WO2017126682A1 - リチウムイオン二次電池 - Google Patents
リチウムイオン二次電池 Download PDFInfo
- Publication number
- WO2017126682A1 WO2017126682A1 PCT/JP2017/001995 JP2017001995W WO2017126682A1 WO 2017126682 A1 WO2017126682 A1 WO 2017126682A1 JP 2017001995 W JP2017001995 W JP 2017001995W WO 2017126682 A1 WO2017126682 A1 WO 2017126682A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- lithium
- electrode active
- secondary battery
- Prior art date
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 315
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 314
- 239000007774 positive electrode material Substances 0.000 claims abstract description 274
- 150000002642 lithium compounds Chemical class 0.000 claims abstract description 144
- 239000007773 negative electrode material Substances 0.000 claims abstract description 111
- 239000011255 nonaqueous electrolyte Substances 0.000 claims abstract description 56
- 229910000314 transition metal oxide Inorganic materials 0.000 claims abstract description 15
- 239000002243 precursor Substances 0.000 claims description 257
- 238000003860 storage Methods 0.000 claims description 164
- 238000000034 method Methods 0.000 claims description 150
- 239000002245 particle Substances 0.000 claims description 125
- 239000011148 porous material Substances 0.000 claims description 114
- 238000005259 measurement Methods 0.000 claims description 91
- 229910000288 alkali metal carbonate Inorganic materials 0.000 claims description 90
- 150000008041 alkali metal carbonates Chemical class 0.000 claims description 90
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 83
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 81
- 238000004519 manufacturing process Methods 0.000 claims description 61
- 125000004432 carbon atom Chemical group C* 0.000 claims description 52
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 51
- 150000001875 compounds Chemical class 0.000 claims description 50
- 238000009826 distribution Methods 0.000 claims description 39
- 239000003792 electrolyte Substances 0.000 claims description 36
- 239000007787 solid Substances 0.000 claims description 34
- 229910052744 lithium Inorganic materials 0.000 claims description 30
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 27
- 239000003575 carbonaceous material Substances 0.000 claims description 27
- 238000013507 mapping Methods 0.000 claims description 27
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 25
- 229910052799 carbon Inorganic materials 0.000 claims description 22
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 21
- 239000002131 composite material Substances 0.000 claims description 21
- 239000007784 solid electrolyte Substances 0.000 claims description 21
- 125000002947 alkylene group Chemical group 0.000 claims description 18
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 16
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 16
- 229910052753 mercury Inorganic materials 0.000 claims description 16
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 claims description 13
- 125000000217 alkyl group Chemical group 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 12
- 239000000956 alloy Substances 0.000 claims description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 11
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 239000010703 silicon Substances 0.000 claims description 11
- 239000002841 Lewis acid Substances 0.000 claims description 10
- 150000007517 lewis acids Chemical class 0.000 claims description 10
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 10
- 229910001947 lithium oxide Inorganic materials 0.000 claims description 10
- 238000001069 Raman spectroscopy Methods 0.000 claims description 9
- 230000005611 electricity Effects 0.000 claims description 9
- 125000003118 aryl group Chemical group 0.000 claims description 8
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 8
- 125000003342 alkenyl group Chemical group 0.000 claims description 7
- 238000003384 imaging method Methods 0.000 claims description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 6
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 150000003377 silicon compounds Chemical class 0.000 claims description 6
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 5
- 150000003606 tin compounds Chemical class 0.000 claims description 5
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 claims description 4
- 229910000024 caesium carbonate Inorganic materials 0.000 claims description 4
- 150000003983 crown ethers Chemical class 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- WPFGFHJALYCVMO-UHFFFAOYSA-L rubidium carbonate Chemical compound [Rb+].[Rb+].[O-]C([O-])=O WPFGFHJALYCVMO-UHFFFAOYSA-L 0.000 claims description 4
- 229910000026 rubidium carbonate Inorganic materials 0.000 claims description 4
- 238000001530 Raman microscopy Methods 0.000 claims description 3
- 150000001721 carbon Chemical group 0.000 claims description 3
- 238000003306 harvesting Methods 0.000 claims description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 3
- 229910052945 inorganic sulfide Inorganic materials 0.000 claims description 3
- 230000008929 regeneration Effects 0.000 claims description 3
- 238000011069 regeneration method Methods 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 claims description 2
- 238000006731 degradation reaction Methods 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 2
- 239000010410 layer Substances 0.000 description 216
- 239000011248 coating agent Substances 0.000 description 129
- 238000000576 coating method Methods 0.000 description 129
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 103
- 229910052783 alkali metal Inorganic materials 0.000 description 88
- 150000001340 alkali metals Chemical class 0.000 description 82
- 230000000052 comparative effect Effects 0.000 description 79
- 239000010408 film Substances 0.000 description 67
- 239000000243 solution Substances 0.000 description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 62
- 239000002904 solvent Substances 0.000 description 56
- 239000006185 dispersion Substances 0.000 description 53
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 48
- 229910052751 metal Inorganic materials 0.000 description 47
- 239000002184 metal Substances 0.000 description 47
- 229910052782 aluminium Inorganic materials 0.000 description 46
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 45
- 239000008151 electrolyte solution Substances 0.000 description 45
- 239000000203 mixture Substances 0.000 description 42
- 238000010280 constant potential charging Methods 0.000 description 40
- 239000007789 gas Substances 0.000 description 40
- 239000011230 binding agent Substances 0.000 description 38
- 230000002829 reductive effect Effects 0.000 description 37
- 238000012360 testing method Methods 0.000 description 37
- 238000011156 evaluation Methods 0.000 description 35
- -1 alkaline earth metal carbonate Chemical class 0.000 description 34
- 239000012046 mixed solvent Substances 0.000 description 34
- 239000005022 packaging material Substances 0.000 description 34
- 239000011888 foil Substances 0.000 description 33
- 239000000463 material Substances 0.000 description 33
- 239000007788 liquid Substances 0.000 description 32
- 239000000843 powder Substances 0.000 description 31
- 238000001035 drying Methods 0.000 description 30
- 239000000523 sample Substances 0.000 description 30
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 29
- 239000002033 PVDF binder Substances 0.000 description 29
- 238000007600 charging Methods 0.000 description 29
- 239000011267 electrode slurry Substances 0.000 description 27
- 238000007789 sealing Methods 0.000 description 26
- 229910001413 alkali metal ion Inorganic materials 0.000 description 25
- 238000005481 NMR spectroscopy Methods 0.000 description 24
- 239000011149 active material Substances 0.000 description 24
- 229910052786 argon Inorganic materials 0.000 description 24
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 21
- 239000006230 acetylene black Substances 0.000 description 20
- 150000002500 ions Chemical class 0.000 description 18
- 238000002360 preparation method Methods 0.000 description 18
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 17
- 229910013870 LiPF 6 Inorganic materials 0.000 description 17
- 238000004364 calculation method Methods 0.000 description 17
- 238000000605 extraction Methods 0.000 description 17
- 238000002844 melting Methods 0.000 description 17
- 230000008018 melting Effects 0.000 description 17
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 16
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 16
- 239000011231 conductive filler Substances 0.000 description 16
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 16
- 239000003273 ketjen black Substances 0.000 description 15
- 229910052731 fluorine Inorganic materials 0.000 description 14
- 239000011737 fluorine Substances 0.000 description 14
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 14
- 229910052760 oxygen Inorganic materials 0.000 description 14
- 230000032683 aging Effects 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 13
- 238000007254 oxidation reaction Methods 0.000 description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 12
- 238000010277 constant-current charging Methods 0.000 description 12
- 239000012153 distilled water Substances 0.000 description 12
- 229910003002 lithium salt Inorganic materials 0.000 description 12
- 159000000002 lithium salts Chemical class 0.000 description 12
- 239000003960 organic solvent Substances 0.000 description 12
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 12
- 239000003381 stabilizer Substances 0.000 description 12
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 11
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 238000000354 decomposition reaction Methods 0.000 description 11
- 230000006866 deterioration Effects 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 11
- 239000000284 extract Substances 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 238000003825 pressing Methods 0.000 description 11
- 238000004804 winding Methods 0.000 description 11
- 239000011889 copper foil Substances 0.000 description 10
- 230000001186 cumulative effect Effects 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 238000005470 impregnation Methods 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000007599 discharging Methods 0.000 description 9
- 230000010354 integration Effects 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 9
- SDXUIOOHCIQXRP-UHFFFAOYSA-N 1,2,4,5-tetrafluorobenzene Chemical compound FC1=CC(F)=C(F)C=C1F SDXUIOOHCIQXRP-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 8
- 239000000654 additive Substances 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 150000005676 cyclic carbonates Chemical class 0.000 description 8
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 8
- 239000010419 fine particle Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 description 8
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 8
- 229910052720 vanadium Inorganic materials 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 7
- 150000001450 anions Chemical class 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 7
- 239000002019 doping agent Substances 0.000 description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 7
- 239000011164 primary particle Substances 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 150000005678 chain carbonates Chemical class 0.000 description 6
- 238000000113 differential scanning calorimetry Methods 0.000 description 6
- 229910021385 hard carbon Inorganic materials 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 229920000620 organic polymer Polymers 0.000 description 6
- 238000010248 power generation Methods 0.000 description 6
- 238000001291 vacuum drying Methods 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- 239000002879 Lewis base Substances 0.000 description 5
- NEAPKZHDYMQZCB-UHFFFAOYSA-N N-[2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]ethyl]-2-oxo-3H-1,3-benzoxazole-6-carboxamide Chemical compound C1CN(CCN1CCNC(=O)C2=CC3=C(C=C2)NC(=O)O3)C4=CN=C(N=C4)NC5CC6=CC=CC=C6C5 NEAPKZHDYMQZCB-UHFFFAOYSA-N 0.000 description 5
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 150000001339 alkali metal compounds Chemical class 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004255 ion exchange chromatography Methods 0.000 description 5
- 150000007527 lewis bases Chemical class 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 238000006864 oxidative decomposition reaction Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- WTFUTSCZYYCBAY-SXBRIOAWSA-N 6-[(E)-C-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-N-hydroxycarbonimidoyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C/C(=N/O)/C1=CC2=C(NC(O2)=O)C=C1 WTFUTSCZYYCBAY-SXBRIOAWSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 238000001237 Raman spectrum Methods 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 4
