WO2017145470A1 - エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ - Google Patents
エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ Download PDFInfo
- Publication number
- WO2017145470A1 WO2017145470A1 PCT/JP2016/085046 JP2016085046W WO2017145470A1 WO 2017145470 A1 WO2017145470 A1 WO 2017145470A1 JP 2016085046 W JP2016085046 W JP 2016085046W WO 2017145470 A1 WO2017145470 A1 WO 2017145470A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wafer
- layer
- epitaxial
- support substrate
- gettering
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 239000000758 substrate Substances 0.000 claims abstract description 125
- 238000005247 gettering Methods 0.000 claims abstract description 94
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 14
- 230000004913 activation Effects 0.000 claims abstract description 11
- 235000012431 wafers Nutrition 0.000 claims description 320
- 238000000034 method Methods 0.000 claims description 67
- 229910052760 oxygen Inorganic materials 0.000 claims description 60
- 239000001301 oxygen Substances 0.000 claims description 60
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 59
- 229910052710 silicon Inorganic materials 0.000 claims description 40
- 239000010703 silicon Substances 0.000 claims description 40
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 38
- 150000002500 ions Chemical class 0.000 claims description 29
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 28
- 125000004429 atom Chemical group 0.000 claims description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims description 23
- 239000001257 hydrogen Substances 0.000 claims description 22
- 238000001994 activation Methods 0.000 claims description 20
- 150000001793 charged compounds Chemical class 0.000 claims description 19
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 15
- 239000011737 fluorine Substances 0.000 claims description 15
- 229910052731 fluorine Inorganic materials 0.000 claims description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 239000000178 monomer Substances 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 230000007935 neutral effect Effects 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- 239000001307 helium Substances 0.000 claims description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 4
- 238000001020 plasma etching Methods 0.000 claims description 4
- 229910052754 neon Inorganic materials 0.000 claims description 3
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 3
- 229910052724 xenon Inorganic materials 0.000 claims description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 38
- 238000009792 diffusion process Methods 0.000 abstract description 20
- 239000012535 impurity Substances 0.000 abstract description 18
- 239000010410 layer Substances 0.000 description 278
- 230000007547 defect Effects 0.000 description 19
- 229910052799 carbon Inorganic materials 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 230000001133 acceleration Effects 0.000 description 14
- 239000002019 doping agent Substances 0.000 description 14
- 150000002431 hydrogen Chemical class 0.000 description 13
- 239000000470 constituent Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 238000005468 ion implantation Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- -1 silicon ions Chemical class 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 229940032122 claris Drugs 0.000 description 2
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- IHCDKJZZFOUARO-UHFFFAOYSA-M sulfacetamide sodium Chemical compound O.[Na+].CC(=O)[N-]S(=O)(=O)C1=CC=C(N)C=C1 IHCDKJZZFOUARO-UHFFFAOYSA-M 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004857 zone melting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02293—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/322—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/322—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
- H01L21/3221—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to an epitaxial wafer manufacturing method and an epitaxial wafer.
- the gettering method includes an intrinsic gettering method (Intrinsic Gettering method, IG method) in which oxygen is precipitated inside the silicon wafer and the formed oxygen precipitate is used as a gettering site, and on the back surface of the silicon wafer, There is an extrinsic gettering method (EG method) in which mechanical strain is applied using a sandblast method or the like, or a polycrystalline silicon film or the like is formed as a gettering site.
- Intrinsic Gettering method IG method
- EG method extrinsic gettering method
- a silicon wafer having a diameter of 300 mm or more is usually subjected to mirror polishing not only on the main surface but also on the back surface, and mechanical strain is applied to the back surface of the silicon wafer. And a polycrystalline silicon film or the like cannot be formed.
- the wafer manufacturing process is a process in which a gettering layer is formed in the surface layer region of the support substrate wafer, and then an epitaxial layer is formed on the surface of the support substrate wafer by a known CVD method or the like.
- Patent Document 1 discloses that after silicon ions are implanted into the surface of a silicon wafer to form a gettering layer containing a high concentration of carbon in the surface region of the wafer, this silicon A method for forming an epitaxial layer on the surface of a wafer is described.
- the gettering layer is formed by the above-described carbon ion implantation method, in order to avoid the diffusion of carbon into the epitaxial layer as much as possible, the carbon ion implantation range is increased to a relatively deep position from the wafer surface. An ion implantation process is performed so as to form a gettering layer.
- Patent Document 2 molecular ion constituent elements are introduced into a silicon wafer with a reduced acceleration voltage per atom by irradiating the surface of the silicon wafer as a support substrate wafer with molecular ions.
- a technique that can improve the gettering capability without increasing the crystal defects of the epitaxial layer by forming a modified layer containing the above constituent elements and using the modified layer as a gettering layer is described. Yes.
- the epitaxial layer formation process is performed at a high temperature. Because the process is a silicon wafer as a support substrate wafer, the constituent elements of the gettering layer, impurities such as dopants and oxygen contained in the silicon wafer diffuse into the epitaxial layer, and the photodiode is used in the subsequent device formation process. There is a concern that device characteristic defects such as abnormal charge state and pn junction leakage may occur.
- an object of the present invention is to provide an epitaxial wafer manufacturing method capable of suppressing diffusion of constituent elements of the gettering layer and impurities such as oxygen in the support substrate wafer into the epitaxial layer during the formation of the epitaxial layer. And providing an epitaxial wafer.
- the inventor has intensively studied how to solve the above problems.
- the support substrate wafer having the gettering layer is inevitably exposed to a high temperature environment when the epitaxial layer is formed, the gettering layer in the support substrate wafer is removed.
- it is difficult to prevent the constituent elements and impurities such as oxygen from diffusing into the epitaxial layer.
- the present inventor has intensively studied how to provide an epitaxial layer on the support substrate wafer without exposing the support substrate wafer to a high temperature environment.
- the epitaxial layer is not directly formed on the support substrate wafer having the gettering layer, but is formed on the separately prepared active layer wafer, and the active layer wafer and the support substrate wafer are vacuumed.
- the inventors came up with a method of removing the active layer wafer, and completed the present invention.
- the gist of the present invention is as follows. (1) An epitaxial layer forming step of forming an epitaxial layer on the surface of the active layer wafer, and a gettering layer containing an element that contributes to gettering of heavy metal inside at least one of the support substrate wafer and the epitaxial layer. A gettering layer forming step to be formed, and after forming an amorphous layer on both surfaces by applying an activation treatment to the surface of the epitaxial layer and the surface of the wafer for the support substrate in a vacuum at room temperature, A bonding step of bonding the active layer wafer and the support substrate wafer through the amorphous layers on both surfaces; and a substrate removal step of removing the active layer wafer to expose the epitaxial layer.
