MgO and glass.
  • MgO and glass exist in the form of particles bonded together by sintering.
  • the average particle diameter of the glass is 0.5 to 25 ⁇ m, preferably 1 to 22 ⁇ m, more preferably 3 to 20 ⁇ m, still more preferably 5 to 18 ⁇ m, and particularly preferably 7 to 15 ⁇ m.
  • the ratio of the average particle diameter D g of the glass to the average particle diameter D MgO of MgO is from 1.5 to 85, and preferably from 1.8 to 50, more preferably from 2.0 to 20, more preferably 2.2 to 18, particularly preferably 2.5 to 15.
  • D g / D MgO is in the above range, thereby improving the yield lowered defect rate can be realized an excellent output performance.
  • the latter is considered to be because the penetration of the electrolytic solution into the ceramic separator 20 is hardly hindered by the particle size ratio D g / D MgO .
  • the average particle diameter of MgO and glass can be determined as follows. First, the ceramic separator 20 is polished by a cross section polisher (CP), and the obtained cross section (cross section perpendicular to the plate surface of the electrode plate) is photographed with a 1000 ⁇ field of view (125 ⁇ m ⁇ 125 ⁇ m). All the particle diameters of the glass particles included in the visual field are measured and added, and the average particle diameter of the glass particles is calculated by dividing by the measured number of glass particles. Similarly, the average particle diameter of the MgO particles is calculated by measuring and adding all the particle diameters of the MgO particles included in the field of view and dividing by the measured number of MgO particles.
  • CP cross section polisher
  • the glass contained in the ceramic separator 20 contains SiO 2 in an amount of preferably 25% by weight or more, more preferably 30 to 95% by weight, still more preferably 40 to 90% by weight, and particularly preferably 50 to 80% by weight.
  • the glass content in the ceramic separator 20 is preferably 3 to 70% by weight, more preferably 5 to 50% by weight, still more preferably 10 to 40% by weight, particularly preferably based on the total weight of the ceramic separator 20. Is from 15 to 30% by weight. When the SiO 2 content and the glass content are satisfied, it is possible to more effectively realize both high yield and excellent charge / discharge cycle performance.
  • the addition of the glass component to the ceramic separator 20 is preferably performed by adding glass frit to the raw material powder of the ceramic separator.
  • the glass frit preferably contains at least one of Al 2 O 3 , B 2 O 3 and BaO as a component other than SiO 2 .
  • the thickness of the ceramic separator 20 is preferably 5 to 50 ⁇ m, more preferably 5 to 40 ⁇ m, still more preferably 5 to 35 ⁇ m, and particularly preferably 10 to 30 ⁇ m.
  • the porosity of the ceramic separator 20 is preferably 30 to 85%, more preferably 40 to 80%.
  • the electrolytic solution 22 is not particularly limited, and is an organic solvent (for example, a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC), a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC), or ethylene carbonate (EC).
  • an organic solvent for example, a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC), a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC), or ethylene carbonate (EC).
  • a commercially available electrolytic solution for a lithium battery such as a solution obtained by dissolving a lithium salt (for example, LiPF 6 ) in a non-aqueous solvent of a mixed solvent of ethyl methyl carbonate (EMC).
  • the electrolyte solution 22 preferably contains lithium borofluoride (LiBF 4 ) in a non-aqueous solvent.
  • the preferred nonaqueous solvent is at least one selected from the group consisting of ⁇ -butyrolactone (GBL), ethylene carbonate (EC) and propylene carbonate (PC), more preferably a mixed solvent consisting of EC and GBL.
  • GBL ⁇ -butyrolactone
  • EC ethylene carbonate
  • PC propylene carbonate
  • the volume ratio of EC: GBL in the EC and / or GBL-containing non-aqueous solvent is preferably 0: 1 to 1: 1 (GBL ratio 50 to 100% by volume), more preferably 0: 1 to 1: 1.5 (GBL ratio 60 to 100% by volume), more preferably 0: 1 to 1: 2 (GBL ratio 66.6 to 100% by volume), particularly preferably 0: 1 to 1: 3 (GBL ratio) 75 to 100% by volume).
  • Lithium borofluoride (LiBF 4 ) dissolved in a non-aqueous solvent is an electrolyte with a high decomposition temperature, which also brings about a significant improvement in heat resistance.
  • the LiBF 4 concentration in the electrolytic solution 22 is preferably 0.5 to 2 mol / L, more preferably 0.6 to 1.9 mol / L, still more preferably 0.7 to 1.7 mol / L, particularly preferably. 0.8 to 1.5 mol / L.
  • the electrolytic solution 22 further contains at least one selected from vinylene carbonate (VC), fluoroethylene carbonate (FEC), vinyl ethylene carbonate (VEC), and lithium difluoro (oxalato) borate (LiDFOB) as an additive. May be. Both VC and FEC are excellent in heat resistance. Therefore, when the electrolytic solution 22 contains such an additive, an SEI film excellent in heat resistance can be formed on the surface of the negative electrode layer 16.
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • VEC vinyl ethylene carbonate
  • LiDFOB lithium difluoro (oxalato) borate
  • a solid electrolyte or a polymer electrolyte may be used instead of the electrolytic solution 22 (in other words, a solid electrolyte or a polymer electrolyte can be used as the electrolyte in addition to the electrolytic solution 22).
  • a solid electrolyte or a polymer electrolyte can be used as the electrolyte in addition to the electrolytic solution 22.
  • the impregnation method is not particularly limited, and examples thereof include a method of melting the electrolyte and infiltrating the pores of the separator 20, and a method of pressing the electrolyte compact on the separator 20.
  • the exterior body 24 includes a sealed space, and the positive electrode layer 12, the negative electrode layer 16, the ceramic separator 20, and the electrolytic solution 22 are accommodated in the sealed space.
  • the exterior body 24 may be appropriately selected according to the type of the lithium secondary battery 10.
  • the outer package 24 typically includes a positive electrode can 24a, a negative electrode can 24b, and a gasket 24c, and the positive electrode can 24a and the negative electrode
  • the can 24b is caulked through the gasket 24c to form a sealed space.
  • the positive electrode can 24a and the negative electrode can 24b can be made of metal such as stainless steel, and are not particularly limited.
  • the gasket 24c can be an annular member made of an insulating resin such as polypropylene, polytetrafluoroethylene, or PFA resin, and is not particularly limited.
  • the outer package is a resin base material
  • the battery elements that is, the positive electrode layer 12, the negative electrode layer 16, the ceramic separator 20, and the electrolytic solution 22
  • the battery element is preferably embedded in the substrate.
  • the battery element may be sandwiched between a pair of resin films, and it is preferable that the resin films are bonded together with an adhesive, or the resin films are heat-sealed by a hot press.
  • the lithium secondary battery 10 preferably further includes a positive electrode current collector 14 and / or a negative electrode current collector 18.
  • the positive electrode current collector 14 and the negative electrode current collector 18 are not particularly limited, but are preferably metal foils such as copper foil and aluminum foil.
  • the positive electrode current collector 14 is preferably disposed between the positive electrode layer 12 and the outer package 24 (for example, the positive electrode can 24a), and the negative electrode current collector 18 includes the negative electrode layer 16 and the outer package 24 (for example, the negative electrode can 24b). It is preferable to arrange
  • a negative electrode side carbon layer 17 is preferably provided between the negative electrode layer 16 and the negative electrode current collector 18 from the viewpoint of reducing contact resistance.
  • Both the positive electrode side carbon layer 13 and the negative electrode side carbon layer 17 are preferably made of conductive carbon, and may be formed, for example, by applying a conductive carbon paste by screen printing or the like.
  • the monolithic sintered body plate having a three-layer structure of the positive electrode layer 12, the ceramic separator 20, and the negative electrode layer 16 may be manufactured by any method, but preferably (1) A green sheet corresponding to each of the three layers is prepared, and (2) the green sheets are laminated and pressed and fired.
  • (1) Production of various green sheets (1a) Production of positive electrode green sheet Production of a lithium composite oxide-containing green sheet as a positive electrode green sheet can be performed as follows. First, a raw material powder composed of a lithium composite oxide is prepared. This powder preferably contains synthesized plate-like particles (for example, LiCoO 2 plate-like particles) having a composition of LiMO 2 (M is as described above). The volume-based D50 particle size of the raw material powder is preferably 0.3 to 30 ⁇ m.
  • a method for producing LiCoO 2 plate-like particles can be performed as follows. First, the LiCoO 2 powder is synthesized by mixing the Co 3 O 4 raw material powder and the Li 2 CO 3 raw material powder and firing (500 to 900 ° C., 1 to 20 hours).
  • the obtained LiCoO 2 powder is pulverized to a volume-based D50 particle size of 0.2 ⁇ m to 10 ⁇ m by a pot mill to obtain plate-like LiCoO 2 particles capable of conducting lithium ions in parallel with the plate surface.
  • Such LiCoO 2 particles can be obtained by a method of crushing after growing a green sheet using LiCoO 2 powder slurry, a plate method such as a flux method, hydrothermal synthesis, single crystal growth using a melt, or a sol-gel method. It can also be obtained by a method of synthesizing crystals.
  • the obtained LiCoO 2 particles are easily cleaved along the cleavage plane. Be to cleave by crushing the LiCoO 2 particles, it can be produced LiCoO 2 plate-like particles.
  • the plate-like particles may be used alone as a raw material powder, or a mixed powder of the plate-like powder and another raw material powder (for example, Co 3 O 4 particles) may be used as a raw material powder.
  • another raw material powder for example, Co 3 O 4 particles
  • the plate-like powder functions as template particles for imparting orientation
  • other raw material powder for example, Co 3 O 4 particles
  • a powder obtained by mixing template particles and matrix particles in a range of 100: 0 to 3:97 is preferably used as a raw material powder.
  • Co 3 O 4 raw material powder on a volume basis D50 particle size is not particularly limited, for example, it can be a 0.1 ⁇ 1.0 ⁇ m, LiCoO 2 template particles Is preferably smaller than the volume-based D50 particle size.
  • the matrix particles can also be obtained by subjecting a Co (OH) 2 raw material to heat treatment at 500 ° C. to 800 ° C. for 1 to 10 hours.
  • Co (OH) 2 particles or LiCoO 2 particles may be used as matrix particles.
  • the raw material powder is composed of 100% LiCoO 2 template particles, or when LiCoO 2 particles are used as matrix particles, a large (for example, 90 mm ⁇ 90 mm square) and flat LiCoO 2 sintered body layer is obtained by firing. Can do. Although the mechanism is not clear, since synthesis into LiCoO 2 is not performed in the firing process, it is expected that volume change during firing is less likely to occur or local unevenness is less likely to occur.
  • the raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
  • a lithium compound for example, lithium carbonate
  • a lithium compound for example, lithium carbonate
  • the slurry is preferably defoamed by stirring under reduced pressure, and the viscosity is preferably adjusted to 4000 to 10000 cP.
  • the obtained slurry is formed into a sheet to obtain a lithium composite oxide-containing green sheet.
  • Sheet molding is preferably performed using a molding technique capable of applying a shearing force to plate-like particles (for example, template particles) in the raw material powder.
  • a doctor blade method is suitable as a forming method capable of applying a shearing force to the plate-like particles.
  • What is necessary is just to set the thickness of a lithium composite oxide containing green sheet suitably so that it may become the desired thickness as mentioned above after baking.
  • one green sheet may be formed to have a desired thickness, or a plurality of green sheets may be laminated to have a desired thickness. In particular, when the thickness exceeds 300 ⁇ m, it is preferable in terms of construction method to laminate a plurality of green sheets.
  • the titanium-containing green sheet as the negative electrode green sheet may be produced by any method.
  • the LTO-containing green sheet can be produced as follows. First, a raw material powder (LTO powder) composed of lithium titanate Li 4 Ti 5 O 12 is prepared. As the raw material powder, commercially available LTO powder may be used, or newly synthesized. For example, a powder obtained by hydrolyzing a mixture of titanium tetraisopropoxy alcohol and isopropoxy lithium may be used, or a mixture containing lithium carbonate, titania, or the like may be fired.
  • the volume-based D50 particle size of the raw material powder is preferably 0.05 to 5.0 ⁇ m, more preferably 0.1 to 2.0 ⁇ m.
  • the particles tend to be large.
  • pulverization treatment for example, pot mill pulverization, bead mill pulverization, jet mill pulverization, etc.
  • the raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
  • a lithium compound for example, lithium carbonate
  • LiMO 2 lithium carbonate
  • the slurry is preferably defoamed by stirring under reduced pressure, and the viscosity is preferably adjusted to 4000 to 10000 cP.
  • the obtained slurry is formed into a sheet to obtain an LTO-containing green sheet.
  • Sheet forming can be performed by various known methods, but is preferably performed by a doctor blade method. What is necessary is just to set suitably the thickness of a LTO containing green sheet so that it may become the desired thickness as mentioned above after baking.
  • a separator green sheet can be produced as follows. First, MgO powder is prepared, and glass frit is added to and mixed with this MgO powder.
  • the volume-based D50 particle size of the raw material powder is preferably 0.05 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m. When the particle size of the raw material powder is large, the pores tend to be large. Further, when the raw material particle size is large, pulverization treatment (for example, pot mill pulverization, bead mill pulverization, jet mill pulverization, etc.) may be performed so as to obtain a desired particle size.
  • pulverization treatment for example, pot mill pulverization, bead mill pulverization, jet mill pulverization, etc.
  • the raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
  • the slurry is preferably defoamed by stirring under reduced pressure, and the viscosity is preferably adjusted to 4000 to 10000 cP.
  • the obtained slurry is formed into a sheet to obtain a separator green sheet.
  • Sheet forming can be performed by various known methods, but is preferably performed by a doctor blade method. What is necessary is just to set suitably the thickness of a separator green sheet so that it may become the desired thickness as mentioned above after baking.
  • a positive electrode green sheet, a separator green sheet, and a negative electrode green sheet are sequentially stacked, and the obtained laminate is pressed to pressure-bond the green sheets.
  • the pressing may be performed by a known method and is not particularly limited, but is preferably performed by CIP (cold isostatic pressing).
  • Preferred pressing pressure is 10 ⁇ 5000kgf / cm 2, more preferably 50 ⁇ 3000kgf / cm 2. It is preferable to punch the green sheet laminate thus pressed into a desired shape (for example, coin shape or chip shape) or size with a punching die. By doing so, it is possible to eliminate the deviation between the positive electrode layer 12 and the negative electrode layer 16 in the integrally sintered plate of the final form. As a result, since the end face of the positive electrode layer 12 and the end face of the negative electrode layer 16 are aligned, the capacity of the battery can be maximized.
  • the setter is made of ceramics, preferably zirconia or magnesia.
  • the setter is preferably embossed.
  • the green sheet thus placed on the setter is put in the sheath.
  • the sheath is also made of ceramics, preferably made of alumina.
  • an integral sintered compact board is obtained by baking after degreasing as needed. Degreasing is preferably performed by holding at 300 to 600 ° C. for 0.5 to 20 hours.
  • the firing is preferably carried out at 650 to 900 ° C. for 0.01 to 20 hours, more preferably 700 to 850 ° C. for 0.5 to 10 hours.
  • the heating rate during firing is preferably 50 to 1500 ° C./h, more preferably 200 to 1300 ° C./h.
  • this rate of temperature rise is preferably employed in the temperature raising process of 600 to 900 ° C., more preferably in the temperature raising process of 600 to 800 ° C.
  • an integral sintered body plate having a three-layer structure of the positive electrode layer 12, the ceramic separator 20, and the negative electrode layer 16 is obtained.
  • a deviation between the positive electrode layer 12 and the negative electrode layer 16 may occur in the final sintered sintered plate.
  • the end face of the integrally sintered plate is finished by a technique such as laser processing, cutting, and polishing to minimize or eliminate the deviation.
  • LiCoO 2 is abbreviated as “LCO”
  • Li 4 Ti 5 O 12 is abbreviated as “LTO”.
