WO2023042801A1 - 回路基板アセンブリの製造方法 - Google Patents

回路基板アセンブリの製造方法 Download PDF

Info

Publication number
WO2023042801A1
WO2023042801A1 PCT/JP2022/034077 JP2022034077W WO2023042801A1 WO 2023042801 A1 WO2023042801 A1 WO 2023042801A1 JP 2022034077 W JP2022034077 W JP 2022034077W WO 2023042801 A1 WO2023042801 A1 WO 2023042801A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
board assembly
positive electrode
manufacturing
negative electrode
Prior art date
Application number
PCT/JP2022/034077
Other languages
English (en)
French (fr)
Inventor
幸信 由良
俊介 水上
裕己 田中
春男 大塚
英二 中島
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2023548460A priority Critical patent/JPWO2023042801A1/ja
Publication of WO2023042801A1 publication Critical patent/WO2023042801A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method of manufacturing a circuit board assembly.
  • Coin-type lithium-ion secondary batteries are widely used in various devices that require charging, and various coin-type lithium-ion secondary batteries have been proposed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-209178
  • a positive electrode is arranged on the inner surface of a positive electrode case that also serves as an external terminal
  • a negative electrode is arranged on the inner surface of a negative electrode sealing plate that also serves as an external terminal.
  • a coin-type battery is disclosed in which the negative electrodes are opposed to each other with a separator interposed therebetween.
  • the positive electrode case and the peripheral edge portion of the sealing plate are sealed via a gasket so as to retain the electrolytic solution inside.
  • the secondary battery as described above employs a powder-dispersed positive electrode (so-called coated electrode) that is produced by coating and drying a positive electrode mixture containing a positive electrode active material, a conductive aid, a binder, and the like. .
  • a powder dispersion type positive electrode contains a relatively large amount (for example, about 10% by weight) of components (binders and conductive aids) that do not contribute to capacity. Low packing density. Therefore, the powder-dispersed positive electrode has much room for improvement in terms of capacity and charge/discharge efficiency. Accordingly, attempts have been made to improve the capacity and charge/discharge efficiency by forming the positive electrode or positive electrode active material layer from a sintered plate of lithium composite oxide. In this case, since the positive electrode or the positive electrode active material layer does not contain a binder or a conductive aid, it is expected that high capacity and good charge-discharge efficiency can be obtained by increasing the packing density of the lithium composite oxide. be.
  • Patent Document 2 WO2019/221139
  • a positive electrode plate that is a lithium composite oxide sintered plate, a negative electrode plate that is a titanium-containing sintered plate, a separator, and an electrolytic solution are provided in an exterior body.
  • a coin-type lithium ion secondary battery is also disclosed, and it is said that by using a sintered plate as an electrode, excellent heat resistance that enables reflow soldering can be obtained.
  • Patent Literature 2 discloses a lithium ion secondary battery that can be reflow soldered. Therefore, there is a demand for a manufacturing method that does not easily deteriorate battery performance even when reflow soldering is performed.
  • the inventors of the present invention have recently discovered that the deterioration of battery performance due to reflow heating can be effectively suppressed by using a lithium ion secondary battery in a state of charge (SOC) of 0 to 29% for reflow soldering. Obtained.
  • SOC state of charge
  • an object of the present invention is to provide a method of manufacturing a circuit board assembly that can effectively suppress deterioration of battery performance due to heating during reflow soldering.
  • a method of manufacturing a circuit board assembly comprising connecting a lithium ion secondary battery to a circuit board by reflow soldering, The lithium ion secondary battery has been subjected to at least initial charge and discharge, and the state of charge (SOC) of the lithium ion secondary battery during the reflow soldering is 0 to 29%.
  • Circuit board assembly manufacturing method [Aspect 2] The method of manufacturing a circuit board assembly according to aspect 1, wherein the state of charge (SOC) of the lithium ion secondary battery is 0-28%.
  • the lithium ion secondary battery is a positive electrode layer; a negative electrode layer; a separator interposed between the positive electrode layer and the negative electrode layer; an electrolyte; an exterior body having a sealed space in which the positive electrode layer, the negative electrode layer, the separator, and the electrolyte are accommodated;
  • the ceramic negative plate is a titanium-containing sintered plate.
  • the titanium-containing sintered body comprises lithium titanate or niobium titanium composite oxide.
  • the separator is made of cellulose, polyimide, polyester, or a ceramic selected from the group consisting of MgO, Al2O3 , ZrO2 , SiC, Si3N4 , AlN, and cordierite. 14.
  • the electrolyte is provided in the form of an electrolytic solution, and the electrolytic solution is in a non-aqueous solvent consisting of at least one selected from the group consisting of ⁇ -butyrolactone (GBL), ethylene carbonate (EC) and propylene carbonate (PC).
  • GBL ⁇ -butyrolactone
  • EC ethylene carbonate
  • PC propylene carbonate
  • FIG. 1 is a schematic cross-sectional view of an example of a lithium ion secondary battery used in the present invention
  • FIG. It is a SEM image which shows an example of the cross section perpendicular
  • 3 is an EBSD image of a cross section of the oriented positive plate shown in FIG. 2;
  • 4 is a histogram showing the distribution of orientation angles of primary particles in the EBSD image of FIG. 3 on an area basis;
  • the present invention relates to a method of manufacturing a circuit board assembly.
  • the term "circuit board assembly” refers to a product in which a lithium ion secondary battery (and, if desired, a device) is mounted on a circuit board.
  • the manufacturing method of the present invention includes connecting the lithium ion secondary battery to the circuit board by reflow soldering.
  • a lithium-ion secondary battery has been subjected to at least initial charging and discharging.
  • the state of charge (SOC) of the lithium ion secondary battery during reflow soldering is 0 to 29%. In this way, by using a lithium ion secondary battery for reflow soldering at an SOC of 0 to 29%, deterioration of battery performance due to heating during reflow soldering (reflow heating) can be effectively suppressed.
  • the SOC of the lithium ion secondary battery during reflow soldering is 0 to 29%, preferably 0 to 28%, more preferably 0 to 20%, still more preferably 0 to 15%, particularly preferably 0 to 10. %, more particularly preferably 0-5%, even more particularly preferably 0-3%, most preferably 0%.
  • the SOC may be measured by a known method, but the lithium ion secondary battery is initially charged and discharged, the discharged state is defined as SOC 0%, and charging is performed as necessary so that the SOC is within the above range. You can do it. In that sense, the lithium ion secondary battery used in the present invention can be said to have been subjected to at least initial charging and discharging. However, the initial charge/discharge may be performed by charging and then halfway discharging to adjust to the desired S
  • the lithium-ion secondary battery can be connected to the circuit board by a known reflow soldering method.
  • solder for example, solder paste
  • the lithium ion secondary battery is placed on the position, and the solder is melted by reflow heating with a predetermined temperature profile in a reflow furnace, Reflow soldering can be performed by cooling and solidifying the molten solder.
  • the lithium ion secondary battery has a positive electrode terminal and a negative electrode terminal, the positive electrode terminal and/or the negative electrode terminal are preferably connected to the circuit board by reflow soldering.
  • Reflow heating in reflow soldering is typically performed at 180-270°C, more typically 200-260°C.
  • This temperature is the temperature measured for a lithium ion secondary battery.
  • FIG. 1 schematically shows an example of a lithium ion secondary battery preferably used in the present invention.
  • a lithium ion secondary battery 10 shown in FIG. A separator 20 is interposed between the positive electrode layer 12 and the negative electrode layer 16 .
  • the exterior body 24 has a sealed space, and the positive electrode layer 12, the negative electrode layer 16, the separator 20, and the electrolytic solution 22 are accommodated in this sealed space.
  • the lithium-ion secondary battery 10 shown in FIG. 1 is provided with an electrolyte in the form of an electrolytic solution 22, but instead of the electrolytic solution 22, a solid electrolyte or a polymer electrolyte may be used.
  • the term “electrolyte” can be read as “electrolyte” as long as there is no technical inconsistency. That is, the battery that can be used in the present invention may be an all-solid battery.
  • the lithium ion secondary battery 10 is preferably coin-shaped as shown in FIG. 1, but is not limited to this, and may be various types of lithium ion secondary batteries.
  • the lithium-ion secondary battery 10 includes a positive electrode terminal (not shown) joined to the outer surface of the package 24 near the positive electrode layer 12 and a and a negative terminal (not shown) bonded to the outer surface.
  • the positive terminal and/or the negative terminal are preferably used for reflow soldering for mounting the lithium ion secondary battery 10 on the circuit board. That is, it is preferable that the positive terminal and/or the negative terminal are connected to the circuit board by reflow soldering.
  • the positive electrode terminal is preferably joined to the positive electrode can 24a of the package 24 by resistance welding, diffusion welding, laser welding, or the like.
  • the negative electrode terminal is preferably joined to the negative electrode can 24b of the outer package 24 by resistance welding, diffusion welding, laser welding, or the like.
  • the outer diameter of the lithium ion secondary battery 10 is not particularly limited, it is typically 8 to 25 mm, more typically 9.5 to 22 mm, still more typically 12.5 to 20 mm.
  • the positive electrode layer 12 is a layer containing a positive electrode active material.
  • the positive electrode layer 12 is a powder-dispersed positive electrode (a so-called coated electrode) prepared by applying and drying a positive electrode mixture containing a positive electrode active material (for example, lithium cobaltate), a conductive aid, a binder, and the like.
  • a ceramic positive electrode plate is preferable, and a lithium composite oxide sintered body plate is more preferable. That the positive electrode layer 12 is a ceramic positive electrode plate or a sintered plate means that the positive electrode layer 12 does not contain a binder or a conductive aid. This is because even if the green sheet contains a binder, the binder disappears or is burned off during firing.
  • the lithium composite oxide forming the sintered plate is particularly preferably lithium cobaltate (typically LiCoO 2 (hereinafter sometimes abbreviated as LCO)).
  • LCO lithium cobaltate
  • Various lithium composite oxide sintered plates or LCO sintered plates are known, and for example, those disclosed in Patent Document 2 (WO2019/221139) can be used.
  • the lithium composite oxide sintered plate that constitutes the positive electrode layer 12 includes a plurality of primary particles that are composed of a lithium composite oxide, and the plurality of primary particles are formed on the plate surface of the positive electrode plate. It is an oriented positive electrode plate oriented at an average orientation angle of more than 0° and 30° or less with respect to FIG. 2 shows an example of a cross-sectional SEM image perpendicular to the plate surface of the oriented positive plate, while FIG. 3 shows an electron backscatter diffraction (EBSD) image in a cross section perpendicular to the plate surface of the oriented positive plate. .
  • FIG. 1 electron backscatter diffraction
  • FIG. 4 shows a histogram showing the distribution of orientation angles of the primary particles 11 in the EBSD image of FIG. 3 on an area basis.
  • a discontinuity in crystal orientation can be observed in the EBSD image shown in FIG.
  • the orientation angle of each primary particle 11 is indicated by the shade of color, and the darker the color, the smaller the orientation angle.
  • the orientation angle is the inclination angle formed by the (003) plane of each primary particle 11 with respect to the plate surface direction.
  • the portions shown in black inside the oriented positive plate are pores.
  • the positive electrode layer 12 which is an oriented positive electrode plate, is an oriented sintered body composed of a plurality of mutually bonded primary particles 11.
  • Each primary particle 11 is mainly plate-shaped, but may include rectangular parallelepiped, cubic, and spherical primary particles.
  • the cross-sectional shape of each primary particle 11 is not particularly limited, and may be rectangular, polygonal other than rectangular, circular, elliptical, or any other complex shape.
  • Each primary particle 11 is composed of a lithium composite oxide.
  • Lithium composite oxide means Li x MO 2 (0.05 ⁇ x ⁇ 1.10, M is at least one transition metal, and M is typically one or more of Co, Ni and Mn including).
  • a lithium composite oxide has a layered rock salt structure.
  • the layered rock salt structure is a crystal structure in which a lithium layer and a transition metal layer other than lithium are alternately laminated with an oxygen layer sandwiched therebetween, that is, a transition metal ion layer and a lithium single layer are alternately formed via oxide ions.
  • lithium composite oxides include Li x CoO 2 (lithium cobalt oxide), Li x NiO 2 (lithium nickel oxide), Li x MnO 2 (lithium manganate), and Li x NiMnO 2 (lithium nickel-manganese oxide). . _ _ _ _ _ _ _ _ _ _ (lithium cobaltate, typically LiCoO 2 ).
  • Lithium composite oxides include Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, Ba , Bi, and W may be included.
  • the average value of the orientation angles of the primary particles 11, that is, the average orientation angle is more than 0° and 30° or less.
  • This provides various advantages: First, since each primary particle 11 lies in a state inclined with respect to the thickness direction, the adhesion between the primary particles can be improved. As a result, it is possible to improve the lithium ion conductivity between a certain primary particle 11 and other primary particles 11 adjacent to both sides in the longitudinal direction of the primary particle 11, thereby improving the rate characteristics. Second, rate characteristics can be further improved. This is because, as described above, when lithium ions enter and leave the oriented positive plate, the expansion and contraction in the thickness direction is more dominant than in the plate surface direction, so the expansion and contraction of the oriented positive plate becomes smooth.
  • the average orientation angle of the primary particles 11 is obtained by the following method. First, in an EBSD image of a rectangular region of 95 ⁇ m ⁇ 125 ⁇ m observed at a magnification of 1000 times as shown in FIG. Draw three vertical lines that divide the plane into four equal parts. Next, the average orientation angle of the primary particles 11 is obtained by arithmetically averaging the orientation angles of all the primary particles 11 intersecting at least one of the three horizontal lines and the three vertical lines.
  • the average orientation angle of the primary particles 11 is preferably 30° or less, more preferably 25° or less, from the viewpoint of further improving rate characteristics. From the viewpoint of further improving the rate characteristics, the average orientation angle of the primary particles 11 is preferably 2° or more, more preferably 5° or more.
  • the orientation angle of each primary particle 11 may be widely distributed from 0° to 90°, but most of them are distributed in the region of more than 0° and 30° or less. is preferred. That is, when the cross section of the oriented sintered body constituting the oriented positive electrode plate is analyzed by EBSD, the orientation angle of the primary particles 11 included in the analyzed cross section with respect to the surface of the oriented positive electrode plate is more than 0° and 30°. ° or less of the primary particles 11 (hereinafter referred to as low-angle primary particles) is the total area of the primary particles 11 (specifically, 30 primary particles 11 used to calculate the average orientation angle) included in the cross section. The area is preferably 70% or more, more preferably 80% or more.
