WO2019093221A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2019093221A1
WO2019093221A1 PCT/JP2018/040686 JP2018040686W WO2019093221A1 WO 2019093221 A1 WO2019093221 A1 WO 2019093221A1 JP 2018040686 W JP2018040686 W JP 2018040686W WO 2019093221 A1 WO2019093221 A1 WO 2019093221A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
positive electrode
negative electrode
secondary battery
solid electrolyte
Prior art date
Application number
PCT/JP2018/040686
Other languages
English (en)
French (fr)
Inventor
武内 幸久
大和田 巌
幸信 由良
佐藤 洋介
吉田 俊広
勝田 祐司
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP18876301.5A priority Critical patent/EP3709423A4/en
Priority to JP2019552753A priority patent/JP6995135B2/ja
Priority to CN201880059293.7A priority patent/CN111316489A/zh
Priority to KR1020207011379A priority patent/KR102381016B1/ko
Publication of WO2019093221A1 publication Critical patent/WO2019093221A1/ja
Priority to US16/865,462 priority patent/US11515570B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2016-66550 describes a first all-solid secondary battery having stable charge / discharge characteristics under high temperature, having a first NASICON structure including Li, Al, Ti and P.
  • a solid electrolyte layer comprising a layer and a second layer having a NASICON structure containing Li, Al, M (wherein M is Ge or Zr) and P without Ti.
  • M is Ge or Zr
  • This document describes that an all solid secondary battery having a thickness of the positive electrode layer of 9 ⁇ m, a thickness of the negative electrode layer of 12 ⁇ m, and a thickness of the solid electrolyte layer of 12 ⁇ m was produced.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2015-185337 is an all solid battery having a positive electrode, a negative electrode and a solid electrolyte layer, and using a lithium titanate (Li 4 Ti 5 O 12 ) sintered body for the positive electrode or the negative electrode. Is disclosed.
  • Patent Document 3 International Publication No. 2017/146088 includes a plurality of primary particles composed of a lithium composite oxide such as lithium cobaltate (LiCoO 2 ) as a positive electrode of a lithium secondary battery provided with a solid electrolyte. It is disclosed to use an oriented positive electrode plate in which a plurality of primary particles are oriented at an average orientation angle of more than 0 ° and 30 ° or less with respect to the plate surface of the positive electrode plate.
  • a lithium composite oxide such as lithium cobaltate (LiCoO 2 )
  • LiCoO 2 lithium cobaltate
  • the all solid secondary battery disclosed in Patent Document 1 has a problem that the capacity or energy density is low.
  • the all solid secondary battery disclosed in Patent Document 2 has a problem that deterioration of the battery is remarkable when driven under high temperature conditions.
  • the present inventors set a positive electrode plate and a negative electrode plate each to a thickness of 25 ⁇ m or more, and a secondary battery comprising an inorganic material-containing positive electrode plate and a negative electrode plate containing an oxide, and an inorganic solid electrolyte layer.
  • a secondary battery comprising an inorganic material-containing positive electrode plate and a negative electrode plate containing an oxide, and an inorganic solid electrolyte layer.
  • an object of the present invention is to realize rapid charge and discharge with a high cycle capacity maintenance rate while achieving an increase in capacity of the secondary battery.
  • a secondary battery including a negative electrode plate of 25 ⁇ m or more and an inorganic solid electrolyte layer, which is charged and discharged at a temperature of 100 ° C. or more.
  • a positive electrode plate having a thickness of 25 ⁇ m or more made of an inorganic material containing a positive electrode active material in an oxide form, and a thickness made of an inorganic material containing a negative electrode active material in an oxide form
  • a secondary battery including an anode plate having a thickness of 25 ⁇ m or more and an inorganic solid electrolyte layer, Heating the secondary battery to a temperature of 100 ° C. or higher to charge and discharge;
  • a method of using the secondary battery including:
  • a method of manufacturing the secondary battery Placing an inorganic solid electrolyte powder having a melting point lower than the melting point or decomposition temperature of the positive electrode plate or the negative electrode plate on the positive electrode plate or the negative electrode plate; Placing the negative electrode plate or the positive electrode plate on the inorganic solid electrolyte powder; The negative electrode plate is directed to the positive electrode plate or the positive electrode plate is pressed to the negative electrode plate at a temperature of 100 to 600 ° C.
  • Secondary battery broadly refers to a battery capable of being repeatedly charged and discharged, and is not particularly limited as long as each of the positive electrode plate, the negative electrode plate and the solid electrolyte layer is made of an inorganic material described later .
  • Examples of such secondary batteries include lithium secondary batteries (also referred to as lithium ion secondary batteries), sodium ion batteries, magnesium ion secondary batteries, aluminum ion secondary batteries and the like, preferably lithium It is a secondary battery.
  • FIG. 1 schematically shows an example of the secondary battery of the present invention.
  • the secondary battery 10 shown in FIG. 1 includes a positive electrode plate 12, an inorganic solid electrolyte layer 14, and a negative electrode plate 16.
  • the positive electrode plate 12 is made of an inorganic material containing a positive electrode active material in the form of an oxide.
  • the negative electrode plate 16 is made of an inorganic material containing a negative electrode active material in the form of an oxide.
  • the thickness of each of the positive electrode plate 12 and the negative electrode plate 16 is 25 ⁇ m or more.
  • the secondary battery 10 is charged and discharged at a temperature of 100 ° C. or more.
  • each of the positive electrode plate 12 and the negative electrode plate 16 has a thickness of 25 ⁇ m or more, And, by charging and discharging at a temperature of 100 ° C. or more, it is possible to realize rapid charge and discharge with a high cycle capacity maintenance rate while achieving large capacity of the secondary battery 10. That is, when the positive electrode plate 12 and the negative electrode plate 16 are thick as described above, the secondary battery 10 can be configured as a large capacity battery.
  • each of the positive electrode plate 12 and the negative electrode plate 16 is a ceramic member, the capacity can be increased and the energy density can be increased by arbitrarily thickening the thickness. Then, by charging and discharging the secondary battery 10 at a high temperature of 100 ° C. or more, rapid charge and discharge can be performed. That is, the secondary battery 10 can be driven at high speed and stably at the above temperature. In addition, even if rapid charge and discharge are repeated, a high capacity can be maintained, that is, a high cycle capacity retention rate can be realized.
  • the secondary battery 10 is charged and discharged at an operating temperature of 100 ° C. or higher, the preferred operating temperature is 100 to 300 ° C., more preferably 100 to 200 ° C., still more preferably 100 to 150 ° C. is there.
  • the heating means for achieving the operating temperature may be various heaters or various devices or devices accompanied by heat generation, but a preferred example is a conductive heating type ceramic heater.
  • the secondary battery 10 of the present invention is preferably provided as a secondary battery system with heating means.
  • the positive electrode plate 12 is made of an inorganic material, and the inorganic material contains a positive electrode active material in the form of an oxide.
  • the positive electrode active material in the oxide form may be appropriately selected according to the type of the secondary battery 10, and is not particularly limited.
  • the positive electrode active material is preferably a lithium composite oxide.
  • the lithium complex oxide is Li x MO 2 (0.05 ⁇ x ⁇ 1.
  • M is at least one transition metal, and M is typically composed of Co, Ni, Mn and Al
  • An oxide represented by at least one selected from the group consisting of The lithium composite oxide has a layered rock salt structure.
  • the layered rock salt structure is a crystal structure in which a lithium layer and a transition metal layer other than lithium are alternately stacked with an oxygen layer interposed therebetween, that is, a transition metal ion layer and a lithium single layer are alternately interposed via oxide ions. It refers to a stacked crystal structure (typically, an ⁇ -NaFeO 2 type structure, ie, a structure in which a transition metal and lithium are regularly arranged in the [111] axis direction of a cubic rock salt type structure).
  • lithium composite oxides include Li x CoO 2 (lithium cobaltate), Li x NiO 2 (lithium nickelate), Li x MnO 2 (lithium manganate), Li x NiMnO 2 (lithium nickel manganate) , Li x NiCoO 2 (lithium nickel cobaltate), Li x CoNiMnO 2 (cobalt nickel nickel manganate), Li x CoMnO 2 (cobalt manganese manganate), Li 2 MnO 3 , and solid with the above compounds solubles and the like, particularly preferably Li x CoO 2 (lithium cobaltate, typically LiCoO 2).
  • lithium composite oxides examples include Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, and Ba.
  • Bi, and W may contain one or more elements.
  • a LiMn 2 O 4 based material having a spinel structure, a LiNi 0.5 Mn 1.5 O 4 based material, a LiMPO 4 having an olivine structure (wherein, M is Fe, Co, Mn and Ni And the like) can also be suitably used.
  • the positive electrode plate 12 is preferably a sintered plate (for example, a lithium composite oxide sintered plate).
  • a sintered plate since the positive electrode plate does not contain a binder, the high packing density of the positive electrode active material (for example, lithium composite oxide) can be obtained, whereby high capacity and good charge / discharge efficiency can be obtained.
  • the reason why the positive electrode plate does not contain a binder is that, even if the green sheet contains a binder, the binder disappears or burns out during firing.
  • the positive electrode plate 12 When the positive electrode plate 12 is a sintered lithium complex oxide plate, the positive electrode plate 12 includes a plurality of primary particles composed of a lithium composite oxide, and the plurality of primary particles is 0 to the plate surface of the positive electrode plate. It is preferable that it is an oriented positive electrode plate which is orientated by an average orientation angle of more than 30 °.
  • Such an oriented positive electrode plate can be manufactured according to the method described in Patent Document 3 (WO 2017/146088).
  • FIG. 2 shows an example of a cross-sectional SEM image perpendicular to the plate surface of the oriented positive electrode plate
  • FIG. 3 shows an electron backscatter diffraction (EBSD) image in a cross section perpendicular to the plate surface of the oriented positive electrode plate. . Further, FIG.
  • EBSD electron backscatter diffraction
  • FIG. 4 shows a histogram showing the distribution of the orientation angle of the primary particles 11 in the EBSD image of FIG. 3 on an area basis.
  • the orientation angle of each primary particle 11 is indicated by light and shade of color, and it is indicated that the darker the color, the smaller the orientation angle.
  • the orientation angle is an inclination angle formed by the (003) plane of each primary particle 11 with respect to the plate surface direction.
  • a portion black-displayed in the inside of the alignment positive plate is a pore.
  • the positive electrode plate 12 is preferably an oriented sintered body composed of a plurality of primary particles 11 bonded to one another.
  • each primary particle 11 is mainly plate-shaped, what was formed in rectangular solid shape, cube shape, spherical shape, etc. may be contained.
  • the cross-sectional shape of each primary particle 11 is not particularly limited, and may be a rectangle, a polygon other than a rectangle, a circle, an ellipse, or a complex shape other than these.
  • the average value of the orientation angles of the primary particles 11 composed of the lithium composite oxide that is, the average orientation angle be more than 0 ° and 30 ° or less. Degradation of the battery when driven under high temperature conditions can be further reduced. This is considered to be due to the contribution of various advantages shown below.
  • the orientation positive electrode in the plate surface direction is achieved by reducing the inclination angle of the (003) plane with respect to the plate surface direction.
  • the amount of expansion and contraction of the plate 12 can be reduced, and generation of stress between the oriented positive electrode plate 12 and the inorganic solid electrolyte layer 14 can be suppressed.
  • rate characteristics can be further improved. This is because, as described above, expansion and contraction in the thickness direction of the positive electrode plate 12 is predominant in the thickness direction of the positive electrode plate 12 when lithium ions enter and exit, so expansion and contraction of the positive electrode plate 12 becomes smooth. This is because the movement of ions (for example, lithium ions) also becomes smooth.
  • the average orientation angle of the primary particles 11 composed of the lithium composite oxide is (i) polishing the positive electrode plate with a cross section polisher (CP) and (ii) the obtained positive electrode plate cross section (perpendicular to the plate surface of the positive electrode plate Cross section) at a predetermined magnification (for example, 1000 ⁇ ) and a predetermined visual field (for example, 125 ⁇ m ⁇ 125 ⁇ m), and (iii) primary particles (003) of all particles identified in the obtained EBSD image
  • the angle between the surface and the plate surface of the positive electrode plate (that is, the inclination of the crystal orientation from (003)) can be determined as the inclination angle, and (iv) it can be determined by calculating the average value of these angles.
  • the average orientation angle of the primary particles 11 is preferably 30 ° or less, more preferably 25 ° or less, from the viewpoint of further improving the rate characteristics.
  • the average orientation angle of the primary particles 11 is preferably 2 ° or more, more preferably 5 ° or more, from the viewpoint of further improving the rate characteristics.
  • the orientation angle of each primary particle 11 made of lithium composite oxide may be widely distributed from 0 ° to 90 °, but most of them are more than 0 ° and 30 ° or less It is preferably distributed in the region of That is, when the cross section of the oriented sintered body constituting the oriented positive electrode plate 12 is analyzed by EBSD, the orientation angle of the primary particles 11 included in the analyzed cross section with respect to the plate surface of the oriented positive electrode plate 12 is 0 °.
  • Primary particles 11 (specifically, 30 primary particles 11 used for calculation of average orientation angle), the total area of primary particles 11 (hereinafter referred to as low-angle primary particles) being over 30 ° or less is included in the cross section It is preferable that it is 70% or more with respect to the total area of, and more preferably 80% or more. Thereby, since the ratio of the primary particles 11 having high mutual adhesion can be increased, the rate characteristics can be further improved. Further, the total area of low-angle primary particles having an orientation angle of 20 ° or less is more preferably 50% or more with respect to the total area of 30 primary particles 11 used for calculating the average orientation angle. . Furthermore, the total area of low-angle primary particles having an orientation angle of 10 ° or less is more preferably 15% or more with respect to the total area of 30 primary particles 11 used for calculating the average orientation angle. .
  • each primary particle 11 composed of lithium composite oxide is mainly plate-shaped, as shown in FIGS. 2 and 3, the cross section of each primary particle 11 extends in a predetermined direction, and typically Is substantially rectangular. That is, in the oriented sintered body, when the cross section is analyzed by EBSD, the total area of the primary particles 11 having an aspect ratio of 4 or more among the primary particles 11 included in the analyzed cross section is included in the cross section.
  • the total area of the particles 11 (specifically, the 30 primary particles 11 used to calculate the average orientation angle) is preferably 70% or more, and more preferably 80% or more. Specifically, in the EBSD image as shown in FIG.
  • the aspect ratio of the primary particle 11 is a value obtained by dividing the maximum Feret diameter of the primary particle 11 by the minimum Feret diameter.
  • the maximum Feret diameter is the maximum distance between the straight lines when the primary particle 11 is sandwiched between two parallel straight lines on the EBSD image when cross-sectional observation is performed.
  • the minimum Feret diameter is the minimum distance between the straight lines when the primary particle 11 is sandwiched between two parallel straight lines on the EBSD image.
  • the average particle diameter of the plurality of primary particles constituting the oriented sintered body is preferably 5 ⁇ m or more.
  • the average particle diameter of the 30 primary particles 11 used for calculating the average orientation angle is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and still more preferably 12 ⁇ m or more.
  • the average particle diameter of the primary particles 11 is a value obtained by arithmetically averaging the equivalent circle diameter of each primary particle 11.
  • the equivalent circle diameter is the diameter of a circle having the same area as each primary particle 11 on the EBSD image.
  • the average particle diameter of the plurality of primary particles constituting the oriented sintered body is preferably 20 ⁇ m or less.
  • the average particle diameter of the primary particles 11 is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the distance for conducting lithium ions in the primary particle 11 becomes short, and the rate characteristic can be further improved.
  • lithium ions move from inside the particles of the positive electrode primary particles 11 to the solid electrolyte filled in the voids, and then pass through the solid electrolyte 14 in the form of a film (or planar).
  • the average particle diameter of the primary particle diameter 11 can be measured by image analysis of a cross-sectional SEM image of the sintered plate.
  • the sintered plate is processed with a cross section polisher (CP) to expose a polished cross section.
  • the polished cross section is observed by SEM (scanning electron microscope) at a predetermined magnification (for example, 1000 times) and a predetermined visual field (for example, 125 ⁇ m ⁇ 125 ⁇ m). At this time, the visual field is set so that 20 or more primary particles exist in the visual field.
  • the diameter of the circumscribed circle when the circumscribed circle is drawn for all primary particles in the obtained SEM image can be determined, and the average particle diameter of the primary particle diameter 11 can be obtained.
  • the positive electrode plate 12 preferably contains pores. Since the positive electrode plate 12 includes pores, stress generated by the expansion and contraction of the crystal lattice accompanying the movement of carrier ions (for example, lithium ions) in the charge and discharge cycle is favorably (uniformly) released by the pores. For this reason, the occurrence of intergranular cracks accompanying repetition of charge and discharge cycles is suppressed as much as possible. It is preferable that the plurality of pores contained in the positive electrode plate 12 be oriented in that the above effect can be enhanced. The orientation of the plurality of pores can be realized, for example, by using plate crystals for the raw material particles. In particular, when charging and discharging at high speed at high temperature, the above effects become remarkable.
