JP6956801B2 - 全固体リチウム電池及びその製造方法 - Google Patents

全固体リチウム電池及びその製造方法 Download PDF

Info

Publication number
JP6956801B2
JP6956801B2 JP2019552754A JP2019552754A JP6956801B2 JP 6956801 B2 JP6956801 B2 JP 6956801B2 JP 2019552754 A JP2019552754 A JP 2019552754A JP 2019552754 A JP2019552754 A JP 2019552754A JP 6956801 B2 JP6956801 B2 JP 6956801B2
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
solid
solid electrolyte
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019552754A
Other languages
English (en)
Other versions
JPWO2019093222A1 (ja
Inventor
幸信 由良
武内 幸久
佐藤 洋介
吉田 俊広
勝田 祐司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2019093222A1 publication Critical patent/JPWO2019093222A1/ja
Application granted granted Critical
Publication of JP6956801B2 publication Critical patent/JP6956801B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/48Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by the material
    • H01M50/483Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Description

本発明は、全固体リチウム二次電池(以下、全固体リチウム電池という)及びその製造方法に関するものである。
リチウム二次電池(リチウムイオン二次電池とも称される)用の正極活物質層として、リチウム複合酸化物(典型的にはリチウム遷移金属酸化物)の粉末とバインダーや導電剤等の添加物とを混練及び成形して得られた、粉末分散型の正極が広く知られている。かかる粉末分散型の正極は、容量に寄与しないバインダーを比較的多量に(例えば10重量%程度)含んでいるため、正極活物質としてのリチウム複合酸化物の充填密度が低くなる。このため、粉末分散型の正極は、容量や充放電効率の面で改善の余地が大きかった。
そこで、正極ないし正極活物質層をリチウム複合酸化物焼結体板で構成することにより、容量や充放電効率を改善しようとする試みがなされている。この場合、正極又は正極活物質層にはバインダーが含まれないため、リチウム複合酸化物の充填密度が高くなることで、高容量や良好な充放電効率が得られることが期待される。例えば、特許文献1(国際公開第2017/146088号)には、固体電解質を備えるリチウム二次電池の正極として、コバルト酸リチウム(LiCoO)等のリチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子の(003)面が正極板の板面に対して0°超30°以下の平均配向角度で配向している、低角配向正極板を用いることが開示されている。上記配向により、充放電時における正極板と固体電解質との界面において発生する応力が緩和される。すなわち、正極板の板面方向における膨張収縮率を小さくして、正極板と固体電解質層との界面に生じる応力を緩和することができ、それにより固体電解質層の欠陥や固体電解質層からの正極板の剥離を抑制することができる。
また、負極ないし正極活物質層をリチウム複合酸化物焼結体板で構成することも知られている。例えば、特許文献2(特開2015−185337号公報)には、正極、負極及び固体電解質層を有し、正極又は負極にチタン酸リチウム(LiTi12)焼結体を用いた全固体電池が開示されている。この文献に開示される焼結体は相対密度(緻密度)90%以上と緻密なものである。これは、全固体二次電池のエネルギー密度を高めるためには正極及び負極は緻密であることが望ましいという一般的な理解に基づくものであるといえる。
ところで、リチウムイオン伝導度の高い固体電解質として、逆ペロブスカイト型構造を有するリチウムイオン伝導材料が提案されている。例えば、特許文献3(国際公開第2012/112229号)には、LiOCl及びLi(3−x)x/2OA(式中、0≦x≦0.8、MはMg、Ca、Ba及びSrからなる群から選択される少なくとも1種であり、AはF、Cl、Br及びIからなる群から選択される少なくとも1種である)が、優れたリチウムイオン伝導性を呈する固体電解質として開示されている。また、非特許文献1(Yutao Li et al., "Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithim-Ion Batteries", Angew. Chem. Int. Ed. 2016, 55, 9965-9968)には、LiOHX(式中、XはCl又はBrである)が全固体二次電池用の固体電解質として有望であること、及び上記LiOHClにフッ素をドープしてOHの一部をFで一部置換した化合物が全固体二次電池に適した電気化学的安定性を呈することが開示されている。
国際公開第2017/146088号 特開2015−185337号公報 国際公開第2012/112229号
Yutao Li et al., "Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithim-Ion Batteries", Angew. Chem. Int. Ed. 2016, 55, 9965-9968
上述したような低角配向正極板、負極板及び固体電解質を用いることで、高性能な全固体リチウム電池を作製できるのではないかと本発明者らは当初考えた。しかしながら、そのような全固体リチウム電池を実際に作製したところ、作製した複数個の電池中に、電池抵抗が高く、かつ、レート性能が顕著に悪い電池が存在しうることが判明した。これはLiOCl等の固体電解質を始め、上述したような電池構成を採用した際に生じる特有の問題であった。
本発明者らは、今般、低角配向正極板の空隙率を10〜50%とし、かつ、空隙の30%以上に固体電解質を充填させることで、低角配向正極板と所定の固体電解質とを用いた全固体リチウム電池において、電池抵抗及び充放電時のレート性能を顕著に改善することができ、しかも電池製造の歩留まりも大幅に改善できるとの知見を得た。
したがって、本発明の目的は、低角配向正極板と所定の固体電解質とを用いた全固体リチウム電池において、電池抵抗及び充放電時のレート性能を顕著に改善することができ、しかも電池製造の歩留まりも大幅に改善することにある。
本発明の一態様によれば、空隙率が10〜50%のリチウム複合酸化物焼結体板である配向正極板であって、前記リチウム複合酸化物焼結体板が、リチウム複合酸化物で構成される複数の一次粒子を含み、前記複数の一次粒子が前記配向正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向正極板と、
Tiを含み、かつ、0.4V(対Li/Li)以上でリチウムイオンを挿入脱離可能な負極板と、
前記配向正極板又は前記負極板の融点若しくは分解温度よりも低い融点を有する固体電解質と、
を備え、前記配向正極板の板面に対して垂直方向の断面で評価した場合に、前記配向正極板に含まれる空隙の30%以上に前記固体電解質が充填されている、全固体リチウム電池が提供される。
本発明の他の一態様によれば、前記全固体リチウム電池を製造する方法であって、
前記配向正極板又は前記負極板に、前記配向正極板又は前記負極板の融点若しくは分解温度よりも低い融点を有する固体電解質粉末を載置する工程と、
前記固体電解質粉末上に前記負極板又は前記配向正極板を載置する工程と、
前記負極板を前記配向正極板に向けて又は前記配向正極板を前記負極板に向けて100〜600℃の温度でプレスして、前記固体電解質粉末を溶融させて前記配向正極板内又は/及び前記負極板内の空隙に浸透させる工程と、
前記配向正極板、前記溶融された電解質、及び前記負極板を放冷又は冷却して、前記溶融された電解質を凝固させる工程と、
を含む、方法が提供される。
本発明の全固体リチウム電池の一例を示す模式断面図である。 配向正極板の板面に垂直な断面の一例を示すSEM像である。 図2に示される配向正極板の断面におけるEBSD像である。 図3のEBSD像における一次粒子の配向角度の分布を面積基準で示すヒストグラムである。
全固体リチウム電池
図1に本発明の全固体リチウム電池の一例を模式的に示す。図1に示される全固体リチウム電池10は、配向正極板12、固体電解質14、及び負極板16を含む。配向正極板12は、空隙率が10〜50%のリチウム複合酸化物焼結体板である。このリチウム複合酸化物焼結体板は、リチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が配向正極板の板面に対して0°超30°以下の平均配向角度で配向している、いわゆる「低角配向正極板」である。固体電解質14は、配向正極板12又は負極板16の融点若しくは分解温度よりも低い融点を有する。負極板16は、0.4V(対Li/Li)以上でリチウムイオンを挿入脱離可能な負極板であり、Tiを含んでいる。そして、配向正極板12の板面に対して垂直方向の断面で評価した場合に、配向正極板12に含まれる空隙の30%以上に固体電解質14が充填されている。このように、低角配向正極板の空隙率を10〜50%とし、かつ、空隙の30%以上に固体電解質を充填させることで、低角配向正極板と所定の固体電解質とを用いた全固体リチウム電池において、電池抵抗及び充放電時のレート性能を顕著に改善することができ、しかも電池製造の歩留まりも大幅に改善できる。