  • the ratio of the primary particles 11 having high mutual adhesion can be increased, so that the rate characteristics can be further improved.
  • the total area of the low-angle primary particles having an orientation angle of 20° or less is more preferably 50% or more of the total area of the 30 primary particles 11 used to calculate the average orientation angle.
  • the total area of the low-angle primary particles having an orientation angle of 10° or less is more preferably 15% or more of the total area of the 30 primary particles 11 used to calculate the average orientation angle. .
  • each primary particle 11 is mainly plate-shaped, as shown in FIGS. 2 and 3, the cross section of each primary particle 11 extends in a predetermined direction and is typically substantially rectangular. That is, when the cross section of the oriented sintered body is analyzed by EBSD, the total area of the primary particles 11 having an aspect ratio of 4 or more among the primary particles 11 included in the analyzed cross section is the total area of the primary particles 11 included in the cross section. It is preferably 70% or more, more preferably 80% or more, of the total area of the particles 11 (specifically, 30 primary particles 11 used for calculating the average orientation angle). Specifically, in the EBSD image shown in FIG. 3, the mutual adhesion between the primary particles 11 can be further improved, and as a result, the rate characteristics can be further improved.
  • the aspect ratio of the primary particles 11 is a value obtained by dividing the maximum Feret diameter of the primary particles 11 by the minimum Feret diameter.
  • the maximum Feret diameter is the maximum distance between two parallel straight lines sandwiching the primary particles 11 on the EBSD image when the cross section is observed.
  • the minimum Feret diameter is the minimum distance between two parallel straight lines sandwiching the primary particle 11 on the EBSD image.
  • the average particle diameter of the plurality of primary particles constituting the oriented sintered body is 5 ⁇ m or more.
  • the average particle size of the 30 primary particles 11 used to calculate the average orientation angle is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and even more preferably 12 ⁇ m or more.
  • the average particle diameter of the primary particles 11 is a value obtained by arithmetically averaging the equivalent circle diameters of the primary particles 11 .
  • the equivalent circle diameter is the diameter of a circle having the same area as each primary particle 11 on the EBSD image.
  • the lithium composite oxide sintered plate forming the positive electrode layer 12 preferably contains pores. Since the sintered body contains pores, particularly open pores, when it is incorporated into a battery as a positive electrode plate, the electrolyte can permeate the inside of the sintered body, and as a result, the lithium ion conductivity is improved. be able to. This is because there are two types of lithium ion conduction in the sintered body: conduction through the constituent particles of the sintered body and conduction through the electrolyte in the pores. This is because it is overwhelmingly fast.
  • the lithium composite oxide sintered plate constituting the positive electrode layer 12 preferably has a porosity of 20 to 60%, more preferably 25 to 55%, still more preferably 30 to 50%, and particularly preferably 30 to 45%. %.
  • a stress releasing effect and a high capacity can be expected by the pores, and the mutual adhesion between the primary particles 11 can be further improved, so that the rate characteristics can be further improved.
  • the porosity of the sintered body is calculated by binarizing the obtained SEM image after polishing the cross section of the positive electrode plate by CP (cross section polisher), observing it with an SEM at a magnification of 1000.
  • the average circle equivalent diameter of each pore formed inside the oriented sintered body is not particularly limited, but is preferably 8 ⁇ m or less.
  • the average equivalent circle diameter of pores is a value obtained by arithmetically averaging the equivalent circle diameters of 10 pores on the EBSD image.
  • the equivalent circle diameter is the diameter of a circle having the same area as each pore on the EBSD image.
  • Each pore formed inside the oriented sintered body is preferably an open pore leading to the outside of the lithium composite oxide sintered body plate.
  • the average pore diameter of the lithium composite oxide sintered plate that constitutes the positive electrode layer 12 is preferably 0.1 to 10.0 ⁇ m, more preferably 0.2 to 5.0 ⁇ m, still more preferably 0.3 to 0.3 ⁇ m. 3.0 ⁇ m. Within the above range, stress concentration in large pores is suppressed, and the stress in the sintered body is easily released uniformly.
  • the thickness of the lithium composite oxide sintered plate forming the positive electrode layer 12 is preferably 60-600 ⁇ m, more preferably 70-550 ⁇ m, and still more preferably 90-500 ⁇ m. Within such a range, the energy density of the lithium ion secondary battery 10 is improved by increasing the active material capacity per unit area, and the battery characteristics deteriorate due to repeated charging and discharging (especially an increase in resistance value). can be suppressed.
  • the negative electrode layer 16 is a layer containing a negative electrode active material.
  • the negative electrode layer 16 may be a powder-dispersed negative electrode (a so-called coated electrode) prepared by applying and drying a negative electrode mixture containing a negative electrode active material, a conductive aid, a binder, etc., but is preferably It is a ceramic negative plate, more preferably a titanium-containing sintered plate.
  • the titanium-containing sintered plate preferably contains lithium titanate Li 4 Ti 5 O 12 (hereinafter referred to as LTO) or niobium titanium composite oxide Nb 2 TiO 7 , more preferably LTO.
  • LTO lithium titanate Li 4 Ti 5 O 12
  • Nb 2 TiO 7 niobium titanium composite oxide
  • LTO is typically known to have a spinel structure
  • other structures can be adopted during charging and discharging.
  • the reaction proceeds in the two-phase coexistence of Li 4 Ti 5 O 12 (spinel structure) and Li 7 Ti 5 O 12 (rock salt structure) during charging and
  • That the negative electrode layer 16 is a ceramic negative electrode plate or a sintered plate means that the negative electrode layer 16 does not contain a binder or a conductive aid. This is because even if the green sheet contains a binder, the binder disappears or is burned off during firing. Since the negative electrode plate does not contain a binder, the filling density of the negative electrode active material (for example, LTO or Nb 2 TiO 7 ) is increased, thereby achieving high capacity and good charge/discharge efficiency.
  • the LTO sintered plate can be produced according to the method described in Patent Document 2 (WO2019/221139).
  • the titanium-containing sintered plate that constitutes the negative electrode layer 16 has a structure in which a plurality (that is, a large number) of primary particles are bonded together. Therefore, it is preferred that these primary particles consist of LTO or Nb 2 TiO 7 .
  • the thickness of the titanium-containing sintered plate forming the negative electrode layer 16 is preferably 70-500 ⁇ m, preferably 85-400 ⁇ m, more preferably 95-350 ⁇ m.
  • the thickness of the titanium-containing sintered plate can be obtained, for example, by measuring the distance between the plate surfaces observed substantially parallel when the cross section of the titanium-containing sintered plate is observed with a SEM (scanning electron microscope). can get.
  • the primary particle diameter which is the average particle diameter of a plurality of primary particles constituting the titanium-containing sintered plate, is preferably 1.2 ⁇ m or less, more preferably 0.02 to 1.2 ⁇ m, still more preferably 0.05 to 0.05 ⁇ m. 7 ⁇ m. Within such a range, it is easy to achieve both lithium ion conductivity and electronic conductivity, which contributes to the improvement of rate performance.
  • the titanium-containing sintered plate that constitutes the negative electrode layer 16 preferably contains pores. Since the sintered body plate contains pores, particularly open pores, the electrolytic solution can permeate the inside of the sintered body plate when it is incorporated in a battery as a negative electrode plate, and as a result, the lithium ion conductivity is improved. can be improved. This is because there are two types of lithium ion conduction in the sintered body: conduction through the constituent particles of the sintered body and conduction through the electrolyte in the pores. This is because it is overwhelmingly fast.
  • the porosity of the titanium-containing sintered plate forming the negative electrode layer 16 is preferably 20-60%, more preferably 30-55%, and still more preferably 35-50%. Within such a range, it is easy to achieve both lithium ion conductivity and electronic conductivity, which contributes to the improvement of rate performance.
  • the average pore diameter of the titanium-containing sintered plate forming the negative electrode layer 16 is 0.08 to 5.0 ⁇ m, preferably 0.1 to 3.0 ⁇ m, more preferably 0.12 to 1.5 ⁇ m. Within such a range, it is easy to achieve both lithium ion conductivity and electronic conductivity, which contributes to the improvement of rate performance.
  • Separator 20 is preferably a cellulose, polyolefin, polyimide, polyester (eg, polyethylene terephthalate (PET)), or ceramic separator.
  • Cellulose separators are advantageous in that they are inexpensive and have excellent heat resistance.
  • Polyimide, polyester (e.g., polyethylene terephthalate (PET)) or cellulose separators not only have excellent heat resistance, unlike the widely used polyolefin separators, which have poor heat resistance. It also has excellent wettability with respect to ⁇ -butyrolactone (GBL), which is an electrolyte component with excellent heat resistance. Therefore, when an electrolytic solution containing GBL is used, the electrolytic solution can be sufficiently permeated into the separator (without being repelled).
  • GBL ⁇ -butyrolactone
  • the separator made of ceramic has the advantage that it is excellent in heat resistance and can be produced together with the positive electrode layer 12 and the negative electrode layer 16 as one integrated sintered body as a whole.
  • the ceramic constituting the separator is preferably at least one selected from MgO, Al 2 O 3 , ZrO 2 , SiC, Si 3 N 4 , AlN, and cordierite, more preferably At least one selected from MgO, Al 2 O 3 and ZrO 2 .
  • the electrolytic solution 22 is not particularly limited, and a commercially available electrolytic solution for lithium batteries, such as a solution in which a lithium salt is dissolved in a non-aqueous solvent such as an organic solvent, may be used.
  • a commercially available electrolytic solution for lithium batteries such as a solution in which a lithium salt is dissolved in a non-aqueous solvent such as an organic solvent
  • an electrolytic solution having excellent heat resistance is preferred, and such an electrolytic solution preferably contains lithium borofluoride (LiBF 4 ) in a non-aqueous solvent.
  • the preferred non-aqueous solvent is at least one selected from the group consisting of ⁇ -butyrolactone (GBL), ethylene carbonate (EC) and propylene carbonate (PC), more preferably a mixed solvent consisting of EC and GBL.
  • a single solvent consisting of PC a mixed solvent consisting of PC and GBL, or a single solvent consisting of GBL, and particularly preferably a mixed solvent consisting of EC and GBL or a single solvent consisting of GBL.
  • GBL ⁇ -butyrolactone
  • the EC:GBL volume ratio in the EC and/or GBL-containing non-aqueous solvent is preferably 0:1 to 1:1 (GBL ratio 50 to 100% by volume), more preferably 0:1 to 1:1.5 (GBL ratio 60 to 100% by volume), more preferably 0:1 to 1:2 (GBL ratio 66.6 to 100% by volume), particularly preferably 0:1 to 1:3 (GBL ratio 75 to 100% by volume).
  • Lithium borofluoride (LiBF 4 ) dissolved in a non-aqueous solvent is an electrolyte with a high decomposition temperature, which also provides a significant improvement in heat resistance.
  • LiBF 4 concentration in the electrolytic solution 22 is preferably 0.5 to 2 mol/L, more preferably 0.6 to 1.9 mol/L, still more preferably 0.7 to 1.7 mol/L, and particularly preferably 0.8 to 1.5 mol/L.
  • the electrolytic solution 22 may further contain vinylene carbonate (VC) and/or fluoroethylene carbonate (FEC) and/or vinylethylene carbonate (VEC) and/or propane sultone (PS) as additives. Both VC and FEC are excellent in heat resistance. Therefore, by including such an additive in the electrolytic solution 22 , an SEI film having excellent heat resistance can be formed on the surface of the negative electrode layer 16 .
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • VEC vinylethylene carbonate
  • PS propane sultone
  • a solid electrolyte or a polymer electrolyte may be used instead of the electrolytic solution 22 (in other words, a solid electrolyte or a polymer electrolyte can be used as the electrolyte other than the electrolytic solution 22).
  • a solid electrolyte or a polymer electrolyte can be used as the electrolyte other than the electrolytic solution 22.
  • the impregnation method is not particularly limited, but examples thereof include a method of melting the electrolyte and infiltrating into the pores of the separator 20 and a method of pressing the compacted powder of the electrolyte against the separator 20 .
  • the separator 20 itself may be composed of a solid electrolyte.
  • the exterior body 24 has a closed space, and the positive electrode layer 12, the negative electrode layer 16, the separator 20, and the electrolytic solution 22 are accommodated in this closed space.
  • the exterior body 24 is not particularly limited as long as it adopts a structure that is generally used for coin batteries (see Patent Documents 1 and 2, for example).
  • the exterior body 24 includes a positive electrode can 24a, a negative electrode can 24b, and a gasket 24c, and the positive electrode can 24a and the negative electrode can 24b are crimped via the gasket 24c to form a sealed space.
  • the positive electrode can 24a and the negative electrode can 24b can be made of metal such as stainless steel, and are not particularly limited.
  • the gasket 24c may be an annular member made of insulating resin such as polypropylene, polytetrafluoroethylene, etc., and is not particularly limited.
  • a gel solution may be applied to the gasket 24c to improve the sealing performance.
  • the type of solution used for the gel-like solution includes heat-curable olefin-based and synthetic rubber-based solutions, but is not limited to these as long as the solution has viscosity or adhesiveness after volatilization of the solvent.
  • the application method is not limited, and the gasket 24c may be solution dipped, or the solution may be applied to the gasket 24c using a dispenser or the like.
  • the lithium ion secondary battery 10 preferably further includes a positive electrode current collector 14 and/or a negative electrode current collector 18 .
  • the positive electrode current collector 14 and the negative electrode current collector 18 are not particularly limited, they are preferably metal foils such as copper foil and aluminum foil.
  • the cathode current collector 14 is preferably positioned between the cathode layer 12 and the cathode can 24a, and the anode current collector 18 is preferably positioned between the anode layer 16 and the anode can 24b.
  • a negative electrode-side carbon layer 17 is preferably provided between the negative electrode layer 16 and the negative electrode current collector 18 .
  • Both the positive electrode side carbon layer 13 and the negative electrode side carbon layer 17 are preferably made of conductive carbon, and may be formed, for example, by applying a conductive carbon paste by screen printing or the like.
  • the battery element may be in the form of a multi-layered cell having a plurality of unit cells as well as in the form of a unit cell of positive electrode layer 12/separator 20/negative electrode layer 16 as shown in FIG.
  • the multi-layer cell is not limited to a flat plate laminated structure in which flat plates or layers are stacked, but may be various laminated structures including the following examples. Any of the configurations exemplified below may be one integrally sintered body as the entire cell laminate.
  • -Folded structure A multilayered structure (increased area) formed by folding a layered sheet including a unit cell and a current collecting layer once or multiple times.
  • -Wound structure A multilayered structure (large area) formed by winding and integrating a layered sheet including a unit cell and a current collecting layer.
  • MLCC Multilayer ceramic capacitor