  • Example A1 (1) Preparation of LCO Green Sheet (Positive Electrode Green Sheet) First, Co 3 O 4 powder (manufactured by Shodo Chemical Industry Co., Ltd.) and Li 2 CO weighed so that the Li / Co molar ratio was 1.01. 3 powders (Honjo Chemical Co., Ltd.) were mixed and then held at 780 ° C. for 5 hours. The obtained powder was pulverized with a pot mill so that the volume standard D50 was 0.4 ⁇ m, and consisted of LCO plate-like particles. Got.
  • 10 parts by weight of a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • a plasticizer 4 parts by weight DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurokin Kasei Co., Ltd.
  • a dispersant product name: Leodol SP-O30, manufactured by Kao Corporation
  • the obtained mixture was stirred and degassed under reduced pressure, and an LCO slurry was prepared by adjusting the viscosity to 4000 cP.
  • the viscosity was measured with an LVT viscometer manufactured by Brookfield.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LCO green sheet.
  • the thickness of the LCO green sheet was set to 200 ⁇ m after firing.
  • a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • DOP Di (2-ethylhexyl) phthalate, manufactured by Kurokin Kasei
  • the obtained negative electrode raw material mixture was stirred and degassed under reduced pressure, and an LTO slurry was prepared by adjusting the viscosity to 4000 cP.
  • the viscosity was measured with an LVT viscometer manufactured by Brookfield.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LTO green sheet.
  • the thickness of the LTO green sheet was adjusted to 240 ⁇ m after firing.
  • MgO Green Sheet (Separator Green Sheet) Magnesium carbonate powder (manufactured by Kamishima Chemical Industry Co., Ltd.) was heat treated at 800 ° C. for 5 hours to obtain MgO powder.
  • the obtained MgO powder and glass frit (manufactured by Nippon Frit Co., Ltd., CK0199, SiO 2 content 70% by weight) were mixed at a weight ratio of 4: 1.
  • the obtained raw material mixture was defoamed by stirring under reduced pressure, and a slurry was prepared by adjusting the viscosity to 4000 cP.
  • the viscosity was measured with an LVT viscometer manufactured by Brookfield.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form a separator green sheet.
  • the thickness of the separator green sheet was set to 25 ⁇ m after firing.
  • LCO green sheet positive electrode green sheet
  • MgO green sheet separatator green sheet
  • LTO green sheet negative electrode green sheet
  • the green sheets were pressure-bonded by pressing at 200 kgf / cm 2 by the pressure and pressure method.
  • the laminated body thus crimped was punched into a disk shape having a diameter of 10 mm with a punching die.
  • the obtained disc-shaped laminate was degreased at 600 ° C. for 5 hours, then heated to 1000 ° C./h to 800 ° C. and held for 10 minutes, and then cooled.
  • one integrated sintered body plate including three layers of the positive electrode layer (LCO sintered body layer) 12, the ceramic separator (MgO separator) 20 and the negative electrode layer (LTO sintered body layer) 16 was obtained.
  • a coin-type lithium secondary battery 10 as schematically shown in FIG. 1 was produced as follows.
  • the positive electrode current collector 14 and the positive electrode side carbon layer 13 are directed from the positive electrode can 24a to the negative electrode can 24b.
  • the integrated sintered body plate (LCO positive electrode layer 12, MgO separator 20 and LTO negative electrode layer 16), negative electrode side carbon layer 17, and negative electrode current collector 18 are accommodated so as to be laminated in this order, and filled with electrolytic solution 22 After that, the positive electrode can 24a and the negative electrode can 24b were sealed by caulking through the gasket 24c.
  • a coin cell type lithium secondary battery 10 having a diameter of 12 mm and a thickness of 1.0 mm was produced.
  • LiBF 4 was dissolved in an organic solvent in which ethylene carbonate (EC) and ⁇ -butyrolactone (GBL) were mixed at a volume ratio of 1: 3 to a concentration of 1.5 mol / L.
  • EC ethylene carbonate
  • GBL ⁇ -butyrolactone
  • the LCO sintered body layer (positive electrode layer) 12, the LTO sintered body layer (negative electrode layer) 16 and the MgO separator (ceramic separator) 20 synthesized in the above (4), and the above (5) are produced.
  • the coin-type lithium secondary battery 10 was subjected to various evaluations as shown below.
  • ⁇ Average orientation angle of primary particles> The LCO sintered body layer was polished with a cross section polisher (CP) (IB-15000CP, manufactured by JEOL Ltd.), and the resulting positive electrode layer cross section (cross section perpendicular to the layer surface of the positive electrode layer) was viewed 1000 times (125 ⁇ m EBSD measurement was performed at ⁇ 125 ⁇ m to obtain an EBSD image. This EBSD measurement was performed using a Schottky field emission scanning electron microscope (manufactured by JEOL Ltd., model JSM-7800F).
  • CP cross section polisher
  • the angle formed between the (003) plane of the primary particles and the layer surface of the positive electrode layer is determined as the inclination angle
  • the average value of the angles was defined as the average orientation angle of the primary particles.
  • the average orientation angle was 16 °.
  • ⁇ Layer thickness> The LCO and LTO sintered body layers and the MgO separator were polished by a cross section polisher (CP) (IB-15000CP, manufactured by JEOL Ltd.), and the obtained cross section was observed by SEM (JEOL, JSM6390LA) to be a positive electrode layer 12, the thickness of each of the negative electrode layer 16 and the separator 20 was measured.
  • the thicknesses of the positive electrode layer 12 and the negative electrode layer 16 were as shown in Table 1, and the thickness of the separator 20 was 25 ⁇ m.
  • the integrated sintered body plate was mechanically polished to remove the positive electrode layer 12 and the negative electrode layer 16, and only the separator 20 was taken out.
  • the obtained separator 20 was subjected to ICP emission analysis to analyze the composition of ceramics and glass.
  • ⁇ Porosity> The LCO or LTO sintered body layer and the MgO separator are polished with a cross section polisher (CP) (IB-15000CP, manufactured by JEOL Ltd.), and the resulting positive electrode layer or negative electrode layer has a 1000 ⁇ field of view (125 ⁇ m ⁇ SEM observation (JSM6390LA, manufactured by JEOL Ltd.).
  • the obtained SEM image was subjected to image analysis, the area of all pores was divided by the area of the positive electrode or negative electrode, and the obtained value was multiplied by 100 to calculate the porosity (%).
  • the porosity of the positive electrode layer 12 was 45%
  • the porosity of the negative electrode layer 16 was 50%.
  • the MgO separator 20 was polished with a cross section polisher (CP) (IB-15000CP, manufactured by JEOL Ltd.), and the resulting cross section (cross section perpendicular to the plate surface of the electrode plate) was magnified 1000 times (125 ⁇ m ⁇ 125 ⁇ m) Taken with The average particle diameter of the glass particles was calculated by measuring and adding all the particle diameters of the glass particles included in the field of view and dividing by the number of the measured glass particles. Similarly, the average particle diameter of the MgO particles was calculated by measuring and adding all the particle diameters of the MgO particles included in the field of view and dividing by the measured number of MgO particles.
  • CP cross section polisher
  • a reference battery was produced. Specifically, the LTO green sheet produced in the above (1) and the LTO green sheet produced in the above (2) are respectively separately the same as in the above (4) (without being laminated through the MgO green sheets). It baked on the conditions of. Using the positive electrode sintered body plate and the negative electrode sintered body plate thus obtained, and a cellulose separator (manufactured by Nippon Kogyo Paper Industries Co., Ltd.), a coin-type lithium secondary battery was produced in the same manner as in the above (5), A reference battery was obtained.
  • the output performance of each of the lithium secondary battery and the reference battery obtained in (5) above was evaluated according to the following procedure.
  • the output capacity ratio (%) was obtained by dividing the discharge capacity ratio of the lithium secondary battery of this example by the discharge capacity ratio of the reference battery and multiplying by 100.
  • Example A2 1) A glass frit obtained by removing particles having a diameter of 10 ⁇ m or more from a glass frit (manufactured by Nippon Frit Co., Ltd., CK0199, SiO 2 content 70 wt%) by air flow classification, and 2) magnesium oxide (Co., Ltd.) A single sintered body plate and a battery were prepared and subjected to various evaluations in the same manner as in Example A1 except that a high-purity chemical laboratory) was pulverized and crushed in a pot mill as MgO powder. .
  • Example A3 Integrating in the same manner as in Example A1 except that a glass frit (made by Nippon Frit Co., Ltd., CK0199, SiO 2 content 70% by weight) obtained by removing particles having a diameter of 7 ⁇ m or more by air classification was used as a glass frit.
  • a sintered body plate and a battery were prepared and subjected to various evaluations.
  • Example A4 Glass frit (made by Nippon Frit Co., Ltd., CK0199, SiO 2 content 70% by weight) was pulverized for 50 hours in a pot mill, and then particles having a diameter of 3 ⁇ m or more were removed by airflow classification as glass frit. And 2) Except having used as a MgO particle what was obtained by heat-processing magnesium carbonate (made by Kamishima Chemical Co., Ltd.) for 5 hours at 600 degreeC, it is the same as that of Example A1, and integrally sintered compact board and A battery was prepared and subjected to various evaluations.
  • Example A5 1) A glass frit obtained by removing particles having a diameter of 20 ⁇ m or less by airflow classification from a glass frit (manufactured by Nippon Frit Co., Ltd., CK0199, SiO 2 content 70% by weight), and 2) magnesium carbonate (Kanjima Chemical) Kogyo Co., Ltd.) was manufactured by heat treatment at 600 ° C. for 5 hours, except that the MgO particles were used in the same manner as in Example A1, producing an integrally sintered body plate and a battery, and performing various evaluations. It was.
  • Example A6 (comparison) 1) After a glass frit (made by Nippon Frit Co., Ltd., CK0199, SiO 2 content 70 wt%) was pulverized for 100 hours in a pot mill, particles with a diameter of 1 ⁇ m or more removed by air classification were used as the glass frit. And 2) Except having used as a MgO particle what was obtained by heat-processing magnesium carbonate (made by Kamishima Chemical Co., Ltd.) for 5 hours at 600 degreeC, it is the same as that of Example A1, and integrally sintered compact board and A battery was prepared and subjected to various evaluations.
  • Example A7 (comparison) 1) A glass frit obtained by removing particles having a diameter of 25 ⁇ m or less from a glass frit (manufactured by Nippon Frit Co., Ltd., CK0199, SiO 2 content 70% by weight) by airflow classification, and 2) magnesium carbonate (Kanjima Chemical) An integrated sintered body plate and a battery were prepared and subjected to various evaluations in the same manner as in Example A1, except that MgO particles obtained by heat treatment at 600 ° C. for 5 hours were used.
  • Evaluation results Table 1 shows the evaluation results of Examples A1 to A7.
  • Example B1 (reference) 1) The LCO green sheet was thinned so that the thickness of the positive electrode layer was 60 ⁇ m, 2) The LTO green sheet was thinned so that the thickness of the negative electrode layer was 70 ⁇ m, and 3) Magnesium carbonate (Kanjima Chemical) An integrated sintered body plate and a battery were produced in the same manner as in Example A1 except that the product obtained by heat-treating (manufactured by Kogyo Co., Ltd.) at 900 ° C. for 5 hours was used as MgO particles, and various evaluations were performed. . Further, the positive / negative electrode area deviation rate, the discharge capacity / theoretical capacity ratio, and the pulse cycle capacity maintenance ratio were measured as follows.
  • 3D shape measuring machine manufactured by Keyence Corporation, VR3000
  • the discharge capacity of the battery was measured by the following procedure. That is, after charging at a constant voltage of 2.7 V, the initial capacity was measured by discharging at a discharge rate of 0.2 C, and the obtained initial capacity was adopted as the discharge capacity. Next, the discharge capacity was divided by the theoretical capacity and multiplied by 100 to obtain a discharge capacity / theoretical capacity ratio (%).
  • the theoretical capacity of the battery was calculated according to the following procedure. First, the area of each layer of the integrally sintered body plate is calculated by shape measurement, and the thickness and porosity of each layer of the integrally sintered body plate are calculated from the cross-sectional SEM, and the positive electrode layer and the negative electrode layer are obtained from the obtained values. The effective volume was calculated. The true specific gravity of each constituent material of the positive electrode layer and the negative electrode layer was calculated based on JIS standard R1634, and the weight values of the positive electrode layer and the negative electrode layer were calculated. The theoretical capacity value of each of the positive electrode layer and the negative electrode layer is calculated by multiplying the weight of the active material thus obtained by the capacity per weight of the material (described in the battery manual), and the lower value of the battery is calculated. Adopted as a theoretical capacity value.
  • the pulse cycle capacity retention rate (constant voltage charge cycle performance) of the battery was measured by the following procedure. First, after charging at a constant voltage of 2.7 V, the initial capacity was measured by discharging at a discharge rate of 0.2 C. Next, a total of 100 charge / discharge cycles including 100 times of constant voltage charging at 2.7 V and discharging at a current of 20 mA for 0.5 seconds were performed. Finally, after charging at a constant voltage of 2.7 V, the capacity after cycling was measured by discharging at 0.2 C. By dividing the measured post-cycle capacity by the initial capacity and multiplying by 100, the pulse cycle capacity retention rate (%) was obtained.
  • Example B2 (reference) 1) Same as Example B1 except that the LCO green sheet was thickened so that the thickness of the positive electrode layer was 100 ⁇ m, and 2) the LTO green sheet was thickened so that the thickness of the negative electrode layer was 120 ⁇ m. Then, an integrally sintered body plate and a battery were produced and subjected to various evaluations.
  • Example B3 (reference) 1) Same as Example B1 except that the LCO green sheet was thickened so that the thickness of the positive electrode layer was 200 ⁇ m, and 2) the LTO green sheet was thickened so that the thickness of the negative electrode layer was 240 ⁇ m. Then, an integrally sintered body plate and a battery were produced and subjected to various evaluations.
  • Example B4 (reference) Except that 1) the LCO green sheet was thickened so that the thickness of the positive electrode layer was 400 ⁇ m, and 2) the LTO green sheet was thickened so that the thickness of the negative electrode layer was 480 ⁇ m. Then, an integrally sintered body plate and a battery were produced and subjected to various evaluations.
  • Example B5 (reference) Except that the average pore diameter of the positive electrode layer was adjusted to 0.25 ⁇ m, an integrally sintered body plate and a battery were prepared and subjected to various evaluations in the same manner as Example B4.
  • Example B6 (comparison) (1) Preparation of positive electrode plate (1a) Preparation of LCO green sheet First, Co 3 O 4 powder (manufactured by Shodo Chemical Industry Co., Ltd.) and Li were weighed so that the molar ratio of Li / Co was 1.01. 2 CO 3 powder (manufactured by Honjo Chemical Co., Ltd.) is mixed and then held at 780 ° C. for 5 hours. A powder A composed of particles was obtained.
  • a plasticizer DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurokin Kasei Co., Ltd.
  • a dispersant product name: Leodol SP-O30, manufactured by Kao Corporation
  • the obtained mixture was stirred and degassed under reduced pressure, and an LCO slurry was prepared by adjusting the viscosity to 4000 cP.
  • the viscosity was measured with an LVT viscometer manufactured by Brookfield.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LCO green sheet.
  • the thickness of the LCO green sheet after drying was 220 ⁇ m.
  • an LCO sintered body plate having a thickness of 200 ⁇ m was obtained as a positive electrode plate.
  • the obtained positive electrode plate was cut into a circular shape having a diameter of 10 mm with a laser processing machine to obtain a positive electrode plate.
  • the obtained negative electrode raw material mixture was stirred and degassed under reduced pressure, and an LTO slurry was prepared by adjusting the viscosity to 4000 cP.
  • the viscosity was measured with an LVT viscometer manufactured by Brookfield.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LTO green sheet.
  • the thickness of the LTO green sheet after drying was set to such a value that the thickness after firing was 240 ⁇ m.
  • a coin-type lithium secondary battery 10 as schematically shown in FIG. 1 was produced as follows.
  • LiBF 4 was dissolved in an organic solvent in which ethylene carbonate (EC) and ⁇ -butyrolactone (GBL) were mixed at a volume ratio of 1: 3 so as to have a concentration of 1.5 mol / L. The solution was used.
  • EC ethylene carbonate
  • GBL ⁇ -butyrolactone
  • Evaluation results Tables 2 and 3 show the evaluation results of Examples B1 to B6.

