WO2021100283A1 - リチウム二次電池及びその充電状態の測定方法 - Google Patents

リチウム二次電池及びその充電状態の測定方法 Download PDF

Info

Publication number
WO2021100283A1
WO2021100283A1 PCT/JP2020/033090 JP2020033090W WO2021100283A1 WO 2021100283 A1 WO2021100283 A1 WO 2021100283A1 JP 2020033090 W JP2020033090 W JP 2020033090W WO 2021100283 A1 WO2021100283 A1 WO 2021100283A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
positive electrode
secondary battery
negative electrode
lithium secondary
Prior art date
Application number
PCT/JP2020/033090
Other languages
English (en)
French (fr)
Inventor
幸信 由良
茂樹 岡田
俊介 水上
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN202080058505.7A priority Critical patent/CN114730913A/zh
Priority to KR1020227006208A priority patent/KR102656021B1/ko
Priority to EP20890460.7A priority patent/EP4064403A4/en
Priority to JP2021558181A priority patent/JP7280379B2/ja
Publication of WO2021100283A1 publication Critical patent/WO2021100283A1/ja
Priority to US17/658,694 priority patent/US20220238870A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium secondary battery and a method for measuring a charged state thereof.
  • Lithium secondary batteries using lithium cobalt oxide LiCoO 2 (hereinafter referred to as LCO) as a positive electrode active material and lithium titanate Li 4 Ti 5 O 12 (hereinafter referred to as LTO) as a negative electrode active material are widely known.
  • LCO lithium cobalt oxide LiCoO 2
  • LTO lithium titanate Li 4 Ti 5 O 12
  • Patent Document 1 Patent No. 4439456 describes a positive electrode (so-called coated positive electrode) prepared by applying and drying a slurry containing an LCO powder, a binder and a conductive auxiliary agent, and an LTO negative electrode, a binder and a conductive auxiliary agent.
  • a battery pack including a plurality of non-aqueous electrolyte batteries using a negative electrode (that is, a coated negative electrode) produced by applying and drying a slurry containing the above is disclosed. It is known that such a battery has a stable voltage with respect to a change in capacitance as compared with a battery using carbon for the negative electrode. For example, it is known that the charge / discharge curve of the LTO negative electrode exhibits extremely flat voltage behavior over a wide capacitance range.
  • the coated positive electrode contains a relatively large amount (for example, about 10% by weight) of components (binder and conductive auxiliary agent) that do not contribute to the capacity, the packing density of the lithium composite oxide as the positive electrode active material is low. Become. Therefore, there is much room for improvement in the powder dispersion type positive electrode in terms of capacity and charge / discharge efficiency. Therefore, attempts have been made to improve the capacity and charge / discharge efficiency by forming the positive electrode or the positive electrode active material layer with a lithium composite oxide sintered body plate. In this case, since the positive electrode or the positive electrode active material layer does not contain a binder or a conductive auxiliary agent, it is expected that a high capacity and good charge / discharge efficiency can be obtained by increasing the packing density of the lithium composite oxide.
  • Patent Document 2 Japanese Patent No. 5587052 describes a lithium secondary battery including a positive electrode current collector and a positive electrode active material layer bonded to the positive electrode current collector via a conductive bonding layer.
  • the positive electrode is disclosed.
  • the positive electrode active material layer is said to be made of a lithium composite oxide sintered body plate having a thickness of 30 ⁇ m or more, a porosity of 3 to 30%, and an open pore ratio of 70% or more.
  • Patent Document 3 International Publication No. 2017/146808
  • a plurality of primary particles composed of a lithium composite oxide such as lithium cobalt oxide (LiCoO 2 ) as a positive electrode of a lithium secondary battery provided with a solid electrolyte It is disclosed to use an oriented sintered plate in which a plurality of primary particles are oriented with an average orientation angle of more than 0 ° and not more than 30 ° with respect to the plate surface of the positive electrode plate.
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2015-185337 discloses a lithium secondary battery using a lithium titanate (Li 4 Ti 5 O 12) sintered body for the positive electrode or the negative electrode.
  • this lithium secondary battery is an all-solid-state battery having a solid electrolyte layer between the positive electrode and the negative electrode, and is not a secondary battery using a non-aqueous electrolyte solution.
  • the present inventors have recently established a predetermined positive electrode layer composed of a lithium composite oxide sintered body (for example, an LCO sintered body) and a predetermined positive electrode layer composed of a titanium-containing sintered body (for example, an LTO sintered body). It has been found that by adopting a configuration including a negative electrode layer, it is possible to provide a lithium secondary battery whose resistance value changes significantly depending on the state of charge (SOC).
  • a lithium composite oxide sintered body for example, an LCO sintered body
  • a predetermined positive electrode layer composed of a titanium-containing sintered body for example, an LTO sintered body
  • an object of the present invention is to provide a lithium secondary battery whose resistance value changes significantly depending on the state of charge (SOC) while using a lithium composite oxide positive electrode such as LCO and a titanium-containing oxide negative electrode such as LTO.
  • the purpose is to provide a lithium secondary battery that can be used.
  • It is a lithium secondary battery equipped with Lithium secondary batteries are provided, which have the property that the resistance value decreases as the state of charge (SOC) increases from 10% to 80%.
  • the process of preparing the charged lithium secondary battery and The step of measuring the resistance value of the charged lithium secondary battery and The resistance value is applied to the correlation between the resistance value and the charge state (SOC) of 10 to 80% previously measured for the same type of lithium secondary battery, and the charge state (SOC) corresponding to the resistance value is determined. And the process to do A method for measuring the state of charge of a lithium secondary battery, including the above, is provided.
  • FIG. 6 It is a schematic cross-sectional view of an example of the lithium secondary battery of this invention. It is an SEM image which shows an example of the cross section perpendicular to the layer plane of the oriented positive electrode layer. It is an EBSD image in the cross section of the oriented positive electrode layer shown in FIG. 6 is a histogram showing the distribution of the orientation angles of the primary particles in the EBSD image of FIG. 3 on an area basis. It is a graph which shows the relationship between the charge state (SOC) measured in Example B1 and a resistance value.
  • SOC charge state
  • FIG. 1 schematically shows an example of the lithium secondary battery of the present invention.
  • the lithium secondary battery 10 shown in FIG. 1 is in the form of a coin-type battery, but the present invention is not limited to this, and batteries of other forms may be used.
  • the lithium secondary battery 10 includes a positive electrode layer 12, a negative electrode layer 16, a separator 20, an electrolytic solution 22, and an exterior body 24.
  • the positive electrode layer 12 is made of a lithium composite oxide sintered body and has a thickness of 70 ⁇ m or more.
  • the negative electrode layer 16 is made of a titanium-containing sintered body and has a thickness of 70 ⁇ m or more.
  • the separator 20 is interposed between the positive electrode layer 12 and the negative electrode layer 16.
  • the lithium secondary battery 10 has a property that the resistance value (preferably continuously) decreases as the charged state (SOC) increases from 10% to 80%.
  • the predetermined positive electrode layer 12 composed of the lithium composite oxide sintered body (for example, LCO sintered body) and the predetermined negative electrode layer 16 composed of the titanium-containing sintered body (for example, LTO sintered body).
  • the lithium secondary battery 10 when a lithium secondary battery is used as a battery pack, the voltage of the battery is usually monitored in order to know the remaining capacity of the battery.
  • the lithium secondary battery 10 according to the present invention has a characteristic that the resistance value decreases as the charged state (SOC) increases from 10% to 80%, so that the above problem can be conveniently solved.
  • the mechanism by which the resistance value changes depending on the charging state is not clear, but it is considered as follows, taking LTO as a typical example of the constituent material of the negative electrode layer 16 as an example. That is, the reaction of LTO proceeds in the coexistence of two phases, a high resistance phase (Li 4 Ti 5 O 12 ) and a low resistance phase (Li 7 Ti 5 O 12) during charging and discharging.
  • the resistance increases in the charged state (that is, when the charged state is low) in which the proportion of the high resistance phase increases.
  • the thickness of the positive electrode layer 12 and the thickness of the negative electrode layer 16 are as thick as described above, the contribution ratio of other resistance components becomes sufficiently low, and it becomes possible to detect the change in the resistance of the battery according to the change in the resistance of the LTO.
  • the lithium secondary battery 10 measures the resistance value of the charged lithium secondary battery, and the measured resistance value is measured in advance for the same type of lithium secondary battery in the charged state (SOC).
  • the charging state can be preferably measured. That is, according to a preferred embodiment of the present invention, i) a step of preparing a charged lithium secondary battery, ii) a step of measuring the resistance value of the charged lithium secondary battery, and iii) determining the resistance value.
  • This includes a step of determining the charge state (SOC) corresponding to the resistance value by applying the correlation between the charge state (SOC) of 10 to 80% measured in advance for the same type of lithium secondary battery and the resistance value.
  • SOC charge state
  • the lithium secondary battery 10 has a large change in resistance value in the range of 10 to 80% of the charged state (SOC). Specifically, the lithium secondary battery 10 has 0.30 ⁇ R 50 / R when the resistance values at SOC 10%, 50%, and 80% of the lithium secondary battery are R 10 , R 50, and R 80, respectively. It is preferable to satisfy the relationship of 10 ⁇ 0.85, 0.30 ⁇ R 80 / R 50 ⁇ 0.85, and 0.20 ⁇ R 80 / R 10 ⁇ 0.70, and more preferably 0.35 ⁇ R.
  • the relationship of 50 / R 10 ⁇ 0.80, 0.35 ⁇ R 80 / R 50 ⁇ 0.80, and 0.25 ⁇ R 80 / R 10 ⁇ 0.65, more preferably 0.40 ⁇ R 50 /. satisfy the relationship of R 10 ⁇ 0.75,0.40 ⁇ R 80 / R 50 ⁇ 0.75 and 0.30 ⁇ R 80 / R 10 ⁇ 0.60,.
  • the resistance value decreases significantly as the SOC increases from 10% to 80%, so that the SOC can be measured more accurately based on the correlation with the resistance value.
  • the C / A which is the ratio of the capacity C of the positive electrode layer 12 to the capacity A of the negative electrode layer 16, is preferably 1.1 or more, more preferably 1.10 to 2.5, and further preferably 1.15 to 2. It is 0.0, particularly preferably 1.15 to 1.5.
  • the capacity A of the negative electrode layer 16 and the capacity C of the positive electrode layer 12 can be measured according to the procedure described in Examples described later. When the C / A is within the above range (combined with the thicknesses of the positive electrode layer 12 and the negative electrode layer 16 described above), the resistance change of the battery according to the resistance change of the titanium-containing sintered body such as LTO is more effectively performed. It becomes detectable.
  • Tc / Ta which is the ratio of the thickness Tc of the positive electrode layer 12 to the thickness Ta of the negative electrode layer 16, is preferably 0.50 to 2.00, more preferably 0.55. It is ⁇ 1.90, more preferably 0.60 to 1.80, particularly preferably 0.65 to 1.70, and most preferably 0.70 to 1.50.
  • the positive electrode layer 12 is made of a lithium composite oxide sintered body.
  • the fact that the positive electrode layer 12 is made of a sintered body means that the positive electrode layer 12 does not contain a binder or a conductive auxiliary agent. This is because even if the green sheet contains a binder, the binder disappears or burns out during firing. Since the positive electrode layer 12 does not contain a binder, there is an advantage that deterioration of the positive electrode due to the electrolytic solution 22 can be avoided.
  • the lithium composite oxide constituting the sintered body is particularly preferably lithium cobalt oxide (typically LiCoO 2 (hereinafter, may be abbreviated as LCO)).
  • LCO lithium cobalt oxide
  • Various lithium composite oxide sintered plates or LCO sintered plates are known, and are disclosed in, for example, Patent Document 2 (Patent No. 5587052) and Patent Document 3 (International Publication No. 2017/146808). You can refer to things.
  • the positive electrode layer 12, that is, the lithium composite oxide sintered body plate contains a plurality of primary particles composed of the lithium composite oxide, and the plurality of primary particles relate to the layer surface of the positive electrode layer.
  • FIG. 2 shows an example of a cross-sectional SEM image perpendicular to the layer surface of the oriented positive electrode layer 12, while FIG. 3 shows an electron backscatter diffraction (EBSD) image in a cross section perpendicular to the layer surface of the oriented positive electrode layer 12. .. Further, FIG.
  • EBSD electron backscatter diffraction
  • FIG. 4 shows a histogram showing the distribution of the orientation angles of the primary particles 11 in the EBSD image of FIG. 3 on an area basis.
  • the discontinuity of the crystal orientation can be observed.
  • the orientation angle of each primary particle 11 is shown by the shade of color, and the darker the color, the smaller the orientation angle.
  • the orientation angle is an inclination angle formed by the (003) plane of each primary particle 11 with respect to the layer plane direction.
  • the portions shown in black inside the oriented positive electrode layer 12 are pores.
  • the oriented positive electrode layer 12 is an oriented sintered body composed of a plurality of primary particles 11 bonded to each other.
  • Each primary particle 11 is mainly plate-shaped, but may include those formed in a rectangular parallelepiped shape, a cube shape, a spherical shape, or the like.
  • the cross-sectional shape of each primary particle 11 is not particularly limited, and may be a rectangle, a polygon other than a rectangle, a circle, an ellipse, or a complicated shape other than these.
  • Each primary particle 11 is composed of a lithium composite oxide.
  • the lithium composite oxide is Li x MO 2 (0.05 ⁇ x ⁇ 1.10, M is at least one transition metal, and M is typically one or more of Co, Ni and Mn. Is an oxide represented by).
  • Lithium composite oxide has a layered rock salt structure.
  • the layered rock salt structure is a crystal structure in which a lithium layer and a transition metal layer other than lithium are alternately laminated with an oxygen layer sandwiched between them, that is, a transition metal ion layer and a lithium single layer are alternately laminated via oxide ions.
  • lithium composite oxides are Li x CoO 2 (lithium cobaltate), Li x NiO 2 (lithium nickelate), Li x MnO 2 (lithium manganate), Li x NimnO 2 (lithium nickel manganate).
  • Li x NiCoO 2 lithium nickel cobaltate
  • Li x CoNiMnO 2 lithium cobalt nickel manganate
  • Li x ComnO 2 lithium cobalt manganate
  • Li x CoO 2 is particularly preferable.
  • Lithium cobaltate typically LiCoO 2 .
  • Lithium composite oxides include Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, Ba. , Bi, and W may contain one or more elements selected from.
  • the average value of the orientation angles of each primary particle 11, that is, the average orientation angle is more than 0 ° and 30 ° or less.
  • the oriented positive electrode layer 12 is dominated by expansion and contraction in the thickness direction rather than the layer surface direction, so that the expansion and contraction of the oriented positive electrode layer 12 becomes smooth. This is because the inflow and outflow of lithium ions becomes smooth.
  • the ceramic separator 20, and the negative electrode layer 16 form one integrally sintered plate as a whole, which is a preferred embodiment described later, the expansion and contraction of the oriented positive electrode layer 12 due to the inflow and outflow of lithium ions is a layer surface. Since it becomes dominant in the direction perpendicular to the above, stress at the bonding interface between the oriented positive electrode layer 12 and the ceramic separator 20 is less likely to occur, and it becomes easier to maintain a good bond at the interface.
  • the average orientation angle of the primary particles 11 can be obtained by the following method. First, in an EBSD image in which a rectangular region of 95 ⁇ m ⁇ 125 ⁇ m is observed at a magnification of 1000 as shown in FIG. 3, three horizontal lines that divide the oriented positive electrode layer 12 into four equal parts in the thickness direction and an oriented positive electrode layer 12 Draw three vertical lines that divide the Next, the average orientation angle of the primary particles 11 is obtained by arithmetically averaging the orientation angles of all the primary particles 11 that intersect at least one of the three horizontal lines and the three vertical lines.
  • the average orientation angle of the primary particles 11 is preferably 30 ° or less, more preferably 25 ° or less, from the viewpoint of further improving the rate characteristics.
  • the average orientation angle of the primary particles 11 is preferably 2 ° or more, more preferably 5 ° or more, from the viewpoint of further improving the rate characteristics.
  • the orientation angle of each primary particle 11 may be widely distributed from 0 ° to 90 °, but most of them are distributed in a region of more than 0 ° and 30 ° or less. Is preferable. That is, when the cross section of the oriented sintered body constituting the oriented positive electrode layer 12 is analyzed by EBSD, the orientation angle of the oriented positive electrode layer 12 with respect to the layer surface of the primary particles 11 included in the analyzed cross section exceeds 0 °.
  • the total area of the primary particles 11 (hereinafter referred to as low-angle primary particles) having a temperature of 30 ° or less is that of the primary particles 11 (specifically, 30 primary particles 11 used for calculating the average orientation angle) included in the cross section.
  • the proportion of the primary particles 11 having high mutual adhesion can be increased, so that the rate characteristics can be further improved.
  • the total area of the low-angle primary particles having an orientation angle of 20 ° or less is 50% or more of the total area of the 30 primary particles 11 used for calculating the average orientation angle. ..
  • the total area of the low-angle primary particles having an orientation angle of 10 ° or less is 15% or more with respect to the total area of the 30 primary particles 11 used for calculating the average orientation angle. ..
  • each primary particle 11 is mainly plate-shaped, as shown in FIGS. 2 and 3, the cross section of each primary particle 11 extends in a predetermined direction, and typically has a substantially rectangular shape. That is, when the cross section of the oriented sintered body is analyzed by EBSD, the total area of the primary particles 11 having an aspect ratio of 4 or more among the primary particles 11 included in the analyzed cross section is included in the cross section. It is preferably 70% or more, more preferably 80% or more, based on the total area of the particles 11 (specifically, the 30 primary particles 11 used for calculating the average orientation angle). Specifically, in the EBSD image as shown in FIG. 3, the mutual adhesion between the primary particles 11 can be further improved, and as a result, the rate characteristics can be further improved.
  • the aspect ratio of the primary particle 11 is a value obtained by dividing the maximum ferret diameter of the primary particle 11 by the minimum ferret diameter.
  • the maximum ferret diameter is the maximum distance between the straight lines when the primary particles 11 are sandwiched between two parallel straight lines on the EBSD image when the cross section is observed.