- An epitaxial wafer manufacturing method characterized by the above.
- the activation treatment is a treatment of sputtering the surface of the epitaxial wafer according to (1), wherein the neutralized element is made to collide with the surface of the epitaxial layer or the wafer for supporting substrate and the surface is sputtered. Production method.
- the gettering layer forming step is performed by irradiating at least one surface of the support substrate wafer and the epitaxial layer with molecular ions containing an element contributing to gettering of heavy metal.
- the gettering layer forming step is performed by implanting monomer ions of an element that contributes to heavy metal gettering into at least one surface of the support substrate wafer and the epitaxial layer. 8. The method for producing an epitaxial wafer according to any one of 8).
- An epitaxial wafer comprising:
- the epitaxial layer is not directly formed on the support substrate wafer having the gettering layer, but is formed on the separately prepared active layer wafer, and the active layer wafer and the support substrate wafer are formed. Are bonded to each other in a vacuum and at room temperature, and then the active layer wafer is removed, so that when the epitaxial layer is formed, impurities such as oxygen in the gettering layer constituent element and support substrate wafer are epitaxially formed. Diffusion to the layer can be suppressed.
- the amorphous layer is provided at the interface between the epitaxial layer and the support substrate wafer, the diffusion of impurities such as oxygen from the support substrate wafer to the epitaxial layer is suppressed in the device formation process. be able to.
- FIG. 1 It is a flowchart of the manufacturing method of the epitaxial wafer which concerns on one Embodiment of this invention. It is a figure which shows an example of a vacuum room temperature bonding apparatus. It is a flowchart of the manufacturing method of the epitaxial wafer which concerns on suitable embodiment of this invention. It is a carbon concentration profile with respect to (a) a prior art example and (b) invention example 1. FIG. It is the oxygen concentration profile with respect to (a) a prior art example and (b) invention example 1. FIG. It is a figure which shows the result of the infrared observation with respect to the epitaxial wafer manufactured in the example 1 of an invention. 2 is a cross-sectional TEM image of an epitaxial wafer immediately after being manufactured in Invention Example 1. FIG.
- FIG. 1 is a flowchart of an epitaxial wafer manufacturing method according to an embodiment of the present invention.
- an epitaxial layer forming step (FIGS. 1A and 1B) for forming an epitaxial layer 17 on the surface of the active layer wafer 11, the supporting substrate wafer 12 and the epitaxial layer is performed.
- a gettering layer forming step (FIGS. 1C and 1D) for forming a gettering layer 16 containing an element that contributes to gettering of heavy metal inside at least one of 17, and in a vacuum and room temperature environment
- FIG. 1 is a flowchart of an epitaxial wafer manufacturing method according to an embodiment of the present invention.
- the surface of the epitaxial layer 17 and the surface of the support substrate wafer 12 are activated to form the amorphous layer 18 on both surfaces (FIG. 1E), and then the active layer wafer 11 and the support substrate are formed.
- an active layer wafer 11 and a support substrate wafer 12 are prepared.
- the active layer wafer 11 is a wafer used as a temporary support substrate for the epitaxial layer 17 used as a device formation region.
- a single crystal silicon ingot grown by a known method such as the Czochralski (Czochralski, CZ) method or the floating zone melting (Floating Zone, FZ) method is used. can do.
- Arbitrary impurities can be added to obtain n-type or p-type, and the impurity concentration can be adjusted to adjust the resistivity, oxygen concentration, or the like.
- the oxygen concentration of the active layer wafer 11 when the epitaxial layer 17 is formed on the active layer wafer 11, if the oxygen concentration of the active layer wafer 11 is high, the diffusion of oxygen into the epitaxial layer 17 is large. Become. Therefore, it is preferable to use a wafer having a low oxygen concentration as the active layer wafer 11.
- a silicon wafer prepared by the FZ method or a silicon wafer having a low oxygen concentration of 3 ⁇ 10 17 atoms / cm 3 (ASTM F121-1979) or less prepared by the CZ method is used as the active layer wafer 11. it can.
- a non-doped silicon wafer to which no dopant is added, a high-resistance silicon wafer having a resistance of 100 ⁇ ⁇ cm or more, and the like are preferably used as the active layer wafer 11.
- the diffusion region in which the dopant has diffused into the epitaxial layer 17 during the formation of the epitaxial layer 17 is thinned (polishing treatment).
- the epitaxial layer 17 having a quality level that does not cause a problem as a product can be obtained.
- an epitaxial layer 17 that is thick enough to be removed by thinning is formed in advance.
- the support substrate wafer 12 is a wafer that supports the epitaxial layer 17 that is a device formation region, and a gettering layer 16 that captures heavy metals attached to the epitaxial layer 17 is formed in the surface layer region.
- the support substrate wafer 12 it is desirable to use a single crystal silicon wafer made of a silicon single crystal, like the active layer wafer 11.
- Arbitrary impurities can be added to obtain n-type or p-type, and the impurity concentration can be adjusted to adjust the resistivity, oxygen concentration, or the like.
- the oxygen concentration in the support substrate wafer 12 is high, the amount of oxygen diffused into the epitaxial layer 17 in the device formation process is increased. Therefore, it is preferable that the oxygen concentration is low.
- the oxygen concentration in the support substrate wafer 12 is low, the gettering effect by the BMD formation in the support substrate wafer 12 becomes low. Therefore, from the viewpoint of obtaining the gettering ability by forming the BMD, the oxygen concentration of the support substrate wafer 12 is preferably 8 ⁇ 10 17 atoms / cm 3 or more.
- the dopant concentration of the support substrate wafer 12 can be appropriately set based on the specifications.
- an epitaxial layer forming step for forming an epitaxial layer 17 on the surface of the active layer wafer 11 is performed.
- the epitaxial layer 17 include a silicon epitaxial layer, which can be formed under general conditions.
- hydrogen (H) is used as a carrier gas and a source gas such as dichlorosilane (H 2 Cl 2 Si) or trichlorosilane (HCl 3 Si) is introduced into the chamber, and the growth temperature differs depending on the source gas used.
- the silicon epitaxial layer 17 can be epitaxially grown on the active layer wafer 11 by the CVD (Chemical Vapor Deposition) method at a temperature in the temperature range of approximately 1000 to 1200 ° C.