前述のとおり、特許文献1〜3に開示されるような、低角配向正極板、負極板及び固体電解質を用いることで、高性能な全固体リチウム電池を作製できるのではないかと本発明者らは当初考えた。しかしながら、そのような全固体リチウム電池を実際に作製したところ、作製した複数個の電池中に、電池抵抗が高く、かつ、レート性能が顕著に悪い電池が存在することがあった。その原因は定かではないが、一因として、低角配向正極板を構成する複数の板状一次粒子(具体的にはその(003)面)が配向正極板の板面に対して30°以下の平均配向角度(例えば約15°)で配向しているため、配向正極板の表面微構造が(高角配向又は無配向正極板と比較して)平坦になる、すなわち板状一次粒子の板面に相当する(003)面が優勢的に露出することが考えられる。すなわち、上述したような部材を用いて電池を作製する際、正極板と固体電解質との界面、及び負極板と固体電解質との界面の密着性を高めるために、固体電解質を一旦軟化又は溶融させることが望まれるが、この軟化又は溶融した電解質は正極板表面に優勢的に露出している(003)面との濡れ性が悪く、良好な界面接触を形成できないことが考えられる。一方で、配向方位がランダムの無配向正極板を用いた場合、リチウムイオンの脱挿入時に発生する応力により界面剥離が生じ、時には電池の破壊が起こりうるのは特許文献1に記載されるとおりである。これらの問題が、上述のとおり、低角配向正極板の空隙率を10〜50%とし、かつ、空隙の30%以上に固体電解質を充填させることで、好都合に解消されることができる。つまり、電池抵抗及び充放電時のレート性能を顕著に改善することができ、しかも電池製造の歩留まりも大幅に改善できる。これらの予想外の改善がもたらされる理由は定かではないが、配向正極板の空隙の内部に固体電解質が浸透して充填されることで、固体電解質と(003)面以外の面(すなわち固体電解質との濡れ性が良い結晶面)との強固な界面接触を形成できるためではないかと推察される。つまり、配向正極板表面は(003)面が優勢的に露出しているが、配向正極板内部は空隙の形状がランダムであるため、固体電解質は(003)面以外の面とも十分に接触することができる。
上述のとおり、配向正極板12の板面に対して垂直方向の断面で評価した場合に、配向正極板12に含まれる空隙の30%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上に、固体電解質14が充填されている。このような範囲内であると、電池抵抗及び充放電時のレート性能をより一層改善することができ、電池製造の歩留まりも更に改善できる。正極板12の気孔における無機固体電解質充填率は高ければ高い方が望ましく100%であってもよいが、典型的には98%以下であり、より典型的には95%以下である。この空隙内における電解質充填率(%)は、(i)電池をクロスセクションポリッシャ(CP)により研磨し、(ii)得られた配向正極板断面を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)でSEM観察及びEDX解析した後に画像解析し、(iii)固体電解質が充填された空隙の面積と、全空隙の面積とを測定し、(iv)固体電解質が充填された空隙の面積を全空隙の面積で除し、得られた値に100を乗じることにより算出することができる。
配向正極板12の板面に対して垂直方向の断面で評価した場合に、配向正極板12に含まれる空隙の外周の30%以上が固体電解質14と接触しているのが好ましく、より好ましくは40%以上、さらに好ましくは50%以上である。このような範囲内であると、電池抵抗及び充放電時のレート性能をより一層改善することができ、電池製造の歩留まりも更に改善できる。これは、固体電解質と配向正極板との接触面積がより一層大きくなるためと推察される。正極板12の気孔における無機固体電解質充填率は高ければ高い方が望ましく100%であってもよいが、典型的には98%以下であり、より典型的には95%以下である。この空隙の外周と固体電解質の接触割合(%)は、(i)電池をクロスセクションポリッシャ(CP)により研磨し、(ii)得られた配向正極板断面を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)でSEM観察及びEDX解析した後に画像解析し、(iii)空隙の外周を構成する粒子(すなわち空隙に隣接する粒子)と固体電解質が接触している長さと、空隙の外周の長さとを測定し、(iv)空隙の外周を構成する粒子と固体電解質が接触している長さを、空隙の外周の長さで除し、得られた値に100を乗じることにより算出することができる。
配向正極板12の板面に対して垂直方向の断面で評価した場合に、配向正極板12に含まれる空隙の表面において、リチウム複合酸化物の(003)面以外の面の20%以上が固体電解質と接触しているのが好ましく、より好ましくは30%以上である。このような範囲内であると、電池抵抗及び充放電時のレート性能をより一層改善することができ、電池製造の歩留まりも更に改善できる。これは、(003)面以外の面は本発明に用いる固体電解質との濡れ性が良いため、良好な界面接触を形成することができるためと考えられる。リチウム複合酸化物の(003)面以外の面の固体電解質14と接触している割合の上限は特に限定されないが、典型的には98%以下であり、より典型的には95%以下である。この空隙表面における(003)面以外の面と固体電解質の接触割合(%)は、(i)電池をクロスセクションポリッシャ(CP)により研磨し、(ii)得られた配向正極板断面を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)でSEM観察、EDX解析及びEBSD測定し、(iii)EBSD測定結果に基づき、空隙表面に露出する粒子の結晶面が(003)面かそれ以外の面であるのかを解析し、固体電解質が(003)面以外の面と接触している空隙外周部分の長さと、(003)面以外の面が露出する空隙外周部分の長さとを測定し、(iv)固体電解質が(003)面以外の面と接触している空隙外周部分の長さを、(003)面以外の面が露出する空隙外周部分の長さで除し、得られた値に100を乗じることにより算出することができる。
配向正極板12は、リチウム複合酸化物焼結体板である。このリチウム複合酸化物焼結体板は、層状岩塩構造を有するリチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が配向正極板の板面に対して0°超30°以下の平均配向角度で配向している。図2に配向正極板12の板面に垂直な断面SEM像の一例を示す一方、図3に配向正極板12の板面に垂直な断面における電子線後方散乱回折(EBSD:Electron Backscatter Diffraction)像を示す。また、図4に、図3のEBSD像における一次粒子11の配向角度の分布を面積基準で示すヒストグラムを示す。図3に示されるEBSD像では、結晶方位の不連続性を観測することができる。図3では、各一次粒子11の配向角度が色の濃淡で示されており、色が濃いほど配向角度が小さいことを示している。配向角度とは、各一次粒子11の(003)面が板面方向に対して成す傾斜角度である。なお、図2及び3において、配向正極板12の内部で黒表示されている箇所は空隙である。
配向正極板12は、互いに結合された複数の一次粒子11で構成された配向焼結体である。各一次粒子11は、主に板状であるが、直方体状、立方体状及び球状などに形成されたものが含まれていてもよい。各一次粒子11の断面形状は特に制限されるものではなく、矩形、矩形以外の多角形、円形、楕円形、或いはこれら以外の複雑形状であってもよい。
各一次粒子11はリチウム複合酸化物で構成される。リチウム複合酸化物とは、LiMO(0.05<x<1.10であり、Mは少なくとも1種類の遷移金属であり、Mは典型的にはCo、Ni、Mn及びAlの1種以上を含む)で表される酸化物である。リチウム複合酸化物は層状岩塩構造を有する。層状岩塩構造とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的にはα−NaFeO型構造、すなわち立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。リチウム複合酸化物の例としては、LiCoO(コバルト酸リチウム)、LiNiO(ニッケル酸リチウム)、LiMnO(マンガン酸リチウム)、LiNiMnO(ニッケル・マンガン酸リチウム)、LiNiCoO(ニッケル・コバルト酸リチウム)、LiCoNiMnO(コバルト・ニッケル・マンガン酸リチウム)、LiCoMnO(コバルト・マンガン酸リチウム)等が挙げられ、特に好ましくはLiCoO(コバルト酸リチウム、典型的にはLiCoO)である。リチウム複合酸化物には、Mg、Al、Si、Ca、Ti、V、Cr、Fe、Cu、Zn、Ga、Ge、Sr、Y,Zr、Nb、Mo、Ag、Sn、Sb、Te、Ba、Bi、及びWから選択される1種以上の元素が含まれていてもよい。
図3及び4に示されるように、各一次粒子11の配向角度の平均値、すなわち平均配向角度は0°超30°以下である。これにより、以下の様々な利点がもたらされる。第一に、各一次粒子11が厚み方向に対して傾斜した向きに寝た状態になるため、各一次粒子同士の密着性を向上させることができる。その結果、ある一次粒子11と当該一次粒子11の長手方向両側に隣接する他の一次粒子11との間におけるリチウムイオン伝導性を向上させることができるため、レート特性を向上させることができる。第二に、サイクル特性を向上させることができる。すなわち、リチウムイオンの出入りに応じて(003)面と垂直な方向に各一次粒子11が伸縮するところ、板面方向に対する(003)面の傾斜角度を小さくすることによって、板面方向における配向正極板12の膨張収縮量が低減されて、配向正極板12と固体電解質14との間に応力が生じることを抑制できる。第三に、レート特性をより向上させることができる。これは、上述のとおり、リチウムイオンの出入りに際して、配向正極板12では、板面方向よりも厚み方向における膨張収縮が優勢となるため、配向正極板12の膨張収縮がスムーズになるところ、それに伴ってリチウムイオンの出入りもスムーズになるからである。