  • the minimum ferret diameter is the minimum distance between the straight lines when the primary particles 11 are sandwiched between two parallel straight lines on the EBSD image.
  • the average particle size of the plurality of primary particles constituting the oriented sintered body is preferably 5 ⁇ m or more.
  • the average particle size of the 30 primary particles 11 used for calculating the average orientation angle is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, still more preferably 12 ⁇ m or more.
  • the average particle size of the primary particles 11 is a value obtained by arithmetically averaging the equivalent circle diameters of the primary particles 11.
  • the equivalent circle diameter is the diameter of a circle having the same area as each primary particle 11 on the EBSD image.
  • the positive electrode layer 12 preferably contains pores.
  • the inclusion of pores, especially open pores, in the sintered body allows the electrolyte to penetrate into the sintered body when incorporated into the battery as a positive electrode plate, resulting in improved lithium ion conductivity. be able to. This is because there are two types of conduction of lithium ions in the sintered body: conduction through the constituent particles of the sintered body and conduction through the electrolytic solution in the pores, but conduction through the electrolytic solution in the pores is better. This is because it is overwhelmingly fast.
  • the positive electrode layer 12, that is, the lithium composite oxide sintered body preferably has a porosity of 20 to 60%, more preferably 25 to 55%, still more preferably 30 to 50%, and particularly preferably 30 to 45%. is there.
  • the stress release effect due to the pores and the increase in capacity can be expected, and the mutual adhesion between the primary particles 11 can be further improved, so that the rate characteristics can be further improved.
  • the porosity of the sintered body is calculated by polishing the cross section of the positive electrode layer by CP (cross section polisher) polishing, observing the SEM at a magnification of 1000, and binarizing the obtained SEM image.
  • the average circle-equivalent diameter of each pore formed inside the oriented sintered body is not particularly limited, but is preferably 8 ⁇ m or less.
  • the average circle-equivalent diameter of the pores is a value obtained by arithmetically averaging the circle-equivalent diameters of 10 pores on the EBSD image.
  • the equivalent circle diameter is the diameter of a circle having the same area as each pore on the EBSD image.
  • Each pore formed inside the oriented sintered body is preferably an open pore connected to the outside of the positive electrode layer 12.
  • the average pore diameter of the positive electrode layer 12, that is, the lithium composite oxide sintered body is preferably 0.1 to 10.0 ⁇ m, more preferably 0.2 to 5.0 ⁇ m, and further preferably 0.25 to 3. It is 0 ⁇ m. Within the above range, the occurrence of local stress concentration in large pores is suppressed, and the stress in the sintered body is easily released uniformly.
  • the thickness of the positive electrode layer 12 is 70 ⁇ m or more, preferably 70 to 800 ⁇ m, more preferably 70 to 600 ⁇ m, still more preferably 80 to 500 ⁇ m, and particularly preferably 90 to 450 ⁇ m.
  • the active material capacity per unit area is increased to improve the energy density of the lithium secondary battery 10, and the deterioration of battery characteristics (particularly the increase in resistance value) due to repeated charging and discharging is caused. Can be suppressed.
  • the negative electrode layer 16 is made of a titanium-containing sintered body.
  • the titanium-containing sintered body preferably contains lithium titanate Li 4 Ti 5 O 12 (hereinafter, LTO) or niobium-titanium composite oxide Nb 2 TiO 7 , and more preferably contains LTO.
  • LTO lithium titanate Li 4 Ti 5 O 12
  • Nb 2 TiO 7 niobium-titanium composite oxide
  • LTO is typically known to have a spinel-type structure
  • other structures may be adopted during charging / discharging.
  • LTO reacts in a two-phase coexistence of Li 4 Ti 5 O 12 (spinel structure) and Li 7 Ti 5 O 12 (rock salt structure) during charging and discharging. Therefore, LTO is not limited to the spinel structure.
  • the negative electrode layer 16 is made of a sintered body means that the negative electrode layer 16 does not contain a binder or a conductive auxiliary agent. This is because even if the green sheet contains a binder, the binder disappears or burns out during firing. Since the negative electrode layer does not contain a binder, a high capacity and good charge / discharge efficiency can be obtained by increasing the packing density of the negative electrode active material (for example, LTO or Nb 2 TiO 7).
  • the LTO sintered body can be produced according to the method described in Patent Document 4 (Japanese Unexamined Patent Publication No. 2015-185337).
  • the negative electrode layer 16, that is, the titanium-containing sintered body has a structure in which a plurality of (that is, a large number of) primary particles are bonded. Therefore, it is preferable that these primary particles are composed of LTO or Nb 2 TiO 7. Further, in the present invention, a material having high insulation in the charged state and high conductivity in the discharged state is preferable. In other words, it is preferable that the valence of Ti is close to tetravalent in the charged state and trivalent in the discharged state. Examples of other materials include TiO 2 .
  • the thickness of the negative electrode layer 16 is 70 ⁇ m or more, preferably 70 to 800 ⁇ m, more preferably 70 to 700 ⁇ m, still more preferably 80 to 600 ⁇ m, and particularly preferably 90 to 550 ⁇ m.
  • the thickness of the negative electrode layer 16 can be obtained, for example, by measuring the distance between the layer surfaces observed substantially in parallel when the cross section of the negative electrode layer 16 is observed by an SEM (scanning electron microscope).
  • the primary particle size which is the average particle size of the plurality of primary particles constituting the negative electrode layer 16, is preferably 1.2 ⁇ m or less, more preferably 0.02 to 1.2 ⁇ m, and further preferably 0.05 to 0.7 ⁇ m. .. Within such a range, both lithium ion conductivity and electron conductivity are likely to be compatible, which contributes to the improvement of rate performance.
  • the negative electrode layer 16 preferably contains pores.
  • the inclusion of pores, especially open pores, in the sintered body allows the electrolyte to penetrate into the sintered body when incorporated into the battery as the negative electrode layer, resulting in improved lithium ion conductivity. be able to. This is because there are two types of conduction of lithium ions in the sintered body: conduction through the constituent particles of the sintered body and conduction through the electrolytic solution in the pores, but conduction through the electrolytic solution in the pores is better. This is because it is overwhelmingly fast.
  • the porosity of the negative electrode layer 16 is preferably 20 to 60%, more preferably 30 to 55%, and even more preferably 35 to 50%. Within such a range, both lithium ion conductivity and electron conductivity are likely to be compatible, which contributes to the improvement of rate performance.
  • the average pore diameter of the negative electrode layer 16 is 0.08 to 5.0 ⁇ m, preferably 0.1 to 3.0 ⁇ m, and more preferably 0.12 to 1.5 ⁇ m. Within such a range, both lithium ion conductivity and electron conductivity are likely to be compatible, which contributes to the improvement of rate performance.
  • the separator 20 is preferably a separator made of cellulose, polyolefin, polyimide, polyester (for example, polyethylene terephthalate (PET)) or ceramic.
  • Cellulose separators are advantageous in that they are inexpensive and have excellent heat resistance.
  • polyimide, polyester (for example, polyethylene terephthalate (PET)) or cellulose separators are not only excellent in heat resistance of themselves, unlike the widely used polyolefin separators having poor heat resistance. It also has excellent wettability to ⁇ -butyrolactone (GBL), which is an electrolyte component having excellent heat resistance. Therefore, when an electrolytic solution containing GBL is used, the electrolytic solution can be sufficiently permeated into the separator (without repelling).
  • GBL ⁇ -butyrolactone
  • the ceramic separator has an advantage that it can be manufactured as one integrally sintered body together with the positive electrode layer 12 and the negative electrode layer 16 as a whole, as well as being excellent in heat resistance.
  • the ceramic constituting the separator is preferably at least one selected from MgO, Al 2 O 3 , ZrO 2 , SiC, Si 3 N 4 , Al N, and cordierite, and more preferably. At least one selected from MgO, Al 2 O 3 , and ZrO 2.
  • the ceramic separator 20 is a microporous ceramic film.
  • the ceramic separator 20 is not only excellent in heat resistance, but also has an advantage that it can be manufactured together with the positive electrode layer 12 and the negative electrode layer 16 as one integrally sintered plate as a whole.
  • the thickness of the ceramic separator 20 is preferably 3 to 40 ⁇ m, more preferably 5 to 35 ⁇ m, and even more preferably 10 to 30 ⁇ m.
  • the porosity of the ceramic separator 20 is preferably 30 to 85%, more preferably 40 to 80%.
  • the ceramic separator 20 may contain a glass component from the viewpoint of improving the adhesiveness with the positive electrode layer 12 and the negative electrode layer 16.
  • the content ratio of the glass component in the ceramic separator 20 is preferably 0.1 to 50% by weight, more preferably 0.5 to 40% by weight, still more preferably 0.5, based on the total weight of the ceramic separator 20. ⁇ 30% by weight.
  • the addition of the glass component to the ceramic separator 20 is preferably performed by adding a glass frit to the raw material powder of the ceramic separator. However, if the desired adhesiveness between the ceramic separator 20 and the positive electrode layer 12 and the negative electrode layer 16 can be ensured, the inclusion of the glass component in the ceramic separator 20 is not particularly required.
  • the separator 20 is a ceramic separator, and the positive electrode layer 12, the ceramic separator 20, and the negative electrode layer 16 form one integrally sintered plate as a whole, whereby the positive electrode layer 12, the positive electrode layer 12, and the negative electrode layer 12 are formed.
  • the ceramic separator 20 and the negative electrode layer 16 are bonded to each other. That is, it is preferable that the three layers of the positive electrode layer 12, the ceramic separator 20 and the negative electrode layer 16 are bonded to each other without relying on other bonding methods such as an adhesive.
  • each layer is in a state of being sintered by firing a layered green sheet. Therefore, if the green sheet having a three-layer structure before firing is punched into a predetermined shape (for example, a coin shape or a chip shape) with a punching die, the positive electrode layer 12 and the negative electrode layer 16 are formed in the final form of the integrally sintered plate. There will be no gap between them.
  • a predetermined shape for example, a coin shape or a chip shape
  • the capacity can be maximized.
  • the integrally sintered plate is suitable for processing such as laser processing, cutting, and polishing, so that the end face may be finished so as to minimize or eliminate such deviation.
  • the ceramic separator 20 and the negative electrode layer 16 are bonded to each other as long as it is an integrally sintered plate, a shift between the positive electrode layer 12 and the negative electrode layer 16 may occur after the fact. Absent.
  • the area deviation ratio of the positive electrode layer 12 and the negative electrode layer 16 is preferably less than 1%, more preferably less than 0.5%, and further preferably 0%.
  • Area displacement ratio of the positive electrode layer 12 and negative electrode layer 16, S pn the area of the region positive electrode layer 12 and negative electrode layer 16 overlap, the area of the region where the positive electrode layer 12 protruding from the negative electrode layer 16 S p, the negative electrode layer 16 There when the region protruding from the positive electrode layer 12 and the area S n, is defined as [(S p + S n) / S pn] value calculated based on the formula of ⁇ 100 (%).
  • the ratio of the discharge capacity to the theoretical capacity of the lithium secondary battery 10 is preferably 99% or more, more preferably 99.5% or more, still more preferably 100%.
  • the electrolytic solution 22 is not particularly limited, and is an organic solvent (for example, a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC), a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC), or an ethylene carbonate (EC).
  • organic solvent for example, a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC), a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC), or an ethylene carbonate (EC).
  • a commercially available electrolytic solution for a lithium battery such as a solution in which a lithium salt (for example, LiPF 6 ) salt is dissolved in a non-aqueous solvent (a mixed solvent of ethyl methyl carbonate (EMC)), may be used.
  • a lithium salt for example, LiPF 6
  • EMC ethyl methyl carbonate
  • the electrolytic solution 22 preferably contains lithium borofluoride (LiBF 4) in a non-aqueous solvent.
  • the preferred non-aqueous solvent is at least one selected from the group consisting of ⁇ -butyrolactone (GBL), ethylene carbonate (EC) and propylene carbonate (PC), and more preferably a mixed solvent composed of EC and GBL.
  • GBL ⁇ -butyrolactone
  • EC ethylene carbonate
  • PC propylene carbonate
  • the non-aqueous solvent contains ⁇ -butyrolactone (GBL) to raise the boiling point, resulting in a significant improvement in heat resistance.
  • GBL ⁇ -butyrolactone
  • the volume ratio of EC: GBL in the EC and / or GBL-containing non-aqueous solvent is preferably 0: 1 to 1: 1 (GBL ratio 50 to 100% by volume), more preferably 0: 1 to 0: 1. 1: 1.5 (GBL ratio 60 to 100% by volume), more preferably 0: 1 to 1: 2 (GBL ratio 66.6 to 100% by volume), particularly preferably 0: 1 to 1: 3 (GBL ratio). 75 to 100% by volume).
  • Lithium borofluoride (LiBF 4 ) dissolved in a non-aqueous solvent is an electrolyte having a high decomposition temperature, which also brings about a significant improvement in heat resistance.
  • the concentration of LiBF 4 in the electrolytic solution 22 is preferably 0.5 to 2 mol / L, more preferably 0.6 to 1.9 mol / L, still more preferably 0.7 to 1.7 mol / L, and particularly preferably 0.7 to 1.7 mol / L. It is 0.8 to 1.5 mol / L.
  • the electrolytic solution 22 may further contain vinylene carbonate (VC) and / or fluoroethylene carbonate (FEC) and / or vinylethylene carbonate (VEC) as additives. Both VC and FEC have excellent heat resistance. Therefore, when the electrolytic solution 22 contains such an additive, an SEI film having excellent heat resistance can be formed on the surface of the negative electrode layer 16.
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • VEC vinylethylene carbonate
  • a solid electrolyte or a polymer electrolyte may be used instead of the electrolytic solution 22 (in other words, a solid electrolyte or a polymer electrolyte can be used as the electrolyte in addition to the electrolytic solution 22).
  • a solid electrolyte or a polymer electrolyte can be used as the electrolyte in addition to the electrolytic solution 22.
  • the impregnation method is not particularly limited, and examples thereof include a method of melting the electrolyte and infiltrating it into the pores of the separator 20, a method of pressing the green compact of the electrolyte against the separator 20, and the like.
  • the exterior body 24 has a closed space, in which the positive electrode layer 12, the negative electrode layer 16, the separator 20, and the electrolytic solution 22 are housed.
  • the exterior body 24 may be appropriately selected according to the type of the lithium secondary battery 10.
  • the exterior body 24 typically includes a positive electrode can 24a, a negative electrode can 24b, and a gasket 24c, and the positive electrode can 24a and the negative electrode can.
  • the can 24b is crimped via the gasket 24c to form a closed space.
  • the positive electrode can 24a and the negative electrode can 24b can be made of a metal such as stainless steel, and are not particularly limited.
  • the gasket 24c can be an annular member made of an insulating resin such as polypropylene, polytetrafluoroethylene, or PFA resin, and is not particularly limited.
  • the exterior body is a resin base material
  • the battery elements that is, the positive electrode layer 12, the negative electrode layer 16, the separator 20 and the electrolytic solution 22
  • the battery elements are resin groups. It is preferably buried in the material.
  • the battery elements may be sandwiched between a pair of resin films, and it is preferable that the resin films are bonded to each other with an adhesive or the resin films are heat-sealed by a heating press.
  • the lithium secondary battery 10 preferably further includes a positive electrode current collector 14 and / or a negative electrode current collector 18.
  • the positive electrode current collector 14 and the negative electrode current collector 18 are not particularly limited, but are preferably metal foils such as copper foil and aluminum foil.
  • the positive electrode current collector 14 is preferably arranged between the positive electrode layer 12 and the exterior body 24 (for example, the positive electrode can 24a), and the negative electrode current collector 18 is the negative electrode layer 16 and the exterior body 24 (for example, the negative electrode can 24b). It is preferable to be arranged between. Further, it is preferable that the positive electrode side carbon layer 13 is provided between the positive electrode layer 12 and the positive electrode current collector 14 from the viewpoint of reducing contact resistance.
  • both the positive electrode side carbon layer 13 and the negative electrode side carbon layer 17 are preferably composed of conductive carbon, and may be formed by, for example, applying a conductive carbon paste by screen printing or the like.
  • the integrally sintered plate having a three-layer structure of the positive electrode layer 12, the ceramic separator 20 and the negative electrode layer 16 may be produced by any method, but is preferably (1). It is manufactured by producing green sheets corresponding to each of the three layers, and (2) laminating these green sheets and performing pressure bonding and firing.
  • a lithium composite oxide-containing green sheet as a positive electrode green sheet can be prepared as follows. First, a raw material powder composed of a lithium composite oxide is prepared. The powder preferably contains synthetic plate particles (eg, LiCoO 2 plate particles) having a composition of LiMO 2 (M is as described above). The volume-based D50 particle size of the raw material powder is preferably 0.3 to 30 ⁇ m.
  • the method for producing LiCoO 2- plate particles can be carried out as follows. First, the LiCoO 2 powder is synthesized by mixing the Co 3 O 4 raw material powder and the Li 2 CO 3 raw material powder and firing them (500 to 900 ° C. for 1 to 20 hours).
  • LiCoO 2 particles capable of conducting lithium ions parallel to the plate surface can be obtained.
  • Such LiCoO 2 particles are plate-shaped, such as a method of growing a green sheet using LiCoO 2 powder slurry and then crushing it, a flux method, hydrothermal synthesis, single crystal growth using a melt, and a sol-gel method. It can also be obtained by a method of synthesizing crystals.
  • the obtained LiCoO 2 particles are in a state of being easily cleaved along the cleavage plane. By cleaving the LiCoO 2 particles by crushing, LiCoO 2 plate-like particles can be produced.
  • the plate-shaped particles may be used alone as a raw material powder, or a mixed powder of the plate-shaped powder and another raw material powder (for example, Co 3 O 4 particles) may be used as the raw material powder.
  • the plate-like powder functions as template particles for imparting orientation, and other raw material powders (for example, Co 3 O 4 particles) function as matrix particles that can grow along the template particles.
  • the volume-based D50 particle size of the Co 3 O 4 raw material powder is not particularly limited and can be, for example, 0.1 to 1.0 ⁇ m, but the LiCo O 2 template particles. It is preferable that the particle size is smaller than the volume standard D50 particle size of.
  • the matrix particles can also be obtained by heat-treating the Co (OH) 2 raw material at 500 ° C. to 800 ° C. for 1 to 10 hours. Further, as the matrix particles, in addition to Co 3 O 4 , Co (OH) 2 particles may be used, or LiCo O 2 particles may be used.