- 239000012300 argon atmosphere Substances 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 239000012982 microporous membrane Substances 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000011002 quantification Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- DFGKGUXTPFWHIX-UHFFFAOYSA-N 6-[2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]acetyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)C1=CC2=C(NC(O2)=O)C=C1 DFGKGUXTPFWHIX-UHFFFAOYSA-N 0.000 description 3
- 238000007088 Archimedes method Methods 0.000 description 3
- 238000005004 MAS NMR spectroscopy Methods 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000011300 coal pitch Substances 0.000 description 3
- 230000006837 decompression Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 3
- 229910003480 inorganic solid Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000005001 laminate film Substances 0.000 description 3
- 229910021382 natural graphite Inorganic materials 0.000 description 3
- 150000003891 oxalate salts Chemical class 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- 238000002459 porosimetry Methods 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 239000013557 residual solvent Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- XQQZRZQVBFHBHL-UHFFFAOYSA-N 12-crown-4 Chemical compound C1COCCOCCOCCO1 XQQZRZQVBFHBHL-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- JQMFQLVAJGZSQS-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JQMFQLVAJGZSQS-UHFFFAOYSA-N 0.000 description 2
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 2
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 2
- LLQHSBBZNDXTIV-UHFFFAOYSA-N 6-[5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-4,5-dihydro-1,2-oxazol-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC1CC(=NO1)C1=CC2=C(NC(O2)=O)C=C1 LLQHSBBZNDXTIV-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000002227 LISICON Substances 0.000 description 2
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 238000003332 Raman imaging Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229920006243 acrylic copolymer Polymers 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 235000019241 carbon black Nutrition 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000006182 cathode active material Substances 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- YNQRWVCLAIUHHI-UHFFFAOYSA-L dilithium;oxalate Chemical compound [Li+].[Li+].[O-]C(=O)C([O-])=O YNQRWVCLAIUHHI-UHFFFAOYSA-L 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000013213 extrapolation Methods 0.000 description 2
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 2
- 229920001973 fluoroelastomer Polymers 0.000 description 2
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical group FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 238000007602 hot air drying Methods 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 239000011301 petroleum pitch Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- 230000009974 thixotropic effect Effects 0.000 description 2
- 238000005011 time of flight secondary ion mass spectroscopy Methods 0.000 description 2
- 238000002042 time-of-flight secondary ion mass spectrometry Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 238000003809 water extraction Methods 0.000 description 2
- QDOIZVITZUBGOQ-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,4-nonafluoro-n,n-bis(1,1,2,2,3,3,4,4,4-nonafluorobutyl)butan-1-amine;1,1,2,2,3,3,4,4,4-nonafluoro-n-(1,1,2,2,3,3,4,4,4-nonafluorobutyl)-n-(trifluoromethyl)butan-1-amine Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)N(C(F)(F)F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F.FC(F)(F)C(F)(F)C(F)(F)C(F)(F)N(C(F)(F)C(F)(F)C(F)(F)C(F)(F)F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F QDOIZVITZUBGOQ-UHFFFAOYSA-N 0.000 description 1
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 1
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- RNAMYOYQYRYFQY-UHFFFAOYSA-N 2-(4,4-difluoropiperidin-1-yl)-6-methoxy-n-(1-propan-2-ylpiperidin-4-yl)-7-(3-pyrrolidin-1-ylpropoxy)quinazolin-4-amine Chemical compound N1=C(N2CCC(F)(F)CC2)N=C2C=C(OCCCN3CCCC3)C(OC)=CC2=C1NC1CCN(C(C)C)CC1 RNAMYOYQYRYFQY-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- FLDSMVTWEZKONL-AWEZNQCLSA-N 5,5-dimethyl-N-[(3S)-5-methyl-4-oxo-2,3-dihydro-1,5-benzoxazepin-3-yl]-1,4,7,8-tetrahydrooxepino[4,5-c]pyrazole-3-carboxamide Chemical compound CC1(CC2=C(NN=C2C(=O)N[C@@H]2C(N(C3=C(OC2)C=CC=C3)C)=O)CCO1)C FLDSMVTWEZKONL-AWEZNQCLSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910018871 CoO 2 Inorganic materials 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- VURFVHCLMJOLKN-UHFFFAOYSA-N Diphosphine Natural products PP VURFVHCLMJOLKN-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 229910019211 La0.51Li0.34TiO2.94 Inorganic materials 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 229910012804 Li3PO4—Li2S—Si2S Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013372 LiC 4 Inorganic materials 0.000 description 1
- 229910013131 LiN Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 1
- 229910008293 Li—C Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000002228 NASICON Substances 0.000 description 1
- 229910015207 Ni1/3Co1/3Mn1/3O Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- LCKIEQZJEYYRIY-UHFFFAOYSA-N Titanium ion Chemical compound [Ti+4] LCKIEQZJEYYRIY-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 1
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical class CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001615 alkaline earth metal halide Inorganic materials 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- MUALRAIOVNYAIW-UHFFFAOYSA-N binap Chemical compound C1=CC=CC=C1P(C=1C(=C2C=CC=CC2=CC=1)C=1C2=CC=CC=C2C=CC=1P(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 MUALRAIOVNYAIW-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000011852 carbon nanoparticle Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical class [*:2]C([*:1])=O 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000005591 charge neutralization Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000001913 cyanates Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- MKNXBRLZBFVUPV-UHFFFAOYSA-L cyclopenta-1,3-diene;dichlorotitanium Chemical compound Cl[Ti]Cl.C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 MKNXBRLZBFVUPV-UHFFFAOYSA-L 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- QLVWOKQMDLQXNN-UHFFFAOYSA-N dibutyl carbonate Chemical compound CCCCOC(=O)OCCCC QLVWOKQMDLQXNN-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- NTGONJLAOZZDJO-UHFFFAOYSA-M disodium;hydroxide Chemical compound [OH-].[Na+].[Na+] NTGONJLAOZZDJO-UHFFFAOYSA-M 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000001941 electron spectroscopy Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 1
- JUWSSMXCCAMYGX-UHFFFAOYSA-N gold platinum Chemical compound [Pt].[Au] JUWSSMXCCAMYGX-UHFFFAOYSA-N 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000006713 insertion reaction Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- IDBFBDSKYCUNPW-UHFFFAOYSA-N lithium nitride Chemical compound [Li]N([Li])[Li] IDBFBDSKYCUNPW-UHFFFAOYSA-N 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 description 1
- XKPJKVVZOOEMPK-UHFFFAOYSA-M lithium;formate Chemical compound [Li+].[O-]C=O XKPJKVVZOOEMPK-UHFFFAOYSA-M 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000003947 neutron activation analysis Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
- H01G11/06—Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/46—Metal oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/50—Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/049—Processes for forming or storing electrodes in the battery container
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/446—Initial charging measures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/044—Activating, forming or electrochemical attack of the supporting material
- H01M4/0445—Forming after manufacture of the electrode, e.g. first charge, cycling
- H01M4/0447—Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/52—Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a lithium ion secondary battery.
- the first requirement for batteries used in these power storage systems is high energy density.
- the second requirement is high output characteristics.
- a combination of a high-efficiency engine and a power storage system for example, a hybrid electric vehicle
- a combination of a fuel cell and a power storage system for example, a fuel cell electric vehicle
- a power storage system that exhibits high output discharge characteristics during acceleration. Has been.
- the lithium ion secondary battery for example, a lithium ion secondary battery that can produce a high output exceeding 3 kW / L at a depth of discharge (a value indicating what percentage of the discharge capacity of the storage element is discharged) has been developed.
- the energy density is 100 Wh / L or less, and the high energy density, which is the greatest feature of the lithium ion secondary battery, is intentionally suppressed.
- the discharge depth is used in a range narrower than the range of 0 to 100%. Since the capacity that can actually be used is further reduced, research for further improving the durability of the lithium ion secondary battery is underway.
- the third requirement is that deterioration due to storage and use is small.
- the power storage system is placed in a high temperature environment due to operation of the internal combustion engine or the like.
- an electrode and an electrolytic solution deteriorate at a high temperature, thereby causing characteristic deterioration.
- the suppression of deterioration of the lithium ion secondary battery at a high temperature is a big problem.
- Patent Documents 3 and 4 attempt to prevent decomposition of the electrolytic solution that occurs in a high-temperature environment by adding an additive typified by vinylene carbonate to the electrolytic solution.
- Patent Document 5 discloses that a high-quality solid electrolyte is formed by adding 3-propane sultone to the electrolytic solution and reacting on the negative electrode surface, suppressing gas generation during high-temperature storage, and improving cycle characteristics. Is described.
- Patent Documents 3 to 5 are capable of suppressing characteristic deterioration and gas generation during high temperature storage.
- a thick solid electrolyte layer is formed on the negative electrode active material, there is a problem that resistance increases.
- one of the problems to be solved by the present invention is to provide a lithium ion secondary battery excellent in high output characteristics and durability.
- one of the problems to be solved by the present invention is to provide a lithium ion secondary battery excellent in high energy density, high input / output characteristics, and high load charge / discharge cycle durability.
- one of the problems to be solved by the present invention is to provide a lithium ion secondary battery having both high energy density and excellent durability.
- one of the problems to be solved by the present invention is that the negative electrode can be pre-doped with lithium ions without using metallic lithium, and gas generation during high-temperature storage is small, and high load charge / discharge It is an object of the present invention to provide a method for producing a non-aqueous lithium storage element having good cycle characteristics.
- one of the problems to be solved by the present invention is that the anode can be pre-doped in a short time by promoting the decomposition of the alkali metal carbonate, and a high-capacity non-aqueous alkali metal It is providing the positive electrode precursor for a type electrical storage element.
- the present inventors diligently studied to solve the above problems and repeated experiments. As a result, it has been found that by forming a high-quality film containing lithium ions on the positive electrode, it has high energy density and high output characteristics and can suppress characteristic deterioration due to high-temperature storage.
- a lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing lithium ions
- the negative electrode includes a negative electrode current collector and a negative electrode active material layer including a negative electrode active material provided on one or both surfaces of the negative electrode current collector
- the positive electrode has a positive electrode current collector and a positive electrode active material layer including a positive electrode active material provided on one or both sides of the positive electrode current collector, and the positive electrode active material occludes and releases lithium ions.
- the positive electrode active material layer contains at least one compound selected from the group consisting of the following formulas (1) to (3) at 3.8 ⁇ 10 ⁇ 9 mol / g or more per unit mass of the positive electrode active material layer.