  • MLCC-like structure multi-layered (large area) by repeating the lamination unit of collector layer/positive electrode layer/ceramic separator layer/negative electrode layer/collective layer in the thickness direction, and A laminate structure in which multiple positive electrode layers are on one side (eg, the left side) and multiple negative electrode layers are current-collecting on the other side (eg, the right side).
  • the lithium composite oxide sintered plate which is a preferred form of the positive electrode layer 12, may be manufactured by any method, but preferably (a) a lithium composite oxide-containing green sheet. (b) optional preparation of an excess lithium source-containing green sheet; and (c) lamination and firing of the green sheets.
  • a raw material powder composed of a lithium composite oxide is prepared.
  • the powder comprises as-synthesized platelets (eg, LiCoO2 platelets) of composition LiMO 2 , where M is as previously described.
  • the volume-based D50 particle size of the raw material powder is preferably 0.3 to 30 ⁇ m.
  • a method of making LiCoO 2 tabular particles can be carried out as follows. First, Co 3 O 4 raw powder and Li 2 CO 3 raw powder are mixed and fired (500 to 900° C., 1 to 20 hours) to synthesize LiCoO 2 powder.
  • LiCoO 2 particles capable of conducting lithium ions parallel to the plate surface are obtained.
  • Such LiCoO2 particles can be produced in a plate-like form by a method of grain-growing a green sheet using a LiCoO2 powder slurry and then pulverizing it, or by a flux method, hydrothermal synthesis, single crystal growth using a melt, or a sol-gel method. It can also be obtained by a method of synthesizing crystals.
  • the obtained LiCoO 2 particles are in a state where they are easily cleaved along the cleavage plane.
  • LiCoO 2 plate-like particles can be made by cleaving the LiCoO 2 particles by crushing.
  • the plate-like particles may be used alone as the raw material powder, or a mixed powder of the plate-like powder and other raw material powders (for example, Co 3 O 4 particles) may be used as the raw material powder.
  • the plate-like powder function as template particles for imparting orientation, and other raw material powders (eg, Co 3 O 4 particles) to function as matrix particles capable of growing along the template particles.
  • the volume-based D50 particle size of the Co 3 O 4 raw material powder is not particularly limited, and can be, for example, 0.1 to 1.0 ⁇ m. is preferably smaller than the volume-based D50 particle size of This matrix particle can also be obtained by heat-treating a Co(OH) 2 raw material at 500° C. to 800° C. for 1 to 10 hours.
  • Co(OH) 2 particles or LiCoO 2 particles may be used as the matrix particles.
  • the raw material powder is composed of 100% LiCoO2 template particles, or when LiCoO2 particles are used as matrix particles, a large-sized (e.g., 90 mm x 90 mm square) and flat LiCoO2 sintered body plate is obtained by firing. can be done. Although the mechanism is not clear, it is expected that the volume change during firing or the local unevenness is unlikely to occur because LiCoO 2 is not synthesized during the firing process.
  • a raw material powder is mixed with a dispersion medium and various additives (a binder, a plasticizer, a dispersant, etc.) to form a slurry.
  • a lithium compound other than LiMO 2 for example, lithium carbonate
  • the slurry is preferably stirred under reduced pressure to remove air bubbles and adjusted to have a viscosity of 4,000 to 10,000 cP.
  • the resulting slurry is formed into a sheet to obtain a lithium composite oxide-containing green sheet.
  • the green sheet thus obtained is an independent sheet-like compact.
  • An independent sheet refers to a sheet that can be handled independently from other supports (including flakes with an aspect ratio of 5 or more). That is, the independent sheet does not include a sheet fixed to another support (substrate or the like) and integrated with the support (it cannot be separated or becomes difficult to separate).
  • Sheet forming is preferably carried out using a forming technique capable of applying a shearing force to plate-like particles (for example, template particles) in the raw material powder. By doing so, the average tilt angle of the primary particles can be set to more than 0° and not more than 30° with respect to the plate surface.
  • a doctor blade method is suitable as a molding method capable of applying a shearing force to the plate-like particles.
  • the thickness of the lithium composite oxide-containing green sheet may be appropriately set so as to achieve the desired thickness as described above after firing.
  • a green sheet containing an excess lithium source is produced separately from the green sheet containing the lithium composite oxide.
  • This excess lithium source is preferably a lithium compound other than LiMO 2 in which the components other than Li disappear upon firing.
  • a preferred example of such a lithium compound (excess lithium source) is lithium carbonate.
  • the excess lithium source is preferably in powder form, and the volume-based D50 particle size of the excess lithium source powder is preferably 0.1-20 ⁇ m, more preferably 0.3-10 ⁇ m.
  • the lithium source powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
  • the molar ratio (Li/Co ratio) of the Li content in the excess lithium source-containing green sheet to the Co content in the lithium composite oxide-containing green sheet is preferably 0.1 or more. , more preferably 0.1 to 1.1.
  • Lithium composite oxide-containing green sheets e.g. LiCoO2 green sheets
  • excess lithium source-containing green sheets e.g. Li2CO3 green sheets
  • the upper and lower setters are made of ceramics, preferably zirconia or magnesia. Pores tend to be smaller when the setter is made of magnesia.
  • the upper setter may have a porous structure, a honeycomb structure, or a dense structure. If the upper setter is dense, the pores in the sintered plate tend to be small and the number of pores tends to be large.
  • the excess lithium source-containing green sheet preferably has a molar ratio (Li/Co ratio) of the Li content in the excess lithium source-containing green sheet to the Co content in the lithium composite oxide-containing green sheet. It is preferably used by being cut into a size of 1 or more, more preferably 0.1 to 1.1.
  • the green sheet may optionally be degreased and then calcined at 600 to 850° C. for 1 to 10 hours.
  • an excess lithium source-containing green sheet for example, a Li2CO3 green sheet
  • an upper setter may be sequentially placed on the obtained calcined plate.
  • heat treatment at a firing temperature in a medium temperature range (for example, 700 to 1000 ° C.) is performed to obtain a lithium composite oxide.
  • a sintered plate is obtained.
  • This firing step may be performed in two steps or in one step.
  • the first baking temperature is preferably lower than the second baking temperature.
  • the sintered plate thus obtained is also an independent sheet.
  • the titanium-containing sintered body plate which is a preferred form of the negative electrode layer 16, may be manufactured by any method.
  • the LTO sintered plate is preferably produced through (a) preparation of an LTO-containing green sheet and (b) firing of the LTO-containing green sheet.
  • a raw material powder (LTO powder) composed of lithium titanate Li 4 Ti 5 O 12 is prepared.
  • a commercially available LTO powder may be used as the raw material powder, or a new one may be synthesized.
  • a powder obtained by hydrolyzing a mixture of titanium tetraisopropoxyalcohol and isopropoxylithium may be used, or a mixture containing lithium carbonate, titania, etc. may be fired.
  • the volume-based D50 particle size of the raw material powder is preferably 0.05 to 5.0 ⁇ m, more preferably 0.1 to 2.0 ⁇ m. If the particle size of the raw material powder is large, the pores tend to be large.
  • pulverization treatment for example, pot mill pulverization, bead mill pulverization, jet mill pulverization, etc.
  • the raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
  • a lithium compound other than LiMO 2 for example, lithium carbonate
  • the slurry is preferably stirred under reduced pressure to remove air bubbles and adjusted to have a viscosity of 4,000 to 10,000 cP.
  • the resulting slurry is formed into a sheet to obtain an LTO-containing green sheet.
  • the green sheet thus obtained is an independent sheet-like compact.
  • An independent sheet (sometimes referred to as a "self-supporting film") refers to a sheet that can be handled independently from other supports (including flakes with an aspect ratio of 5 or more). That is, the independent sheet does not include a sheet fixed to another support (substrate or the like) and integrated with the support (it cannot be separated or becomes difficult to separate).
  • Sheet molding can be performed by various known methods, but is preferably performed by a doctor blade method.
  • the thickness of the LTO-containing green sheet may be appropriately set so as to have the desired thickness as described above after firing.
  • (b) Firing of LTO-containing green sheet An LTO-containing green sheet is placed on a setter.
  • the setter is made of ceramics, preferably zirconia or magnesia.
  • the setter is preferably embossed.
  • the green sheet thus placed on the setter is put into a sheath.
  • the sheath is also made of ceramics, preferably alumina.
  • the LTO sintered body plate is obtained by sintering after degreasing if desired. This firing is preferably carried out at 600-900° C. for 1-50 hours, more preferably at 700-800° C. for 3-20 hours.
  • the sintered plate thus obtained is also an independent sheet.
  • the heating rate during firing is preferably 100 to 1000° C./h, more preferably 100 to 600° C./h.
  • this rate of temperature increase is preferably employed in the process of increasing temperature from 300°C to 800°C, more preferably in the process of increasing temperature from 400°C to 800°C.
  • An LTO sintered plate can be preferably produced as described above. In this preferred production method, it is effective to 1) adjust the particle size distribution of the LTO powder and/or 2) change the rate of temperature increase during firing, and these are effective in realizing various characteristics of the LTO sintered plate. It is thought that it contributes to
  • the integrated sintered plate preferably used in the lithium ion secondary battery used in the present invention and having a three-layer structure of a positive electrode layer, a ceramic separator and a negative electrode layer is entirely metal oxide layer. It is preferably coated. By covering the entire sintered body plate with a metal oxide layer, delamination of the sintered body plate due to physical impact during battery assembly can be suppressed, and capacity deterioration due to storage in a charged state can also be prevented. can be suppressed.
  • the coating of the integrally sintered plate with the metal oxide layer may be performed by any method.
  • i) prepare a coating liquid containing a metal compound, and ii) apply iii) the integrated sintered body is taken out and dried, and iv) the integrated sintered body to which the metal compound is attached is subjected to heat treatment to convert the metal compound into a metal oxide. It is preferred to convert and thereby form a metal oxide layer.
  • the coating liquid prepared in i) above is not particularly limited as long as it contains a metal compound capable of forming a metal oxide layer by heat treatment in a solvent (preferably an organic solvent). , Al, Nb and Ti are preferred, more preferably metal alkoxides.
  • metal compounds include metal alkoxides such as zirconium tetra-n-butoxide, magnesium diethoxide, triisopropoxy aluminum, niobium pentaethoxide and titanium tetraisopropoxide.
  • the integrated sintered plate immersed in the coating liquid in ii) above is placed in a vacuum or reduced pressure atmosphere so that the coating liquid can sufficiently and efficiently penetrate into the interior of the integrated sintered plate. Therefore, it is preferable.
  • the drying in iii) above may be performed at room temperature, but may be performed with heating.
  • the heat treatment in iv) above is preferably carried out at 300 to 700° C. for 2 to 24 hours, more preferably at 350 to 550° C. for 4 to 6 hours. In this way, an integrally sintered plate entirely coated with a metal oxide layer is obtained.
  • LCO green sheet positive electrode green sheet
  • Co 3 O 4 powder manufactured by Coremax
  • Li 2 CO 3 powder Li 2 CO 3 powder
  • An LCO slurry was prepared by stirring the obtained mixture under reduced pressure to remove air bubbles and adjusting the viscosity to 4000 cP. Viscosity was measured with a Brookfield LVT viscometer. The slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LCO green sheet. The thickness of the LCO green sheet was set to 100 ⁇ m after firing.
  • LTO green sheet negative electrode green sheet
  • LTO powder volume-based D50 particle size 0.06 ⁇ m, manufactured by Sigma-Aldrich Japan LLC
  • 20 parts by weight of a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • 4 parts by weight of a plasticizer DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurogane Kasei Co., Ltd.
  • a dispersing agent product name: Rheodol SP-O30, manufactured by Kao Corporation
  • An LTO slurry was prepared by stirring the obtained negative electrode raw material mixture under reduced pressure to remove air bubbles and adjusting the viscosity to 4000 cP. Viscosity was measured with a Brookfield LVT viscometer. The slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LTO green sheet. The thickness of the LTO green sheet was set to 100 ⁇ m after firing.
  • MgO green sheet (separator green sheet)
  • Magnesium carbonate powder manufactured by Kamishima Chemical Co., Ltd.
  • the obtained MgO powder and glass frit (CK0199 manufactured by Nippon Frit Co., Ltd.) were mixed at a weight ratio of 4:1.
  • a slurry was prepared by stirring the obtained raw material mixture under reduced pressure to remove air bubbles and adjusting the viscosity to 4000 cP. Viscosity was measured with a Brookfield LVT viscometer. The slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form a separator green sheet. The thickness of the separator green sheet was set to 25 ⁇ m after firing.
  • the integrated sintered body plate was taken out on a non-woven fabric wiper with tweezers, and after lightly wiping off the coating liquid, it was dried at room temperature for 2 hours.
  • the dried integrated sintered plate was placed on an alumina setter and heat-treated at 400° C. for 5 hours in a medium-sized superkanthal furnace (manufactured by Kyowa Konetsu Kogyo Co., Ltd.).
  • a metal oxide layer a layer composed of an oxide of Zr or a composite oxide of Zr and Li
  • a solution in which LiBF 4 was dissolved to a concentration of 1.5 mol/L was used as a solvent, and a positive electrode terminal was joined to the positive electrode can, and a negative electrode terminal was joined to the negative electrode can by resistance welding.200 for each example.
  • Example 2 the battery with an SOC of 0% was charged at a constant current of 0.1 C for the capacity obtained by multiplying the charging rate (equivalent to the SOC) by the battery capacity to reduce the SOC of the battery.
  • the values shown in Table 1 were adjusted.
  • the SOC was not adjusted for the batteries with an SOC of 0%.
  • Example 5 (Comparison) The uncharged battery obtained in (6) above was used as it was for reflow soldering without the initial charge/discharge and SOC adjustment in (7) above, and in the evaluation of the non-defective product rate in (9) above. A battery was fabricated and evaluated in the same manner as in Example 1, except that the SOC was not adjusted to 30% and the resistance was measured in an uncharged state.
  • Examples 6-8 i) no glass frit was added in the production of MgO in (3) above (that is, the ratio of MgO powder and glass frit was set to 100:0); The thickness after firing was set to 12 ⁇ m, iii) the lamination, pressure bonding and firing in (4) above were performed as in (4′) below, and iv) integral sintering in (5) above.
  • the entire positive electrode/separator sintered plate obtained in (4′) below was coated with a metal oxide layer instead of the body plate, v) In (6a) above, the undried printed pattern
  • the negative electrode sintered body plate prepared in (4′) below is placed so that the negative electrode layer 16 fits inside, and vi) the assembly of the coin-shaped battery in (6c) above is performed as in (6c′) below.
  • Batteries were fabricated and evaluated in the same manner as in Examples 1, 3 and 4, except for what was done. That is, Examples 6, 7 and 8 correspond to Examples 1, 3 and 4, respectively, except for the changes i) to vi) above.
  • the electrolytic solution a liquid obtained by dissolving LiBF 4 in a PC organic solvent so as to have a concentration of 1.5 mol/L was used.
  • the positive terminal was joined to the positive can and the negative terminal to the negative can by resistance welding. Thus, 200 batteries were produced.
  • Table 1 shows the production conditions and yield of the batteries produced in Result Examples 1 to 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