  • the raw material powder is composed of 100% LiCoO 2 template particles, or when LiCoO 2 particles are used as matrix particles, a large format (for example, 90 mm ⁇ 90 mm square) and flat LiCoO 2 sintered body layer is obtained by firing. Can be done. Although the mechanism is not clear, it is expected that volume change during firing is unlikely to occur or local unevenness is unlikely to occur because synthesis to LiCoO 2 is not performed during the firing process.
  • the raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
  • a lithium compound other than LiMO 2 for example, lithium carbonate
  • the obtained slurry is molded into a sheet to obtain a lithium composite oxide-containing green sheet.
  • Sheet molding is preferably performed using a molding method capable of applying a shearing force to plate-shaped particles (for example, template particles) in the raw material powder.
  • the average inclination angle of the primary particles can be set to more than 0 ° and 30 ° or less with respect to the sheet surface.
  • the doctor blade method is suitable as a molding method capable of applying a shearing force to the plate-shaped particles.
  • the thickness of the lithium composite oxide-containing green sheet may be appropriately set so as to be the desired thickness as described above after firing.
  • the titanium-containing green sheet as the negative electrode green sheet may be produced by any method.
  • the LTO-containing green sheet can be prepared as follows. First, a raw material powder (LTO powder) composed of lithium titanate Li 4 Ti 5 O 12 is prepared. As the raw material powder, a commercially available LTO powder may be used, or may be newly synthesized. For example, a powder obtained by hydrolyzing a mixture of titanium tetraisopropoxyalcohol and isopropoxylithium may be used, or a mixture containing lithium carbonate, titania and the like may be calcined.
  • the volume-based D50 particle size of the raw material powder is preferably 0.05 to 5.0 ⁇ m, more preferably 0.1 to 2.0 ⁇ m.
  • pulverization treatment for example, pot mill pulverization, bead mill pulverization, jet mill pulverization, etc.
  • the raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry.
  • a lithium compound other than LiMO 2 may be excessively added to the slurry in an amount of about 0.5 to 30 mol% for the purpose of promoting grain growth or compensating for volatile matter during the firing step described later. It is desirable that no pore-forming material is added to the slurry. It is preferable that the slurry is stirred under reduced pressure to defoam and the viscosity is adjusted to 4000 to 10000 cP. The obtained slurry is formed into a sheet to obtain an LTO-containing green sheet. Sheet molding can be performed by various well-known methods, but it is preferably performed by the doctor blade method. The thickness of the LTO-containing green sheet may be appropriately set so as to be the desired thickness as described above after firing.
  • the separator green sheet can be prepared as follows. First, at least one ceramic powder selected from MgO, Al 2 O 3 , ZrO 2 , SiC, Si 3 N 4, Al N, and cordierite is prepared. Glass frit may be added to this ceramic powder.
  • the volume-based D50 particle size of the raw material powder is preferably 0.05 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m. When the particle size of the raw material powder is large, the pores tend to be large. Further, when the raw material particle size is large, pulverization treatment (for example, pot mill pulverization, bead mill pulverization, jet mill pulverization, etc.) may be performed so as to have a desired particle size.
  • the raw material powder is mixed with a dispersion medium and various additives (binder, plasticizer, dispersant, etc.) to form a slurry. It is desirable that no pore-forming material is added to the slurry. It is preferable that the slurry is stirred under reduced pressure to defoam and the viscosity is adjusted to 4000 to 10000 cP.
  • the obtained slurry is formed into a sheet to obtain a separator green sheet.
  • Sheet molding can be performed by various well-known methods, but it is preferably performed by the doctor blade method.
  • the thickness of the separator green sheet may be appropriately set so as to have a desired thickness as described above after firing.
  • the pressing may be performed by a known method and is not particularly limited, but is preferably performed by a CIP (cold isotropic pressure pressurization method).
  • a preferable press pressure is 10 to 5000 kgf / cm 2 , and more preferably 50 to 3000 kgf / cm 2 . It is preferable to punch the green sheet laminate thus crimped into a desired shape (for example, coin shape or chip shape) or size with a punching die.
  • the setter is made of ceramics, preferably zirconia or magnesia.
  • the setter is preferably embossed.
  • the green sheet placed on the setter in this way is put into the sheath.
  • the sheath is also made of ceramics, preferably alumina.
  • Degreasing is preferably carried out by holding at 300 to 600 ° C. for 0.5 to 20 hours.
  • the firing is preferably carried out at 650 to 900 ° C. for 0.01 to 20 hours, more preferably at 700 to 850 ° C. for 0.5 to 10 hours.
  • the rate of temperature rise during firing is preferably 50 to 1500 ° C./h, more preferably 200 to 1300 ° C./h.
  • this heating rate is preferably adopted in the heating process of 600 to 900 ° C., and more preferably adopted in the heating process of 600 to 800 ° C.
  • an integrally sintered plate having a three-layer structure of a positive electrode layer 12, a ceramic separator 20, and a negative electrode layer 16 can be obtained. If the punching process is not performed at the stage of the green sheet laminated body described above, a shift between the positive electrode layer 12 and the negative electrode layer 16 may occur in the integrally sintered body plate in the final form.
  • the end face of the integrally sintered plate by a method such as laser processing, cutting, or polishing to minimize or eliminate the above deviation.
  • a method such as laser processing, cutting, or polishing to minimize or eliminate the above deviation.
  • LiCoO 2 will be abbreviated as “LCO” and Li 4 Ti 5 O 12 will be abbreviated as “LTO”.
  • Example A1 (reference) (1) Preparation of LCO green sheet (positive electrode green sheet) First, Co 3 O 4 powder (manufactured by Shodo Chemical Industry Co., Ltd.) and Li 2 CO weighed so that the molar ratio of Li / Co is 1.01. After mixing the three powders (manufactured by Honjo Chemical Co., Ltd.), the powder was held at 780 ° C. for 5 hours, and the obtained powder was pulverized with a pot mill so that the volume reference D50 was 0.4 ⁇ m to form a powder consisting of LCO plate-like particles.
  • the resulting mixture was stirred under reduced pressure to defoam and the viscosity was adjusted to 4000 cP to prepare an LCO slurry.
  • the viscosity was measured with a Brookfield LVT viscometer.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LCO green sheet.
  • the thickness of the LCO green sheet was set so that the thickness after firing was 60 ⁇ m.
  • binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • plasticizer DOP: Di (2-ethylhexyl) phosphorate, manufactured by Kurogane Kasei Co.,
  • the obtained negative electrode raw material mixture was stirred under reduced pressure to defoam, and the viscosity was adjusted to 4000 cP to prepare an LTO slurry.
  • the viscosity was measured with a Brookfield LVT viscometer.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LTO green sheet.
  • the thickness of the LTO green sheet was set so that the thickness after firing was 70 ⁇ m.
  • MgO Green Sheet (Separator Green Sheet) Magnesium carbonate powder (manufactured by Konoshima Chemical Co., Ltd.) was heat-treated at 900 ° C. for 5 hours to obtain MgO powder. The obtained MgO powder and glass frit (manufactured by Nippon Frit Co., Ltd., CK0199) were mixed at a weight ratio of 4: 1.
  • the obtained raw material mixture was stirred under reduced pressure to defoam, and the viscosity was adjusted to 4000 cP to prepare a slurry.
  • the viscosity was measured with a Brookfield LVT viscometer.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form a separator green sheet.
  • the thickness of the separator green sheet was set so that the thickness after firing was 25 ⁇ m.
  • LCO green sheet positive electrode green sheet
  • MgO green sheet separatator green sheet
  • LTO green sheet negative electrode green sheet
  • the obtained laminate is 200 kgf / cm by CIP (cold isotropic pressure pressurization method). Pressed in step 2 to crimp the green sheets to each other.
  • the laminated body crimped in this way was punched into a disk shape having a diameter of 10 mm with a punching die.
  • the obtained disc-shaped laminate was degreased at 600 ° C. for 5 hours, then fired at 1000 ° C./h to 800 ° C. and held for 10 minutes, and then cooled.
  • one integrally sintered plate including three layers of a positive electrode layer (LCO sintered body layer), a ceramic separator (MgO separator) and a negative electrode layer (LTO sintered body layer) was obtained.
  • LiBF 4 was dissolved in an organic solvent in which ethylene carbonate (EC) and ⁇ -butyrolactone (GBL) were mixed at a volume ratio of 1: 3 so as to have a concentration of 1.5 mol / L.
  • EC ethylene carbonate
  • GBL ⁇ -butyrolactone
  • ⁇ Average orientation angle of primary particles> The LCO sintered body layer was polished with a cross section polisher (CP) (IB-15000CP, manufactured by JEOL Ltd.), and the obtained positive electrode layer cross section (cross section perpendicular to the layer surface of the positive electrode layer) was 1000 times as wide as the field view (125 ⁇ m). EBSD was measured at ⁇ 125 ⁇ m) to obtain an EBSD image. This EBSD measurement was performed using a Schottky field emission scanning electron microscope (manufactured by JEOL Ltd., model JSM-7800F).
  • the angle formed by the (003) plane of the primary particles and the layer plane of the positive electrode layer (that is, the inclination of the crystal orientation from (003)) is obtained as the tilt angle, and the angles thereof are obtained.
  • the average value of the angles was taken as the average orientation angle of the primary particles.
  • ⁇ Layer thickness> The LCO and LTO sintered body layers and the MgO separator are polished by a cross section polisher (CP) (IB-15000CP, manufactured by JEOL Ltd.), and the obtained cross section is observed by SEM (JSM6390LA, manufactured by JEOL Ltd.) to obtain a positive electrode layer. , The thickness of each of the negative electrode layer and the separator was measured.
  • CP cross section polisher
  • ⁇ Porosity> The LCO or LTO sintered body layer and the MgO separator were polished with a cross section polisher (CP) (IB-15000CP, manufactured by JEOL Ltd.), and the cross section of the obtained positive electrode layer or negative electrode layer was viewed at a magnification of 1000 times (125 ⁇ m ⁇ ). SEM observation (manufactured by JEOL Ltd., JSM6390LA) was performed at 125 ⁇ m). The obtained SEM image was image-analyzed, the area of all pores was divided by the area of the positive electrode or the negative electrode, and the obtained value was multiplied by 100 to calculate the porosity (%).
  • CP cross section polisher
  • ⁇ Average pore size> The average pore diameter of the LCO or LTO sintered body layer was measured by the mercury intrusion method using a mercury porosimeter (manufactured by Shimadzu Corporation, Autopore IV9510).
  • the measurement and calculation of the S pn, S p and S n are, 3D shape measuring machine (manufactured by Keyence Corporation, VR3000) was carried out by measuring the shape of the sample both sides with.
  • the discharge capacity of the battery was measured by the following procedure. That is, the initial capacity was measured by charging at a constant voltage of 2.7 V and then discharging at a discharge rate of 0.2 C, and the obtained initial capacity was adopted as the discharge capacity. Then, the discharge capacity was divided by the theoretical capacity and multiplied by 100 to obtain the discharge capacity / theoretical capacity ratio (%).
  • the theoretical capacity of the battery was calculated by the following procedure. First, the area of each layer of the integrally sintered plate is calculated by shape measurement, and the thickness and porosity of each layer of the integrally sintered plate are calculated from the cross-sectional SEM, and the positive electrode layer and the negative electrode layer are calculated from the obtained values. The effective volume was calculated. The true specific densities of the constituent materials of the positive electrode layer and the negative electrode layer were calculated based on JIS standard R1634, and the weight values of the positive electrode layer and the negative electrode layer were calculated. By multiplying the weight of the active material thus obtained by the capacity per weight of the material (described in the battery manual), the theoretical capacity values of the positive electrode layer and the negative electrode layer are calculated, and the lower value is the lower value of the battery. It was adopted as the theoretical capacity value.
  • the pulse cycle capacity retention rate (constant voltage charge cycle performance) of the battery was measured by the following procedure. First, the initial capacitance was measured by charging at a constant voltage of 2.7 V and then discharging at a discharge rate of 0.2 C. Next, a total of 100 charge / discharge cycles including constant voltage charging at 2.7 V and discharging of 20 mA for 0.5 seconds were performed 100 times. Finally, the post-cycle capacitance was measured by charging at a constant voltage of 2.7 V and then discharging at 0.2 C. The measured post-cycle capacitance was divided by the initial capacitance and multiplied by 100 to give the pulse cycle capacitance retention rate (%).
  • Example A2 Similar to Example A1 except that 1) the LCO green sheet was thickened so that the thickness of the positive electrode layer was 100 ⁇ m, and 2) the LTO green sheet was thickened so that the thickness of the negative electrode layer was 120 ⁇ m. , An integrally sintered plate and a battery were prepared, and various evaluations were performed.
  • Example A3 Similar to Example A1 except that 1) the LCO green sheet was thickened so that the thickness of the positive electrode layer was 200 ⁇ m, and 2) the LTO green sheet was thickened so that the thickness of the negative electrode layer was 240 ⁇ m. , An integrally sintered plate and a battery were prepared, and various evaluations were performed.
  • Example A4 Similar to Example A1 except that 1) the LCO green sheet was thickened so that the thickness of the positive electrode layer was 400 ⁇ m, and 2) the LTO green sheet was thickened so that the thickness of the negative electrode layer was 480 ⁇ m. , An integrally sintered plate and a battery were prepared, and various evaluations were performed.
  • Example A5 (reference) An integrally sintered plate and a battery were produced in the same manner as in Example A4 except that the average pore diameter of the positive electrode layer was adjusted to 0.25 ⁇ m, and various evaluations were performed.
  • Example A6 (reference) (1) Preparation of positive electrode plate (1a) Preparation of LCO green sheet First, Co 3 O 4 powder (manufactured by Shodo Chemical Industry Co., Ltd.) and Li weighed so that the molar ratio of Li / Co is 1.01. 2 CO 3 powder (manufactured by Honjo Chemical Co., Ltd.) is mixed, held at 780 ° C. for 5 hours, and the obtained powder is crushed and crushed with a pot mill so that the volume standard D50 is 0.4 ⁇ m to obtain an LCO plate. A powder composed of shaped particles was obtained.
  • the viscosity was measured with a Brookfield LVT viscometer.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LCO green sheet.
  • the thickness of the LCO green sheet after drying was 220 ⁇ m.
  • an LCO sintered body plate having a thickness of 200 ⁇ m was obtained as a positive electrode plate.
  • the obtained positive electrode plate was cut into a circular shape having a diameter of 10 mm with a laser processing machine to obtain a positive electrode plate.
  • the obtained negative electrode raw material mixture was stirred under reduced pressure to defoam, and the viscosity was adjusted to 4000 cP to prepare an LTO slurry.
  • the viscosity was measured with a Brookfield LVT viscometer.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LTO green sheet.
  • the thickness of the LTO green sheet after drying was set to a value such that the thickness after firing was 240 ⁇ m.
  • LiBF 4 was dissolved in an organic solvent in which ethylene carbonate (EC) and ⁇ -butyrolactone (GBL) were mixed at a volume ratio of 1: 3 so as to have a concentration of 1.5 mol / L.
  • EC ethylene carbonate
  • GBL ⁇ -butyrolactone
  • Evaluation Results Tables 1 and 2 show the evaluation results of Examples A1 to A6.
  • Example B1 (1) Preparation of positive electrode plate Co 3 O 4 powder (manufactured by Shodo Chemical Industry Co., Ltd.) and Li 2 CO 3 powder (manufactured by Honjo Chemical Co., Ltd.) weighed so that the molar ratio of Li / Co is 1.02. ) was mixed and kept at 750 ° C. for 5 hours. The obtained powder was pulverized with a pot mill so that the volume reference D50 was 0.4 ⁇ m to obtain LiCoO 2 powder.
  • binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • plasticizer 4 parts by weight of the agent (DOP: Di (2-ethylhexyl) phosphorate, manufactured by Kurokin Kase
  • the obtained mixture was stirred under reduced pressure to defoam and the viscosity was adjusted to 4000 cP to prepare a LiCoO 2 slurry.
  • the viscosity was measured with a Brookfield LVT viscometer.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form a LiCoO 2 green sheet.
  • the thickness of the LiCoO 2 green sheet after drying was 80 ⁇ m.
  • the obtained green sheet was cut into 25 mm squares with a utility knife and placed on a magnesia setter. The green sheet on the setter was placed in an alumina sheath and held at 500 ° C.
  • An Au film (thickness 100 nm) was formed as a current collecting layer on the surface of the obtained LCO sintered body plate that was in contact with the setter, and then laser-processed into a circular shape having a diameter of 17 mm.
  • the obtained negative electrode raw material mixture was stirred under reduced pressure to defoam, and the viscosity was adjusted to 4000 cP to prepare an LTO slurry.
  • the viscosity was measured with a Brookfield LVT viscometer.
  • the slurry thus prepared was formed into a sheet on a PET film by a doctor blade method to form an LTO green sheet.
  • the thickness of the LTO green sheet after drying was set to a value such that the thickness after firing was 70 ⁇ m.
  • the obtained green sheet was cut into 25 mm squares with a utility knife and placed on a magnesia setter. The green sheet on the setter was placed in an alumina sheath and held at 500 ° C.
  • An Au film (thickness 100 nm) was formed as a current collecting layer on the surface of the obtained LTO sintered body plate that was in contact with the setter, and then laser-processed into a circular shape having a diameter of 17 mm.
  • This actual electric capacity is 0.2C current, and after 10 hours of constant current-constant voltage charging with a potential of 0.8V for lithium metal, a constant current discharge of 0.2C current with a potential of 2.0V for lithium metal is performed. It was taken as the electric capacity when going until it reached. Finally, the ratio of the capacity C of the positive electrode layer 12 to the capacity A of the negative electrode layer 16 was calculated and used as the C / A ratio.
  • Example B2 A battery was prepared and evaluated in the same manner as in Example B1 except that the thickness of the negative electrode layer was 90 ⁇ m.
  • Example B3 Batteries were prepared and evaluated in the same manner as in Example B1 except that the thickness of the positive electrode layer was 200 ⁇ m and the thickness of the negative electrode layer was 240 ⁇ m.
  • Example B4 A battery was produced in the same manner as in Example A3 except that the electrode size was 17 mm in diameter. The produced battery was evaluated in the same manner as in Example B1.
  • Example B5 Batteries were prepared and evaluated in the same manner as in Example B4 except that the thickness of the positive electrode layer was 420 ⁇ m and the thickness of the negative electrode layer was 500 ⁇ m.
  • Example B6 Batteries were prepared and evaluated in the same manner as in Example B4 except that the thickness of the positive electrode layer was 600 ⁇ m and the thickness of the negative electrode layer was 500 ⁇ m.
  • Example B7 (comparison) A commercially available LCO coated electrode (manufactured by Yayama Co., Ltd.) was used instead of the LCO sintered body plate as the positive electrode layer, and a commercially available LTO coated electrode (manufactured by Yayama Co., Ltd.) was used instead of the LTO sintered body plate as the negative electrode layer. Batteries were produced and evaluated in the same manner as in Example B4 except that (Yayama) was used. These coated electrodes are produced by applying and drying a paste containing an electrode active material, and are not sintered plates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