- the thickness of the epitaxial layer 17 is not particularly limited, and may be appropriately set based on the specification of the device formation region.
- the oxygen concentration of the epitaxial layer 17 is preferably 1 ⁇ 10 17 atoms / cm 3 (ASTM F121-1979) or less over the entire thickness direction of the epitaxial layer 17.
- FIG. 1C a gettering layer forming step of forming a gettering layer 16 containing an element contributing to metal gettering inside at least one of the support substrate wafer 12 and the epitaxial layer 17 is performed.
- FIG. 1 illustrates the case where the gettering layer 16 is formed inside the support substrate wafer 12.
- ions (monomer ions) of elements that contribute to the gettering of heavy metals are implanted into the wafer surface, or molecular ions are introduced into the support substrate wafer 12 as shown in FIG. This can be done by irradiating the surface.
- the “molecular ion” is not only ionized by giving a positive charge or negative charge to a single molecule, but also ions in which a plurality of molecules are combined to form a lump, and one or more molecules Also included is an ionization of a mass formed by combining one or more atoms.
- the number of such molecules and atoms can be, for example, 2 to 200.
- the element constituting the monomer ion or molecular ion is not particularly limited as long as it contributes to gettering.
- the gettering layer 16 can be formed immediately below the device formation region.
- the gettering layer 16 is formed by applying molecular ions to at least one of the surface 12A of the support substrate wafer 12 and the surface of the epitaxial layer 17 as shown in FIG. It is preferable to carry out by irradiation. That is, when the gettering layer 16 is formed by irradiating at least one of the wafer surface 12A and the surface of the epitaxial layer 17 with molecular ions, the acceleration voltage per atom is reduced as compared with the case where the monomer ions are implanted. In this state, the constituent elements of molecular ions can be introduced into the wafer.
- the constituent elements of molecular ions can be confined in a narrow region in the wafer thickness direction, and the peak concentration of the constituent elements can be increased to increase the gettering ability. Moreover, as described above, since the acceleration energy per atom can be reduced, damage when introducing the constituent elements of molecular ions into the wafer can be reduced, and epitaxial defects caused by the introduction of ions can be reduced. Can be reduced.
- Known or general conditions may be adopted as conditions for injecting (irradiating) monomer ions or molecular ions into the substrate, for example, acceleration voltage, dose, etc. in consideration of gettering ability.
- a conventional apparatus can be used as the monomer ion generator or the molecular ion generator. Note that the epitaxial layer forming step and the gettering layer forming step may be performed first or in parallel.
- an activation process is performed on the surface of the epitaxial layer 17 and the surface of the support substrate wafer 12 on the gettering layer 16 side in a vacuum at room temperature.
- Amorphous layer 18 is formed on the surface, and then, as shown in FIG. 1 (F), the bonding step of bonding the active layer wafer 11 and the support substrate wafer 12 through the amorphous layers 18 on both surfaces. I do.
- the active layer wafer 11 and the support substrate wafer 12 that have undergone the steps up to FIG. 1D are bonded together in a vacuum at room temperature (hereinafter, this bonding process is referred to as “vacuum room temperature bonding”). ").
- vacuum room temperature bonding As a pretreatment for that purpose, when the bonding surface of the active layer wafer 11 and the support substrate wafer 12, that is, the gettering layer 16 is formed inside the support substrate wafer 12 in an environment of vacuum and room temperature. Then, an activation process for activating the bonded surface is performed on each of the surface of the epitaxial layer 17 of the wafer for active layer 11 and the surface of the support substrate wafer 12 on the gettering layer 16 side. When the gettering layer 16 is formed in the epitaxial layer 17, an activation process for activating the bonding surface is performed on each of the surface of the epitaxial layer 17 and one surface of the support substrate wafer 12. .
- an amorphous layer 18 is formed on each bonding surface, and dangling bonds of elements constituting the amorphous layer 18 are formed on the surface. Since this dangling bond is unstable in terms of energy, when both bonded surfaces are brought into contact with each other in subsequent processing, a bonding force acts between the wafers so that the dangling bonds on both surfaces disappear. Therefore, the active layer wafer 11 and the support substrate wafer 12 can be firmly bonded to each other without a non-bonded region (void) without performing a treatment such as a heat treatment.
- the activation process of the bonding surface is performed by causing the ionized neutral element accelerated by the ion beam apparatus to collide with the bonding surface and sputtering the surface, or by accelerating the neutral element ionized in the plasma atmosphere to the wafer surface. It can be performed by performing a plasma etching process for etching.
- FIG. 2 shows an example of a vacuum room temperature bonding apparatus for bonding two wafers after activating the bonding surface by a plasma etching method.
- the apparatus 50 includes a plasma chamber 51, a gas inlet 52, a vacuum pump 53, a pulse voltage application device 54, and wafer fixing bases 55A and 55B.
- the active layer wafer 11 and the support substrate wafer 12 are mounted and fixed on the wafer fixing bases 55A and 55B in the plasma chamber 51, respectively.
- the source gas is introduced into the plasma chamber 51 from the gas inlet 52.
- a negative voltage is applied in a pulsed manner to the wafer fixing bases 55A and 55B (wafers 11 and 12) by the pulse voltage application device 54.
- plasma of the source gas is generated, and ions of the source gas contained in the generated plasma are accelerated toward the wafers 11 and 12 and irradiated.
- the amorphous layer 18 can be formed on the wafer surface, and dangling bonds of the elements constituting the amorphous layer 18 can be formed on the irradiated surface.
- the neutral element to be irradiated is preferably at least one selected from the group consisting of argon (Ar), neon (Ne), xenon (Xe), hydrogen (H), helium (He), and silicon (Si). .
- the pressure (degree of vacuum) in the plasma chamber 51 is preferably 1 ⁇ 10 ⁇ 5 Pa or less. Thereby, it is possible to suppress activation of the elements sputtered on the wafer surface and perform the activation process without lowering the dangling bond formation rate.
- the pulse voltage applied to the active layer wafer 11 and the support substrate wafer 12 is set so that the acceleration energy of the irradiation element with respect to the wafer surface is 100 eV or more and 10 keV or less.
- the acceleration energy is less than 100 eV, the irradiated neutral element is deposited on the wafer surface, and a dangling bond cannot be formed on the wafer surface.
- the acceleration energy exceeds 10 keV, the irradiated element is injected into the wafer, and even in this case, dangling bonds cannot be formed on the wafer surface.
- the frequency of the pulse voltage determines the number of times the wafers 11 and 12 are irradiated with ions.