リフローはんだ付け時の加熱による電池性能の劣化を効果的に抑制可能な、回路基板アセンブリの製造方法が提供される。この製造方法は、回路基板にリチウムイオン二次電池をリフローはんだ付けにより接続することを含み、リチウムイオン二次電池は、少なくとも初期充放電が施されたものであり、リフローはんだ付け時における、リチウムイオン二次電池の充電状態(SOC)が0~29%である。

Description

回路基板アセンブリの製造方法
 本発明は、回路基板アセンブリの製造方法に関するものである。
 充電を必要とする様々なデバイスにコイン形リチウムイオン二次電池が広く利用されており、様々なコイン形リチウムイオン二次電池が提案されている。例えば、特許文献1(特開2012-209178号公報)には、外部端子を兼ねる正極ケースの内面に正極が配置され、かつ、外部端子を兼ねる負極封口板の内面に負極が配置され、正極と負極がセパレータを介して対向されたコイン形電池が開示されている。かかるコイン型電池は、正極ケースと封口板の周縁部が内部に電解液を保持するようにガスケットを介して封口されている。上述したような二次電池では、正極活物質、導電助剤、バインダー等を含む正極合剤を塗布及び乾燥させて作製された、粉末分散型の正極(いわゆる塗工電極)が採用されている。
 ところで、一般的に、粉末分散型の正極は、容量に寄与しない成分(バインダーや導電助剤)を比較的多量に(例えば10重量%程度)含んでいるため、正極活物質としてのリチウム複合酸化物の充填密度が低くなる。このため、粉末分散型の正極は、容量や充放電効率の面で改善の余地が大きかった。そこで、正極ないし正極活物質層をリチウム複合酸化物焼結体板で構成することにより、容量や充放電効率を改善しようとする試みがなされている。この場合、正極又は正極活物質層にはバインダーや導電助剤が含まれないため、リチウム複合酸化物の充填密度が高くなることで、高容量や良好な充放電効率が得られることが期待される。例えば、特許文献2(WO2019/221139)には、リチウム複合酸化物焼結体板である正極板と、チタン含有焼結体板である負極板と、セパレータと、電解液とを外装体内に備えた、コイン形リチウムイオン二次電池が開示されており、焼結体板を電極として用いることで、リフローはんだ付けを可能とする優れた耐熱性が得られるとされている。
特開2012-209178号公報 WO2019/221139
 回路基板にリチウムイオン二次電池をリフローはんだ付けで実装する場合、リフロー加熱時に高温(例えば260℃)に曝されることになるため、電池性能が劣化しやすいという問題がある。この点、特許文献2にはリフローはんだ付け可能なリチウムイオン二次電池が開示されているが、リフローはんだ付け時の好適条件が不明なこともあり、製造条件には改善の余地がある。したがって、リフローはんだ付けが施されても電池性能が劣化しにくい製法が求められている。
 本発明者らは、今般、リチウムイオン二次電池を0~29%の充電状態(SOC)でリフローはんだ付けに用いることで、リフロー加熱による電池性能の劣化を効果的に抑制できるとの知見を得た。
 したがって、本発明の目的は、リフローはんだ付け時の加熱による電池性能の劣化を効果的に抑制可能な、回路基板アセンブリの製造方法を提供することにある。
 本発明によれば、以下の態様が提供される。
[態様1]
 回路基板にリチウムイオン二次電池をリフローはんだ付けにより接続することを含む、回路基板アセンブリの製造方法であって、
 前記リチウムイオン二次電池は、少なくとも初期充放電が施されたものであり、前記リフローはんだ付け時における、前記リチウムイオン二次電池の充電状態(SOC)が0~29%である、回路基板アセンブリの製造方法。
[態様2]
 前記リチウムイオン二次電池の充電状態(SOC)が0~28%である、態様1に記載の回路基板アセンブリの製造方法。
[態様3]
 前記リチウムイオン二次電池の充電状態(SOC)が0~20%である、態様1に記載の回路基板アセンブリの製造方法。
[態様4]
 前記リフローはんだ付けにおけるリフロー加熱が180~270℃で行われる、態様1~3のいずれか一つに記載の回路基板アセンブリの製造方法。
[態様5]
 前記リチウムイオン二次電池が、
 正極層と、
 負極層と、
 前記正極層と前記負極層との間に介在されるセパレータと、
 電解質と、
 前記正極層、前記負極層、前記セパレータ及び前記電解質が収容される密閉空間を備えた外装体と、
を備えた、態様1~4のいずれか一つに記載の回路基板アセンブリの製造方法。
[態様6]
 前記外装体が、正極缶、負極缶及びガスケットを備え、前記正極缶及び前記負極缶が前記ガスケットを介してかしめられて前記密閉空間を形成している、態様5に記載の回路基板アセンブリの製造方法。
[態様7]
 前記外装体の前記正極層寄りの外表面に接合された正極端子と、前記外装体の前記負極層寄りの外表面に接合された負極端子とを更に備えており、
 前記正極端子及び/又は前記負極端子が、前記リフローはんだにより前記回路基板と接続される、態様5又は6に記載の回路基板アセンブリの製造方法。
[態様8]
 前記正極層が、セラミック正極板である、態様5~7のいずれか一つに記載の回路基板アセンブリの製造方法。
[態様9]
 前記セラミック正極板が、リチウム複合酸化物焼結体板である、態様8に記載の回路基板アセンブリの製造方法。
[態様10]
 前記リチウム複合酸化物がコバルト酸リチウムである、態様9に記載の回路基板アセンブリの製造方法。
[態様11]
 前記負極層が、セラミック負極板である、態様5~10のいずれか一つに記載の回路基板アセンブリの製造方法。
[態様12]
 前記セラミック負極板が、チタン含有焼結体板である、態様11に記載の回路基板アセンブリの製造方法。
[態様13]
 前記チタン含有焼結体が、チタン酸リチウム又はニオブチタン複合酸化物を含む、態様12に記載の回路基板アセンブリの製造方法。
[態様14]
 前記セパレータが、セルロース製、ポリイミド製、ポリエステル製、又はMgO、Al、ZrO、SiC、Si、AlN、及びコーディエライトからなる群から選択されるセラミック製である、態様5~13のいずれか一つに記載の回路基板アセンブリの製造方法。
[態様15]
 前記電解質が電解液の形態で供され、該電解液が、γ-ブチロラクトン(GBL)、エチレンカーボネート(EC)及びプロピレンカーボネート(PC)からなる群から選択される少なくとも1種からなる非水溶媒中にホウフッ化リチウム(LiBF)を含む液である、態様5~14のいずれか一つに記載の回路基板アセンブリの製造方法。
本発明に用いるリチウムイオン二次電池の一例の模式断面図である。 配向正極板の板面に垂直な断面の一例を示すSEM像である。 図2に示される配向正極板の断面におけるEBSD像である。 図3のEBSD像における一次粒子の配向角度の分布を面積基準で示すヒストグラムである。
 回路基板アセンブリの製造方法
 本発明は、回路基板アセンブリの製造方法に関する。本明細書において「回路基板アセンブリ」なる用語は、回路基板上にリチウムイオン二次電池(及び所望によりデバイス)を実装した製品を指すものである。本発明の製造方法は、回路基板にリチウムイオン二次電池をリフローはんだ付けにより接続することを含む。リチウムイオン二次電池は、少なくとも初期充放電が施されたものである。そして、リフローはんだ付け時における、リチウムイオン二次電池の充電状態(SOC)が0~29%である。このように、リチウムイオン二次電池を0~29%のSOCでリフローはんだ付けに用いることで、リフローはんだ付け時の加熱(リフロー加熱)による電池性能の劣化を効果的に抑制することができる。
 前述のとおり、回路基板にリチウムイオン二次電池をリフローはんだ付けで実装する場合、リフロー加熱時に高温(例えば260℃)に曝されて電池性能が劣化しやすいという問題があったが、本発明によればその問題が好都合に解消される。そのメカニズムの詳細は定かではないが、以下のようなものと考えられる。リチウムイオン二次電池がリフロー加熱時の高温に曝されると、電極と電解質(典型的には電解液)及び/又は水分との反応、あるいは電解液の揮発により、電池内部にガスが発生して、そのガスが電池抵抗の上昇をもたらす。この点、電池のSOCが0~29%であるとリフロー加熱時のガス発生量が少なくなり、その結果、リフロー加熱による電池抵抗の増加が有意に低減され、リフロー加熱後の製品歩留まりが改善すると考えられる。
 リフローはんだ付け時における、リチウムイオン二次電池のSOCは0~29%であり、好ましくは0~28%、より好ましくは0~20%、さらに好ましくは0~15%、特に好ましくは0~10%、より特に好ましくは0~5%、さらに特に好ましくは0~3%、最も好ましくは0%である。SOCが0%に近いほどリフロー加熱時における電池内部でのガスの発生を低減することができ、その結果、電池性能の劣化をより効果的に抑制することができる。SOCは、公知の手法により測定すればよいが、リチウムイオン二次電池に初期充放電を施し、その放電された状態をSOC0%とし、上記範囲内のSOCになるように必要に応じて充電を施せばよい。その意味で、本発明に用いるリチウムイオン二次電池は、少なくとも初期充放電が施されたものであるといえる。もっとも、初期充放電は、充電した後、途中まで放電して所望のSOCに調整するものであってもよい。
 回路基板へのリチウムイオン二次電池を接続は、公知のリフローはんだ付けの手法により行えばよい。例えば、回路基板の所定位置にはんだ(例えばソルダーペースト)を塗布又は印刷し、当該位置にリチウムイオン二次電池を載置し、リフロー炉で所定の温度プロファイルでリフロー加熱してはんだを溶融させ、溶融したはんだを冷却して凝固させることにより、リフローはんだ付けを行うことができる。リチウムイオン二次電池が、正極端子及び負極端子を有する場合、正極端子及び/又は負極端子が、リフローはんだにより回路基板と接続されるのが好ましい。
 リフローはんだ付けにおけるリフロー加熱は、180~270℃で行われるのが典型的であり、より典型的には200~260℃である。この温度は、リチウムイオン二次電池について測定される温度である。また、上記温度範囲で典型的には5~100秒間、より典型的には10~60秒間保持され、最高到達温度が200~270℃とされる加熱プロファイルを採用するのが好ましい。このような高温に曝されても、本発明の製造方法によれば、電池性能の劣化を効果的に抑制することができる。
 リチウムイオン二次電池
 図1に本発明に好ましく用いられるリチウムイオン二次電池の一例を模式的に示す。図1に示されるリチウムイオン二次電池10は、正極層12と、負極層16と、セパレータ20と、電解液22(又は電解質)と、外装体24とを備える。セパレータ20は、正極層12と負極層16との間に介在される。外装体24は、密閉空間を備えており、この密閉空間内に正極層12、負極層16、セパレータ20及び電解液22が収容される。図1に示されるリチウムイオン二次電池10は電解質が電解液22の形態で供されるものであるが、電解液22の代わりに、固体電解質又はポリマー電解質を用いてもよい。したがって、本段落及び以下の説明において、「電解液」なる用語は技術的な齟齬を生じないかぎりにおいて「電解質」と読み替え可能なものとする。すなわち、本発明に用いることができる電池は全固体電池であってもよい。また、リチウムイオン二次電池10は図1に示されるようにコイン形であるのが好ましいが、これに限定されず、様々な形のリチウムイオン二次電池でありうる。
 本発明の好ましい態様によれば、リチウムイオン二次電池10は、外装体24の正極層12寄りの外表面に接合された正極端子(図示せず)と、外装体24の負極層16寄りの外表面に接合された負極端子(図示せず)とを更に備える。この場合、前述したように、正極端子及び/又は負極端子が、リチウムイオン二次電池10を回路基板に実装するためのリフローはんだ付けに用いられるのが好ましい。すなわち、正極端子及び/又は負極端子が、リフローはんだにより回路基板と接続されるのが好ましい。なお、正極端子は外装体24の正極缶24aに抵抗溶接、拡散溶接、レーザー溶接等の手法により接合されるのが好ましい。同様に、負極端子は外装体24の負極缶24bに抵抗溶接、拡散溶接、レーザー溶接等の手法により接合されるのが好ましい。
 リチウムイオン二次電池10の外径は、特に限定されないが、典型的には8~25mmあり、より典型的には9.5~22mm、さらに典型的には12.5~20mmである。
 正極層12は、正極活物質を含む層である。正極層12は、正極活物質(例えばコバルト酸リチウム)、導電助剤、バインダー等を含む正極合剤を塗布及び乾燥させて作製された、粉末分散型の正極(いわゆる塗工電極)であってもよいが、好ましくはセラミック正極板であり、より好ましくはリチウム複合酸化物焼結体板である。正極層12がセラミック正極板又は焼結体板であるということは、正極層12がバインダーや導電助剤を含んでいないことを意味する。これは、グリーンシートにバインダーが含まれていたとしても、焼成時にバインダーが消失又は焼失するからである。そして、正極層12がバインダーを含まないことで、電解液22による正極の劣化を回避できるとの利点がある。なお、焼結体板を構成するリチウム複合酸化物は、コバルト酸リチウム(典型的にはLiCoO(以下、LCOと略称することがある))であるのが特に好ましい。様々なリチウム複合酸化物焼結体板ないしLCO焼結体板が知られており、例えば特許文献2(WO2019/221139)に開示されるものを使用することができる。
 本発明の好ましい態様によれば、正極層12を構成するリチウム複合酸化物焼結体板は、リチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向正極板である。図2に配向正極板の板面に垂直な断面SEM像の一例を示す一方、図3に配向正極板の板面に垂直な断面における電子線後方散乱回折(EBSD:Electron Backscatter Diffraction)像を示す。また、図4に、図3のEBSD像における一次粒子11の配向角度の分布を面積基準で示すヒストグラムを示す。図3に示されるEBSD像では、結晶方位の不連続性を観測することができる。図3では、各一次粒子11の配向角度が色の濃淡で示されており、色が濃いほど配向角度が小さいことを示している。配向角度とは、各一次粒子11の(003)面が板面方向に対して成す傾斜角度である。なお、図2及び3において、配向正極板の内部で黒表示されている箇所は気孔である。