LiCoO(LCO)等のリチウム複合酸化物正極及びLiTi12(LTO)等のチタン含有酸化物負極を用いながらも、充電状態(SOC)に応じて抵抗値が大きく変化するリチウム二次電池を提供できるリチウム二次電池が提供される。このリチウム二次電池は、リチウム複合酸化物焼結体で構成される、厚さ70μm以上の正極層と、チタン含有焼結体で構成される、厚さ70μm以上の負極層と、正極層と負極層との間に介在されるセパレータと、少なくともセパレータに含浸される電解質と、密閉空間を備え、該密閉空間内に正極層、負極層、セパレータ及び電解質が収容される外装体とを備えた、リチウム二次電池であって、充電状態(SOC)が10%から80%に上がるにつれて抵抗値が低下する特性を有する。

Description

リチウム二次電池及びその充電状態の測定方法
 本発明は、リチウム二次電池及びその充電状態の測定方法に関する。
 正極活物質としてコバルト酸リチウムLiCoO(以下、LCOという)、負極活物質としてチタン酸リチウムLiTi12(以下、LTOという)を用いたリチウム二次電池が広く知られている。例えば、特許文献1(特許第4439456号)には、LCO粉末、バインダー及び導電助剤を含むスラリーを塗布及び乾燥して作製した正極(いわゆる塗工正極)と、LTO負極、バインダー及び導電助剤を含むスラリーを塗布及び乾燥して作製した負極(すなわち塗工負極)とを用いた非水電解質電池を複数備えた電池パックが開示されている。このような電池は負極にカーボンを使用した電池と比較して、電圧が容量変化に対して安定であることが知られている。例えば、LTO負極の充放電曲線において、広範囲にわたる容量範囲において極めてフラットな電圧挙動を示すことが知られている。
 ところで、塗工正極は、容量に寄与しない成分(バインダーや導電助剤)を比較的多量に(例えば10重量%程度)含んでいるため、正極活物質としてのリチウム複合酸化物の充填密度が低くなる。このため、粉末分散型の正極は、容量や充放電効率の面で改善の余地が大きかった。そこで、正極ないし正極活物質層をリチウム複合酸化物焼結体板で構成することにより、容量や充放電効率を改善しようとする試みがなされている。この場合、正極又は正極活物質層にはバインダーや導電助剤が含まれないため、リチウム複合酸化物の充填密度が高くなることで、高容量や良好な充放電効率が得られることが期待される。例えば、特許文献2(特許第5587052号公報)には、正極集電体と、導電性接合層を介して正極集電体と接合された正極活物質層とを備えた、リチウム二次電池の正極が開示されている。この正極活物質層は、厚さが30μm以上であり、空隙率が3~30%であり、開気孔比率が70%以上であるリチウム複合酸化物焼結体板からなるとされている。また、特許文献3(国際公開第2017/146088号)には、固体電解質を備えるリチウム二次電池の正極として、コバルト酸リチウム(LiCoO)等のリチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が正極板の板面に対して0°超30°以下の平均配向角度で配向している、配向焼結体板を用いることが開示されている。
 一方、負極としてチタン含有焼結体板を用いることも提案されている。例えば、特許文献4(特開2015-185337号公報)には、正極又は負極にチタン酸リチウム(LiTi12)焼結体を用いたリチウム二次電池が開示されている。もっとも、このリチウム二次電池は正極と負極の間に固体電解質層を備えた全固体電池であり、非水系電解液を用いる二次電池ではない。
特許第4439456号公報 特許第5587052号公報 国際公開第2017/146088号 特開2015-185337号公報
 リチウム二次電池を電池パックとして使用する場合、電池の容量がどれくらい残存しているか(すなわち残存容量)を知るために、通常、電池の電圧をモニタリングすることが行われる。しかしながら、特許文献1に開示されるようなLCO正極及びLTO負極を用いたリチウム二次電池の場合、残存容量に応じた電圧の変化が微小であり、そのため残存容量をモニタリングするのが難しいという問題があった。
 本発明者らは、今般、リチウム複合酸化物焼結体(例えばLCO焼結体)で構成される所定の正極層と、チタン含有焼結体(例えばLTO焼結体)で構成される所定の負極層とを備えた構成を採用することで、充電状態(SOC)に応じて抵抗値が大きく変化するリチウム二次電池を提供できるとの知見を得た。
 したがって、本発明の目的は、LCO等のリチウム複合酸化物正極及びLTO等のチタン含有酸化物負極を用いながらも、充電状態(SOC)に応じて抵抗値が大きく変化するリチウム二次電池を提供できるリチウム二次電池を提供することにある。
 本発明の一態様によれば、
 リチウム複合酸化物焼結体で構成される、厚さ70μm以上の正極層と、
 チタン含有焼結体で構成される、厚さ70μm以上の負極層と、
 前記正極層と前記負極層との間に介在されるセパレータと、
 少なくとも前記セパレータに含浸される電解質と、
 密閉空間を備え、該密閉空間内に前記正極層、前記負極層、前記セパレータ及び前記電解質が収容される外装体と、
を備えた、リチウム二次電池であって、
 充電状態(SOC)が10%から80%に上がるにつれて抵抗値が低下する特性を有する、リチウム二次電池が提供される。
 本発明の他の一態様によれば、
 充電された前記リチウム二次電池を用意する工程と、
 前記充電されたリチウム二次電池の抵抗値を測定する工程と、
 前記抵抗値を、予め同種のリチウム二次電池について測定しておいた充電状態(SOC)10~80%と抵抗値との相関関係に当てはめ、前記抵抗値に対応する充電状態(SOC)を決定する工程と、
を含む、リチウム二次電池の充電状態の測定方法が提供される。
本発明のリチウム二次電池の一例の模式断面図である。 配向正極層の層面に垂直な断面の一例を示すSEM像である。 図2に示される配向正極層の断面におけるEBSD像である。 図3のEBSD像における一次粒子の配向角度の分布を面積基準で示すヒストグラムである。 例B1で測定された充電状態(SOC)と抵抗値との関係を示すグラフである。
 リチウム二次電池
 図1に本発明のリチウム二次電池の一例を模式的に示す。なお、図1に示されるリチウム二次電池10はコイン形電池の形態となっているが、本発明はこれに限定されず、他の形態の電池であってもよい。リチウム二次電池10は、正極層12と、負極層16と、セパレータ20と、電解液22と、外装体24とを備える。正極層12はリチウム複合酸化物焼結体で構成され、70μm以上の厚さを有する。負極層16は チタン含有焼結体で構成され、70μm以上の厚さを有する。セパレータ20は正極層12と負極層16との間に介在される。電解液22は、少なくともセパレータ20(典型的には、正極層12、負極層16及びセパレータ20)に含浸される。外装体24は密閉空間を備えており、この密閉空間内に正極層12、負極層16、セパレータ20及び電解液22が収容される。そして、リチウム二次電池10は、充電状態(SOC)が10%から80%に上がるにつれて抵抗値が(好ましくは連続的に)低下する特性を有する。このように、リチウム複合酸化物焼結体(例えばLCO焼結体)で構成される所定の正極層12と、チタン含有焼結体(例えばLTO焼結体)で構成される所定の負極層16とを備えた構成を採用することで、充電状態(SOC)に応じて抵抗値が大きく(好ましくは連続的に)変化するリチウム二次電池10を提供することができる。
 前述のとおり、リチウム二次電池を電池パックとして使用する場合、電池の残存容量を知るために、通常、電池の電圧をモニタリングすることが行われる。しかしながら、特許文献1に開示されるようなLCO正極及びLTO負極を用いたリチウム二次電池の場合、残存容量に応じた電圧の変化が微小であり、そのため残存容量をモニタリングするのが難しいという問題があった。この点、本発明によるリチウム二次電池10は、充電状態(SOC)が10%から80%に上がるにつれて抵抗値が低下する特性を有するため、上記問題を好都合に解消することができる。充電状態に応じて抵抗値が変化する挙動が生じるメカニズムは定かではないが、負極層16の構成材料の典型例としてのLTOを例に挙げると以下のようなものと考えられる。すなわち、LTOは充放電時に高抵抗相(LiTi12)と低抵抗相(LiTi12)の2相共存で反応が進む。高抵抗相の割合が増える充電状態(すなわち充電状態が低いとき)で抵抗が上昇する。そして、正極層12の厚さや負極層16の厚さが上記のように厚い場合、他の抵抗成分の寄与率が十分低くなり、LTOの抵抗変化に応じた電池の抵抗変化を検知可能になるものと考えられる。これは導電助剤を用いず、焼結体内部で電子伝導させるセラミックス焼結体板電極特有の現象である。というのも、従来の塗工電極を使用した場合は、導電助剤を多く含むため、高抵抗相の割合が増えても導電助剤で所望の導電性を確保することができ、それ故上記のような現象は見られない。
 すなわち、本発明によるリチウム二次電池10は、充電されたリチウム二次電池の抵抗値を測定し、測定された抵抗値を、予め同種のリチウム二次電池について測定しておいた充電状態(SOC)10~80%と抵抗値との相関関係に当てはめ、抵抗値に対応する充電状態(SOC)を決定することで、充電状態を好ましく測定することができる。すなわち、本発明の好ましい態様によれば、i)充電されたリチウム二次電池を用意する工程と、ii)充電されたリチウム二次電池の抵抗値を測定する工程と、iii)抵抗値を、予め同種のリチウム二次電池について測定しておいた充電状態(SOC)10~80%と抵抗値との相関関係に当てはめ、抵抗値に対応する充電状態(SOC)を決定する工程とを含む、リチウム二次電池の充電状態の測定方法が提供される。
 上記測定をより確実に行う観点から、リチウム二次電池10は充電状態(SOC)10~80%の範囲で抵抗値の変化量が大きいことが望ましい。具体的には、リチウム二次電池10は、リチウム二次電池のSOC10%、50%及び80%における抵抗値をそれぞれR10、R50及びR80としたとき、0.30≦R50/R10≦0.85、0.30≦R80/R50≦0.85、及び0.20≦R80/R10≦0.70の関係を満たすのが好ましく、より好ましくは0.35≦R50/R10≦0.80、0.35≦R80/R50≦0.80、及び0.25≦R80/R10≦0.65の関係、さらに好ましくは0.40≦R50/R10≦0.75、0.40≦R80/R50≦0.75、及び0.30≦R80/R10≦0.60の関係を満たす。上記関係を満たすことで、SOCが10%から80%に上がるにつれて抵抗値がより大きく低下することとなるため、抵抗値との相関関係に基づくSOCの測定をより正確に行うことができる。
 負極層16の容量Aに対する正極層12の容量Cの比であるC/Aは1.1以上であるのが好ましく、より好ましくは1.10~2.5、さらに好ましくは1.15~2.0、特に好ましくは1.15~1.5である。なお、負極層16の容量A及び正極層12の容量Cは後述する実施例に記載される手順に従って測定することができる。上記範囲内のC/Aであると(上述した正極層12及び負極層16の各厚さと相まって)、LTO等のチタン含有焼結体の抵抗変化に応じた電池の抵抗変化をより効果的に検知可能になる。上記C/Aをもたらす観点から、負極層16の厚さTaに対する正極層12の厚さTcの比であるTc/Taは好ましくは0.50~2.00であり、より好ましくは0.55~1.90、さらに好ましくは0.60~1.80、特に好ましくは0.65~1.70、最も好ましくは0.70~1.50である。
 正極層12は、リチウム複合酸化物焼結体で構成される。正極層12が焼結体で構成されることは、正極層12がバインダーや導電助剤を含んでいないことを意味する。これは、グリーンシートにバインダーが含まれていたとしても、焼成時にバインダーが消失又は焼失するからである。そして、正極層12がバインダーを含まないことで、電解液22による正極の劣化を回避できるとの利点がある。なお、焼結体を構成するリチウム複合酸化物は、コバルト酸リチウム(典型的にはLiCoO(以下、LCOと略称することがある))であるのが特に好ましい。様々なリチウム複合酸化物焼結体板ないしLCO焼結体板が知られており、例えば特許文献2(特許第5587052号公報)や特許文献3(国際公開第2017/146088号)に開示されるものを参考にすることができる。
 本発明の好ましい態様によれば、正極層12、すなわちリチウム複合酸化物焼結体板は、リチウム複合酸化物で構成される複数の一次粒子を含み、複数の一次粒子が正極層の層面に対して0°超30°以下の平均配向角度で配向している、配向正極層である。図2に配向正極層12の層面に垂直な断面SEM像の一例を示す一方、図3に配向正極層12の層面に垂直な断面における電子線後方散乱回折(EBSD:Electron Backscatter Diffraction)像を示す。また、図4に、図3のEBSD像における一次粒子11の配向角度の分布を面積基準で示すヒストグラムを示す。図3に示されるEBSD像では、結晶方位の不連続性を観測することができる。図3では、各一次粒子11の配向角度が色の濃淡で示されており、色が濃いほど配向角度が小さいことを示している。配向角度とは、各一次粒子11の(003)面が層面方向に対して成す傾斜角度である。なお、図2及び3において、配向正極層12の内部で黒表示されている箇所は気孔である。
 配向正極層12は、互いに結合された複数の一次粒子11で構成された配向焼結体である。各一次粒子11は、主に板状であるが、直方体状、立方体状及び球状などに形成されたものが含まれていてもよい。各一次粒子11の断面形状は特に制限されるものではなく、矩形、矩形以外の多角形、円形、楕円形、或いはこれら以外の複雑形状であってもよい。
 各一次粒子11はリチウム複合酸化物で構成される。リチウム複合酸化物とは、LiMO(0.05<x<1.10であり、Mは少なくとも1種類の遷移金属であり、Mは典型的にはCo、Ni及びMnの1種以上を含む)で表される酸化物である。リチウム複合酸化物は層状岩塩構造を有する。層状岩塩構造とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的にはα-NaFeO型構造、すなわち立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。リチウム複合酸化物の例としては、LiCoO(コバルト酸リチウム)、LiNiO(ニッケル酸リチウム)、LiMnO(マンガン酸リチウム)、LiNiMnO(ニッケル・マンガン酸リチウム)、LiNiCoO(ニッケル・コバルト酸リチウム)、LiCoNiMnO(コバルト・ニッケル・マンガン酸リチウム)、LiCoMnO(コバルト・マンガン酸リチウム)等が挙げられ、特に好ましくはLiCoO(コバルト酸リチウム、典型的にはLiCoO)である。リチウム複合酸化物には、Mg、Al、Si、Ca、Ti、V、Cr、Fe、Cu、Zn、Ga、Ge、Sr、Y、Zr、Nb、Mo、Ag、Sn、Sb、Te、Ba、Bi、及びWから選択される1種以上の元素が含まれていてもよい。
 図3及び4に示されるように、各一次粒子11の配向角度の平均値、すなわち平均配向角度は0°超30°以下である。これにより、以下の様々な利点がもたらされる。第一に、各一次粒子11が厚み方向に対して傾斜した向きに寝た状態になるため、各一次粒子同士の密着性を向上させることができる。その結果、ある一次粒子11と当該一次粒子11の長手方向両側に隣接する他の一次粒子11との間におけるリチウムイオン伝導性を向上させることができるため、レート特性を向上させることができる。第二に、レート特性をより向上させることができる。これは、上述のとおり、リチウムイオンの出入りに際して、配向正極層12では、層面方向よりも厚み方向における膨張収縮が優勢となるため、配向正極層12の膨張収縮がスムーズになるところ、それに伴ってリチウムイオンの出入りもスムーズになるからである。また、後述する好ましい態様である、正極層12、セラミックセパレータ20及び負極層16が全体として1つの一体焼結体板を構成する場合、リチウムイオンの出入りに伴う配向正極層12の膨張収縮が層面と垂直な方向に優勢となるため、配向正極層12とセラミックセパレータ20との接合界面での応力が発生しにくくなり、当該界面での良好な結合を維持しやすくなる。