一次粒子11の平均配向角度は、(i)配向正極板をクロスセクションポリッシャ(CP)により研磨し、(ii)得られた配向正極板断面(配向正極板の板面に垂直な断面)を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)でEBSD測定し、(iii)得られたEBSD像において特定される全ての粒子について、一次粒子の(003)面と配向正極板の板面とがなす角度(すなわち(003)からの結晶方位の傾き)を傾斜角として求め、(iv)それらの角度の平均値を算出することにより決定することができる。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、30°以下が好ましく、より好ましくは25°以下である。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、2°以上が好ましく、より好ましくは5°以上である。
図4に示されるように、各一次粒子11の配向角度は、0°から90°まで広く分布していてもよいが、その大部分は0°超30°以下の領域に分布していることが好ましい。すなわち、配向正極板12を構成する配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうち配向正極板12の板面に対する配向角度が0°超30°以下である一次粒子11(以下、低角一次粒子という)の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。これにより、相互密着性の高い一次粒子11の割合を増加させることができるため、レート特性をより向上させることができる。また、低角一次粒子のうち配向角度が20°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して50%以上であることがより好ましい。さらに、低角一次粒子のうち配向角度が10°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して15%以上であることがより好ましい。
各一次粒子11は、主に板状であるため、図2及び3に示されるように、各一次粒子11の断面はそれぞれ所定方向に延びており、典型的には略矩形状となる。すなわち、配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうちアスペクト比が4以上である一次粒子11の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。具体的には、図3に示されるようなEBSD像において、これにより、一次粒子11同士の相互密着性をより向上することができ、その結果、レート特性をより向上させることができる。一次粒子11のアスペクト比は、一次粒子11の最大フェレー径を最小フェレー径で除した値である。最大フェレー径は、断面観察した際のEBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最大距離である。最小フェレー径は、EBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最小距離である。
配向焼結体を構成する複数の一次粒子の平均粒径は20μm以下であることが好ましいい。具体的には、一次粒子11の平均粒径が、20μm以下であることが好ましく、より好ましくは15μm以下である。これにより、一次粒子11の粒内をリチウムイオンが伝導する距離が短くなり、レート特性をより向上させることができる。具体的には、例えば充電においては、リチウムイオンは正極一次粒子11の粒内から空隙に充填された固体電解質に移動し、更に膜状(或いは平面状)となっている固体電解質14を経て、対極の負極粒子へと移動するが、充填された固体電解質によって律速となる一次粒子11を含む正極内のリチウムイオンの伝導距離が短くなることから、レート特性を向上させることができる。一次粒径11の平均粒径は、焼結体板の断面SEM像を画像解析することにより測定することができる。例えば、焼結体板をクロスセクションポリッシャ(CP)で加工して研磨断面を露出させる。この研磨断面を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)でSEM(走査電子顕微鏡)により観察する。このとき、視野内に20個以上の一次粒子が存在するように視野を設定する。得られたSEM像中の全ての一次粒子について外接円を描いたときの当該外接円の直径を求め、これらの一次粒径11の平均粒径とすることができる。
配向正極板12を構成するリチウム複合酸化物焼結体板の空隙率は10〜50%であり、好ましくは10〜40%、より好ましくは12〜35%、さらに好ましくは15〜30%である。このような範囲内の空隙率であると、配向正極板12の空隙内部に固体電解質14で十分に充填させることができ、それにより電池抵抗及び充放電時のレート性能の顕著な改善、並びに電池製造の歩留まりの大幅な改善を実現できる。配向正極板12の空隙率は、配向正極板12における、空隙の体積比率である。この空隙率は、配向正極板の断面SEM像を画像解析することにより測定することができる。例えば、(i)焼結体板をクロスセクションポリッシャ(CP)で加工して研磨断面を露出させ,(ii)この研磨断面を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)でSEM(走査電子顕微鏡)により観察し、(iii)得られたSEM像を画像解析し、視野内の全ての空隙の面積を視野内の焼結体板の面積(断面積)で除し、得られた値に100を乗じることにより空隙率(%)を得ることができる。
配向正極板12の厚さは、単位面積当りの活物質容量を高めて全固体リチウム電池10のエネルギー密度を向上する観点から、30μm以上であり、好ましくは40μm以上、特に好ましくは50μm以上、最も好ましくは55μm以上である。厚さの上限値は特に限定されないが、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を抑制する観点から、配向正極板12の厚さは500μm未満が好ましく、より好ましくは200μm未満、さらに好ましくは150μm以下、特に好ましくは120μm以下、より特に好ましくは100μm以下、最も好ましくは90μm以下、80μm以下又は70μm以下である。また、配向正極板のサイズは、好ましくは5mm×5mm平方以上、より好ましくは10mm×10mm平方以上であり、別の表現をすれば、好ましくは25mm以上、より好ましくは100mm以上である。
配向正極板12の固体電解質14から離れた側の面には、正極集電体13が設けられるのが好ましい。また、負極板16の固体電解質14から離れた側の面には、負極集電体17が設けられるのが好ましい。正極集電体13及び負極集電体17を構成する材料の例としては、白金(Pt)、白金(Pt)/パラジウム(Pd)、金(Au)、銀(Ag)、アルミニウム(Al)、銅(Cu)、ITO(インジウム−錫酸化膜)等が挙げられる。
配向正極板12、固体電解質14及び負極板16は容器18に収容される。容器18は、単位電池又はそれを複数個直列若しくは並列に積層させたスタックを収容可能な容器であれば特に限定されない。特に、全固体リチウム電池10は電解液の漏れの懸念が無いため、容器18は比較的簡素な容器形態を採用可能であり、外装材での包装であってもよい。例えば、電子回路に実装するためのチップ形態や、薄く幅広の空間用途のためのラミネートセル形態(例えばアルミニウム(Al)/ポリプロピレン(PP)の複層品)が採用可能である。正極集電体13及び/又は負極集電体17が容器18の一部を兼ねる構造としてもよい。また、耐熱性をより高めるために、ポリプロピレンの代わりにPCTFE(ポリクロロトリフルオロエチレン)、PFA(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体)、ポリイミド、ポリアミド等の耐熱樹脂を用いてもよい。また、外装材と集電体との絶縁を確保した上で、アルミニウム、ステンレス等の金属を用いてもよい。
固体電解質14は、配向正極板12又は負極板16の融点若しくは分解温度よりも低い融点を有するリチウムイオン伝導材料である。固体電解質14の融点は、電池動作温度より高いのが典型的であり、より典型的には、電池動作温度より高く、かつ、600℃以下である。この固体電解質14は融点が低いため、後述するように100〜600℃の温度で溶融させて配向正極板12の空隙及び所望により負極板の16の空隙に浸透させることができ、強固な界面接触を実現することができる。
固体電解質14は、リチウム−ハロゲン化物系材料を含むのが好ましい。このリチウム−ハロゲン化物系材料の好ましい例としては、LiOCl、Li(3−x)x/2OA(式中、0≦x≦0.8、MはMg、Ca、Ba及びSrからなる群から選択される少なくとも1種であり、AはF、Cl、Br及びIからなる群から選択される少なくとも1種である)、Li(OH)1−aCl(式中、0≦a≦0.3である)、及びLiOHX(式中、XはCl及び/又はBrである)からなる群から選択される少なくとも1種が挙げられ、より好ましくはLiOClやLi(OH)0.90.1Clである。また、固体電解質14としてのリチウム−ハロゲン化物系材料の別の好ましい例としては、Li(OH)Br(式中、1.8≦a≦2.3、b=a−c−1、0.01≦c≦0.11である)の組成式で表され、かつ、逆ペロブスカイト型の結晶相を含むものが挙げられ、例えばLi(OH)0.90.1Brである。あるいは、固体電解質14はリチウム−ハロゲン化物系材料以外の材料であってもよく、例えば、xLiOH・yLiSO(式中、x+y=1、0.6≦x≦0.95である)の組成式で表されるものも好ましく用いることができ、例えば3LiOH・LiSOである。上述した材料はいずれもイオン伝導度が高いとの利点がある。
固体電解質14の組成は上記したものの他にも、低融点であり、かつ、イオン伝導度が高いものであれば好適に用いることができる。固体電解質14の典型的な形態は固体電解質層である。固体電解質層の作製方法は特に限定されないが、作製方法の例としては、スパッタリング及びCVD等の気相法、スクリーン印刷及びスピンコート等の液相法、粉末を圧縮する方法、原料を融点以上に加熱した後凝固させる方法、粉末を圧縮しながら融点以上に加熱した後凝固させる方法等が挙げられる。