  • the average pore aspect ratio of the positive electrode plate 12 is 1.2 or more, preferably 1.5 or more, and more preferably 1.8 or more. And, the pore shape having anisotropy defined by such an aspect ratio advantageously disperses the stress upon bending and the stress upon charging and discharging, so that the superiority in bending resistance and rapid charge performance etc. It is considered to achieve high performance.
  • the upper limit of the average pore aspect ratio is not particularly limited, but the average pore aspect ratio is preferably 30 or less, more preferably 20 or less, and still more preferably 15 or less.
  • the average pore aspect ratio of the positive electrode plate 12 is the average value of the aspect ratio of the pores contained in the positive electrode plate 12, and the aspect ratio of the pores is the longitudinal length of the pores relative to the lateral length of the pores. It is a ratio.
  • the average pore aspect ratio can be measured by image analysis of a cross-sectional SEM image of the positive electrode plate 12 as described in detail in the examples below.
  • the porosity of the positive electrode plate 12 is preferably 2 to 20%, more preferably 3 to 20%, and still more preferably 5 to 18%. Within such a range, the stress releasing effect by pores and the effect of increasing the capacity can be desirably realized.
  • the porosity of the positive electrode plate 12 is a volume ratio of pores (including open and closed pores) in the positive electrode plate 12, and the cross-sectional SEM image of the positive electrode plate 12 is an image, as described in detail in the examples described later. It can measure by analyzing.
  • the porosity of the positive electrode plate 12 is preferably 10 to 50%, more preferably 10 to 40%, and still more preferably 12 to 35%. Within such a range, the pores contained in the positive electrode plate 12 are advantageously filled with the inorganic solid electrolyte.
  • the positive electrode plate is made porous and the inorganic solid electrolyte is By making the battery filled, the electrolyte assists lithium diffusion in the positive electrode plate, and the obtained discharge capacity is improved.
  • the pores contained in the positive electrode plate 12 be filled with the inorganic solid electrolyte, more preferably 70% or more, and even more preferably 85% or more of the pores contained in the positive electrode plate 12 be filled with the inorganic solid electrolyte. It is done.
  • the inorganic solid electrolyte filling rate in the pores of the positive electrode plate 12 is desirably as high as possible and may be 100%, but is typically 99% or less.
  • the positive electrode plate 12 consists only of an inorganic solid electrolyte and a positive electrode active material.
  • the electron conduction aid when the electron conduction aid is contained in the positive electrode plate, the amount of the active material decreases and the capacity decreases, however, by adopting a sintered body plate as the positive electrode plate, the positive electrode is not used without using the electron conduction aid. Desirable electron conductivity can be ensured only with the active material. This is because the constituent particles (positive electrode active material particles) of the sintered body plate are firmly bonded by necking to bring about an improvement in the electron conductivity.
  • the use of a sintered plate can appropriately reduce the number of pores in the positive electrode plate (which leads to a decrease in capacity), and can also improve the energy density of the battery.
  • the thickness of the positive electrode plate 12 is 25 ⁇ m or more, preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more, from the viewpoint of increasing the active material capacity per unit area to improve the energy density of the lithium secondary battery 10. Particularly preferably, it is 50 ⁇ m or more, and most preferably 55 ⁇ m or more.
  • the upper limit of the thickness is not particularly limited, but from the viewpoint of suppressing the deterioration of the battery characteristics (in particular, the increase in the resistance value) due to the repetition of charge and discharge, the thickness of positive electrode plate 12 is preferably less than 500 ⁇ m, more preferably 400 ⁇ m Preferably, it is more preferably 300 ⁇ m or less, particularly preferably 250 ⁇ m or less, and even more preferably 200 ⁇ m or less.
  • the size of the positive electrode plate 12 is preferably 5 mm ⁇ 5 mm square or more, more preferably 10 mm ⁇ 10 mm square or more, and in another expression, it is preferably 25 mm 2 or more, more preferably 100 mm 2 or more.
  • the negative electrode plate 16 is made of an inorganic material, and the inorganic material contains a negative electrode active material in the form of an oxide.
  • the negative electrode active material in the oxide form may be appropriately selected according to the type of the secondary battery 10, and is not particularly limited. However, an oxide containing at least Ti is preferable.
  • lithium titanate Li 4 Ti 5 O 12 hereinafter, LTO
  • niobium titanium composite oxide Nb 2 TiO 7 titanium oxide TiO 2 may be mentioned as preferable examples of the negative electrode active material. More preferably, LTO and Nb 2 TiO 7 are used.
  • LTO is typically known as having a spinel structure, other structures may be adopted during charge and discharge.
  • the reaction of LTO proceeds in two phases of Li 4 Ti 5 O 12 (spinel structure) and Li 7 Ti 5 O 12 (rock salt structure) during charge and discharge. Therefore, LTO is not limited to the spinel structure.
  • the plurality of particles of the negative electrode active material contained in the negative electrode plate 16 be physically and electrically connected to each other from the viewpoint of enhancing the electron conductivity and the ion conductivity while increasing the energy density. Therefore, it is preferable that the negative electrode plate 16 be a sintered plate (for example, LTO or Nb 2 TiO 7 sintered plate).
  • the packing density of the negative electrode active material eg, LTO or Nb 2 TiO 7
  • the reason why the negative electrode plate does not contain a binder is that the binder disappears or burns out during firing even if the green sheet contains a binder.
  • the LTO sintered body plate can be manufactured according to the method described in Patent Document 2 (Japanese Patent Laid-Open No. 2015-185337).
  • the negative electrode plate 16 preferably contains pores. Since the negative electrode plate 16 includes pores, stress generated by the expansion and contraction of the crystal lattice accompanying the movement of carrier ions (for example, lithium ions) in the charge and discharge cycle is favorably (uniformly) released by the pores. For this reason, the occurrence of intergranular cracks accompanying repetition of charge and discharge cycles is suppressed as much as possible.
  • carrier ions for example, lithium ions
  • the porosity of the negative electrode plate 16 is preferably 2 to 20%, more preferably 3 to 20%, and still more preferably 5 to 18%. Within such a range, the stress releasing effect by pores and the effect of increasing the capacity can be desirably realized.
  • the porosity of the negative electrode plate 16 is a volume ratio of pores (including open pores and closed pores) in the negative electrode plate 16, and an image of a cross-sectional SEM image of the negative electrode plate 16 is described in detail in Examples described later. It can measure by analyzing.
  • the porosity of the negative electrode plate 16 is preferably 10 to 50%, more preferably 10 to 40%, and still more preferably 12 to 35%. Within such a range, it is advantageous to fill the pores contained in the negative electrode plate 16 with the inorganic solid electrolyte. The denser the negative electrode plate, the slower the diffusion of lithium in the negative electrode plate, which may make it difficult to obtain the discharge capacity inherently provided in the negative electrode plate. However, the negative electrode plate is made porous and the inorganic solid electrolyte is By making the battery charged, the electrolyte assists lithium diffusion in the negative electrode plate, and the obtained discharge capacity is improved.
  • the pores contained in the negative electrode plate 16 be filled with the inorganic solid electrolyte, more preferably 70% or more, and even more preferably 85% or more of the pores contained in the negative electrode plate 16 be impregnated with the inorganic solid electrolyte. It is done.
  • the inorganic solid electrolyte filling rate in the pores of the negative electrode plate 16 is desirably as high as possible, and may be 100%, but is typically 99% or less.
  • the negative electrode plate 16 be made of only the inorganic solid electrolyte and the negative electrode active material.
  • the electron conduction aid when the electron conduction aid is contained in the negative electrode plate, the amount of the active material decreases and the capacity decreases, but by employing the sintered body plate as the negative electrode plate, the electron conduction aid is not used, in other words If this is the case, desired electron conductivity can be ensured only with the inorganic solid electrolyte and the negative electrode active material. This is because the constituent particles (negative electrode active material particles) of the sintered body plate are firmly bonded by necking to bring about an improvement in the electron conductivity. In addition, the use of a sintered plate can appropriately reduce the number of pores in the negative electrode plate (which leads to a decrease in capacity), and the energy density of the battery can be improved accordingly.
  • the thickness of the negative electrode plate 16 is 25 ⁇ m or more, preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more, from the viewpoint of enhancing the energy density of the lithium secondary battery 10 by increasing the active material capacity per unit area. Particularly preferably, it is 50 ⁇ m or more, and most preferably 55 ⁇ m or more.
  • the upper limit of the thickness is not particularly limited, but the thickness of the negative electrode plate 16 is preferably 400 ⁇ m or less, and more preferably 300 ⁇ m from the viewpoint of suppressing deterioration of the battery characteristics (particularly, increase in resistance) due to repeated charging and discharging. It is below.
  • the size of the negative electrode plate 16 is preferably 5 mm ⁇ 5 mm square or more, more preferably 10 mm ⁇ 10 mm square or more, and in another expression, it is preferably 25 mm 2 or more, more preferably 100 mm 2 or more.
  • the ratio C / A of the capacity C of the positive electrode plate 12 to the capacity A of the negative electrode plate 16 preferably satisfies 1.0 ⁇ C / A ⁇ 1.6, more preferably 1.005 ⁇ C / A ⁇ 1.500.
  • the C / A ratio within the above range may be realized by appropriately controlling various characteristics such as the thickness and porosity of the positive electrode plate 12 and various characteristics such as the thickness and porosity of the negative electrode plate 16. It can.
  • the C / A ratio is preferably determined according to the following procedure.
  • (I) The actual electric capacity (mAh) of the positive electrode plate 12 at 25 ° C. per 1 cm 2 area of the positive electrode plate is determined as the capacity C of the positive electrode plate 12.
  • This actual electrical capacity is constant current discharge with 0.2C current and constant potential to lithium metal and 4.25V for 10 hours, then constant current discharge with 0.2C current to 3.0V potential to lithium metal It is considered as the electric capacity when it went to reach to.
  • the actual electrical capacity (mAh) of the negative electrode plate 16 at 25 ° C. per 1 cm 2 of the area of the negative electrode plate 16 is determined.
  • This actual electric capacity is constant current discharge with 0.2C current and 0.8V potential for lithium metal for 10 hours, then constant current discharge with 0.2C current is 2.0V potential for lithium metal It is considered as the electric capacity when it went to reach to.
  • the ratio of the capacity C of the positive electrode plate 12 to the capacity A of the negative electrode plate 16 is calculated to be a C / A ratio.
  • the positive electrode plate 12 is preferably a LiCoO 2 (LCO) sintered plate
  • the negative electrode plate 16 is preferably a Li 4 Ti 5 O 12 (LTO) sintered plate.
  • the average value of the orientation angle of the LCO positive electrode plate that is, the average orientation angle is more than 0 ° and 30 ° or less
  • expansion and contraction do not occur in the surface direction during charging and discharging
  • the LTO negative electrode plate also expands and contracts during charging and discharging
  • stress especially stress at the interface between the positive electrode plate 12 or the negative electrode plate 16 and the inorganic solid electrolyte layer 14
  • Discharge can be performed stably and at high speed.
  • primary particles constituting the Nb 2 TiO 7 sintered body plate are oriented so as to control expansion and contraction. Is
  • the inorganic solid electrolyte layer 14 may be appropriately selected according to the type of the secondary battery 10 as long as it is a layer containing an inorganic solid electrolyte, and is not particularly limited.
  • the inorganic solid electrolyte is preferably a lithium ion conductive material.
  • lithium ion conductive materials that can constitute the inorganic solid electrolyte layer 14 include garnet-based ceramic materials, nitride-based ceramic materials, perovskite-based ceramic materials, phosphoric acid-based ceramic materials, sulfide-based ceramic materials, borosilicate-based materials Ceramic materials, lithium-halide based materials, and polymer based materials may be mentioned, and more preferably selected from the group consisting of garnet based ceramic materials, nitride based ceramic materials, perovskite based ceramic materials, and phosphoric acid based ceramic materials At least one kind of Examples of garnet-based ceramic materials include Li-La-Zr-O-based materials (specifically, Li 7 La 3 Zr 2 O 12 etc.) and Li-La-Ta-O-based materials (specifically, Li 7 La 3 Ta 2 O 12 and the like.
  • Li 3 N is an example of a nitride-based ceramic material.
  • the perovskite-based ceramic material include Li-La-Zr-O-based materials (specifically, LiLa 1-x Ti x O 3 (0.04 ⁇ x ⁇ 0.14) and the like).
  • phosphate-based ceramic materials include lithium phosphate, nitrogen-substituted lithium phosphate (LiPON), Li-Al-Ti-PO, Li-Al-Ge-PO, and Li-Al-Ti- Si—P—O (specifically, Li 1 + x + y Al x Ti 2-x Si y P 3-y O 12 (0 ⁇ x ⁇ 0.4, 0 ⁇ y ⁇ 0.6, etc.) may be mentioned.
  • Examples of sulfide-based ceramic materials include LiOH-Li 2 SO 4 and Li 3 BO 3 -Li 2 SO 4 -Li 2 CO 3 .
  • An example of the borosilicate ceramic material is Li 2 O-B 2 O 3 -SiO 2 .
  • Examples of lithium-halide materials include Li 3 OX (wherein X is Cl and / or Br), Li 2 (OH) 1-a F a Cl (wherein 0 ⁇ a ⁇ 0. And Li 2 OHX (wherein X is Cl and / or Br), and particularly preferably Li 3 OCl.
  • the inorganic solid electrolyte preferably has a melting point lower than the melting point or decomposition temperature of the positive electrode plate 12 or the negative electrode plate 16. This is advantageous for filling the pores contained in the positive electrode plate 12 and / or the negative electrode plate 16 with the inorganic solid electrolyte as described above.
  • the melting point of the inorganic solid electrolyte is typically higher than the battery operating temperature, and more typically is higher than the battery operating temperature and not more than 600.degree. Since this inorganic solid electrolyte has a low melting point, it can be melted at a temperature of 100 to 600 ° C. to penetrate into the voids of the positive electrode plate 12 and / or 16 voids of the negative electrode plate as described later. It can be realized.
  • the inorganic solid electrolyte preferably contains a lithium-halide based material.
  • this lithium-halide material include Li 3 OCl, Li (3-x) M x / 2 OA (wherein 0 ⁇ x ⁇ 0.8, M is Mg, Ca, Ba and Sr) At least one member selected from the group consisting of: A is at least one member selected from the group consisting of F, Cl, Br and I; Li 2 (OH) 1-a F a Cl And at least one selected from the group consisting of Li 2 OHX (wherein X is Cl and / or Br), and more preferably Li 3 OCl or a li 2 (OH) 0.9 F 0.1 Cl.
  • LiPON lithium phosphate oxynitride based ceramic material
  • LiPON is a group of compounds represented by the composition of Li 2.9 PO 3.3 N 0.46 , for example, Li a PO b N c (wherein, a is 2 to 4, b is 3 to 5) And c is 0.1 to 0.9).
  • the method for producing the inorganic solid electrolyte layer 14 is not particularly limited.
  • the producing method include gas phase methods such as sputtering and CVD, liquid phase methods such as screen printing and spin coating, a method of compressing powder, and melting point of raw material.
  • gas phase methods such as sputtering and CVD
  • liquid phase methods such as screen printing and spin coating
  • fusing point, compressing a powder, etc. are mentioned.
  • the size of the inorganic solid electrolyte layer 14 is not particularly limited, but the thickness is preferably 0.0005 mm to 1.0 mm, more preferably 0.001 mm to 0.1 mm, in view of charge / discharge rate characteristics and mechanical strength. Preferably, it is 0.002 to 0.05 mm.
  • the solid electrolyte layer may be controlled by the thickness at which the film is formed, or in the case of a method of heating the powder to a temperature above the melting point while compressing it, the thickness may be controlled by a spacer. That is, it is preferable that the all solid lithium battery further includes a spacer that defines the thickness of the solid electrolyte layer 14 between the oriented positive electrode plate 12 and the negative electrode plate 16.
  • the resistivity of the spacer is preferably 1 ⁇ 10 5 ⁇ ⁇ cm or more, more preferably 1 ⁇ 10 7 ⁇ ⁇ cm or more.
  • the type of spacer is not particularly limited, but is preferably spacers are made of ceramics, examples of such ceramic, Al 2 O 3, MgO, ZrO 2 and the like.
  • the thickness Te of the inorganic solid electrolyte layer, the thickness Tc of the positive electrode plate, and the thickness Ta of the negative electrode plate preferably satisfy Te / (Tc + Ta) ⁇ 0.25, more preferably 0.002 ⁇ Te / ( Tc + Ta) ⁇ 0.25, more preferably 0.005 ⁇ Te / (Tc + Ta) ⁇ 0.2.
  • the thickness Te of the inorganic solid electrolyte layer can be made relatively thinner than the thickness of the positive electrode plate and the total thickness Ta + Tc of the negative electrode plate, and the energy of the secondary battery 10 The density can be significantly increased.
  • a positive electrode current collector 13 be provided on the side of the positive electrode plate 12 away from the inorganic solid electrolyte layer 14.
  • the negative electrode current collector 17 be provided on the side of the negative electrode plate 16 away from the inorganic solid electrolyte layer 14.
  • materials constituting the positive electrode current collector 13 and the negative electrode current collector 17 include platinum (Pt), platinum (Pt) / palladium (Pd), gold (Au), silver (Ag), aluminum (Al), Examples thereof include copper (Cu), ITO (indium-tin oxide film), nickel (Ni) and the like.
  • the positive electrode plate 12, the inorganic solid electrolyte layer 14 and the negative electrode plate 16 are accommodated in a container 18.
  • the container 18 is not particularly limited as long as it can accommodate a unit cell or a stack in which a plurality of the unit cells are stacked in series or in parallel.
  • the container 18 can adopt a relatively simple container form, and may be a package with an exterior material.
  • a chip form for mounting on an electronic circuit or a laminate cell form for example, a multilayer product of aluminum (Al) / polypropylene (PP) for thin and wide space applications can be adopted.
  • the positive electrode current collector 13 and / or the negative electrode current collector 17 may double as part of the container 18.
  • heat-resistant resins such as PCTFE (polychlorotrifluoroethylene), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), polyimide, polyamide may be used instead of polypropylene.
  • a metal such as aluminum or stainless steel may be used.
  • the secondary battery 10 of the present invention is preferably produced as follows. First, the inorganic solid electrolyte powder having a melting point lower than the melting point or the decomposition temperature of the positive electrode plate 12 (or the negative electrode plate 16) is placed on the positive electrode plate 12 (or the negative electrode plate 16). The negative electrode plate 16 (or the positive electrode plate 12) is placed on the inorganic solid electrolyte powder. The inorganic solid electrolyte is pressed at a temperature of 100 to 600 ° C., preferably 200 to 500 ° C., more preferably 250 to 450 ° C. with the negative electrode plate 16 facing the positive electrode plate 12 (or the positive electrode plate facing the negative electrode plate). The powder is melted to penetrate into the voids in the positive electrode plate.
  • the press is not particularly limited as long as it can apply a load, and a load may be applied mechanically, or a load may be applied rather than placing a weight.
  • the positive electrode plate 12, the molten electrolyte, and the negative electrode plate 16 are allowed to cool or cool to solidify the molten electrolyte to form the inorganic solid electrolyte 14.
  • Preferred examples of the inorganic solid electrolyte powder having a melting point lower than the melting point or decomposition temperature of the positive electrode plate 12 (or the negative electrode plate 16) include the aforementioned xLiOH.yLi 2 SO 4 , Li 3 OCl, Li (3-x
  • the powder includes at least one selected from the group consisting of M x / 2 OA, Li 2 (OH) 1 -aF a Cl, Li 2 OHX and Li a (OH) b F c Br.
  • the secondary battery 10 may include a spacer that defines the thickness of the inorganic solid electrolyte layer 14 between the positive electrode plate 12 and the negative electrode plate 16. This configuration is preferably realized by the spacer being sandwiched between the positive electrode plate 12 and the negative electrode plate 16 together with the solid electrolyte powder when the negative electrode plate 16 or the positive electrode plate 12 is mounted on the inorganic solid electrolyte powder. it can.
  • LiCoO 2 is abbreviated as “LCO”
  • Li 4 Ti 5 O 12 is abbreviated as “LTO”.
  • Examples A1 to A5 (1) Production of positive electrode plate (1a) Production of LCO green sheet Co 3 O 4 powder (Shodomo Chemical Industry Co., Ltd., average particle diameter 0, weighed so that the molar ratio of Li / Co is 1.02 .9Myuemu) and Li 2 CO 3 powder (Honjo Chemical Co., Ltd.) were mixed and held for 5 hours at 750 ° C.. The obtained powder was pulverized in a pot mill so that the volume basis D50 was 0.4 ⁇ m, to obtain a powder composed of LCO plate-like particles.
  • 10 parts by weight of a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • a plasticizer 4 parts by weight of (DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurogane Chemical Co., Ltd.) and 2 parts by weight of a dispersing agent (product name: Leodol SP-O30, manufactured by Kao Corporation) were mixed.
  • the LCO slurry was prepared by stirring and degassing the resulting mixture under reduced pressure and adjusting the viscosity to 4000 cP. The viscosity was measured with a Brookfield LVT viscometer. The slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LCO green sheet. The thickness of the LCO green sheet was set such that the thickness after firing was 25 ⁇ m (Example A1) or 200 ⁇ m (Examples A2 to A5 and A7).
  • Li 2 CO 3 green sheet (excess lithium source) 100 parts by weight of Li 2 CO 3 raw material powder (volume-based D50 particle diameter 2.5 ⁇ m, Honjo Chemical Co., Ltd.) and binder (polyvinyl butyral: part number BM -2, 5 parts by weight of Sekisui Chemical Co., Ltd., 2 parts by weight of a plasticizer (DOP: di (2-ethylhexyl) phthalate, black gold chemical), and a dispersant (Leodore SP-O30, Kao 2 parts by weight were mixed. The resulting mixture was stirred under vacuum for degassing and adjusting the viscosity to 4000 cP to prepare a Li 2 CO 3 slurry.
  • a plasticizer DOP: di (2-ethylhexyl) phthalate, black gold chemical
  • dispersant Leodore SP-O30, Kao 2 parts by weight
  • the viscosity was measured with a Brookfield LVT viscometer.
  • the Li 2 CO 3 green sheet was formed by forming the thus prepared Li 2 CO 3 slurry into a sheet on a PET film by a doctor blade method.
  • the thickness of the dried Li 2 CO 3 green sheet has a Li / Co ratio, which is a molar ratio of the Li content in the Li 2 CO 3 green sheet to the Co content in the LCO green sheet, to a predetermined value.
  • a Li / Co ratio which is a molar ratio of the Li content in the Li 2 CO 3 green sheet to the Co content in the LCO green sheet
  • the cut out Li 2 CO 3 green sheet piece was placed on an LCO calcined plate as an excess lithium source, and a porous magnesia setter as an upper setter was placed thereon.
  • the sintered plate and the green sheet piece were sandwiched by a setter, and placed in an alumina sheath (manufactured by Nikkato Co., Ltd.) of 120 mm square. At this time, the alumina sheath was not sealed and a lid of 0.5 mm was opened.
  • the resulting laminate is heated up to 600 ° C. at a heating rate of 200 ° C./h and degreased for 3 hours, then heated up to 800 ° C.
  • an LCO sintered plate was obtained as a positive electrode plate.
  • An Au film (100 nm in thickness) was formed as a current collection layer by sputtering on the surface of the obtained LCO sintered plate in contact with the lower setter, and then laser processed into a 10 mm ⁇ 10 mm square shape.
  • the LTO slurry was prepared by stirring and degassing the obtained negative electrode raw material mixture under reduced pressure and adjusting the viscosity to 4000 cP. The viscosity was measured with a Brookfield LVT viscometer. The slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LTO green sheet. The thickness of the dried LTO green sheet was such that the thickness after firing was 28 ⁇ m (Example A1), 224 ⁇ m (Examples A2 and A3), 257 ⁇ m (Example A4) or 161 ⁇ m (Example A5).
  • aqueous raw material solution was prepared by dissolving 4.790 g of LiOH and 4.239 g of LiCl in a small amount of deionized water. The amounts of these precursors were such that the stoichiometry corresponds to the formula: Li 3 OCl + H 2 O. Most of the water was dewatered with a rotary evaporator and a bath temperature of about 90 ° C. The resulting solid was placed in an alumina boat. The boat was placed in an electric furnace and vacuum heated at a temperature of about 280 ° C. for about 48 hours to obtain an inorganic solid electrolyte, Li 3 OCl powder, as a reaction product.
  • the LCO positive electrode plate is polished with a cross section polisher (CP) (manufactured by Nippon Denshi Co., Ltd., IB-15000CP), and the obtained positive electrode plate cross section (cross section perpendicular to the plate surface of the positive electrode plate) has a 1000 ⁇ field of view (125 ⁇ m ⁇ EBSD measurement at 125 ⁇ m) gave an EBSD image.
  • CP cross section polisher
  • This EBSD measurement was performed using a Schottky field emission scanning electron microscope (manufactured by JEOL Ltd., model JSM-7800F).
  • the angle between the (003) plane of the primary particle and the plate surface of the positive electrode plate is determined as the tilt angle.
  • the average value of the angles of (1) and (2) was defined as the average orientation angle (average tilt angle) of primary particles.
  • Each of the LCO positive electrode plate and the LTO negative electrode plate is polished with a cross section polisher (CP) (manufactured by JEOL Ltd., IB-15000CP), and the cross section of the obtained electrode plate is subjected to SEM observation (JSM 6390LA manufactured by JEOL Ltd.) The thickness of each electrode plate was measured.
  • CP cross section polisher
  • ⁇ Average pore aspect ratio> The LCO positive electrode plate is polished with a cross section polisher (CP) (manufactured by Nippon Denshi Co., Ltd., IB-15000 CP), and the obtained positive electrode plate cross section is observed by SEM under a 1000 ⁇ field of view (125 ⁇ m ⁇ 125 ⁇ m) , JSM 6390 LA).
  • the obtained SEM image was binarized using image analysis software ImageJ, and pores were determined from the obtained binarized image.
  • the aspect ratio was calculated by dividing the length in the longitudinal direction by the length in the lateral direction for each pore identified in the binarized image. The aspect ratio for all pores in the binarized image was calculated, and the average value thereof was taken as the average aspect ratio.
  • the actual electrical capacity (mAh) of the positive electrode plate at 25 ° C. per 1 cm 2 of the area of the positive electrode plate was determined.
  • This actual electrical capacity is constant current discharge with 0.2C current and constant potential to lithium metal and 4.25V for 10 hours, then constant current discharge with 0.2C current to 3.0V potential to lithium metal
  • the actual electrical capacity (mAh) of the negative electrode plate at 25 ° C. per 1 cm 2 of the area of the negative electrode plate was determined as the capacity A of the negative electrode plate.
  • ⁇ Cycle capacity maintenance rate The cycle capacity retention rate of the battery at an operating temperature of 100 ° C. or 300 ° C. was measured in the potential range of 2.7 V-1.5 V according to the following procedure.
  • Example A6 Production and evaluation of a battery were performed in the same manner as in Example A2, except that the negative electrode plate was produced as follows. The results were as shown in Table 1.
  • TiO 2 powder (CR-ER, manufactured by Ishihara Sangyo Co., Ltd.) and Nb 2 O 5 powder (ceramic grade, manufactured by Mitsui Mining & Smelting Co., Ltd.) were weighed and mixed so as to have a molar ratio of 1: 2.
  • the obtained mixed powder was held at 1150 ° C. for 5 hours, and then ground by a pot mill to a volume basis D50 of 0.5 ⁇ m to obtain an Nb 2 TiO 7 powder.
  • a plasticizer DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurogane Chemical Co., Ltd.
  • a dispersing agent product name: Leodol SP-O30, manufactured by Kao Corporation
  • the thickness of the dried Nb 2 TiO 7 green sheet was such that the thickness after firing was 100 ⁇ m.
  • the obtained green sheet was cut into a 25 mm square with a cutter knife, embossed, and placed on a zirconia setter. The green sheet on the setter was put in a sheath made of alumina and held at 500 ° C.
  • An Au film (100 nm thick) was formed as a current collection layer by sputtering on the side of the obtained Nb 2 TiO 7 sintered body plate which was in contact with the setter, and then laser processed into a 10 mm ⁇ 10 mm square shape.
  • Example A7 (comparison) A battery was prepared and evaluated in the same manner as Example A2, except that the battery operating temperature in the evaluation of the cycle capacity retention rate was 25 ° C. The results were as shown in Table 1.
  • Example B1 (1) Production of positive electrode plate (1a) Production of LCO green sheet Co 3 O 4 powder (average particle diameter 0.3 ⁇ m) weighed to have a molar ratio of Li / Co of 1.02 and commercially available Li 2 After mixing the CO 3 powder (D50 particle size 2.5 ⁇ m), the mixture was kept at 750 ° C. for 5 hours. The obtained powder was pulverized in a pot mill so that the volume basis D50 was 1 ⁇ m or less, to obtain a powder composed of LCO plate-like particles.
  • the LCO slurry was prepared by stirring and degassing the resulting mixture under reduced pressure and adjusting the viscosity.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LCO green sheet.
  • the thickness of the LCO green sheet was such that the thickness after firing was 200 ⁇ m.
  • the thickness of the dried Li 2 CO 3 green sheet has a Li / Co ratio, which is a molar ratio of the Li content in the Li 2 CO 3 green sheet to the Co content in the LCO green sheet, to a predetermined value.
  • the cut out Li 2 CO 3 green sheet piece was placed on an LCO calcined plate as an excess lithium source, and a porous magnesia setter as an upper setter was placed thereon.
  • a porous magnesia setter as an upper setter was placed thereon.
  • the alumina sheath was not sealed but was slightly closed with a lid.
  • the resulting laminate is heated up to 600 ° C. at a heating rate of 200 ° C./h and degreased for 3 hours, then heated up to 800 ° C. at 200 ° C./h and held for 5 hours, and then kept up to 900 ° C.
  • the LTO slurry was prepared by stirring and degassing the obtained negative electrode raw material mixture under reduced pressure and adjusting the viscosity.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LTO green sheet.
  • the thickness of the LTO green sheet after drying was a value such that the thickness after firing was 200 ⁇ m.
  • LiOH purity 98.0% or more
  • Li 2 SO 4 purity 98.0% or more
  • the mixture was placed in a glass tube in an Ar atmosphere and melted by heating at 430 ° C. for 2 hours.
  • the melt was then quenched to form a solid by placing the glass tube in water and holding for 10 minutes.
  • the solidified body was ground in a mortar in an Ar atmosphere to obtain 3LiOH.Li 2 SO 4 powder which is a solid electrolyte.
  • ⁇ Porosity> The porosity of each of the positive electrode plate and the negative electrode plate was measured in the same manner as Example A1.
  • Example B1 the pores are partially impregnated with the inorganic solid electrolyte, but in the present specification, “porosity” also includes the portion filled with the inorganic solid electrolyte in the pores, unless otherwise specified.
  • the net porosity of the positive electrode plate itself is meant.
  • ⁇ Discharge capacity ratio> The discharge capacity of the battery at an operating temperature of 100 ° C. was measured in the voltage range of 2.7 V-1.5 V according to the following procedure. Constant current charge at 1C rate until battery voltage reaches upper limit of voltage range, followed by constant voltage charge until current value reaches 0.2C rate, then discharge at 0.2C rate until lower limit of voltage range above The discharge is measured by repeating the charge and discharge cycle including the total of three times, and the average value of them is used as the discharge capacity, and it is determined as the ratio (discharge capacity ratio (%)) to the actual electric capacity (mAh) of the positive electrode plate.
  • the discharge capacity of the battery at an operating temperature of 100 ° C. was measured in the voltage range of 2.7 V-1.5 V according to the following procedure. Constant current charge at 1C rate until battery voltage reaches upper limit of voltage range, followed by constant voltage charge until current value reaches 0.2C rate, then discharge at 0.2C rate until lower limit of voltage range above The discharge is measured by repeating the charge and discharge cycle including the total of
  • Example B2 A battery was prepared and evaluated in the same manner as in Example B1 except that the preparation of the positive electrode plate and the negative electrode plate was performed as follows.
  • Example B3 A battery was prepared and evaluated in the same manner as in Example B1 except that the preparation of the positive electrode plate and the negative electrode plate was performed as follows.
  • Example B4 A battery was fabricated in the same manner as Example B1, except that the same positive and negative plates as in Example B2 were used, and heating in an electric furnace for 45 minutes at 380 ° C in the above (4) was carried out. I made an evaluation.
  • Example B5 Production and evaluation of a battery were performed in the same manner as in Example B1, except that the preparation of the positive electrode plate was performed as follows, and that the same negative electrode plate as in Example B2 was used.
  • Example B6 A battery was prepared and evaluated in the same manner as in Example B1 except that the preparation of the positive electrode plate and the negative electrode plate was performed as follows.
  • Example B7 Solid using a Li (OH) 0.9 F 0.1 Cl-based powder produced as described below as the solid electrolyte using the same as Example B2 as the positive electrode plate and the negative electrode plate A battery was prepared and evaluated in the same manner as in Example B1, except that the electrolyte powder was heated at 350 ° C. for 45 minutes.
  • LiOH purity of 98.0% or more
  • LiCl purity of 99.9% or more
  • LiF purity of 99.9%
  • Each raw material was weighed and mixed so that LiOH: LiCl: LiF was 0.9: 1.0: 0.1 (molar ratio) in an Ar atmosphere glove box having a dew point of ⁇ 50 ° C. or less.
  • the obtained mixed powder was put into an alumina crucible, placed into a quartz tube, and sealed with a flange.
  • the quartz tube is set in a tubular furnace, Ar gas having a dew point of -50 ° C.
  • the heating temperature and the heating time under an Ar gas atmosphere can be changed as appropriate, and in general, the heating temperature may be 250 ° C. or more and 600 ° C. or less, and the heating time may be 0.1 hour or more.
  • Example B8 Solid electrolyte using the same positive electrode plate and negative electrode plate as in Example B2 and using Li (OH) 0.9 F 0.1 Br-based powder produced as follows as a solid electrolyte in the above (4) A battery was prepared and evaluated in the same manner as in Example B1, except that the powder was heated at 350 ° C. for 45 minutes.
  • LiOH purity 98.0% or more
  • LiBr purity 99.9% or more
  • LiF purity 99.9%
  • Each raw material was weighed and mixed so that LiOH: LiBr: LiF was 0.9: 1.0: 0.1 (molar ratio) in an Ar atmosphere glove box having a dew point of ⁇ 50 ° C. or less.
  • the obtained mixed powder was put into an alumina crucible, placed into a quartz tube, and sealed with a flange.
  • the quartz tube is set in a tubular furnace, Ar gas having a dew point of -50 ° C.
  • the heating temperature and the heating time under an Ar gas atmosphere can be changed as appropriate, and in general, the heating temperature may be 250 ° C. or more and 600 ° C. or less, and the heating time may be 0.1 hour or more.
  • Example B9 Using the LNMO sintered plate prepared as follows as a positive electrode plate, preparing the negative electrode plate as follows, and measuring the C / A ratio and the discharge capacity ratio as follows: A battery was prepared and evaluated in the same manner as in Example B1 except for the above.
  • the resulting composite was pulverized to a volume basis D50 of 1 ⁇ m or less to obtain LNMO powder.
  • the resulting mixture was stirred under vacuum for degassing and adjusting the viscosity to prepare a LNMO slurry.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LNMO green sheet.
  • the thickness of the LNMO green sheet was such that the thickness after firing was 200 ⁇ m.
  • a LNMO sintered plate was obtained as a positive electrode plate.
  • An Au film (100 nm thick) was formed as a current collection layer by sputtering on the surface of the obtained LNMO sintered compact plate in contact with the lower setter, and then laser processed into a 10 mm ⁇ 10 mm square shape.
  • discharge capacity rate The discharge capacity ratio (%) was determined in the same manner as in Example B1 except that the voltage range of the charge and discharge cycle was set to 3.4 V to 1.5 V.
  • Example B10 Using the NCM sintered plate produced as follows as a positive electrode plate, using the same negative electrode plate as in Example B2, and measuring the C / A ratio and the discharge capacity ratio as follows A battery was prepared and evaluated in the same manner as in Example B1 except for the following.
  • NCM (523) Li (Ni 0.5 Co 0.2 Mn 0.3 ) O 2 (hereinafter NCM (523)) molded body Weighed so that the molar ratio of Li / (Ni + Co + Mn) is 1.15 After mixing commercially available (Ni 0.5 Co 0.2 Mn 0.3 ) (OH) 2 powder (average particle diameter 9 ⁇ m) and Li 2 CO 3 powder (average particle diameter 2.5 ⁇ m), it is carried out at 840 ° C. for 15 hours The powder was held to obtain a powder consisting of NCM (523) particles.
  • This powder was passed through a nylon mesh (180 mesh) and uniaxially pressed at 100 MPa for 1 minute with a mold to produce an NCM (523) molded body.
  • the thickness of the NCM (523) molded body was a value such that the thickness after firing was 200 ⁇ m.
  • NCM (523) sintered plate (B) Preparation of NCM (523) Sintered Plate
  • the NCM (523) compact was placed on an alumina setter and placed in an alumina sheath. At this time, the alumina sheath was not sealed but was slightly closed with a lid.
  • the obtained laminate was fired by raising the temperature to 920 ° C. at a temperature rising rate of 200 ° C./h and holding for 10 hours. After firing, the temperature was lowered to room temperature, and the fired body was taken out of the alumina sheath.
  • an NCM (523) sintered plate was obtained as a positive electrode plate.
  • An Au film (100 nm in thickness) was formed as a current collection layer by sputtering on one side of the obtained NCM (523) sintered plate.
  • discharge capacity rate The discharge capacity ratio (%) was determined in the same manner as in Example B1 including the voltage range of charge and discharge cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

酸化物形態の正極活物質を含む無機材料で構成される厚さ25μm以上の正極板と、酸化物形態の負極活物質を含む無機材料で構成される厚さ25μm以上の負極板と、無機固体電解質層とを含み、100℃以上の温度で充放電される、二次電池が提供される。かかる二次電池によれば、二次電池の大容量化を図りながら、急速充放電を高いサイクル容量維持率で実現することができる。

Description

二次電池
 本発明は、二次電池に関するものである。
 近年、パーソナルコンピュータ、携帯電話等のポータブル機器の開発に伴い、その電源としての電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させる媒体として、希釈溶媒に可燃性の有機溶媒を用いた有機溶媒等の液体の電解質(電解液)が従来使用されている。このような電解液を用いた電池においては、電解液の漏液や、発火、爆発等の問題を生ずる可能性がある。かかる問題を解消すべく、本質的な安全性確保のために、液体の電解質に代えて固体電解質を使用するとともに、その他の要素の全てを固体で構成した全固体二次電池の開発が進められている。全固体二次電池は、電解質が固体であることから、発火の心配が少なく、漏液せず、また、腐食による電池性能の劣化等の問題も生じ難い。
 例えば、特許文献1(特開2016-66550号公報)には、高温下で安定した充放電特性を有する全固体二次電池として、Li、Al、Ti及びPを含むNASICON構造を持つ第1の層と、Tiを含まずにLi、Al、M(但し、MはGe又はZrである)及びPを含むNASICON構造を持つ第2の層とを有する固体電解質層を備えたものが開示されている。この文献には、正極層の厚さが9μm、負極層の厚さが12μm、固体電解質層の厚さが12μmの全固体二次電池を製造したことが記載されている。
 特許文献2(特開2015-185337号公報)には、正極、負極及び固体電解質層を有し、正極又は負極にチタン酸リチウム(LiTi12)焼結体を用いた全固体電池が開示されている。
 特許文献3(国際公開第2017/146088号)には、固体電解質を備えるリチウム二次電池の正極として、コバルト酸リチウム(LiCoO)等のリチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向正極板を用いることが開示されている。
特開2016-66550号公報 特開2015-185337号公報 国際公開第2017/146088号
 しかしながら、特許文献1に開示される全固体二次電池は、容量ないしエネルギー密度が低いとの問題がある。一方、特許文献2に開示される全固体二次電池は、高温条件下で駆動した際における電池の劣化が顕著であるとの問題がある。
 本発明者らは、今般、酸化物を含む無機材料製の正極板及び負極板、並びに無機固体電解質層を備えた二次電池において、正極板及び負極板の各々を25μm以上の厚さとし、かつ、100℃以上の温度で充放電させることで、二次電池の大容量化を図りながら、急速充放電を高いサイクル容量維持率で実現できるとの知見を得た。
 したがって、本発明の目的は、二次電池の大容量化を図りながら、急速充放電を高いサイクル容量維持率で実現することにある。
 本発明の一態様によれば、酸化物形態の正極活物質を含む無機材料で構成される厚さ25μm以上の正極板と、酸化物形態の負極活物質を含む無機材料で構成される厚さ25μm以上の負極板と、無機固体電解質層とを含み、100℃以上の温度で充放電されることを特徴とする、二次電池が提供される。
 本発明の別の態様によれば、酸化物形態の正極活物質を含む無機材料で構成される厚さ25μm以上の正極板と、酸化物形態の負極活物質を含む無機材料で構成される厚さ25μm以上の負極板と、無機固体電解質層とを含む二次電池を用意する工程と、
 前記二次電池を100℃以上の温度に加熱して充放電させる工程と、
を含む、二次電池の使用方法が提供される。
 本発明の別の態様によれば、前記二次電池を製造する方法であって、
 前記正極板又は前記負極板に、前記正極板又は前記負極板の融点若しくは分解温度よりも低い融点を有する無機固体電解質粉末を載置する工程と、
 前記無機固体電解質粉末上に前記負極板又は前記正極板を載置する工程と、
 前記負極板を前記正極板に向けて又は前記正極板を前記負極板に向けて100~600℃の温度でプレスして、前記無機固体電解質粉末を溶融させて前記正極板内又は/及び前記負極板内の空隙に浸透させる工程と、
 前記正極板、前記溶融された電解質、及び前記負極板を放冷又は冷却して、前記溶融された電解質を凝固させる工程と、
を含む、方法が提供される。
本発明の二次電池の一例を示す模式断面図である。 配向正極板の板面に垂直な断面の一例を示すSEM像である。 図2に示される配向正極板の断面におけるEBSD像である。 図3のEBSD像における一次粒子の配向角度の分布を面積基準で示すヒストグラムである。
 二次電池
 本発明は二次電池に関するものである。本明細書において「二次電池」とは、繰り返し充放電可能な電池を広く指すものであり、正極板、負極板及び固体電解質層の各々が後述する無機材料で構成される限り、特に限定されない。そのような二次電池の例としては、リチウム二次電池(リチウムイオン二次電池とも称される)、ナトリウムイオン電池、マグネシウムイオン二次電池、アルミニウムイオン二次電池等が挙げられ、好ましくはリチウム二次電池である。
 図1に本発明の二次電池の一例を模式的に示す。図1に示される二次電池10は、正極板12、無機固体電解質層14、及び負極板16を含む。正極板12は、酸化物形態の正極活物質を含む無機材料で構成される。負極板16は、酸化物形態の負極活物質を含む無機材料で構成される。正極板12及び負極板16の厚さはそれぞれ25μm以上である。そして、この二次電池10は、100℃以上の温度で充放電されるものである。このように、酸化物を含む無機材料製の正極板12及び負極板16、並びに無機固体電解質層14を備えた二次電池において、正極板12及び負極板16の各々を25μm以上の厚さとし、かつ、100℃以上の温度で充放電させることで、二次電池10の大容量化を図りながら、急速充放電を高いサイクル容量維持率で実現することができる。すなわち、正極板12及び負極板16が上述のとおり厚いことで、二次電池10は大容量の電池として構成可能である。つまり、正極板12及び負極板16がいずれもセラミックス部材であるため、それらの厚みを任意に厚くすることで、高容量化及び高エネルギー密度化を実現することができる。そして、かかる二次電池10を100℃以上の高温で充放電させることで、急速充放電が可能となる。つまり、二次電池10は上記温度で高速でかつ安定に駆動することができる。しかも、急速充放電を繰り返し行っても高い容量を維持することができる、すなわち高いサイクル容量維持率を実現することができる。
 したがって、二次電池10は100℃以上の作動温度で充放電されるものであるが、好ましい作動温度が100~300℃であり、より好ましくは100~200℃、さらに好ましくは100~150℃である。上記作動温度を実現するための加熱手段は、各種ヒータや発熱を伴う各種装置又はデバイスであることができるが、好ましい例としては通電加熱式セラミックヒーターが挙げられる。換言すれば、本発明の二次電池10は加熱手段を伴った二次電池システムとして提供されるのが好ましい。
 正極板12は無機材料で構成されており、この無機材料は酸化物形態の正極活物質を含む。酸化物形態の正極活物質は、二次電池10の種類に応じて適宜選択すればよく、特に限定されない。例えば、リチウム二次電池の場合、正極活物質はリチウム複合酸化物であるのが好ましい。リチウム複合酸化物とは、LiMO(0.05<x<1.10であり、Mは少なくとも1種類の遷移金属であり、Mは典型的にはCo、Ni、Mn及びAlからなる群から選択される少なくとも1種を含む)で表される酸化物である。リチウム複合酸化物は層状岩塩構造を有する。層状岩塩構造とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的にはα-NaFeO型構造、すなわち立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。リチウム複合酸化物の例としては、LiCoO(コバルト酸リチウム)、LiNiO(ニッケル酸リチウム)、LiMnO(マンガン酸リチウム)、LiNiMnO(ニッケル・マンガン酸リチウム)、LiNiCoO(ニッケル・コバルト酸リチウム)、LiCoNiMnO(コバルト・ニッケル・マンガン酸リチウム)、LiCoMnO(コバルト・マンガン酸リチウム)、LiMnO、及び上記化合物との固溶物等が挙げられ、特に好ましくはLiCoO(コバルト酸リチウム、典型的にはLiCoO)である。リチウム複合酸化物には、Mg、Al、Si、Ca、Ti、V、Cr、Fe、Cu、Zn、Ga、Ge、Sr、Y,Zr、Nb、Mo、Ag、Sn、Sb、Te、Ba、Bi、及びWから選択される1種以上の元素が含まれていてもよい。あるいは、他の構造として、スピネル構造を持つLiMn系材料やLiNi0.5Mn1.5系材料、オリビン構造を持つLiMPO(式中、MはFe、Co、Mn及びNiから選択される少なくとも1種である)等も好適に用いることができる。
 正極板12に含まれる正極活物質の複数の粒子は、物理的及び電気的に互いに連結しているのが、エネルギー密度を高めつつ電子伝導性及びイオン導電性を高める観点から好ましい。したがって、正極板12は焼結体板(例えばリチウム複合酸化物焼結体板)であるのが好ましい。焼結体板の場合、正極板にはバインダーが含まれないため、正極活物質(例えばリチウム複合酸化物)の充填密度が高くなることで、高容量や良好な充放電効率を得ることができる。なお、正極板にはバインダーが含まれない理由は、グリーンシートにバインダーが含まれていたとしても、焼成時にバインダーが消失又は焼失するからである。
 正極板12がリチウム複合酸化物焼結体板である場合、正極板12は、リチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向正極板であるのが好ましい。かかる配向正極板は、特許文献3(国際公開第2017/146088号)に記載される方法に従って製造することができる。図2に配向正極板の板面に垂直な断面SEM像の一例を示す一方、図3に配向正極板の板面に垂直な断面における電子線後方散乱回折(EBSD:Electron Backscatter Diffraction)像を示す。また、図4に、図3のEBSD像における一次粒子11の配向角度の分布を面積基準で示すヒストグラムを示す。図3に示されるEBSD像では、結晶方位の不連続性を観測することができる。図3では、各一次粒子11の配向角度が色の濃淡で示されており、色が濃いほど配向角度が小さいことを示している。配向角度とは、各一次粒子11の(003)面が板面方向に対して成す傾斜角度である。なお、図2及び3において、配向正極板の内部で黒表示されている箇所は気孔である。
 図2及び3に示されるように、正極板12は、互いに結合された複数の一次粒子11で構成された配向焼結体であるのが好ましい。各一次粒子11は、主に板状であるが、直方体状、立方体状及び球状などに形成されたものが含まれていてもよい。各一次粒子11の断面形状は特に制限されるものではなく、矩形、矩形以外の多角形、円形、楕円形、或いはこれら以外の複雑形状であってもよい。
 図2及び3に示されるように、リチウム複合酸化物で構成される各一次粒子11の配向角度の平均値、すなわち平均配向角度は0°超30°以下であるのが好ましい。高温条件下で駆動した際における電池の劣化をより一層低減することができる。これは、以下に示される様々な利点が寄与したことによるものと考えられる。第一に、各一次粒子11が厚み方向に対して傾斜した向きに寝た状態になるため、各一次粒子同士の密着性を向上させることができる。その結果、ある一次粒子11と当該一次粒子11の長手方向両側に隣接する他の一次粒子11との間におけるイオン伝導性を向上させることができるため、レート特性を向上させることができる。第二に、サイクル特性を向上させることができる。すなわち、リチウムイオンの出入りに応じて(003)面と垂直な方向に各一次粒子11が伸縮するところ、板面方向に対する(003)面の傾斜角度を小さくすることによって、板面方向における配向正極板12の膨張収縮量が低減されて、配向正極板12と無機固体電解質層14との間に応力が生じることを抑制できる。第三に、レート特性をより向上させることができる。これは、上述のとおり、リチウムイオンの出入りに際して、正極板12では、板面方向よりも厚み方向における膨張収縮が優勢となるため、正極板12の膨張収縮がスムーズになるところ、それに伴ってキャリアイオン(例えばリチウムイオン)の出入りもスムーズになるからである。
 リチウム複合酸化物で構成される一次粒子11の平均配向角度は、(i)正極板をクロスセクションポリッシャ(CP)により研磨し、(ii)得られた正極板断面(正極板の板面に垂直な断面)を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)でEBSD測定し、(iii)得られたEBSD像において特定される全ての粒子について、一次粒子の(003)面と正極板の板面とがなす角度(すなわち(003)からの結晶方位の傾き)を傾斜角として求め、(iv)それらの角度の平均値を算出することにより決定することができる。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、30°以下が好ましく、より好ましくは25°以下である。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、2°以上が好ましく、より好ましくは5°以上である。
 図4に示されるように、リチウム複合酸化物で構成される各一次粒子11の配向角度は、0°から90°まで広く分布していてもよいが、その大部分は0°超30°以下の領域に分布していることが好ましい。すなわち、配向正極板12を構成する配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうち配向正極板12の板面に対する配向角度が0°超30°以下である一次粒子11(以下、低角一次粒子という)の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。これにより、相互密着性の高い一次粒子11の割合を増加させることができるため、レート特性をより向上させることができる。また、低角一次粒子のうち配向角度が20°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して50%以上であることがより好ましい。さらに、低角一次粒子のうち配向角度が10°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して15%以上であることがより好ましい。
 リチウム複合酸化物で構成される各一次粒子11は、主に板状であるため、図2及び3に示されるように、各一次粒子11の断面はそれぞれ所定方向に延びており、典型的には略矩形状となる。すなわち、配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうちアスペクト比が4以上である一次粒子11の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。具体的には、図3に示されるようなEBSD像において、これにより、一次粒子11同士の相互密着性をより向上することができ、その結果、レート特性をより向上させることができる。一次粒子11のアスペクト比は、一次粒子11の最大フェレー径を最小フェレー径で除した値である。最大フェレー径は、断面観察した際のEBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最大距離である。最小フェレー径は、EBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最小距離である。
 正極板12の気孔に無機固体電解質を充填させない場合、配向焼結体を構成する複数の一次粒子の平均粒径が5μm以上であるのが好ましい。具体的には、平均配向角度の算出に用いた30個の一次粒子11の平均粒径が、5μm以上であることが好ましく、より好ましくは7μm以上、さらに好ましくは12μm以上である。これにより、リチウムイオンが伝導する方向における一次粒子11同士の粒界数が少なくなって全体としてのイオン伝導性が向上するため、レート特性をより向上させることができる。一次粒子11の平均粒径は、各一次粒子11の円相当径を算術平均した値である。円相当径とは、EBSD像上において、各一次粒子11と同じ面積を有する円の直径のことである。
 正極板12の気孔に無機固体電解質を充填させる場合、配向焼結体を構成する複数の一次粒子の平均粒径は20μm以下であるのが好ましい。具体的には、一次粒子11の平均粒径が、20μm以下であることが好ましく、より好ましくは15μm以下である。これにより、一次粒子11の粒内をリチウムイオンが伝導する距離が短くなり、レート特性をより向上させることができる。具体的には、例えば充電においては、リチウムイオンは正極一次粒子11の粒内から空隙に充填された固体電解質に移動し、更に膜状(或いは平面状)となっている固体電解質14を経て、対極の負極粒子へと移動するが、充填された固体電解質によって律速となる一次粒子11を含む正極内のリチウムイオンの伝導距離が短くなることから、レート特性を向上させることができる。一次粒径11の平均粒径は、焼結体板の断面SEM像を画像解析することにより測定することができる。例えば、焼結体板をクロスセクションポリッシャ(CP)で加工して研磨断面を露出させる。この研磨断面を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)でSEM(走査電子顕微鏡)により観察する。このとき、視野内に20個以上の一次粒子が存在するように視野を設定する。得られたSEM像中の全ての一次粒子について外接円を描いたときの当該外接円の直径を求め、これらの一次粒径11の平均粒径とすることができる。
 正極板12は気孔を含んでいるのが好ましい。正極板12が気孔を含むことで、充放電サイクルにおけるキャリアイオン(例えばリチウムイオン)の出入りに伴う結晶格子の伸縮によって発生する応力が、当該気孔によって良好(均一)に開放される。このため、充放電サイクルの繰り返しに伴う粒界クラックの発生が可及的に抑制される。正極板12に含まれる複数の気孔が配向しているのが、上記効果を高められる点で好ましい。複数の気孔の配向は、例えば、原料粒子に板状結晶を用いることにより実現することができる。特に、高温にて高速で充放電した際に上記効果は顕著なものとなる。
 正極板12の平均気孔アスペクト比は1.2以上であり、好ましくは1.5以上、さらに好ましくは1.8以上である。そして、このようなアスペクト比によって規定される異方性を有する気孔形状が、曲げた際の応力や充放電した際の応力を好都合に分散させることで、耐曲げ性や急速充電性能等の優れた性能を実現するものと考えられる。平均気孔アスペクト比の上限値は特に限定されないが、平均気孔アスペクト比は30以下が好ましく、より好ましくは20以下、さらに好ましくは15以下である。正極板12の平均気孔アスペクト比は、正極板12内に含まれる気孔のアスペクト比の平均値であり、気孔のアスペクト比は、気孔の長手方向の長さの気孔の短手方向の長さに対する比である。平均気孔アスペクト比は、後述する実施例で詳述されるように、正極板12の断面SEM像を画像解析することにより測定することができる。
 正極板12の気孔率は2~20%であるのが好ましく、より好ましくは3~20%、さらに好ましくは5~18%である。このような範囲内であると、気孔による応力開放効果と、高容量化の効果とを望ましく実現することができる。正極板12の気孔率は、正極板12における、気孔(開気孔及び閉気孔を含む)の体積比率であり、後述する実施例で詳述されるように、正極板12の断面SEM像を画像解析することにより測定することができる。
 あるいは、正極板12の気孔率が10~50%であるのも好ましく、より好ましくは10~40%、さらに好ましくは12~35%である。このような範囲内であると、正極板12に含まれる気孔に無機固体電解質を充填させるのに有利となる。正極板が緻密であるほど、正極板内のリチウム拡散が遅くなるため、正極板が本来的に備える放電容量が得られにくくなりうるが、正極板を多孔化してその気孔部分に無機固体電解質を充填させた電池とすることで、正極板内のリチウム拡散を電解質が補助し、得られる放電容量が向上する。したがって、正極板12に含まれる気孔に無機固体電解質が充填されているのが好ましく、より好ましくは正極板12に含まれる気孔の70%以上に、さらに好ましくは85%以上に無機固体電解質が充填されている。正極板12の気孔における無機固体電解質充填率は高ければ高い方が望ましく100%であってもよいが、典型的には99%以下である。また、正極板12は無機固体電解質及び正極活物質のみからなるのが好ましい。すなわち、正極板内に電子伝導助剤が含まれると、その分活物質が減り容量低下を招くが、正極板として焼結体板を採用することで、電子伝導助剤を用いることなく、正極活物質のみで、望ましい電子伝導性を確保することができる。これは、焼結体板の構成粒子(正極活物質粒子)同士がネッキングにより強固に結合して電子伝導性の向上をもたらすためである。また、焼結体板を採用することで正極板内の気孔(これは容量低下につながる)を適度に減らすことでき、それだけ電池のエネルギー密度を向上することもできる。
 正極板12の厚さは、単位面積当りの活物質容量を高めてリチウム二次電池10のエネルギー密度を向上する観点から、25μm以上であり、好ましくは30μm以上であり、より好ましくは40μm以上、特に好ましくは50μm以上、最も好ましくは55μm以上である。厚さの上限値は特に限定されないが、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を抑制する観点から、正極板12の厚さは500μm未満が好ましく、400μm以下がより好ましく、さらに好ましくは300μm以下、特に好ましくは250μm以下、より特に好ましくは200μm以下である。また、正極板12のサイズは、好ましくは5mm×5mm平方以上、より好ましくは10mm×10mm平方以上であり、別の表現をすれば、好ましくは25mm以上、より好ましくは100mm以上である。
 負極板16は無機材料で構成されており、この無機材料は酸化物形態の負極活物質を含む。酸化物形態の負極活物質は、二次電池10の種類に応じて適宜選択すればよく、特に限定されないが、少なくともTiを含有する酸化物であるのが好ましい。例えば、リチウム二次電池の場合、負極活物質の好ましい例としては、チタン酸リチウムLiTi12(以下、LTO)、ニオブチタン複合酸化物NbTiO、酸化チタンTiOが挙げられ、より好ましくはLTO及びNbTiOである。なお、LTOは典型的にはスピネル型構造を有するものとして知られているが、充放電時には他の構造も採りうる。例えば、LTOは充放電時にLiTi12(スピネル構造)とLiTi12(岩塩構造)の二相共存にて反応が進行する。したがって、LTOはスピネル構造に限定されるものではない。
 負極板16に含まれる負極活物質の複数の粒子は、物理的及び電気的に互いに連結しているのが、エネルギー密度を高めつつ電子伝導性及びイオン導電性を高める観点から好ましい。したがって、負極板16は焼結体板(例えばLTO又はNbTiO焼結体板)であるのが好ましい。焼結体板の場合、負極板にはバインダーが含まれないため、負極活物質(例えばLTO又はNbTiO)の充填密度が高くなることで、高容量や良好な充放電効率を得ることができる。なお、負極板にはバインダーが含まれない理由は、グリーンシートにバインダーが含まれていたとしても、焼成時にバインダーが消失又は焼失するからである。LTO焼結体板は、特許文献2(特開2015-185337号公報)に記載される方法に従って製造することができる。
 負極板16は気孔を含んでいるのが好ましい。負極板16が気孔を含むことで、充放電サイクルにおけるキャリアイオン(例えばリチウムイオン)の出入りに伴う結晶格子の伸縮によって発生する応力が、当該気孔によって良好(均一)に開放される。このため、充放電サイクルの繰り返しに伴う粒界クラックの発生が可及的に抑制される。
 負極板16の気孔率は2~20%であるのが好ましく、より好ましくは3~20%、さらに好ましくは5~18%である。このような範囲内であると、気孔による応力開放効果と、高容量化の効果とを望ましく実現することができる。負極板16の気孔率は、負極板16における、気孔(開気孔及び閉気孔を含む)の体積比率であり、後述する実施例で詳述されるように、負極板16の断面SEM像を画像解析することにより測定することができる。
 あるいは、負極板16の気孔率が10~50%であるのも好ましく、より好ましくは10~40%、さらに好ましくは12~35%である。このような範囲内であると、負極板16に含まれる気孔に無機固体電解質を充填させるのに有利となる。負極板が緻密であるほど、負極板内のリチウム拡散が遅くなるため、負極板が本来的に備える放電容量が得られにくくなりうるが、負極板を多孔化してその気孔部分に無機固体電解質を充填させた電池とすることで、負極板内のリチウム拡散を電解質が補助し、得られる放電容量が向上する。したがって、負極板16に含まれる気孔に無機固体電解質が充填されているのが好ましく、より好ましくは負極板16に含まれる気孔の70%以上に、さらに好ましくは85%以上に無機固体電解質が含浸されている。負極板16の気孔における無機固体電解質充填率は高ければ高い方が望ましく100%であってもよいが、典型的には99%以下である。また、負極板16が無機固体電解質及び負極活物質のみからなるのが好ましい。すなわち、負極板内に電子伝導助剤が含まれると、その分活物質が減り容量低下を招くが、負極板として焼結体板を採用することで、電子伝導助剤を用いることなく、換言すれば無機固体電解質及び負極活物質のみで、望ましい電子伝導性を確保することができる。これは、焼結体板の構成粒子(負極活物質粒子)同士がネッキングにより強固に結合して電子伝導性の向上をもたらすためである。また、焼結体板を採用することで負極板内の気孔(これは容量低下につながる)を適度に減らすことでき、それだけ電池のエネルギー密度を向上することもできる。
 負極板16の厚さは、単位面積当りの活物質容量を高めてリチウム二次電池10のエネルギー密度を向上する観点から、25μm以上であり、好ましくは30μm以上であり、より好ましくは40μm以上、特に好ましくは50μm以上、最も好ましくは55μm以上である。厚さの上限値は特に限定されないが、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を抑制する観点から、負極板16の厚さは400μm以下が好ましく、より好ましくは300μm以下である。また、負極板16のサイズは、好ましくは5mm×5mm平方以上、より好ましくは10mm×10mm平方以上であり、別の表現をすれば、好ましくは25mm以上、より好ましくは100mm以上である。
 負極板16の容量Aに対する正極板12の容量Cの比率C/Aが、1.0<C/A<1.6を満たすようにするのが好ましく、より好ましくは1.005<C/A<1.500である。このように正極板12の容量Cを負極板16の容量Aよりも大きくすることで、二次電池10が負極板16の容量分のみで駆動することになるため、正極板12内のキャリア(例えばリチウム)を使う範囲が減る結果、キャリアイオン(例えばリチウムイオン)の出入りに伴う正極板12の膨張収縮を抑えられる。また、上記効果は高温条件下において特に顕著である。その理由は定かではないが、正極板12及び負極板16の内部におけるキャリアの拡散が速く、内部におけるキャリア濃度差(これは膨張収縮差につながる)が大きくならないことが一要因として推察される。
 上記範囲内のC/A比は、正極板12の厚さ、気孔率等の諸特性と、負極板16の厚さ、気孔率等の諸特性とをそれぞれ適宜制御することにより実現することができる。なお、C/A比は、以下の手順に従い決定されるのが好ましい。
(i)正極板12の容量Cとして、正極板の面積1cm当りの25℃での正極板12の実電気容量(mAh)を求める。この実電気容量は、0.2C電流、リチウム金属に対する電位が4.25Vの定電流-定電圧充電を10時間行った後、0.2C電流の定電流放電をリチウム金属に対する電位が3.0Vに到達するまで行ったときの電気容量とする。
(ii)負極板の容量Aとして、負極板16の面積1cm当りの25℃での負極板16の実電気容量(mAh)を求める。この実電気容量は、0.2C電流、リチウム金属に対する電位が0.8Vの定電流-定電圧充電を10時間行った後、0.2C電流の定電流放電をリチウム金属に対する電位が2.0Vに到達するまで行ったときの電気容量とする。
(iii)最後に、負極板16の容量Aに対する正極板12の容量Cの比率を算出してC/A比とする。
 前述のとおり、正極板12はLiCoO(LCO)焼結体板であるのが好ましく、負極板16はLiTi12(LTO)焼結体板であるのが好ましい。特に、LCO正極板の配向角度の平均値、すなわち平均配向角度が0°超30°以下である場合、充放電時に面方向へ膨張収縮が生じず、また、LTO負極板も充放電時に膨張収縮が生じなく、固体電解質層も充放電時に膨張収縮しないため、充放電時に応力(特に正極板12又は負極板16と無機固体電解質層14との界面における応力)が発生しなくなり、大容量の充放電を安定かつ高速に行うことができる。また、上記同様の目的から、負極板16としてNbTiO焼結体板を用いる場合は、膨張収縮を制御するように、NbTiO焼結体板を構成する一次粒子を配向させるのが好ましい。
 無機固体電解質層14は、無機固体電解質を含む層であれば、二次電池10の種類に応じて適宜選択すればよく、特に限定されない。例えば、リチウム二次電池の場合、無機固体電解質はリチウムイオン伝導材料であることが望まれる。無機固体電解質層14を構成しうるリチウムイオン伝導材料の好ましい例としては、ガーネット系セラミックス材料、窒化物系セラミックス材料、ペロブスカイト系セラミックス材料、リン酸系セラミックス材料、硫化物系セラミックス材料、ホウケイ酸系セラミックス材料、リチウム-ハロゲン化物系材料、及び高分子系材料が挙げられ、より好ましくは、ガーネット系セラミックス材料、窒化物系セラミックス材料、ペロブスカイト系セラミックス材料、及びリン酸系セラミックス材料からなる群から選択される少なくとも一種である。ガーネット系セラミックス材料の例としては、Li-La-Zr-O系材料(具体的には、LiLaZr12など)、Li-La-Ta-O系材料(具体的には、LiLaTa12など)が挙げられる。窒化物系セラミックス材料の例としては、LiN。ペロブスカイト系セラミックス材料の例としては、Li-La-Zr-O系材料(具体的には、LiLa1-xTi(0.04≦x≦0.14)など)が挙げられる。リン酸系セラミックス材料の例としては、リン酸リチウム、窒素置換リン酸リチウム(LiPON)、Li-Al-Ti-P-O、Li-Al-Ge-P-O、及びLi-Al-Ti-Si-P-O(具体的には、Li1+x+yAlTi2-xSi3-y12(0≦x≦0.4、0<y≦0.6)など)が挙げられる。硫化物系セラミックス材料の例としては、LiOH-LiSO、及びLiBO-LiSO-LiCOが挙げられる。ホウケイ酸系セラミックス材料の例としては、LiO-B-SiOが挙げられる。リチウム-ハロゲン化物系材料の例としては、LiOX(式中、XはCl及び/又はBrである)、Li(OH)1-aCl(式中、0≦a≦0.3である)、及びLiOHX(式中、XはCl及び/又はBrである)が挙げられ、特に好ましくはLiOClである。
 無機固体電解質は、正極板12又は負極板16の融点若しくは分解温度よりも低い融点を有するのが好ましい。こうすることで、上述したように、正極板12及び/又は負極板16に含まれる気孔に無機固体電解質を充填させるのに有利となる。無機固体電解質の融点は、電池動作温度より高いのが典型的であり、より典型的には、電池動作温度を超え600℃以下である。この無機固体電解質は融点が低いため、後述するように100~600℃の温度で溶融させて正極板12の空隙及び/又は負極板の16の空隙に浸透させることができ、強固な界面接触を実現することができる。この場合、無機固体電解質は、リチウム-ハロゲン化物系材料を含むのが好ましい。このリチウム-ハロゲン化物系材料の好ましい例としては、LiOCl、Li(3-x)x/2OA(式中、0≦x≦0.8、MはMg、Ca、Ba及びSrからなる群から選択される少なくとも1種であり、AはF、Cl、Br及びIからなる群から選択される少なくとも1種である)、Li(OH)1-aCl(式中、0≦a≦0.3である)、及びLiOHX(式中、XはCl及び/又はBrである)からなる群から選択される少なくとも1種が挙げられ、より好ましくはLiOClやLi(OH)0.90.1Clである。また、固体電解質14としてのリチウム-ハロゲン化物系材料の別の好ましい例としては、Li(OH)Br(式中、1.8≦a≦2.3、b=a-c-1、0.01≦c≦0.11である)の組成式で表され、かつ、逆ペロブスカイト型の結晶相を含むものが挙げられ、例えばLi(OH)0.90.1Brである。あるいは、固体電解質14はリチウム-ハロゲン化物系材料以外の材料であってもよく、例えば、xLiOH・yLiSO(式中、x+y=1、0.6≦x≦0.95である)の組成式で表されるものも好ましく用いることができ、例えば3LiOH・LiSOである。上述した材料はいずれもイオン伝導度が高いとの利点がある。
 また、リン酸リチウムオキシナイトライド(LiPON)系セラミックス材料も好ましい。LiPONは、Li2.9PO3.30.46の組成によって代表されるような化合物群であり、例えばLiPO(式中、aは2~4、bは3~5、cは0.1~0.9である)で表される化合物群である。
 無機固体電解質層14の作製方法は特に限定されないが、作製方法の例としては、スパッタリング及びCVD等の気相法、スクリーン印刷及びスピンコート等の液相法、粉末を圧縮する方法、原料を融点以上に加熱した後凝固させる方法、粉末を圧縮しながら融点以上に加熱した後凝固させる方法等が挙げられる。
 無機固体電解質層14の寸法は特に限定されないが、厚さは充放電レート特性と機械的強度の観点から、0.0005mm~1.0mmが好ましく、より好ましくは0.001mm~0.1mm、さらに好ましくは0.002~0.05mmである。固体電解質層は成膜する厚みにより制御してもよいし、粉末を圧縮しながら融点以上に加熱した後に凝固させる方法の場合、スペーサにより厚み制御を行ってもよい。すなわち、全固体リチウム電池は、配向正極板12と負極板16の間に固体電解質層14の厚さを規定するスペーサをさらに備えているのが好ましい。スペーサの抵抗率は1×10Ω・cm以上であるのが好ましく、より好ましくは1×10Ω・cm以上である。スペーサの種類は特に限定されないが、スペーサがセラミックスで構成されるのが好ましく、そのようなセラミックスの例としては、Al、MgO、ZrO等が挙げられる。
 無機固体電解質層の厚さTe、正極板の厚さTc、及び負極板の厚さTaは、Te/(Tc+Ta)<0.25を満たすのが好ましく、より好ましくは0.002<Te/(Tc+Ta)<0.25、さらに好ましくは0.005<Te/(Tc+Ta)<0.2である。このような範囲内とすることで、無機固体電解質層の厚さTeを正極板の厚さ及び負極板の合計厚さTa+Tcよりも相対的にかなり薄くすることができ、二次電池10のエネルギー密度を有意に高くすることができる。
 正極板12の無機固体電解質層14から離れた側の面には、正極集電体13が設けられるのが好ましい。また、負極板16の無機固体電解質層14から離れた側の面には、負極集電体17が設けられるのが好ましい。正極集電体13及び負極集電体17を構成する材料の例としては、白金(Pt)、白金(Pt)/パラジウム(Pd)、金(Au)、銀(Ag)、アルミニウム(Al)、銅(Cu)、ITO(インジウム-錫酸化膜)、ニッケル(Ni)等が挙げられる。
 正極板12、無機固体電解質層14及び負極板16は容器18に収容される。容器18は、単位電池又はそれを複数個直列若しくは並列に積層させたスタックを収容可能な容器であれば特に限定されない。特に、二次電池10は電解液の漏れの懸念が無いため、容器18は比較的簡素な容器形態を採用可能であり、外装材での包装であってもよい。例えば、電子回路に実装するためのチップ形態や、薄く幅広の空間用途のためのラミネートセル形態(例えばアルミニウム(Al)/ポリプロピレン(PP)の複層品)が採用可能である。正極集電体13及び/又は負極集電体17が容器18の一部を兼ねる構造としてもよい。また、耐熱性をより高めるために、ポリプロピレンの代わりにPCTFE(ポリクロロトリフルオロエチレン)、PFA(テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体)、ポリイミド、ポリアミド等の耐熱樹脂を用いてもよい。また、外装材と集電体との絶縁を確保した上で、アルミニウム、ステンレス等の金属を用いてもよい。
 製造方法
 本発明の二次電池10は以下のようにして製造するのが好ましい。まず、正極板12(又は負極板16)に、正極板12(又は負極板16)の融点若しくは分解温度よりも低い融点を有する無機固体電解質粉末を載置する。この無機固体電解質粉末上に負極板16(又は正極板12)を載置する。負極板16を正極板12に向けて(又は正極板を負極板に向けて)100~600℃、好ましくは200~500℃、より好ましくは250~450℃の温度でプレスして、無機固体電解質粉末を溶融させて正極板内の空隙に浸透させる。ここで、上記プレスは、荷重を加えることができる手法であれば特に限定されず、機械的に荷重を加えてもよいし、重しを載せるより荷重を加えてもよい。続いて、正極板12、溶融された電解質、及び負極板16を放冷又は冷却して、溶融された電解質を凝固させて無機固体電解質14を形成させる。なお、正極板12(又は負極板16)の融点若しくは分解温度よりも低い融点を有する無機固体電解質粉末の好ましい例としては、前述したxLiOH・yLiSO、LiOCl、Li(3-x)x/2OA、Li(OH)1-aCl、LiOHX及びLi(OH)Brからなる群から選択される少なくとも1種を含む粉末が挙げられる。
 前述したとおり、二次電池10は、正極板12と負極板16の間に無機固体電解質層14の厚さを規定するスペーサを備えていてもよい。この構成は、無機固体電解質粉末上に負極板16又は正極板12を載置する際に、正極板12と負極板16の間にスペーサが固体電解質粉末と一緒に挟み込むことにより好ましく実現することができる。
 本発明を以下の例によってさらに具体的に説明する。なお、以下の例において、LiCoOを「LCO」と略称し、LiTi12を「LTO」と略称するものとする。
 例A1~A5
(1)正極板の作製
(1a)LCOグリーンシートの作製
 Li/Coのモル比が1.02となるように秤量されたCo粉末(正同化学工業株式会社製、平均粒径0.9μm)及びLiCO粉末(本荘ケミカル株式会社製)を混合した後、750℃で5時間保持した。得られた粉末をポットミルにて体積基準D50が0.4μmとなるように粉砕して、LCO板状粒子からなる粉末を得た。得られたLCO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LCOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LCOグリーンシートを形成した。LCOグリーンシートの厚さは焼成後の厚さが25μm(例A1)又は200μm(例A2~A5及びA7)となるような値とした。
(1b)LiCOグリーンシート(過剰リチウム源)の作製
 LiCO原料粉末(体積基準D50粒径2.5μm、本荘ケミカル株式会社製)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)5重量部と、可塑剤(DOP:フタル酸ジ(2-エチルヘキシル)、黒金化成株式会社製)2重量部と、分散剤(レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LiCOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたLiCOスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LiCOグリーンシートを形成した。乾燥後のLiCOグリーンシートの厚さは、LCOグリーンシートにおけるCo含有量に対する、LiCOグリーンシートにおけるLi含有量のモル比である、Li/Co比を所定の値とすることができるように設定した。
(1c)LCO焼結板の作製
 PETフィルムから剥がしたLCOグリーンシートをカッターで50mm角に切り出し、下部セッターとしてのマグネシア製セッター(寸法90mm角、高さ1mm)の中央に載置した。LCOグリーンシートを昇温速度200℃/hで600℃まで昇温して3時間脱脂した後、900℃で3時間保持することで仮焼した。得られたLCO仮焼板におけるCo含有量に対する、LiCOグリーンシートにおけるLi含有量のモル比である、Li/Co比が0.5となるようなサイズに、乾燥されたLiCOグリーンシートを切り出した。LCO仮焼板上に、上記切り出されたLiCOグリーンシート片を過剰リチウム源として載置し、その上に上部セッターとしての多孔質マグネシア製セッターを載置した。上記焼結板及びグリーンシート片をセッターで挟んだ状態で、120mm角のアルミナ鞘(株式会社ニッカトー製)内に載置した。このとき、アルミナ鞘を密閉せず、0.5mmの隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで600℃まで昇温して3時間脱脂した後に、800℃まで200℃/hで昇温して5時間保持した後900℃まで200℃/hで昇温して24時間保持することで焼成を行った。焼成後、室温まで降温させた後に焼成体をアルミナ鞘より取り出した。こうしてLCO焼結板を正極板として得た。得られたLCO焼結板の下部セッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、10mm×10mm平方の形状にレーザー加工した。
(2)負極板の作製
(2a)LTOグリーンシートの作製
 LTO粉末(体積基準D50粒径0.06μm、シグマアルドリッチジャパン合同会社製)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LTOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LTOグリーンシートを形成した。乾燥後のLTOグリーンシートの厚さは焼成後の厚さが28μm(例A1)、224μm(例A2及びA3)、257μm(例A4)又は161μm(例A5)となるような値とした。
(2b)LTOグリーンシートの焼成
 得られたグリーンシートを25mm角にカッターナイフで切り出し、エンボス加工され
ジルコニア製セッター上に載置した。セッター上のグリーンシートをアルミナ製鞘に入れて500℃で5時間保持した後に、昇温速度200℃/hにて昇温し、800℃で5時間焼成を行なった。得られたLTO焼結体板のセッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、10mm×10mm平方の形状にレーザー加工した。
(3)無機固体電解質の作製
 少量の脱イオン水に4.790gのLiOH及び4.239gのLiClを溶解させて原料水溶液を調製した。これらの前駆体の量は、式:LiOCl+HOに対応する化学量論比となるようにした。水の大部分は、ロータリーエバポレーターおよび約90℃の浴温により脱水した。得られた固体をアルミナボートに入れた。ボートを電気炉の中に入れ、約280℃の温度で約48時間真空加熱し、無機固体電解質であるLiOCl粉末を反応生成物として得た。
(4)電池の作製
 上記正極板上に上記LiOCl粉末を載置し、ホットプレートで正極板及びLiOCl粉末を400℃で加熱し、上から負極板を加圧しながら載せた。このときLiOCl粉末は溶融し、その後の凝固を経て、最終的に厚さ20μmの固体電解質層が形成された。得られた正極板/固体電解質層/負極板からなるセルを用いてラミネート電池を作製した。
(5)評価
 上記(1)で合成されたLCO正極板、上記(2)で合成されたLTO負極板、及び上記(4)で作製された電池について、以下に示されるとおり各種の評価を行った。
<一次粒子の平均配向角度>
 LCO正極板をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた正極板断面(正極板の板面に垂直な断面)を1000倍の視野(125μm×125μm)でEBSD測定して、EBSD像を得た。このEBSD測定は、ショットキー電界放出形走査電子顕微鏡(日本電子株式会社製、型式JSM-7800F)を用いて行った。得られたEBSD像において特定される全ての粒子について、一次粒子の(003)面と正極板の板面とがなす角度(すなわち(003)からの結晶方位の傾き)を傾斜角として求め、それらの角度の平均値を一次粒子の平均配向角度(平均傾斜角)とした。
<板厚>
 LCO正極板及びLTO負極板の各々をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた電極板断面をSEM観察(日本電子株式会社製、JSM6390LA)して各電極板の厚さを測定した。
<気孔率>
 LCO正極板及びLTO負極板の各々をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた電極板断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子製JSM6390LA)した後に画像解析し、全ての気孔の面積を各板の面積で除し、得られた値に100を乗じることで各電極板の気孔率(%)を算出した。
<平均気孔アスペクト比>
 LCO正極板をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた正極板断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子株式会社製、JSM6390LA)した。得られたSEM像を画像解析ソフトImageJを用いて二値化し、得られた二値化画像から気孔を判別した。二値化画像において判別した個々の気孔について、長手方向の長さを短手方向の長さで除することによりアスペクト比を算出した。二値化画像中の全ての気孔についてのアスペクト比を算出し、それらの平均値を平均アスペクト比とした。
<C/A比>
 正極板の容量Cとして、正極板の面積1cm当りの25℃での正極板の実電気容量(mAh)を求めた。この実電気容量は、0.2C電流、リチウム金属に対する電位が4.25Vの定電流-定電圧充電を10時間行った後、0.2C電流の定電流放電をリチウム金属に対する電位が3.0Vに到達するまで行ったときの電気容量とした。一方、負極板の容量Aとして、負極板の面積1cm当りの25℃での負極板の実電気容量(mAh)を求めた。この実電気容量は、0.2C電流、リチウム金属に対する電位が0.8Vの定電流-定電圧充電を10時間行った後、0.2C電流の定電流放電をリチウム金属に対する電位が2.0Vに到達するまで行ったときの電気容量とした。最後に、負極板の容量Aに対する正極板の容量Cの比率を算出してC/A比とした。
<サイクル容量維持率>
 100℃又は300℃の作動温度における電池のサイクル容量維持率を2.7V-1.5Vの電位範囲において以下の手順で測定した。
(i)1Cレートで電池電圧が2.7Vとなるまで定電流充電し、引き続き電流値が0.2Cレートになるまで定電圧充電した後、1Cレートで1.5Vになるまで放電することを含む充放電サイクルを合計3回繰り返すことにより放電容量の測定を行い、それらの平均値を初期放電容量とした。
(ii)充電レート2C及び放電レート2Cで充放電を合計100回行った。
(iii)1Cレートで電池電圧が2.7Vとなるまで定電流充電し、引き続き0.2Cレートになるまで定電圧充電した後、1Cレートで1.5Vになるまで放電することを含む充放電サイクルを合計3回繰り返すことにより放電容量の測定を行い、それらの平均値をサイクル後放電容量とした。
(iv)上記(i)で得られた初期放電容量に対する、上記(iii)で得られたサイクル後放電容量の比率を算出して100を乗じることにより、サイクル容量維持率(%)を得た。
 例A6
 負極板を以下のようにして作製したこと以外は、例A2と同様にして、電池の作製及び評価を行った。結果は表1に示されるとおりであった。
(負極板の作製)
 TiO粉末(石原産業株式会社製、CR-ER)とNb粉末(三井金属鉱業株式会社製、セラミックスグレード)を1:2のモル比となるように秤量し、混合した。得られた混合粉末を1150℃で5時間保持した後、ポットミルにて体積基準D50が0.5μmとなるように粉砕してNbTiO粉末を得た。得られたNbTiO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、NbTiOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、NbTiOグリーンシートを形成した。乾燥後のNbTiOグリーンシートの厚さは焼成後の厚さが100μmとなるような値とした。得られたグリーンシートを25mm角にカッターナイフで切り出し、エンボス加工されジルコニア製セッター上に載置した。セッター上のグリーンシートをアルミナ製鞘に入れて500℃で5時間保持した後に、昇温速度200℃/hにて昇温し、1100℃で5時間焼成を行なった。得られたNbTiO焼結体板のセッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、10mm×10mm平方の形状にレーザー加工した。
 例A7(比較)
 サイクル容量維持率の評価における電池作動温度を25℃としたこと以外は例A2と同様にして、電池の作製及び評価を行った。結果は表1に示されるとおりであった。
Figure JPOXMLDOC01-appb-T000001

 例B1
(1)正極板の作製
(1a)LCOグリーンシートの作製
 Li/Coのモル比が1.02となるように秤量されたCo粉末(平均粒径0.3μm)と市販のLiCO粉末(D50粒径2.5μm)を混合後、750℃で5時間保持した。得られた粉末をポットミルにて体積基準D50が1μm以下となるように粉砕して、LCO板状粒子からなる粉末を得た。得られたLCO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー10重量部と、可塑剤4重量部と、分散剤2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を調整することによって、LCOスラリーを調製した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LCOグリーンシートを形成した。LCOグリーンシートの厚さは焼成後の厚さが200μmとなるような値とした。
(1b)LiCOグリーンシート(過剰リチウム源)の作製
 市販のLiCO原料粉末(D50粒径2.5μm)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー5重量部と、可塑剤2重量部と、分散剤2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を調整することによって、LiCOスラリーを調製した。こうして調製されたLiCOスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LiCOグリーンシートを形成した。乾燥後のLiCOグリーンシートの厚さは、LCOグリーンシートにおけるCo含有量に対する、LiCOグリーンシートにおけるLi含有量のモル比である、Li/Co比を所定の値とすることができるように設定した。
(1c)LCO焼結板の作製
 PETフィルムから剥がしたLCOグリーンシートをカッターで50mm角に切り出し、下部セッターとしてのマグネシア製セッターの中央に載置した。LCOグリーンシートを昇温速度200℃/hで600℃まで昇温して3時間脱脂した後、900℃で3時間保持することで仮焼した。得られたLCO仮焼板におけるCo含有量に対する、LiCOグリーンシートにおけるLi含有量のモル比である、Li/Co比が0.5となるようなサイズに、乾燥されたLiCOグリーンシートを切り出した。LCO仮焼板上に、上記切り出されたLiCOグリーンシート片を過剰リチウム源として載置し、その上に上部セッターとしての多孔質マグネシア製セッターを載置した。上記焼結板及びグリーンシート片をセッターで挟んだ状態で、120mm角のアルミナ鞘内に載置した。このとき、アルミナ鞘を密閉せず、わずかに隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで600℃まで昇温して3時間脱脂した後に、800℃まで200℃/hで昇温して5時間保持した後900℃まで200℃/hで昇温して24時間保持することで焼成を行った。焼成後、室温まで降温させた後に焼成体をアルミナ鞘より取り出した。こうしてLCO焼結板を正極板として得た。得られたLCO焼結体板の下部セッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、10mm×10mm平方の形状にレーザー加工した。
(2)負極板の作製
(2a)LTOグリーンシートの作製
 市販のLTO粉末(体積基準D50粒径0.06μm)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー20重量部と、可塑剤4重量部と、分散剤2重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を調整することによって、LTOスラリーを調製した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LTOグリーンシートを形成した。乾燥後のLTOグリーンシートの厚さは焼成後の厚さが200μmとなるような値とした。
(2b)LTOグリーンシートの焼成
 得られたグリーンシートを25mm角にカッターナイフで切り出し、ジルコニア製セッター上に載置した。セッター上のグリーンシートをアルミナ製鞘に入れて500℃で5時間保持した後に、昇温速度200℃/hにて昇温し、800℃で5時間焼成を行った。得られたLTO焼結体板のセッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、10mm×10mm平方の形状にレーザー加工した。
(3)無機固体電解質の作製
 市販のLiOH(純度98.0%以上)とLiSO(純度98.0%以上)とを用意した。露点-50℃以下のAr雰囲気グローブボックス内にて、それぞれの原料をLiOH:LiSO=3.0:1.0(モル比)となるように秤量し混合した。混合物をAr雰囲気のガラス管に入れ、430℃で2時間加熱することによって溶融した。そして、ガラス管を水中に投入して10分間保持することによって、溶融物を急冷して凝固体を形成した。次に、凝固体をAr雰囲気中乳鉢で粉砕することによって固体電解質である3LiOH・LiSO粉末を得た。
(4)電池の作製
 上記正極板上に直径30μmのZrOビーズを5wt%添加したLiOH・LiSO系粉末を載置し、その上に負極板を載置した。更に負極板上に15gの重しを載置し、電気炉内で400℃で45分間加熱した。このとき、LiOH・LiSO系粉末は溶融し、その後の凝固を経て、最終的に厚さ40μmの固体電解質層が形成された。得られた正極板/固体電解質/負極板からなるセルを用いてラミネート電池を作製した。
(5)評価
 上記(1)で合成された正極板、上記(2)で合成された負極板、及び上記(4)で作製された電池について、以下に示されるとおり各種の評価を行った。
<一次粒子の平均配向角度>
 例A1と同様にして、正極板について一次粒子の平均配向角度を測定した。
<板厚>
 例A1と同様にして、正極板及び負極板の各々の板厚を測定した。
<気孔率>
 例A1と同様にして、正極板及び負極板の各々の気孔率を測定した。なお、例B1では気孔が部分的に無機固体電解質で含浸されているが、本明細書においては特に断りが無いかぎり「気孔率」は、気孔内の無機固体電解質が充填された部分も含めた正極板自体の正味の気孔率を意味する。
<電解質充填率>
 上記気孔率の測定に用いた断面SEM像を画像解析して、全ての気孔内に充填された無機固体電解質の面積を、全ての気孔の面積で除し、得られた値に100を乗じることにより、電解質充填率(%)を算出した。
<残留気孔率>
 上記気孔率P(%)及び上記電解質充電率E(%)を下記式に代入して、残留気孔率P(%)を算出した。
 残留気孔率P=P×(100-E)/100
<C/A比>
 正極板の容量Cとして、正極板の面積1cm当りの25℃での正極板の実電気容量(mAh)を例A1と同様にして求めた。
<放電容量率>
 100℃の作動温度における電池の放電容量を2.7V-1.5Vの電圧範囲において以下の手順で測定した。1Cレートで電池電圧が上記電圧範囲の上限に達するまで定電流充電し、引き続き電流値が0.2Cレートになるまで定電圧充電した後、0.2Cレートで上記電圧範囲の下限になるまで放電することを含む充放電サイクルを合計3回繰り返すことにより放電の測定を行い、それらの平均値を放電容量として、正極板の実電気容量(mAh)に対する比率(放電容量率(%))として求めた。
 例B2
 正極板及び負極板の作製を以下のとおり行ったこと以外は例B1と同様にして、電池の作製及び評価を行った。
(正極板の作製)
(a)LiCoO成形体の作製
 市販のLiCoO粉末(D50粒径7μm)を金型にて100MPaで一軸加圧することによって、LiCoO成形体を作製した。成形体の厚さは焼成後の厚さが200μmとなるような値とした。
(b)LiCoO焼結板の作製
 LiCoO成形体を、アルミナ製セッターに載置し、アルミナ鞘内に載置した。このとき、アルミナ鞘を密閉せず、わずかに隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで925℃まで昇温して20時間保持することで焼成を行った。焼成後、室温まで降温させた後に焼成体をアルミナ鞘より取り出した。こうしてLiCoO焼結板を正極板として得た。得られたLiCoO焼結板の片面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した。
(負極板の作製)
 上記(2a)において、LTO粉末として別のLTO粉末(D50粒径0.7μm)を用いたこと以外は、例B1と同様にしてLTO焼結板を作製した。
 例B3
 正極板及び負極板の作製を以下のとおり行ったこと以外は例B1と同様にして、電池の作製及び評価を行った。
(正極板の作製)
 焼成温度を775℃に変更したこと以外は、例B2と同様にしてLCO焼結板を作製した。
(負極板の作製)
 焼成温度を750℃に変更したこと以外は、例B2と同様にしてLTO焼結板を作製した。
 例B4
 正極板及び負極板として例B2と同じものを使用したこと、及び上記(4)における電気炉内での加熱を380℃で45分間行ったこと以外は例B1と同様にして、電池の作製及び評価を行った。
 例B5
 正極板の作製を以下のとおり行ったこと、負極板として例B2と同じものを使用したこと以外は例B1と同様にして、電池の作製及び評価を行った。
(正極板の作製)
 上記(1a)においてCo粉末として別のCo粉末(平均粒径0.9μm)を用いたこと、及び上記(1c)において、LCO仮焼板上に積載するLiCOグリーンシートにおけるLi含有量のモル比であるLi/Co比を0.1とし、かつ、最高温度を850℃としたこと以外は、例B1と同様にしてLCO焼結板を作製した。
 例B6
 正極板及び負極板の作製を以下のとおり行ったこと以外は例B1と同様にして、電池の作製及び評価を行った。
(正極板の作製)
 上記(1c)において、Li/Co比を0.6とし、かつ、最高温度900℃での焼成を24時間行ったこと以外は、例B1と同様にしてLCO焼結板を作製した。
(負極板の作製)
 上記(2b)において最高温度800℃での焼成を10時間行ったこと以外は、例B1と同様にしてLTO焼結板を作製した。
 例B7
 正極板及び負極板として例B2と同じものを用い、かつ、上記(4)において固体電解質として以下のようにして作製したLi(OH)0.90.1Cl系粉末を用いて、固体電解質粉末の加熱を350℃で45分間行ったこと以外は例B1と同様にして、電池の作製及び評価を行った。
(固体電解質粉末の作製)
 原料として、市販のLiOH(純度98.0%以上)、LiCl(純度99.9%以上)及びLiF(純度99.9%)を用意した。露点-50℃以下のAr雰囲気グローブボックス内にて、それぞれの原料をLiOH:LiCl:LiFを0.9:1.0:0.1(モル比)となるように秤量し混合した。得られた混合粉末をアルミナ製のるつぼに投入し、さらに石英管へ入れ、フランジで密閉した。この石英管を管状炉へセットし、フランジのガス導入口から露点-50℃以下のArガスを流してガス排出口から排出させながら、かつ、混合粉末を攪拌しながら、350℃で30分間の熱処理を行った。冷却後、ガス導入口及びガス排出口を閉じ、再び露点-50℃以下のAr雰囲気グローブボックス内にてるつぼを取り出した。るつぼ内から合成物を取り出し、乳鉢で粉砕して、固体電解質であるLi(OH)0.90.1Cl粉末を得た。なお、Arガス雰囲気下での加熱温度及び加熱時間は適宜変更可能であり、一般的には、加熱温度は250℃以上600℃以下であり、加熱時間は0.1時間以上であればよい。
 例B8
 正極板及び負極板として例B2と同じものを用い、かつ、上記(4)において固体電解質として以下のようにして作製したLi(OH)0.90.1Br系粉末を用いて固体電解質粉末の加熱を350℃で45分間行ったこと以外は例B1と同様にして、電池の作製及び評価を行った。
(固体電解質粉末の作製)
 原料として、市販のLiOH(純度98.0%以上)、LiBr(純度99.9%以上)及びLiF(純度99.9%)を用意した。露点-50℃以下のAr雰囲気グローブボックス内にて、それぞれの原料をLiOH:LiBr:LiFを0.9:1.0:0.1(モル比)となるように秤量し混合した。得られた混合粉末をアルミナ製のるつぼに投入し、さらに石英管へ入れ、フランジで密閉した。この石英管を管状炉へセットし、フランジのガス導入口から露点-50℃以下のArガスを流してガス排出口から排出させながら、かつ、混合粉末を攪拌しながら、350℃で30分間の熱処理を行った。冷却後、ガス導入口及びガス排出口を閉じ、再び露点-50℃以下のAr雰囲気グローブボックス内にてるつぼを取り出した。るつぼ内から合成物を取り出し、乳鉢で粉砕して、固体電解質であるLi(OH)0.90.1Br粉末を得た。なお、Arガス雰囲気下での加熱温度及び加熱時間は適宜変更可能であり、一般的には、加熱温度は250℃以上600℃以下であり、加熱時間は0.1時間以上であればよい。
 例B9
 正極板として以下のようにして作製したLNMO焼結板を用いたこと、負極板を以下のようにして作製したこと、並びにC/A比及び放電容量率の測定を以下のように行ったこと以外は例B1と同様にして、電池の作製及び評価を行った。
(正極板の作製)
(a)LNMOグリーンシートの作製
 焼成後にLiNi0.5Mn1.5となるように秤量された市販のLiCO粉末、NiO粉末、及びMnO粉末を混合後、アルミナ製鞘に入れ200℃/hで昇温し最高温度900℃で4時間保持した後、650℃で4時間保持して200℃/hで降温した。得られた粉末を乳鉢粉砕とポットミルにてD50が5μm以下となるように粉砕した後、再度上記同様にして熱処理を行った。得られた合成物を体積基準D50が1μm以下となるように粉砕して、LNMO粉末を得た。得られたLNMO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー10重量部と、可塑剤4重量部と、分散剤2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を調整することによって、LNMOスラリーを調製した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LNMOグリーンシートを形成した。LNMOグリーンシートの厚さは焼成後の厚さが200μmとなるような値とした。
(b)LNMO焼結板の作製
 PETフィルムから剥がしたLNMOグリーンシートをカッターで50mm角に切り出し、下部セッターとしてのマグネシア製セッターの中央に載置し、LNMOグリーンシートの上に上部セッターとしての多孔質マグネシア製セッターを載置した。上記グリーンシート片をセッターで挟んだ状態で、アルミナ鞘内に載置した。このとき、アルミナ鞘を密閉せず、わずかに隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで600℃まで昇温して3時間脱脂した後に、900℃まで200℃/hで昇温して5時間保持し、650℃で4時間保持して200℃/hで降温することで焼成を行った。焼成後、室温まで降温させた後に焼成体をアルミナ鞘より取り出した。こうしてLNMO焼結板を正極板として得た。得られたLNMO焼結体板の下部セッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、10mm×10mm平方の形状にレーザー加工した。
(負極板の作製)
 焼成後の厚さを150μmとしたこと以外は例B2と同様にして、LTO焼結板を作製した。
(C/A比)
 正極板の容量Cとして、正極板の面積1cm当りの25℃での正極板の実電気容量(mAh)を求めた。この実電気容量は、0.2C電流、リチウム金属に対する電位が4.9Vの定電流-定電圧充電を10時間行った後、0.2C電流の定電流放電をリチウム金属に対する電位が3.0Vに到達するまで行ったときの電気容量とした。
(放電容量率)
 充放電サイクルの電圧範囲を3.4V-1.5Vとしたこと以外は例B1と同様にして、放電容量率(%)を求めた。
 例B10
 正極板として以下のようにして作製したNCM焼結板を用いたこと、負極板として例B2と同じものを使用したこと、並びにC/A比及び放電容量率の測定を以下のように行ったこと以外は例B1と同様にして、電池の作製及び評価を行った。
(正極板の作製)
(a)Li(Ni0.5Co0.2Mn0.3)O(以下NCM(523))成形体の作製
 Li/(Ni+Co+Mn)のモル比が1.15となるように秤量された市販の(Ni0.5Co0.2Mn0.3)(OH)粉末(平均粒径9μm)とLiCO粉末(平均粒径2.5μm)を混合後、840℃で15時間保持し、NCM(523)粒子からなる粉末を得た。この粉末をナイロン製メッシュ(180メッシュ)に通した後、金型にて100MPaで1分間一軸加圧することによって、NCM(523)成形体を作製した。NCM(523)成形体の厚さは焼成後の厚さが200μmとなるような値とした。
(b)NCM(523)焼結板の作製
 NCM(523)成形体を、アルミナ製セッターに載置し、これをアルミナ鞘内に載置した。このとき、アルミナ鞘を密閉せず、わずかに隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで920℃まで昇温して10時間保持することで焼成を行った。焼成後、室温まで降温させた後に焼成体をアルミナ鞘より取り出した。こうしてNCM(523)焼結板を正極板として得た。得られたNCM(523)焼結板の片面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した。
(C/A比)
 正極板の容量Cとして、正極板の面積1cm当りの25℃での正極板の実電気容量(mAh)を求めた。この実電気容量は、0.2C電流、リチウム金属に対する電位が4.25Vの定電流-定電圧充電を10時間行った後、0.2C電流の定電流放電をリチウム金属に対する電位が3.0Vに到達するまで行ったときの電気容量とした。
(放電容量率)
 充放電サイクルの電圧範囲を含め、例B1と同様にして、放電容量率(%)を求めた。
 結果
 例B1~B10の結果は、表2に示されるとおりであった。
Figure JPOXMLDOC01-appb-T000002

Claims (30)

  1.  酸化物形態の正極活物質を含む無機材料で構成される厚さ25μm以上の正極板と、酸化物形態の負極活物質を含む無機材料で構成される厚さ25μm以上の負極板と、無機固体電解質層とを含み、100℃以上の温度で充放電されることを特徴とする、二次電池。
  2.  前記温度が100~300℃である、請求項1に記載の二次電池。
  3.  前記正極板の厚さが25~400μmであり、かつ、前記負極板の厚さが25~400μmである、請求項1又は2に記載の二次電池。
  4.  前記負極板の容量Aに対する前記正極板の容量Cの比率C/Aが、1.0<C/A<1.6を満たす、請求項1~3のいずれか一項に記載の二次電池。
  5.  前記正極活物質が、LiMO(0.05<x<1.10であり、MはCo、Ni、Mn及びAlからなる群から選択される少なくとも1種を含む)で表されるリチウム複合酸化物である、請求項1~4のいずれか一項に記載の二次電池。
  6.  前記正極板に含まれる前記正極活物質の複数の粒子が、物理的及び電気的に互いに連結している、請求項1~5のいずれか一項に記載の二次電池。
  7.  前記正極板が焼結体板である、請求項1~6のいずれか一項に記載の二次電池。
  8.  前記正極板が、リチウム複合酸化物で構成される複数の一次粒子を含み、前記複数の一次粒子が前記正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向正極板である、請求項7に記載の二次電池。
  9.  前記正極板の気孔率が2~20%である、請求項1~8のいずれか一項に記載の二次電池。
  10.  前記正極板の気孔率が10~50%である、請求項7又は8に記載の二次電池。
  11.  前記正極板に含まれる気孔に無機固体電解質が充填されている、請求項7、8又は10に記載の二次電池。
  12.  前記正極板が前記無機固体電解質及び前記正極活物質のみからなる、請求項11に記載の二次電池。
  13.  前記正極板に含まれる気孔の70%以上に前記無機固体電解質が充填されている、請求項11又は12に記載の二次電池。
  14.  前記正極板に含まれる気孔の85%以上に前記無機固体電解質が充填されている、請求項11又は12に記載の二次電池。
  15.  前記正極板が1.2以上の平均気孔アスペクト比を有する、請求項1~14のいずれか一項に記載の二次電池。
  16.  前記正極板に含まれる複数の気孔が配向している、請求項1~15のいずれか一項に記載の二次電池。
  17.  前記負極活物質が少なくともTiを含有する酸化物である、請求項1~16のいずれか一項に記載の二次電池。
  18.  前記負極板に含まれる前記負極活物質の複数の粒子が、互いに物理的及び電気的に連結している、請求項1~17のいずれか一項に記載の二次電池。
  19.  前記負極板が焼結体板である、請求項1~18のいずれか一項に記載の二次電池。
  20.  前記負極板の気孔率が2~20%である、請求項1~17のいずれか一項に記載の二次電池。
  21.  前記負極板の気孔率が10~50%である、請求項19に記載の二次電池。
  22.  前記負極板に含まれる気孔に無機固体電解質が充填されている、請求項19又は21に記載の二次電池。
  23.  前記負極板が前記無機固体電解質及び前記負極活物質のみからなる、請求項22に記載の二次電池。
  24.  前記負極板に含まれる気孔の70%以上に前記無機固体電解質が含浸されている、請求項22又は23に記載の二次電池。
  25.  前記負極板に含まれる気孔の85%以上に前記無機固体電解質が含浸されている、請求項22又は23に記載の二次電池。
  26.  前記無機固体電解質が、前記正極板又は前記負極板の融点若しくは分解温度よりも低い融点を有する、請求項1~25のいずれか一項に記載の二次電池。
  27.  前記無機固体電解質が、電池作動温度を超え600℃以下の融点を有する、請求項1~26のいずれか一項に記載の二次電池。
  28.  前記無機固体電解質層の厚さTe、前記正極板の厚さTc、及び前記負極板の厚さTaが、Te/(Tc+Ta)<0.25を満たす、請求項1~27のいずれか一項に記載の二次電池。
  29.  請求項1~28のいずれか一項に記載の二次電池を製造する方法であって、
     前記正極板又は前記負極板に、前記正極板又は前記負極板の融点若しくは分解温度よりも低い融点を有する無機固体電解質粉末を載置する工程と、
     前記無機固体電解質粉末上に前記負極板又は前記正極板を載置する工程と、
     前記負極板を前記正極板に向けて又は前記正極板を前記負極板に向けて100~600℃の温度でプレスして、前記無機固体電解質粉末を溶融させて前記正極板内又は/及び前記負極板内の空隙に浸透させる工程と、
     前記正極板、前記溶融された電解質、及び前記負極板を放冷又は冷却して、前記溶融された電解質を凝固させる工程と、
    を含む、方法。
  30.  前記二次電池が、前記正極板と前記負極板の間に前記無機固体電解質層の厚さを規定するスペーサを備えており、
     前記無機固体電解質粉末上に前記負極板又は前記正極板を載置する際に、前記正極板と前記負極板の間に前記スペーサが前記無機固体電解質粉末と一緒に挟み込まれる、請求項29に記載の方法。

     
PCT/JP2018/040686 2017-11-10 2018-11-01 二次電池 WO2019093221A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18876301.5A EP3709423A4 (en) 2017-11-10 2018-11-01 SECONDARY BATTERY
JP2019552753A JP6995135B2 (ja) 2017-11-10 2018-11-01 二次電池
CN201880059293.7A CN111316489A (zh) 2017-11-10 2018-11-01 二次电池
KR1020207011379A KR102381016B1 (ko) 2017-11-10 2018-11-01 2차 전지
US16/865,462 US11515570B2 (en) 2017-11-10 2020-05-04 Secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017217188 2017-11-10
JP2017-217188 2017-11-10
JP2017-235917 2017-12-08
JP2017235917 2017-12-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/865,462 Continuation US11515570B2 (en) 2017-11-10 2020-05-04 Secondary battery

Publications (1)

Publication Number Publication Date
WO2019093221A1 true WO2019093221A1 (ja) 2019-05-16

Family

ID=66438852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040686 WO2019093221A1 (ja) 2017-11-10 2018-11-01 二次電池

Country Status (6)

Country Link
US (1) US11515570B2 (ja)
EP (1) EP3709423A4 (ja)
JP (1) JP6995135B2 (ja)
KR (1) KR102381016B1 (ja)
CN (1) CN111316489A (ja)
WO (1) WO2019093221A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138148A1 (ja) * 2020-12-22 2022-06-30 日本碍子株式会社 正極活物質及びリチウムイオン二次電池
WO2023054235A1 (ja) * 2021-09-29 2023-04-06 太陽誘電株式会社 全固体電池
JP7502971B2 (ja) 2020-11-16 2024-06-19 日本碍子株式会社 リチウムイオン二次電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3582298B1 (en) * 2017-02-13 2023-08-16 NGK Insulators, Ltd. Lithium composite oxide sintered body plate
CN111279538B (zh) * 2017-11-10 2023-07-25 日本碍子株式会社 全固体锂电池及其制造方法
CN111799504B (zh) * 2020-08-06 2021-07-02 南方科技大学 一种固态电解质及其制备方法、全固态电池
US20220267166A1 (en) * 2022-04-29 2022-08-25 Toyota Motor Engineering & Manufacturing North America, Inc. Oxyhalide lithium-ion conductor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212062A (ja) * 2009-03-10 2010-09-24 Ngk Insulators Ltd 電池システム
JP2012099225A (ja) * 2010-10-29 2012-05-24 Ohara Inc 全固体リチウムイオン二次電池およびその製造方法
JP2015185337A (ja) 2014-03-24 2015-10-22 日本碍子株式会社 全固体電池
JP2015534243A (ja) * 2012-10-09 2015-11-26 マイクロソフト コーポレーション 固体電池セパレータおよび製造方法
JP2016066550A (ja) 2014-09-25 2016-04-28 太陽誘電株式会社 全固体二次電池
JP2017033689A (ja) * 2015-07-30 2017-02-09 セイコーエプソン株式会社 電極複合体、全固体二次電池、電極複合体の製造方法
JP2017084477A (ja) * 2015-10-23 2017-05-18 セイコーエプソン株式会社 電極複合体の製造方法、電極複合体および電池
WO2017146088A1 (ja) 2016-02-24 2017-08-31 日本碍子株式会社 板状リチウム複合酸化物
WO2017188232A1 (ja) * 2016-04-25 2017-11-02 日本碍子株式会社 正極
WO2018088522A1 (ja) * 2016-11-11 2018-05-17 日本碍子株式会社 二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337156B1 (en) * 1997-12-23 2002-01-08 Sri International Ion battery using high aspect ratio electrodes
JP3403090B2 (ja) * 1998-09-18 2003-05-06 キヤノン株式会社 多孔質構造の金属酸化物、電極構造体、二次電池及びこれらの製造方法
US9391325B2 (en) * 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
JP5153065B2 (ja) * 2005-08-31 2013-02-27 株式会社オハラ リチウムイオン二次電池および固体電解質
US9099738B2 (en) * 2008-11-03 2015-08-04 Basvah Llc Lithium secondary batteries with positive electrode compositions and their methods of manufacturing
KR101739296B1 (ko) * 2012-09-20 2017-05-24 삼성에스디아이 주식회사 복합음극활물질, 이를 채용한 음극과 리튬전지 및 그 제조방법
JP6183783B2 (ja) 2013-09-25 2017-08-23 株式会社村田製作所 全固体電池
JP6090290B2 (ja) 2014-11-21 2017-03-08 株式会社豊田中央研究所 複合体、電池、複合体の製造方法及びイオン伝導性固体の製造方法
US10770757B2 (en) 2015-10-23 2020-09-08 Seiko Epson Corporation Manufacturing method of electrode assembly
WO2017112804A1 (en) * 2015-12-21 2017-06-29 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212062A (ja) * 2009-03-10 2010-09-24 Ngk Insulators Ltd 電池システム
JP2012099225A (ja) * 2010-10-29 2012-05-24 Ohara Inc 全固体リチウムイオン二次電池およびその製造方法
JP2015534243A (ja) * 2012-10-09 2015-11-26 マイクロソフト コーポレーション 固体電池セパレータおよび製造方法
JP2015185337A (ja) 2014-03-24 2015-10-22 日本碍子株式会社 全固体電池
JP2016066550A (ja) 2014-09-25 2016-04-28 太陽誘電株式会社 全固体二次電池
JP2017033689A (ja) * 2015-07-30 2017-02-09 セイコーエプソン株式会社 電極複合体、全固体二次電池、電極複合体の製造方法
JP2017084477A (ja) * 2015-10-23 2017-05-18 セイコーエプソン株式会社 電極複合体の製造方法、電極複合体および電池
WO2017146088A1 (ja) 2016-02-24 2017-08-31 日本碍子株式会社 板状リチウム複合酸化物
WO2017188232A1 (ja) * 2016-04-25 2017-11-02 日本碍子株式会社 正極
WO2018088522A1 (ja) * 2016-11-11 2018-05-17 日本碍子株式会社 二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3709423A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7502971B2 (ja) 2020-11-16 2024-06-19 日本碍子株式会社 リチウムイオン二次電池
WO2022138148A1 (ja) * 2020-12-22 2022-06-30 日本碍子株式会社 正極活物質及びリチウムイオン二次電池
WO2022137360A1 (ja) * 2020-12-22 2022-06-30 日本碍子株式会社 リチウム複合酸化物焼結板及び全固体二次電池
WO2022137583A1 (ja) * 2020-12-22 2022-06-30 日本碍子株式会社 正極活物質及びリチウムイオン二次電池
JP7506767B2 (ja) 2020-12-22 2024-06-26 日本碍子株式会社 リチウム複合酸化物焼結板及び全固体二次電池
JP7554287B2 (ja) 2020-12-22 2024-09-19 日本碍子株式会社 正極活物質及びリチウムイオン二次電池
WO2023054235A1 (ja) * 2021-09-29 2023-04-06 太陽誘電株式会社 全固体電池

Also Published As

Publication number Publication date
US20200266494A1 (en) 2020-08-20
JPWO2019093221A1 (ja) 2020-11-19
CN111316489A (zh) 2020-06-19
JP6995135B2 (ja) 2022-01-14
KR20200057047A (ko) 2020-05-25
EP3709423A1 (en) 2020-09-16
US11515570B2 (en) 2022-11-29
EP3709423A4 (en) 2021-08-25
KR102381016B1 (ko) 2022-04-04

Similar Documents

Publication Publication Date Title
JP6995057B2 (ja) 二次電池
JP6956801B2 (ja) 全固体リチウム電池及びその製造方法
WO2019093221A1 (ja) 二次電池
US20220029148A1 (en) Lithium composite oxide sintered body plate
JP6109672B2 (ja) セラミック正極−固体電解質複合体
JP6109673B2 (ja) セラミック正極−固体電解質複合体
JP6099407B2 (ja) 全固体蓄電素子
JPWO2018025594A1 (ja) 全固体リチウム電池
JP7126518B2 (ja) 全固体リチウム電池及びその製造方法
JP6168690B2 (ja) セラミック正極−固体電解質複合体
JP2019192609A (ja) 全固体リチウム電池及びその製造方法
JP5602541B2 (ja) 全固体リチウムイオン電池
JP7423760B2 (ja) リチウムイオン二次電池及びその製造方法
WO2017104363A1 (ja) 板状リチウム複合酸化物、及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207011379

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019552753

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018876301

Country of ref document: EP

Effective date: 20200610