 一次粒子11の平均配向角度は、以下の手法によって得られる。まず、図3に示されるような、95μm×125μmの矩形領域を1000倍の倍率で観察したEBSD像において、配向正極層12を厚み方向に四等分する3本の横線と、配向正極層12を層面方向に四等分する3本の縦線とを引く。次に、3本の横線と3本の縦線のうち少なくとも1本の線と交差する一次粒子11すべての配向角度を算術平均することによって、一次粒子11の平均配向角度を得る。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、30°以下が好ましく、より好ましくは25°以下である。一次粒子11の平均配向角度は、レート特性の更なる向上の観点から、2°以上が好ましく、より好ましくは5°以上である。
 図4に示されるように、各一次粒子11の配向角度は、0°から90°まで広く分布していてもよいが、その大部分は0°超30°以下の領域に分布していることが好ましい。すなわち、配向正極層12を構成する配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうち配向正極層12の層面に対する配向角度が0°超30°以下である一次粒子11(以下、低角一次粒子という)の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。これにより、相互密着性の高い一次粒子11の割合を増加させることができるため、レート特性をより向上させることができる。また、低角一次粒子のうち配向角度が20°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して50%以上であることがより好ましい。さらに、低角一次粒子のうち配向角度が10°以下であるものの合計面積は、平均配向角度の算出に用いた30個の一次粒子11の総面積に対して15%以上であることがより好ましい。
 各一次粒子11は、主に板状であるため、図2及び3に示されるように、各一次粒子11の断面はそれぞれ所定方向に延びており、典型的には略矩形状となる。すなわち、配向焼結体は、その断面をEBSDにより解析した場合に、解析された断面に含まれる一次粒子11のうちアスペクト比が4以上である一次粒子11の合計面積が、断面に含まれる一次粒子11(具体的には平均配向角度の算出に用いた30個の一次粒子11)の総面積に対して70%以上であるのが好ましく、より好ましくは80%以上である。具体的には、図3に示されるようなEBSD像において、これにより、一次粒子11同士の相互密着性をより向上することができ、その結果、レート特性をより向上させることができる。一次粒子11のアスペクト比は、一次粒子11の最大フェレー径を最小フェレー径で除した値である。最大フェレー径は、断面観察した際のEBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最大距離である。最小フェレー径は、EBSD像上において、一次粒子11を平行な2本の直線で挟んだ場合における当該直線間の最小距離である。
 配向焼結体を構成する複数の一次粒子の平均粒径が5μm以上であるのが好ましい。具体的には、平均配向角度の算出に用いた30個の一次粒子11の平均粒径が、5μm以上であることが好ましく、より好ましくは7μm以上、さらに好ましくは12μm以上である。これにより、リチウムイオンが伝導する方向における一次粒子11同士の粒界数が少なくなって全体としてのリチウムイオン伝導性が向上するため、レート特性をより向上させることができる。一次粒子11の平均粒径は、各一次粒子11の円相当径を算術平均した値である。円相当径とは、EBSD像上において、各一次粒子11と同じ面積を有する円の直径のことである。
 正極層12は気孔を含んでいるのが好ましい。焼結体が気孔、特に開気孔を含むことで、正極板として電池に組み込まれた場合に、電解液を焼結体の内部に浸透させることができ、その結果、リチウムイオン伝導性を向上することができる。これは、焼結体内におけるリチウムイオンの伝導は、焼結体の構成粒子を経る伝導と、気孔内の電解液を経る伝導の2種類があるところ、気孔内の電解液を経る伝導の方が圧倒的に速いためである。
 正極層12、すなわちリチウム複合酸化物焼結体は気孔率が20~60%であるのが好ましく、より好ましくは25~55%、さらに好ましくは30~50%、特に好ましくは30~45%である。気孔による応力開放効果、及び高容量化が期待できるとともに、一次粒子11同士の相互密着性をより向上できるため、レート特性をより向上させることができる。焼結体の気孔率は、正極層の断面をCP(クロスセクションポリッシャ)研磨にて研磨した後に1000倍率でSEM観察して、得られたSEM画像を2値化することで算出される。配向焼結体の内部に形成される各気孔の平均円相当径は特に制限されないが、好ましくは8μm以下である。各気孔の平均円相当径が小さいほど、一次粒子11同士の相互密着性をさらに向上することができ、その結果、レート特性をさらに向上させることができる。気孔の平均円相当径は、EBSD像上の10個の気孔の円相当径を算術平均した値である。円相当径とは、EBSD像上において、各気孔と同じ面積を有する円の直径のことである。配向焼結体の内部に形成される各気孔は、正極層12の外部につながる開気孔であるのが好ましい。
 正極層12、すなわちリチウム複合酸化物焼結体の平均気孔径は0.1~10.0μmであるのが好ましく、より好ましくは0.2~5.0μm、さらに好ましくは0.25~3.0μmである。上記範囲内であると、大きな気孔の局所における応力集中の発生を抑制して、焼結体内における応力が均一に開放されやすくなる。
 正極層12の厚さは70μm以上であり、好ましくは70~800μm、より好ましくは70~600μm、さらに好ましくは80~500μm、特に好ましくは90~450μmである。このような範囲内であると、単位面積当りの活物質容量を高めてリチウム二次電池10のエネルギー密度を向上するとともに、充放電の繰り返しに伴う電池特性の劣化(特に抵抗値の上昇)を抑制できる。
 負極層16は、チタン含有焼結体で構成される。チタン含有焼結体は、チタン酸リチウムLiTi12(以下、LTO)又はニオブチタン複合酸化物NbTiOを含むのが好ましく、より好ましくはLTOを含む。なお、LTOは典型的にはスピネル型構造を有するものとして知られているが、充放電時には他の構造も採りうる。例えば、LTOは充放電時にLiTi12(スピネル構造)とLiTi12(岩塩構造)の二相共存にて反応が進行する。したがって、LTOはスピネル構造に限定されるものではない。
 負極層16が焼結体で構成されるということは、負極層16がバインダーや導電助剤を含んでいないことを意味する。これは、グリーンシートにバインダーが含まれていたとしても、焼成時にバインダーが消失又は焼失するからである。負極層にはバインダーが含まれないため、負極活物質(例えばLTO又はNbTiO)の充填密度が高くなることで、高容量や良好な充放電効率を得ることができる。LTO焼結体は、特許文献4(特開2015-185337号公報)に記載される方法に従って製造することができる。
 負極層16、すなわちチタン含有焼結体は、複数の(すなわち多数の)一次粒子が結合した構造を有している。したがって、これらの一次粒子がLTO又はNbTiOで構成されるのが好ましい。また、本発明においては、充電状態では絶縁性が高く、放電状態では導電性が高い材料が好ましい。換言すれば、充電状態ではTiの価数が4価に近く、放電状態では3価になるものが好ましい。他の材料の例としてはTiOが挙げられる。
 負極層16の厚さは70μm以上であり、好ましくは70~800μm、より好ましくは70~700μm、さらに好ましくは80~600μm、特に好ましくは90~550μmである。負極層16が厚いほど、高容量及び高エネルギー密度の電池を実現しやすくなることに加え、他の抵抗成分の寄与率がより一層低くなり、負極層16の抵抗変化に応じた電池の抵抗変化をより検知しやすくなるものと考えられる。負極層16の厚さは、例えば、負極層16の断面をSEM(走査電子顕微鏡)によって観察した場合における、略平行に観察される層面間の距離を測定することで得られる。
 負極層16を構成する複数の一次粒子の平均粒径である一次粒径は1.2μm以下が好ましく、より好ましくは0.02~1.2μm、さらに好ましくは0.05~0.7μmである。このような範囲内であるとリチウムイオン伝導性及び電子伝導性を両立しやすく、レート性能の向上に寄与する。
 負極層16は気孔を含んでいるのが好ましい。焼結体が気孔、特に開気孔を含むことで、負極層として電池に組み込まれた場合に、電解液を焼結体の内部に浸透させることができ、その結果、リチウムイオン伝導性を向上することができる。これは、焼結体内におけるリチウムイオンの伝導は、焼結体の構成粒子を経る伝導と、気孔内の電解液を経る伝導の2種類があるところ、気孔内の電解液を経る伝導の方が圧倒的に速いためである。
 負極層16の気孔率は20~60%が好ましく、より好ましくは30~55%、さらに好ましくは35~50%である。このような範囲内であるとリチウムイオン伝導性及び電子伝導性を両立しやすく、レート性能の向上に寄与する。
 負極層16の平均気孔径は0.08~5.0μmであり、好ましくは0.1~3.0μm、より好ましく0.12~1.5μmである。このような範囲内であるとリチウムイオン伝導性及び電子伝導性を両立しやすく、レート性能の向上に寄与する。
 セパレータ20は、セルロース製、ポリオレフィン製、ポリイミド製、ポリエステル製(例えばポリエチレンテレフタレート(PET))又はセラミック製のセパレータであるのが好ましい。セルロース製のセパレータは安価でかつ耐熱性に優れる点で有利である。また、ポリイミド製、ポリエステル製(例えばポリエチレンテレフタレート(PET))又はセルロース製のセパレータは、広く用いられている、耐熱性に劣るポリオレフィン製セパレータとは異なり、それ自体の耐熱性に優れるだけでなく、耐熱性に優れる電解液成分であるγ-ブチロラクトン(GBL)に対する濡れ性にも優れる。したがって、GBLを含む電解液を用いる場合に、電解液をセパレータに(弾かせることなく)十分に浸透させることができる。一方、セラミック製のセパレータは、耐熱性に優れるのは勿論のこと、正極層12及び負極層16と一緒に全体として1つの一体焼結体として製造できるとの利点がある。セラミックセパレータの場合、セパレータを構成するセラミックはMgO、Al、ZrO、SiC、Si、AlN、及びコーディエライトから選択される少なくとも1種であるのが好ましく、より好ましくはMgO、Al、及びZrOから選択される少なくとも1種である。
 セラミックセパレータ20は、セラミック製の微多孔膜である。セラミックセパレータ20は、耐熱性に優れるのは勿論のこと、正極層12及び負極層16と一緒に全体として1つの一体焼結体板として製造できるとの利点がある。セラミックセパレータ20の厚さは3~40μmであるのが好ましく、より好ましくは5~35μm、さらに好ましくは10~30μmである。セラミックセパレータ20の気孔率は30~85%が好ましく、より好ましくは40~80%である。セラミックセパレータ20は、正極層12及び負極層16との接着性向上の観点から、ガラス成分を含有してもよい。この場合、セラミックセパレータ20に占めるガラス成分の含有割合はセラミックセパレータ20の全体重量に対して0.1~50重量%が好ましく、より好ましくは0.5~40重量%、さらに好ましくは0.5~30重量%である。セラミックセパレータ20へのガラス成分の添加はセラミックセパレータの原料粉末にガラスフリットを添加することにより行われるのが好ましい。もっとも、セラミックセパレータ20と、正極層12及び負極層16との所望の接着性が確保できるのであれば、セラミックセパレータ20におけるガラス成分の含有は特に必要とされない。
 本発明の好ましい態様によれば、セパレータ20がセラミックセパレータであり、正極層12、セラミックセパレータ20及び負極層16が全体として1つの一体焼結体板を成しており、それにより正極層12、セラミックセパレータ20及び負極層16が互いに結合している。すなわち、正極層12、セラミックセパレータ20及び負極層16の3層は接着剤等の他の結合手法に頼ることなく互いに結合されているのが好ましい。ここで、「全体として1つの一体焼結体板を成す」ということは、正極層12をもたらす正極グリーンシート、セラミックセパレータ20をもたらすセパレータグリーンシート、及び負極層16をもたらす負極グリーンシートからなる3層構造のグリーンシートを焼成して各層が焼結された状態であることを意味する。このため、焼成前の3層構造のグリーンシートを打ち抜き型で所定の形状(例えばコイン形やチップ形)に打ち抜いてしまえば、最終形態の一体焼結体板においては正極層12及び負極層16間のずれは一切存在しないことになる。すなわち、正極層12の端面と負極層16の端面が揃うので、容量を最大化できる。あるいは、仮にずれが存在するとしても一体焼結体板はレーザー加工、切削、研磨等の加工に適するため、そのようなずれを最小化又は無くすように端面を仕上げ加工すればよい。いずれにしても、一体焼結体板である以上、正極層12、セラミックセパレータ20及び負極層16が互いに結合しているため、正極層12及び負極層16間のずれが事後的に生じることもない。このように正極層12及び負極層16間のずれを最小化又は無くすことで、期待どおりの(すなわち理論容量に近い)高い放電容量を得ることができる。また、セラミックセパレータを含む3層構成の一体焼結体板であるため、1枚の焼結体板として作製される正極板単体や負極板単体と比較して、うねり又は反りが生じにくく(すなわち平坦性に優れ)、それ故正負極間距離にばらつきが生じにくく(すなわち均一になり)、充放電サイクル性能の向上に寄与するものと考えられる。例えば、正極層12及び負極層16の面積ずれ率が1%未満であるのが好ましく、より好ましくは0.5%未満であり、さらに好ましくは0%である。正極層12及び負極層16の面積ずれ率は、正極層12及び負極層16が重なりあう領域の面積をSpn、正極層12が負極層16からはみ出した領域の面積をS、負極層16が正極層12からはみ出した領域を面積Sとしたとき、[(S+S)/Spn]×100の式に基づいて算出される値(%)として定義される。また、リチウム二次電池10は、理論容量に対する放電容量の比が99%以上であるのが好ましく、より好ましくは99.5%以上であり、さらに好ましくは100%である。
 電解液22は特に限定されず、有機溶媒(例えばエチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)の混合溶媒、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)の混合溶媒、あるいはエチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の混合溶媒)の非水溶媒中にリチウム塩(例えばLiPF)塩を溶解させた液等、リチウム電池用の市販の電解液を使用すればよい。
 耐熱性に優れたリチウム二次電池とする場合には、電解液22は、非水溶媒中にホウフッ化リチウム(LiBF)を含むものが好ましい。この場合、好ましい非水溶媒は、γ-ブチロラクトン(GBL)、エチレンカーボネート(EC)及びプロピレンカーボネート(PC)からなる群から選択される少なくとも1種であり、より好ましくはEC及びGBLからなる混合溶媒、PCからなる単独溶媒、PC及びGBLからなる混合溶媒、又はGBLからなる単独溶媒であり、特に好ましくはEC及びGBLからなる混合溶媒又はGBLからなる単独溶媒である。非水溶媒はγ-ブチロラクトン(GBL)を含むことで沸点が上昇し、耐熱性の大幅な向上をもたらす。かかる観点から、EC及び/又はGBL含有非水溶媒におけるEC:GBLの体積比は0:1~1:1(GBL比率50~100体積%)であるのが好ましく、より好ましくは0:1~1:1.5(GBL比率60~100体積%)、さらに好ましくは0:1~1:2(GBL比率66.6~100体積%)、特に好ましくは0:1~1:3(GBL比率75~100体積%)である。非水溶媒中に溶解されるホウフッ化リチウム(LiBF)は分解温度の高い電解質であり、これもまた耐熱性の大幅な向上をもたらす。電解液22におけるLiBF濃度は0.5~2mol/Lであるのが好ましく、より好ましくは0.6~1.9mol/L、さらに好ましくは0.7~1.7mol/L、特に好ましくは0.8~1.5mol/Lである。
 電解液22は添加剤としてビニレンカーボネート(VC)及び/又はフルオロエチレンカーボネート(FEC)及び/又はビニルエチレンカーボネート(VEC)をさらに含むものであってもよい。VC及びFECはいずれも耐熱性に優れる。したがって、かかる添加剤を電解液22が含むことで、耐熱性に優れたSEI膜を負極層16表面に形成させることができる。