 配向正極板である正極層12は、互いに結合された複数の一次粒子11で構成された配向焼結体である。各一次粒子11は、主に板状であるが、直方体状、立方体状及び球状などに形成されたものが含まれていてもよい。各一次粒子11の断面形状は特に制限されるものではなく、矩形、矩形以外の多角形、円形、楕円形、或いはこれら以外の複雑形状であってもよい。
 各一次粒子11はリチウム複合酸化物で構成される。リチウム複合酸化物とは、LiMO(0.05<x<1.10であり、Mは少なくとも1種類の遷移金属であり、Mは典型的にはCo、Ni及びMnの1種以上を含む)で表される酸化物である。リチウム複合酸化物は層状岩塩構造を有する。層状岩塩構造とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的にはα-NaFeO型構造、すなわち立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。リチウム複合酸化物の例としては、LiCoO(コバルト酸リチウム)、LiNiO(ニッケル酸リチウム)、LiMnO(マンガン酸リチウム)、LiNiMnO(ニッケル・マンガン酸リチウム)、LiNiCoO(ニッケル・コバルト酸リチウム)、LiCoNiMnO(コバルト・ニッケル・マンガン酸リチウム)、LiCoMnO(コバルト・マンガン酸リチウム)等が挙げられ、特に好ましくはLiCoO(コバルト酸リチウム、典型的にはLiCoO)である。リチウム複合酸化物には、Mg、Al、Si、Ca、Ti、V、Cr、Fe、Cu、Zn、Ga、Ge、Sr、Y,Zr、Nb、Mo、Ag、Sn、Sb、Te、Ba、Bi、及びWから選択される1種以上の元素が含まれていてもよい。
 図3及び4に示されるように、各一次粒子11の配向角度の平均値、すなわち平均配向角度は0°超30°以下である。これにより、以下の様々な利点がもたらされる。第一に、各一次粒子11が厚み方向に対して傾斜した向きに寝た状態になるため、各一次粒子同士の密着性を向上させることができる。その結果、ある一次粒子11と当該一次粒子11の長手方向両側に隣接する他の一次粒子11との間におけるリチウムイオン伝導性を向上させることができるため、レート特性を向上させることができる。第二に、レート特性をより向上させることができる。これは、上述のとおり、リチウムイオンの出入りに際して、配向正極板では、板面方向よりも厚み方向における膨張収縮が優勢となるため、配向正極板の膨張収縮がスムーズになるところ、それに伴ってリチウムイオンの出入りもスムーズになるからである。また、配向している場合は、リフローはんだを施す際に電極板にかかる応力を電極内に存在する粒子に均一化する効果も期待できる。さらに、その効果は、上記配向方位の場合により好ましく発揮される。
 一次粒子11の平均配向角度は、以下の手法によって得られる。まず、図3に示されるような、95μm×125μmの矩形領域を1000倍の倍率で観察したEBSD像において、配向正極板を厚み方向に四等分する3本の横線と、配向正極板を板面方向に四等分する3本の縦線とを引く。次に、3本の横線と3本の縦線のうち少なくとも1本の線と交差する一次粒子11すべての配向角度を算術平均することによって、一次粒子11の平均配向角度を得る。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、30°以下が好ましく、より好ましくは25°以下である。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、2°以上が好ましく、より好ましくは5°以上である。
 図4に示されるように、各一次粒子11の配向角度は、0°から90°まで広く分布していてもよいが、その大部分は0°超30°以下の領域に分布していることが好ましい。すなわち、配向正極板を構成する配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうち配向正極板の板面に対する配向角度が0°超30°以下である一次粒子11(以下、低角一次粒子という)の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。これにより、相互密着性の高い一次粒子11の割合を増加させることができるため、レート特性をより向上させることができる。また、低角一次粒子のうち配向角度が20°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して50%以上であることがより好ましい。さらに、低角一次粒子のうち配向角度が10°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して15%以上であることがより好ましい。
 各一次粒子11は、主に板状であるため、図2及び3に示されるように、各一次粒子11の断面はそれぞれ所定方向に延びており、典型的には略矩形状となる。すなわち、配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうちアスペクト比が4以上である一次粒子11の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。具体的には、図3に示されるようなEBSD像において、これにより、一次粒子11同士の相互密着性をより向上することができ、その結果、レート特性をより向上させることができる。一次粒子11のアスペクト比は、一次粒子11の最大フェレー径を最小フェレー径で除した値である。最大フェレー径は、断面観察した際のEBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最大距離である。最小フェレー径は、EBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最小距離である。
 配向焼結体を構成する複数の一次粒子の平均粒径が5μm以上であるのが好ましい。具体的には、平均配向角度の算出に用いた30個の一次粒子11の平均粒径が、5μm以上であることが好ましく、より好ましくは7μm以上、さらに好ましくは12μm以上である。これにより、リチウムイオンが伝導する方向における一次粒子11同士の粒界数が少なくなって全体としてのリチウムイオン伝導性が向上するため、レート特性をより向上させることができる。一次粒子11の平均粒径は、各一次粒子11の円相当径を算術平均した値である。円相当径とは、EBSD像上において、各一次粒子11と同じ面積を有する円の直径のことである。
 正極層12を構成するリチウム複合酸化物焼結体板は気孔を含んでいるのが好ましい。焼結体が気孔、特に開気孔を含むことで、正極板として電池に組み込まれた場合に、電解液を焼結体の内部に浸透させることができ、その結果、リチウムイオン伝導性を向上することができる。これは、焼結体内におけるリチウムイオンの伝導は、焼結体の構成粒子を経る伝導と、気孔内の電解液を経る伝導の2種類があるところ、気孔内の電解液を経る伝導の方が圧倒的に速いためである。
 正極層12を構成するリチウム複合酸化物焼結体板は気孔率が20~60%であるのが好ましく、より好ましくは25~55%、さらに好ましくは30~50%、特に好ましくは30~45%である。気孔による応力開放効果、及び高容量化が期待できるとともに、一次粒子11同士の相互密着性をより向上できるため、レート特性をより向上させることができる。焼結体の気孔率は、正極板の断面をCP(クロスセクションポリッシャ)研磨にて研磨した後に1000倍率でSEM観察して、得られたSEM画像を2値化することで算出される。配向焼結体の内部に形成される各気孔の平均円相当径は特に制限されないが、好ましくは8μm以下である。各気孔の平均円相当径が小さいほど、一次粒子11同士の相互密着性をさらに向上することができ、その結果、レート特性をさらに向上させることができる。気孔の平均円相当径は、EBSD像上の10個の気孔の円相当径を算術平均した値である。円相当径とは、EBSD像上において、各気孔と同じ面積を有する円の直径のことである。配向焼結体の内部に形成される各気孔は、リチウム複合酸化物焼結体板の外部につながる開気孔であるのが好ましい。
 正極層12を構成するリチウム複合酸化物焼結体板の平均気孔径は0.1~10.0μmであるのが好ましく、より好ましくは0.2~5.0μm、さらに好ましくは0.3~3.0μmである。上記範囲内であると、大きな気孔の局所における応力集中の発生を抑制して、焼結体内における応力が均一に開放されやすくなる。
 正極層12を構成するリチウム複合酸化物焼結体板の厚さは60~600μmであるのが好ましく、より好ましくは70~550μm、さらに好ましくは90~500μmである。このような範囲内であると、単位面積当りの活物質容量を高めてリチウムイオン二次電池10のエネルギー密度を向上するとともに、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を抑制できる。
 負極層16は、負極活物質を含む層である。負極層16は、負極活物質、導電助剤、バインダー等を含む負極合剤を塗布及び乾燥させて作製された、粉末分散型の負極(いわゆる塗工電極)であってもよいが、好ましくはセラミック負極板であり、より好ましくはチタン含有焼結体板である。チタン含有焼結体板は、チタン酸リチウムLiTi12(以下、LTO)又はニオブチタン複合酸化物NbTiOを含むのが好ましく、より好ましくはLTOを含む。なお、LTOは典型的にはスピネル型構造を有するものとして知られているが、充放電時には他の構造も採りうる。例えば、LTOは充放電時にLiTi12(スピネル構造)とLiTi12(岩塩構造)の二相共存にて反応が進行する。したがって、LTOはスピネル構造に限定されるものではない。
 負極層16がセラミック負極板又は焼結体板であるということは、負極層16がバインダーや導電助剤を含んでいないことを意味する。これは、グリーンシートにバインダーが含まれていたとしても、焼成時にバインダーが消失又は焼失するからである。負極板にはバインダーが含まれないため、負極活物質(例えばLTO又はNbTiO)の充填密度が高くなることで、高容量や良好な充放電効率を得ることができる。LTO焼結体板は、特許文献2(WO2019/221139)に記載される方法に従って製造することができる。
 負極層16を構成するチタン含有焼結体板は、複数の(すなわち多数の)一次粒子が結合した構造を有している。したがって、これらの一次粒子がLTO又はNbTiOで構成されるのが好ましい。
 負極層16を構成するチタン含有焼結体板の厚さは、70~500μmが好ましく、好ましくは85~400μm、より好ましくは95~350μmである。LTO焼結体板が厚いほど、高容量及び高エネルギー密度の電池を実現しやすくなる。チタン含有焼結体板の厚さは、例えば、チタン含有焼結体板の断面をSEM(走査電子顕微鏡)によって観察した場合における、略平行に観察される板面間の距離を測定することで得られる。
 チタン含有焼結体板を構成する複数の一次粒子の平均粒径である一次粒径は1.2μm以下が好ましく、より好ましくは0.02~1.2μm、さらに好ましくは0.05~0.7μmである。このような範囲内であるとリチウムイオン伝導性及び電子伝導性を両立しやすく、レート性能の向上に寄与する。
 負極層16を構成するチタン含有焼結体板は気孔を含んでいるのが好ましい。焼結体板が気孔、特に開気孔を含むことで、負極板として電池に組み込まれた場合に、電解液を焼結体板の内部に浸透させることができ、その結果、リチウムイオン伝導性を向上することができる。これは、焼結体内におけるリチウムイオンの伝導は、焼結体の構成粒子を経る伝導と、気孔内の電解液を経る伝導の2種類があるところ、気孔内の電解液を経る伝導の方が圧倒的に速いためである。
 負極層16を構成するチタン含有焼結体板の気孔率は20~60%が好ましく、より好ましくは30~55%、さらに好ましくは35~50%である。このような範囲内であるとリチウムイオン伝導性及び電子伝導性を両立しやすく、レート性能の向上に寄与する。
 負極層16を構成するチタン含有焼結体板の平均気孔径は0.08~5.0μmであり、好ましくは0.1~3.0μm、より好ましく0.12~1.5μmである。このような範囲内であるとリチウムイオン伝導性及び電子伝導性を両立しやすく、レート性能の向上に寄与する。
 セパレータ20は、セルロース製、ポリオレフィン製、ポリイミド製、ポリエステル製(例えばポリエチレンテレフタレート(PET))又はセラミック製のセパレータであるのが好ましい。セルロース製のセパレータは安価でかつ耐熱性に優れる点で有利である。また、ポリイミド製、ポリエステル製(例えばポリエチレンテレフタレート(PET))又はセルロース製のセパレータは、広く用いられている、耐熱性に劣るポリオレフィン製セパレータとは異なり、それ自体の耐熱性に優れるだけでなく、耐熱性に優れる電解液成分であるγ-ブチロラクトン(GBL)に対する濡れ性にも優れる。したがって、GBLを含む電解液を用いる場合に、電解液をセパレータに(弾かせることなく)十分に浸透させることができる。一方、セラミック製のセパレータは、耐熱性に優れるのは勿論のこと、正極層12及び負極層16と一緒に全体として1つの一体焼結体として製造できるとの利点がある。セラミックセパレータの場合、セパレータを構成するセラミックはMgO、Al、ZrO、SiC、Si、AlN、及びコーディエライトから選択される少なくとも1種であるのが好ましく、より好ましくはMgO、Al、及びZrOから選択される少なくとも1種である。
 電解液22は特に限定されず、有機溶媒等の非水溶媒中にリチウム塩を溶解させた液等、リチウム電池用の市販の電解液を使用すればよい。特に、耐熱性に優れた電解液が好ましく、そのような電解液は、非水溶媒中にホウフッ化リチウム(LiBF)を含むものが好ましい。この場合、好ましい非水溶媒は、γ-ブチロラクトン(GBL)、エチレンカーボネート(EC)及びプロピレンカーボネート(PC)からなる群から選択される少なくとも1種であり、より好ましくはEC及びGBLからなる混合溶媒、PCからなる単独溶媒、PC及びGBLからなる混合溶媒、又はGBLからなる単独溶媒であり、特に好ましくはEC及びGBLからなる混合溶媒又はGBLからなる単独溶媒である。非水溶媒はγ-ブチロラクトン(GBL)を含むことで沸点が上昇し、耐熱性の大幅な向上をもたらす。かかる観点から、EC及び/又はGBL含有非水溶媒におけるEC:GBLの体積比は0:1~1:1(GBL比率50~100体積%)であるのが好ましく、より好ましくは0:1~1:1.5(GBL比率60~100体積%)、さらに好ましくは0:1~1:2(GBL比率66.6~100体積%)、特に好ましくは0:1~1:3(GBL比率75~100体積%)である。非水溶媒中に溶解されるホウフッ化リチウム(LiBF)は分解温度の高い電解質であり、これもまた耐熱性の大幅な向上をもたらす。電解液22におけるLiBF濃度は0.5~2mol/Lであるのが好ましく、より好ましくは0.6~1.9mol/L、さらに好ましくは0.7~1.7mol/L、特に好ましくは0.8~1.5mol/Lである。