上述のとおり、固体電解質14は融点が低いため、後述するように100〜600℃の温度で溶融させて配向正極板12の空隙及び所望により負極板の16の空隙に浸透させることができ、強固な界面接触を実現することができる。したがって、固体電解質14は、xLiOH・yLiSO(式中、x+y=1、0.6≦x≦0.95である)の溶融凝固物であるのが好ましく、LiOClの溶融凝固物であるのも好ましい。また、固体電解質14は、LiOCl、Li(3−x)x/2OA(式中、0≦x≦0.8、MはMg、Ca、Ba及びSrからなる群から選択される少なくとも1種であり、AはF、Cl、Br及びIからなる群から選択される少なくとも1種である)、Li(OH)1−aCl(式中、0≦a≦0.3である)、及びLiOHX(式中、XはCl及び/又はBrである)からなる群から選択される少なくとも1種の溶融凝固物であるのも好ましい。あるいは、固体電解質14は、Li(OH)Br(式中、1.8≦a≦2.3、b=a−c−1、0.01≦c≦0.11である)の組成式で表され、かつ、逆ペロブスカイト型の結晶相を含む材料の溶融凝固物であるのも好ましい。
固体電解質14の寸法は特に限定されないが、配向正極板12の空隙及び負極板16の空隙への浸入部分を除いた固体電解質層の厚さは充放電レート特性と機械的強度の観点から、0.0005mm〜1.0mmが好ましく、より好ましくは0.001mm〜0.1mm、さらに好ましくは0.002〜0.05mmである。固体電解質層は成膜する厚みにより制御してもよいし、粉末を圧縮しながら融点以上に加熱した後に凝固させる方法の場合、スペーサにより厚み制御を行ってもよい。すなわち、全固体リチウム電池は、配向正極板12と負極板16の間に固体電解質層14の厚さを規定するスペーサをさらに備えているのが好ましい。スペーサの抵抗率は1×10Ω・cm以上であるのが好ましく、より好ましくは1×10Ω・cm以上である。スペーサの種類は特に限定されないが、スペーサがセラミックスで構成されるのが好ましく、そのようなセラミックスの例としては、Al、MgO、ZrO等が挙げられる。
負極板16は0.4V(対Li/Li)以上でリチウムイオンを挿入脱離可能な負極板であり、Tiを含んでいる。かかる条件を満たす負極活物質は、少なくともTiを含有する酸化物であるのが好ましい。そのような負極活物質の好ましい例としては、チタン酸リチウムLiTi12(以下、LTO)、ニオブチタン複合酸化物NbTiO、酸化チタンTiOが挙げられ、より好ましくはLTO及びNbTiO、さらに好ましくはLTOである。なお、LTOは典型的にはスピネル型構造を有するものとして知られているが、充放電時には他の構造も採りうる。例えば、LTOは充放電時にLiTi12(スピネル構造)とLiTi12(岩塩構造)の二相共存にて反応が進行する。したがって、LTOはスピネル構造に限定されるものではない。
負極板16は焼結体板(例えばLTO又はNbTiO焼結体板)であるのが好ましい。焼結体板の場合、負極板にはバインダーが含まれないため、負極活物質(例えばLTO又はNbTiO)の充填密度が高くなることで、高容量や良好な充放電効率を得ることができる。なお、負極板にはバインダーが含まれない理由は、グリーンシートにバインダーが含まれていたとしても、焼成時にバインダーが消失又は焼失するからである。LTO焼結体板は、特許文献2(特開2015−185337号公報)に記載される方法に従って製造することができる。
負極板16は緻密であってもよいし、空隙を含んでいるものであってもよい。負極板16が空隙を含む場合、充放電サイクルにおけるリチウムイオンの出入りに伴う結晶格子の伸縮によって発生する応力が、当該空隙によって良好(均一)に開放される結果、充放電サイクルの繰り返しに伴う粒界クラックの発生が可及的に抑制されるとの利点がある。
負極板16の空隙率は2〜40%であるのが好ましく、より好ましくは3〜30%である。このような範囲内であると、空隙による応力開放効果と、高容量化の効果とを望ましく実現することができる。負極板16の空隙率は、負極板16における、空隙の体積比率であり、前述した配向正極板12の空隙率と同様に、負極板16の断面SEM像を画像解析することにより測定することができる。
負極板16の板面に対して垂直方向の断面で評価した場合に、負極板16に含まれる空隙の30%以上に固体電解質14が充填されているのが好ましく、より好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上である。このような範囲内であると、電池抵抗及び充放電時のレート性能をより一層改善することができ、電池製造の歩留まりを更に改善できる。負極板16の気孔における無機固体電解質充填率は高ければ高い方が望ましく100%であってもよいが、典型的には99%以下であり、より典型的には95%以下である。この空隙内における電解質充填率(%)は、前述した配向正極板12の電解質充填率と同様に、負極板16の断面SEM像を画像解析することにより測定することにより測定することができる。
負極板16の板面に対して垂直方向の断面で評価した場合に、負極板16に含まれる空隙の外周の30%以上が固体電解質14と接触しているのが好ましく、より好ましくは40%以上、さらに好ましくは50%以上である。このような範囲内であると、電池抵抗及び充放電時のレート性能をより一層改善することができ、電池製造の歩留まりも更に改善できる。これは、固体電解質と負極板との接触面積がより一層大きくなるためと推察される。負極板16の気孔における無機固体電解質充填率は高ければ高い方が望ましく100%であってもよいが、典型的には99%以下であり、より典型的には95%以下である。この空隙の外周と固体電解質の接触割合(%)は、前述した配向正極板12の接触割合と同様に、負極板16の断面SEM像を画像解析することにより測定することにより測定することができる。
負極板16の厚さは、単位面積当りの活物質容量を高めて全固体リチウム電池10のエネルギー密度を向上する観点から、25μm以上であり、好ましくは30μm以上であり、より好ましくは40μm以上、特に好ましくは50μm以上、最も好ましくは55μm以上である。厚さの上限値は特に限定されないが、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を抑制する観点から、負極板16の厚さは400μm以下が好ましく、より好ましくは300μm以下である。また、負極板16のサイズは、好ましくは5mm×5mm平方以上、より好ましくは10mm×10mm平方以上であり、別の表現をすれば、好ましくは25mm以上、より好ましくは100mm以上である。
前述のとおり、配向正極板12はLiCoO(LCO)焼結体板であるのが好ましく、負極板16はLiTi12(LTO)焼結体板であるのが好ましい。特に、LCO配向正極板の配向角度の平均値、すなわち平均配向角度が0°超30°以下である場合、充放電時に面方向へ膨張収縮が生じず、また、LTO負極板も充放電時に膨張収縮が生じなく、固体電解質層も充放電時に膨張収縮しないため、充放電時に応力(特に配向正極板12又は負極板16と固体電解質14との界面における応力)が発生しなくなり、充放電を安定に行うことができる。また、上記同様の目的から、負極板16としてNbTiO焼結体板を用いる場合は、膨張収縮を制御するように、NbTiO焼結体板を構成する一次粒子を配向させるのが好ましい。
本発明の全固体リチウム電池10は、常温でも充放電可能ではあるが、100℃以上の温度で充放電されるのが好ましい。100℃以上の温度で充放電させることで、急速充放電を高いサイクル容量維持率で実現することができる。すなわち、全固体リチウム電池10を100℃以上の高温で充放電させることで、急速充放電が可能となる。つまり、全固体リチウム電池10は上記温度で高速でかつ安定に駆動することができる。しかも、急速充放電を繰り返し行っても高い容量を維持することができる、すなわち高いサイクル容量維持率を実現することができる。したがって、充放電時における全固体リチウム電池10の好ましい作動温度は100℃以上であり、より好ましくは100〜300℃であり、さらに好ましくは100〜200℃、特に好ましくは100〜150℃である。上記作動温度を実現するための加熱手段は、各種ヒータや発熱を伴う各種装置又はデバイスであることができるが、好ましい例としては通電加熱式セラミックヒーターが挙げられる。換言すれば、本態様の全固体リチウム電池10は加熱手段を伴った二次電池システムとして提供されるのが好ましい。
製造方法
本発明の全固体リチウム電池10は以下のようにして製造するのが好ましい。まず、配向正極板12(又は負極板16)に、前述したxLiOH・yLiSO、LiOCl、Li(3−x)x/2OA、Li(OH)1−aCl、LiOHX及びLi(OH)Brからなる群から選択される少なくとも1種を含む固体電解質粉末を載置する。この固体電解質粉末上に負極板16(又は配向正極板12)を載置する。負極板16を配向正極板12に向けて(又は配向正極板を負極板に向けて)100〜600℃、好ましくは200〜500℃、より好ましくは250〜450℃の温度でプレスして、固体電解質粉末を溶融させて配向正極板内の空隙に浸透させる。ここで、上記プレスは、荷重を加えることができる手法であれば特に限定されず、機械的に荷重を加えてもよいし、重しを載せるより荷重を加えてもよい。続いて、配向正極板12、溶融された電解質、及び負極板16を放冷又は冷却して、溶融された電解質を凝固させて固体電解質14を形成させる。
前述したとおり、全固体リチウム電池10は、配向正極板12と負極板16の間に固体電解質層14の厚さを規定するスペーサを備えていてもよい。この構成は、固体電解質粉末上に負極板16又は配向正極板12を載置する際に、配向正極板12と負極板16の間にスペーサが固体電解質粉末と一緒に挟み込むことにより好ましく実現することができる。
本発明を以下の例によってさらに具体的に説明する。なお、以下の例において、LiCoOを「LCO」と略称し、LiTi12を「LTO」と略称するものとする。
例1
(1)正極板の作製
(1a)LCOグリーンシートの作製