 また、電解液22の代わりに、固体電解質又はポリマー電解質を用いてもよい(言い換えると、電解質として、電解液22以外に、固体電解質やポリマー電解質を用いることができる。)。その場合には、電解液22の場合と同様、少なくともセパレータ20の気孔内部に電解質が含浸されていることが好ましい。含浸方法は特に限定されないが、例として、電解質を溶融してセパレータ20の気孔内に浸入させる方法、電解質の圧粉体をセパレータ20に押し当てる方法等が挙げられる。
 外装体24は密閉空間を備え、この密閉空間内に正極層12、負極層16、セパレータ20及び電解液22が収容される。外装体24はリチウム二次電池10のタイプに応じて適宜選択すればよい。例えば、リチウム二次電池が図1に示されるようなコイン形電池の形態の場合、外装体24は、典型的には、正極缶24a、負極缶24b及びガスケット24cを備え、正極缶24a及び負極缶24bがガスケット24cを介してかしめられて密閉空間を形成している。正極缶24a及び負極缶24bはステンレス鋼等の金属製であることができ、特に限定されない。ガスケット24cはポリプロピレン、ポリテトラフルオロエチレン、PFA樹脂等の絶縁樹脂製の環状部材であることができ、特に限定されない。
 また、リチウム二次電池がカードに内蔵可能なチップ電池の形態の場合、外装体が樹脂基材であり、電池要素(すなわち正極層12、負極層16、セパレータ20及び電解液22)が樹脂基材内に埋設されるのが好ましい。例えば、電池要素が1対の樹脂フィルムに挟み込まれたものであってもよく、樹脂フィルム同士が接着剤で貼り合わされていたり、加熱プレスで樹脂フィルム同士が熱融着されているのが好ましい。
 リチウム二次電池10は、正極集電体14及び/又は負極集電体18をさらに備えているのが好ましい。正極集電体14及び負極集電体18は特に限定されないが、好ましくは銅箔やアルミニウム箔等の金属箔である。正極集電体14は正極層12と外装体24(例えば正極缶24a)との間に配置されるのが好ましく、負極集電体18は負極層16と外装体24(例えば負極缶24b)との間に配置されるのが好ましい。また、正極層12と正極集電体14との間には接触抵抗低減の観点から正極側カーボン層13が設けられるのが好ましい。同様に、負極層16と負極集電体18との間には接触抵抗低減の観点から負極側カーボン層17が設けられるのが好ましい。正極側カーボン層13及び負極側カーボン層17はいずれも導電性カーボンで構成されるのが好ましく、例えば導電性カーボンペーストをスクリーン印刷等により塗布することにより形成すればよい。
 一体焼結体板の製造方法
 正極層12、セラミックセパレータ20及び負極層16の3層構成の一体焼結体板はいかなる方法で製造されたものであってもよいが、好ましくは、(1)3層の各々に対応するグリーンシートを作製し、(2)これらのグリーンシートを積層して圧着及び焼成を施することにより製造される。
(1)各種グリーンシートの作製
(1a)正極グリーンシートの作製
 正極グリーンシートとしてのリチウム複合酸化物含有グリーンシートの作製は以下のように行うことができる。まず、リチウム複合酸化物で構成される原料粉末を用意する。この粉末は、LiMOなる組成(Mは前述したとおりである)の合成済みの板状粒子(例えばLiCoO板状粒子)を含むのが好ましい。原料粉末の体積基準D50粒径は0.3~30μmが好ましい。例えば、LiCoO板状粒子の作製方法は次のようにして行うことができる。まず、Co原料粉末とLiCO原料粉末とを混合して焼成(500~900℃、1~20時間)することによって、LiCoO粉末を合成する。得られたLiCoO粉末をポットミルにて体積基準D50粒径0.2μm~10μmに粉砕することによって、板面と平行にリチウムイオンを伝導可能な板状のLiCoO粒子が得られる。このようなLiCoO粒子は、LiCoO粉末スラリーを用いたグリーンシートを粒成長させた後に解砕する手法や、フラックス法や水熱合成、融液を用いた単結晶育成、ゾルゲル法など板状結晶を合成する手法によっても得ることができる。得られたLiCoO粒子は、劈開面に沿って劈開しやすい状態となっている。LiCoO粒子を解砕によって劈開させることで、LiCoO板状粒子を作製することができる。
 上記板状粒子を単独で原料粉末として用いてもよいし、上記板状粉末と他の原料粉末(例えばCo粒子)との混合粉末を原料粉末として用いてもよい。後者の場合、板状粉末を配向性を与えるためのテンプレート粒子として機能させ、他の原料粉末(例えばCo粒子)をテンプレート粒子に沿って成長可能なマトリックス粒子として機能させるのが好ましい。この場合、テンプレート粒子とマトリックス粒子を100:0~3:97に混合した粉末を原料粉末とするのが好ましい。Co原料粉末をマトリックス粒子として用いる場合、Co原料粉末の体積基準D50粒径は特に制限されず、例えば0.1~1.0μmとすることができるが、LiCoOテンプレート粒子の体積基準D50粒径より小さいことが好ましい。このマトリックス粒子は、Co(OH)原料を500℃~800℃で1~10時間熱処理を行なうことによっても得ることができる。また、マトリックス粒子には、Coのほか、Co(OH)粒子を用いてもよいし、LiCoO粒子を用いてもよい。
 原料粉末がLiCoOテンプレート粒子100%で構成される場合、又はマトリックス粒子としてLiCoO粒子を用いる場合、焼成により、大判(例えば90mm×90mm平方)でかつ平坦なLiCoO焼結体層を得ることができる。そのメカニズムは定かではないが、焼成過程でLiCoOへの合成が行われないため、焼成時の体積変化が生じにくい若しくは局所的なムラが生じにくいことが予想される。
 原料粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには、後述する焼成工程中における粒成長の促進ないし揮発分の補償の目的で、LiMO以外のリチウム化合物(例えば炭酸リチウム)が0.5~30mol%程度過剰に添加されてもよい。スラリーには造孔材を添加しないのが望ましい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してリチウム複合酸化物含有グリーンシートを得る。シート成形は、原料粉末中の板状粒子(例えばテンプレート粒子)にせん断力を印加可能な成形手法を用いて行われるのが好ましい。こうすることで、一次粒子の平均傾斜角をシート面に対して0°超30°以下にすることができる。板状粒子にせん断力を印加可能な成形手法としては、ドクターブレード法が好適である。リチウム複合酸化物含有グリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。
(1b)負極グリーンシートの作製
 負極グリーンシートとしてのチタン含有グリーンシートはいかなる方法で製造されたものであってもよい。例えば、LTO含有グリーンシートの作製は以下のように行うことができる。まず、チタン酸リチウムLiTi12で構成される原料粉末(LTO粉末)を用意する。原料粉末は市販のLTO粉末を使用してもよいし、新たに合成してもよい。例えば、チタンテトライソプロポキシアルコールとイソプロポキシリチウムの混合物を加水分解して得た粉末を用いてもよいし、炭酸リチウム、チタニア等を含む混合物を焼成してもよい。原料粉末の体積基準D50粒径は0.05~5.0μmが好ましく、より好ましくは0.1~2.0μmである。原料粉末の粒径が大きいと気孔が大きくなる傾向がある。また、原料粒径が大きい場合、所望の粒径となるように粉砕処理(例えばポットミル粉砕、ビーズミル粉砕、ジェットミル粉砕等)を行ってもよい。そして、原料粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには、後述する焼成工程中における粒成長の促進ないし揮発分の補償の目的で、LiMO以外のリチウム化合物(例えば炭酸リチウム)が0.5~30mol%程度過剰に添加されてもよい。スラリーには造孔材を添加しないのが望ましい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してLTO含有グリーンシートを得る。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。LTO含有グリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。
(1c)セパレータグリーンシートの作製
 セパレータグリーンシートの作製は以下のように行うことができる。まず、MgO、Al、ZrO、SiC、Si、AlN、及びコーディエライトから選択される少なくとも1種のセラミック粉末を用意する。このセラミック粉末にはガラスフリットを添加させてもよい。原料粉末の体積基準D50粒径は0.05~20μmが好ましく、より好ましくは0.1~10μmである。原料粉末の粒径が大きいと気孔が大きくなる傾向がある。また、原料粒径が大きい場合、所望の粒径となるように粉砕処理(例えばポットミル粉砕、ビーズミル粉砕、ジェットミル粉砕等)を行ってもよい。そして、原料粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには造孔材を添加しないのが望ましい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000~10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してセパレータグリーンシートを得る。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。セパレータグリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。
(2)グリーンシートの積層、圧着及び焼成
 次いで、正極グリーンシート、セパレータグリーンシート及び負極グリーンシートを順に積み重ね、得られた積層体をプレスしてグリーンシート同士を圧着する。プレスは公知の手法により行えばよく特に限定されないが、CIP(冷間等方圧加圧法)により行われるのが好ましい。好ましいプレス圧は10~5000kgf/cmであり、より好ましくは50~3000kgf/cmである。こうして圧着されたグリーンシート積層体を打ち抜き型で所望の形状(例えばコイン形やチップ形)ないしサイズに打ち抜くのが好ましい。こうすることで、最終形態の一体焼結体板においては正極層12及び負極層16間のずれを無くすことができる。その結果、正極層12の端面と負極層16の端面が揃うので、電池の容量を最大化できる。
 得られたグリーンシート積層体をセッターに載置する。セッターはセラミックス製であり、好ましくはジルコニア製又はマグネシア製である。セッターにはエンボス加工が施されているのが好ましい。こうしてセッター上に載置されたグリーンシートを鞘に入れる。鞘もセラミックス製であり、好ましくはアルミナ製である。そして、この状態で、所望により脱脂した後、焼成することで、一体焼結体板が得られる。脱脂は300~600℃で0.5~20時間保持することにより行われるのが好ましい。また、焼成は650~900℃で0.01~20時間行うのが好ましく、より好ましくは700~850℃で0.5~10時間である。焼成時の昇温速度は50~1500℃/hが好ましく、より好ましくは200~1300℃/hである。特に、この昇温速度は、600~900℃の昇温過程で採用されるのが好ましく、より好ましくは600~800℃の昇温過程で採用される。こうして、正極層12、セラミックセパレータ20及び負極層16の3層構成の一体焼結体板が得られる。なお、前述したグリーンシート積層体の段階で打ち抜き処理を施していない場合、最終形態の一体焼結体板においては正極層12及び負極層16間のずれが発生しうる。この場合は、一体焼結体板の端面を、レーザ加工、切削、研磨等の手法により仕上げ加工して、上記ずれを最小化又は無くすようのが好ましい。その結果、正極層12の端面と負極層16の端面が揃うので、電池の容量を最大化できる。
 本発明を以下の例によってさらに具体的に説明する。なお、以下の例において、LiCoOを「LCO」と略称し、LiTi12を「LTO」と略称するものとする。
[例A1~A6]
 以下、一体焼結体板を用いた電池が、一体焼結体板を用いない組み立て型の電池よりも優れた性能を示すための参考例を示す。
 例A1(参考)
(1)LCOグリーンシート(正極グリーンシート)の作製
 まず、Li/Coのモル比が1.01となるように秤量されたCo粉末(正同化学工業株式会社製)とLiCO粉末(本荘ケミカル株式会社製)を混合後、780℃で5時間保持し、得られた粉末をポットミルにて体積基準D50が0.4μmとなるように粉砕してLCO板状粒子からなる粉末を得た。得られたLCO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LCOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LCOグリーンシートを形成した。LCOグリーンシートの厚さは、焼成後の厚さが60μmになるようにした。
(2)LTOグリーンシート(負極グリーンシート)の作製
 まず、LTO粉末(体積基準D50粒径0.06μm、シグマアルドリッチジャパン合同会社製)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LTOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LTOグリーンシートを形成した。LTOグリーンシートの厚さは、焼成後の厚さが70μmになるようにした。
(3)MgOグリーンシート(セパレータグリーンシート)の作製
 炭酸マグネシウム粉末(神島化学工業株式会社製)を900℃で5時間熱処理してMgO粉末を得た。得られたMgO粉末とガラスフリット(日本フリット株式会社製、CK0199)を重量比4:1で混合した。得られた混合粉末(体積基準D50粒径0.4μm)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、スラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、セパレータグリーンシートを形成した。セパレータグリーンシートの厚さは、焼成後の厚さが25μmになるようにした。
(4)積層、圧着及び焼成                         
 LCOグリーンシート(正極グリーンシート)、MgOグリーンシート(セパレータグリーンシート)及びLTOグリーンシート(負極グリーンシート)を順に積み重ね、得られた積層体をCIP(冷間等方圧加圧法)により200kgf/cmでプレスしてグリーンシート同士を圧着した。こうして圧着された積層体を打ち抜き型で直径10mmの円板状に打ち抜いた。得られた円板状積層体を600℃で5時間脱脂した後、1000℃/hで800℃まで昇温して10分間保持する焼成を行い、その後冷却した。こうして、正極層(LCO焼結体層)、セラミックセパレータ(MgOセパレータ)及び負極層(LTO焼結体層)の3層を含む1つの一体焼結体板を得た。
(5)リチウム二次電池の作製
 図1に模式的に示されるようなコイン形リチウム二次電池10を以下のとおり作製した。
(5a)負極層と負極集電体の導電性カーボンペーストによる接着
 アセチレンブラックとポリイミドアミドを質量比で3:1となるように秤量し、溶剤としての適宜量のNMP(N-メチル-2-ピロリドン)とともに混合して、導電性カーボンペーストを導電性接着剤として調製した。負極集電体としてのアルミニウム箔上に導電性カーボンペーストをスクリーン印刷した。未乾燥の印刷パターン(すなわち導電性カーボンペーストで塗布された領域)内に負極層が収まるように上記(4)で作製した一体焼結体を載置し、60℃で30分間真空乾燥させることで、負極層と負極集電体とが負極側カーボン層を介して接着された構造体を作製した。なお、負極側カーボン層の厚さは10μmとした。
(5b)カーボン層付き正極集電体の準備
 アセチレンブラックとポリイミドアミドを質量比で3:1となるように秤量し、溶剤としての適宜量のNMP(N-メチル-2-ピロリドン)とともに混合して、導電性カーボンペーストを調製した。正極集電体としてのアルミニウム箔上に導電性カーボンペーストをスクリーン印刷した後、60℃で30分間真空乾燥させることで、表面に正極側カーボン層が形成された正極集電体を作製した。なお、正極側カーボン層の厚さは5μmとした。