- R 1 is an alkylene group having 1 to 4 carbon atoms or a halogenated alkylene group having 1 to 4 carbon atoms
- R 2 is hydrogen, an alkyl group having 1 to 10 carbon atoms, or 1 carbon atom.
- X 1 and X 2 are each independently - (COO) n (where, n is 0 or 1.) is.
- R 1 is an alkylene group having 1 to 4 carbon atoms or a halogenated alkylene group having 1 to 4 carbon atoms
- R 2 and R 3 are each independently hydrogen, 1 to 10 carbon atoms Alkyl group, mono- or polyhydroxyalkyl group having 1 to 10 carbon atoms, alkenyl group having 2 to 10 carbon atoms, mono- or polyhydroxyalkenyl group having 2 to 10 carbon atoms, cycloalkyl group having 3 to 6 carbon atoms, or aryl
- X 1 and X 2 are each independently — (COO) n (where n is 0 or 1).
- the Log differential pore volume was 0.10 mL / g or more in the pore distribution curve showing the relationship between the pore diameter and the Log differential pore volume.
- One or more peaks having a peak value of 0 mL / g or less exist in the range of the pore diameter of 0.3 ⁇ m or more and 50 ⁇ m or less, and the total integrated pore volume Vp in the range of the pore diameter of 0.3 ⁇ m or more and 50 ⁇ m or less is 0.03 mL / g or more and 0.2 mL / g or less,
- a peak having a peak value of the Log differential pore volume of 0.10 mL / g or more and 1.0 mL / g or less is in the range of the pore diameter of 0.1 ⁇ m or more and 50 ⁇ m or less.
- one or more of the peaks having a peak value of the Log differential pore volume of 0.10 mL / g or more and 1.0 mL / g or less are pore diameters of 0.5 ⁇ m or more and 20 ⁇ m.
- the negative electrode active material includes an alloy-based negative electrode material that forms an alloy with lithium.
- the alloy-based negative electrode material is at least one selected from the group consisting of silicon, silicon compounds, tin, tin compounds, and composite materials of these carbon or carbonaceous materials.
- Secondary battery [7] 7. The lithium ion secondary battery according to claim 5, wherein the negative electrode active material layer has a thickness of 10 ⁇ m to 75 ⁇ m per side.
- Lithium ion secondary battery [9] The lithium ion secondary battery according to claim 8, wherein the lithium compound is at least one lithium compound selected from the group consisting of lithium carbonate, lithium oxide, and lithium hydroxide. [10] The lithium ion secondary battery according to claim 8 or 9, wherein the lithium compound contained in the positive electrode is lithium carbonate.
- the solid 7 Li-NMR spectrum of the positive electrode active material layer can be obtained by measurement with a repetition waiting time of 10 seconds—obtained by measurement with a peak area at 40 ppm to 40 ppm as a and a repetition waiting time of 3000 seconds—
- the separator includes a polymer that swells by permeation of the non-aqueous electrolyte solution.
- the solid electrolyte includes one or more selected from inorganic oxides and inorganic sulfides having lithium ion conductivity.
- a positive electrode precursor comprising a positive electrode active material containing a lithium-containing transition metal oxide and a lithium compound selected from lithium carbonate, lithium oxide, and lithium hydroxide; Housing a negative electrode including a negative electrode active material capable of occluding and releasing lithium ions, and a laminate including a separator in an exterior body; (2) Injecting a non-aqueous electrolyte containing an electrolyte containing lithium ions into the outer package, and (3) Decomposing the lithium compound by applying a voltage between the positive electrode precursor and the negative electrode Including, in the order described above, The ratio A 1 / when the amount of the lithium compound per unit area in the positive electrode precursor is A 1 [g / m 2 ] and the capacity per unit area of the negative electrode is B 1 [Ah / m 2 ].
- B 1 is not more than 0.05 [g / Ah] or 0.30 [g / Ah], and the voltage applied is 4.2V or more in the degradation of the lithium compound, method for manufacturing a lithium ion secondary battery .
- the ratio is X [mass%]
- the area of carbonate ion mapping is A 2 [%].
- the present invention in the first embodiment, it is possible to provide a lithium ion secondary battery excellent in high output characteristics and durability.
- a lithium ion secondary battery excellent in high energy density, high input / output characteristics, and high load charge / discharge cycle durability can be provided.
- a lithium ion secondary battery having both high energy density and excellent durability can be provided.
- lithium ions can be pre-doped on the negative electrode without using metallic lithium, gas generation during storage at high temperature is small, and high load charge / discharge cycle characteristics are good.
- a method for producing a water-based lithium storage element can be provided.
- the negative electrode in the fifth embodiment, can be pre-doped in a short time by accelerating the decomposition of the alkali metal carbonate, and the positive electrode for a high-capacity nonaqueous alkaline metal storage element A precursor can be provided.
- FIG. 1 is a schematic diagram of a cross-sectional curve for measuring the ten-point average roughness R zjis of the negative electrode current collector.
- this embodiment an embodiment of the present invention (hereinafter referred to as “this embodiment”) will be described in detail, but the present invention is not limited to this embodiment.
- the upper limit value and the lower limit value in each numerical range of the present embodiment can be arbitrarily combined to constitute an arbitrary numerical range.
- the “non-aqueous alkali metal storage element” is composed of a positive electrode, a negative electrode, a separator, and an electrolytic solution as main components, and an organic solvent containing alkali metal ions as the electrolytic solution (hereinafter referred to as “non-conductive”). It is also referred to as “aqueous electrolyte”.
- a lithium ion selected as an alkali metal ion is referred to as a “lithium ion secondary battery”.
- a non-aqueous alkali metal storage element including a lithium ion secondary battery can use a solid electrolyte instead of a separator (and an electrolytic solution).
- the positive electrode in the present embodiment includes a positive electrode current collector and a positive electrode active material layer including a positive electrode active material provided on one side or both sides thereof.
- the positive electrode in the present embodiment preferably contains a lithium compound and / or an alkali metal carbonate as a positive electrode precursor before assembling the electricity storage device.
- a positive electrode precursor containing a lithium compound and / or an alkali metal carbonate, a negative electrode, a separator, and a non-aqueous electrolyte are assembled, and then a positive electrode precursor is assembled. It is preferable to apply a voltage between the negative electrode.
- the lithium compound and / or alkali metal carbonate may be contained in any manner in the positive electrode precursor and the positive electrode.
- the lithium compound and / or the alkali metal carbonate may be present between the positive electrode current collector and the positive electrode active material layer, or may be present on the surface of the positive electrode active material layer.
- the lithium compound and / or alkali metal carbonate is preferably contained in the positive electrode active material layer formed on the positive electrode current collector of the positive electrode precursor.
- a positive electrode state before pre-doping described later is defined as a “positive electrode precursor”, and a positive electrode state after pre-doping is defined as a “positive electrode”.
- the positive electrode precursor in this embodiment has a positive electrode active material layer containing a positive electrode active material and a lithium compound and / or alkali metal carbonate other than the positive electrode active material.
- the positive electrode precursor may have a positive electrode current collector and a positive electrode active material layer present on one side or both sides so that the positive electrode of the non-aqueous alkali metal storage element can be formed.
- the positive electrode precursor of the present embodiment constitutes the positive electrode after the power storage element is assembled and pre-doped. As will be described later, in the present embodiment, in assembling the electricity storage element, it is preferable to pre-dope alkali metal ions on the negative electrode.
- a battery element is assembled using the positive electrode precursor, the negative electrode, the separator, the outer package, and the non-aqueous electrolyte of the present embodiment, and then a voltage is applied between the positive electrode precursor and the negative electrode. It is preferable to apply.
- the positive electrode active material layer includes a positive electrode active material including a transition metal oxide, and may include optional components such as a conductive filler, a binder, and a dispersion stabilizer in addition to the positive electrode active material.
- the positive electrode active material layer can contain a lithium compound and / or an alkali metal carbonate other than the positive electrode active material in the positive electrode active material layer or on the surface of the positive electrode active material layer.
- the positive electrode active material includes a transition metal oxide capable of inserting and extracting lithium.
- a transition metal oxide capable of inserting and extracting lithium.
- the transition metal oxide used as a positive electrode active material includes an oxide containing at least one element selected from the group consisting of cobalt, nickel, manganese, iron, vanadium, and chromium.
- Specific examples of the transition metal oxide include, for example, Li x CoO 2 , Li x NiO 2 , Li x Ni y M (1-y) O 2 (M is Co, Mn, Al, Fe, Mg, and Ti).
- the positive electrode active material in the present embodiment only a transition metal oxide may be used, or another positive electrode active material may be used in combination with the transition metal oxide.
- examples of other positive electrode active materials include activated carbon.
- group can be used.
- the content ratio of the activated carbon is preferably 15% by mass or less based on the total mass of the positive electrode active material layer in the positive electrode precursor. More preferably, it is 10 mass% or less. When the content ratio is 15% by mass or less, the energy density of the non-aqueous alkali metal storage element can be increased.
- the average particle diameter of the positive electrode active material is preferably 1 to 20 ⁇ m.
- the average particle diameter of the positive electrode active material is 1 ⁇ m or more, the capacity per electrode volume tends to increase because the density of the active material layer is high.
- the average particle size of the positive electrode active material is small, the durability may be low. However, if the average particle size is 1 ⁇ m or more, the durability is not easily lowered.
- the average particle size of the positive electrode active material is 20 ⁇ m or less, it tends to be easily adapted to high-speed charge / discharge.
- the average particle size of the positive electrode active material is more preferably 1 to 15 ⁇ m, still more preferably 1 to 10 ⁇ m.
- the average particle size of the active material in the present embodiment is the particle at which the cumulative curve becomes 50% when the cumulative curve is determined with the total volume being 100% when the particle size distribution is measured using a particle size distribution measuring device. Diameter (that is, 50% diameter (Median diameter)). This average particle diameter can be measured using a commercially available laser diffraction particle size distribution analyzer.
- the content ratio of the positive electrode active material in the positive electrode active material layer is preferably 35% by mass or more and 95% by mass or less based on the total mass of the positive electrode active material layer in the positive electrode precursor.
- As a minimum of the content rate of a positive electrode active material it is more preferable that it is 45 mass% or more, and it is further more preferable that it is 55 mass% or more.
- As an upper limit of the content rate of a positive electrode active material it is still more preferable that it is 90 mass% or less.