Li/Coのモル比が1.02となるように秤量されたCo粉末(正同化学工業株式会社製、平均粒径0.9μm)とLiCO粉末(本荘ケミカル株式会社製)を混合後、750℃で5時間保持した。得られた粉末をポットミルにて体積基準D50が0.4μmとなるように粉砕して、LCO板状粒子からなる粉末を得た。得られたLCO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM−2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2−ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP−O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LCOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LCOグリーンシートを形成した。LCOグリーンシートの厚さは焼成後の厚さが50μmとなるような値とした。
(1b)LiCOグリーンシート(過剰リチウム源)の作製
LiCO原料粉末(体積基準D50粒径2.5μm、本荘ケミカル株式会社製)100重量部と、バインダー(ポリビニルブチラール:品番BM−2、積水化学工業株式会社製)5重量部と、可塑剤(DOP:フタル酸ジ(2−エチルヘキシル)、黒金化成株式会社製)2重量部と、分散剤(レオドールSP−O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LiCOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたLiCOスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LiCOグリーンシートを形成した。乾燥後のLiCOグリーンシートの厚さは、LCOグリーンシートにおけるCo含有量に対する、LiCOグリーンシートにおけるLi含有量のモル比である、Li/Co比を0.2とすることができるように設定した。
(1c)LCO焼結板の作製
PETフィルムから剥がしたLCOグリーンシートをカッターで50mm角に切り出し、下部セッターとしてのマグネシア製セッター(寸法90mm角、高さ1mm)の中央に載置した。LCOグリーンシートを昇温速度200℃/hで600℃まで昇温して3時間脱脂した後、900℃で3時間保持することで仮焼した。得られたLCO仮焼板におけるCo含有量に対する、LiCOグリーンシートにおけるLi含有量のモル比である、Li/Co比が0.5となるようなサイズに、乾燥されたLiCOグリーンシートを切り出した。LCO仮焼板上に、上記切り出されたLiCOグリーンシート片を過剰リチウム源として載置し、その上に上部セッターとしての多孔質マグネシア製セッターを載置した。上記焼結板及びグリーンシート片をセッターで挟んだ状態で、120mm角のアルミナ鞘(株式会社ニッカトー製)内に載置した。このとき、アルミナ鞘を密閉せず、0.5mmの隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで600℃まで昇温して3時間脱脂した後に、800℃まで200℃/hで昇温して5時間保持した後900℃まで200℃/hで昇温して24時間保持することで焼成を行った。焼成後、室温まで降温させた後に焼成体をアルミナ鞘より取り出した。こうしてLCO焼結板を正極板として得た。得られたLCO焼結体板の下部セッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、10mm×10mm平方の形状にレーザー加工した。
(2)負極板の作製
(2a)LTOグリーンシートの作製
LTO粉末(体積基準D50粒径0.06μm、シグマアルドリッチジャパン合同会社製)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM−2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2−ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP−O30、花王株式会社製)2重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LTOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LTOグリーンシートを形成した。乾燥後のLTOグリーンシートの厚さは焼成後の厚さが50μmとなるような値とした。
(2b)LTOグリーンシートの焼成
得られたグリーンシートを25mm角にカッターナイフで切り出し、エンボス加工されたジルコニア製セッター上に載置した。セッター上のグリーンシートをアルミナ製鞘に入れて500℃で5時間保持した後に、昇温速度200℃/hにて昇温し、800℃で5時間焼成を行った。得られたLTO焼結体板のセッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、10mm×10mm平方の形状にレーザー加工した。
(3)固体電解質の作製
少量の脱イオン水に4.790gのLiOH及び4.239gのLiClを溶解させて原料水溶液を調製した。これらの前駆体の量は、式:LiOCl+HOに対応する化学量論比となるようにした。水の大部分は、ロータリーエバポレーター及び約90℃の浴温により脱水した。得られた固体をアルミナボートに入れた。ボートを電気炉の中に入れ、約280℃の温度で約48時間真空加熱し、固体電解質であるLiOCl粉末を反応生成物として得た。
(4)電池作製
上記正極板上に上記LiOCl粉末を載置し、ホットプレートで正極板及びLiOCl粉末を400℃で加熱し、上から負極板を加圧しながら載せた。このときLiOCl粉末は溶融し、その後の凝固を経て、最終的に厚さ20μmの固体電解質層が形成された。得られた正極板/固体電解質/負極板からなるセルを用いて100個のラミネート電池を作製した。
(5)評価
上記(1)で合成されたLCO正極板、上記(2)で合成されたLTO負極板、及び上記(4)で作製された電池について、以下に示されるとおり各種の評価を行った。
<空隙率>
LCO正極板及びLTO負極板の各々をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB−15000CP)により研磨し、得られた電極板断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子株式会社製、JSM6390LA)した後に画像解析し、全ての空隙の面積を各板の面積で除し、得られた値に100を乗じることで各電極板の空隙率(%)を算出した。
<一次粒子の平均配向角度>
LCO正極板をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB−15000CP)により研磨し、得られた正極板断面(正極板の板面に垂直な断面)を1000倍の視野(125μm×125μm)でEBSD測定して、EBSD像を得た。このEBSD測定は、ショットキー電界放出形走査電子顕微鏡(日本電子株式会社製、型式JSM−7800F)を用いて行った。得られたEBSD像において特定される全ての粒子について、一次粒子の(003)面と正極板の板面とがなす角度(すなわち(003)からの結晶方位の傾き)を傾斜角として求め、それらの角度の平均値を一次粒子の平均配向角度(平均傾斜角)とした。
<空隙内における電解質充填率>
作製した電池をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB−15000CP)により研磨し、得られた正極板又は負極板の断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子株式会社製、JSM6390LA)及びEDX解析した後に画像解析し、固体電解質が充填された空隙の面積と、全空隙の面積(固体電解質が充填された空隙の面積及び固体電解質が充填されていない空隙の面積の合計面積)とを測定した。固体電解質が充填された空隙の面積を全空隙の面積で除し、得られた値に100を乗じることにより、空隙内における電解質充填率(%)を算出した。
<空隙の外周と固体電解質の接触割合>
作製した電池をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB−15000CP)により研磨し、得られた正極板又は負極板の断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子株式会社製、JSM6390LA)及びEDX解析した後に画像解析し、空隙の外周を構成する粒子(すなわち空隙に隣接する粒子)と固体電解質が接触している長さと、空隙の外周の長さ(空隙の外周を構成する粒子と固体電解質が接触している長さ及び空隙の外周を構成する粒子と固体電解質が接触していない長さの合計長さ)とを測定した。空隙の外周を構成する粒子と固体電解質が接触している長さを、空隙の外周の長さで除し、得られた値に100を乗じることにより、空隙の外周と固体電解質の接触割合(%)を算出した。
<空隙表面における(003)面以外の面と固体電解質の接触割合>
作製した電池をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB−15000CP)により研磨し、得られた正極板断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子株式会社製、JSM6390LA)、EDX解析及びEBSD測定した。このEBSD測定は、上述した一次粒子の平均配向角度の測定と同様にして行った。EBSD測定結果に基づき、空隙表面に露出する粒子の結晶面が(003)面かそれ以外の面であるのかを解析し、固体電解質が(003)面以外の面と接触している空隙外周部分の長さと、(003)面以外の面が露出する空隙外周部分の長さとを測定した。固体電解質が(003)面以外の面と接触している空隙外周部分の長さを、(003)面以外の面が露出する空隙外周部分の長さで除し、得られた値に100を乗じることにより、空隙表面における(003)面以外の面と固体電解質の接触割合(%)を算出した。
<電池歩留まり>