(5c)コイン形電池の組立
 電池ケースを構成することになる正極缶と負極缶との間に、正極缶から負極缶に向かって、正極集電体、正極側カーボン層、一体焼結体板(LCO正極層、MgOセパレータ及びLTO負極層)、負極側カーボン層、並びに負極集電体がこの順に積層されるように収容し、電解液を充填した後に、ガスケットを介して正極缶と負極缶をかしめることによって封止した。こうして、直径12mm、厚さ1.0mmのコインセル形のリチウム二次電池10を作製した。このとき、電解液としては、エチレンカーボネート(EC)及びγ-ブチロラクトン(GBL)を1:3の体積比で混合した有機溶媒に、LiBFを1.5mol/Lの濃度となるように溶解させた液を用いた。
(6)評価
 上記(4)で合成されたLCO焼結体層(正極層)、LTO焼結体層(負極層)及びMgOセパレータ(セラミックセパレータ)、並びに上記(5)で作製されたコイン形リチウム二次電池について、以下に示されるとおり各種の評価を行った。
<一次粒子の平均配向角度>
 LCO焼結体層をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた正極層断面(正極層の層面に垂直な断面)を1000倍の視野(125μm×125μm)でEBSD測定して、EBSD像を得た。このEBSD測定は、ショットキー電界放出形走査電子顕微鏡(日本電子株式会社製、型式JSM-7800F)を用いて行った。得られたEBSD像において特定される全ての粒子について、一次粒子の(003)面と正極層の層面とがなす角度(すなわち(003)からの結晶方位の傾き)を傾斜角として求め、それらの角度の平均値を一次粒子の平均配向角度とした。
<層厚>
 LCO及びLTO焼結体層並びにMgOセパレータをクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた断面をSEM観察(日本電子製、JSM6390LA)して正極層、負極層及びセパレータの各々の厚さを測定した。
<気孔率>
 LCO又はLTO焼結体層並びにMgOセパレータをクロスセクションポリッシャ(CP)(日本電子株式会社製、IB-15000CP)により研磨し、得られた正極層又は負極層の断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子製、JSM6390LA)した。得られたSEM像を画像解析し、全ての気孔の面積を正極又は負極の面積で除し、得られた値に100を乗じることにより気孔率(%)を算出した。
<平均気孔径>
 水銀ポロシメーター(島津製作所製、オートポアIV9510)を用いて水銀圧入法によりLCO又はLTO焼結体層の平均気孔径を測定した。
<正負極面積ずれ率>
 電池における正極層及び負極層の面積ずれ率を算出した。具体的には、正極層及び負極層が重なりあう領域の面積Spn、正極層が負極層からはみ出した領域の面積S、及び負極層が正極層からはみ出した領域の面積Sをそれぞれ測定し、[(S+S)/Spn]×100の式に基づき、正負極面積ずれ率(%)を算出した。なお、Spn、S及びSの測定及び算出は、3D形状測定機(キーエンス社製、VR3000)を用いてサンプル両面から形状測定を行うことにより行った。
<放電容量/理論容量比>
 電池の放電容量を以下の手順で測定した。すなわち、2.7Vで定電圧充電した後、放電レート0.2Cで放電することにより初期容量の測定を行い、得られた初期容量を放電容量として採用した。次いで、放電容量を理論容量で除して100を乗じることにより、放電容量/理論容量比(%)を得た。
 なお、電池の理論容量は以下の手順で算出した。まず、一体焼結体板の各層の面積を形状測定により算出し、かつ、一体焼結体板の各層の厚み及び空隙率を断面SEMより算出し、得られた値から正極層及び負極層の実効体積を算出した。正極層及び負極層の各構成材料の真比重をJIS規格R1634に基づき算出し、正極層及び負極層の重量値を計算した。こうして得られた活物質重量に材料の重量当たりの容量(電池便覧に記載される)を乗じることで、正極層及び負極層の各々の理論容量値を計算し、その低い方の値を電池の理論容量値として採用した。
<パルスサイクル容量維持率>
 電池のパルスサイクル容量維持率(定電圧充電サイクル性能)を以下の手順で測定した。まず、2.7Vで定電圧充電した後、放電レート0.2Cで放電することにより初期容量を測定した。次いで、2.7Vでの定電圧充電と20mAの電流を0.5秒流す放電を100回行うことを含む充放電サイクルを合計100サイクル実施した。最後に、2.7Vで定電圧充電した後、0.2Cで放電することにより、サイクル後容量を測定した。測定されたサイクル後容量を初期容量で除して100を乗じることにより、パルスサイクル容量維持率(%)を得た。
 例A2(参考)
 1)正極層の厚さが100μmとなるようにLCOグリーンシートを厚くしたこと、及び2)負極層の厚さが120μmとなるようにLTOグリーンシートを厚くしたこと以外は例A1と同様にして、一体焼結体板及び電池を作製し、各種評価を行った。
 例A3(参考)
 1)正極層の厚さが200μmとなるようにLCOグリーンシートを厚くしたこと、及び2)負極層の厚さが240μmとなるようにLTOグリーンシートを厚くしたこと以外は例A1と同様にして、一体焼結体板及び電池を作製し、各種評価を行った。
 例A4(参考)
 1)正極層の厚さが400μmとなるようにLCOグリーンシートを厚くしたこと、及び2)負極層の厚さが480μmとなるようにLTOグリーンシートを厚くしたこと以外は例A1と同様にして、一体焼結体板及び電池を作製し、各種評価を行った。
 例A5(参考)
 正極層の平均気孔径を0.25μmに調整したこと以外は例A4と同様にして、一体焼結体板及び電池を作製し、各種評価を行った。
 例A6(参考)
(1)正極板の作製
(1a)LCOグリーンシートの作製
 まず、Li/Coのモル比が1.01となるように秤量されたCo粉末(正同化学工業株式会社製)とLiCO粉末(本荘ケミカル株式会社製)を混合後、780℃で5時間保持し、得られた粉末をポットミルにて体積基準D50が0.4μmとなるように粉砕及び解砕してLCO板状粒子からなる粉末を得た。得られたLCO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LCOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LCOグリーンシートを形成した。乾燥後のLCOグリーンシートの厚さは220μmであった。
(1b)LCO焼結体板の作製
 PETフィルムから剥がしたLCOグリーンシートをカッターで50mm角に切り出し、下部セッターとしてのマグネシア製セッター(寸法90mm角、高さ1mm)の中央に載置した。LCOシートの上に上部セッターとしての多孔質マグネシア製セッターを載置した。上記LCOシートをセッターで挟んだ状態で、120mm角のアルミナ鞘(株式会社ニッカトー製)内に載置した。このとき、アルミナ鞘を密閉せず、0.5mmの隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで600℃まで昇温して3時間脱脂した後に、820℃まで200℃/hで昇温して20時間保持することで焼成を行った。焼成後、室温まで降温させた後に焼成体をアルミナ鞘より取り出した。こうして厚さ200μmのLCO焼結体板を正極板として得た。得られた正極板を、レーザー加工機で直径10mmの円形状に切断して、正極板を得た。
(2)負極板の作製
(2a)LTOグリーンシートの作製
 まず、LTO粉末(体積基準D50粒径0.06μm、シグマアルドリッチジャパン合同会社製)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LTOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LTOグリーンシートを形成した。乾燥後のLTOグリーンシートの厚さは焼成後の厚さが240μmとなるような値とした。
(2b)LTOグリーンシートの焼成
 得られたグリーンシートを25mm角にカッターナイフで切り出し、エンボス加工されたジルコニア製セッター上に載置した。セッター上のグリーンシートをアルミナ製鞘に入れて500℃で5時間保持した後に、昇温速度200℃/hにて昇温し、765℃で5時間焼成を行なった。得られたLTO焼結体板を、レーザー加工機で直径10.5mmの円形状に切断して、負極板を得た。
(3)コイン形リチウム二次電池の作製
 図1に模式的に示されるようなコイン形リチウム二次電池10を以下のとおり作製した。
(3a)負極板と負極集電体の導電性カーボンペーストによる接着
 アセチレンブラックとポリイミドアミドを質量比で3:1となるように秤量し、溶剤としての適宜量のNMP(N-メチル-2-ピロリドン)とともに混合して、導電性カーボンペーストを調製した。負極集電体としてのアルミニウム箔上に導電性カーボンペーストをスクリーン印刷した。未乾燥の印刷パターン(すなわち導電性カーボンペーストで塗布された領域)内に収まるように上記(2)で作製した負極板を載置し、60℃で30分間真空乾燥させることで、負極板と負極集電体とが負極側カーボン層を介して接合された負極構造体を作製した。なお、負極側カーボン層の厚さは10μmとした。
(3b)カーボン層付き正極集電体の準備
 アセチレンブラックとポリイミドアミドを質量比で3:1となるように秤量し、溶剤としての適宜量のNMP(N-メチル-2-ピロリドン)とともに混合して、導電性カーボンペーストを調製した。正極集電体としてのアルミニウム箔上に導電性カーボンペーストをスクリーン印刷した後、60℃で30分間真空乾燥させることで、表面に正極側カーボン層が形成された正極集電体を作製した。なお、正極側カーボン層の厚さは5μmとした。
(3c)コイン形電池の組立
 電池ケースを構成することになる正極缶と負極缶との間に、正極缶から負極缶に向かって、正極集電体、カーボン層、LCO正極板、セルロースセパレータ、LTO負極板、カーボン層、及び負極集電体がこの順に積層されるように収容し、電解液を充填した後に、ガスケットを介して正極缶と負極缶をかしめることによって封止した。こうして、直径12mm、厚さ1.0mmのコインセル形のリチウム二次電池10を作製した。このとき、電解液としては、エチレンカーボネート(EC)及びγ-ブチロラクトン(GBL)を1:3の体積比で混合した有機溶媒に、LiBFを1.5mol/Lの濃度となるように溶解させた液を用いた。
(4)評価
 上記(1b)で合成されたLCO焼結体板(正極板)、上記(2b)で合成されたLTO焼結体板(負極板)、及び上記(3)で作製されたコイン形リチウム二次電池について、例A1と同様にして各種の評価を行った。
 評価結果
 表1及び2に例A1~A6の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[例B1~B7]
 以下、本発明によるリチウム二次電池及び比較態様の電池の具体例を示す。 
 例B1
(1)正極板の作製
 Li/Coのモル比が1.02となるように秤量されたCo粉末(正同化学工業株式会社製)とLiCO粉末(本荘ケミカル株式会社製)を混合後、750℃で5時間保持した。得られた粉末をポットミルにて体積基準D50が0.4μmとなるように粉砕してLiCoO粉末を得た。得られたLiCoO粉末100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LiCoOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LiCoOグリーンシートを形成した。乾燥後のLiCoOグリーンシートの厚さは80μmであった。得られたグリーンシートを25mm角にカッターナイフで切り出し、マグネシア製セッター上に載置した。セッター上のグリーンシートをアルミナ製鞘に入れて500℃で5時間保持した後に、昇温速度200℃/hにて昇温し、800℃で5時間焼成を行った。得られたLCO焼結体板のセッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、直径17mmの円形状にレーザー加工した。
(2)負極板の作製
 LTO粉末(体積基準D50粒径0.6μm、石原産業製)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)20重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)2重量部とを混合した。得られた負極原料混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LTOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LTOグリーンシートを形成した。乾燥後のLTOグリーンシートの厚さは焼成後の厚さが70μmとなるような値とした。得られたグリーンシートを25mm角にカッターナイフで切り出し、マグネシア製セッター上に載置した。セッター上のグリーンシートをアルミナ製鞘に入れて500℃で5時間保持した後に、昇温速度200℃/hにて昇温し、800℃で5時間焼成を行なった。得られたLTO焼結体板のセッターに接触していた面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した後、直径17mmの円形状にレーザー加工した。
(3)電池の作製及び評価
 得られた正極板及び負極板を正極層及び負極層として用いて例A6と同様の構成で電池作製を行った。得られた電池について、以下に示す手順に従い、容量比率の算出、及び抵抗比率の測定を実施した。結果は表3に示されるとおりであった。
<容量比率>
 正極層(LCO焼結体層)12の容量Cとして、正極層12の面積1cm当たりの25℃での正極層の実電気容量(mAh)を求めた。この実電気容量は、0.2C電流、リチウム金属に対する電位が4.25Vの定電流-定電圧充電を10時間行った後、0.2C電流の定電流放電をリチウム金属に対する電位が3.0Vに到達するまで行ったときの電気容量とした。一方、負極層(LTO焼結体層)16の容量Aとして、負極層16の面積1cm当たりの25℃での負極層16の実電気容量(mAh)を求めた。この実電気容量は、0.2C電流、リチウム金属に対する電位が0.8Vの定電流-定電圧充電を10時間行った後、0.2C電流の定電流放電をリチウム金属に対する電位が2.0Vに到達するまで行ったときの電気容量とした。最後に、負極層16の容量Aに対する正極層12の容量Cの比率を算出してC/A比とした。
<抵抗比率>
i)SOCの測定
 得られた電池を0.05Cにて充放電を行い、得られた電池容量を理論容量とした。その容量に対して、10%、50%、80%充電を行った状態をそれぞれSOC10%、SOC50%、SOC80%と定めた。
ii)抵抗率測定
 SOC10%、SOC50%、SOC80%の各SOC状態になるように電池の充放電を行い、得られた電池の1Hzの抵抗を交流インピーダンス法にて測定し、それぞれR10、R50、R80とした。R50をR10で除することでR50/R10を、R80をR50で除することでR80/R50を、R80をR10で除することでR80/R10をそれぞれ算出した。
 例B1において測定された各SOCの抵抗値は図5に示されるとおりであった。
 例B2
 負極層の厚さを90μmとしたこと以外は例B1と同様にして電池の作製及び評価を行った。
 例B3
 正極層の厚さを200μmとし、かつ、負極層の厚さを240μmとしたこと以外は例B1と同様にして電池の作製及び評価を行った。
 例B4
 電極サイズを直径17mmにしたこと以外は例A3と同様にして電池を作製した。作製した電池に対して例B1と同様にして評価を行った。
 例B5
 正極層の厚さを420μm、負極層の厚さを500μmとしたこと以外は例B4と同様にして電池の作製及び評価を行った。
 例B6
 正極層の厚さを600μm、負極層の厚さを500μmとしたこと以外は例B4と同様にして電池の作製及び評価を行った。
 例B7(比較)
 正極層としてLCO焼結体板の代わりに市販のLCO塗工電極(株式会社八山製)を用いたこと、及び負極層としてLTO焼結体板の代わりに市販のLTO塗工電極(株式会社八山製)を用いたこと以外は例B4と同様にして、電池を作製及び評価を行った。なお、これらの塗工電極は電極活物質を含むペーストが塗布及び乾燥されて作製されたものであり、焼結体板ではない。
Figure JPOXMLDOC01-appb-T000003