- the frequency of the pulse voltage is preferably 10 Hz to 10 kHz.
- the frequency is set to 10 Hz or more, variations in ion irradiation can be absorbed, and the ion irradiation amount is stabilized.
- the plasma formation by glow discharge is stabilized by setting it as 10 kHz or less.
- the pulse width of the pulse voltage determines the time for which the wafers 11 and 12 are irradiated with ions.
- the pulse width is preferably 1 ⁇ sec or more and 10 ms or less. By setting it to 1 microsecond or more, the wafers 11 and 12 can be stably irradiated with ions. Moreover, the plasma formation by glow discharge is stabilized by setting it as 10 milliseconds or less.
- the temperature is room temperature (usually 30 ° C. to 90 ° C.).
- the activation treatment is preferably performed so that the thickness of the amorphous layer 18 is 2 nm or more.
- the function of the amorphous layer 18 as a block layer that blocks thermal diffusion of impurities in the support substrate wafer 12 into the epitaxial layer 17 can be enhanced.
- the thickness of the amorphous layer 18 can be adjusted by adjusting the acceleration voltage of ions.
- the activation treatment is preferably performed so that the amorphous layer 18 has a thickness of 10 nm or more.
- the function of the amorphous layer 18 as a block layer that suppresses thermal diffusion of interstitial oxygen in the support substrate wafer 12 to the epitaxial layer 17 can be further enhanced.
- the active layer wafer 11 and the support substrate wafer 12 are bonded together in a vacuum at room temperature, the support substrate wafer 12 on which the gettering layer 16 is formed, There is no exposure to the high temperature environment associated with the formation of the epitaxial layer 17.
- the epitaxial layer 17 is formed, thermal diffusion of elements constituting the gettering layer 16 and impurities such as dopants and oxygen contained in the support substrate wafer 12 does not occur in principle.
- an amorphous layer 18 is formed on the bonding surface, and this amorphous layer 18 functions as an impurity diffusion block layer in the support substrate wafer 18. Therefore, thermal diffusion of oxygen contained in the support substrate wafer 12 to the epitaxial layer 17 can be suppressed during the heat treatment in the subsequent device formation process.
- the epitaxial layer 17 is not formed on the surface of the wafer that has been subjected to monomer ion implantation or molecular ion irradiation for forming the gettering layer 16 as in the prior art, there is an epitaxial defect due to implantation (irradiation) damage. do not do.
- a substrate removing step is performed to remove the active layer wafer 11 and expose the epitaxial layer 17.
- known surface grinding and mirror polishing methods can be suitably used.
- this substrate removal step may be performed using other techniques such as a known smart cut method.
- the epitaxial layer 17 may be thinned to a predetermined thickness after the active layer wafer 11 is removed.
- the epitaxial wafer 1 according to the present invention can be manufactured.
- the epitaxial wafer 1 according to the present invention thus obtained is a novel epitaxial wafer formed by bonding, that is, joining two wafers, unlike the conventional method of directly forming an epitaxial layer on a support substrate wafer. It is.
- Such an epitaxial wafer 1 according to the present invention can be called a “bonded epitaxial wafer” or a “bonded epitaxial wafer”.
- a step of containing at least one element selected from the group consisting of hydrogen, nitrogen, fluorine, and oxygen FOG. 3H.
- At least one of the surface of the epitaxial layer 17 and the surface of the support substrate wafer 12 on the gettering layer 16 side is made of at least one selected from the group consisting of hydrogen, nitrogen, fluorine, and oxygen. It can carry out by immersing in the liquid containing the element which becomes.
- liquid containing the above elements include aqueous solutions such as hydrofluoric acid (containing hydrogen and fluorine), ammonia water (containing nitrogen), hydrogen peroxide water and ozone water (containing oxygen). Can do.
- concentration of the liquid can be 0.05% to 50% by weight, and the immersion time can be 1 minute to 30 minutes.
- At least one element selected from the group consisting of hydrogen, nitrogen, fluorine and oxygen is applied to at least one of the surface of the epitaxial layer 17 and the surface of the support substrate wafer 12 on the gettering layer 16 side. It can be performed by supplying ions to be contained. This ion supply can be performed by the ion implantation method or the molecular ion irradiation method used in the formation of the gettering layer 16.
- ions such as H, N, and O are accelerated by an ion implantation apparatus at an acceleration voltage of 0.1 keV to 10 keV and a dose of 1 ⁇ 10 14 atoms / cm It can be performed under conditions of 2 to 1 ⁇ 10 18 atoms / cm 2 .
- molecules such as C 3 H 5 and C 16 H 10 are accelerated at an acceleration voltage of 0.3 keV / molecule to 30 keV.
- dose 1 ⁇ 10 14 atoms / cm 2 to 1 ⁇ 10 18 atoms / cm 2
- the element which consists of at least 1 sort (s) chosen from the group which consists of hydrogen, nitrogen, a fluorine, and oxygen with a 3B group element.
- the step of containing at least one element selected from the group consisting of hydrogen, nitrogen, fluorine and oxygen is performed between the epitaxial layer forming step or the gettering layer forming step and the bonding step.
- the device diffuses out of the amorphous layer 18 before the EOR defect is terminated in the device formation process.
- the group 3B element is supplied together with the element, a stable strong bond is generated between the element and the group 3B element. As a result, it becomes difficult for the element to thermally diffuse from the amorphous layer 18, and the EOR defect can be more effectively terminated in the device formation process.
- the group 3B element is a group 3B (group 13) element of the periodic table, and is an element such as boron (B), aluminum (Al), gallium (Ga), etc., and these can be used.
- boron (B) is preferably used because it forms a strong and stable bond with hydrogen, nitrogen, fluorine, or oxygen.
- the epitaxial wafer 1 according to the present invention shown in FIG. 1G includes a support substrate wafer 11, an amorphous layer 18 on the support substrate wafer 11, and an epitaxial layer 17 on the amorphous layer 18.
- a gettering layer 16 is provided inside at least one of the layer 17 and the support substrate wafer 12.
- the epitaxial layer 17 is not directly formed on the support substrate wafer 12 having the gettering layer 16, but is formed on the separately prepared active layer wafer 11, After the active layer wafer 11 and the support substrate wafer 12 are bonded together in a vacuum at room temperature, the active layer wafer 11 is removed. For this reason, when the epitaxial layer 17 is formed, thermal diffusion of the elements constituting the gettering layer 16 and impurities such as dopants and oxygen contained in the support substrate wafer 12 does not occur in principle.