- the content ratio of the positive electrode active material in the positive electrode active material layer is 35% by mass or more and 95% by mass or less, suitable charge / discharge characteristics are exhibited.
- the content ratio of the positive electrode active material in the positive electrode active material layer is the amount of lithium compound per unit area A 1 and positive electrode active material weight C 1 [g / m 2 ] described later. It is preferable that the ratio A 1 / C 1 is satisfied.
- Alkali metal carbonate As the alkali metal carbonate in the present embodiment, lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate that can be pre-doped by decomposing in the positive electrode precursor to release cations and reducing at the negative electrode.
- One or more selected from cesium carbonate is preferably used.
- lithium carbonate is preferably used from the viewpoint of high capacity per unit weight.
- the alkali metal carbonate contained in the positive electrode precursor may be one kind or may contain two or more kinds of alkali metal carbonates.
- the positive electrode precursor of the present embodiment only needs to contain at least one alkali metal carbonate.
- M is one or more selected from Li, Na, K, Rb, and Cs.
- Carboxyls such as oxides such as M 2 O, hydroxides such as MOH, halides such as MF and MCl, oxalates such as M 2 (CO 2 ) 2 , and RCOOM (R is H, alkyl group, aryl group)
- One or more acid salts may be contained.
- BeCO 3, MgCO 3, CaCO 3, SrCO 3, alkaline earth metal carbonate or selected from BaCO 3, alkaline earth metal oxides, alkaline earth metal hydroxides, alkaline earth metal halides, alkali One or more earth metal oxalates and alkaline earth metal carboxylates may be included.
- the alkali metal carbonate preferably contains lithium carbonate in an amount of 10% by mass or more, more preferably 50% by mass or more, and still more preferably 90% by mass or more.
- the weight ratio of the alkali metal carbonate in the positive electrode active material layer per one side of the positive electrode precursor of the present embodiment is X [mass%], it is preferable that 1 ⁇ X ⁇ 20.
- X is 1 or more, the capacity of the non-aqueous alkali metal storage element is increased by sufficiently securing alkali metal ions to be pre-doped to the negative electrode. If X is 20 or less, since the electron conduction in the positive electrode precursor is increased, the decomposition of the alkali metal carbonate is promoted, whereby the pre-doping is completed in a short time.
- the positive electrode active material layer may contain an alkali metal compound and / or an alkaline earth metal compound in addition to the alkali metal carbonate.
- the positive electrode active material layer contains an alkali metal compound or an alkaline earth metal compound
- the total amount of the alkali metal carbonate, the alkali metal compound and the alkaline earth metal compound is the positive electrode active material layer per one side of the positive electrode precursor. It is preferable to produce the positive electrode precursor so that it is contained at a ratio of 1% by mass or more and 20% by mass or less.
- the alkali metal carbonate contained in the positive electrode precursor is oxidatively decomposed by applying a high voltage to release alkali metal ions when it is used as a non-aqueous alkaline metal storage element, and pre-doping proceeds by reducing at the negative electrode. To do. Therefore, pre-doping can be performed in a short time by promoting the oxidation reaction.
- it is necessary to contact an alkali metal carbonate, which is an insulator, with the positive electrode active material to ensure electronic conduction, and to diffuse alkali metal ions generated by the oxidation reaction into the electrolytic solution. is important. Therefore, it is important that the surface of the positive electrode active material is appropriately covered with an alkali metal carbonate.
- a 2 / X is 0.5 or more, pre-doped is promoted to be facilitated diffusion of the electrolyte of the positive electrode precursor is.
- a 2 / X is 2.0 or less, the electronic conduction between the alkali metal carbonate and the positive electrode active material is ensured, so that pre-doping is promoted.
- a 3 is pre-doped is accelerated to electron conduction alkali metal carbonate and the positive electrode active material as long as 1% or more is ensured. Pre-doping in the diffusion of alkali metal ions in the electrolyte solution if A 3 is 30% or less is accelerated is facilitated. If A 3 / X is 0.50 or more, the diffusion of the electrolyte in the positive electrode precursor is promoted, so that pre-doping is promoted. When A 3 / X is 2.0 or less, pre-doping is promoted because the electron conduction between the alkali metal carbonate and the positive electrode active material is ensured.
- BIB processing is a processing method in which an Ar beam is irradiated from the upper part of a sample, and a smooth cross section is produced along the end of a shielding plate placed immediately above the sample.
- pulverizer such as a ball mill, a bead mill, a ring mill, a jet mill, or a rod mill can be used.
- BIB processing is a processing method in which an Ar beam is irradiated from the upper part of a sample, and a smooth cross section is produced along the end of a shielding plate placed immediately above the sample.
- Alkali metal elements and alkaline earth metal elements can be quantified by ICP-AES, atomic absorption analysis, fluorescent X-ray analysis, neutron activation analysis, ICP-MS, and the like.
- the average particle diameter of the alkali metal carbonate is preferably 0.1 ⁇ m or more and 10 ⁇ m or less. If it is 0.1 micrometer or more, it is excellent in the dispersibility in a positive electrode precursor. If it is 10 micrometers or less, since the surface area of alkali metal carbonate increases, a decomposition reaction will advance efficiently.
- lithium compound means a lithium compound that is not a positive electrode active material and is not a compound of the formulas (1) to (3).
- lithium compound it is possible to decompose at the positive electrode in the pre-dope described later and release lithium ions, lithium carbonate, lithium oxide, lithium hydroxide, lithium fluoride, lithium chloride, lithium oxalate, lithium iodide, Examples thereof include at least one selected from the group consisting of lithium nitride, lithium sulfide, lithium phosphide, lithium nitrate, lithium sulfate, lithium phosphate, lithium oxalate, lithium formate, and lithium acetate.
- the lithium compound is preferably lithium carbonate, lithium oxide, or lithium hydroxide, and more preferably lithium carbonate that can be handled in air and has low hygroscopicity.
- Such a lithium compound is decomposed by applying a voltage and functions as a pre-doped dopant source for the negative electrode, and also forms vacancies in the positive electrode active material layer, so that it has excellent electrolyte retention and ion conductivity.
- An excellent positive electrode can be formed.
- the lithium compound is preferably in the form of particles.
- the average particle diameter of the particulate lithium compound is preferably 0.1 ⁇ m or more and 100 ⁇ m or less.
- the upper limit of the average particle diameter of the lithium compound is more preferably 50 ⁇ m or less, and still more preferably 10 ⁇ m or less. If the average particle diameter of the lithium compound is 0.1 ⁇ m or more, the volume of the vacancies remaining after the oxidation reaction of the lithium compound in the positive electrode becomes sufficiently large to hold the electrolyte solution, so that high load charge / discharge characteristics are improved. . If the average particle diameter of the lithium compound is 10 ⁇ m or less, the surface area of the lithium compound does not become excessively small, so that the speed of the oxidation reaction of the lithium compound can be ensured.
- the average particle diameter of a lithium compound is 10 micrometers or less, since the surface area of a lithium compound increases and an oxidation rate can be improved more, it is still more preferable.
- the average particle size of the lithium compound is 100 ⁇ m or less, the surface area of the lithium compound does not become excessively small, so that the speed of the oxidation reaction of the lithium compound can be ensured.
- the upper limit and the lower limit of the range of the average particle diameter of the lithium compound can be arbitrarily combined.
- pulverizer such as a ball mill, a bead mill, a ring mill, a jet mill, or a rod mill can be used.
- the content ratio of the lithium compound contained in the positive electrode active material layer in the positive electrode precursor is preferably 1% by mass or more and 50% by mass or less based on the total mass of the positive electrode active material layer in the positive electrode precursor. % To 20% by mass is more preferable. If the content ratio of the lithium compound contained in the positive electrode active material layer in the positive electrode precursor is 1% by mass or more, the negative electrode can be sufficiently pre-doped, and if it is 50% by mass or less, the lithium compound has reacted. The density of the positive electrode later can be increased, and the strength of the positive electrode can be maintained, which is preferable. The content ratio of the lithium compound in the positive electrode active material layer is within the above range.
- Ratio A 1 / C 1 between the amount of lithium compound A 1 per unit area in the positive electrode precursor and the weight C 1 [g / m 2 ] of the positive electrode active material, and the capacity B 1 per unit area in the above A 1 and negative electrode Ratio A 1 / B 1 It is preferable that the above-mentioned regulations are satisfied.
- the positive electrode active material layer in the present embodiment includes optional components such as a conductive filler, a binder, and a dispersion stabilizer in addition to the positive electrode active material, the lithium compound, and / or the alkali metal carbonate, as necessary. May be.
- the conductive filler is not particularly limited, and for example, acetylene black, ketjen black, vapor grown carbon fiber, graphite, carbon nanotube, a mixture thereof, and the like can be used.
- the amount of the conductive filler to be used is preferably more than 0 parts by mass and 30 parts by mass or less, more preferably more than 0 parts by mass and 25 parts by mass or less, further preferably 1 part by mass or more and 20 parts by mass with respect to 100 parts by mass of the positive electrode active material. Or less.
- the mixing amount is 30 parts by mass or less, the content ratio of the positive electrode active material in the positive electrode active material layer is increased, and the energy density per volume of the positive electrode active material layer can be ensured.
- the binder is not particularly limited.
- PVdF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- polyimide latex
- styrene-butadiene copolymer fluororubber
- acrylic copolymer etc.
- the amount of the binder used is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 1 part by mass or more and 15 parts by mass or less, and further preferably 1 part by mass or more and 10 parts by mass with respect to 100 parts by mass of the positive electrode active material. Or less.
- the amount of the binder is 1% by mass or more, sufficient electrode strength is exhibited.
- the amount of the binder is 30 parts by mass or less, high input / output characteristics are exhibited without hindering the entry / exit and diffusion of ions to / from the positive electrode active material.
- a dispersion stabilizer PVP (polyvinyl pyrrolidone), PVA (polyvinyl alcohol), a cellulose derivative etc.
- the amount of the binder used is preferably more than 0 parts by mass and 10 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
- the amount of the dispersion stabilizer is 10 parts by mass or less, high input / output characteristics are exhibited without hindering the entry / exit and diffusion of ions to / from the positive electrode active material.
- the material constituting the positive electrode current collector in the present embodiment is not particularly limited as long as it is a material that has high electron conductivity and does not easily deteriorate due to elution into the electrolyte solution and reaction with the electrolyte or ions.
- a foil is preferred.
- an aluminum foil is particularly preferable.
- the metal foil may be a normal metal foil having no irregularities or through holes, or a metal foil having irregularities subjected to embossing, chemical etching, electrolytic deposition, blasting, etc., expanded metal, punching metal, A metal foil having a through-hole such as an etching foil may be used.
- the thickness of the positive electrode current collector is not particularly limited as long as the shape and strength of the positive electrode can be sufficiently maintained, but for example, 1 to 100 ⁇ m is preferable.
- the positive electrode precursor has a positive electrode active material layer on one side or both sides of the positive electrode current collector.
- the positive electrode active material layer is fixed on one side or both sides of the positive electrode current collector.
- the positive electrode precursor can be manufactured by an electrode manufacturing technique in a known lithium ion battery, an electric double layer capacitor or the like to constitute a positive electrode of a non-aqueous alkaline metal storage element.
- a slurry-like coating liquid is prepared by dispersing or dissolving a positive electrode active material, a lithium compound and / or an alkali metal carbonate, and other optional components used as necessary in water or an organic solvent.
- the coating liquid is applied to one or both sides of the positive electrode current collector to form a coating film, and the positive electrode precursor can be obtained by drying the coating film. You may press the obtained positive electrode precursor, and may adjust the film thickness and bulk density of a positive electrode active material layer. Alternatively, after the positive electrode active material, lithium compound and / or alkali metal carbonate, and other optional components to be used as needed are mixed in a dry method without using a solvent, and the resulting mixture is press-molded Alternatively, a method of attaching to the positive electrode current collector using a conductive adhesive is also possible.
- Adjustment of the coating solution of the positive electrode precursor is performed by dry blending a part or all of various material powders including the positive electrode active material, and then water or an organic solvent and / or a binder or a dispersion stabilizer is dissolved or dissolved therein. You may adjust by adding the disperse
- a positive electrode active material and an alkali metal carbonate using a ball mill or the like, and a conductive filler as necessary are premixed to form a lithium compound and / or an alkali metal carbonate having low conductivity.
- Premixing may be performed to coat the conductive material.
- water is used as the solvent of the coating solution, the addition of a lithium compound and / or alkali metal carbonate may make the coating solution alkaline, so add a pH adjuster as necessary. Also good.
- a disperser such as a homodisper, a multi-axis disperser, a planetary mixer, a thin film swirl type high speed mixer or the like can be preferably used.
- a peripheral speed 1 m / s to 50 m / s.
- a peripheral speed of 1 m / s or more is preferable because various materials can be dissolved or dispersed satisfactorily.
- the peripheral speed is 50 m / s or less because various materials are less likely to be destroyed by heat and shear force due to dispersion, and reaggregation is suppressed.
- the particle size measured with a particle gauge is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, and the upper limit is more preferably 80 ⁇ m or less, and even more preferably 50 ⁇ m or less. If the particle size is 0.1 ⁇ m or more, it means that the material is not excessively crushed during preparation of the coating liquid, which is preferable. When the particle size is 100 ⁇ m or less, coating can be performed stably without clogging during coating liquid discharge and the occurrence of streaks in the coating film.
- the viscosity ( ⁇ b) of the coating solution for the positive electrode precursor is preferably 1,000 mPa ⁇ s to 20,000 mPa ⁇ s, more preferably 1,500 mPa ⁇ s to 10,000 mPa ⁇ s, and even more preferably 1, 700 mPa ⁇ s or more and 5,000 mPa ⁇ s or less.
- the viscosity ( ⁇ b) is 1,000 mPa ⁇ s or more, dripping at the time of coating film formation is suppressed, and the coating film width and thickness can be controlled well.
- the TI value (thixotropic index value) of the coating solution is preferably 1.1 or more, more preferably 1.2 or more, and even more preferably 1.5 or more.
- the coating film width and thickness can be favorably controlled.
- the formation of the coating film of the positive electrode precursor is not particularly limited, but preferably a coating machine such as a die coater, a comma coater, a knife coater, or a gravure coating machine can be used.
- the coating film may be formed by single layer coating or may be formed by multilayer coating.
- the coating solution composition may be adjusted so that the content of the lithium compound and / or alkali metal carbonate in each coating layer is different.
- the coating speed is preferably 0.1 m / min to 100 m / min, more preferably 0.5 m / min to 70 m / min, and further preferably 1 m / min to 50 m / min. If the coating speed is 0.1 m / min or more, stable coating can be achieved. If the coating speed is 100 m / min or less, sufficient coating accuracy can be secured.
- the drying of the coating film of the positive electrode precursor is not particularly limited, but preferably a drying method such as hot air drying or infrared (IR) drying can be used.
- the coating film may be dried at a single temperature or may be dried by changing the temperature in multiple stages. Moreover, you may dry combining several drying methods.
- the drying temperature is preferably 25 ° C. or higher and 200 ° C. or lower, more preferably 40 ° C. or higher and 180 ° C. or lower, and further preferably 50 ° C. or higher and 160 ° C. or lower.
- the drying temperature is 25 ° C. or higher, the solvent in the coating film can be sufficiently volatilized.
- the drying temperature is 200 ° C. or lower, it is possible to suppress cracking of the coating film due to rapid volatilization of the solvent, uneven distribution of the binder due to migration, and oxidation of the positive electrode current collector and the positive electrode active material layer.
- the press of the positive electrode precursor is not particularly limited, but preferably a press such as a hydraulic press or a vacuum press can be used.
- the film thickness, bulk density, and electrode strength of the positive electrode active material layer can be adjusted by the press pressure, gap, and surface temperature of the press part described later.
- the pressing pressure is preferably 0.5 kN / cm or more and 20 kN / cm or less, more preferably 1 kN / cm or more and 10 kN / cm or less, and further preferably 2 kN / cm or more and 7 kN / cm or less. If the pressing pressure is 0.5 kN / cm or more, the electrode strength can be sufficiently increased.
- the positive electrode precursor When the pressing pressure is 20 kN / cm or less, the positive electrode precursor is less likely to bend or wrinkle, and can be adjusted to a desired positive electrode active material layer thickness or bulk density.
- the clearance gap between press rolls can set arbitrary values according to the positive electrode precursor film thickness after drying so that it may become the film thickness and bulk density of a desired positive electrode active material layer.
- the press speed can be set to an arbitrary speed so as to suppress bending and wrinkling of the positive electrode precursor.
- the surface temperature of a press part may be room temperature, and may be heated if necessary. The lower limit of the surface temperature of the press part in the case of heating is preferably the melting point minus 60 ° C. or more of the binder used, more preferably 45 ° C.
- the upper limit of the surface temperature of the press portion in the case of heating is preferably the melting point of the binder used plus 50 ° C. or less, more preferably 30 ° C. or less, and further preferably 20 ° C. or less.
- PVdF polyvinylidene fluoride: melting point 150 ° C.
- it is preferably 90 ° C. or higher and 200 ° C. or lower, more preferably 105 ° C. or higher and 180 ° C. or lower, and further preferably 120 ° C. or higher and 170 ° C. or lower. Heat.
- a styrene-butadiene copolymer (melting point 100 ° C.) is used as the binder, it is preferably added at 40 ° C. or higher and 150 ° C. or lower, more preferably 55 ° C. or higher and 130 ° C. or lower, and further preferably 70 ° C. or higher and 120 ° C. or lower. Warm up.
- the melting point of the binder can be determined at the endothermic peak position of DSC (Differential Scanning Calorimetry). For example, using a differential scanning calorimeter “DSC7” manufactured by PerkinElmer Co., Ltd., 10 mg of sample resin is set in a measurement cell, and the temperature is increased from 30 ° C. to 250 ° C. at a temperature increase rate of 10 ° C./min in a nitrogen gas atmosphere. The temperature is raised, and the endothermic peak temperature in the temperature raising process becomes the melting point.
- DSC7 Different Scanning Calorimetry
- the press may be performed a plurality of times while changing the conditions of the press pressure, the gap, the speed, and the surface temperature of the press part.
- a 1 / C 1 is preferably 0.01 or more and 0.10 or less. That is, when preparing the slurry, the amount of the lithium compound to be mixed with the positive electrode material (positive electrode active material, and optionally conductive filler and binder) is determined by the weight of the lithium compound being A 1a [g], When the weight (total value of positive electrode active material, conductive filler, and binder weight) is C 1a [g], the blending amount is adjusted so that A 1a / C 1a is 0.01 or more and 0.1 or less.
- a 1 / C 1 is 0.01 or more, a sufficient amount of lithium ions can be pre-doped into the negative electrode.
- a 1 / C 1 is 0.10 or less, the positive electrode density after the reaction of the lithium compound can be increased, and the strength of the positive electrode can be maintained.
- the thickness of the positive electrode active material layer is preferably 20 ⁇ m or more and 200 ⁇ m or less, more preferably 25 ⁇ m or more and 100 ⁇ m or less, and further preferably 30 ⁇ m or more and 80 ⁇ m or less per side of the positive electrode current collector. If the thickness of the positive electrode active material layer is 20 ⁇ m or more, sufficient charge / discharge capacity can be exhibited. If the thickness of the positive electrode active material layer is 200 ⁇ m or less, the ion diffusion resistance in the electrode can be kept low. As a result, sufficient output characteristics can be obtained, the cell volume can be reduced, and therefore the energy density can be increased. Note that the thickness of the positive electrode active material layer in the case where the current collector has through-holes and irregularities refers to the average value of the thickness per side of the portion of the current collector that does not have through-holes and irregularities.
- the dispersity in the present embodiment is a value determined by a dispersity evaluation test using a grain gauge defined in JIS K5600. That is, a sufficient amount of sample is poured into the deeper end of the groove and slightly overflows from the groove gauge having a groove with a desired depth according to the size of the grain. Next, place the scraper so that the long side of the scraper is parallel to the width direction of the gauge and the cutting edge is in contact with the deep tip of the grain gauge groove, and hold the scraper so that it is on the surface of the gauge. The surface of the gauge is pulled at a uniform speed to the groove depth of 0 to 1 second for 1 to 2 seconds, and light is applied at an angle of 20 ° to 30 ° within 3 seconds after the drawing is completed. Observe and read the depth at which the grain appears in the groove of the grain gauge.
- shear rate When increasing the shear rate from 2 s ⁇ 1 to 20 s ⁇ 1 , it may be increased in one step, or it is increased while increasing the shear rate in a multistage manner within the above range and acquiring the viscosity at that shear rate as appropriate. You may let them.
- the identification method of the alkali metal carbonate contained in a positive electrode precursor is not specifically limited, For example, it can identify by the following method. For identification of the alkali metal carbonate, it is preferable to identify by combining a plurality of analysis methods described below.
- anions can be identified by analyzing the water after washing the positive electrode precursor with distilled water.
- the alkali metal carbonate and the positive electrode active material can be discriminated by Raman imaging of carbonate ions on the surface of the positive electrode precursor measured at an observation magnification of 1000 to 4000 times.
- the excitation light is 532 nm
- the excitation light intensity is 1%
- the long operation of the objective lens is 50 times
- the diffraction grating is 1800 gr / mm
- the mapping method is point scanning (slit 65 mm, binning 5 pix), 1 mm step
- the exposure time per point can be measured for 3 seconds
- the number of integrations is 1, and measurement can be performed with a noise filter.
- a linear baseline is set in the range of 1071 to 1104 cm ⁇ 1 , and the area is calculated with a positive value from the baseline as the peak of carbonate ions, and the frequency is integrated.
- the frequency with respect to the carbonate ion peak area approximated by a Gaussian function is subtracted from the frequency distribution of carbonate ions.
- the bonding state of the alkali metal element can be determined.
- the X-ray source is monochromatic AlK ⁇
- the X-ray beam diameter is 100 ⁇ m ⁇ (25 W, 15 kV)
- the path energy is narrow scan: 58.70 eV
- there is charge neutralization and the number of sweeps is narrow scan: 10 times (Carbon, oxygen) 20 times (fluorine) 30 times (phosphorus) 40 times (alkali metal element) 50 times (silicon)
- the energy step can be measured under the conditions of narrow scan: 0.25 eV.
- the surface of the positive electrode can be cleaned under the condition of an acceleration voltage of 1.0 kV and a range of 2 mm ⁇ 2 mm for 1 minute (1.25 nm / min in terms of SiO 2 ).
- the peak of Li1s binding energy of 50 to 54 eV is LiO 2 or Li—C bond, and the peak of 55 to 60 eV is LiF, Li 2 CO 3 , Li x PO y F z (x, y, z Is an integer of 1 to 6);
- the peak of C1s binding energy of 285 eV is C—C bond
- the peak of 286 eV is CO bond
- the peak of 288 eV is COO
- the peak of 290 to 292 eV is CO 3 2 ⁇
- C—F Bond O1s binding energy of 527 to 530 eV peak is O 2 ⁇ (Li 2 O), 531 to 532 eV peak is CO, CO 3 , OH, PO x (x is an integer of 1 to 4), SiO x (x integer) of 1-4, a peak of 533 eV C-O, the SiO x (x 1-4 integer); the peak of binding energy 685eV of F1s Li
- the existing alkali metal compound can be identified from the measurement result of the obtained electronic state and the result of the existing element ratio.
- the elements contained in the positive electrode precursor can be quantified by SEM-EDX analysis of the surface of the positive electrode precursor measured at an observation magnification of 1000 to 4000 times.
- the acceleration voltage is 10 kV
- the emission current is 1 ⁇ A
- the number of measurement pixels is 256 ⁇ 256 pixels
- the number of integrations can be 50.
- gold, platinum, osmium, or the like can be surface-treated by a method such as vacuum deposition or sputtering.
- the anion species eluted in water can be identified.
- a column to be used an ion exchange type, an ion exclusion type, or a reverse phase ion pair type can be used.
- the detector an electrical conductivity detector, an ultraviolet-visible absorption detector, an electrochemical detector, or the like can be used.
- a suppressor system in which a suppressor is installed in front of the detector A non-suppressor method using a solution with low conductivity as the eluent can be used.
- a mass spectrometer or a charged particle detector can also be measured in combination with the detector, an appropriate column and It is preferable to combine the detectors.
- a method for quantifying the alkali metal carbonate contained in the positive electrode precursor is described below.
- the positive electrode precursor is washed with distilled water, and the alkali metal carbonate can be quantified from the change in the weight of the positive electrode before and after washing with distilled water.
- area measurement is the cathode precursor is not particularly limited, it is preferably, more preferably 25 cm 2 or more 150 cm 2 or less from the viewpoint of reducing the variation in measurement is 5 cm 2 or more 200 cm 2 or less. If the area is 5 cm 2 or more, the reproducibility of measurement is ensured. If the area is 200 cm 2 or less, the sample is easy to handle.
- the determination method of the alkali metal carbonate in the positive electrode active material layer of the positive electrode precursor will be described.
- the positive electrode is sufficiently immersed in distilled water 100 times the weight of the positive electrode precursor (100 M 0 [g]) for 3 days or more to elute the alkali metal carbonate in water.
- the positive electrode precursor After soaking for 3 days or more, the positive electrode precursor is taken out from distilled water (when measuring ion chromatography, the amount of the liquid is adjusted so that the amount of distilled water is 100 M 0 [g]) and vacuum-dried. To do.
- the conditions for vacuum drying are preferably, for example, such that the residual moisture content in the positive electrode precursor is 1% by mass or less in the range of temperature: 100 to 200 ° C., pressure: 0 to 10 kPa, and time: 5 to 20 hours.
- the residual amount of moisture can be quantified by the Karl Fischer method.
- the weight of the positive electrode precursor after vacuum drying was set to M 1 [g], and then, on the current collector using a spatula, a brush, a brush, etc., in order to measure the weight of the current collector of the obtained positive electrode precursor
- the positive electrode active material layer is removed.
- the positive electrode precursor is acid-decomposed using a strong acid such as concentrated nitric acid, concentrated hydrochloric acid, aqua regia, etc., and the resulting solution is diluted with pure water to an acid concentration of 2% to 3%. About acid decomposition, it can also decompose by heating and pressurizing suitably.
- the obtained diluted solution is analyzed by ICP-MS. At this time, it is preferable to add a known amount of element as an internal standard. When the alkali metal element to be measured is equal to or higher than the measurement upper limit concentration, it is preferable to further dilute the diluent while maintaining the acid concentration. With respect to the obtained measurement results, each element can be quantified based on a calibration curve prepared in advance using a standard solution for chemical analysis.
- the negative electrode in the present embodiment includes a negative electrode current collector and a negative electrode active material layer including a negative electrode active material provided on one or both surfaces thereof.
- the negative electrode active material layer includes a negative electrode active material that can occlude and release lithium ions, and may include optional components such as a conductive filler, a binder, and a dispersion stabilizer as necessary.
- the negative electrode active material a material capable of occluding and releasing alkali metal ions such as lithium ions can be used.
- the negative electrode active material include carbon materials, titanium oxide, silicon, silicon oxide, silicon alloys, silicon compounds, tin, and tin compounds.
- the content ratio of the negative electrode active material in the negative electrode active material layer of the negative electrode is preferably 70% by mass or more and more preferably 80% by mass or more based on the total mass of the negative electrode active material layer.
- Carbon material examples include non-graphitizable carbon materials; graphitizable carbon materials; carbon blacks; carbon nanoparticles; activated carbon; artificial graphite; natural graphite; graphitized mesophase carbon microspheres; graphite whiskers; Amorphous carbonaceous materials; carbonaceous materials obtained by heat-treating carbonaceous material precursors such as petroleum pitch, coal pitch, mesocarbon microbeads, coke, synthetic resin (eg phenol resin); furfuryl Examples include thermal decomposition products of alcohol resins or novolak resins; fullerenes; carbon nanophones; and composite carbon materials thereof.
- the BET specific surface area of the composite carbon material is preferably 100 m 2 / g or more and 350 m 2 / g or less. This BET specific surface area is preferably 150 m 2 / g or more and 300 m 2 / g or less. If the BET specific surface area of 100 m 2 / g or more, the pre-doping amount of the alkali metal ions such as lithium ions can be sufficiently large, it is possible to thin the negative electrode active material layer. Moreover, if a BET specific surface area is 350 m ⁇ 2 > / g or less, it is excellent in the coating property of a negative electrode active material layer.
- the composite carbon material using a lithium metal counter electrode, at a measurement temperature of 25 ° C., after the voltage value at a current value 0.5 mA / cm 2 was subjected to constant current charging until 0.01 V, the current value 0
- the initial charge capacity when performing constant voltage charging until 0.01 mA / cm 2 is 300 mAh / g or more and 1,600 mAh / g or less per unit mass of the composite carbon material. More preferably, it is 400 mAh / g or more and 1,500 mAh / g or less, More preferably, it is 500 mAh / g or more and 1,450 mAh / g or less.
- the initial charge capacity is 300 mAh / g or more, the pre-doping amount of lithium ions can be sufficiently increased, so that even when the negative electrode active material layer is thinned, high output characteristics can be obtained.
- the initial charge capacity is 1,600 mAh / g or less, swelling / shrinkage of the composite carbon material when the composite carbon material is doped / undoped with lithium ions is reduced, and the strength of the negative electrode is maintained. It is.
- the negative electrode active material described above is particularly preferably a composite porous material that satisfies the following conditions (1) and (2) from the viewpoint of obtaining a good internal resistance value.
- the amount of mesopores (amount of pores having a diameter of 2 nm to 50 nm) Vm 1 (cc / g) calculated by the BJH method satisfies the condition of 0.01 ⁇ Vm 1 ⁇ 0.10.
- the amount of micropores (amount of pores having a diameter of less than 2 nm) Vm 2 (cc / g) calculated by the MP method satisfies the condition of 0.01 ⁇ Vm 2 ⁇ 0.30.
- the MP method uses a “t-plot method” (BC Lippens, JH de Boer, J. Catalysis, 4319 (1965)), and uses micropore volume, micropore area, and micropores. Is a method for obtaining the distribution of M.M. It is a method devised by Mikhal, Brunauer, Bodor (R.S. Mikhail, S. Brunauer, EE Bodor, J. Colloid InterfaceSci., 26, 45 (1968)).
- the BJH method is a calculation method generally used for the analysis of mesopores and was proposed by Barrett, Joyner, Halenda et al. (E. P. Barrett, LG Joyner and P. Halenda, J Am.Chem.Soc., 73, 373 (1951)).
- the negative electrode active material may be a material that forms an alloy with lithium (hereinafter, also referred to as “alloy negative electrode material”), silicon, silicon compound, tin, tin compound, and carbon or carbonaceous matter thereof. It is preferable to include at least one selected from the group consisting of composite materials with materials. It is preferable that the silicon compound is silicon oxide, and more preferably SiO x (0.01 ⁇ x ⁇ 1 ).
- the composite material is preferably at least one substrate selected from the group consisting of silicon, silicon compounds, tin, and tin compounds, a non-graphitizable carbon material; an easily graphitizable carbon material; a carbon black; Particles; Activated carbon; Artificial graphite; Natural graphite; Graphitized mesophase carbon spherules; Graphite whiskers; Amorphous carbonaceous materials such as polyacene-based materials; At least one selected from the group consisting of a carbonaceous material obtained by heat-treating a carbonaceous material precursor such as a phenol resin; a thermal decomposition product of furfuryl alcohol resin or novolac resin; fullerene; carbon nanophone; It is a material in which the carbon or carbonaceous material is combined by heat treatment or the like.
- a composite material that can be obtained by heat treatment in a state where at least one of the above-mentioned base materials and petroleum-based pitch or coal-based pitch coexist is particularly preferable.
- the substrate and the pitch Prior to the heat treatment, the substrate and the pitch may be mixed at a temperature higher than the melting point of the pitch.
- the heat treatment temperature may be a temperature at which the component generated by volatilization or thermal decomposition of the pitch used becomes a carbonaceous material, preferably 400 ° C. or more and 2500 ° C. or less, more preferably 500 ° C. or more and 2000 ° C. or less, Preferably they are 550 degreeC or more and 1500 degrees C or less.
- the atmosphere for performing the heat treatment is not particularly limited, but a non-oxidizing atmosphere is preferable.
- the average particle diameter of the negative electrode active material is preferably 0.01 ⁇ m or more and 30 ⁇ m or less, the lower limit value is more preferably 2 ⁇ m or more, still more preferably 2.5 ⁇ m or more, and the upper limit value is more preferably 6 ⁇ m or less. More preferably, it is 4 ⁇ m or less. If the average particle diameter is 0.01 ⁇ m or more, the contact area with the non-aqueous electrolyte increases, so the resistance of the lithium ion secondary battery can be lowered. If the average particle diameter of the negative electrode active material is 30 ⁇ m or less, the negative electrode active material layer can be sufficiently thinned, so that the energy density of the lithium ion secondary battery can be improved.
- the average particle diameter of the negative electrode active material can be adjusted by pulverization using a wet and dry jet mill with a built-in classifier, a stirring ball mill, or the like.
- the pulverizer is equipped with a centrifugal classifier, and fine particles pulverized in an inert gas environment such as nitrogen or argon can be collected by a cyclone or a dust collector.
- the average particle diameter in the present invention is determined by the following method.
- the primary particle diameter of the active material is measured by the following method. If the primary particle size is smaller than 1 ⁇ m, the primary particle size is defined as the average particle size. If the primary particle diameter is 1 ⁇ m or more, the particle size distribution of the powder of the active material is measured using a particle size distribution measuring device, the cumulative curve is obtained with the total volume being 100%, and the cumulative curve is 50%.
- the particle diameter (that is, 50% diameter (Median diameter)) is defined as the average particle diameter.
- the particle size distribution measuring device include a laser diffraction particle size distribution measuring device.
- the primary particle diameter of the active material in the present invention is determined by the following method. 1) Take several fields of the active material powder with an electron microscope, measure the particle size of the particles in the field of view using a fully automatic image processor, etc. A method in which the arithmetic average value is used as the primary particle size. 2) A method in which the surface and / or cross section of the obtained electrode is photographed by several fields of view with an electron microscope and arithmetically averaged by the above method.
- the primary particle size of the active material incorporated in the lithium ion secondary battery is determined by disassembling the lithium ion secondary battery and taking out the electrode, and then using the above method 2); Except for this, it can be measured by the above method 1).
- the operation of disassembling the lithium ion secondary battery and taking out the electrode is preferably performed in an inert atmosphere such as argon.
- the following method can be used to remove components other than the active material from the electrode.
- the extracted electrode is immersed in ethyl methyl carbonate or dimethyl carbonate, and the nonaqueous electrolyte solution, lithium salt, etc. are removed and air-dried.
- this is immersed in a mixed solvent of methanol and isopropanol to deactivate lithium ions occluded in the active material and air-dried again.
- the electrode in which lithium ions have been deactivated is immersed in distilled water or NMP.
- the active material is peeled off with a spatula or the like, and the active material is slid down from the current collector by irradiating it with ultrasonic waves, and the active material is recovered by suction filtration. Further, if necessary, after the obtained active material is again immersed in distilled water or NMP and irradiated with ultrasonic waves, suction filtration may be repeated several times. Finally, the obtained active material is vacuum-dried at 170 ° C., whereby an active material powder can be obtained.
- the negative electrode active material layer in the present embodiment may include optional components such as a conductive filler, a binder, and a dispersion stabilizer as necessary.
- the type of the conductive filler is not particularly limited, and examples thereof include acetylene black, ketjen black, and vapor grown carbon fiber.
- the amount of the conductive filler used is preferably more than 0 parts by mass and less than 30 parts by mass, more preferably more than 0 parts by mass and less than 20 parts by mass, and even more preferably more than 0 parts by mass and more than 15 parts by mass with respect to 100 parts by mass of the negative electrode active material. Or less.
- the binder is not particularly limited.
- PVdF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- polyimide latex
- styrene-butadiene copolymer fluororubber
- acrylic copolymer etc.
- the amount of the binder used is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 2 parts by mass or more and 27 parts by mass or less, and still more preferably 3 parts by mass or more and 25 parts by mass with respect to 100 parts by mass of the negative electrode active material. Or less.
- the amount of the binder is 1% by mass or more, sufficient electrode strength is exhibited.
- the amount of the binder is 30 parts by mass or less, high input / output characteristics are exhibited without inhibiting the entry and exit of alkali metal ions such as lithium ions into the negative electrode active material.
- a dispersion stabilizer PVP (polyvinyl pyrrolidone), PVA (polyvinyl alcohol), a cellulose derivative etc.
- the amount of the binder used is preferably 0 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material.
- the amount of the dispersion stabilizer is 10 parts by mass or less, high input / output characteristics are exhibited without inhibiting the entry and exit of alkali metal ions such as lithium ions into the negative electrode active material.
- the material constituting the negative electrode current collector in the present embodiment is preferably a metal foil that has high electron conductivity and is unlikely to deteriorate due to elution into a non-aqueous electrolyte and reaction with an electrolyte or ions.
- a metal foil that has high electron conductivity and is unlikely to deteriorate due to elution into a non-aqueous electrolyte and reaction with an electrolyte or ions.
- metal foil For example, aluminum foil, copper foil, nickel foil, stainless steel foil, etc. are mentioned.
- the negative electrode current collector in the lithium ion secondary battery of this embodiment is preferably a copper foil.
- the metal foil may be a normal metal foil having no irregularities or through holes, or a metal foil having irregularities subjected to embossing, chemical etching, electrolytic deposition, blasting, etc., expanded metal, punching metal, A metal foil having a through-hole such as an etching foil may be used.
- the thickness of the negative electrode current collector is not particularly limited as long as the shape and strength of the negative electrode can be sufficiently maintained, but for example, 1 to 100 ⁇ m is preferable.
- the ten-point average roughness R zjis of the negative electrode current collector is preferably 0.01 ⁇ m to 30 ⁇ m, more preferably 0.1 ⁇ m to 20 ⁇ m, and still more preferably 1 ⁇ m to 15 ⁇ m.
- R zjis is 0.01 ⁇ m or more, the wettability of the coating liquid and the adhesion between the negative electrode active material layer can be sufficiently high. If R zjis is 30 ⁇ m or less, there is little fear of causing a micro short by breaking through the opposing separator.
- the ten-point average roughness R zjis in the present invention is determined by the following method based on JIS B 0601 (2001).
- a straight line for measuring a cross-sectional curve (roughness curve) is set at an arbitrary position of the negative electrode current collector.
- the evaluation length should be at least 5 times the average length R sm of the elements to be described later, and is preferably about 10 to 15 times R sm .
- R sm is unknown, measurement is performed for a provisional evaluation length.
- measurement of an appropriate length is performed.
- a new measurement should be made after resetting the straight line.
- the cross-sectional curve can be measured using, for example, a commercially available contact surface shape measuring device.
- a cross-sectional curve as shown in FIG. 1 is obtained.
- An average element length R sm is calculated from the measured cross-sectional curve, and a reference length (cut-off value ⁇ c) is determined using the R sm .
- the ten-point average roughness R zjis is the five coordinates from the top to the fifth in the evaluation length, "L + 1 " to "L + 5 ", and the five coordinates from the bottom to the fifth the when the "L -1" ⁇ "L -5 ", a value obtained by the following Symbol equation 2.
- a broken line L ave in FIG. 1 is an average coordinate of the cross-sectional curve.
- the negative electrode has a negative electrode active material layer on one side or both sides of the negative electrode current collector.
- the negative electrode active material layer is fixed on one side or both sides of the negative electrode current collector.
- the negative electrode can be manufactured by an electrode manufacturing technique in a known lithium ion secondary battery, electric double layer capacitor, or the like.
- various materials including a negative electrode active material are dispersed or dissolved in water or an organic solvent to prepare slurry-like negative electrode coating solutions, respectively.
- the negative electrode can be obtained by coating this negative electrode coating solution on one or both sides of the negative electrode current collector to form a coating film and drying the coating film.
- the obtained negative electrode may be pressed to adjust the film thickness, bulk density, etc. of the negative electrode active material layer.
- the negative electrode coating solution was prepared by dry blending part or all of various material powders including the negative electrode active material, and then water or an organic solvent and / or a binder or a dispersion stabilizer dissolved or dispersed therein. You may adjust by adding a liquid or slurry-like substance. Further, various material powders including the negative electrode active material may be added to the liquid or slurry substance in which the binder or the dispersion stabilizer is dissolved or dispersed in water or an organic solvent.
- a disperser such as a homodisper, a multiaxial disperser, a planetary mixer, a thin film swirl type high speed mixer or the like can be preferably used.
- a peripheral speed of 1 m / s to 50 m / s it is preferable to disperse at a peripheral speed of 1 m / s to 50 m / s.
- a peripheral speed of 1 m / s or more is preferable because various materials can be dissolved or dispersed satisfactorily.