 電解液22は添加剤としてビニレンカーボネート(VC)及び/又はフルオロエチレンカーボネート(FEC)及び/又はビニルエチレンカーボネート(VEC)及び/又はプロパンスルトン(PS)をさらに含むものであってもよい。VC及びFECはいずれも耐熱性に優れる。したがって、かかる添加剤を電解液22が含むことで、耐熱性に優れたSEI膜を負極層16表面に形成させることができる。
 前述のとおり、電解液22の代わりに、固体電解質又はポリマー電解質を用いてもよい(言い換えると、電解質として、電解液22以外に、固体電解質やポリマー電解質を用いることができる。)。その場合には、電解液22の場合と同様、少なくともセパレータ20の気孔内部に電解質が含浸されていることが好ましい。含浸方法は特に限定されないが、例として、電解質を溶融してセパレータ20の気孔内に浸入させる方法、電解質の圧粉体をセパレータ20に押し当てる方法等が挙げられる。あるいは、セパレータ20自体が固体電解質で構成されてもよい。
 外装体24は密閉空間を備え、この密閉空間内に正極層12、負極層16、セパレータ20及び電解液22が収容される。外装体24は、コイン形電池に一般的に採用される構造(例えば特許文献1及び2参照)を採用すればよく、特に限定されない。典型的には、外装体24は、正極缶24a、負極缶24b及びガスケット24cを備え、正極缶24a及び負極缶24bがガスケット24cを介してかしめられて密閉空間を形成している。正極缶24a及び負極缶24bはステンレス鋼等の金属製であることができ、特に限定されない。ガスケット24cはポリプロピレン、ポリテトラフルオロエチレン等の絶縁樹脂製の環状部材であることができ、特に限定されない。また、ガスケット24cにはシール性改善のためにゲル状の溶液を塗布してもよい。ゲル状の溶液に用いる溶液種は、加熱硬化型のオレフィン系や合成ゴム系等が挙げられるが、溶媒が揮発後に粘性若しくは接着性があれば、それらに限定されない。また、塗布方法も限定されず、ガスケット24cを溶液ディッピングしてもよいし、ディスペンサー等で溶液をガスケット24cに塗布してもよい。
 リチウムイオン二次電池10は、正極集電体14及び/又は負極集電体18をさらに備えているのが好ましい。正極集電体14及び負極集電体18は特に限定されないが、好ましくは銅箔やアルミニウム箔等の金属箔である。正極集電体14は正極層12と正極缶24aとの間に配置されるのが好ましく、負極集電体18は負極層16と負極缶24bとの間に配置されるのが好ましい。また、正極層12と正極集電体14との間には接触抵抗低減の観点から正極側カーボン層13が設けられるのが好ましい。同様に、負極層16と負極集電体18との間には接触抵抗低減の観点から負極側カーボン層17が設けられるのが好ましい。正極側カーボン層13及び負極側カーボン層17はいずれも導電性カーボンで構成されるのが好ましく、例えば導電性カーボンペーストをスクリーン印刷等により塗布することにより形成すればよい。
 電池要素は、図1に示されるような、正極層12/セパレータ20/負極層16の単位セルの形態のみならず、単位セルを複数個備えた多層セルの形態であってもよい。多層セルは、平らな板ないし層を積み上げた形態の平板積層構造に限らず、以下の例示を含む様々な積層構造でありうる。なお、以下に例示するいずれの構成はセル積層体全体として1つの一体焼結体であってもよい。
‐折り返し構造:単位セル及び集電層を含む層構成のシートが1回又は複数回折り返されることにより多層化(大面積化)された積層構造。
‐巻回構造:単位セル及び集電層を含む層構成のシートが巻回されて一体化されることにより多層化(大面積化)された積層構造。
‐積層セラミックコンデンサ(MLCC)様構造:厚さ方向に集電層/正極層/セラミックセパレータ層/負極層/集電層の積層単位が繰り返されることにより多層化(大面積化)され、かつ、複数の正極層が一方の側(例えば左側)で、複数の負極層が他方の側(例えば右側)で集電される積層構造。
 正極板の製造方法
 正極層12の好ましい形態であるリチウム複合酸化物焼結体板はいかなる方法で製造されたものであってもよいが、好ましくは、(a)リチウム複合酸化物含有グリーンシートの作製、(b)所望により行われる過剰リチウム源含有グリーンシートの作製、並びに(c)グリーンシートの積層及び焼成を経て製造される。
(a)リチウム複合酸化物含有グリーンシートの作製
 まず、リチウム複合酸化物で構成される原料粉末を用意する。この粉末は、LiMOなる組成(Mは前述したとおりである)の合成済みの板状粒子(例えばLiCoO板状粒子)を含むのが好ましい。原料粉末の体積基準D50粒径は0.3~30μmが好ましい。例えば、LiCoO板状粒子の作製方法は次のようにして行うことができる。まず、Co原料粉末とLiCO原料粉末とを混合して焼成(500~900℃、1~20時間)することによって、LiCoO粉末を合成する。得られたLiCoO粉末をポットミルにて体積基準D50粒径0.2μm~10μmに粉砕することによって、板面と平行にリチウムイオンを伝導可能な板状のLiCoO粒子が得られる。このようなLiCoO粒子は、LiCoO粉末スラリーを用いたグリーンシートを粒成長させた後に解砕する手法や、フラックス法や水熱合成、融液を用いた単結晶育成、ゾルゲル法など板状結晶を合成する手法によっても得ることができる。得られたLiCoO粒子は、劈開面に沿って劈開しやすい状態となっている。LiCoO粒子を解砕によって劈開させることで、LiCoO板状粒子を作製することができる。
 上記板状粒子を単独で原料粉末として用いてもよいし、上記板状粉末と他の原料粉末(例えばCo粒子)との混合粉末を原料粉末として用いてもよい。後者の場合、板状粉末を配向性を与えるためのテンプレート粒子として機能させ、他の原料粉末(例えばCo粒子)をテンプレート粒子に沿って成長可能なマトリックス粒子として機能させるのが好ましい。この場合、テンプレート粒子とマトリックス粒子を100:0~3:97に混合した粉末を原料粉末とするのが好ましい。Co原料粉末をマトリックス粒子として用いる場合、Co原料粉末の体積基準D50粒径は特に制限されず、例えば0.1~1.0μmとすることができるが、LiCoOテンプレート粒子の体積基準D50粒径より小さいことが好ましい。このマトリックス粒子は、Co(OH)原料を500℃~800℃で1~10時間熱処理を行なうことによっても得ることができる。また、マトリックス粒子には、Coのほか、Co(OH)粒子を用いてもよいし、LiCoO粒子を用いてもよい。
 原料粉末がLiCoOテンプレート粒子100%で構成される場合、又はマトリックス粒子としてLiCoO粒子を用いる場合、焼成により、大判(例えば90mm×90mm平方)でかつ平坦なLiCoO焼結体板を得ることができる。そのメカニズムは定かではないが、焼成過程でLiCoOへの合成が行われないため、焼成時の体積変化が生じにくい若しくは局所的なムラが生じにくいことが予想される。
 原料粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには、後述する焼成工程中における粒成長の促進ないし揮発分の補償の目的で、LiMO以外のリチウム化合物(例えば炭酸リチウム)が0.5~30mol%程度過剰に添加されてもよい。スラリーには造孔材を添加しないのが望ましい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してリチウム複合酸化物含有グリーンシートを得る。こうして得られるグリーンシートは独立したシート状の成形体である。独立したシート(「自立膜」と称されることもある)とは、他の支持体から独立して単体で取り扱い可能なシートのことをいう(アスペクト比が5以上の薄片も含む)。すなわち、独立したシートには、他の支持体(基板等)に固着されて当該支持体と一体化された(分離不能ないし分離困難となった)ものは含まれない。シート成形は、原料粉末中の板状粒子(例えばテンプレート粒子)にせん断力を印加可能な成形手法を用いて行われるのが好ましい。こうすることで、一次粒子の平均傾斜角を板面に対して0°超30°以下にすることができる。板状粒子にせん断力を印加可能な成形手法としては、ドクターブレード法が好適である。リチウム複合酸化物含有グリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。
(b)過剰リチウム源含有グリーンシートの作製(任意工程)
 所望により、上記リチウム複合酸化物含有グリーンシートとは別に、過剰リチウム源含有グリーンシートを作製する。この過剰リチウム源は、Li以外の成分が焼成により消失するようなLiMO以外のリチウム化合物であるのが好ましい。そのようなリチウム化合物(過剰リチウム源)の好ましい例としては炭酸リチウムが挙げられる。過剰リチウム源は粉末状であるのが好ましく、過剰リチウム源粉末の体積基準D50粒径は0.1~20μmが好ましく、より好ましくは0.3~10μmである。そして、リチウム源粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。得られたスラリーを減圧下で撹拌して脱泡するとともに、粘度を1000~20000cPに調整するのが好ましい。得られたスラリーをシート状に成形して過剰リチウム源含有グリーンシートを得る。こうして得られるグリーンシートもまた独立したシート状の成形体である。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。過剰リチウム源含有グリーンシートの厚さは、リチウム複合酸化物含有グリーンシートにおけるCo含有量に対する、過剰リチウム源含有グリーンシートにおけるLi含有量のモル比(Li/Co比)が好ましくは0.1以上、より好ましくは0.1~1.1とすることができるような厚さに設定するのが好ましい。
(c)グリーンシートの積層及び焼成
 下部セッターに、リチウム複合酸化物含有グリーンシート(例えばLiCoOグリーンシート)、及び所望により過剰リチウム源含有グリーンシート(例えばLiCOグリーンシート)を順に載置し、その上に上部セッターを載置する。上部セッター及び下部セッターはセラミックス製であり、好ましくはジルコニア又はマグネシア製である。セッターがマグネシア製であると気孔が小さくなる傾向がある。上部セッターは多孔質構造やハニカム構造のものであってもよいし、緻密質構造であってもよい。上部セッターが緻密質であると焼結体板において気孔が小さくなり、気孔の数が多くなる傾向がある。必要に応じて、過剰リチウム源含有グリーンシートは、リチウム複合酸化物含有グリーンシートにおけるCo含有量に対する、過剰リチウム源含有グリーンシートにおけるLi含有量のモル比(Li/Co比)が好ましくは0.1以上、より好ましくは0.1~1.1となるようなサイズに切り出して用いられるのが好ましい。
 下部セッターにリチウム複合酸化物含有グリーンシート(例えばLiCoOグリーンシート)を載置した段階で、このグリーンシートを、所望により脱脂した後、600~850℃で1~10時間仮焼してもよい。この場合、得られた仮焼板の上に過剰リチウム源含有グリーンシート(例えばLiCOグリーンシート)及び上部セッターを順に載置すればよい。
 そして、上記グリーンシート及び/又は仮焼板をセッターで挟んだ状態で、所望により脱脂した後、中温域の焼成温度(例えば700~1000℃)で熱処理(焼成)することで、リチウム複合酸化物焼結体板が得られる。この焼成工程は、2度に分けて行ってもよいし、1度に行なってもよい。2度に分けて焼成する場合には、1度目の焼成温度が2度目の焼成温度より低いことが好ましい。こうして得られる焼結体板もまた独立したシート状である。
 負極板の製造方法
 負極層16の好ましい形態であるチタン含有焼結体板はいかなる方法で製造されたものであってもよい。例えば、LTO焼結体板は、(a)LTO含有グリーンシートの作製及び(b)LTO含有グリーンシートの焼成を経て製造されるのが好ましい。
(a)LTO含有グリーンシートの作製
 まず、チタン酸リチウムLiTi12で構成される原料粉末(LTO粉末)を用意する。原料粉末は市販のLTO粉末を使用してもよいし、新たに合成してもよい。例えば、チタンテトライソプロポキシアルコールとイソプロポキシリチウムの混合物を加水分解して得た粉末を用いてもよいし、炭酸リチウム、チタニア等を含む混合物を焼成してもよい。原料粉末の体積基準D50粒径は0.05~5.0μmが好ましく、より好ましくは0.1~2.0μmである。原料粉末の粒径が大きいと気孔が大きくなる傾向がある。また、原料粒径が大きい場合、所望の粒径となるように粉砕処理(例えばポットミル粉砕、ビーズミル粉砕、ジェットミル粉砕等)を行ってもよい。そして、原料粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには、後述する焼成工程中における粒成長の促進ないし揮発分の補償の目的で、LiMO以外のリチウム化合物(例えば炭酸リチウム)が0.5~30mol%程度過剰に添加されてもよい。スラリーには造孔材を添加しないのが望ましい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してLTO含有グリーンシートを得る。こうして得られるグリーンシートは独立したシート状の成形体である。独立したシート(「自立膜」と称されることもある)とは、他の支持体から独立して単体で取り扱い可能なシートのことをいう(アスペクト比が5以上の薄片も含む)。すなわち、独立したシートには、他の支持体(基板等)に固着されて当該支持体と一体化された(分離不能ないし分離困難となった)ものは含まれない。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。LTO含有グリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。
(b)LTO含有グリーンシートの焼成