Abstract

正極層、セラミックセパレータ及び負極層が互いに結合した一体焼結体板タイプの電池でありながら、高い歩留まりと優れた電池性能とを両立可能なリチウム二次電池が提供される。このリチウム二次電池は、リチウム複合酸化物焼結体で構成される正極層と、チタン含有焼結体で構成される負極層と、セラミックセパレータと、電解液と、密閉空間を備え、該密閉空間内に正極層、負極層、セラミックセパレータ及び電解液が収容される外装体とを備えたものであり、正極層、セラミックセパレータ及び負極層が互いに結合しており、セラミックセパレータがMgO及びガラスで構成され、ガラスの平均粒子径が0.5~25μmであり、かつ、MgOの平均粒子径に対するガラスの平均粒子径の比が1.5~85である。

Description

リチウム二次電池
 本発明は、リチウム二次電池に関するものである。
 充電を必要とする様々なデバイスにリチウム二次電池が広く利用されている。既存の多くのリチウム二次電池では、正極活物質、導電助剤、バインダー等を含む正極合剤を塗布及び乾燥させて作製された、粉末分散型の正極(いわゆる塗工電極)が採用されている。
 一般的に、粉末分散型の正極は、容量に寄与しない成分(バインダーや導電助剤)を比較的多量に(例えば10重量%程度)含んでいるため、正極活物質としてのリチウム複合酸化物の充填密度が低くなる。このため、粉末分散型の正極は、容量や充放電効率の面で改善の余地が大きかった。そこで、正極ないし正極活物質層をリチウム複合酸化物焼結体板で構成することにより、容量や充放電効率を改善しようとする試みがなされている。この場合、正極又は正極活物質層にはバインダーや導電助剤が含まれないため、リチウム複合酸化物の充填密度が高くなることで、高容量や良好な充放電効率が得られることが期待される。例えば、特許文献1(特許第5587052号公報)には、正極集電体と、導電性接合層を介して正極集電体と接合された正極活物質層とを備えた、リチウム二次電池の正極が開示されている。この正極活物質層は、厚さが30μm以上であり、空隙率が3~30%であり、開気孔比率が70%以上であるリチウム複合酸化物焼結体板からなるとされている。また、特許文献2(国際公開第2017/146088号)には、固体電解質を備えるリチウム二次電池の正極として、コバルト酸リチウム(LiCoO)等のリチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向焼結体板を用いることが開示されている。
 一方、負極としてチタン含有焼結体板を用いることも提案されている。例えば、特許文献3(特開2015-185337号公報)には、正極又は負極にチタン酸リチウム(LiTi12)焼結体を用いたリチウム二次電池が開示されている。もっとも、このリチウム二次電池は正極と負極の間に固体電解質層を備えた全固体電池であり、非水系電解液を用いる二次電池ではない。
特許第5587052号公報 国際公開第2017/146088号 特開2015-185337号公報
 近年、小型薄型でありながら高容量かつ高出力のリチウム二次電池が望まれている。そこで、高容量や良好な充放電効率を期待して、リチウム複合酸化物焼結体板を正極に用いることが考えられる。同様の理由から、チタン含有焼結体板を負極に用いることも考えられる。しかしながら、これらの焼結体板、すなわちセラミック正極板及びセラミック負極板を用いてリチウム二次電池を実際に作製すると、期待したほどの容量が得られない。この点、本発明者らの知見によれば、正極層、セラミックセパレータ及び負極層が全体として1つの一体焼結体板を成す構成を採用することで、高い放電容量を有し、かつ、充放電サイクル性能にも優れた、リチウム二次電池を提供することができる。とはいえ、かかる一体焼結体板タイプの電池は製造時の歩留まりが低くなりがちであり、それ故、高い歩留まりと優れた電池性能(例えば出力性能)との両立が難しいとの問題がある。
 本発明者らは、今般、正極層、セラミックセパレータ及び負極層が互いに結合した一体焼結体板タイプのリチウム二次電池において、セラミックセパレータをMgO及びガラスで構成し、かつ、それらの粒径を制御することで、高い歩留まりと優れた電池性能とを両立可能なリチウム二次電池を提供できるとの知見を得た。
 したがって、本発明の目的は、正極層、セラミックセパレータ及び負極層が互いに結合した一体焼結体板タイプの電池でありながら、高い歩留まりと優れた電池性能とを両立可能なリチウム二次電池を提供することにある。
 本発明の一態様によれば、リチウム複合酸化物焼結体で構成される正極層と、
 チタン含有焼結体で構成される負極層と、
 前記正極層と前記負極層との間に介在されるセラミックセパレータと、
 前記正極層、前記負極層、及び前記セラミックセパレータに含浸される電解液と、
 密閉空間を備え、該密閉空間内に前記正極層、前記負極層、前記セラミックセパレータ及び前記電解液が収容される外装体と、
を備えた、リチウム二次電池であって、
 前記正極層、前記セラミックセパレータ及び前記負極層が互いに結合しており、
 前記セラミックセパレータがMgO及びガラスで構成され、前記ガラスの平均粒子径が0.5~25μmであり、かつ、前記MgOの平均粒子径に対する前記ガラスの平均粒子径の比が1.5~85である、リチウム二次電池が提供される。
本発明のリチウム二次電池の一例の模式断面図である。 配向正極層の層面に垂直な断面の一例を示すSEM像である。 図2に示される配向正極層の断面におけるEBSD像である。 図3のEBSD像における一次粒子の配向角度の分布を面積基準で示すヒストグラムである。
 リチウム二次電池
 図1に本発明のリチウム二次電池の一例を模式的に示す。なお、図1に示されるリチウム二次電池10はコイン形電池の形態となっているが、本発明はこれに限定されず、カードに内蔵可能な薄型二次電池等の他の形態の電池であってもよい。リチウム二次電池10は、正極層12と、負極層16と、セラミックセパレータ20と、電解液22と、外装体24とを備える。正極層12はリチウム複合酸化物焼結体で構成される。負極層16はチタン含有焼結体で構成される。セラミックセパレータ20は正極層12と負極層16との間に介在される。電解液22は、正極層12、負極層16、及びセラミックセパレータ20に含浸される。外装体24は密閉空間を備えており、この密閉空間内に正極層12、負極層16、セラミックセパレータ20及び電解液22が収容される。そして、正極層12、セラミックセパレータ20及び負極層16が全体として1つの一体焼結体板を成しており、それにより正極層12、セラミックセパレータ20及び負極層16が互いに結合している。セラミックセパレータはMgO及びガラスで構成され、ガラスの平均粒子径が0.5~25μmであり、かつ、MgOの平均粒子径に対するガラスの平均粒子径の比が1.5~85である。このように、正極層12、セラミックセパレータ20及び負極層16が互いに結合した一体焼結体板タイプのリチウム二次電池10において、セラミックセパレータ20をMgO及びガラスで構成し、かつ、それらの粒径を上記のように制御することで、高い歩留まりと優れた電池性能(例えば出力性能)とを両立可能なリチウム二次電池を提供することができる。
 すなわち、前述したように、高容量や良好な充放電効率を期待して、リチウム複合酸化物焼結体板を正極に用いることが考えられる。同様の理由から、チタン含有焼結体板を負極に用いることも考えられる。しかしながら、これらの焼結体板、すなわちセラミック正極板及びセラミック負極板を用いてリチウム二次電池を実際に作製すると、期待したほどの容量が得られない。その原因としては、電池の組立工程においてセラミック正極板及びセラミック負極板の位置が互いにずれてしまうことが考えられる。かかるずれが生じないようにセパレータを正極板及び負極板に正確に固着させることも考えられるが、そのような工程は極めて高精度の位置決めが要求される高度な技術を要するものであり、それ故生産効率の低下及びコスト上昇を招く。その上、電極板を構成する焼結体板はうねっている又は反っていることがあり、そのようなうねり又は反りが存在すると正負極間距離にばらつきが生じ、そのようなばらつきは充放電サイクル性能の低下につながる。
 これに対し、本発明のリチウム二次電池においては、正極層12、セラミックセパレータ20及び負極層16が全体として1つの一体焼結体板を成しており、それにより正極層12、セラミックセパレータ20及び負極層16が互いに結合している。すなわち、正極層12、セラミックセパレータ20及び負極層16の3層は接着剤等の他の結合手法に頼ることなく互いに結合されている。ここで、「全体として1つの一体焼結体板を成す」ということは、正極層12をもたらす正極グリーンシート、セラミックセパレータ20をもたらすセパレータグリーンシート、及び負極層16をもたらす負極グリーンシートからなる3層構造のグリーンシートを焼成して各層が焼結された状態であることを意味する。このため、焼成前の3層構造のグリーンシートを打ち抜き型で所定の形状(例えばコイン形やチップ形)に打ち抜いてしまえば、最終形態の一体焼結体板においては正極層12及び負極層16間のずれは一切存在しないことになる。すなわち、正極層12の端面と負極層16の端面が揃うので、容量を最大化できる。あるいは、仮にずれが存在するとしても一体焼結体板はレーザー加工、切削、研磨等の加工に適するため、そのようなずれを最小化又は無くすように端面を仕上げ加工すればよい。いずれにしても、一体焼結体板である以上、正極層12、セラミックセパレータ20及び負極層16が互いに結合しているため、正極層12及び負極層16間のずれが事後的に生じることもない。このように正極層12及び負極層16間のずれを最小化又は無くすことで、期待どおりの(すなわち理論容量に近い)高い放電容量を得ることができる。また、セラミックセパレータを含む3層構成の一体焼結体板であるため、1枚の焼結体板として作製される正極板単体や負極板単体と比較して、うねり又は反りが生じにくく(すなわち平坦性に優れ)、それ故正負極間距離にばらつきが生じにくく(すなわち均一になり)、充放電サイクル性能の向上に寄与するものと考えられる。例えば、正極層12及び負極層16の面積ずれ率が1%未満であるのが好ましく、より好ましくは0.5%未満であり、さらに好ましくは0%である。正極層12及び負極層16の面積ずれ率は、正極層12及び負極層16が重なりあう領域の面積をSpn、正極層12が負極層16からはみ出した領域の面積をS、負極層16が正極層12からはみ出した領域を面積Sとしたとき、[(S+S)/Spn]×100の式に基づいて算出される値(%)として定義される。また、リチウム二次電池10は、理論容量に対する放電容量の比が99%以上であるのが好ましく、より好ましくは99.5%以上であり、さらに好ましくは100%である。
 このように一体焼結体板タイプの電池は大きな利点をもたらすものではあるが、前述のとおり、製造時の歩留まりが低くなりがちであり、それ故、高い歩留まりと優れた出力性能との両立が難しいとの問題がある。この問題が、MgO及びガラスで構成されるセラミックセパレータを採用し、ガラスの平均粒子径を0.5~25μmとし、かつ、MgOの平均粒子径に対するガラスの平均粒子径の比を1.5~85とすることで好都合に解消される。そのメカニズムは定かではないが、以下のようなものと推察される。まず、セラミックセパレータ20に含まれるガラスが、正極層12とセラミックセパレータ20との界面、及び負極層16とセラミックセパレータ20との界面において、接着剤として機能して優れた界面接着性を与え、これが歩留まりの向上に寄与する。その上で、上記条件を満たすようにガラス粒子の平均粒子径をMgO粒子の平均粒子径よりも大きくすることで、セラミックセパレータ20内への電解液の浸透を確保し、これが優れた電池性能(例えば出力性能)の実現に寄与する。また、セラミックセパレータ20のガラス以外の主成分をMgOとすることで正極層12及び負極層16の成分がセラミックセパレータ20へと拡散して、正極層12、負極層16及びセラミックセパレータ20の組成が変化するのを抑制できるという利点も得られる。
 とりわけ、近年、IoTデバイスの普及に伴い、小型薄型でありながら高容量かつ高出力、特に定電圧(CV)充電可能なコイン形リチウム二次電池が望まれている。この点、本発明の好ましい態様によるリチウム二次電池10によれば、かかる要求を十分に満足することができる。特に、正極及び負極としてそれぞれ所定の焼結体板を採用したことで、耐熱性のみならず、高容量かつ高出力、とりわけ定電圧充電や高速充電を実現することが可能となる。したがって、本発明のリチウム二次電池10は、IoTデバイス用の電池であるのが好ましい。すなわち、本発明の別の好ましい態様によれば、コイン形リチウム二次電池を備えたIoTデバイスが提供される。また、本発明のリチウム二次電池10は、IoTデバイスの他、スマートキー、RFIDタグ、ウェアラブル端末、多機能ソーラー腕時計、メモリバックアップ電源、車載用分散電源等の用途にも好適に用いられる。なお、本明細書において「IoT」とは物のインターネット(Internet of Things)の略であり、「IoTデバイス」とはインターネットに接続されて特定の機能を呈するあらゆるデバイスを意味するものとする。もっとも、上述のとおり、本発明のリチウム二次電池は、コイン形電池に限定されず、他の形態の電池であってもよい。例えば、リチウム二次電池は、カードに内蔵可能な薄型二次電池であってもよい。
 正極層12は、リチウム複合酸化物焼結体で構成される。正極層12が焼結体で構成されるということは、正極層12がバインダーや導電助剤を含んでいないことを意味する。これは、グリーンシートにバインダーが含まれていたとしても、焼成時にバインダーが消失又は焼失するからである。そして、正極層12がバインダーを含まないことで、電解液22による正極の劣化を回避できるとの利点がある。なお、焼結体を構成するリチウム複合酸化物は、コバルト酸リチウム(典型的にはLiCoO(以下、LCOと略称することがある))であるのが特に好ましい。様々なリチウム複合酸化物焼結体板ないしLCO焼結体板が知られており、例えば特許文献1(特許第5587052号公報)や特許文献2(国際公開第2017/146088号)に開示されるものを参考にすることができる。
 本発明の好ましい態様によれば、正極層12、すなわちリチウム複合酸化物焼結体板は、リチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が正極層の層面に対して0°超30°以下の平均配向角度で配向している、配向正極層である。図2に配向正極層12の層面に垂直な断面SEM像の一例を示す一方、図3に配向正極層12の層面に垂直な断面における電子線後方散乱回折(EBSD:Electron Backscatter Diffraction)像を示す。また、図4に、図3のEBSD像における一次粒子11の配向角度の分布を面積基準で示すヒストグラムを示す。図3に示されるEBSD像では、結晶方位の不連続性を観測することができる。図3では、各一次粒子11の配向角度が色の濃淡で示されており、色が濃いほど配向角度が小さいことを示している。配向角度とは、各一次粒子11の(003)面が層面方向に対して成す傾斜角度である。なお、図2及び3において、配向正極層12の内部で黒表示されている箇所は気孔である。
 配向正極層12は、互いに結合された複数の一次粒子11で構成された配向焼結体である。各一次粒子11は、主に板状であるが、直方体状、立方体状及び球状などに形成されたものが含まれていてもよい。各一次粒子11の断面形状は特に制限されるものではなく、矩形、矩形以外の多角形、円形、楕円形、或いはこれら以外の複雑形状であってもよい。
 各一次粒子11はリチウム複合酸化物で構成される。リチウム複合酸化物とは、LiMO(0.05<x<1.10であり、Mは少なくとも1種類の遷移金属であり、Mは典型的にはCo、Ni及びMnの1種以上を含む)で表される酸化物である。リチウム複合酸化物は層状岩塩構造を有する。層状岩塩構造とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的にはα-NaFeO型構造、すなわち立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。リチウム複合酸化物の例としては、LiCoO(コバルト酸リチウム)、LiNiO(ニッケル酸リチウム)、LiMnO(マンガン酸リチウム)、LiNiMnO(ニッケル・マンガン酸リチウム)、LiNiCoO(ニッケル・コバルト酸リチウム)、LiCoNiMnO(コバルト・ニッケル・マンガン酸リチウム)、LiCoMnO(コバルト・マンガン酸リチウム)等が挙げられ、特に好ましくはLiCoO(コバルト酸リチウム、典型的にはLiCoO)である。リチウム複合酸化物には、F、Mg、Al、Si、Ca、Ti、V、Cr、Fe、Cu、Zn、Ga、Ge、Sr、Y,Zr、Nb、Mo、Ag、Sn、Sb、Te、Ba、Bi、及びWから選択される1種以上の元素が含まれていてもよい。また、上記組成は正極層12の全体にわたって均一であってもよいし、表面に偏在している状態であってもよい。このような元素を含むことで電池性能(例えば高温耐久性や保存性能等)の改善が見込まれる。
 図3及び4に示されるように、各一次粒子11の配向角度の平均値、すなわち平均配向角度は0°超30°以下である。これにより、以下の様々な利点がもたらされる。第一に、各一次粒子11が厚み方向に対して傾斜した向きに寝た状態になるため、各一次粒子同士の密着性を向上させることができる。その結果、ある一次粒子11と当該一次粒子11の長手方向両側に隣接する他の一次粒子11との間におけるリチウムイオン伝導性を向上させることができるため、レート特性を向上させることができる。第二に、レート特性をより向上させることができる。これは、上述のとおり、リチウムイオンの出入りに際して、配向正極層12では、層面方向よりも厚み方向における膨張収縮が優勢となるため、配向正極層12の膨張収縮がスムーズになるところ、それに伴ってリチウムイオンの出入りもスムーズになるからである。第三に、リチウムイオンの出入りに伴う配向正極層12の膨張収縮が層面と垂直な方向に優勢となるため、配向正極層12とセラミックセパレータ20との接合界面での応力が発生しにくくなり、当該界面での良好な結合を維持しやすくなる。
 一次粒子11の平均配向角度は、以下の手法によって得られる。まず、図3に示されるような、95μm×125μmの矩形領域を1000倍の倍率で観察したEBSD像において、配向正極層12を厚み方向に四等分する3本の横線と、配向正極層12を層面方向に四等分する3本の縦線とを引く。次に、3本の横線と3本の縦線のうち少なくとも1本の線と交差する一次粒子11すべての配向角度を算術平均することによって、一次粒子11の平均配向角度を得る。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、30°以下が好ましく、より好ましくは25°以下である。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、2°以上が好ましく、より好ましくは5°以上である。
 図4に示されるように、各一次粒子11の配向角度は、0°から90°まで広く分布していてもよいが、その大部分は0°超30°以下の領域に分布していることが好ましい。すなわち、配向正極層12を構成する配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうち配向正極層12の層面に対する配向角度が0°超30°以下である一次粒子11(以下、低角一次粒子という)の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。これにより、相互密着性の高い一次粒子11の割合を増加させることができるため、レート特性をより向上させることができる。また、低角一次粒子のうち配向角度が20°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して50%以上であることがより好ましい。さらに、低角一次粒子のうち配向角度が10°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して15%以上であることがより好ましい。
 各一次粒子11は、主に板状であるため、図2及び3に示されるように、各一次粒子11の断面はそれぞれ所定方向に延びており、典型的には略矩形状となる。すなわち、配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうちアスペクト比が4以上である一次粒子11の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。具体的には、図3に示されるようなEBSD像において、これにより、一次粒子11同士の相互密着性をより向上することができ、その結果、レート特性をより向上させることができる。一次粒子11のアスペクト比は、一次粒子11の最大フェレー径を最小フェレー径で除した値である。最大フェレー径は、断面観察した際のEBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最大距離である。最小フェレー径は、EBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最小距離である。
 配向焼結体を構成する複数の一次粒子の平均粒径が5μm以上であるのが好ましい。具体的には、平均配向角度の算出に用いた30個の一次粒子11の平均粒径が、5μm以上であることが好ましく、より好ましくは7μm以上、さらに好ましくは12μm以上である。これにより、リチウムイオンが伝導する方向における一次粒子11同士の粒界数が少なくなって全体としてのリチウムイオン伝導性が向上するため、レート特性をより向上させることができる。一次粒子11の平均粒径は、各一次粒子11の円相当径を算術平均した値である。円相当径とは、EBSD像上において、各一次粒子11と同じ面積を有する円の直径のことである。
 正極層12は気孔を含んでいるのが好ましい。焼結体が気孔、特に開気孔を含むことで、正極層として電池に組み込まれた場合に、電解液を焼結体の内部に浸透させることができ、その結果、リチウムイオン伝導性を向上することができる。これは、焼結体内におけるリチウムイオンの伝導は、焼結体の構成粒子を経る伝導と、気孔内の電解液を経る伝導の2種類があるところ、気孔内の電解液を経る伝導の方が圧倒的に速いためである。
 正極層12、すなわちリチウム複合酸化物焼結体は気孔率が20~60%であるのが好ましく、より好ましくは25~55%、さらに好ましくは30~50%、特に好ましくは30~45%である。気孔による応力開放効果、気孔による電解液の内部浸透によるリチウムイオン伝導性の向上、及び高容量化が期待できるとともに、一次粒子11同士の相互密着性をより向上できるため、レート特性をより向上させることができる。焼結体の気孔率は、正極層の断面をCP(クロスセクションポリッシャ)研磨にて研磨した後に1000倍率でSEM観察して、得られたSEM画像を2値化することで算出される。配向焼結体の内部に形成される各気孔の平均円相当径は特に制限されないが、好ましくは8μm以下である。各気孔の平均円相当径が小さいほど、一次粒子11同士の相互密着性をさらに向上することができ、その結果、レート特性をさらに向上させることができる。気孔の平均円相当径は、EBSD像上の10個の気孔の円相当径を算術平均した値である。円相当径とは、EBSD像上において、各気孔と同じ面積を有する円の直径のことである。配向焼結体の内部に形成される各気孔は、正極層12の外部につながる開気孔であるのが好ましい。
 正極層12、すなわちリチウム複合酸化物焼結体の平均気孔径は0.1~10.0μmであるのが好ましく、より好ましくは0.2~5.0μm、さらに好ましくは0.25~3.0μmである。上記範囲内であると、大きな気孔の局所における応力集中の発生を抑制して、焼結体内における応力が均一に開放されやすくなる。また、気孔による電解液の内部浸透によるリチウムイオン伝導性の向上をより効果的に実現することができる。
 正極層12の厚さは60~600μmであるのが好ましく、より好ましくは60~500μm、さらに好ましくは70~400μmである。このような範囲内であると、単位面積当りの活物質容量を高めてリチウム二次電池10のエネルギー密度を向上するとともに、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を抑制できる。
 負極層16は、チタン含有焼結体で構成される。チタン含有焼結体は、チタン酸リチウムLiTi12(以下、LTO)又はニオブチタン複合酸化物NbTiOを含むのが好ましく、より好ましくはLTOを含む。なお、LTOは典型的にはスピネル型構造を有するものとして知られているが、充放電時には他の構造も採りうる。例えば、LTOは充放電時にLiTi12(スピネル構造)とLiTi12(岩塩構造)の二相共存にて反応が進行する。したがって、LTOはスピネル構造に限定されるものではない。LTOはその一部が他の元素で置換されてもよく、そのような他元素の例としては、Nb、Ta、W、Al、Mg等が挙げられる。
 負極層16が焼結体で構成されるということは、負極層16がバインダーや導電助剤を含んでいないことを意味する。これは、グリーンシートにバインダーが含まれていたとしても、焼成時にバインダーが消失又は焼失するからである。負極層にはバインダーが含まれないため、負極活物質(例えばLTO又はNbTiO)の充填密度が高くなることで、高容量や良好な充放電効率を得ることができる。LTO焼結体は、特許文献3(特開2015-185337号公報)に記載される方法に従って製造することができる。
 負極層16、すなわちチタン含有焼結体は、複数の(すなわち多数の)一次粒子が結合した構造を有している。したがって、これらの一次粒子がLTO又はNbTiOで構成されるのが好ましい。
 負極層16の厚さは、70~800μmが好ましく、より好ましくは70~700μmが好ましく、さらに好ましくは85~600μm、特に好ましくは95~500μmである。負極層16が厚いほど、高容量及び高エネルギー密度の電池を実現しやすくなる。負極層16の厚さは、例えば、負極層16の断面をSEM(走査電子顕微鏡)によって観察した場合における、略平行に観察される層面間の距離を測定することで得られる。
 負極層16を構成する複数の一次粒子の平均粒径である一次粒径は1.2μm以下が好ましく、より好ましくは0.02~1.2μm、さらに好ましくは0.05~0.7μmである。このような範囲内であるとリチウムイオン伝導性及び電子伝導性を両立しやすく、レート性能の向上に寄与する。
 負極層16は気孔を含んでいるのが好ましい。焼結体が気孔、特に開気孔を含むことで、負極層として電池に組み込まれた場合に、電解液を焼結体の内部に浸透させることができ、その結果、リチウムイオン伝導性を向上することができる。これは、焼結体内におけるリチウムイオンの伝導は、焼結体の構成粒子を経る伝導と、気孔内の電解液を経る伝導の2種類があるところ、気孔内の電解液を経る伝導の方が圧倒的に速いためである。
 負極層16の気孔率は20~60%が好ましく、より好ましくは30~55%、さらに好ましくは35~50%である。このような範囲内であるとリチウムイオン伝導性及び電子伝導性を両立しやすく、レート性能の向上に寄与する。
 負極層16の平均気孔径は0.08~5.0μmであるのが好ましく、より好ましくは0.1~3.0μm、さらに好ましく0.12~1.5μmである。このような範囲内であるとリチウムイオン伝導性及び電子伝導性を両立しやすく、レート性能の向上に寄与する。
 セラミックセパレータ20は、セラミック製の微多孔膜である。セラミックセパレータ20は、耐熱性に優れるのは勿論のこと、正極層12及び負極層16と一緒に全体として1つの一体焼結体板として製造できるとの利点がある。前述のとおり、セラミックセパレータ20は、MgO及びガラスで構成される。セラミックセパレータ20においてMgO及びガラスは焼結により互いに結合された粒子形態で存在する。ガラスの平均粒子径は0.5~25μmであり、好ましくは1~22μm、より好ましくは3~20μm、さらに好ましくは5~18μm、特に好ましくは7~15μmである。また、MgOの平均粒子径DMgOに対するガラスの平均粒子径Dの比(D/DMgO)は1.5~85であり、好ましくは1.8~50、より好ましくは2.0~20、さらに好ましくは2.2~18、特に好ましくは2.5~15である。この粒径比D/DMgOが上記範囲内であると、不良品率が下がって歩留まりが向上するとともに、優れた出力性能を実現できる。後者は上記粒径比D/DMgOによりセラミックセパレータ20への電解液の浸透が妨げられにくくなるためと考えられる。
 なお、MgO及びガラスの平均粒子径は、以下のようにして決定することができる。まず、セラミックセパレータ20をクロスセクションポリッシャ(CP)により研磨し、得られた断面(電極板の板面に垂直な断面)を1000倍の視野(125μm×125μm)で撮影する。当該視野に含まれるガラス粒子の粒子径を全て計測して合算し、計測したガラス粒子の個数で除することによりガラス粒子の平均粒子径を算出する。同様に、当該視野に含まれるMgO粒子の粒子径を全て計測して合算し、計測したMgO粒子の個数で除することにより、MgO粒子の平均粒子径を算出する。
 セラミックセパレータ20に含まれるガラスは、SiOを好ましくは25重量%以上、より好ましくは30~95重量%、さらに好ましくは40~90重量%、特に好ましくは50~80重量%含む。セラミックセパレータ20におけるガラスの含有量は、セラミックセパレータ20の全体重量に対して、好ましくは3~70重量%であり、より好ましくは5~50重量%、さらに好ましくは10~40重量%、特に好ましくは15~30重量%である。上記SiO含有量及びガラス含有量であると、高い歩留まりと優れた充放電サイクル性能との両立をより効果的に実現することができる。セラミックセパレータ20へのガラス成分の添加はセラミックセパレータの原料粉末にガラスフリットを添加することにより行われるのが好ましい。ガラスフリットはSiO以外の成分として、Al、B及びBaOのいずれか一つ以上を含むのが好ましい。
 セラミックセパレータ20の厚さは5~50μmであるのが好ましく、より好ましくは5~40μm、さらに好ましくは5~35μm、特に好ましくは10~30μmである。セラミックセパレータ20の気孔率は30~85%が好ましく、より好ましくは40~80%である。
 電解液22は特に限定されず、有機溶媒(例えばエチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)の混合溶媒、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)の混合溶媒、あるいはエチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の混合溶媒)の非水溶媒中にリチウム塩(例えばLiPF)塩を溶解させた液等、リチウム電池用の市販の電解液を使用すればよい。
 耐熱性に優れたリチウム二次電池とする場合には、電解液22は、非水溶媒中にホウフッ化リチウム(LiBF)を含むものが好ましい。この場合、好ましい非水溶媒は、γ-ブチロラクトン(GBL)、エチレンカーボネート(EC)及びプロピレンカーボネート(PC)からなる群から選択される少なくとも1種であり、より好ましくはEC及びGBLからなる混合溶媒、PCからなる単独溶媒、PC及びGBLからなる混合溶媒、又はGBLからなる単独溶媒であり、特に好ましくはEC及びGBLからなる混合溶媒又はGBLからなる単独溶媒である。非水溶媒はγ-ブチロラクトン(GBL)を含むことで沸点が上昇し、耐熱性の大幅な向上をもたらす。かかる観点から、EC及び/又はGBL含有非水溶媒におけるEC:GBLの体積比は0:1~1:1(GBL比率50~100体積%)であるのが好ましく、より好ましくは0:1~1:1.5(GBL比率60~100体積%)、さらに好ましくは0:1~1:2(GBL比率66.6~100体積%)、特に好ましくは0:1~1:3(GBL比率75~100体積%)である。非水溶媒中に溶解されるホウフッ化リチウム(LiBF)は分解温度の高い電解質であり、これもまた耐熱性の大幅な向上をもたらす。電解液22におけるLiBF濃度は0.5~2mol/Lであるのが好ましく、より好ましくは0.6~1.9mol/L、さらに好ましくは0.7~1.7mol/L、特に好ましくは0.8~1.5mol/Lである。
 電解液22は添加剤としてビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)、ビニルエチレンカーボネート(VEC)、及びリチウムジフルオロ(オキサラト)ボレート(LiDFOB)から選択される少なくとも1種をさらに含むものであってもよい。VC及びFECはいずれも耐熱性に優れる。したがって、かかる添加剤を電解液22が含むことで、耐熱性に優れたSEI膜を負極層16表面に形成させることができる。
 また、電解液22の代わりに、固体電解質又はポリマー電解質を用いてもよい(言い換えると、電解質として、電解液22以外に、固体電解質やポリマー電解質を用いることができる。)。その場合には、電解液22の場合と同様、少なくともセパレータ20の気孔内部に電解質が含浸されていることが好ましい。含浸方法は特に限定されないが、例として、電解質を溶融してセパレータ20の気孔内に浸入させる方法、電解質の圧粉体をセパレータ20に押し当てる方法等が挙げられる。
 外装体24は密閉空間を備え、この密閉空間内に正極層12、負極層16、セラミックセパレータ20及び電解液22が収容される。外装体24はリチウム二次電池10のタイプに応じて適宜選択すればよい。例えば、リチウム二次電池が図1に示されるようなコイン形電池の形態の場合、外装体24は、典型的には、正極缶24a、負極缶24b及びガスケット24cを備え、正極缶24a及び負極缶24bがガスケット24cを介してかしめられて密閉空間を形成している。正極缶24a及び負極缶24bはステンレス鋼等の金属製であることができ、特に限定されない。ガスケット24cはポリプロピレン、ポリテトラフルオロエチレン、PFA樹脂等の絶縁樹脂製の環状部材であることができ、特に限定されない。
 また、リチウム二次電池がカードに内蔵可能なチップ電池の形態の場合、外装体が樹脂基材であり、電池要素(すなわち正極層12、負極層16、セラミックセパレータ20及び電解液22)が樹脂基材内に埋設されるのが好ましい。例えば、電池要素が1対の樹脂フィルムに挟み込まれたものであってもよく、樹脂フィルム同士が接着剤で貼り合わされていたり、加熱プレスで樹脂フィルム同士が熱融着されているのが好ましい。
 リチウム二次電池10は、正極集電体14及び/又は負極集電体18をさらに備えているのが好ましい。正極集電体14及び負極集電体18は特に限定されないが、好ましくは銅箔やアルミニウム箔等の金属箔である。正極集電体14は正極層12と外装体24(例えば正極缶24a)との間に配置されるのが好ましく、負極集電体18は負極層16と外装体24(例えば負極缶24b)との間に配置されるのが好ましい。また、正極層12と正極集電体14との間には接触抵抗低減の観点から正極側カーボン層13が設けられるのが好ましい。同様に、負極層16と負極集電体18との間には接触抵抗低減の観点から負極側カーボン層17が設けられるのが好ましい。正極側カーボン層13及び負極側カーボン層17はいずれも導電性カーボンで構成されるのが好ましく、例えば導電性カーボンペーストをスクリーン印刷等により塗布することにより形成すればよい。
 一体焼結体板の製造方法
 正極層12、セラミックセパレータ20及び負極層16の3層構成の一体焼結体板はいかなる方法で製造されたものであってもよいが、好ましくは、(1)3層の各々に対応するグリーンシートを作製し、(2)これらのグリーンシートを積層して圧着及び焼成を施すことにより製造される。
(1)各種グリーンシートの作製
(1a)正極グリーンシートの作製
 正極グリーンシートとしてのリチウム複合酸化物含有グリーンシートの作製は以下のように行うことができる。まず、リチウム複合酸化物で構成される原料粉末を用意する。この粉末は、LiMOなる組成(Mは前述したとおりである)の合成済みの板状粒子(例えばLiCoO板状粒子)を含むのが好ましい。原料粉末の体積基準D50粒径は0.3~30μmが好ましい。例えば、LiCoO板状粒子の作製方法は次のようにして行うことができる。まず、Co原料粉末とLiCO原料粉末とを混合して焼成(500~900℃、1~20時間)することによって、LiCoO粉末を合成する。得られたLiCoO粉末をポットミルにて体積基準D50粒径0.2μm~10μmに粉砕することによって、板面と平行にリチウムイオンを伝導可能な板状のLiCoO粒子が得られる。このようなLiCoO粒子は、LiCoO粉末スラリーを用いたグリーンシートを粒成長させた後に解砕する手法や、フラックス法や水熱合成、融液を用いた単結晶育成、ゾルゲル法など板状結晶を合成する手法によっても得ることができる。得られたLiCoO粒子は、劈開面に沿って劈開しやすい状態となっている。LiCoO粒子を解砕によって劈開させることで、LiCoO板状粒子を作製することができる。
 上記板状粒子を単独で原料粉末として用いてもよいし、上記板状粉末と他の原料粉末(例えばCo粒子)との混合粉末を原料粉末として用いてもよい。後者の場合、板状粉末を配向性を与えるためのテンプレート粒子として機能させ、他の原料粉末(例えばCo粒子)をテンプレート粒子に沿って成長可能なマトリックス粒子として機能させるのが好ましい。この場合、テンプレート粒子とマトリックス粒子を100:0~3:97に混合した粉末を原料粉末とするのが好ましい。Co原料粉末をマトリックス粒子として用いる場合、Co原料粉末の体積基準D50粒径は特に制限されず、例えば0.1~1.0μmとすることができるが、LiCoOテンプレート粒子の体積基準D50粒径より小さいことが好ましい。このマトリックス粒子は、Co(OH)原料を500℃~800℃で1~10時間熱処理を行なうことによっても得ることができる。また、マトリックス粒子には、Coのほか、Co(OH)粒子を用いてもよいし、LiCoO粒子を用いてもよい。
 原料粉末がLiCoOテンプレート粒子100%で構成される場合、又はマトリックス粒子としてLiCoO粒子を用いる場合、焼成により、大判(例えば90mm×90mm平方)でかつ平坦なLiCoO焼結体層を得ることができる。そのメカニズムは定かではないが、焼成過程でLiCoOへの合成が行われないため、焼成時の体積変化が生じにくい若しくは局所的なムラが生じにくいことが予想される。
 原料粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには、後述する焼成工程中における粒成長の促進ないし揮発分の補償の目的で、LiMO以外のリチウム化合物(例えば炭酸リチウム)が0.5~30mol%程度過剰に添加されてもよい。スラリーには造孔材を添加しないのが望ましい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してリチウム複合酸化物含有グリーンシートを得る。シート成形は、原料粉末中の板状粒子(例えばテンプレート粒子)にせん断力を印加可能な成形手法を用いて行われるのが好ましい。こうすることで、一次粒子の平均傾斜角をシート面に対して0°超30°以下にすることができる。板状粒子にせん断力を印加可能な成形手法としては、ドクターブレード法が好適である。リチウム複合酸化物含有グリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。また、グリーンシートは1枚で所望の厚さとなるように成形してもよいし、複数枚を積層して所望の厚さとしてもよい。特に、厚さが300μmを超える場合には複数枚のグリーンシートを積層する方が工法上好ましい。
(1b)負極グリーンシートの作製
 負極グリーンシートとしてのチタン含有グリーンシートはいかなる方法で製造されたものであってもよい。例えば、LTO含有グリーンシートの作製は以下のように行うことができる。まず、チタン酸リチウムLiTi12で構成される原料粉末(LTO粉末)を用意する。原料粉末は市販のLTO粉末を使用してもよいし、新たに合成してもよい。例えば、チタンテトライソプロポキシアルコールとイソプロポキシリチウムの混合物を加水分解して得た粉末を用いてもよいし、炭酸リチウム、チタニア等を含む混合物を焼成してもよい。原料粉末の体積基準D50粒径は0.05~5.0μmが好ましく、より好ましくは0.1~2.0μmである。原料粉末の粒径が大きいと気孔が大きくなる傾向がある。また、原料粒径が大きい場合、所望の粒径となるように粉砕処理(例えばポットミル粉砕、ビーズミル粉砕、ジェットミル粉砕等)を行ってもよい。そして、原料粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには、後述する焼成工程中における粒成長の促進ないし揮発分の補償の目的で、LiMO以外のリチウム化合物(例えば炭酸リチウム)が0.5~30mol%程度過剰に添加されてもよい。スラリーには造孔材を添加しないのが望ましい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してLTO含有グリーンシートを得る。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。LTO含有グリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。
(1c)セパレータグリーンシートの作製
 セパレータグリーンシートの作製は以下のように行うことができる。まず、MgO粉末を用意し、このMgO粉末にガラスフリットを添加して混合する。原料粉末の体積基準D50粒径は0.05~20μmが好ましく、より好ましくは0.1~10μmである。原料粉末の粒径が大きいと気孔が大きくなる傾向がある。また、原料粒径が大きい場合、所望の粒径となるように粉砕処理(例えばポットミル粉砕、ビーズミル粉砕、ジェットミル粉砕等)を行ってもよい。そして、原料粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してセパレータグリーンシートを得る。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。セパレータグリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。
(2)グリーンシートの積層、圧着及び焼成
 次いで、正極グリーンシート、セパレータグリーンシート及び負極グリーンシートを順に積み重ね、得られた積層体をプレスしてグリーンシート同士を圧着する。プレスは公知の手法により行えばよく特に限定されないが、CIP(冷間等方圧加圧法)により行われるのが好ましい。好ましいプレス圧は10~5000kgf/cmであり、より好ましくは50~3000kgf/cmである。こうして圧着されたグリーンシート積層体を打ち抜き型で所望の形状(例えばコイン形やチップ形)ないしサイズに打ち抜くのが好ましい。こうすることで、最終形態の一体焼結体板においては正極層12及び負極層16間のずれを無くすことができる。その結果、正極層12の端面と負極層16の端面が揃うので、電池の容量を最大化できる。
 得られたグリーンシート積層体をセッターに載置する。セッターはセラミックス製であり、好ましくはジルコニア製又はマグネシア製である。セッターにはエンボス加工が施されているのが好ましい。こうしてセッター上に載置されたグリーンシートを鞘に入れる。鞘もセラミックス製であり、好ましくはアルミナ製である。そして、この状態で、所望により脱脂した後、焼成することで、一体焼結体板が得られる。脱脂は300~600℃で0.5~20時間保持することにより行われるのが好ましい。また、焼成は650~900℃で0.01~20時間行うのが好ましく、より好ましくは700~850℃で0.5~10時間である。焼成時の昇温速度は50~1500℃/hが好ましく、より好ましくは200~1300℃/hである。特に、この昇温速度は、600~900℃の昇温過程で採用されるのが好ましく、より好ましくは600~800℃の昇温過程で採用される。こうして、正極層12、セラミックセパレータ20及び負極層16の3層構成の一体焼結体板が得られる。なお、前述したグリーンシート積層体の段階で打ち抜き処理を施していない場合、最終形態の一体焼結体板においては正極層12及び負極層16間のずれが発生しうる。この場合は、一体焼結体板の端面を、レーザ加工、切削、研磨等の手法により仕上げ加工して、上記ずれを最小化又は無くすようのが好ましい。その結果、正極層12の端面と負極層16の端面が揃うので、電池の容量を最大化できる。
 本発明を以下の例によってさらに具体的に説明する。なお、以下の例において、LiCoOを「LCO」と略称し、LiTi12を「LTO」と略称するものとする。
 例A1
(1)LCOグリーンシート(正極グリーンシート)の作製
 まず、Li/Coのモル比が1.01となるように秤量されたCo粉末(正同化学工業株式会社製)とLiCO粉末(本荘ケミカル株式会社製)を混合後、780℃で5時間保持し、得られた粉末をポットミルにて体積基準D50が0.4μmとなるように粉砕してLCO板状粒子からなる粉末を得た。得られたLCO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LCOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LCOグリーンシートを形成した。LCOグリーンシートの厚さは、焼成後の厚さが200μmになるようにした。
(2)LTOグリーンシート(負極グリーンシート)の作製
 まず、LTO粉末(体積基準D50粒径0.06μm、シグマアルドリッチジャパン合同会社製)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LTOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LTOグリーンシートを形成した。LTOグリーンシートの厚さは、焼成後の厚さが240μmになるようにした。
(3)MgOグリーンシート(セパレータグリーンシート)の作製
 炭酸マグネシウム粉末(神島化学工業株式会社製)を800℃で5時間熱処理してMgO粉末を得た。得られたMgO粉末とガラスフリット(日本フリット株式会社製、CK0199、SiO含有量70重量%)を重量比4:1で混合した。得られた混合粉末(ガラス含有量20重量%、体積基準D50粒径0.4μm)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、スラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、セパレータグリーンシートを形成した。セパレータグリーンシートの厚さは、焼成後の厚さが25μmになるようにした。
(4)積層、圧着及び焼成
 LCOグリーンシート(正極グリーンシート)、MgOグリーンシート(セパレータグリーンシート)及びLTOグリーンシート(負極グリーンシート)を順に積み重ね、得られた積層体をCIP(冷間等方圧加圧法)により200kgf/cmでプレスしてグリーンシート同士を圧着した。こうして圧着された積層体を打ち抜き型で直径10mmの円板状に打ち抜いた。得られた円板状積層体を600℃で5時間脱脂した後、1000℃/hで800℃まで昇温して10分間保持する焼成を行い、その後冷却した。こうして、正極層(LCO焼結体層)12、セラミックセパレータ(MgOセパレータ)20及び負極層(LTO焼結体層)16の3層を含む1つの一体焼結体板を得た。
(5)リチウム二次電池の作製
 図1に模式的に示されるようなコイン形リチウム二次電池10を以下のとおり作製した。
(5a)負極層と負極集電体の導電性カーボンペーストによる接着
 アセチレンブラックとポリイミドアミドを質量比で3:1となるように秤量し、溶剤としての適宜量のNMP(N-メチル-2-ピロリドン)とともに混合して、導電性カーボンペーストを導電性接着剤として調製した。負極集電体としてのアルミニウム箔上に導電性カーボンペーストをスクリーン印刷した。未乾燥の印刷パターン(すなわち導電性カーボンペーストで塗布された領域)内に負極層16が収まるように上記(4)で作製した一体焼結体を載置し、60℃で30分間真空乾燥させることで、負極層16と負極集電体18とが負極側カーボン層17を介して接着された構造体を作製した。なお、負極側カーボン層17の厚さは10μmとした。
(5b)カーボン層付き正極集電体の準備
 アセチレンブラックとポリイミドアミドを質量比で3:1となるように秤量し、溶剤としての適宜量のNMP(N-メチル-2-ピロリドン)とともに混合して、導電性カーボンペーストを調製した。正極集電体14としてのアルミニウム箔上に導電性カーボンペーストをスクリーン印刷した後、60℃で30分間真空乾燥させることで、表面に正極側カーボン層13が形成された正極集電体14を作製した。なお、正極側カーボン層13の厚さは5μmとした。
(5c)コイン形電池の組立