作製した電池100個の電池抵抗を、バイオロジック社製電気化学測定システムSP−150を用いて交流インピーダンス法にて測定した。電池100個を測定した際の最小値を基準抵抗とし、基準抵抗から10倍以内の抵抗値をもつものを良品とし、良品の個数を電池歩留まりとした。
<サイクル容量維持率>
上記電池歩留まり評価において良品と判定された電池について、100℃の作動温度における電池のサイクル容量維持率を2.7V−1.5Vの電位範囲において以下の手順で測定した。
(i)0.2Cレートで電池電圧が2.7Vとなるまで定電流充電し、引き続き電流値が0.02Cレートになるまで定電圧充電した後、0.2Cレートで1.5Vになるまで放電することを含む充放電サイクルを合計3回繰り返すことにより放電容量の測定を行い、それらの平均値を初期放電容量とした。
(ii)充電レート0.5C及び放電レート0.5Cで充放電を合計30回行った。
(iii)0.2Cレートで電池電圧が2.7Vとなるまで定電流充電し、引き続き0.02Cレートになるまで定電圧充電した後、0.2Cレートで1.5Vになるまで放電することを含む充放電サイクルを合計3回繰り返すことにより放電容量の測定を行い、それらの平均値をサイクル後放電容量とした。
(iv)上記(i)で得られた初期放電容量に対する、上記(iii)で得られたサイクル後放電容量の比率を算出して100を乗じることにより、サイクル容量維持率(%)を得た。
例2
上記(1c)においてLCO仮焼板上にLiCOグリーンシート片を載置しなかったこと以外は例1と同様にして、電池の作製及び評価を行った。
例3
上記(1c)において焼成途中の800℃で5時間保持を行わなかったこと、及び上記(4)における加熱温度を330℃としたこと以外は例1と同様にして、電池の作製及び評価を行った。
例4(比較)
上記(1a)においてCo粉末としてD50粒径が0.3μmのものを用いたこと以外は例1と同様にして、電池の作製及び評価を行った。
例5(比較)
上記(1b)でLi/Co比を0.7としたこと、及び上記(1c)における900℃での焼成時間を96時間としたこと以外は例1と同様にして、電池の作製及び評価を行った。
例6
正極板及び負極板の作製を以下のとおり行ったこと以外は例1と同様にして、電池の作製及び評価を行った。
(正極板の作製)
上記(1c)において、LCO仮焼板上に積載するLiCOグリーンシートにおけるLi含有量のモル比であるLi/Co比を0.1とし、かつ、最高温度を850℃としたこと以外は、例1と同様にしてLCO焼結板を作製した。
(負極板の作製)
上記(2a)において、LTO粉末として別のLTO粉末(体積基準D50粒径0.7μm、石原産業株式会社製)を用いたこと以外は、例1と同様にしてLTO焼結板を作製した。
例7
固体電解質として以下のようにして作製したLiOH・LiSO系粉末を用い、かつ、電池を以下のようにして作製したこと以外は例1と同様にして、電池の作製及び評価を行った。
(固体電解質粉末の作製)
まず、市販のLiOH(純度98.0%以上)とLiSO(純度98.0%以上)とを用意した。露点−50℃以下のAr雰囲気グローブボックス内にて、それぞれの原料をLiOH:LiSO=3.0:1.0(モル比)となるように秤量し混合した。混合物をAr雰囲気のガラス管に入れ、430℃で2時間加熱することによって溶融した。そして、ガラス管を水中に投入して10分間保持することによって、溶融物を急冷して凝固体を形成した。次に、凝固体をAr雰囲気中乳鉢で粉砕することによって固体電解質である3LiOH・LiSO粉末を得た。
(電池作製)
上記正極板上に直径30μmのZrOビーズを5wt%添加したLiOH・LiSO系粉末を載置し、その上に負極板を載置した。更に負極板上に15gの重しを載置し、電気炉内で400℃で45分間加熱した。このとき、LiOH・LiSO系粉末は溶融し、その後の凝固を経て、最終的に厚さ40μmの固体電解質層が形成された。得られた正極板/固体電解質/負極板からなるセルを用いて100個のラミネート電池を作製した。
例8
正極板及び負極板として例6と同じものを使用したこと以外は例7と同様にして、電池の作製及び評価を行った。
例9
正極板として例2と同じものを使用したこと、及び負極板の作製を以下のとおり行ったこと以外は例7と同様にして、電池の作製及び評価を行った。
(負極板の作製)
上記(2b)において最高温度775℃で5時間の焼成を行ったこと以外は、例1と同様にしてLTO焼結板を作製した。
例10
LCO焼結板の厚さを200μmとし、かつ、LTO焼結板の厚さを200μmとしたこと以外は例8と同様にして、電池の作製及び評価を行った。
例11(比較)
正極板及び負極板として例4と同じものを用いたこと以外は例7と同様にして、電池の作製及び評価を行った。
例12(比較)
正極板及び負極板として例5と同じものを使用したこと以外は例7と同様にして、電池の作製及び評価を行った。
例13
正極板及び負極板として例6と同じものを用い、かつ、上記(4)において固体電解質として以下のようにして作製したLi(OH)0.90.1Cl系粉末を用いて、固体電解質粉末の加熱を350℃で45分間行ったこと以外は例7と同様にして、電池の作製及び評価を行った。
(固体電解質粉末の作製)
原料として、市販のLiOH(純度98.0%以上)、LiCl(純度99.9%以上)及びLiF(純度99.9%)を用意した。露点−50℃以下のAr雰囲気グローブボックス内にて、それぞれの原料をLiOH:LiCl:LiFを0.9:1.0:0.1(モル比)となるように秤量し混合した。得られた混合粉末をアルミナ製のるつぼ(純度99.7%)に投入し、さらに石英管へ入れ、フランジで密閉した。この石英管を管状炉へセットし、フランジのガス導入口から露点−50℃以下のArガスを流してガス排出口から排出させながら、かつ、混合粉末を攪拌しながら、350℃で30分間の熱処理を行った。冷却後、ガス導入口及びガス排出口を閉じ、再び露点−50℃以下のAr雰囲気グローブボックス内にてるつぼを取り出した。るつぼ内から合成物を取り出し、乳鉢で粉砕して、固体電解質であるLi(OH)0.90.1Cl粉末を得た。なお、Arガス雰囲気下での加熱温度及び加熱時間は適宜変更可能であり、一般的には、加熱温度は250℃以上600℃以下であり、加熱時間は0.1時間以上であればよい。
例14
正極板及び負極板として例6と同じものを用い、かつ、上記(4)において固体電解質として以下のようにして作製したLi(OH)0.90.1Br系粉末を用いて固体電解質粉末の加熱を350℃で45分間行ったこと以外は例7と同様にして、電池の作製及び評価を行った。
(固体電解質粉末の作製)
原料として、市販のLiOH(純度98.0%以上)、LiBr(純度99.9%以上)及びLiF(純度99.9%)を用意した。露点−50℃以下のAr雰囲気グローブボックス内にて、それぞれの原料をLiOH:LiBr:LiFを0.9:1.0:0.1(モル比)となるように秤量し混合した。得られた混合粉末をアルミナ製のるつぼ(純度99.7%)に投入し、さらに石英管へ入れ、フランジで密閉した。この石英管を管状炉へセットし、フランジのガス導入口から露点−50℃以下のArガスを流してガス排出口から排出させながら、かつ、混合粉末を攪拌しながら、350℃で30分間の熱処理を行った。冷却後、ガス導入口及びガス排出口を閉じ、再び露点−50℃以下のAr雰囲気グローブボックス内にてるつぼを取り出した。るつぼ内から合成物を取り出し、乳鉢で粉砕して、固体電解質であるLi(OH)0.90.1Br粉末を得た。なお、Arガス雰囲気下での加熱温度及び加熱時間は適宜変更可能であり、一般的には、加熱温度は250℃以上600℃以下であり、加熱時間は0.1時間以上であればよい。
例15
正極板の作製を以下のとおり行ったこと以外は例8と同様にして、電池の作製及び評価を行った。
(1)正極板の作製
(1a)Li(Co0.90Ni0.05Mn0.05)Oグリーンシートの作製
市販のCo粉末(平均粒径D50:0.9μm)、LiCO粉末、Ni(OH)粉末、及びMnCO粉末を用い、Li(Co0.90Ni0.05Mn0.05)Oとなるように秤量して混合した。得られた混合物を800℃で5時間保持して仮焼粉末を得た。この仮焼粉末をポットミルにて平均粒径D50が1μm以下となるように粉砕した。得られた粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー10重量部と、可塑剤4重量部と、分散剤2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を調整することによって、Li(Co,Ni,Mn)Oスラリーを調製した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、グリーンシートを形成した。LCOグリーンシートの厚さは焼成後の厚さが50μmとなるような値とした。
(1b)Li(Co0.90Ni0.05Mn0.05)O焼結板の作製
PETフィルムから剥がしたLi(Co,Ni,Mn)Oグリーンシートを切り出し、下部セッターとしてのマグネシア製セッターの中央に載置し、その上に上部セッターとしての多孔質マグネシア製セッターを載置した。上記グリーンシート片をセッターで挟んだ状態で、アルミナ鞘内に載置した。このとき、アルミナ鞘を密閉せず、わずかに隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで600℃まで昇温して3時間脱脂した後、800℃で20時間保持することで焼成を行い、Li(Co,Ni,Mn)O焼結体板として得た。得られた焼結体板を10mm×10mm平方の形状にレーザー加工して正極板を得た。
結果
例1〜15の結果は、表1A及び1Bに示されるとおりであった。
Figure 0006956801
Figure 0006956801
(固体電解質の融点の測定)
上述した例1〜15で用いた、LiClO、3LiOH・LiSO、Li(OH)0.90.1Cl、及びLi(OH)0.90.1Brについて、リガク製Thermo Plus TG8120を用い、Ar雰囲気にてTG−DTA測定を行った。昇温速度は10℃/minとした。その結果、LiClO、3LiOH・LiSO、Li(OH)0.90.1Cl、及びLi(OH)0.90.1Brの融点は、それぞれ、320、360、285、及び244℃であった。