- the amorphous layer 18 functions as a diffusion block layer for impurities such as oxygen and elements contained in the gettering layer 16 in the support substrate wafer 12. Therefore, it is possible to suppress thermal diffusion of impurities contained in the support substrate wafer 12 into the epitaxial layer 17 during heat treatment in the subsequent device formation process.
- the function of blocking the impurities of the amorphous layer 18 can be enhanced, and further, by setting the thickness of the amorphous layer 18 to 10 nm or more, As described above, the function as a block layer for blocking interstitial oxygen in the support substrate wafer 12 from thermally diffusing into the epitaxial layer 17 can be further improved.
- the amorphous layer 18 contains at least one selected from the group consisting of hydrogen, nitrogen, fluorine and oxygen, and that the amorphous layer 18 further contains a group 3B element. is there.
- the oxygen concentration of the epitaxial layer 17 is preferably 1 ⁇ 10 17 atoms / cm 3 (ASTM F121-1979) or less over the entire thickness direction of the epitaxial layer 17, and the oxygen concentration of the support substrate wafer 12. As described above, it is preferably 8 ⁇ 10 17 atoms / cm 3 (ASTM F121-1979) or more.
- Invention Example 1 The epitaxial wafer according to Invention Example 1 was manufactured according to the flowchart shown in FIG. First, as an active layer wafer, a silicon wafer having a diameter of 200 mm and a thickness of 725 ⁇ m (oxygen concentration: 2.0 ⁇ 10 17 atoms / cm 3 , dopant: phosphorus, dopant concentration: 4.4 ⁇ 10 14 atoms / cm 3 , Target resistivity: 10 ⁇ ⁇ cm) was prepared.
- a silicon wafer having a diameter of 200 mm and a thickness of 725 ⁇ m oxygen concentration: 8.0 ⁇ 10 17 atoms / cm 3 , dopant: phosphorus, dopant concentration: 1.4 ⁇ 10 14 atoms / cm 3 , Target resistivity: 30 ⁇ ⁇ cm was prepared.
- an epitaxial layer of silicon (thickness: 8 ⁇ m, dopant: phosphorus, 4.4 ⁇ 10 14 atoms / cm 3) is formed on the active layer wafer by CVD at 1150 ° C. using hydrogen as a carrier gas and dichlorosilane as a source gas. , Target resistivity: 10 ⁇ ⁇ cm).
- C 3 H 5 ions are generated using a molecular ion generator (manufactured by Nissin Ion Equipment Co., Ltd., model number: CLARIS), and the acceleration voltage is 80 keV / molecule and the dose is 1
- the surface of the support substrate wafer was irradiated under the condition of ⁇ 10 15 molecules / cm 2 to form a gettering layer inside the support substrate wafer.
- the wafer for active layers and the wafer for support substrates were bonded together in the environment of vacuum and normal temperature.
- the active layer wafer and the support substrate wafer are introduced into the vacuum room temperature bonding apparatus shown in FIG. 2, and the pressure in the chamber is set to 5.0 ⁇ 10 ⁇ 5 Pa, and then Ar ions are accelerated. It is injected into the surface of the epitaxial layer and the surface of the support substrate wafer 12 on the gettering layer side under the conditions of voltage: 1.0 keV, frequency: 140 Hz, pulse width: 55 ⁇ 10 ⁇ 6 seconds, and both are activated. An amorphous layer was formed on the surface. Then, the wafer for active layers and the wafer for support substrates were bonded together through the amorphous layer of both surfaces.
- the surface of the active layer wafer is ground and polished to remove the active layer wafer and thin the epitaxial layer so as to leave 4 ⁇ m, thereby obtaining the epitaxial wafer according to the embodiment of the present invention. It was.
- Invention Example 2 Similar to Invention Example 1, an epitaxial wafer according to an example of the present invention was manufactured. However, according to the flowchart shown in FIG. 3, between the epitaxial layer forming step (gettering layer forming step) and the bonding step, both the surface of the epitaxial layer and the surface of the support substrate wafer on the gettering layer side, Fluorine and hydrogen were supplied to the wafer surface and contained in a 0.5 wt% hydrofluoric acid aqueous solution for 10 minutes. Other conditions are the same as those of Invention Example 1.
- Invention Example 3 Similarly to Invention Example 2, an epitaxial wafer according to an example of the present invention was manufactured. However, in the element supply step, B 5 H 5 ions are generated using a molecular ion generator (manufactured by Nissin Ion Equipment Co., Ltd., model number: CLARIS), acceleration voltage: 80 keV / molecule, dose: 2 ⁇ 10 14 molecules This was performed by irradiating the surface of the wafer for supporting substrate under the condition of / cm 2 and supplying boron (B) and hydrogen (H) for inclusion. All other conditions are the same as in Invention Example 2.
- a molecular ion generator manufactured by Nissin Ion Equipment Co., Ltd., model number: CLARIS
- acceleration voltage 80 keV / molecule
- dose 2 ⁇ 10 14 molecules
- FIG. 4A shows that in the epitaxial wafer manufactured in the conventional example, carbon contained in the modified layer is largely diffused in the epitaxial layer.
- FIG. 4B in the epitaxial wafer produced in Invention Example 1, the carbon contained in the modified layer is not diffused into the epitaxial layer, and the carbon concentration of the concentration profile peak is the conventional example. You can see that it is expensive.
- FIG. 5A shows a conventional example
- FIG. 5B shows an oxygen concentration profile for Example 1.
- the oxygen concentration in the support substrate wafer is diffused and captured in the modified layer and has a high peak oxygen concentration, while in the support substrate wafer It can be seen that oxygen diffuses into the epitaxial layer.
- FIG. 5B in the epitaxial wafer produced in Invention Example 1, oxygen in the support substrate wafer is not diffused into the epitaxial layer, and the interface between the epitaxial layer and the support substrate wafer. It can be seen that the oxygen concentration changes sharply.
- FIG. 6 shows the result of infrared observation of the epitaxial wafer manufactured in Invention Example 1.
- the epitaxial wafer of Invention Example 1 in the bonding process for bonding the active layer wafer and the support substrate wafer, no void which is a non-bonded region is formed between the two wafers. It can be seen that a good bonding interface is formed. Similarly, in the epitaxial wafers of Invention Examples 2 and 3, a good bonded interface was formed.
- FIG. 7 shows a cross-sectional TEM image of the epitaxial wafer immediately after being manufactured in Invention Example 1.