Claims (13)

  1.  リチウム複合酸化物焼結体で構成される、厚さ70μm以上の正極層と、
     チタン含有焼結体で構成される、厚さ70μm以上の負極層と、
     前記正極層と前記負極層との間に介在されるセパレータと、
     少なくとも前記セパレータに含浸される電解質と、
     密閉空間を備え、該密閉空間内に前記正極層、前記負極層、前記セパレータ及び前記電解質が収容される外装体と、
    を備えた、リチウム二次電池であって、
     充電状態(SOC)が10%から80%に上がるにつれて抵抗値が低下する特性を有する、リチウム二次電池。
  2.  前記リチウム二次電池のSOC10%、50%及び80%における抵抗値をそれぞれR10、R50及びR80としたとき、0.30≦R50/R10≦0.85、0.30≦R80/R50≦0.85、及び0.20≦R80/R10≦0.70の関係を満たす、請求項1に記載のリチウム二次電池。
  3.  前記負極層の容量Aに対する前記正極層の容量Cの比であるC/Aが1.1以上である、請求項1又は2に記載のリチウム二次電池。
  4.  前記正極層を構成する前記リチウム複合酸化物がコバルト酸リチウムである、請求項1~3のいずれか一項に記載のリチウム二次電池。
  5.  前記正極層の厚さが70~800μmである、請求項1~4のいずれか一項に記載のリチウム二次電池。
  6.  前記正極層の気孔率が20~60%である、請求項1~5のいずれか一項に記載のリチウム二次電池。
  7.  前記正極層が、リチウム複合酸化物で構成される複数の一次粒子を含み、前記複数の一次粒子が前記正極層の層面に対して0°超30°以下の平均配向角度で配向している、配向正極層である、請求項1~6のいずれか一項に記載のリチウム二次電池。
  8.  前記負極層の厚さが70~800μmである、請求項1~7のいずれか一項に記載のリチウム二次電池。
  9.  前記チタン含有焼結体が、チタン酸リチウム又はニオブチタン複合酸化物を含む、請求項1~8のいずれか一項に記載のリチウム二次電池。
  10.  前記負極層の気孔率が20~60%である、請求項1~9のいずれか一項に記載のリチウム二次電池。
  11.  前記セパレータが、セルロース製、ポリオレフィン製、ポリイミド製、ポリエステル製、又はMgO、Al、ZrO、SiC、Si、AlN、及びコーディエライトからなる群から選択されるセラミック製である、請求項1~10のいずれか一項に記載のリチウム二次電池。
  12.  前記セパレータがセラミックセパレータであり、前記正極層、前記セラミックセパレータ及び前記負極層が全体として1つの一体焼結体板を成しており、それにより前記正極層、前記セラミックセパレータ及び前記負極層が互いに結合している、請求項1~11のいずれか一項に記載のリチウム二次電池。
  13.  充電された請求項1~12のいずれか一項に記載のリチウム二次電池を用意する工程と、
     前記充電されたリチウム二次電池の抵抗値を測定する工程と、
     前記抵抗値を、予め同種のリチウム二次電池について測定しておいた充電状態(SOC)10~80%と抵抗値との相関関係に当てはめ、前記抵抗値に対応する充電状態(SOC)を決定する工程と、
    を含む、リチウム二次電池の充電状態の測定方法。
PCT/JP2020/033090 2019-11-20 2020-09-01 リチウム二次電池及びその充電状態の測定方法 WO2021100283A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080058505.7A CN114730913A (zh) 2019-11-20 2020-09-01 锂二次电池及其充电状态的测定方法
KR1020227006208A KR102656021B1 (ko) 2019-11-20 2020-09-01 리튬 이차 전지 및 그 충전 상태의 측정 방법
EP20890460.7A EP4064403A4 (en) 2019-11-20 2020-09-01 LITHIUM SECONDARY BATTERY AND METHOD FOR MEASURING THE STATE OF CHARGE SAME
JP2021558181A JP7280379B2 (ja) 2019-11-20 2020-09-01 リチウム二次電池及びその充電状態の測定方法
US17/658,694 US20220238870A1 (en) 2019-11-20 2022-04-11 Lithium secondary battery and method for measuring state of charge of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019209921 2019-11-20
JP2019-209921 2019-11-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/658,694 Continuation US20220238870A1 (en) 2019-11-20 2022-04-11 Lithium secondary battery and method for measuring state of charge of same

Publications (1)

Publication Number Publication Date
WO2021100283A1 true WO2021100283A1 (ja) 2021-05-27

Family

ID=75980498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033090 WO2021100283A1 (ja) 2019-11-20 2020-09-01 リチウム二次電池及びその充電状態の測定方法

Country Status (6)

Country Link
US (1) US20220238870A1 (ja)
EP (1) EP4064403A4 (ja)
JP (1) JP7280379B2 (ja)
KR (1) KR102656021B1 (ja)
CN (1) CN114730913A (ja)
WO (1) WO2021100283A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587052A (en) 1978-12-26 1980-07-01 Matsushita Electric Works Ltd Measuring circuit for instantaneous power
JP2000012024A (ja) * 1998-06-24 2000-01-14 Kao Corp 非水系二次電池用正極の製造方法
JP2002042785A (ja) * 2000-07-21 2002-02-08 Kyocera Corp リチウム電池
JP4439456B2 (ja) 2005-03-24 2010-03-24 株式会社東芝 電池パック及び自動車
JP5587052B2 (ja) 2010-06-23 2014-09-10 日本碍子株式会社 リチウム二次電池の正極及びリチウム二次電池
JP2015502626A (ja) * 2011-07-01 2015-01-22 ハーエー3デーアー エス.エル.オー. リチウム蓄電池
JP2015185337A (ja) 2014-03-24 2015-10-22 日本碍子株式会社 全固体電池
WO2017146088A1 (ja) 2016-02-24 2017-08-31 日本碍子株式会社 板状リチウム複合酸化物
JP2019036473A (ja) * 2017-08-17 2019-03-07 セイコーエプソン株式会社 複合体、リチウム電池、複合体の製造方法、リチウム電池の製造方法、電子機器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941642Y2 (ja) 1978-12-11 1984-12-01 パイオニア株式会社 送受信切換信号発生回路
JP2015191710A (ja) * 2014-03-27 2015-11-02 株式会社村田製作所 リチウムイオン二次電池の製造方法およびリチウムイオン二次電池
WO2018212038A1 (ja) * 2017-05-15 2018-11-22 日本碍子株式会社 チタン酸リチウム焼結体板
US20200321604A1 (en) 2017-11-01 2020-10-08 University Of Virginia Patent Foundation Sintered electrode cells for high energy density batteries and related methods thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587052A (en) 1978-12-26 1980-07-01 Matsushita Electric Works Ltd Measuring circuit for instantaneous power
JP2000012024A (ja) * 1998-06-24 2000-01-14 Kao Corp 非水系二次電池用正極の製造方法
JP2002042785A (ja) * 2000-07-21 2002-02-08 Kyocera Corp リチウム電池
JP4439456B2 (ja) 2005-03-24 2010-03-24 株式会社東芝 電池パック及び自動車
JP5587052B2 (ja) 2010-06-23 2014-09-10 日本碍子株式会社 リチウム二次電池の正極及びリチウム二次電池
JP2015502626A (ja) * 2011-07-01 2015-01-22 ハーエー3デーアー エス.エル.オー. リチウム蓄電池
JP2015185337A (ja) 2014-03-24 2015-10-22 日本碍子株式会社 全固体電池
WO2017146088A1 (ja) 2016-02-24 2017-08-31 日本碍子株式会社 板状リチウム複合酸化物
JP2019036473A (ja) * 2017-08-17 2019-03-07 セイコーエプソン株式会社 複合体、リチウム電池、複合体の製造方法、リチウム電池の製造方法、電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4064403A4

Also Published As

Publication number Publication date
JP7280379B2 (ja) 2023-05-23
JPWO2021100283A1 (ja) 2021-05-27
EP4064403A1 (en) 2022-09-28
KR102656021B1 (ko) 2024-04-08
KR20220038141A (ko) 2022-03-25
EP4064403A4 (en) 2024-01-17
US20220238870A1 (en) 2022-07-28
CN114730913A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
US20210036305A1 (en) Lithium secondary battery
JP6985509B2 (ja) リチウム二次電池
JP7041256B2 (ja) コイン形リチウム二次電池及びIoTデバイス
JP7104148B2 (ja) リチウム二次電池
JP6901632B2 (ja) コイン形リチウム二次電池及びIoTデバイス
JP6966639B2 (ja) リチウム二次電池
JP6966640B2 (ja) リチウム二次電池
US20210066744A1 (en) Lithium secondary battery
WO2021100283A1 (ja) リチウム二次電池及びその充電状態の測定方法
WO2022044409A1 (ja) リチウムイオン二次電池
WO2020217749A1 (ja) リチウム二次電池
US11996544B2 (en) Coin-shaped lithium secondary battery and IoT device
JP7268142B2 (ja) リチウム二次電池
WO2023042801A1 (ja) 回路基板アセンブリの製造方法
JP2022101165A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227006208

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021558181

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020890460

Country of ref document: EP

Effective date: 20220620