Claims (19)

  1. 空隙率が10〜50%のリチウム複合酸化物焼結体板である配向正極板であって、前記リチウム複合酸化物焼結体板が、リチウム複合酸化物で構成される複数の一次粒子を含み、前記複数の一次粒子が前記配向正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向正極板と、
    Tiを含み、かつ、0.4V(対Li/Li)以上でリチウムイオンを挿入脱離可能な負極板と、
    前記配向正極板又は前記負極板の融点若しくは分解温度よりも低い融点を有する固体電解質と、
    を備え、前記配向正極板の板面に対して垂直方向の断面で評価した場合に、前記配向正極板に含まれる空隙の30%以上に前記固体電解質が充填されており、
    (i)前記固体電解質が、xLiOH・yLiSO(式中、x+y=1、0.6≦x≦0.95である)の組成式で表される、又は、(ii)前記固体電解質が、Li(OH)Br(式中、1.8≦a≦2.3、b=a−c−1、0.01≦c≦0.11である)の組成式で表され、かつ、逆ペロブスカイト型の結晶相を含む、全固体リチウム電池。
  2. 前記固体電解質の融点が、電池動作温度より高く、かつ、600℃以下である、請求項1に記載の全固体リチウム電池。
  3. 前記配向正極板に含まれる空隙の70%以上に前記固体電解質が充填されている、請求項1又は2に記載の全固体リチウム電池。
  4. 前記配向正極板の板面に対して垂直方向の断面で評価した場合に、前記配向正極板に含まれる空隙の外周の30%以上が前記固体電解質と接触している、請求項1〜3のいずれか一項に記載の全固体リチウム電池。
  5. 前記配向正極板に含まれる空隙の外周の50%以上が前記固体電解質と接触している、請求項4に記載の全固体リチウム電池。
  6. 前記配向正極板の板面に対して垂直方向の断面で評価した場合に、前記配向正極板に含まれる空隙の表面において、前記リチウム複合酸化物の(003)面以外の面の20%以上が、前記固体電解質と接触している、請求項1〜5のいずれか一項に記載の全固体リチウム電池。
  7. 前記配向正極板に含まれる空隙の表面において、前記リチウム複合酸化物の(003)面以外の面の30%以上が、前記固体電解質と接触している、請求項6に記載の全固体リチウム電池。
  8. 前記負極板の空隙率が2〜40%である、請求項1〜7のいずれか一項に記載の全固体リチウム電池。
  9. 前記負極板の板面に対して垂直方向の断面で評価した場合に、前記負極板に含まれる空隙の30%以上に前記固体電解質が充填されている、請求項8に記載の全固体リチウム電池。
  10. 前記負極板に含まれる空隙の70%以上に前記固体電解質が充填されている、請求項9に記載の全固体リチウム電池。
  11. 前記負極板の板面に対して垂直方向の断面で評価した場合に、前記負極板に含まれる空隙の外周の30%以上が前記固体電解質と接触している、請求項8〜10のいずれか一項に記載の全固体リチウム電池。
  12. 前記負極板に含まれる空隙の外周の50%以上が前記固体電解質と接触している、請求項11に記載の全固体リチウム電池。
  13. 前記固体電解質が、(i)xLiOH・yLiSO(式中、x+y=1、0.6≦x≦0.95である)の溶融凝固物、又は(ii)Li(OH)Br(式中、1.8≦a≦2.3、b=a−c−1、0.01≦c≦0.11である)の組成式で表され、かつ、逆ペロブスカイト型の結晶相を含む材料の溶融凝固物である、請求項1〜12のいずれか一項に記載の全固体リチウム電池。
  14. 100℃以上の温度で充放電される、請求項1〜13のいずれか一項に記載の全固体リチウム電池。
  15. 前記配向正極板と前記負極板の間に固体電解質層の厚さを規定するスペーサをさらに備えた、請求項1〜14のいずれか一項に記載の全固体リチウム電池。
  16. 前記スペーサの抵抗率が1×10Ω・cm以上である、請求項15に記載の全固体リチウム電池。
  17. 前記スペーサがセラミックスで構成される、請求項15又は16に記載の全固体リチウム電池。
  18. 請求項1〜17のいずれか一項に記載の全固体リチウム電池を製造する方法であって、
    前記配向正極板又は前記負極板に、前記配向正極板又は前記負極板の融点若しくは分解温度よりも低い融点を有する固体電解質粉末を載置する工程と、
    前記固体電解質粉末上に前記負極板又は前記配向正極板を載置する工程と、
    前記負極板を前記配向正極板に向けて又は前記配向正極板を前記負極板に向けて100〜600℃の温度でプレスして、前記固体電解質粉末を溶融させて前記配向正極板内又は/及び前記負極板内の空隙に浸透させる工程と、
    前記配向正極板、前記溶融された電解質、及び前記負極板を放冷又は冷却して、前記溶融された電解質を凝固させる工程と、
    を含む、方法。
  19. 前記全固体リチウム電池が、前記配向正極板と前記負極板の間に固体電解質層の厚さを規定するスペーサを備えており、
    前記固体電解質粉末上に前記負極板又は前記配向正極板を載置する際に、前記配向正極板と前記負極板の間に前記スペーサが前記固体電解質粉末と一緒に挟み込まれる、請求項18に記載の方法。
JP2019552754A 2017-11-10 2018-11-01 全固体リチウム電池及びその製造方法 Active JP6956801B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017217195 2017-11-10
JP2017217195 2017-11-10
JP2017235918 2017-12-08
JP2017235918 2017-12-08
PCT/JP2018/040687 WO2019093222A1 (ja) 2017-11-10 2018-11-01 全固体リチウム電池及びその製造方法

Publications (2)

Publication Number Publication Date
JPWO2019093222A1 JPWO2019093222A1 (ja) 2020-11-19
JP6956801B2 true JP6956801B2 (ja) 2021-11-02

Family

ID=66438948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019552754A Active JP6956801B2 (ja) 2017-11-10 2018-11-01 全固体リチウム電池及びその製造方法

Country Status (6)

Country Link
US (1) US11837699B2 (ja)
EP (1) EP3709430A4 (ja)
JP (1) JP6956801B2 (ja)
KR (1) KR102325924B1 (ja)
CN (1) CN111279538B (ja)
WO (1) WO2019093222A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147248A1 (ja) * 2017-02-13 2018-08-16 日本碍子株式会社 リチウム複合酸化物焼結体板及びリチウム二次電池
KR102585510B1 (ko) * 2017-02-13 2023-10-05 엔지케이 인슐레이터 엘티디 리튬 복합 산화물 소결체판
JPWO2021090782A1 (ja) * 2019-11-06 2021-05-14
JPWO2021100659A1 (ja) * 2019-11-19 2021-05-27
WO2021200766A1 (ja) * 2020-03-30 2021-10-07 日本碍子株式会社 リチウムイオン二次電池
WO2022091983A1 (ja) * 2020-10-30 2022-05-05 日本碍子株式会社 全固体二次電池
CN116438682A (zh) 2020-12-22 2023-07-14 日本碍子株式会社 锂复合氧化物烧结板及全固体二次电池
WO2022137359A1 (ja) * 2020-12-22 2022-06-30 日本碍子株式会社 全固体二次電池
WO2023181969A1 (ja) * 2022-03-25 2023-09-28 株式会社村田製作所 固体電池用電極およびその製造方法、固体電池、電池パッケージ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2086046A1 (en) * 2008-01-31 2009-08-05 Ohara Inc. Manufacture of lithium ion secondary battery
JP5542694B2 (ja) * 2008-12-24 2014-07-09 日本碍子株式会社 リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極活物質膜、これらの製造方法、リチウム二次電池の正極活物質の製造方法、及びリチウム二次電池
JP5587052B2 (ja) * 2010-06-23 2014-09-10 日本碍子株式会社 リチウム二次電池の正極及びリチウム二次電池
WO2012112229A2 (en) * 2011-02-14 2012-08-23 Los Alamos National Security, Llc Anti-perovskite solid electrolyte compositions
JP2015185337A (ja) 2014-03-24 2015-10-22 日本碍子株式会社 全固体電池
WO2016092888A1 (ja) * 2014-12-09 2016-06-16 日本碍子株式会社 折り曲げ可能な電池モジュール
HU230620B1 (hu) 2015-05-14 2017-04-28 ALU-ÖNTŐ Fémöntő és Fémmegmunkáló Ipari Eljárás vékonyfalú, tagolt, részletgazdag alumínium öntvények homokformázásos technológiával, gravitációs öntéssel történő előállítására
JP2017033689A (ja) * 2015-07-30 2017-02-09 セイコーエプソン株式会社 電極複合体、全固体二次電池、電極複合体の製造方法
JP2017142885A (ja) * 2016-02-08 2017-08-17 セイコーエプソン株式会社 電極複合体の製造方法、リチウムイオン電池の製造方法、電極複合体、リチウムイオン電池
KR101803628B1 (ko) 2016-02-16 2017-12-28 엘지전자 주식회사 냉장고
CN108701814B (zh) * 2016-02-24 2021-01-22 日本碍子株式会社 板状锂复合氧化物
WO2018087966A1 (ja) * 2016-11-11 2018-05-17 日本碍子株式会社 Ic用電源及びそれを備えた各種ic製品、icへの電力供給方法、並びにicの駆動方法
WO2019093221A1 (ja) * 2017-11-10 2019-05-16 日本碍子株式会社 二次電池

Also Published As

Publication number Publication date
WO2019093222A1 (ja) 2019-05-16
JPWO2019093222A1 (ja) 2020-11-19
KR102325924B1 (ko) 2021-11-12
EP3709430A4 (en) 2021-08-25
CN111279538A (zh) 2020-06-12
US20200259217A1 (en) 2020-08-13
EP3709430A1 (en) 2020-09-16
US11837699B2 (en) 2023-12-05
KR20200052962A (ko) 2020-05-15
CN111279538B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
JP6956801B2 (ja) 全固体リチウム電池及びその製造方法
JP6995057B2 (ja) 二次電池
JP6914285B2 (ja) リチウムイオン電池
JP6995135B2 (ja) 二次電池
JP6109672B2 (ja) セラミック正極−固体電解質複合体
JP6018930B2 (ja) 正極−固体電解質複合体の製造方法
JP6099407B2 (ja) 全固体蓄電素子
JP6820960B2 (ja) リチウムイオン電池
JP7126518B2 (ja) 全固体リチウム電池及びその製造方法
JP6109673B2 (ja) セラミック正極−固体電解質複合体
JP2019192609A (ja) 全固体リチウム電池及びその製造方法
JP6168690B2 (ja) セラミック正極−固体電解質複合体
CN112088459B (zh) 锂二次电池
CN112074987B (zh) 锂二次电池
CN112088458B (zh) 锂二次电池
EP4207378A1 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211005

R150 Certificate of patent or registration of utility model

Ref document number: 6956801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150