 セッターにLTO含有グリーンシート載置する。セッターはセラミックス製であり、好ましくはジルコニア製又ははマグネシア製である。セッターにはエンボス加工が施されているのが好ましい。こうしてセッター上に載置されたグリーンシートを鞘に入れる。鞘もセラミックス製であり、好ましくはアルミナ製である。そして、この状態で、所望により脱脂した後、焼成することで、LTO焼結体板が得られる。この焼成は600~900℃で1~50時間行うのが好ましく、より好ましくは700~800℃で3~20時間である。こうして得られる焼結体板もまた独立したシート状である。焼成時の昇温速度は100~1000℃/hが好ましく、より好ましくは100~600℃/hである。特に、この昇温速度は、300℃~800℃の昇温過程で採用されるのが好ましく、より好ましくは400℃~800℃の昇温過程で採用される。
(c)まとめ
 上述のようにしてLTO焼結体板を好ましく製造することができる。この好ましい製造方法においては、1)LTO粉末の粒度分布を調整する、及び/又は2)焼成時の昇温速度を変えるのが効果的であり、これらがLTO焼結体板の諸特性の実現に寄与するものと考えられる。
 一体焼結体板の被覆方法
 本発明に用いるリチウムイオン二次電池に好ましく用いられる、正極層、セラミックセパレータ及び負極層の3層構成の一体焼結体板は、その全体が金属酸化物層で被覆されるのが好ましい。一体焼結体板の全体を金属酸化物層で被覆することにより、電池組立時の物理的衝撃による一体焼結板の層間剥離を抑制でき、なおかつ、充電状態での保存に伴う容量劣化をも抑制できる。この一体焼結体板の金属酸化物層による被覆は、いかなる方法により行われてもよいが、例えば、i)金属化合物を含むコーティング液を準備し、ii)このコーティング液に一体焼結体板を浸漬して内部までコーティング液を浸透させ、iii)一体焼結体を取り出して乾燥させた後、iv)金属化合物が付着された一体焼結体に熱処理を施して金属化合物を金属酸化物に変換し、それにより金属酸化物層を形成させるのが好ましい。上記i)で準備されるコーティング液は、熱処理により金属酸化物層を形成可能な金属化合物を溶媒(好ましくは有機溶媒)中に含有する液であれば特に限定されないが、金属化合物はZr、Mg、Al、Nb及びTiからなる群から選択される少なくとも1種の金属化合物が好ましく、より好ましくは金属アルコキシドである。そのような金属化合物の好ましい例としては、ジルコニウムテトラ-n-ブトキシド、マグネシウムジエトキシド、トリイソプロポキシアルミニウム、ニオブペンタエトキシド、チタンテトライソプロポキシド等の金属アルコキシド、が挙げられる。上記ii)においてコーティング液に浸漬された一体焼結体板は真空ないし減圧雰囲気下に付されるのが、一体焼結体板の内部にまでコーティング液を十分にかつ効率良く浸透させることができるので好ましい。上記iii)における乾燥は室温で行えばよいが、加熱して行ってもよい。上記iv)における熱処理は300~700℃で2~24時間行うのが好ましく、より好ましくは350~550℃で4~6時間である。こうして、全体が金属酸化物層で被覆された一体焼結体板が得られる。
 本発明を以下の例によってさらに具体的に説明する。
 例1~4及び9~11
 リフローはんだ用コイン形リチウムイオン二次電池の作製及び評価を以下のようにして作製した。
(1)LCOグリーンシート(正極グリーンシート)の作製
 まず、Li/Coのモル比が1.01となるように秤量されたCo粉末(Coremax社製)とLiCO粉末(本荘ケミカル株式会社製)を混合後、780℃で5時間保持し、得られた粉末をポットミルにて体積基準D50が0.4μmとなるように粉砕してLCO板状粒子からなる粉末を得た。得られたLCO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部、1重量部ZrO(シグマアルドリッチ社製)とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LCOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LCOグリーンシートを形成した。LCOグリーンシートの厚さは、焼成後の厚さが100μmになるようにした。
(2)LTOグリーンシート(負極グリーンシート)の作製
 まず、LTO粉末(体積基準D50粒径0.06μm、シグマアルドリッチジャパン合同会社製)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LTOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LTOグリーンシートを形成した。LTOグリーンシートの厚さは、焼成後の厚さが100μmになるようにした。
(3)MgOグリーンシート(セパレータグリーンシート)の作製
 炭酸マグネシウム粉末(神島化学工業株式会社製)を900℃で5時間熱処理してMgO粉末を得た。得られたMgO粉末とガラスフリット(日本フリット株式会社製、CK0199)を重量比4:1で混合した。得られた混合粉末(体積基準D50粒径0.4μm)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、スラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、セパレータグリーンシートを形成した。セパレータグリーンシートの厚さは、焼成後の厚さが25μmになるようにした。
(4)積層、圧着及び焼成
 LCOグリーンシート(正極グリーンシート)3枚、MgOグリーンシート(セパレータグリーンシート)及びLTOグリーンシート(負極グリーンシート)2枚を順に積み重ね、得られた積層体をCIP(冷間等方圧加圧法)により200kgf/cmでプレスしてグリーンシート同士を圧着した。こうして圧着された積層体を打ち抜き型で直径10mmの円板状に打ち抜いた。得られた円板状積層体を600℃で5時間脱脂した後、1000℃/hで800℃まで昇温して10分間保持する焼成を行い、その後冷却した。こうして、正極層(LCO焼結体層)12、セラミックセパレータ(MgOセパレータ)及び負極層(LTO焼結体層)の3層を含む1つの一体焼結体板(一体型電極)を得た。
(5)金属酸化物層による被覆
 まず、2-エトキシエタノール10g、アセチルアセトン0.25g、及びジルコニウムテトラ-n-ブトキシド1gを容器に入れて攪拌し、コーティング液とした。この溶液を容器に入れ、その中に上記(4)で得られた一体焼結体板を浸漬させた。この容器をデシケータに入れて-95kPaまで真空引きを行い、3分間放置した。その後、デシケータ内を大気下に戻し、一体焼結体板が入った容器を取り出した。ピンセットで一体焼結体板を不織布ワイパー上に取り出し、軽くコーティング液を拭き取った後、2時間室温で乾燥させた。アルミナセッターの上に乾燥後の一体焼結体板を置き、中型スーパーカンタル炉(共和高熱工業株式会社製)内にて400℃で5時間熱処理を行った。こうして全体が金属酸化物層(Zrの酸化物ないしZrとLiとの複合酸化物で構成される層)で被覆された一体焼結体板(一体型電極)を得た。
(6)リチウム二次電池の作製
(6a)負極層と負極集電体の導電性カーボンペーストによる接着
 アセチレンブラックとポリイミドアミドを質量比で3:1となるように秤量し、溶剤としての適宜量のNMP(N-メチル-2-ピロリドン)とともに混合して、導電性カーボンペーストを導電性接着剤として調製した。負極集電体としてのアルミニウム箔上に導電性カーボンペーストをスクリーン印刷した。未乾燥の印刷パターン(すなわち導電性カーボンペーストで塗布された領域)内に負極層16が収まるように上記(5)で作製した一体焼結体を載置し、60℃で30分間真空乾燥させることで、負極層と負極集電体とが負極側カーボン層を介して接着された構造体を作製した。なお、負極側カーボン層の厚さは10μmとした。
(6b)カーボン層付き正極集電体の準備
 アセチレンブラックとポリイミドアミドを質量比で3:1となるように秤量し、溶剤としての適宜量のNMP(N-メチル-2-ピロリドン)とともに混合して、導電性カーボンペーストを調製した。正極集電体としてのアルミニウム箔上に導電性カーボンペーストをスクリーン印刷した後、60℃で30分間真空乾燥させることで、表面に正極側カーボン層が形成された正極集電体を作製した。なお、正極側カーボン層の厚さは5μmとした。
(6c)コイン形電池の組立
 電池ケースを構成することになる正極缶と負極缶との間に、正極缶から負極缶に向かって、正極集電体、正極側カーボン層、一体焼結体板(LCO正極層、MgOセパレータ及びLTO負極層、負極側カーボン層、並びに負極集電体、ウェーブワッシャー(ミスミ製)がこの順に積層されるように収容し、電解液を充填した後に、ガスケットを介して正極缶と負極缶をかしめることによって封止した。こうして、直径12.5mm、厚さ1.0mmのコインセル形のリチウムイオン二次電池を作製した。このとき、電解液としては、PC有機溶媒に、LiBFを1.5mol/Lの濃度となるように溶解させた液を用いた。正極缶に正極端子を、負極缶に負極端子をそれぞれ抵抗溶接により接合した。各例について200個の電池を作製した。
(7)初期充放電及びSOCの調整
 作製した電池に初期充放電を行った。この初期充放電は、電池に対して、0.1Cの電流値で定電流(CC)充電を行って2.7Vの電圧に到達させ、引き続き定電圧(CV)充電を電流値が0.01Cになるまで行った後、0.05Cの電流値で定電流放電を1.5Vの電圧まで行うことにより、実施した。このときの放電容量を電池容量とし、0.05Cで放電された状態をSOC0%とした。例2、3、4及び10においては、このSOC0%の電池に対して、充電率(SOCに相当)と電池容量を掛けた容量分を0.1Cで定電流充電することで電池のSOCを表1に示される値に調整した。一方、例1、9及び11においては、SOC0%の電池に対してSOCの調整は行わなかった。
(8)回路基板アセンブリの製造
 リフロー炉(製品名:UNI-5016F、ANTOM社製)を用いて、上記(7)で得られた電池を回路基板にリフローはんだ付けの手法により接続した。この接続は、正極端子及び負極端子をリフローはんだ付けにより回路基板に接合することにより行った。回路基板と接続リフローはんだ付け時の加熱(リフロー加熱)は、最高温度が260℃(例1~4)、240℃(例9)又は280℃(例10及び11)であり、かつ、220℃以上の温度が60秒間与えられる加熱プロファイルで行った。このプロファイルでのリフロー加熱を合計2回(例1~4)又は1回(例9~11)行った。
(9)電池実装後の良品率
 上記(7)におけるリフローはんだ付けに用いる前の電池200個についてSOC30%での抵抗を予め測定して、平均値を抵抗初期値とした。抵抗値は交流インピーダンスの測定から10Hz時の抵抗値とした。上記(8)における回路基板に実装した後の各電池について、上記同様にSOC30%での抵抗を測定し、抵抗初期値からの増加割合が20%以下のものを良品であると判定した。200個の電池に占める良品の個数割合を算出して良品率とした。
 例5(比較)
 上記(7)の初期充放電及びSOCの調整を行わずに、上記(6)で得られた未充電の電池をそのままリフローはんだ付けに用いたこと、及び上記(9)の良品率の評価においてSOCを30%に調整せずに未充電のまま抵抗の測定を行ったこと以外は、例1と同様にして電池の作製及び評価を行った。
 例6~8
 i)上記(3)のMgOの作製においてガラスフリットを添加しなかったこと(すなわちMgO粉末とガラスフリットの比率を100:0としたこと)、ii)上記(3)においてセパレータグリーンシートの厚さを、焼成後の厚みが12μmになるようにしたこと、iii)上記(4)の積層、圧着及び焼成を下記(4’)のように行ったこと、iv)上記(5)において一体焼結体板の代わりに下記(4’)で得られた正極/セパレータ焼結体板の全体に対して金属酸化物層による被覆を行ったこと、v)上記(6a)において、未乾燥の印刷パターン内に負極層16が収まるように下記(4’)で作製した負極焼結体板を載置したこと、並びにvi)上記(6c)のコイン形電池の組立を下記(6c’)のように行ったこと以外は、例1、3及び4と同様にして電池の作製及び評価を行った。すなわち、例6、7及び8はそれぞれ、上記i)~vi)の変更点を除けば、例1、3及び4に対応している。
(4’)積層、圧着及び焼成
 LCOグリーンシート(正極グリーンシート)3枚及びMgOグリーンシート(セパレータグリーンシート)を順に積み重ね、得られた積層体をCIP(冷間等方圧加圧法)により200kgf/cmでプレスしてグリーンシート同士を圧着した。こうして圧着された積層体を打ち抜き型で直径10mmの円板状に打ち抜いた。得られた円板状積層体を600℃で5時間脱脂した後、1000℃/hで900℃まで昇温して10分間保持する焼成を行い、その後冷却した。こうして、正極層(LCO焼結体層)12及びセラミックセパレータ(MgOセパレータ)の2層で構成される正極/セパレータ焼結体板を得た。
 また、LTOグリーンシート(負極グリーンシート)2枚を順に積み重ね、得られた積層体をCIP(冷間等方圧加圧法)により200kgf/cmでプレスしてグリーンシート同士を圧着した。こうして圧着された積層体を打ち抜き型で直径10mmの円板状に打ち抜いた。得られた円板状積層体を600℃で5時間脱脂した後、1000℃/hで800℃まで昇温して10分間保持する焼成を行い、その後冷却した。こうして、負極層(LTO焼結体層)で構成される負極焼結体板を得た。
(6c’)コイン形電池の組立
 電池ケースを構成することになる正極缶と負極缶との間に、正極缶から負極缶に向かって、正極集電体、正極側カーボン層、正極/セパレータ焼結体板(LCO正極層及びMgOセパレータ)、負極焼結体板(LTO負極層)、負極側カーボン層、並びに負極集電体、ウェーブワッシャー(ミスミ製)がこの順に積層されるように収容し、電解液を充填した後に、ガスケットを介して正極缶と負極缶をかしめることによって封止した。こうして、直径12.5mm、厚さ1.0mmのコインセル形のリチウムイオン二次電池を作製した。このとき、電解液としては、PC有機溶媒に、LiBFを1.5mol/Lの濃度となるように溶解させた液を用いた。正極缶に正極端子を、負極缶に負極端子をそれぞれ抵抗溶接により接合した。こうして200個の電池を作製した。
 結果
 例1~11で作製した電池の製造条件及び良品率は、表1に示されるとおりであった。
Figure JPOXMLDOC01-appb-T000001