 電池ケースを構成することになる正極缶24aと負極缶24bとの間に、正極缶24aから負極缶24bに向かって、正極集電体14、正極側カーボン層13、一体焼結体板(LCO正極層12、MgOセパレータ20及びLTO負極層16)、負極側カーボン層17、並びに負極集電体18がこの順に積層されるように収容し、電解液22を充填した後に、ガスケット24cを介して正極缶24aと負極缶24bをかしめることによって封止した。こうして、直径12mm、厚さ1.0mmのコインセル形のリチウム二次電池10を作製した。このとき、電解液22としては、エチレンカーボネート(EC)及びγ-ブチロラクトン(GBL)を1:3の体積比で混合した有機溶媒に、LiBFを1.5mol/Lの濃度となるように溶解させた液を用いた。
(6)評価
 上記(4)で合成されたLCO焼結体層(正極層)12、LTO焼結体層(負極層)16及びMgOセパレータ(セラミックセパレータ)20、並びに上記(5)で作製されたコイン形リチウム二次電池10について、以下に示されるとおり各種の評価を行った。
<一次粒子の平均配向角度>
 LCO焼結体層をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた正極層断面(正極層の層面に垂直な断面)を1000倍の視野(125μm×125μm)でEBSD測定して、EBSD像を得た。このEBSD測定は、ショットキー電界放出形走査電子顕微鏡(日本電子株式会社製、型式JSM-7800F)を用いて行った。得られたEBSD像において特定される全ての粒子について、一次粒子の(003)面と正極層の層面とがなす角度(すなわち(003)からの結晶方位の傾き)を傾斜角として求め、それらの角度の平均値を一次粒子の平均配向角度とした。その結果、平均配向角度は16°であった。
<層厚>
 LCO及びLTO焼結体層並びにMgOセパレータをクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた断面をSEM観察(日本電子製、JSM6390LA)して正極層12、負極層16及びセパレータ20の各々の厚さを測定した。正極層12及び負極層16の厚さは表1に示されるとおりであり、セパレータ20の厚さは25μmであった。
<ガラス成分分析>
 一体焼結体板に機械研磨を施して正極層12及び負極層16を除去して、セパレータ20のみを取り出した。得られたセパレータ20についてICP発光分析を行い、セラミックス及びガラスの組成を分析した。
<気孔率>
 LCO又はLTO焼結体層並びにMgOセパレータをクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた正極層又は負極層の断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子製、JSM6390LA)した。得られたSEM像を画像解析し、全ての気孔の面積を正極又は負極の面積で除し、得られた値に100を乗じることにより気孔率(%)を算出した。その結果、正極層12の気孔率は45%、負極層16の気孔率は50%であった。
<平均気孔径>
 水銀ポロシメーター(島津製作所製、オートポアIV9510)を用いて水銀圧入法によりLCO又はLTO焼結体層並びにMgOセパレータの平均気孔径を測定した。その結果、正極層12の平均気孔径は0.8μm、セパレータ20の平均気孔径は0.2μmであった。
<ガラス粒子及びMgO粒子の平均粒子径>
 MgOセパレータ20をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた断面(電極板の板面に垂直な断面)を1000倍の視野(125μm×125μm)で撮影した。当該視野に含まれるガラス粒子の粒子径を全て計測して合算し、計測したガラス粒子の個数で除することによりガラス粒子の平均粒子径を算出した。同様に、当該視野に含まれるMgO粒子の粒子径を全て計測して合算し、計測したMgO粒子の個数で除することにより、MgO粒子の平均粒子径を算出した。
<歩留まり>
 上記(4)において一体焼結体板を10個作製した。各一体焼結体板について、正極層12とセラミックセパレータ20との界面、及び負極層16とセラミックセパレータ20との界面において、剥離が生じることなく一体化しているか否かを観察し、界面剥離が無く一体化しているものを良品と判定した。良品の個数を全体の個数(10個)で除して100を乗じることにより、歩留まり(%)を算出した。
<出力性能比>
 まず、参照用電池を作製した。具体的には、上記(1)で作製LTOグリーンシートと、上記(2)で作製したLTOグリーンシートとを(互いにMgOグリーンシートを介して積層させることなく)それぞれ別個に上記(4)と同様の条件で焼成した。こうして得られた正極焼結体板及び負極焼結体板と、セルロースセパレータ(ニッポン高度紙工業株式会社製)を用いて、上記(5)と同様にしてコイン形リチウム二次電池を作製し、参照用電池とした。
 次に、上記(5)で得られたリチウム二次電池と参照用電池の各々に対し、出力性能の評価を以下の手順で行った。まず、2.7Vで定電圧充電した後、放電レート0.2Cで放電することにより初期容量を測定した。次いで、2.7Vでの定電圧充電と2Cにて放電を行い、測定された放電容量を初期容量で除して放電容量比率(2C/0.2C)を求めた。本例のリチウム二次電池の放電容量比率を参照用電池の放電容量比率で除して100を乗じることにより、出力性能比(%)とした。
 例A2
 1)ガラスフリット(日本フリット株式会社製、CK0199、SiO含有量70重量%)から気流分級により直径10μm以上の粒子を取り除いたものをガラスフリットとして用いたこと、及び2)酸化マグネシウム(株式会社高純度化学研究所製)をポットミルにて粉砕及び解砕したものをMgO粉末として用いたこと以外は、例A1と同様にして、一体焼結体板及び電池を作製し、各種評価を行った。
 例A3
 ガラスフリット(日本フリット株式会社製、CK0199、SiO含有量70重量%)から気流分級により直径7μm以上の粒子を取り除いたものをガラスフリットとして用いたこと以外は、例A1と同様にして、一体焼結体板及び電池を作製し、各種評価を行った。
 例A4
 1)ガラスフリット(日本フリット株式会社製、CK0199、SiO含有量70重量%)をポットミルにて50時間粉砕した後、気流分級により直径3μm以上の粒子を取り除いたものをガラスフリットとして用いたこと、及び2)炭酸マグネシウム(神島化学工業株式会社製)を600℃で5時間熱処理して得られたものをMgO粒子として用いたこと以外は、例A1と同様にして、一体焼結体板及び電池を作製し、各種評価を行った。
 例A5
 1)ガラスフリット(日本フリット株式会社製、CK0199、SiO含有量70重量%)から気流分級により直径20μm以下の粒子を取り除いたものをガラスフリットとして用いたこと、及び2)炭酸マグネシウム(神島化学工業株式会社製)を600℃で5時間熱処理して得られたものをMgO粒子として用いたこと以外は、例A1と同様にして、一体焼結体板及び電池を作製し、各種評価を行った。
 例A6(比較)
 1)ガラスフリット(日本フリット株式会社製、CK0199、SiO含有量70重量%)をポットミルにて100時間粉砕した後、気流分級により直径1μm以上の粒子を取り除いたものをガラスフリットとして用いたこと、及び2)炭酸マグネシウム(神島化学工業株式会社製)を600℃で5時間熱処理して得られたものをMgO粒子として用いたこと以外は、例A1と同様にして、一体焼結体板及び電池を作製し、各種評価を行った。
 例A7(比較)
 1)ガラスフリット(日本フリット株式会社製、CK0199、SiO含有量70重量%)から気流分級により直径25μm以下の粒子を取り除いたものをガラスフリットとして用いたこと、及び2)炭酸マグネシウム(神島化学工業株式会社製)を600℃で5時間熱処理して得られたMgO粒子を用いたこと以外は、例A1と同様にして、一体焼結体板及び電池を作製し、各種評価を行った。
 評価結果
 表1に例A1~A7の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 例B1(参考)
 1)正極層の厚さが60μmとなるようにLCOグリーンシートを薄くしたこと、2)負極層の厚さが70μmになるようにLTOグリーンシートを薄くしたこと、及び3)炭酸マグネシウム(神島化学工業株式会社製)を900℃で5時間熱処理して得られたものをMgO粒子として用いたこと以外は、例A1と同様にして一体焼結体板及び電池を作製し、各種評価を行った。また、正負極面積ずれ率、放電容量/理論容量比、及びパルスサイクル容量維持率を以下のようにして行った。
<正負極面積ずれ率>
 電池における正極層及び負極層の面積ずれ率を算出した。具体的には、正極層及び負極層が重なりあう領域の面積Spn、正極層が負極層からはみ出した領域の面積S、及び負極層が正極層からはみ出した領域の面積Sをそれぞれ測定し、[(S+S)/Spn]×100の式に基づき、正負極面積ずれ率(%)を算出した。なお、Spn、S及びSの測定及び算出は、3D形状測定機(キーエンス社製、VR3000)を用いてサンプル両面から形状測定を行うことにより行った。
<放電容量/理論容量比>
 電池の放電容量を以下の手順で測定した。すなわち、2.7Vで定電圧充電した後、放電レート0.2Cで放電することにより初期容量の測定を行い、得られた初期容量を放電容量として採用した。次いで、放電容量を理論容量で除して100を乗じることにより、放電容量/理論容量比(%)を得た。
 なお、電池の理論容量は以下の手順で算出した。まず、一体焼結体板の各層の面積を形状測定により算出し、かつ、一体焼結体板の各層の厚み及び空隙率を断面SEMより算出し、得られた値から正極層及び負極層の実効体積を算出した。正極層及び負極層の各構成材料の真比重をJIS規格R1634に基づき算出し、正極層及び負極層の重量値を計算した。こうして得られた活物質重量に材料の重量当たりの容量(電池便覧に記載される)を乗じることで、正極層及び負極層の各々の理論容量値を計算し、その低い方の値を電池の理論容量値として採用した。
<パルスサイクル容量維持率>
 電池のパルスサイクル容量維持率(定電圧充電サイクル性能)を以下の手順で測定した。まず、2.7Vで定電圧充電した後、放電レート0.2Cで放電することにより初期容量を測定した。次いで、2.7Vでの定電圧充電と20mAの電流を0.5秒流す放電を100回行うことを含む充放電サイクルを合計100サイクル実施した。最後に、2.7Vで定電圧充電した後、0.2Cで放電することにより、サイクル後容量を測定した。測定されたサイクル後容量を初期容量で除して100を乗じることにより、パルスサイクル容量維持率(%)を得た。
 例B2(参考)
 1)正極層の厚さが100μmとなるようにLCOグリーンシートを厚くしたこと、及び2)負極層の厚さが120μmとなるようにLTOグリーンシートを厚くしたこと以外は例B1と同様にして、一体焼結体板及び電池を作製し、各種評価を行った。
 例B3(参考)
 1)正極層の厚さが200μmとなるようにLCOグリーンシートを厚くしたこと、及び2)負極層の厚さが240μmとなるようにLTOグリーンシートを厚くしたこと以外は例B1と同様にして、一体焼結体板及び電池を作製し、各種評価を行った。
 例B4(参考)
 1)正極層の厚さが400μmとなるようにLCOグリーンシートを厚くしたこと、及び2)負極層の厚さが480μmとなるようにLTOグリーンシートを厚くしたこと以外は例B1と同様にして、一体焼結体板及び電池を作製し、各種評価を行った。
 例B5(参考)
 正極層の平均気孔径を0.25μmに調整したこと以外は例B4と同様にして、一体焼結体板及び電池を作製し、各種評価を行った。
 例B6(比較)
(1)正極板の作製
(1a)LCOグリーンシートの作製
 まず、Li/Coのモル比が1.01となるように秤量されたCo粉末(正同化学工業株式会社製)とLiCO粉末(本荘ケミカル株式会社製)を混合後、780℃で5時間保持し、得られた粉末をポットミルにて体積基準D50が0.4μmとなるように粉砕及び解砕してLCO板状粒子からなる粉末Aを得た。得られたLCO粉末(すなわち粉末A)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LCOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LCOグリーンシートを形成した。乾燥後のLCOグリーンシートの厚さは220μmであった。
(1b)LCO焼結体板の作製
 PETフィルムから剥がしたLCOグリーンシートをカッターで50mm角に切り出し、下部セッターとしてのマグネシア製セッター(寸法90mm角、高さ1mm)の中央に載置した。LCOシートの上に上部セッターとしての多孔質マグネシア製セッターを載置した。上記LCOシートをセッターで挟んだ状態で、120mm角のアルミナ鞘(株式会社ニッカトー製)内に載置した。このとき、アルミナ鞘を密閉せず、0.5mmの隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで600℃まで昇温して3時間脱脂した後に、820℃まで200℃/hで昇温して20時間保持することで焼成を行った。焼成後、室温まで降温させた後に焼成体をアルミナ鞘より取り出した。こうして厚さ200μmのLCO焼結体板を正極板として得た。得られた正極板を、レーザー加工機で直径10mmの円形状に切断して、正極板を得た。
(2)負極板の作製
(2a)LTOグリーンシートの作製
 まず、LTO粉末(体積基準D50粒径0.06μm、シグマアルドリッチジャパン合同会社製)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LTOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LTOグリーンシートを形成した。乾燥後のLTOグリーンシートの厚さは焼成後の厚さが240μmとなるような値とした。
(2b)LTOグリーンシートの焼成
 得られたグリーンシートを25mm角にカッターナイフで切り出し、エンボス加工されたジルコニア製セッター上に載置した。セッター上のグリーンシートをアルミナ製鞘に入れて500℃で5時間保持した後に、昇温速度200℃/hにて昇温し、765℃で5時間焼成を行なった。得られたLTO焼結体板を、レーザー加工機で直径10.5mmの円形状に切断して、負極板を得た。
(3)コイン形リチウム二次電池の作製
 図1に模式的に示されるようなコイン形リチウム二次電池10を以下のとおり作製した。
(3a)負極板と負極集電体の導電性カーボンペーストによる接着
 アセチレンブラックとポリイミドアミドを質量比で3:1となるように秤量し、溶剤としての適宜量のNMP(N-メチル-2-ピロリドン)とともに混合して、導電性カーボンペーストを調製した。負極集電体としてのアルミニウム箔上に導電性カーボンペーストをスクリーン印刷した。未乾燥の印刷パターン(すなわち導電性カーボンペーストで塗布された領域)内に収まるように上記(2)で作製した負極板を載置し、60℃で30分間真空乾燥させることで、負極板と負極集電体とが負極側カーボン層を介して接合された負極構造体を作製した。なお、負極側カーボン層の厚さは10μmとした。
(3b)カーボン層付き正極集電体の準備
 アセチレンブラックとポリイミドアミドを質量比で3:1となるように秤量し、溶剤としての適宜量のNMP(N-メチル-2-ピロリドン)とともに混合して、導電性カーボンペーストを調製した。正極集電体としてのアルミニウム箔上に導電性カーボンペーストをスクリーン印刷した後、60℃で30分間真空乾燥させることで、表面に正極側カーボン層が形成された正極集電体を作製した。なお、正極側カーボン層の厚さは5μmとした。
(3c)コイン形電池の組立
 電池ケースを構成することになる正極缶と負極缶との間に、正極缶から負極缶に向かって、正極集電体、カーボン層、LCO正極板、セルロースセパレータ、LTO負極板、カーボン層、及び負極集電体がこの順に積層されるように収容し、電解液を充填した後に、ガスケットを介して正極缶と負極缶をかしめることによって封止した。こうして、直径12mm、厚さ1.0mmのコインセル形のリチウム二次電池10を作製した。このとき、電解液としては、エチレンカーボネート(EC)及びγ-ブチロラクトン(GBL)を1:3の体積比で混合した有機溶媒に、LiBFを1.5mol/Lの濃度となるように溶解させた液を用いた。
(4)評価
 上記(1b)で合成されたLCO焼結体板(正極板)、上記(2b)で合成されたLTO焼結体板(負極板)、及び上記(3)で作製されたコイン形リチウム二次電池について、例B1と同様にして各種の評価を行った。
 評価結果
 表2及び3に例B1~B6の評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (11)