- an amorphous layer is formed between the epitaxial layer and the silicon wafer as the support substrate wafer. It can also be seen that there are no secondary defects such as dislocations due to the crystal structure of the supporting wafer in the epitaxial layer.
- ⁇ Device formation process simulation> The device formation process simulation process was performed on the epitaxial wafers of Invention Examples 2 and 3 and the conventional example prepared as described above. Specifically, as an upstream process, an ion implantation device is used to forcibly implant He ions from the epitaxial layer surface side at a dose of 1 ⁇ 10 12 cm ⁇ 2 and an acceleration voltage of 200 keV, thereby forcing the epitaxial layer. After forming the implantation defects therein, an epitaxial wafer was introduced into a heat treatment furnace as a simulated heat treatment, the temperature was raised at a rate of 5 ° C./second, held at 1100 ° C. for 2 hours, and 2.5 ° C. / The temperature was lowered to room temperature at a temperature drop rate of seconds.
- the EOR defect after the device formation process simulation treatment was evaluated by the cathode luminescence (Cathode Luminescence, CL) method. Specifically, each epitaxial wafer was irradiated with an electron beam at 34 K and 15 keV, the signal intensity of the D line (1450 nm) was measured, and the defect density was evaluated based on the intensity. As a result, in the conventional example, C i O i defects were detected in the region of the epitaxial layer, and it was confirmed that carbon and oxygen diffused into the epitaxial layer to form defects. On the other hand, in Invention Examples 2 and 3, no C i O i defect was detected.
- the epitaxial layer is not formed on the support substrate wafer having the gettering layer, but is formed on the separately prepared active layer wafer, and the active layer wafer and the support substrate wafer are evacuated.
- the active layer wafer is removed to prevent impurities from diffusing from the support substrate wafer to the epitaxial layer during the epitaxial layer formation or device formation process. Can be useful in the semiconductor industry.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- High Energy & Nuclear Physics (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
(1)活性層用ウェーハの表面上にエピタキシャル層を形成するエピタキシャル層形成工程と、支持基板用ウェーハおよび前記エピタキシャル層の少なくとも一方の内部に重金属のゲッタリングに寄与する元素を含むゲッタリング層を形成するゲッタリング層形成工程と、真空かつ常温の環境下において、前記エピタキシャル層の表面および前記支持基板用ウェーハの表面に対して活性化処理を施して両表面にアモルファス層を形成した後、前記活性層用ウェーハと前記支持基板用ウェーハとを、両表面の前記アモルファス層を介して貼り合わせる貼り合わせ工程と、前記活性層用ウェーハを除去して前記エピタキシャル層を露出する基板除去工程とを有することを特徴とするエピタキシャルウェーハの製造方法。
また、本発明によれば、エピタキシャル層と支持基板用ウェーハとの界面にアモルファス層を備えているため、デバイス形成プロセスにおいて、支持基板用ウェーハからエピタキシャル層への酸素等の不純物の拡散を抑制することができる。
次に、本発明に係るエピタキシャルウェーハについて説明する。図1(G)に示す本発明に係るエピタキシャルウェーハ1は、支持基板用ウェーハ11と、該支持基板用ウェーハ11上のアモルファス層18と、該アモルファス層18上のエピタキシャル層17とを備え、エピタキシャル層17および支持基板用ウェーハ12の少なくとも一方の内部にゲッタリング層16を備えることを特徴とする。
図1に示したフローチャートに従って、発明例1に係るエピタキシャルウェーハを製造した。まず、活性層用ウェーハとして、直径:200mm、厚み:725μmのシリコンウェーハ(酸素濃度:2.0×1017atoms/cm3、ドーパント:リン、ドーパント濃度:4.4×1014atoms/cm3、目標抵抗率:10Ω・cm)を用意した。また、支持基板用ウェーハとして、直径:200mm、厚み:725μmのシリコンウェーハ(酸素濃度:8.0×1017atoms/cm3、ドーパント:リン、ドーパント濃度:1.4×1014atoms/cm3、目標抵抗率:30Ω・cm)を用意した。
発明例1と同様に本発明の従来例に係るエピタキシャルウェーハを製造した。ただし、エピタキシャル層形成工程において、エピタキシャル層は活性層用ウェーハ上に形成せず、ゲッタリング層を形成した後の支持基板用ウェーハ上に形成し、貼り合わせ工程および基板除去工程は行わなかった。その他の条件は発明例1と全て同じである。
発明例1と同様に、本発明の実施例に係るエピタキシャルウェーハを製造した。ただし、図3に示したフローチャートに従って、エピタキシャル層形成工程(ゲッタリング層形成工程)と貼り合わせ工程との間に、エピタキシャル層の表面および支持基板用ウェーハのゲッタリング層側の表面の双方を、0.5重量%のフッ酸水溶液に10分間し、フッ素および水素をウェーハ表面に供給して含有させた。その他の条件は発明例1と全て同じである。
発明例2と同様に、本発明の実施例に係るエピタキシャルウェーハを製造した。ただし、元素供給工程は、分子イオン発生装置(日新イオン機器社製、型番:CLARIS)を用いてB5H5イオンを生成し、加速電圧:80keV/分子、ドーズ量:2×1014分子/cm2の条件で支持基板用ウェーハの表面に照射して、ホウ素(B)および水素(H)を供給して含有させることにより行った。その他の条件は発明例2と全て同じである。
従来例および発明例1で作製した直後のエピタキシャルウェーハについてSIMS測定を行い、炭素の濃度プロファイルを得た。図4(a)は従来例、図4(b)は発明例1に対する炭素の濃度プロファイルを示している。
従来例および発明例1で作製した直後のエピタキシャルウェーハについてSIMS測定を行い、酸素の濃度プロファイルを得た。図5(a)は従来例、図5(b)は発明例1に対する酸素の濃度プロファイルを示している。
図6は、発明例1において製造されたエピタキシャルウェーハに対する赤外線観察の結果を示している。この図から明らかなように、発明例1のエピタキシャルウェーハにおいて、活性層用ウェーハと支持基板用ウェーハとを貼り合わせる貼り合わせ工程において、両ウェーハ間に非接合領域であるボイドが形成されておらず、良好な貼り合わせ界面が形成されていることが分かる。同様に、発明例2および3のエピタキシャルウェーハにおいても、良好な貼り合わせ界面が形成されていた。
上述のように用意した発明例2および3、並びに従来例のエピタキシャルウェーハに対して、デバイス形成プロセス模擬処理を施した。具体的には、前段処理として、イオン注入装置を用いて、エピタキシャル層表面側からHeイオンをドーズ量:1×1012cm-2、加速電圧:200keVで注入することにより、強制的にエピタキシャル層内に注入欠陥を形成した後、模擬熱処理として、熱処理炉にエピタキシャルウェーハを導入し、5℃/秒の昇温速度で昇温した後、1100℃にて2時間保持し、2.5℃/秒の降温速度で室温まで降温した。
11 活性層用ウェーハ
12 支持基板用ウェーハ
12A 支持基板用ウェーハの表面
16 ゲッタリング層
17 エピタキシャル層
18 アモルファス層
50 真空常温接合装置
51 プラズマチャンバ
52 ガス導入口
53 真空ポンプ
54 パルス電圧印加装置
55A,55B ウェーハ固定台
Claims (18)
- 活性層用ウェーハの表面上にエピタキシャル層を形成するエピタキシャル層形成工程と、
支持基板用ウェーハおよび前記エピタキシャル層の少なくとも一方の内部に重金属のゲッタリングに寄与する元素を含むゲッタリング層を形成するゲッタリング層形成工程と、
真空かつ常温の環境下において、前記エピタキシャル層の表面および前記支持基板用ウェーハの表面に対して活性化処理を施して両表面にアモルファス層を形成した後、前記活性層用ウェーハと前記支持基板用ウェーハとを、両表面の前記アモルファス層を介して貼り合わせる貼り合わせ工程と、
前記活性層用ウェーハを除去して前記エピタキシャル層を露出する基板除去工程と、
を有することを特徴とするエピタキシャルウェーハの製造方法。 - 前記活性化処理は、イオン化させた中性元素を前記エピタキシャル層または前記支持基板用ウェーハの表面に衝突させて前記表面をスパッタリングする処理である、請求項1に記載のエピタキシャルウェーハの製造方法。
- 前記中性元素は、アルゴン、ネオン、キセノン、水素、ヘリウムおよびシリコンからなる群から選ばれる少なくとも1種である、請求項2に記載のエピタキシャルウェーハの製造方法。
- 前記活性化処理は、プラズマエッチング処理である、請求項1~3のいずれか1項に記載のエピタキシャルウェーハの製造方法。
- 前記活性化処理は、前記アモルファス層の厚みが2nm以上となるように行う、請求項1~4のいずれか1項に記載のエピタキシャルウェーハの製造方法。
- 前記活性化処理は、前記アモルファス層の厚みが10nm以上となるように行う、請求項1~4のいずれか1項に記載のエピタキシャルウェーハの製造方法。
- 前記エピタキシャル層形成工程または前記ゲッタリング層形成工程と、前記貼り合わせ工程との間に、前記エピタキシャル層の表面および前記支持基板用ウェーハの表面の少なくとも一方に、水素、窒素、フッ素および酸素からなる群から選ばれる少なくとも1種からなる元素を含有させる工程を有する、請求項1~6のいずれか1項に記載のエピタキシャルウェーハの製造方法。
- 前記水素、窒素、フッ素および酸素からなる群から選ばれる少なくとも1種からなる元素とともに3B族元素を含有させる、請求項7に記載のエピタキシャルウェーハの製造方法。
- 前記ゲッタリング層形成工程は、前記支持基板用ウェーハおよび前記エピタキシャル層の少なくとも一方の表面に重金属のゲッタリングに寄与する元素を含む分子イオンを照射することにより行う、請求項1~8のいずれか1項に記載のエピタキシャルウェーハの製造方法。
- 前記ゲッタリング層形成工程は、前記支持基板用ウェーハおよび前記エピタキシャル層の少なくとも一方の表面に重金属のゲッタリングに寄与する元素のモノマーイオンを注入することにより行う、請求項1~8のいずれか1項に記載のエピタキシャルウェーハの製造方法。
- 前記活性層用ウェーハおよび前記支持基板用ウェーハはシリコンウェーハであり、前記エピタキシャル層はシリコンエピタキシャル層である、請求項1~10のいずれか1項に記載のエピタキシャルウェーハの製造方法。
- 支持基板用ウェーハと、該支持基板用ウェーハ上のアモルファス層と、該アモルファス層上のエピタキシャル層とを備え、
前記エピタキシャル層および前記支持基板用ウェーハの少なくとも一方の内部にゲッタリング層を有することを特徴とするエピタキシャルウェーハ。 - 前記エピタキシャル層の厚み方向全域に亘る酸素濃度が1×1017atoms/cm3(ASTM F121-1979)以下である、請求項12に記載のエピタキシャルウェーハ。
- 前記支持基板用ウェーハの酸素濃度が8×1017atoms/cm3(ASTM F121-1979)以上である、請求項12または13に記載のエピタキシャルウェーハ。
- 前記アモルファス層の厚みが2nm以上である、請求項12~14のいずれか1項に記載のエピタキシャルウェーハ。
- 前記アモルファス層の厚みが10nm以上である、請求項12~14のいずれか1項に記載のエピタキシャルウェーハ。
- 前記アモルファス層が、水素、窒素、フッ素および酸素からなる群から選ばれる少なくとも1種を含む、請求項12~16のいずれか1項に記載のエピタキシャルウェーハ。
- 前記アモルファス層がさらに3B族元素を含む、請求項17に記載のエピタキシャルウェーハ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187016525A KR102129190B1 (ko) | 2016-02-25 | 2016-11-25 | 에피택셜 웨이퍼의 제조 방법 및 에피택셜 웨이퍼 |
CN201680081475.5A CN108885998B (zh) | 2016-02-25 | 2016-11-25 | 外延晶圆的制造方法及外延晶圆 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016034448A JP6759626B2 (ja) | 2016-02-25 | 2016-02-25 | エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ |
JP2016-034448 | 2016-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017145470A1 true WO2017145470A1 (ja) | 2017-08-31 |
Family
ID=59686238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/085046 WO2017145470A1 (ja) | 2016-02-25 | 2016-11-25 | エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6759626B2 (ja) |
KR (1) | KR102129190B1 (ja) |
CN (1) | CN108885998B (ja) |
TW (1) | TWI643250B (ja) |
WO (1) | WO2017145470A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109192743A (zh) * | 2018-09-04 | 2019-01-11 | 德淮半导体有限公司 | 图像传感器及其形成方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114156383B (zh) * | 2021-12-03 | 2024-06-21 | 扬州乾照光电有限公司 | 半导体器件及其制作方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0442540A (ja) * | 1990-06-08 | 1992-02-13 | Toshiba Ceramics Co Ltd | アモルファス構造を有するウェーハ |
JP2008198656A (ja) * | 2007-02-08 | 2008-08-28 | Shin Etsu Chem Co Ltd | 半導体基板の製造方法 |
JP2012182201A (ja) * | 2011-02-28 | 2012-09-20 | Shin Etsu Chem Co Ltd | 半導体ウェーハの製造方法 |
WO2012157162A1 (ja) * | 2011-05-13 | 2012-11-22 | 株式会社Sumco | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 |
JP2014099477A (ja) * | 2012-11-13 | 2014-05-29 | Sumco Corp | 貼り合わせウェーハの製造方法および貼り合わせウェーハ |
JP2014099476A (ja) * | 2012-11-13 | 2014-05-29 | Sumco Corp | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 |
JP2014216555A (ja) * | 2013-04-26 | 2014-11-17 | 株式会社豊田自動織機 | 半導体基板の製造方法 |
WO2015104965A1 (ja) * | 2014-01-07 | 2015-07-16 | 株式会社Sumco | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3384506B2 (ja) | 1993-03-30 | 2003-03-10 | ソニー株式会社 | 半導体基板の製造方法 |
JP2791429B2 (ja) * | 1996-09-18 | 1998-08-27 | 工業技術院長 | シリコンウェハーの常温接合法 |
KR101340002B1 (ko) * | 2006-04-27 | 2013-12-11 | 신에쯔 한도타이 가부시키가이샤 | Soi웨이퍼의 제조방법 |
JP5522917B2 (ja) * | 2007-10-10 | 2014-06-18 | 株式会社半導体エネルギー研究所 | Soi基板の製造方法 |
JP2011054704A (ja) * | 2009-09-01 | 2011-03-17 | Sumco Corp | 貼り合わせウェーハの製造方法 |
JP5799936B2 (ja) * | 2012-11-13 | 2015-10-28 | 株式会社Sumco | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 |
JP5704155B2 (ja) * | 2012-12-19 | 2015-04-22 | 株式会社Sumco | エピタキシャルウェーハの製造方法 |
-
2016
- 2016-02-25 JP JP2016034448A patent/JP6759626B2/ja active Active
- 2016-11-25 WO PCT/JP2016/085046 patent/WO2017145470A1/ja active Application Filing
- 2016-11-25 CN CN201680081475.5A patent/CN108885998B/zh active Active
- 2016-11-25 KR KR1020187016525A patent/KR102129190B1/ko active IP Right Grant
- 2016-12-13 TW TW105141145A patent/TWI643250B/zh active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0442540A (ja) * | 1990-06-08 | 1992-02-13 | Toshiba Ceramics Co Ltd | アモルファス構造を有するウェーハ |
JP2008198656A (ja) * | 2007-02-08 | 2008-08-28 | Shin Etsu Chem Co Ltd | 半導体基板の製造方法 |
JP2012182201A (ja) * | 2011-02-28 | 2012-09-20 | Shin Etsu Chem Co Ltd | 半導体ウェーハの製造方法 |
WO2012157162A1 (ja) * | 2011-05-13 | 2012-11-22 | 株式会社Sumco | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 |
JP2014099477A (ja) * | 2012-11-13 | 2014-05-29 | Sumco Corp | 貼り合わせウェーハの製造方法および貼り合わせウェーハ |
JP2014099476A (ja) * | 2012-11-13 | 2014-05-29 | Sumco Corp | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 |
JP2014216555A (ja) * | 2013-04-26 | 2014-11-17 | 株式会社豊田自動織機 | 半導体基板の製造方法 |
WO2015104965A1 (ja) * | 2014-01-07 | 2015-07-16 | 株式会社Sumco | 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109192743A (zh) * | 2018-09-04 | 2019-01-11 | 德淮半导体有限公司 | 图像传感器及其形成方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2017152570A (ja) | 2017-08-31 |
TWI643250B (zh) | 2018-12-01 |
TW201730930A (zh) | 2017-09-01 |
CN108885998B (zh) | 2023-06-16 |
KR102129190B1 (ko) | 2020-07-01 |
CN108885998A (zh) | 2018-11-23 |
KR20180084086A (ko) | 2018-07-24 |
JP6759626B2 (ja) | 2020-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI514558B (zh) | 半導體磊晶晶圓的製造方法、半導體磊晶晶圓及固體攝影元件的製造方法 | |
USRE49657E1 (en) | Epitaxial wafer manufacturing method and epitaxial wafer | |
US20080194086A1 (en) | Method of Introducing Impurity | |
JP6604300B2 (ja) | シリコン接合ウェーハの製造方法 | |
KR102393269B1 (ko) | 에피택셜 실리콘 웨이퍼의 제조 방법, 에피택셜 실리콘 웨이퍼, 및 고체 촬상 소자의 제조 방법 | |
WO2017145470A1 (ja) | エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ | |
JP6614066B2 (ja) | シリコン接合ウェーハの製造方法 | |
US11195716B2 (en) | Method of producing semiconductor epitaxial wafer and method of producing semiconductor device | |
JP6303321B2 (ja) | 貼り合わせウェーハの製造方法および貼り合わせウェーハ | |
JP6604294B2 (ja) | シリコン接合ウェーハの製造方法 | |
JP6791321B2 (ja) | シリコン接合ウェーハ | |
JP6485406B2 (ja) | Soiウェーハの製造方法 | |
JP6913729B2 (ja) | pn接合シリコンウェーハ | |
JP7264012B2 (ja) | エピタキシャルシリコンウェーハのパッシベーション効果評価方法 | |
KR101503000B1 (ko) | 스트레인이 완화된 실리콘-게르마늄 버퍼층의 제조방법 및 이에 의하여 제조된 실리콘-게르마늄 버퍼층 | |
JP6248458B2 (ja) | 貼り合わせウェーハの製造方法および貼り合わせウェーハ | |
JP6540607B2 (ja) | 接合ウェーハの製造方法および接合ウェーハ | |
JP6673183B2 (ja) | pn接合シリコンウェーハの製造方法 | |
JP2017045886A (ja) | Soiウェーハの製造方法およびsoiウェーハ | |
JP2019114800A (ja) | Soiウェーハ | |
JP7259706B2 (ja) | エピタキシャルシリコンウェーハのパッシベーション効果評価方法 | |
JP6295815B2 (ja) | 貼り合わせウェーハの製造方法 | |
JP2001077119A (ja) | エピタキシャルシリコンウエハおよびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20187016525 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020187016525 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16891626 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16891626 Country of ref document: EP Kind code of ref document: A1 |