Claims (15)

  1.  回路基板にリチウムイオン二次電池をリフローはんだ付けにより接続することを含む、回路基板アセンブリの製造方法であって、
     前記リチウムイオン二次電池は、少なくとも初期充放電が施されたものであり、前記リフローはんだ付け時における、前記リチウムイオン二次電池の充電状態(SOC)が0~29%である、回路基板アセンブリの製造方法。
  2.  前記リチウムイオン二次電池の充電状態(SOC)が0~28%である、請求項1に記載の回路基板アセンブリの製造方法。
  3.  前記リチウムイオン二次電池の充電状態(SOC)が0~20%である、請求項1に記載の回路基板アセンブリの製造方法。
  4.  前記リフローはんだ付けにおけるリフロー加熱が180~270℃で行われる、請求項1~3のいずれか一項に記載の回路基板アセンブリの製造方法。
  5.  前記リチウムイオン二次電池が、
     正極層と、
     負極層と、
     前記正極層と前記負極層との間に介在されるセパレータと、
     電解質と、
     前記正極層、前記負極層、前記セパレータ及び前記電解質が収容される密閉空間を備えた外装体と、
    を備えた、請求項1~3のいずれか一項に記載の回路基板アセンブリの製造方法。
  6.  前記外装体が、正極缶、負極缶及びガスケットを備え、前記正極缶及び前記負極缶が前記ガスケットを介してかしめられて前記密閉空間を形成している、請求項5に記載の回路基板アセンブリの製造方法。
  7.  前記外装体の前記正極層寄りの外表面に接合された正極端子と、前記外装体の前記負極層寄りの外表面に接合された負極端子とを更に備えており、
     前記正極端子及び/又は前記負極端子が、前記リフローはんだにより前記回路基板と接続される、請求項5に記載の回路基板アセンブリの製造方法。
  8.  前記正極層が、セラミック正極板である、請求項5に記載の回路基板アセンブリの製造方法。
  9.  前記セラミック正極板が、リチウム複合酸化物焼結体板である、請求項8に記載の回路基板アセンブリの製造方法。
  10.  前記リチウム複合酸化物がコバルト酸リチウムである、請求項9に記載の回路基板アセンブリの製造方法。
  11.  前記負極層が、セラミック負極板である、請求項5に記載の回路基板アセンブリの製造方法。
  12.  前記セラミック負極板が、チタン含有焼結体板である、請求項11に記載の回路基板アセンブリの製造方法。
  13.  前記チタン含有焼結体が、チタン酸リチウム又はニオブチタン複合酸化物を含む、請求項12に記載の回路基板アセンブリの製造方法。
  14.  前記セパレータが、セルロース製、ポリイミド製、ポリエステル製、又はMgO、Al、ZrO、SiC、Si、AlN、及びコーディエライトからなる群から選択されるセラミック製である、請求項5に記載の回路基板アセンブリの製造方法。
  15.  前記電解質が電解液の形態で供され、該電解液が、γ-ブチロラクトン(GBL)、エチレンカーボネート(EC)及びプロピレンカーボネート(PC)からなる群から選択される少なくとも1種からなる非水溶媒中にホウフッ化リチウム(LiBF)を含む液である、請求項5に記載の回路基板アセンブリの製造方法。
PCT/JP2022/034077 2021-09-15 2022-09-12 回路基板アセンブリの製造方法 WO2023042801A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023548460A JPWO2023042801A1 (ja) 2021-09-15 2022-09-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021150652 2021-09-15
JP2021-150652 2021-09-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/601,170 Continuation US20240237227A1 (en) 2021-09-15 2024-03-11 Production method for circuit board assembly

Publications (1)

Publication Number Publication Date
WO2023042801A1 true WO2023042801A1 (ja) 2023-03-23

Family

ID=85602901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034077 WO2023042801A1 (ja) 2021-09-15 2022-09-12 回路基板アセンブリの製造方法

Country Status (2)

Country Link
JP (1) JPWO2023042801A1 (ja)
WO (1) WO2023042801A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195494A (ja) * 1998-10-21 2000-07-14 Seiko Instruments Inc 非水電解質二次電池
JP2016197595A (ja) * 2009-05-20 2016-11-24 インフィニット パワー ソリューションズ, インコーポレイテッド 電気化学デバイスを固定具の中および固定具上に一体化する方法
WO2020090802A1 (ja) * 2018-10-30 2020-05-07 日本碍子株式会社 コイン形二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195494A (ja) * 1998-10-21 2000-07-14 Seiko Instruments Inc 非水電解質二次電池
JP2016197595A (ja) * 2009-05-20 2016-11-24 インフィニット パワー ソリューションズ, インコーポレイテッド 電気化学デバイスを固定具の中および固定具上に一体化する方法
WO2020090802A1 (ja) * 2018-10-30 2020-05-07 日本碍子株式会社 コイン形二次電池

Also Published As

Publication number Publication date
JPWO2023042801A1 (ja) 2023-03-23

Similar Documents

Publication Publication Date Title
US11996544B2 (en) Coin-shaped lithium secondary battery and IoT device
JP7189163B2 (ja) リチウム二次電池
JP7093843B2 (ja) コイン形二次電池
WO2019221146A1 (ja) リチウム二次電池
WO2019221141A1 (ja) コイン形リチウム二次電池及びIoTデバイス
JP6966639B2 (ja) リチウム二次電池
JP6966640B2 (ja) リチウム二次電池
WO2023042801A1 (ja) 回路基板アセンブリの製造方法
WO2023042802A1 (ja) 回路基板アセンブリの製造方法
WO2019221142A1 (ja) リチウム二次電池
WO2022208982A1 (ja) コイン形リチウムイオン二次電池
US20240237227A1 (en) Production method for circuit board assembly
JP7161545B2 (ja) コイン形リチウム二次電池
JP7280379B2 (ja) リチウム二次電池及びその充電状態の測定方法
JP7268142B2 (ja) リチウム二次電池
US12034145B2 (en) Lithium secondary battery
WO2022044409A1 (ja) リチウムイオン二次電池
WO2020090800A1 (ja) コイン形二次電池
WO2020090470A1 (ja) リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869948

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548460

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE