WO2019093221A1 - 二次電池 - Google Patents
二次電池 Download PDFInfo
- Publication number
- WO2019093221A1 WO2019093221A1 PCT/JP2018/040686 JP2018040686W WO2019093221A1 WO 2019093221 A1 WO2019093221 A1 WO 2019093221A1 JP 2018040686 W JP2018040686 W JP 2018040686W WO 2019093221 A1 WO2019093221 A1 WO 2019093221A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode plate
- positive electrode
- negative electrode
- secondary battery
- solid electrolyte
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M2010/4292—Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/008—Halides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/044—Activating, forming or electrochemical attack of the supporting material
- H01M4/0445—Forming after manufacture of the electrode, e.g. first charge, cycling
- H01M4/0447—Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a secondary battery.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2016-66550 describes a first all-solid secondary battery having stable charge / discharge characteristics under high temperature, having a first NASICON structure including Li, Al, Ti and P.
- a solid electrolyte layer comprising a layer and a second layer having a NASICON structure containing Li, Al, M (wherein M is Ge or Zr) and P without Ti.
- M is Ge or Zr
- This document describes that an all solid secondary battery having a thickness of the positive electrode layer of 9 ⁇ m, a thickness of the negative electrode layer of 12 ⁇ m, and a thickness of the solid electrolyte layer of 12 ⁇ m was produced.
- Patent Document 2 Japanese Patent Application Laid-Open No. 2015-185337 is an all solid battery having a positive electrode, a negative electrode and a solid electrolyte layer, and using a lithium titanate (Li 4 Ti 5 O 12 ) sintered body for the positive electrode or the negative electrode. Is disclosed.
- Patent Document 3 International Publication No. 2017/146088 includes a plurality of primary particles composed of a lithium composite oxide such as lithium cobaltate (LiCoO 2 ) as a positive electrode of a lithium secondary battery provided with a solid electrolyte. It is disclosed to use an oriented positive electrode plate in which a plurality of primary particles are oriented at an average orientation angle of more than 0 ° and 30 ° or less with respect to the plate surface of the positive electrode plate.
- a lithium composite oxide such as lithium cobaltate (LiCoO 2 )
- LiCoO 2 lithium cobaltate
- the all solid secondary battery disclosed in Patent Document 1 has a problem that the capacity or energy density is low.
- the all solid secondary battery disclosed in Patent Document 2 has a problem that deterioration of the battery is remarkable when driven under high temperature conditions.
- the present inventors set a positive electrode plate and a negative electrode plate each to a thickness of 25 ⁇ m or more, and a secondary battery comprising an inorganic material-containing positive electrode plate and a negative electrode plate containing an oxide, and an inorganic solid electrolyte layer.
- a secondary battery comprising an inorganic material-containing positive electrode plate and a negative electrode plate containing an oxide, and an inorganic solid electrolyte layer.
- an object of the present invention is to realize rapid charge and discharge with a high cycle capacity maintenance rate while achieving an increase in capacity of the secondary battery.
- a secondary battery including a negative electrode plate of 25 ⁇ m or more and an inorganic solid electrolyte layer, which is charged and discharged at a temperature of 100 ° C. or more.
- a positive electrode plate having a thickness of 25 ⁇ m or more made of an inorganic material containing a positive electrode active material in an oxide form, and a thickness made of an inorganic material containing a negative electrode active material in an oxide form
- a secondary battery including an anode plate having a thickness of 25 ⁇ m or more and an inorganic solid electrolyte layer, Heating the secondary battery to a temperature of 100 ° C. or higher to charge and discharge;
- a method of using the secondary battery including:
- a method of manufacturing the secondary battery Placing an inorganic solid electrolyte powder having a melting point lower than the melting point or decomposition temperature of the positive electrode plate or the negative electrode plate on the positive electrode plate or the negative electrode plate; Placing the negative electrode plate or the positive electrode plate on the inorganic solid electrolyte powder; The negative electrode plate is directed to the positive electrode plate or the positive electrode plate is pressed to the negative electrode plate at a temperature of 100 to 600 ° C.
- Secondary battery broadly refers to a battery capable of being repeatedly charged and discharged, and is not particularly limited as long as each of the positive electrode plate, the negative electrode plate and the solid electrolyte layer is made of an inorganic material described later .
- Examples of such secondary batteries include lithium secondary batteries (also referred to as lithium ion secondary batteries), sodium ion batteries, magnesium ion secondary batteries, aluminum ion secondary batteries and the like, preferably lithium It is a secondary battery.
- FIG. 1 schematically shows an example of the secondary battery of the present invention.
- the secondary battery 10 shown in FIG. 1 includes a positive electrode plate 12, an inorganic solid electrolyte layer 14, and a negative electrode plate 16.
- the positive electrode plate 12 is made of an inorganic material containing a positive electrode active material in the form of an oxide.
- the negative electrode plate 16 is made of an inorganic material containing a negative electrode active material in the form of an oxide.
- the thickness of each of the positive electrode plate 12 and the negative electrode plate 16 is 25 ⁇ m or more.
- the secondary battery 10 is charged and discharged at a temperature of 100 ° C. or more.
- each of the positive electrode plate 12 and the negative electrode plate 16 has a thickness of 25 ⁇ m or more, And, by charging and discharging at a temperature of 100 ° C. or more, it is possible to realize rapid charge and discharge with a high cycle capacity maintenance rate while achieving large capacity of the secondary battery 10. That is, when the positive electrode plate 12 and the negative electrode plate 16 are thick as described above, the secondary battery 10 can be configured as a large capacity battery.
- each of the positive electrode plate 12 and the negative electrode plate 16 is a ceramic member, the capacity can be increased and the energy density can be increased by arbitrarily thickening the thickness. Then, by charging and discharging the secondary battery 10 at a high temperature of 100 ° C. or more, rapid charge and discharge can be performed. That is, the secondary battery 10 can be driven at high speed and stably at the above temperature. In addition, even if rapid charge and discharge are repeated, a high capacity can be maintained, that is, a high cycle capacity retention rate can be realized.
- the secondary battery 10 is charged and discharged at an operating temperature of 100 ° C. or higher, the preferred operating temperature is 100 to 300 ° C., more preferably 100 to 200 ° C., still more preferably 100 to 150 ° C. is there.
- the heating means for achieving the operating temperature may be various heaters or various devices or devices accompanied by heat generation, but a preferred example is a conductive heating type ceramic heater.
- the secondary battery 10 of the present invention is preferably provided as a secondary battery system with heating means.
- the positive electrode plate 12 is made of an inorganic material, and the inorganic material contains a positive electrode active material in the form of an oxide.
- the positive electrode active material in the oxide form may be appropriately selected according to the type of the secondary battery 10, and is not particularly limited.
- the positive electrode active material is preferably a lithium composite oxide.
- the lithium complex oxide is Li x MO 2 (0.05 ⁇ x ⁇ 1.
- M is at least one transition metal, and M is typically composed of Co, Ni, Mn and Al
- An oxide represented by at least one selected from the group consisting of The lithium composite oxide has a layered rock salt structure.
- the layered rock salt structure is a crystal structure in which a lithium layer and a transition metal layer other than lithium are alternately stacked with an oxygen layer interposed therebetween, that is, a transition metal ion layer and a lithium single layer are alternately interposed via oxide ions. It refers to a stacked crystal structure (typically, an ⁇ -NaFeO 2 type structure, ie, a structure in which a transition metal and lithium are regularly arranged in the [111] axis direction of a cubic rock salt type structure).
- lithium composite oxides include Li x CoO 2 (lithium cobaltate), Li x NiO 2 (lithium nickelate), Li x MnO 2 (lithium manganate), Li x NiMnO 2 (lithium nickel manganate) , Li x NiCoO 2 (lithium nickel cobaltate), Li x CoNiMnO 2 (cobalt nickel nickel manganate), Li x CoMnO 2 (cobalt manganese manganate), Li 2 MnO 3 , and solid with the above compounds solubles and the like, particularly preferably Li x CoO 2 (lithium cobaltate, typically LiCoO 2).
- lithium composite oxides examples include Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, and Ba.
- Bi, and W may contain one or more elements.
- a LiMn 2 O 4 based material having a spinel structure, a LiNi 0.5 Mn 1.5 O 4 based material, a LiMPO 4 having an olivine structure (wherein, M is Fe, Co, Mn and Ni And the like) can also be suitably used.
- the positive electrode plate 12 is preferably a sintered plate (for example, a lithium composite oxide sintered plate).
- a sintered plate since the positive electrode plate does not contain a binder, the high packing density of the positive electrode active material (for example, lithium composite oxide) can be obtained, whereby high capacity and good charge / discharge efficiency can be obtained.
- the reason why the positive electrode plate does not contain a binder is that, even if the green sheet contains a binder, the binder disappears or burns out during firing.
- the positive electrode plate 12 When the positive electrode plate 12 is a sintered lithium complex oxide plate, the positive electrode plate 12 includes a plurality of primary particles composed of a lithium composite oxide, and the plurality of primary particles is 0 to the plate surface of the positive electrode plate. It is preferable that it is an oriented positive electrode plate which is orientated by an average orientation angle of more than 30 °.
- Such an oriented positive electrode plate can be manufactured according to the method described in Patent Document 3 (WO 2017/146088).
- FIG. 2 shows an example of a cross-sectional SEM image perpendicular to the plate surface of the oriented positive electrode plate
- FIG. 3 shows an electron backscatter diffraction (EBSD) image in a cross section perpendicular to the plate surface of the oriented positive electrode plate. . Further, FIG.
- EBSD electron backscatter diffraction
- FIG. 4 shows a histogram showing the distribution of the orientation angle of the primary particles 11 in the EBSD image of FIG. 3 on an area basis.
- the orientation angle of each primary particle 11 is indicated by light and shade of color, and it is indicated that the darker the color, the smaller the orientation angle.
- the orientation angle is an inclination angle formed by the (003) plane of each primary particle 11 with respect to the plate surface direction.
- a portion black-displayed in the inside of the alignment positive plate is a pore.
- the positive electrode plate 12 is preferably an oriented sintered body composed of a plurality of primary particles 11 bonded to one another.
- each primary particle 11 is mainly plate-shaped, what was formed in rectangular solid shape, cube shape, spherical shape, etc. may be contained.
- the cross-sectional shape of each primary particle 11 is not particularly limited, and may be a rectangle, a polygon other than a rectangle, a circle, an ellipse, or a complex shape other than these.
- the average value of the orientation angles of the primary particles 11 composed of the lithium composite oxide that is, the average orientation angle be more than 0 ° and 30 ° or less. Degradation of the battery when driven under high temperature conditions can be further reduced. This is considered to be due to the contribution of various advantages shown below.
- the orientation positive electrode in the plate surface direction is achieved by reducing the inclination angle of the (003) plane with respect to the plate surface direction.
- the amount of expansion and contraction of the plate 12 can be reduced, and generation of stress between the oriented positive electrode plate 12 and the inorganic solid electrolyte layer 14 can be suppressed.
- rate characteristics can be further improved. This is because, as described above, expansion and contraction in the thickness direction of the positive electrode plate 12 is predominant in the thickness direction of the positive electrode plate 12 when lithium ions enter and exit, so expansion and contraction of the positive electrode plate 12 becomes smooth. This is because the movement of ions (for example, lithium ions) also becomes smooth.
- the average orientation angle of the primary particles 11 composed of the lithium composite oxide is (i) polishing the positive electrode plate with a cross section polisher (CP) and (ii) the obtained positive electrode plate cross section (perpendicular to the plate surface of the positive electrode plate Cross section) at a predetermined magnification (for example, 1000 ⁇ ) and a predetermined visual field (for example, 125 ⁇ m ⁇ 125 ⁇ m), and (iii) primary particles (003) of all particles identified in the obtained EBSD image
- the angle between the surface and the plate surface of the positive electrode plate (that is, the inclination of the crystal orientation from (003)) can be determined as the inclination angle, and (iv) it can be determined by calculating the average value of these angles.
- the average orientation angle of the primary particles 11 is preferably 30 ° or less, more preferably 25 ° or less, from the viewpoint of further improving the rate characteristics.
- the average orientation angle of the primary particles 11 is preferably 2 ° or more, more preferably 5 ° or more, from the viewpoint of further improving the rate characteristics.
- the orientation angle of each primary particle 11 made of lithium composite oxide may be widely distributed from 0 ° to 90 °, but most of them are more than 0 ° and 30 ° or less It is preferably distributed in the region of That is, when the cross section of the oriented sintered body constituting the oriented positive electrode plate 12 is analyzed by EBSD, the orientation angle of the primary particles 11 included in the analyzed cross section with respect to the plate surface of the oriented positive electrode plate 12 is 0 °.
- Primary particles 11 (specifically, 30 primary particles 11 used for calculation of average orientation angle), the total area of primary particles 11 (hereinafter referred to as low-angle primary particles) being over 30 ° or less is included in the cross section It is preferable that it is 70% or more with respect to the total area of, and more preferably 80% or more. Thereby, since the ratio of the primary particles 11 having high mutual adhesion can be increased, the rate characteristics can be further improved. Further, the total area of low-angle primary particles having an orientation angle of 20 ° or less is more preferably 50% or more with respect to the total area of 30 primary particles 11 used for calculating the average orientation angle. . Furthermore, the total area of low-angle primary particles having an orientation angle of 10 ° or less is more preferably 15% or more with respect to the total area of 30 primary particles 11 used for calculating the average orientation angle. .
- each primary particle 11 composed of lithium composite oxide is mainly plate-shaped, as shown in FIGS. 2 and 3, the cross section of each primary particle 11 extends in a predetermined direction, and typically Is substantially rectangular. That is, in the oriented sintered body, when the cross section is analyzed by EBSD, the total area of the primary particles 11 having an aspect ratio of 4 or more among the primary particles 11 included in the analyzed cross section is included in the cross section.
- the total area of the particles 11 (specifically, the 30 primary particles 11 used to calculate the average orientation angle) is preferably 70% or more, and more preferably 80% or more. Specifically, in the EBSD image as shown in FIG.
- the aspect ratio of the primary particle 11 is a value obtained by dividing the maximum Feret diameter of the primary particle 11 by the minimum Feret diameter.
- the maximum Feret diameter is the maximum distance between the straight lines when the primary particle 11 is sandwiched between two parallel straight lines on the EBSD image when cross-sectional observation is performed.
- the minimum Feret diameter is the minimum distance between the straight lines when the primary particle 11 is sandwiched between two parallel straight lines on the EBSD image.
- the average particle diameter of the plurality of primary particles constituting the oriented sintered body is preferably 5 ⁇ m or more.
- the average particle diameter of the 30 primary particles 11 used for calculating the average orientation angle is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and still more preferably 12 ⁇ m or more.
- the average particle diameter of the primary particles 11 is a value obtained by arithmetically averaging the equivalent circle diameter of each primary particle 11.
- the equivalent circle diameter is the diameter of a circle having the same area as each primary particle 11 on the EBSD image.
- the average particle diameter of the plurality of primary particles constituting the oriented sintered body is preferably 20 ⁇ m or less.
- the average particle diameter of the primary particles 11 is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
- the distance for conducting lithium ions in the primary particle 11 becomes short, and the rate characteristic can be further improved.
- lithium ions move from inside the particles of the positive electrode primary particles 11 to the solid electrolyte filled in the voids, and then pass through the solid electrolyte 14 in the form of a film (or planar).
- the average particle diameter of the primary particle diameter 11 can be measured by image analysis of a cross-sectional SEM image of the sintered plate.
- the sintered plate is processed with a cross section polisher (CP) to expose a polished cross section.
- the polished cross section is observed by SEM (scanning electron microscope) at a predetermined magnification (for example, 1000 times) and a predetermined visual field (for example, 125 ⁇ m ⁇ 125 ⁇ m). At this time, the visual field is set so that 20 or more primary particles exist in the visual field.
- the diameter of the circumscribed circle when the circumscribed circle is drawn for all primary particles in the obtained SEM image can be determined, and the average particle diameter of the primary particle diameter 11 can be obtained.
- the positive electrode plate 12 preferably contains pores. Since the positive electrode plate 12 includes pores, stress generated by the expansion and contraction of the crystal lattice accompanying the movement of carrier ions (for example, lithium ions) in the charge and discharge cycle is favorably (uniformly) released by the pores. For this reason, the occurrence of intergranular cracks accompanying repetition of charge and discharge cycles is suppressed as much as possible. It is preferable that the plurality of pores contained in the positive electrode plate 12 be oriented in that the above effect can be enhanced. The orientation of the plurality of pores can be realized, for example, by using plate crystals for the raw material particles. In particular, when charging and discharging at high speed at high temperature, the above effects become remarkable.
- the average pore aspect ratio of the positive electrode plate 12 is 1.2 or more, preferably 1.5 or more, and more preferably 1.8 or more. And, the pore shape having anisotropy defined by such an aspect ratio advantageously disperses the stress upon bending and the stress upon charging and discharging, so that the superiority in bending resistance and rapid charge performance etc. It is considered to achieve high performance.
- the upper limit of the average pore aspect ratio is not particularly limited, but the average pore aspect ratio is preferably 30 or less, more preferably 20 or less, and still more preferably 15 or less.
- the average pore aspect ratio of the positive electrode plate 12 is the average value of the aspect ratio of the pores contained in the positive electrode plate 12, and the aspect ratio of the pores is the longitudinal length of the pores relative to the lateral length of the pores. It is a ratio.
- the average pore aspect ratio can be measured by image analysis of a cross-sectional SEM image of the positive electrode plate 12 as described in detail in the examples below.
- the porosity of the positive electrode plate 12 is preferably 2 to 20%, more preferably 3 to 20%, and still more preferably 5 to 18%. Within such a range, the stress releasing effect by pores and the effect of increasing the capacity can be desirably realized.
- the porosity of the positive electrode plate 12 is a volume ratio of pores (including open and closed pores) in the positive electrode plate 12, and the cross-sectional SEM image of the positive electrode plate 12 is an image, as described in detail in the examples described later. It can measure by analyzing.
- the porosity of the positive electrode plate 12 is preferably 10 to 50%, more preferably 10 to 40%, and still more preferably 12 to 35%. Within such a range, the pores contained in the positive electrode plate 12 are advantageously filled with the inorganic solid electrolyte.
- the positive electrode plate is made porous and the inorganic solid electrolyte is By making the battery filled, the electrolyte assists lithium diffusion in the positive electrode plate, and the obtained discharge capacity is improved.
- the pores contained in the positive electrode plate 12 be filled with the inorganic solid electrolyte, more preferably 70% or more, and even more preferably 85% or more of the pores contained in the positive electrode plate 12 be filled with the inorganic solid electrolyte. It is done.
- the inorganic solid electrolyte filling rate in the pores of the positive electrode plate 12 is desirably as high as possible and may be 100%, but is typically 99% or less.
- the positive electrode plate 12 consists only of an inorganic solid electrolyte and a positive electrode active material.
- the electron conduction aid when the electron conduction aid is contained in the positive electrode plate, the amount of the active material decreases and the capacity decreases, however, by adopting a sintered body plate as the positive electrode plate, the positive electrode is not used without using the electron conduction aid. Desirable electron conductivity can be ensured only with the active material. This is because the constituent particles (positive electrode active material particles) of the sintered body plate are firmly bonded by necking to bring about an improvement in the electron conductivity.
- the use of a sintered plate can appropriately reduce the number of pores in the positive electrode plate (which leads to a decrease in capacity), and can also improve the energy density of the battery.
- the thickness of the positive electrode plate 12 is 25 ⁇ m or more, preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more, from the viewpoint of increasing the active material capacity per unit area to improve the energy density of the lithium secondary battery 10. Particularly preferably, it is 50 ⁇ m or more, and most preferably 55 ⁇ m or more.
- the upper limit of the thickness is not particularly limited, but from the viewpoint of suppressing the deterioration of the battery characteristics (in particular, the increase in the resistance value) due to the repetition of charge and discharge, the thickness of positive electrode plate 12 is preferably less than 500 ⁇ m, more preferably 400 ⁇ m Preferably, it is more preferably 300 ⁇ m or less, particularly preferably 250 ⁇ m or less, and even more preferably 200 ⁇ m or less.
- the size of the positive electrode plate 12 is preferably 5 mm ⁇ 5 mm square or more, more preferably 10 mm ⁇ 10 mm square or more, and in another expression, it is preferably 25 mm 2 or more, more preferably 100 mm 2 or more.
- the negative electrode plate 16 is made of an inorganic material, and the inorganic material contains a negative electrode active material in the form of an oxide.
- the negative electrode active material in the oxide form may be appropriately selected according to the type of the secondary battery 10, and is not particularly limited. However, an oxide containing at least Ti is preferable.
- lithium titanate Li 4 Ti 5 O 12 hereinafter, LTO
- niobium titanium composite oxide Nb 2 TiO 7 titanium oxide TiO 2 may be mentioned as preferable examples of the negative electrode active material. More preferably, LTO and Nb 2 TiO 7 are used.
- LTO is typically known as having a spinel structure, other structures may be adopted during charge and discharge.
- the reaction of LTO proceeds in two phases of Li 4 Ti 5 O 12 (spinel structure) and Li 7 Ti 5 O 12 (rock salt structure) during charge and discharge. Therefore, LTO is not limited to the spinel structure.
- the plurality of particles of the negative electrode active material contained in the negative electrode plate 16 be physically and electrically connected to each other from the viewpoint of enhancing the electron conductivity and the ion conductivity while increasing the energy density. Therefore, it is preferable that the negative electrode plate 16 be a sintered plate (for example, LTO or Nb 2 TiO 7 sintered plate).
- the packing density of the negative electrode active material eg, LTO or Nb 2 TiO 7
- the reason why the negative electrode plate does not contain a binder is that the binder disappears or burns out during firing even if the green sheet contains a binder.
- the LTO sintered body plate can be manufactured according to the method described in Patent Document 2 (Japanese Patent Laid-Open No. 2015-185337).
- the negative electrode plate 16 preferably contains pores. Since the negative electrode plate 16 includes pores, stress generated by the expansion and contraction of the crystal lattice accompanying the movement of carrier ions (for example, lithium ions) in the charge and discharge cycle is favorably (uniformly) released by the pores. For this reason, the occurrence of intergranular cracks accompanying repetition of charge and discharge cycles is suppressed as much as possible.
- carrier ions for example, lithium ions
- the porosity of the negative electrode plate 16 is preferably 2 to 20%, more preferably 3 to 20%, and still more preferably 5 to 18%. Within such a range, the stress releasing effect by pores and the effect of increasing the capacity can be desirably realized.
- the porosity of the negative electrode plate 16 is a volume ratio of pores (including open pores and closed pores) in the negative electrode plate 16, and an image of a cross-sectional SEM image of the negative electrode plate 16 is described in detail in Examples described later. It can measure by analyzing.
- the porosity of the negative electrode plate 16 is preferably 10 to 50%, more preferably 10 to 40%, and still more preferably 12 to 35%. Within such a range, it is advantageous to fill the pores contained in the negative electrode plate 16 with the inorganic solid electrolyte. The denser the negative electrode plate, the slower the diffusion of lithium in the negative electrode plate, which may make it difficult to obtain the discharge capacity inherently provided in the negative electrode plate. However, the negative electrode plate is made porous and the inorganic solid electrolyte is By making the battery charged, the electrolyte assists lithium diffusion in the negative electrode plate, and the obtained discharge capacity is improved.
- the pores contained in the negative electrode plate 16 be filled with the inorganic solid electrolyte, more preferably 70% or more, and even more preferably 85% or more of the pores contained in the negative electrode plate 16 be impregnated with the inorganic solid electrolyte. It is done.
- the inorganic solid electrolyte filling rate in the pores of the negative electrode plate 16 is desirably as high as possible, and may be 100%, but is typically 99% or less.
- the negative electrode plate 16 be made of only the inorganic solid electrolyte and the negative electrode active material.
- the electron conduction aid when the electron conduction aid is contained in the negative electrode plate, the amount of the active material decreases and the capacity decreases, but by employing the sintered body plate as the negative electrode plate, the electron conduction aid is not used, in other words If this is the case, desired electron conductivity can be ensured only with the inorganic solid electrolyte and the negative electrode active material. This is because the constituent particles (negative electrode active material particles) of the sintered body plate are firmly bonded by necking to bring about an improvement in the electron conductivity. In addition, the use of a sintered plate can appropriately reduce the number of pores in the negative electrode plate (which leads to a decrease in capacity), and the energy density of the battery can be improved accordingly.
- the thickness of the negative electrode plate 16 is 25 ⁇ m or more, preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more, from the viewpoint of enhancing the energy density of the lithium secondary battery 10 by increasing the active material capacity per unit area. Particularly preferably, it is 50 ⁇ m or more, and most preferably 55 ⁇ m or more.
- the upper limit of the thickness is not particularly limited, but the thickness of the negative electrode plate 16 is preferably 400 ⁇ m or less, and more preferably 300 ⁇ m from the viewpoint of suppressing deterioration of the battery characteristics (particularly, increase in resistance) due to repeated charging and discharging. It is below.
- the size of the negative electrode plate 16 is preferably 5 mm ⁇ 5 mm square or more, more preferably 10 mm ⁇ 10 mm square or more, and in another expression, it is preferably 25 mm 2 or more, more preferably 100 mm 2 or more.
- the ratio C / A of the capacity C of the positive electrode plate 12 to the capacity A of the negative electrode plate 16 preferably satisfies 1.0 ⁇ C / A ⁇ 1.6, more preferably 1.005 ⁇ C / A ⁇ 1.500.
- the C / A ratio within the above range may be realized by appropriately controlling various characteristics such as the thickness and porosity of the positive electrode plate 12 and various characteristics such as the thickness and porosity of the negative electrode plate 16. It can.
- the C / A ratio is preferably determined according to the following procedure.
- (I) The actual electric capacity (mAh) of the positive electrode plate 12 at 25 ° C. per 1 cm 2 area of the positive electrode plate is determined as the capacity C of the positive electrode plate 12.
- This actual electrical capacity is constant current discharge with 0.2C current and constant potential to lithium metal and 4.25V for 10 hours, then constant current discharge with 0.2C current to 3.0V potential to lithium metal It is considered as the electric capacity when it went to reach to.
- the actual electrical capacity (mAh) of the negative electrode plate 16 at 25 ° C. per 1 cm 2 of the area of the negative electrode plate 16 is determined.
- This actual electric capacity is constant current discharge with 0.2C current and 0.8V potential for lithium metal for 10 hours, then constant current discharge with 0.2C current is 2.0V potential for lithium metal It is considered as the electric capacity when it went to reach to.
- the ratio of the capacity C of the positive electrode plate 12 to the capacity A of the negative electrode plate 16 is calculated to be a C / A ratio.
- the positive electrode plate 12 is preferably a LiCoO 2 (LCO) sintered plate
- the negative electrode plate 16 is preferably a Li 4 Ti 5 O 12 (LTO) sintered plate.
- the average value of the orientation angle of the LCO positive electrode plate that is, the average orientation angle is more than 0 ° and 30 ° or less
- expansion and contraction do not occur in the surface direction during charging and discharging
- the LTO negative electrode plate also expands and contracts during charging and discharging
- stress especially stress at the interface between the positive electrode plate 12 or the negative electrode plate 16 and the inorganic solid electrolyte layer 14
- Discharge can be performed stably and at high speed.
- primary particles constituting the Nb 2 TiO 7 sintered body plate are oriented so as to control expansion and contraction. Is
- the inorganic solid electrolyte layer 14 may be appropriately selected according to the type of the secondary battery 10 as long as it is a layer containing an inorganic solid electrolyte, and is not particularly limited.
- the inorganic solid electrolyte is preferably a lithium ion conductive material.
- lithium ion conductive materials that can constitute the inorganic solid electrolyte layer 14 include garnet-based ceramic materials, nitride-based ceramic materials, perovskite-based ceramic materials, phosphoric acid-based ceramic materials, sulfide-based ceramic materials, borosilicate-based materials Ceramic materials, lithium-halide based materials, and polymer based materials may be mentioned, and more preferably selected from the group consisting of garnet based ceramic materials, nitride based ceramic materials, perovskite based ceramic materials, and phosphoric acid based ceramic materials At least one kind of Examples of garnet-based ceramic materials include Li-La-Zr-O-based materials (specifically, Li 7 La 3 Zr 2 O 12 etc.) and Li-La-Ta-O-based materials (specifically, Li 7 La 3 Ta 2 O 12 and the like.
- Li 3 N is an example of a nitride-based ceramic material.
- the perovskite-based ceramic material include Li-La-Zr-O-based materials (specifically, LiLa 1-x Ti x O 3 (0.04 ⁇ x ⁇ 0.14) and the like).
- phosphate-based ceramic materials include lithium phosphate, nitrogen-substituted lithium phosphate (LiPON), Li-Al-Ti-PO, Li-Al-Ge-PO, and Li-Al-Ti- Si—P—O (specifically, Li 1 + x + y Al x Ti 2-x Si y P 3-y O 12 (0 ⁇ x ⁇ 0.4, 0 ⁇ y ⁇ 0.6, etc.) may be mentioned.
- Examples of sulfide-based ceramic materials include LiOH-Li 2 SO 4 and Li 3 BO 3 -Li 2 SO 4 -Li 2 CO 3 .
- An example of the borosilicate ceramic material is Li 2 O-B 2 O 3 -SiO 2 .
- Examples of lithium-halide materials include Li 3 OX (wherein X is Cl and / or Br), Li 2 (OH) 1-a F a Cl (wherein 0 ⁇ a ⁇ 0. And Li 2 OHX (wherein X is Cl and / or Br), and particularly preferably Li 3 OCl.
- the inorganic solid electrolyte preferably has a melting point lower than the melting point or decomposition temperature of the positive electrode plate 12 or the negative electrode plate 16. This is advantageous for filling the pores contained in the positive electrode plate 12 and / or the negative electrode plate 16 with the inorganic solid electrolyte as described above.
- the melting point of the inorganic solid electrolyte is typically higher than the battery operating temperature, and more typically is higher than the battery operating temperature and not more than 600.degree. Since this inorganic solid electrolyte has a low melting point, it can be melted at a temperature of 100 to 600 ° C. to penetrate into the voids of the positive electrode plate 12 and / or 16 voids of the negative electrode plate as described later. It can be realized.
- the inorganic solid electrolyte preferably contains a lithium-halide based material.
- this lithium-halide material include Li 3 OCl, Li (3-x) M x / 2 OA (wherein 0 ⁇ x ⁇ 0.8, M is Mg, Ca, Ba and Sr) At least one member selected from the group consisting of: A is at least one member selected from the group consisting of F, Cl, Br and I; Li 2 (OH) 1-a F a Cl And at least one selected from the group consisting of Li 2 OHX (wherein X is Cl and / or Br), and more preferably Li 3 OCl or a li 2 (OH) 0.9 F 0.1 Cl.
- LiPON lithium phosphate oxynitride based ceramic material
- LiPON is a group of compounds represented by the composition of Li 2.9 PO 3.3 N 0.46 , for example, Li a PO b N c (wherein, a is 2 to 4, b is 3 to 5) And c is 0.1 to 0.9).
- the method for producing the inorganic solid electrolyte layer 14 is not particularly limited.
- the producing method include gas phase methods such as sputtering and CVD, liquid phase methods such as screen printing and spin coating, a method of compressing powder, and melting point of raw material.
- gas phase methods such as sputtering and CVD
- liquid phase methods such as screen printing and spin coating
- fusing point, compressing a powder, etc. are mentioned.
- the size of the inorganic solid electrolyte layer 14 is not particularly limited, but the thickness is preferably 0.0005 mm to 1.0 mm, more preferably 0.001 mm to 0.1 mm, in view of charge / discharge rate characteristics and mechanical strength. Preferably, it is 0.002 to 0.05 mm.
- the solid electrolyte layer may be controlled by the thickness at which the film is formed, or in the case of a method of heating the powder to a temperature above the melting point while compressing it, the thickness may be controlled by a spacer. That is, it is preferable that the all solid lithium battery further includes a spacer that defines the thickness of the solid electrolyte layer 14 between the oriented positive electrode plate 12 and the negative electrode plate 16.
- the resistivity of the spacer is preferably 1 ⁇ 10 5 ⁇ ⁇ cm or more, more preferably 1 ⁇ 10 7 ⁇ ⁇ cm or more.
- the type of spacer is not particularly limited, but is preferably spacers are made of ceramics, examples of such ceramic, Al 2 O 3, MgO, ZrO 2 and the like.
- the thickness Te of the inorganic solid electrolyte layer, the thickness Tc of the positive electrode plate, and the thickness Ta of the negative electrode plate preferably satisfy Te / (Tc + Ta) ⁇ 0.25, more preferably 0.002 ⁇ Te / ( Tc + Ta) ⁇ 0.25, more preferably 0.005 ⁇ Te / (Tc + Ta) ⁇ 0.2.
- the thickness Te of the inorganic solid electrolyte layer can be made relatively thinner than the thickness of the positive electrode plate and the total thickness Ta + Tc of the negative electrode plate, and the energy of the secondary battery 10 The density can be significantly increased.
- a positive electrode current collector 13 be provided on the side of the positive electrode plate 12 away from the inorganic solid electrolyte layer 14.
- the negative electrode current collector 17 be provided on the side of the negative electrode plate 16 away from the inorganic solid electrolyte layer 14.
- materials constituting the positive electrode current collector 13 and the negative electrode current collector 17 include platinum (Pt), platinum (Pt) / palladium (Pd), gold (Au), silver (Ag), aluminum (Al), Examples thereof include copper (Cu), ITO (indium-tin oxide film), nickel (Ni) and the like.
- the positive electrode plate 12, the inorganic solid electrolyte layer 14 and the negative electrode plate 16 are accommodated in a container 18.
- the container 18 is not particularly limited as long as it can accommodate a unit cell or a stack in which a plurality of the unit cells are stacked in series or in parallel.
- the container 18 can adopt a relatively simple container form, and may be a package with an exterior material.
- a chip form for mounting on an electronic circuit or a laminate cell form for example, a multilayer product of aluminum (Al) / polypropylene (PP) for thin and wide space applications can be adopted.
- the positive electrode current collector 13 and / or the negative electrode current collector 17 may double as part of the container 18.
- heat-resistant resins such as PCTFE (polychlorotrifluoroethylene), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), polyimide, polyamide may be used instead of polypropylene.
- a metal such as aluminum or stainless steel may be used.
- the secondary battery 10 of the present invention is preferably produced as follows. First, the inorganic solid electrolyte powder having a melting point lower than the melting point or the decomposition temperature of the positive electrode plate 12 (or the negative electrode plate 16) is placed on the positive electrode plate 12 (or the negative electrode plate 16). The negative electrode plate 16 (or the positive electrode plate 12) is placed on the inorganic solid electrolyte powder. The inorganic solid electrolyte is pressed at a temperature of 100 to 600 ° C., preferably 200 to 500 ° C., more preferably 250 to 450 ° C. with the negative electrode plate 16 facing the positive electrode plate 12 (or the positive electrode plate facing the negative electrode plate). The powder is melted to penetrate into the voids in the positive electrode plate.
- the press is not particularly limited as long as it can apply a load, and a load may be applied mechanically, or a load may be applied rather than placing a weight.
- the positive electrode plate 12, the molten electrolyte, and the negative electrode plate 16 are allowed to cool or cool to solidify the molten electrolyte to form the inorganic solid electrolyte 14.
- Preferred examples of the inorganic solid electrolyte powder having a melting point lower than the melting point or decomposition temperature of the positive electrode plate 12 (or the negative electrode plate 16) include the aforementioned xLiOH.yLi 2 SO 4 , Li 3 OCl, Li (3-x
- the powder includes at least one selected from the group consisting of M x / 2 OA, Li 2 (OH) 1 -aF a Cl, Li 2 OHX and Li a (OH) b F c Br.
- the secondary battery 10 may include a spacer that defines the thickness of the inorganic solid electrolyte layer 14 between the positive electrode plate 12 and the negative electrode plate 16. This configuration is preferably realized by the spacer being sandwiched between the positive electrode plate 12 and the negative electrode plate 16 together with the solid electrolyte powder when the negative electrode plate 16 or the positive electrode plate 12 is mounted on the inorganic solid electrolyte powder. it can.
- LiCoO 2 is abbreviated as “LCO”
- Li 4 Ti 5 O 12 is abbreviated as “LTO”.
- Examples A1 to A5 (1) Production of positive electrode plate (1a) Production of LCO green sheet Co 3 O 4 powder (Shodomo Chemical Industry Co., Ltd., average particle diameter 0, weighed so that the molar ratio of Li / Co is 1.02 .9Myuemu) and Li 2 CO 3 powder (Honjo Chemical Co., Ltd.) were mixed and held for 5 hours at 750 ° C.. The obtained powder was pulverized in a pot mill so that the volume basis D50 was 0.4 ⁇ m, to obtain a powder composed of LCO plate-like particles.
- 10 parts by weight of a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
- a plasticizer 4 parts by weight of (DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurogane Chemical Co., Ltd.) and 2 parts by weight of a dispersing agent (product name: Leodol SP-O30, manufactured by Kao Corporation) were mixed.
- the LCO slurry was prepared by stirring and degassing the resulting mixture under reduced pressure and adjusting the viscosity to 4000 cP. The viscosity was measured with a Brookfield LVT viscometer. The slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LCO green sheet. The thickness of the LCO green sheet was set such that the thickness after firing was 25 ⁇ m (Example A1) or 200 ⁇ m (Examples A2 to A5 and A7).
- Li 2 CO 3 green sheet (excess lithium source) 100 parts by weight of Li 2 CO 3 raw material powder (volume-based D50 particle diameter 2.5 ⁇ m, Honjo Chemical Co., Ltd.) and binder (polyvinyl butyral: part number BM -2, 5 parts by weight of Sekisui Chemical Co., Ltd., 2 parts by weight of a plasticizer (DOP: di (2-ethylhexyl) phthalate, black gold chemical), and a dispersant (Leodore SP-O30, Kao 2 parts by weight were mixed. The resulting mixture was stirred under vacuum for degassing and adjusting the viscosity to 4000 cP to prepare a Li 2 CO 3 slurry.
- a plasticizer DOP: di (2-ethylhexyl) phthalate, black gold chemical
- dispersant Leodore SP-O30, Kao 2 parts by weight
- the viscosity was measured with a Brookfield LVT viscometer.
- the Li 2 CO 3 green sheet was formed by forming the thus prepared Li 2 CO 3 slurry into a sheet on a PET film by a doctor blade method.
- the thickness of the dried Li 2 CO 3 green sheet has a Li / Co ratio, which is a molar ratio of the Li content in the Li 2 CO 3 green sheet to the Co content in the LCO green sheet, to a predetermined value.
- a Li / Co ratio which is a molar ratio of the Li content in the Li 2 CO 3 green sheet to the Co content in the LCO green sheet
- the cut out Li 2 CO 3 green sheet piece was placed on an LCO calcined plate as an excess lithium source, and a porous magnesia setter as an upper setter was placed thereon.
- the sintered plate and the green sheet piece were sandwiched by a setter, and placed in an alumina sheath (manufactured by Nikkato Co., Ltd.) of 120 mm square. At this time, the alumina sheath was not sealed and a lid of 0.5 mm was opened.
- the resulting laminate is heated up to 600 ° C. at a heating rate of 200 ° C./h and degreased for 3 hours, then heated up to 800 ° C.
- an LCO sintered plate was obtained as a positive electrode plate.
- An Au film (100 nm in thickness) was formed as a current collection layer by sputtering on the surface of the obtained LCO sintered plate in contact with the lower setter, and then laser processed into a 10 mm ⁇ 10 mm square shape.
- the LTO slurry was prepared by stirring and degassing the obtained negative electrode raw material mixture under reduced pressure and adjusting the viscosity to 4000 cP. The viscosity was measured with a Brookfield LVT viscometer. The slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LTO green sheet. The thickness of the dried LTO green sheet was such that the thickness after firing was 28 ⁇ m (Example A1), 224 ⁇ m (Examples A2 and A3), 257 ⁇ m (Example A4) or 161 ⁇ m (Example A5).
- aqueous raw material solution was prepared by dissolving 4.790 g of LiOH and 4.239 g of LiCl in a small amount of deionized water. The amounts of these precursors were such that the stoichiometry corresponds to the formula: Li 3 OCl + H 2 O. Most of the water was dewatered with a rotary evaporator and a bath temperature of about 90 ° C. The resulting solid was placed in an alumina boat. The boat was placed in an electric furnace and vacuum heated at a temperature of about 280 ° C. for about 48 hours to obtain an inorganic solid electrolyte, Li 3 OCl powder, as a reaction product.
- the LCO positive electrode plate is polished with a cross section polisher (CP) (manufactured by Nippon Denshi Co., Ltd., IB-15000CP), and the obtained positive electrode plate cross section (cross section perpendicular to the plate surface of the positive electrode plate) has a 1000 ⁇ field of view (125 ⁇ m ⁇ EBSD measurement at 125 ⁇ m) gave an EBSD image.
- CP cross section polisher
- This EBSD measurement was performed using a Schottky field emission scanning electron microscope (manufactured by JEOL Ltd., model JSM-7800F).
- the angle between the (003) plane of the primary particle and the plate surface of the positive electrode plate is determined as the tilt angle.
- the average value of the angles of (1) and (2) was defined as the average orientation angle (average tilt angle) of primary particles.
- Each of the LCO positive electrode plate and the LTO negative electrode plate is polished with a cross section polisher (CP) (manufactured by JEOL Ltd., IB-15000CP), and the cross section of the obtained electrode plate is subjected to SEM observation (JSM 6390LA manufactured by JEOL Ltd.) The thickness of each electrode plate was measured.
- CP cross section polisher
- ⁇ Average pore aspect ratio> The LCO positive electrode plate is polished with a cross section polisher (CP) (manufactured by Nippon Denshi Co., Ltd., IB-15000 CP), and the obtained positive electrode plate cross section is observed by SEM under a 1000 ⁇ field of view (125 ⁇ m ⁇ 125 ⁇ m) , JSM 6390 LA).
- the obtained SEM image was binarized using image analysis software ImageJ, and pores were determined from the obtained binarized image.
- the aspect ratio was calculated by dividing the length in the longitudinal direction by the length in the lateral direction for each pore identified in the binarized image. The aspect ratio for all pores in the binarized image was calculated, and the average value thereof was taken as the average aspect ratio.
- the actual electrical capacity (mAh) of the positive electrode plate at 25 ° C. per 1 cm 2 of the area of the positive electrode plate was determined.
- This actual electrical capacity is constant current discharge with 0.2C current and constant potential to lithium metal and 4.25V for 10 hours, then constant current discharge with 0.2C current to 3.0V potential to lithium metal
- the actual electrical capacity (mAh) of the negative electrode plate at 25 ° C. per 1 cm 2 of the area of the negative electrode plate was determined as the capacity A of the negative electrode plate.
- ⁇ Cycle capacity maintenance rate The cycle capacity retention rate of the battery at an operating temperature of 100 ° C. or 300 ° C. was measured in the potential range of 2.7 V-1.5 V according to the following procedure.
- Example A6 Production and evaluation of a battery were performed in the same manner as in Example A2, except that the negative electrode plate was produced as follows. The results were as shown in Table 1.
- TiO 2 powder (CR-ER, manufactured by Ishihara Sangyo Co., Ltd.) and Nb 2 O 5 powder (ceramic grade, manufactured by Mitsui Mining & Smelting Co., Ltd.) were weighed and mixed so as to have a molar ratio of 1: 2.
- the obtained mixed powder was held at 1150 ° C. for 5 hours, and then ground by a pot mill to a volume basis D50 of 0.5 ⁇ m to obtain an Nb 2 TiO 7 powder.
- a plasticizer DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurogane Chemical Co., Ltd.
- a dispersing agent product name: Leodol SP-O30, manufactured by Kao Corporation
- the thickness of the dried Nb 2 TiO 7 green sheet was such that the thickness after firing was 100 ⁇ m.
- the obtained green sheet was cut into a 25 mm square with a cutter knife, embossed, and placed on a zirconia setter. The green sheet on the setter was put in a sheath made of alumina and held at 500 ° C.
- An Au film (100 nm thick) was formed as a current collection layer by sputtering on the side of the obtained Nb 2 TiO 7 sintered body plate which was in contact with the setter, and then laser processed into a 10 mm ⁇ 10 mm square shape.
- Example A7 (comparison) A battery was prepared and evaluated in the same manner as Example A2, except that the battery operating temperature in the evaluation of the cycle capacity retention rate was 25 ° C. The results were as shown in Table 1.
- Example B1 (1) Production of positive electrode plate (1a) Production of LCO green sheet Co 3 O 4 powder (average particle diameter 0.3 ⁇ m) weighed to have a molar ratio of Li / Co of 1.02 and commercially available Li 2 After mixing the CO 3 powder (D50 particle size 2.5 ⁇ m), the mixture was kept at 750 ° C. for 5 hours. The obtained powder was pulverized in a pot mill so that the volume basis D50 was 1 ⁇ m or less, to obtain a powder composed of LCO plate-like particles.
- the LCO slurry was prepared by stirring and degassing the resulting mixture under reduced pressure and adjusting the viscosity.
- the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LCO green sheet.
- the thickness of the LCO green sheet was such that the thickness after firing was 200 ⁇ m.
- the thickness of the dried Li 2 CO 3 green sheet has a Li / Co ratio, which is a molar ratio of the Li content in the Li 2 CO 3 green sheet to the Co content in the LCO green sheet, to a predetermined value.
- the cut out Li 2 CO 3 green sheet piece was placed on an LCO calcined plate as an excess lithium source, and a porous magnesia setter as an upper setter was placed thereon.
- a porous magnesia setter as an upper setter was placed thereon.
- the alumina sheath was not sealed but was slightly closed with a lid.
- the resulting laminate is heated up to 600 ° C. at a heating rate of 200 ° C./h and degreased for 3 hours, then heated up to 800 ° C. at 200 ° C./h and held for 5 hours, and then kept up to 900 ° C.
- the LTO slurry was prepared by stirring and degassing the obtained negative electrode raw material mixture under reduced pressure and adjusting the viscosity.
- the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LTO green sheet.
- the thickness of the LTO green sheet after drying was a value such that the thickness after firing was 200 ⁇ m.
- LiOH purity 98.0% or more
- Li 2 SO 4 purity 98.0% or more
- the mixture was placed in a glass tube in an Ar atmosphere and melted by heating at 430 ° C. for 2 hours.
- the melt was then quenched to form a solid by placing the glass tube in water and holding for 10 minutes.
- the solidified body was ground in a mortar in an Ar atmosphere to obtain 3LiOH.Li 2 SO 4 powder which is a solid electrolyte.
- ⁇ Porosity> The porosity of each of the positive electrode plate and the negative electrode plate was measured in the same manner as Example A1.
- Example B1 the pores are partially impregnated with the inorganic solid electrolyte, but in the present specification, “porosity” also includes the portion filled with the inorganic solid electrolyte in the pores, unless otherwise specified.
- the net porosity of the positive electrode plate itself is meant.
- ⁇ Discharge capacity ratio> The discharge capacity of the battery at an operating temperature of 100 ° C. was measured in the voltage range of 2.7 V-1.5 V according to the following procedure. Constant current charge at 1C rate until battery voltage reaches upper limit of voltage range, followed by constant voltage charge until current value reaches 0.2C rate, then discharge at 0.2C rate until lower limit of voltage range above The discharge is measured by repeating the charge and discharge cycle including the total of three times, and the average value of them is used as the discharge capacity, and it is determined as the ratio (discharge capacity ratio (%)) to the actual electric capacity (mAh) of the positive electrode plate.
- the discharge capacity of the battery at an operating temperature of 100 ° C. was measured in the voltage range of 2.7 V-1.5 V according to the following procedure. Constant current charge at 1C rate until battery voltage reaches upper limit of voltage range, followed by constant voltage charge until current value reaches 0.2C rate, then discharge at 0.2C rate until lower limit of voltage range above The discharge is measured by repeating the charge and discharge cycle including the total of
- Example B2 A battery was prepared and evaluated in the same manner as in Example B1 except that the preparation of the positive electrode plate and the negative electrode plate was performed as follows.
- Example B3 A battery was prepared and evaluated in the same manner as in Example B1 except that the preparation of the positive electrode plate and the negative electrode plate was performed as follows.
- Example B4 A battery was fabricated in the same manner as Example B1, except that the same positive and negative plates as in Example B2 were used, and heating in an electric furnace for 45 minutes at 380 ° C in the above (4) was carried out. I made an evaluation.
- Example B5 Production and evaluation of a battery were performed in the same manner as in Example B1, except that the preparation of the positive electrode plate was performed as follows, and that the same negative electrode plate as in Example B2 was used.
- Example B6 A battery was prepared and evaluated in the same manner as in Example B1 except that the preparation of the positive electrode plate and the negative electrode plate was performed as follows.
- Example B7 Solid using a Li (OH) 0.9 F 0.1 Cl-based powder produced as described below as the solid electrolyte using the same as Example B2 as the positive electrode plate and the negative electrode plate A battery was prepared and evaluated in the same manner as in Example B1, except that the electrolyte powder was heated at 350 ° C. for 45 minutes.
- LiOH purity of 98.0% or more
- LiCl purity of 99.9% or more
- LiF purity of 99.9%
- Each raw material was weighed and mixed so that LiOH: LiCl: LiF was 0.9: 1.0: 0.1 (molar ratio) in an Ar atmosphere glove box having a dew point of ⁇ 50 ° C. or less.
- the obtained mixed powder was put into an alumina crucible, placed into a quartz tube, and sealed with a flange.
- the quartz tube is set in a tubular furnace, Ar gas having a dew point of -50 ° C.
- the heating temperature and the heating time under an Ar gas atmosphere can be changed as appropriate, and in general, the heating temperature may be 250 ° C. or more and 600 ° C. or less, and the heating time may be 0.1 hour or more.
- Example B8 Solid electrolyte using the same positive electrode plate and negative electrode plate as in Example B2 and using Li (OH) 0.9 F 0.1 Br-based powder produced as follows as a solid electrolyte in the above (4) A battery was prepared and evaluated in the same manner as in Example B1, except that the powder was heated at 350 ° C. for 45 minutes.
- LiOH purity 98.0% or more
- LiBr purity 99.9% or more
- LiF purity 99.9%
- Each raw material was weighed and mixed so that LiOH: LiBr: LiF was 0.9: 1.0: 0.1 (molar ratio) in an Ar atmosphere glove box having a dew point of ⁇ 50 ° C. or less.
- the obtained mixed powder was put into an alumina crucible, placed into a quartz tube, and sealed with a flange.
- the quartz tube is set in a tubular furnace, Ar gas having a dew point of -50 ° C.
- the heating temperature and the heating time under an Ar gas atmosphere can be changed as appropriate, and in general, the heating temperature may be 250 ° C. or more and 600 ° C. or less, and the heating time may be 0.1 hour or more.
- Example B9 Using the LNMO sintered plate prepared as follows as a positive electrode plate, preparing the negative electrode plate as follows, and measuring the C / A ratio and the discharge capacity ratio as follows: A battery was prepared and evaluated in the same manner as in Example B1 except for the above.
- the resulting composite was pulverized to a volume basis D50 of 1 ⁇ m or less to obtain LNMO powder.
- the resulting mixture was stirred under vacuum for degassing and adjusting the viscosity to prepare a LNMO slurry.
- the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LNMO green sheet.
- the thickness of the LNMO green sheet was such that the thickness after firing was 200 ⁇ m.
- a LNMO sintered plate was obtained as a positive electrode plate.
- An Au film (100 nm thick) was formed as a current collection layer by sputtering on the surface of the obtained LNMO sintered compact plate in contact with the lower setter, and then laser processed into a 10 mm ⁇ 10 mm square shape.
- discharge capacity rate The discharge capacity ratio (%) was determined in the same manner as in Example B1 except that the voltage range of the charge and discharge cycle was set to 3.4 V to 1.5 V.
- Example B10 Using the NCM sintered plate produced as follows as a positive electrode plate, using the same negative electrode plate as in Example B2, and measuring the C / A ratio and the discharge capacity ratio as follows A battery was prepared and evaluated in the same manner as in Example B1 except for the following.
- NCM (523) Li (Ni 0.5 Co 0.2 Mn 0.3 ) O 2 (hereinafter NCM (523)) molded body Weighed so that the molar ratio of Li / (Ni + Co + Mn) is 1.15 After mixing commercially available (Ni 0.5 Co 0.2 Mn 0.3 ) (OH) 2 powder (average particle diameter 9 ⁇ m) and Li 2 CO 3 powder (average particle diameter 2.5 ⁇ m), it is carried out at 840 ° C. for 15 hours The powder was held to obtain a powder consisting of NCM (523) particles.
- This powder was passed through a nylon mesh (180 mesh) and uniaxially pressed at 100 MPa for 1 minute with a mold to produce an NCM (523) molded body.
- the thickness of the NCM (523) molded body was a value such that the thickness after firing was 200 ⁇ m.
- NCM (523) sintered plate (B) Preparation of NCM (523) Sintered Plate
- the NCM (523) compact was placed on an alumina setter and placed in an alumina sheath. At this time, the alumina sheath was not sealed but was slightly closed with a lid.
- the obtained laminate was fired by raising the temperature to 920 ° C. at a temperature rising rate of 200 ° C./h and holding for 10 hours. After firing, the temperature was lowered to room temperature, and the fired body was taken out of the alumina sheath.
- an NCM (523) sintered plate was obtained as a positive electrode plate.
- An Au film (100 nm in thickness) was formed as a current collection layer by sputtering on one side of the obtained NCM (523) sintered plate.
- discharge capacity rate The discharge capacity ratio (%) was determined in the same manner as in Example B1 including the voltage range of charge and discharge cycles.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
前記二次電池を100℃以上の温度に加熱して充放電させる工程と、
を含む、二次電池の使用方法が提供される。
前記正極板又は前記負極板に、前記正極板又は前記負極板の融点若しくは分解温度よりも低い融点を有する無機固体電解質粉末を載置する工程と、
前記無機固体電解質粉末上に前記負極板又は前記正極板を載置する工程と、
前記負極板を前記正極板に向けて又は前記正極板を前記負極板に向けて100~600℃の温度でプレスして、前記無機固体電解質粉末を溶融させて前記正極板内又は/及び前記負極板内の空隙に浸透させる工程と、
前記正極板、前記溶融された電解質、及び前記負極板を放冷又は冷却して、前記溶融された電解質を凝固させる工程と、
を含む、方法が提供される。
本発明は二次電池に関するものである。本明細書において「二次電池」とは、繰り返し充放電可能な電池を広く指すものであり、正極板、負極板及び固体電解質層の各々が後述する無機材料で構成される限り、特に限定されない。そのような二次電池の例としては、リチウム二次電池(リチウムイオン二次電池とも称される)、ナトリウムイオン電池、マグネシウムイオン二次電池、アルミニウムイオン二次電池等が挙げられ、好ましくはリチウム二次電池である。
(i)正極板12の容量Cとして、正極板の面積1cm2当りの25℃での正極板12の実電気容量(mAh)を求める。この実電気容量は、0.2C電流、リチウム金属に対する電位が4.25Vの定電流-定電圧充電を10時間行った後、0.2C電流の定電流放電をリチウム金属に対する電位が3.0Vに到達するまで行ったときの電気容量とする。
(ii)負極板の容量Aとして、負極板16の面積1cm2当りの25℃での負極板16の実電気容量(mAh)を求める。この実電気容量は、0.2C電流、リチウム金属に対する電位が0.8Vの定電流-定電圧充電を10時間行った後、0.2C電流の定電流放電をリチウム金属に対する電位が2.0Vに到達するまで行ったときの電気容量とする。
(iii)最後に、負極板16の容量Aに対する正極板12の容量Cの比率を算出してC/A比とする。
本発明の二次電池10は以下のようにして製造するのが好ましい。まず、正極板12(又は負極板16)に、正極板12(又は負極板16)の融点若しくは分解温度よりも低い融点を有する無機固体電解質粉末を載置する。この無機固体電解質粉末上に負極板16(又は正極板12)を載置する。負極板16を正極板12に向けて(又は正極板を負極板に向けて)100~600℃、好ましくは200~500℃、より好ましくは250~450℃の温度でプレスして、無機固体電解質粉末を溶融させて正極板内の空隙に浸透させる。ここで、上記プレスは、荷重を加えることができる手法であれば特に限定されず、機械的に荷重を加えてもよいし、重しを載せるより荷重を加えてもよい。続いて、正極板12、溶融された電解質、及び負極板16を放冷又は冷却して、溶融された電解質を凝固させて無機固体電解質14を形成させる。なお、正極板12(又は負極板16)の融点若しくは分解温度よりも低い融点を有する無機固体電解質粉末の好ましい例としては、前述したxLiOH・yLi2SO4、Li3OCl、Li(3-x)Mx/2OA、Li2(OH)1-aFaCl、Li2OHX及びLia(OH)bFcBrからなる群から選択される少なくとも1種を含む粉末が挙げられる。
(1)正極板の作製
(1a)LCOグリーンシートの作製
Li/Coのモル比が1.02となるように秤量されたCo3O4粉末(正同化学工業株式会社製、平均粒径0.9μm)及びLi2CO3粉末(本荘ケミカル株式会社製)を混合した後、750℃で5時間保持した。得られた粉末をポットミルにて体積基準D50が0.4μmとなるように粉砕して、LCO板状粒子からなる粉末を得た。得られたLCO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LCOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LCOグリーンシートを形成した。LCOグリーンシートの厚さは焼成後の厚さが25μm(例A1)又は200μm(例A2~A5及びA7)となるような値とした。
Li2CO3原料粉末(体積基準D50粒径2.5μm、本荘ケミカル株式会社製)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)5重量部と、可塑剤(DOP:フタル酸ジ(2-エチルヘキシル)、黒金化成株式会社製)2重量部と、分散剤(レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、Li2CO3スラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたLi2CO3スラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、Li2CO3グリーンシートを形成した。乾燥後のLi2CO3グリーンシートの厚さは、LCOグリーンシートにおけるCo含有量に対する、Li2CO3グリーンシートにおけるLi含有量のモル比である、Li/Co比を所定の値とすることができるように設定した。
PETフィルムから剥がしたLCOグリーンシートをカッターで50mm角に切り出し、下部セッターとしてのマグネシア製セッター(寸法90mm角、高さ1mm)の中央に載置した。LCOグリーンシートを昇温速度200℃/hで600℃まで昇温して3時間脱脂した後、900℃で3時間保持することで仮焼した。得られたLCO仮焼板におけるCo含有量に対する、Li2CO3グリーンシートにおけるLi含有量のモル比である、Li/Co比が0.5となるようなサイズに、乾燥されたLi2CO3グリーンシートを切り出した。LCO仮焼板上に、上記切り出されたLi2CO3グリーンシート片を過剰リチウム源として載置し、その上に上部セッターとしての多孔質マグネシア製セッターを載置した。上記焼結板及びグリーンシート片をセッターで挟んだ状態で、120mm角のアルミナ鞘(株式会社ニッカトー製)内に載置した。このとき、アルミナ鞘を密閉せず、0.5mmの隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで600℃まで昇温して3時間脱脂した後に、800℃まで200℃/hで昇温して5時間保持した後900℃まで200℃/hで昇温して24時間保持することで焼成を行った。焼成後、室温まで降温させた後に焼成体をアルミナ鞘より取り出した。こうしてLCO焼結板を正極板として得た。得られたLCO焼結板の下部セッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、10mm×10mm平方の形状にレーザー加工した。
(2a)LTOグリーンシートの作製
LTO粉末(体積基準D50粒径0.06μm、シグマアルドリッチジャパン合同会社製)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LTOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LTOグリーンシートを形成した。乾燥後のLTOグリーンシートの厚さは焼成後の厚さが28μm(例A1)、224μm(例A2及びA3)、257μm(例A4)又は161μm(例A5)となるような値とした。
得られたグリーンシートを25mm角にカッターナイフで切り出し、エンボス加工され
ジルコニア製セッター上に載置した。セッター上のグリーンシートをアルミナ製鞘に入れて500℃で5時間保持した後に、昇温速度200℃/hにて昇温し、800℃で5時間焼成を行なった。得られたLTO焼結体板のセッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、10mm×10mm平方の形状にレーザー加工した。
少量の脱イオン水に4.790gのLiOH及び4.239gのLiClを溶解させて原料水溶液を調製した。これらの前駆体の量は、式:Li3OCl+H2Oに対応する化学量論比となるようにした。水の大部分は、ロータリーエバポレーターおよび約90℃の浴温により脱水した。得られた固体をアルミナボートに入れた。ボートを電気炉の中に入れ、約280℃の温度で約48時間真空加熱し、無機固体電解質であるLi3OCl粉末を反応生成物として得た。
上記正極板上に上記Li3OCl粉末を載置し、ホットプレートで正極板及びLi3OCl粉末を400℃で加熱し、上から負極板を加圧しながら載せた。このときLi3OCl粉末は溶融し、その後の凝固を経て、最終的に厚さ20μmの固体電解質層が形成された。得られた正極板/固体電解質層/負極板からなるセルを用いてラミネート電池を作製した。
上記(1)で合成されたLCO正極板、上記(2)で合成されたLTO負極板、及び上記(4)で作製された電池について、以下に示されるとおり各種の評価を行った。
LCO正極板をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた正極板断面(正極板の板面に垂直な断面)を1000倍の視野(125μm×125μm)でEBSD測定して、EBSD像を得た。このEBSD測定は、ショットキー電界放出形走査電子顕微鏡(日本電子株式会社製、型式JSM-7800F)を用いて行った。得られたEBSD像において特定される全ての粒子について、一次粒子の(003)面と正極板の板面とがなす角度(すなわち(003)からの結晶方位の傾き)を傾斜角として求め、それらの角度の平均値を一次粒子の平均配向角度(平均傾斜角)とした。
LCO正極板及びLTO負極板の各々をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた電極板断面をSEM観察(日本電子株式会社製、JSM6390LA)して各電極板の厚さを測定した。
LCO正極板及びLTO負極板の各々をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた電極板断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子製JSM6390LA)した後に画像解析し、全ての気孔の面積を各板の面積で除し、得られた値に100を乗じることで各電極板の気孔率(%)を算出した。
LCO正極板をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた正極板断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子株式会社製、JSM6390LA)した。得られたSEM像を画像解析ソフトImageJを用いて二値化し、得られた二値化画像から気孔を判別した。二値化画像において判別した個々の気孔について、長手方向の長さを短手方向の長さで除することによりアスペクト比を算出した。二値化画像中の全ての気孔についてのアスペクト比を算出し、それらの平均値を平均アスペクト比とした。
正極板の容量Cとして、正極板の面積1cm2当りの25℃での正極板の実電気容量(mAh)を求めた。この実電気容量は、0.2C電流、リチウム金属に対する電位が4.25Vの定電流-定電圧充電を10時間行った後、0.2C電流の定電流放電をリチウム金属に対する電位が3.0Vに到達するまで行ったときの電気容量とした。一方、負極板の容量Aとして、負極板の面積1cm2当りの25℃での負極板の実電気容量(mAh)を求めた。この実電気容量は、0.2C電流、リチウム金属に対する電位が0.8Vの定電流-定電圧充電を10時間行った後、0.2C電流の定電流放電をリチウム金属に対する電位が2.0Vに到達するまで行ったときの電気容量とした。最後に、負極板の容量Aに対する正極板の容量Cの比率を算出してC/A比とした。
100℃又は300℃の作動温度における電池のサイクル容量維持率を2.7V-1.5Vの電位範囲において以下の手順で測定した。
(i)1Cレートで電池電圧が2.7Vとなるまで定電流充電し、引き続き電流値が0.2Cレートになるまで定電圧充電した後、1Cレートで1.5Vになるまで放電することを含む充放電サイクルを合計3回繰り返すことにより放電容量の測定を行い、それらの平均値を初期放電容量とした。
(ii)充電レート2C及び放電レート2Cで充放電を合計100回行った。
(iii)1Cレートで電池電圧が2.7Vとなるまで定電流充電し、引き続き0.2Cレートになるまで定電圧充電した後、1Cレートで1.5Vになるまで放電することを含む充放電サイクルを合計3回繰り返すことにより放電容量の測定を行い、それらの平均値をサイクル後放電容量とした。
(iv)上記(i)で得られた初期放電容量に対する、上記(iii)で得られたサイクル後放電容量の比率を算出して100を乗じることにより、サイクル容量維持率(%)を得た。
負極板を以下のようにして作製したこと以外は、例A2と同様にして、電池の作製及び評価を行った。結果は表1に示されるとおりであった。
TiO2粉末(石原産業株式会社製、CR-ER)とNb2O5粉末(三井金属鉱業株式会社製、セラミックスグレード)を1:2のモル比となるように秤量し、混合した。得られた混合粉末を1150℃で5時間保持した後、ポットミルにて体積基準D50が0.5μmとなるように粉砕してNb2TiO7粉末を得た。得られたNb2TiO7粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、Nb2TiO7スラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、Nb2TiO7グリーンシートを形成した。乾燥後のNb2TiO7グリーンシートの厚さは焼成後の厚さが100μmとなるような値とした。得られたグリーンシートを25mm角にカッターナイフで切り出し、エンボス加工されジルコニア製セッター上に載置した。セッター上のグリーンシートをアルミナ製鞘に入れて500℃で5時間保持した後に、昇温速度200℃/hにて昇温し、1100℃で5時間焼成を行なった。得られたNb2TiO7焼結体板のセッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、10mm×10mm平方の形状にレーザー加工した。
サイクル容量維持率の評価における電池作動温度を25℃としたこと以外は例A2と同様にして、電池の作製及び評価を行った。結果は表1に示されるとおりであった。
例B1
(1)正極板の作製
(1a)LCOグリーンシートの作製
Li/Coのモル比が1.02となるように秤量されたCo3O4粉末(平均粒径0.3μm)と市販のLi2CO3粉末(D50粒径2.5μm)を混合後、750℃で5時間保持した。得られた粉末をポットミルにて体積基準D50が1μm以下となるように粉砕して、LCO板状粒子からなる粉末を得た。得られたLCO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー10重量部と、可塑剤4重量部と、分散剤2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を調整することによって、LCOスラリーを調製した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LCOグリーンシートを形成した。LCOグリーンシートの厚さは焼成後の厚さが200μmとなるような値とした。
市販のLi2CO3原料粉末(D50粒径2.5μm)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー5重量部と、可塑剤2重量部と、分散剤2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を調整することによって、Li2CO3スラリーを調製した。こうして調製されたLi2CO3スラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、Li2CO3グリーンシートを形成した。乾燥後のLi2CO3グリーンシートの厚さは、LCOグリーンシートにおけるCo含有量に対する、Li2CO3グリーンシートにおけるLi含有量のモル比である、Li/Co比を所定の値とすることができるように設定した。
PETフィルムから剥がしたLCOグリーンシートをカッターで50mm角に切り出し、下部セッターとしてのマグネシア製セッターの中央に載置した。LCOグリーンシートを昇温速度200℃/hで600℃まで昇温して3時間脱脂した後、900℃で3時間保持することで仮焼した。得られたLCO仮焼板におけるCo含有量に対する、Li2CO3グリーンシートにおけるLi含有量のモル比である、Li/Co比が0.5となるようなサイズに、乾燥されたLi2CO3グリーンシートを切り出した。LCO仮焼板上に、上記切り出されたLi2CO3グリーンシート片を過剰リチウム源として載置し、その上に上部セッターとしての多孔質マグネシア製セッターを載置した。上記焼結板及びグリーンシート片をセッターで挟んだ状態で、120mm角のアルミナ鞘内に載置した。このとき、アルミナ鞘を密閉せず、わずかに隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで600℃まで昇温して3時間脱脂した後に、800℃まで200℃/hで昇温して5時間保持した後900℃まで200℃/hで昇温して24時間保持することで焼成を行った。焼成後、室温まで降温させた後に焼成体をアルミナ鞘より取り出した。こうしてLCO焼結板を正極板として得た。得られたLCO焼結体板の下部セッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、10mm×10mm平方の形状にレーザー加工した。
(2a)LTOグリーンシートの作製
市販のLTO粉末(体積基準D50粒径0.06μm)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー20重量部と、可塑剤4重量部と、分散剤2重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を調整することによって、LTOスラリーを調製した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LTOグリーンシートを形成した。乾燥後のLTOグリーンシートの厚さは焼成後の厚さが200μmとなるような値とした。
得られたグリーンシートを25mm角にカッターナイフで切り出し、ジルコニア製セッター上に載置した。セッター上のグリーンシートをアルミナ製鞘に入れて500℃で5時間保持した後に、昇温速度200℃/hにて昇温し、800℃で5時間焼成を行った。得られたLTO焼結体板のセッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、10mm×10mm平方の形状にレーザー加工した。
市販のLiOH(純度98.0%以上)とLi2SO4(純度98.0%以上)とを用意した。露点-50℃以下のAr雰囲気グローブボックス内にて、それぞれの原料をLiOH:Li2SO4=3.0:1.0(モル比)となるように秤量し混合した。混合物をAr雰囲気のガラス管に入れ、430℃で2時間加熱することによって溶融した。そして、ガラス管を水中に投入して10分間保持することによって、溶融物を急冷して凝固体を形成した。次に、凝固体をAr雰囲気中乳鉢で粉砕することによって固体電解質である3LiOH・Li2SO4粉末を得た。
上記正極板上に直径30μmのZrO2ビーズを5wt%添加したLiOH・Li2SO4系粉末を載置し、その上に負極板を載置した。更に負極板上に15gの重しを載置し、電気炉内で400℃で45分間加熱した。このとき、LiOH・Li2SO4系粉末は溶融し、その後の凝固を経て、最終的に厚さ40μmの固体電解質層が形成された。得られた正極板/固体電解質/負極板からなるセルを用いてラミネート電池を作製した。
上記(1)で合成された正極板、上記(2)で合成された負極板、及び上記(4)で作製された電池について、以下に示されるとおり各種の評価を行った。
例A1と同様にして、正極板について一次粒子の平均配向角度を測定した。
例A1と同様にして、正極板及び負極板の各々の板厚を測定した。
例A1と同様にして、正極板及び負極板の各々の気孔率を測定した。なお、例B1では気孔が部分的に無機固体電解質で含浸されているが、本明細書においては特に断りが無いかぎり「気孔率」は、気孔内の無機固体電解質が充填された部分も含めた正極板自体の正味の気孔率を意味する。
上記気孔率の測定に用いた断面SEM像を画像解析して、全ての気孔内に充填された無機固体電解質の面積を、全ての気孔の面積で除し、得られた値に100を乗じることにより、電解質充填率(%)を算出した。
上記気孔率P0(%)及び上記電解質充電率E(%)を下記式に代入して、残留気孔率P1(%)を算出した。
残留気孔率P1=P0×(100-E)/100
正極板の容量Cとして、正極板の面積1cm2当りの25℃での正極板の実電気容量(mAh)を例A1と同様にして求めた。
100℃の作動温度における電池の放電容量を2.7V-1.5Vの電圧範囲において以下の手順で測定した。1Cレートで電池電圧が上記電圧範囲の上限に達するまで定電流充電し、引き続き電流値が0.2Cレートになるまで定電圧充電した後、0.2Cレートで上記電圧範囲の下限になるまで放電することを含む充放電サイクルを合計3回繰り返すことにより放電の測定を行い、それらの平均値を放電容量として、正極板の実電気容量(mAh)に対する比率(放電容量率(%))として求めた。
正極板及び負極板の作製を以下のとおり行ったこと以外は例B1と同様にして、電池の作製及び評価を行った。
(a)LiCoO2成形体の作製
市販のLiCoO2粉末(D50粒径7μm)を金型にて100MPaで一軸加圧することによって、LiCoO2成形体を作製した。成形体の厚さは焼成後の厚さが200μmとなるような値とした。
LiCoO2成形体を、アルミナ製セッターに載置し、アルミナ鞘内に載置した。このとき、アルミナ鞘を密閉せず、わずかに隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで925℃まで昇温して20時間保持することで焼成を行った。焼成後、室温まで降温させた後に焼成体をアルミナ鞘より取り出した。こうしてLiCoO2焼結板を正極板として得た。得られたLiCoO2焼結板の片面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した。
上記(2a)において、LTO粉末として別のLTO粉末(D50粒径0.7μm)を用いたこと以外は、例B1と同様にしてLTO焼結板を作製した。
正極板及び負極板の作製を以下のとおり行ったこと以外は例B1と同様にして、電池の作製及び評価を行った。
焼成温度を775℃に変更したこと以外は、例B2と同様にしてLCO焼結板を作製した。
焼成温度を750℃に変更したこと以外は、例B2と同様にしてLTO焼結板を作製した。
正極板及び負極板として例B2と同じものを使用したこと、及び上記(4)における電気炉内での加熱を380℃で45分間行ったこと以外は例B1と同様にして、電池の作製及び評価を行った。
正極板の作製を以下のとおり行ったこと、負極板として例B2と同じものを使用したこと以外は例B1と同様にして、電池の作製及び評価を行った。
上記(1a)においてCo3O4粉末として別のCo3O4粉末(平均粒径0.9μm)を用いたこと、及び上記(1c)において、LCO仮焼板上に積載するLi2CO3グリーンシートにおけるLi含有量のモル比であるLi/Co比を0.1とし、かつ、最高温度を850℃としたこと以外は、例B1と同様にしてLCO焼結板を作製した。
正極板及び負極板の作製を以下のとおり行ったこと以外は例B1と同様にして、電池の作製及び評価を行った。
上記(1c)において、Li/Co比を0.6とし、かつ、最高温度900℃での焼成を24時間行ったこと以外は、例B1と同様にしてLCO焼結板を作製した。
上記(2b)において最高温度800℃での焼成を10時間行ったこと以外は、例B1と同様にしてLTO焼結板を作製した。
正極板及び負極板として例B2と同じものを用い、かつ、上記(4)において固体電解質として以下のようにして作製したLi(OH)0.9F0.1Cl系粉末を用いて、固体電解質粉末の加熱を350℃で45分間行ったこと以外は例B1と同様にして、電池の作製及び評価を行った。
原料として、市販のLiOH(純度98.0%以上)、LiCl(純度99.9%以上)及びLiF(純度99.9%)を用意した。露点-50℃以下のAr雰囲気グローブボックス内にて、それぞれの原料をLiOH:LiCl:LiFを0.9:1.0:0.1(モル比)となるように秤量し混合した。得られた混合粉末をアルミナ製のるつぼに投入し、さらに石英管へ入れ、フランジで密閉した。この石英管を管状炉へセットし、フランジのガス導入口から露点-50℃以下のArガスを流してガス排出口から排出させながら、かつ、混合粉末を攪拌しながら、350℃で30分間の熱処理を行った。冷却後、ガス導入口及びガス排出口を閉じ、再び露点-50℃以下のAr雰囲気グローブボックス内にてるつぼを取り出した。るつぼ内から合成物を取り出し、乳鉢で粉砕して、固体電解質であるLi2(OH)0.9F0.1Cl粉末を得た。なお、Arガス雰囲気下での加熱温度及び加熱時間は適宜変更可能であり、一般的には、加熱温度は250℃以上600℃以下であり、加熱時間は0.1時間以上であればよい。
正極板及び負極板として例B2と同じものを用い、かつ、上記(4)において固体電解質として以下のようにして作製したLi(OH)0.9F0.1Br系粉末を用いて固体電解質粉末の加熱を350℃で45分間行ったこと以外は例B1と同様にして、電池の作製及び評価を行った。
原料として、市販のLiOH(純度98.0%以上)、LiBr(純度99.9%以上)及びLiF(純度99.9%)を用意した。露点-50℃以下のAr雰囲気グローブボックス内にて、それぞれの原料をLiOH:LiBr:LiFを0.9:1.0:0.1(モル比)となるように秤量し混合した。得られた混合粉末をアルミナ製のるつぼに投入し、さらに石英管へ入れ、フランジで密閉した。この石英管を管状炉へセットし、フランジのガス導入口から露点-50℃以下のArガスを流してガス排出口から排出させながら、かつ、混合粉末を攪拌しながら、350℃で30分間の熱処理を行った。冷却後、ガス導入口及びガス排出口を閉じ、再び露点-50℃以下のAr雰囲気グローブボックス内にてるつぼを取り出した。るつぼ内から合成物を取り出し、乳鉢で粉砕して、固体電解質であるLi2(OH)0.9F0.1Br粉末を得た。なお、Arガス雰囲気下での加熱温度及び加熱時間は適宜変更可能であり、一般的には、加熱温度は250℃以上600℃以下であり、加熱時間は0.1時間以上であればよい。
正極板として以下のようにして作製したLNMO焼結板を用いたこと、負極板を以下のようにして作製したこと、並びにC/A比及び放電容量率の測定を以下のように行ったこと以外は例B1と同様にして、電池の作製及び評価を行った。
(a)LNMOグリーンシートの作製
焼成後にLiNi0.5Mn1.5O4となるように秤量された市販のLi2CO3粉末、NiO粉末、及びMnO2粉末を混合後、アルミナ製鞘に入れ200℃/hで昇温し最高温度900℃で4時間保持した後、650℃で4時間保持して200℃/hで降温した。得られた粉末を乳鉢粉砕とポットミルにてD50が5μm以下となるように粉砕した後、再度上記同様にして熱処理を行った。得られた合成物を体積基準D50が1μm以下となるように粉砕して、LNMO粉末を得た。得られたLNMO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー10重量部と、可塑剤4重量部と、分散剤2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を調整することによって、LNMOスラリーを調製した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LNMOグリーンシートを形成した。LNMOグリーンシートの厚さは焼成後の厚さが200μmとなるような値とした。
PETフィルムから剥がしたLNMOグリーンシートをカッターで50mm角に切り出し、下部セッターとしてのマグネシア製セッターの中央に載置し、LNMOグリーンシートの上に上部セッターとしての多孔質マグネシア製セッターを載置した。上記グリーンシート片をセッターで挟んだ状態で、アルミナ鞘内に載置した。このとき、アルミナ鞘を密閉せず、わずかに隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで600℃まで昇温して3時間脱脂した後に、900℃まで200℃/hで昇温して5時間保持し、650℃で4時間保持して200℃/hで降温することで焼成を行った。焼成後、室温まで降温させた後に焼成体をアルミナ鞘より取り出した。こうしてLNMO焼結板を正極板として得た。得られたLNMO焼結体板の下部セッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、10mm×10mm平方の形状にレーザー加工した。
焼成後の厚さを150μmとしたこと以外は例B2と同様にして、LTO焼結板を作製した。
正極板の容量Cとして、正極板の面積1cm2当りの25℃での正極板の実電気容量(mAh)を求めた。この実電気容量は、0.2C電流、リチウム金属に対する電位が4.9Vの定電流-定電圧充電を10時間行った後、0.2C電流の定電流放電をリチウム金属に対する電位が3.0Vに到達するまで行ったときの電気容量とした。
充放電サイクルの電圧範囲を3.4V-1.5Vとしたこと以外は例B1と同様にして、放電容量率(%)を求めた。
正極板として以下のようにして作製したNCM焼結板を用いたこと、負極板として例B2と同じものを使用したこと、並びにC/A比及び放電容量率の測定を以下のように行ったこと以外は例B1と同様にして、電池の作製及び評価を行った。
(a)Li(Ni0.5Co0.2Mn0.3)O2(以下NCM(523))成形体の作製
Li/(Ni+Co+Mn)のモル比が1.15となるように秤量された市販の(Ni0.5Co0.2Mn0.3)(OH)2粉末(平均粒径9μm)とLi2CO3粉末(平均粒径2.5μm)を混合後、840℃で15時間保持し、NCM(523)粒子からなる粉末を得た。この粉末をナイロン製メッシュ(180メッシュ)に通した後、金型にて100MPaで1分間一軸加圧することによって、NCM(523)成形体を作製した。NCM(523)成形体の厚さは焼成後の厚さが200μmとなるような値とした。
NCM(523)成形体を、アルミナ製セッターに載置し、これをアルミナ鞘内に載置した。このとき、アルミナ鞘を密閉せず、わずかに隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで920℃まで昇温して10時間保持することで焼成を行った。焼成後、室温まで降温させた後に焼成体をアルミナ鞘より取り出した。こうしてNCM(523)焼結板を正極板として得た。得られたNCM(523)焼結板の片面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した。
正極板の容量Cとして、正極板の面積1cm2当りの25℃での正極板の実電気容量(mAh)を求めた。この実電気容量は、0.2C電流、リチウム金属に対する電位が4.25Vの定電流-定電圧充電を10時間行った後、0.2C電流の定電流放電をリチウム金属に対する電位が3.0Vに到達するまで行ったときの電気容量とした。
充放電サイクルの電圧範囲を含め、例B1と同様にして、放電容量率(%)を求めた。
例B1~B10の結果は、表2に示されるとおりであった。
Claims (30)
- 酸化物形態の正極活物質を含む無機材料で構成される厚さ25μm以上の正極板と、酸化物形態の負極活物質を含む無機材料で構成される厚さ25μm以上の負極板と、無機固体電解質層とを含み、100℃以上の温度で充放電されることを特徴とする、二次電池。
- 前記温度が100~300℃である、請求項1に記載の二次電池。
- 前記正極板の厚さが25~400μmであり、かつ、前記負極板の厚さが25~400μmである、請求項1又は2に記載の二次電池。
- 前記負極板の容量Aに対する前記正極板の容量Cの比率C/Aが、1.0<C/A<1.6を満たす、請求項1~3のいずれか一項に記載の二次電池。
- 前記正極活物質が、LixMO2(0.05<x<1.10であり、MはCo、Ni、Mn及びAlからなる群から選択される少なくとも1種を含む)で表されるリチウム複合酸化物である、請求項1~4のいずれか一項に記載の二次電池。
- 前記正極板に含まれる前記正極活物質の複数の粒子が、物理的及び電気的に互いに連結している、請求項1~5のいずれか一項に記載の二次電池。
- 前記正極板が焼結体板である、請求項1~6のいずれか一項に記載の二次電池。
- 前記正極板が、リチウム複合酸化物で構成される複数の一次粒子を含み、前記複数の一次粒子が前記正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向正極板である、請求項7に記載の二次電池。
- 前記正極板の気孔率が2~20%である、請求項1~8のいずれか一項に記載の二次電池。
- 前記正極板の気孔率が10~50%である、請求項7又は8に記載の二次電池。
- 前記正極板に含まれる気孔に無機固体電解質が充填されている、請求項7、8又は10に記載の二次電池。
- 前記正極板が前記無機固体電解質及び前記正極活物質のみからなる、請求項11に記載の二次電池。
- 前記正極板に含まれる気孔の70%以上に前記無機固体電解質が充填されている、請求項11又は12に記載の二次電池。
- 前記正極板に含まれる気孔の85%以上に前記無機固体電解質が充填されている、請求項11又は12に記載の二次電池。
- 前記正極板が1.2以上の平均気孔アスペクト比を有する、請求項1~14のいずれか一項に記載の二次電池。
- 前記正極板に含まれる複数の気孔が配向している、請求項1~15のいずれか一項に記載の二次電池。
- 前記負極活物質が少なくともTiを含有する酸化物である、請求項1~16のいずれか一項に記載の二次電池。
- 前記負極板に含まれる前記負極活物質の複数の粒子が、互いに物理的及び電気的に連結している、請求項1~17のいずれか一項に記載の二次電池。
- 前記負極板が焼結体板である、請求項1~18のいずれか一項に記載の二次電池。
- 前記負極板の気孔率が2~20%である、請求項1~17のいずれか一項に記載の二次電池。
- 前記負極板の気孔率が10~50%である、請求項19に記載の二次電池。
- 前記負極板に含まれる気孔に無機固体電解質が充填されている、請求項19又は21に記載の二次電池。
- 前記負極板が前記無機固体電解質及び前記負極活物質のみからなる、請求項22に記載の二次電池。
- 前記負極板に含まれる気孔の70%以上に前記無機固体電解質が含浸されている、請求項22又は23に記載の二次電池。
- 前記負極板に含まれる気孔の85%以上に前記無機固体電解質が含浸されている、請求項22又は23に記載の二次電池。
- 前記無機固体電解質が、前記正極板又は前記負極板の融点若しくは分解温度よりも低い融点を有する、請求項1~25のいずれか一項に記載の二次電池。
- 前記無機固体電解質が、電池作動温度を超え600℃以下の融点を有する、請求項1~26のいずれか一項に記載の二次電池。
- 前記無機固体電解質層の厚さTe、前記正極板の厚さTc、及び前記負極板の厚さTaが、Te/(Tc+Ta)<0.25を満たす、請求項1~27のいずれか一項に記載の二次電池。
- 請求項1~28のいずれか一項に記載の二次電池を製造する方法であって、
前記正極板又は前記負極板に、前記正極板又は前記負極板の融点若しくは分解温度よりも低い融点を有する無機固体電解質粉末を載置する工程と、
前記無機固体電解質粉末上に前記負極板又は前記正極板を載置する工程と、
前記負極板を前記正極板に向けて又は前記正極板を前記負極板に向けて100~600℃の温度でプレスして、前記無機固体電解質粉末を溶融させて前記正極板内又は/及び前記負極板内の空隙に浸透させる工程と、
前記正極板、前記溶融された電解質、及び前記負極板を放冷又は冷却して、前記溶融された電解質を凝固させる工程と、
を含む、方法。 - 前記二次電池が、前記正極板と前記負極板の間に前記無機固体電解質層の厚さを規定するスペーサを備えており、
前記無機固体電解質粉末上に前記負極板又は前記正極板を載置する際に、前記正極板と前記負極板の間に前記スペーサが前記無機固体電解質粉末と一緒に挟み込まれる、請求項29に記載の方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18876301.5A EP3709423A4 (en) | 2017-11-10 | 2018-11-01 | SECONDARY BATTERY |
JP2019552753A JP6995135B2 (ja) | 2017-11-10 | 2018-11-01 | 二次電池 |
CN201880059293.7A CN111316489A (zh) | 2017-11-10 | 2018-11-01 | 二次电池 |
KR1020207011379A KR102381016B1 (ko) | 2017-11-10 | 2018-11-01 | 2차 전지 |
US16/865,462 US11515570B2 (en) | 2017-11-10 | 2020-05-04 | Secondary battery |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017217188 | 2017-11-10 | ||
JP2017-217188 | 2017-11-10 | ||
JP2017-235917 | 2017-12-08 | ||
JP2017235917 | 2017-12-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/865,462 Continuation US11515570B2 (en) | 2017-11-10 | 2020-05-04 | Secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019093221A1 true WO2019093221A1 (ja) | 2019-05-16 |
Family
ID=66438852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/040686 WO2019093221A1 (ja) | 2017-11-10 | 2018-11-01 | 二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11515570B2 (ja) |
EP (1) | EP3709423A4 (ja) |
JP (1) | JP6995135B2 (ja) |
KR (1) | KR102381016B1 (ja) |
CN (1) | CN111316489A (ja) |
WO (1) | WO2019093221A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022138148A1 (ja) * | 2020-12-22 | 2022-06-30 | 日本碍子株式会社 | 正極活物質及びリチウムイオン二次電池 |
WO2023054235A1 (ja) * | 2021-09-29 | 2023-04-06 | 太陽誘電株式会社 | 全固体電池 |
JP7502971B2 (ja) | 2020-11-16 | 2024-06-19 | 日本碍子株式会社 | リチウムイオン二次電池 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3582298B1 (en) * | 2017-02-13 | 2023-08-16 | NGK Insulators, Ltd. | Lithium composite oxide sintered body plate |
CN111279538B (zh) * | 2017-11-10 | 2023-07-25 | 日本碍子株式会社 | 全固体锂电池及其制造方法 |
CN111799504B (zh) * | 2020-08-06 | 2021-07-02 | 南方科技大学 | 一种固态电解质及其制备方法、全固态电池 |
US20220267166A1 (en) * | 2022-04-29 | 2022-08-25 | Toyota Motor Engineering & Manufacturing North America, Inc. | Oxyhalide lithium-ion conductor |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010212062A (ja) * | 2009-03-10 | 2010-09-24 | Ngk Insulators Ltd | 電池システム |
JP2012099225A (ja) * | 2010-10-29 | 2012-05-24 | Ohara Inc | 全固体リチウムイオン二次電池およびその製造方法 |
JP2015185337A (ja) | 2014-03-24 | 2015-10-22 | 日本碍子株式会社 | 全固体電池 |
JP2015534243A (ja) * | 2012-10-09 | 2015-11-26 | マイクロソフト コーポレーション | 固体電池セパレータおよび製造方法 |
JP2016066550A (ja) | 2014-09-25 | 2016-04-28 | 太陽誘電株式会社 | 全固体二次電池 |
JP2017033689A (ja) * | 2015-07-30 | 2017-02-09 | セイコーエプソン株式会社 | 電極複合体、全固体二次電池、電極複合体の製造方法 |
JP2017084477A (ja) * | 2015-10-23 | 2017-05-18 | セイコーエプソン株式会社 | 電極複合体の製造方法、電極複合体および電池 |
WO2017146088A1 (ja) | 2016-02-24 | 2017-08-31 | 日本碍子株式会社 | 板状リチウム複合酸化物 |
WO2017188232A1 (ja) * | 2016-04-25 | 2017-11-02 | 日本碍子株式会社 | 正極 |
WO2018088522A1 (ja) * | 2016-11-11 | 2018-05-17 | 日本碍子株式会社 | 二次電池 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6337156B1 (en) * | 1997-12-23 | 2002-01-08 | Sri International | Ion battery using high aspect ratio electrodes |
JP3403090B2 (ja) * | 1998-09-18 | 2003-05-06 | キヤノン株式会社 | 多孔質構造の金属酸化物、電極構造体、二次電池及びこれらの製造方法 |
US9391325B2 (en) * | 2002-03-01 | 2016-07-12 | Panasonic Corporation | Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery |
JP5153065B2 (ja) * | 2005-08-31 | 2013-02-27 | 株式会社オハラ | リチウムイオン二次電池および固体電解質 |
US9099738B2 (en) * | 2008-11-03 | 2015-08-04 | Basvah Llc | Lithium secondary batteries with positive electrode compositions and their methods of manufacturing |
KR101739296B1 (ko) * | 2012-09-20 | 2017-05-24 | 삼성에스디아이 주식회사 | 복합음극활물질, 이를 채용한 음극과 리튬전지 및 그 제조방법 |
JP6183783B2 (ja) | 2013-09-25 | 2017-08-23 | 株式会社村田製作所 | 全固体電池 |
JP6090290B2 (ja) | 2014-11-21 | 2017-03-08 | 株式会社豊田中央研究所 | 複合体、電池、複合体の製造方法及びイオン伝導性固体の製造方法 |
US10770757B2 (en) | 2015-10-23 | 2020-09-08 | Seiko Epson Corporation | Manufacturing method of electrode assembly |
WO2017112804A1 (en) * | 2015-12-21 | 2017-06-29 | Johnson Ip Holding, Llc | Solid-state batteries, separators, electrodes, and methods of fabrication |
-
2018
- 2018-11-01 WO PCT/JP2018/040686 patent/WO2019093221A1/ja unknown
- 2018-11-01 CN CN201880059293.7A patent/CN111316489A/zh active Pending
- 2018-11-01 KR KR1020207011379A patent/KR102381016B1/ko active IP Right Grant
- 2018-11-01 JP JP2019552753A patent/JP6995135B2/ja active Active
- 2018-11-01 EP EP18876301.5A patent/EP3709423A4/en active Pending
-
2020
- 2020-05-04 US US16/865,462 patent/US11515570B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010212062A (ja) * | 2009-03-10 | 2010-09-24 | Ngk Insulators Ltd | 電池システム |
JP2012099225A (ja) * | 2010-10-29 | 2012-05-24 | Ohara Inc | 全固体リチウムイオン二次電池およびその製造方法 |
JP2015534243A (ja) * | 2012-10-09 | 2015-11-26 | マイクロソフト コーポレーション | 固体電池セパレータおよび製造方法 |
JP2015185337A (ja) | 2014-03-24 | 2015-10-22 | 日本碍子株式会社 | 全固体電池 |
JP2016066550A (ja) | 2014-09-25 | 2016-04-28 | 太陽誘電株式会社 | 全固体二次電池 |
JP2017033689A (ja) * | 2015-07-30 | 2017-02-09 | セイコーエプソン株式会社 | 電極複合体、全固体二次電池、電極複合体の製造方法 |
JP2017084477A (ja) * | 2015-10-23 | 2017-05-18 | セイコーエプソン株式会社 | 電極複合体の製造方法、電極複合体および電池 |
WO2017146088A1 (ja) | 2016-02-24 | 2017-08-31 | 日本碍子株式会社 | 板状リチウム複合酸化物 |
WO2017188232A1 (ja) * | 2016-04-25 | 2017-11-02 | 日本碍子株式会社 | 正極 |
WO2018088522A1 (ja) * | 2016-11-11 | 2018-05-17 | 日本碍子株式会社 | 二次電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3709423A4 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7502971B2 (ja) | 2020-11-16 | 2024-06-19 | 日本碍子株式会社 | リチウムイオン二次電池 |
WO2022138148A1 (ja) * | 2020-12-22 | 2022-06-30 | 日本碍子株式会社 | 正極活物質及びリチウムイオン二次電池 |
WO2022137360A1 (ja) * | 2020-12-22 | 2022-06-30 | 日本碍子株式会社 | リチウム複合酸化物焼結板及び全固体二次電池 |
WO2022137583A1 (ja) * | 2020-12-22 | 2022-06-30 | 日本碍子株式会社 | 正極活物質及びリチウムイオン二次電池 |
JP7506767B2 (ja) | 2020-12-22 | 2024-06-26 | 日本碍子株式会社 | リチウム複合酸化物焼結板及び全固体二次電池 |
JP7554287B2 (ja) | 2020-12-22 | 2024-09-19 | 日本碍子株式会社 | 正極活物質及びリチウムイオン二次電池 |
WO2023054235A1 (ja) * | 2021-09-29 | 2023-04-06 | 太陽誘電株式会社 | 全固体電池 |
Also Published As
Publication number | Publication date |
---|---|
US20200266494A1 (en) | 2020-08-20 |
JPWO2019093221A1 (ja) | 2020-11-19 |
CN111316489A (zh) | 2020-06-19 |
JP6995135B2 (ja) | 2022-01-14 |
KR20200057047A (ko) | 2020-05-25 |
EP3709423A1 (en) | 2020-09-16 |
US11515570B2 (en) | 2022-11-29 |
EP3709423A4 (en) | 2021-08-25 |
KR102381016B1 (ko) | 2022-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6995057B2 (ja) | 二次電池 | |
JP6956801B2 (ja) | 全固体リチウム電池及びその製造方法 | |
WO2019093221A1 (ja) | 二次電池 | |
US20220029148A1 (en) | Lithium composite oxide sintered body plate | |
JP6109672B2 (ja) | セラミック正極−固体電解質複合体 | |
JP6109673B2 (ja) | セラミック正極−固体電解質複合体 | |
JP6099407B2 (ja) | 全固体蓄電素子 | |
JPWO2018025594A1 (ja) | 全固体リチウム電池 | |
JP7126518B2 (ja) | 全固体リチウム電池及びその製造方法 | |
JP6168690B2 (ja) | セラミック正極−固体電解質複合体 | |
JP2019192609A (ja) | 全固体リチウム電池及びその製造方法 | |
JP5602541B2 (ja) | 全固体リチウムイオン電池 | |
JP7423760B2 (ja) | リチウムイオン二次電池及びその製造方法 | |
WO2017104363A1 (ja) | 板状リチウム複合酸化物、及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18876301 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20207011379 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019552753 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018876301 Country of ref document: EP Effective date: 20200610 |