  1.  リチウム複合酸化物焼結体で構成される正極層と、
     チタン含有焼結体で構成される負極層と、
     前記正極層と前記負極層との間に介在されるセラミックセパレータと、
     前記正極層、前記負極層、及び前記セラミックセパレータに含浸される電解液と、
     密閉空間を備え、該密閉空間内に前記正極層、前記負極層、前記セラミックセパレータ及び前記電解液が収容される外装体と、
    を備えた、リチウム二次電池であって、
     前記正極層、前記セラミックセパレータ及び前記負極層が互いに結合しており、
     前記セラミックセパレータがMgO及びガラスで構成され、前記ガラスの平均粒子径が0.5~25μmであり、かつ、前記MgOの平均粒子径に対する前記ガラスの平均粒子径の比が1.5~85である、リチウム二次電池。
  2.  前記MgOの平均粒子径に対する前記ガラスの平均粒子径の比が2.0~20である、請求項1に記載のリチウム二次電池。
  3.  前記リチウム複合酸化物がコバルト酸リチウムである、請求項1又は2に記載のリチウム二次電池。
  4.  前記正極層の厚さが60~600μmである、請求項1~3のいずれか一項に記載のリチウム二次電池。
  5.  前記正極層が、リチウム複合酸化物で構成される複数の一次粒子を含み、前記複数の一次粒子が前記正極層の層面に対して0°超30°以下の平均配向角度で配向している、配向正極層である、請求項1~4のいずれか一項に記載のリチウム二次電池。
  6.  前記負極層の厚さが70~800μmである、請求項1~5のいずれか一項に記載のリチウム二次電池。
  7.  前記チタン含有焼結体が、チタン酸リチウム又はニオブチタン複合酸化物を含む、請求項1~6のいずれか一項に記載のリチウム二次電池。
  8.  前記セラミックセパレータの厚さが5~50μmである、請求項1~7のいずれか一項に記載のリチウム二次電池。
  9.  前記ガラス粒子がSiOを25重量%以上含む、請求項1~8のいずれか一項に記載のリチウム二次電池。
  10.  前記セラミックセパレータにおける前記ガラス粒子の含有量が3~70重量%である、請求項1~9のいずれか一項に記載のリチウム二次電池。
  11.  正極集電体及び負極集電体をさらに備えた、請求項1~10のいずれか一項に記載のリチウム二次電池。

     
PCT/JP2019/019173 2018-05-17 2019-05-14 リチウム二次電池 WO2019221143A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020519870A JP6966639B2 (ja) 2018-05-17 2019-05-14 リチウム二次電池
EP19803434.0A EP3796457A4 (en) 2018-05-17 2019-05-14 LITHIUM SECONDARY BATTERY
CN201980017204.7A CN112074987B (zh) 2018-05-17 2019-05-14 锂二次电池
US17/076,159 US20210043965A1 (en) 2018-05-17 2020-10-21 Lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-095782 2018-05-17
JP2018095782 2018-05-17
JP2019061687 2019-03-27
JP2019-061687 2019-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/076,159 Continuation-In-Part US20210043965A1 (en) 2018-05-17 2020-10-21 Lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2019221143A1 true WO2019221143A1 (ja) 2019-11-21

Family

ID=68539777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019173 WO2019221143A1 (ja) 2018-05-17 2019-05-14 リチウム二次電池

Country Status (5)

Country Link
US (1) US20210043965A1 (ja)
EP (1) EP3796457A4 (ja)
JP (1) JP6966639B2 (ja)
CN (1) CN112074987B (ja)
WO (1) WO2019221143A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112259785A (zh) * 2020-10-27 2021-01-22 江西理工大学 一种单叠片对数软包锂离子电池及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587052A (en) 1978-12-26 1980-07-01 Matsushita Electric Works Ltd Measuring circuit for instantaneous power
JP5587052B2 (ja) 2010-06-23 2014-09-10 日本碍子株式会社 リチウム二次電池の正極及びリチウム二次電池
WO2014168019A1 (ja) * 2013-04-12 2014-10-16 株式会社村田製作所 リチウムイオン二次電池
JP2015185337A (ja) 2014-03-24 2015-10-22 日本碍子株式会社 全固体電池
WO2017146088A1 (ja) 2016-02-24 2017-08-31 日本碍子株式会社 板状リチウム複合酸化物
JP2018063757A (ja) * 2016-10-11 2018-04-19 日立金属株式会社 全固体リチウム二次電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575040B2 (ja) * 1999-04-30 2010-11-04 株式会社オハラ ガラスセラミックス複合電解質、及びリチウム二次電池
KR100659854B1 (ko) * 2005-04-28 2006-12-19 삼성에스디아이 주식회사 리튬 이차 전지
JP5345824B2 (ja) * 2008-10-31 2013-11-20 株式会社オハラ 電池用セパレータ及びその製造方法
CN102239587B (zh) * 2008-12-24 2015-11-25 日本碍子株式会社 锂二次电池的正极活性物质用的板状粒子、锂二次电池的正极活性物质膜、它们的制造方法、锂二次电池的正极活性物质的制造方法以及锂二次电池
KR101173202B1 (ko) * 2010-02-25 2012-08-13 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
JP5564649B2 (ja) * 2010-06-23 2014-07-30 日本碍子株式会社 リチウム二次電池の正極及びリチウム二次電池
JP2012155985A (ja) * 2011-01-26 2012-08-16 Sanyo Electric Co Ltd 非水電解質二次電池
JP5752584B2 (ja) * 2011-12-16 2015-07-22 日本板硝子株式会社 セパレータ
US10141557B2 (en) * 2013-07-10 2018-11-27 Zeon Corporation Adhesive for lithium ion secondary batteries, separator for lithium ion secondary batteries, and lithium ion secondary battery
JP6453611B2 (ja) * 2014-10-29 2019-01-16 マクセルホールディングス株式会社 リチウム二次電池
KR102297823B1 (ko) * 2014-11-21 2021-09-02 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
JP6906522B2 (ja) * 2016-08-02 2021-07-21 日本碍子株式会社 全固体リチウム電池
WO2018139657A1 (ja) * 2017-01-30 2018-08-02 セントラル硝子株式会社 電極積層体及び全固体リチウム電池
US20200321604A1 (en) * 2017-11-01 2020-10-08 University Of Virginia Patent Foundation Sintered electrode cells for high energy density batteries and related methods thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587052A (en) 1978-12-26 1980-07-01 Matsushita Electric Works Ltd Measuring circuit for instantaneous power
JP5587052B2 (ja) 2010-06-23 2014-09-10 日本碍子株式会社 リチウム二次電池の正極及びリチウム二次電池
WO2014168019A1 (ja) * 2013-04-12 2014-10-16 株式会社村田製作所 リチウムイオン二次電池
JP2015185337A (ja) 2014-03-24 2015-10-22 日本碍子株式会社 全固体電池
WO2017146088A1 (ja) 2016-02-24 2017-08-31 日本碍子株式会社 板状リチウム複合酸化物
JP2018063757A (ja) * 2016-10-11 2018-04-19 日立金属株式会社 全固体リチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3796457A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112259785A (zh) * 2020-10-27 2021-01-22 江西理工大学 一种单叠片对数软包锂离子电池及其制备方法

Also Published As

Publication number Publication date
JPWO2019221143A1 (ja) 2021-04-22
JP6966639B2 (ja) 2021-11-17
EP3796457A4 (en) 2022-03-16
EP3796457A1 (en) 2021-03-24
CN112074987A (zh) 2020-12-11
CN112074987B (zh) 2024-01-26
US20210043965A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
US20210036305A1 (en) Lithium secondary battery
US20210066745A1 (en) Lithium secondary battery
JP7104148B2 (ja) リチウム二次電池
JP6966639B2 (ja) リチウム二次電池
JP6966640B2 (ja) リチウム二次電池
US20210066744A1 (en) Lithium secondary battery
WO2020217749A1 (ja) リチウム二次電池
JP7280379B2 (ja) リチウム二次電池及びその充電状態の測定方法
JP7268142B2 (ja) リチウム二次電池
WO2023042801A1 (ja) 回路基板アセンブリの製造方法
WO2020090801A1 (ja) コイン形リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519870

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019803434

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019803434

Country of ref document: EP

Effective date: 20201217