- a peripheral speed of 50 m / s or less is preferable because various materials are not easily broken by heat and shearing force due to dispersion, and reaggregation is reduced.
- the dispersion degree of the coating solution is preferably such that the particle size measured with a particle gauge is 0.1 ⁇ m or more and 100 ⁇ m or less.
- the particle size is more preferably 80 ⁇ m or less, and further preferably the particle size is 50 ⁇ m or less.
- a particle size of 0.1 ⁇ m or more means that various material powders including the negative electrode active material are not excessively crushed during the preparation of the coating liquid. Further, when the particle size is 100 ⁇ m or less, clogging during coating liquid discharge and streaking of the coating film are not generated, and coating can be performed stably.
- the viscosity ( ⁇ b) of the coating solution is preferably 1,000 mPa ⁇ s or more and 20,000 mPa ⁇ s or less, more preferably 1,500 mPa ⁇ s or more and 10,000 mPa ⁇ s or less, and further preferably 1,700 mPa ⁇ s or more. 5,000 mPa ⁇ s or less.
- the viscosity ( ⁇ b) of the coating liquid is 1,000 mPa ⁇ s or more, dripping during coating film formation is suppressed, and the coating film width and thickness can be controlled well.
- the coating liquid can be stably applied with little pressure loss in the flow path of the coating liquid when a coating machine is used, and the desired coating thickness The following can be controlled.
- the TI value (thixotropic index value) of the coating solution is preferably 1.1 or more, more preferably 1.2 or more, and even more preferably 1.5 or more.
- the coating film width and thickness can be favorably controlled.
- the method for forming the coating film is not particularly limited, but preferably a coating machine such as a die coater, a comma coater, a knife coater, or a gravure coating machine can be used.
- the coating film may be formed by single layer coating or may be formed by multilayer coating.
- the coating speed is preferably 0.1 m / min to 100 m / min, more preferably 0.5 m / min to 70 m / min, and further preferably 1 m / min to 50 m / min. If the coating speed is 0.1 m / min or more, the coating can be performed stably, and if it is 100 m / min or less, sufficient coating accuracy can be secured.
- the drying method of the coating film is not particularly limited, but preferably a drying method such as hot air drying or infrared (IR) drying can be used.
- the coating film may be dried at a single temperature or may be dried by changing the temperature in multiple stages. Moreover, you may dry combining several drying methods.
- the drying temperature is preferably 25 ° C. or higher and 200 ° C. or lower, more preferably 40 ° C. or higher and 180 ° C. or lower, and further preferably 50 ° C. or higher and 160 ° C. or lower.
- the drying temperature is 25 ° C. or higher, the solvent in the coating film can be sufficiently volatilized.
- the drying temperature is 200 ° C. or lower, it is possible to suppress cracking of the coating film due to rapid volatilization of the solvent, uneven distribution of the binder due to migration, and oxidation of the negative electrode current collector and the negative electrode active material layer.
- the method for pressing the negative electrode is not particularly limited, but preferably a press such as a hydraulic press or a vacuum press can be used.
- the film thickness, bulk density, and electrode strength of the negative electrode active material layer can be adjusted by the press pressure, the gap, and the surface temperature of the press part described later.
- the pressing pressure is preferably 0.5 kN / cm or more and 20 kN / cm or less, more preferably 1 kN / cm or more and 10 kN / cm or less, and further preferably 2 kN / cm or more and 7 kN / cm or less. If the pressing pressure is 0.5 kN / cm or more, the electrode strength can be sufficiently increased.
- the negative electrode is less likely to bend or wrinkle, and can be easily adjusted to a desired film thickness or bulk density.
- the gap between the press rolls can be set to an arbitrary value according to the film thickness after drying so as to have a desired film thickness and bulk density.
- the press speed can be set to an arbitrary speed so that bending and wrinkles are reduced.
- the surface temperature of the press part may be room temperature or may be heated if necessary.
- the lower limit of the surface temperature of the press part when heating is preferably the melting point of the binder used minus 60 ° C. or more, more preferably the melting point of the binder minus 45 ° C. or more, and more preferably the melting point of the binder minus 30. °C or more.
- the upper limit of the surface temperature of the press portion when heating is preferably the melting point of the binder used plus 50 ° C. or less, more preferably the melting point of the binder plus 30 ° C. or less, and more preferably the melting point of the binder plus 20 It is below °C.
- PVdF polyvinylidene fluoride: melting point 150 ° C.
- it is preferably 90 ° C. or higher and 200 ° C. or lower, more preferably 105 ° C. or higher and 180 ° C. or lower, and even more preferably 120 ° C. or higher and 170 ° C. or lower. To do.
- a styrene-butadiene copolymer (melting point 100 ° C.) is used as the binder, it is preferably added at 40 ° C. or higher and 150 ° C. or lower, more preferably 55 ° C. or higher and 130 ° C. or lower, and further preferably 70 ° C. or higher and 120 ° C. or lower. Warm up.
- the melting point of the binder can be determined at the endothermic peak position of DSC (Differential Scanning Calorimetry). For example, using a differential scanning calorimeter “DSC7” manufactured by PerkinElmer Co., Ltd., 10 mg of sample resin is set in a measurement cell, and the temperature is increased from 30 ° C. to 250 ° C. at a temperature increase rate of 10 ° C./min in a nitrogen gas atmosphere. The temperature is raised, and the endothermic peak temperature in the temperature raising process becomes the melting point.
- DSC7 Different Scanning Calorimetry
- ⁇ Pressing may be performed a plurality of times while changing the conditions of pressing pressure, gap, speed, and surface temperature of the pressing part.
- the thickness of the negative electrode active material layer is preferably 5 ⁇ m or more and 100 ⁇ m or less per side of the negative electrode current collector.
- the lower limit of the thickness of the negative electrode active material layer is more preferably 7 ⁇ m or more, and further preferably 10 ⁇ m or more.
- the upper limit of the thickness of the negative electrode active material layer is more preferably 80 ⁇ m or less, and even more preferably 60 ⁇ m or less.
- the thickness of the negative electrode active material layer is 5 ⁇ m or more, streaks or the like hardly occur when the negative electrode active material layer is applied, and the coating property is excellent.
- the thickness of the negative electrode active material layer is 100 ⁇ m or less, a high energy density can be expressed by reducing the cell volume. Note that the thickness of the negative electrode active material layer in the case where the negative electrode current collector has unevenness means an average value of the thickness of the negative electrode active material layer per one surface in a portion where the negative electrode current collector does not have unevenness.
- the bulk density of the negative electrode active material layer is preferably 0.30 g / cm 3 or more and 3.0 g / cm 3 or less, more preferably 0.40 g / cm 3 or more and 1.5 g / cm 3 or less, and further preferably 0.45 g. / Cm 3 or more and 1.3 g / cm 3 or less.
- the bulk density of the negative electrode active material layer is 0.30 g / cm 3 or more, sufficient strength can be maintained and sufficient conductivity between the negative electrode active materials can be exhibited. If the bulk density of the negative electrode active material layer is 3.0 g / cm 3 or less, vacancies capable of sufficiently diffusing ions in the negative electrode active material layer can be secured.
- the negative electrode has a negative electrode active material layer on one side or both sides of the negative electrode current collector.
- the negative electrode active material layer is fixed on one side or both sides of the negative electrode current collector.
- the negative electrode can be manufactured by an electrode manufacturing technique in a known lithium ion battery, electric double layer capacitor or the like. For example, 1) Various materials including a negative electrode active material are dispersed or dissolved in water or an organic solvent to prepare a slurry-like coating liquid, and this coating liquid is applied onto one or both surfaces of the negative electrode current collector. A negative electrode can be obtained by forming a coating film and drying it. Further, the obtained negative electrode may be pressed to adjust the film thickness and bulk density of the negative electrode active material layer. 2) Without using a solvent, various materials including a negative electrode active material are mixed in a dry process, and after the resulting mixture is press-molded, the negative electrode is bonded to a negative electrode current collector using a conductive adhesive. Obtainable.
- a negative electrode can also be obtained by forming a negative electrode active material layer on a negative electrode current collector.
- Suitable film formation methods include electroless plating, electrolytic plating, chemical reduction, vacuum deposition, ion plating, sputtering, chemical vapor deposition (CVD), laser ablation, and thermal spraying. Can be used.
- the method 1) is preferable from the viewpoint of mass productivity.
- the film thickness of the negative electrode active material layer is preferably 10 ⁇ m or more and 75 ⁇ m or less per side, and the lower limit is more preferably 13 ⁇ m or more, more preferably 15 ⁇ m or more, still more preferably 20 ⁇ m or more, and the upper limit is More preferably, it is 70 micrometers or less, More preferably, it is 65 micrometers or less, More preferably, it is 60 micrometers or less. If the film thickness of the negative electrode active material layer is 10 ⁇ m or more, the electric capacity of the positive electrode can be fully utilized, and if it is 75 ⁇ m or less, a high energy density can be expressed by reducing the cell volume.
- the film thickness of the negative electrode active material layer in the case where the negative electrode current collector has through holes or irregularities refers to the average value of the film thickness per one side of the portion of the negative electrode current collector that does not have through holes or irregularities.
- examples of the through hole include a through hole portion such as a punching metal, an expanded metal, and an etching foil.
- the positive electrode precursor and the negative electrode are generally laminated or wound via a separator to form an electrode laminate or an electrode winding body having a positive electrode precursor, a negative electrode, and a separator.
- a polyethylene microporous film or a polypropylene microporous film used for a lithium ion secondary battery, a cellulose non-woven paper used for an electric double layer capacitor, or the like can be used as the separator.
- a film composed of organic or inorganic fine particles may be laminated on one side or both sides of these separators. Further, organic or inorganic fine particles may be contained inside the separator.
- the thickness of the separator is preferably 5 ⁇ m or more and 35 ⁇ m or less. It is preferable that the thickness of the separator is 5 ⁇ m or more because self-discharge due to an internal micro short circuit tends to be small. It is preferable that the thickness of the separator is 35 ⁇ m or less because the output characteristics of a non-aqueous alkali metal storage element such as a lithium ion secondary battery tend to be high.
- the thickness of the film composed of organic or inorganic fine particles is preferably 1 ⁇ m or more and 10 ⁇ m or less.
- a film composed of organic or inorganic fine particles having a thickness of 1 ⁇ m or more is preferable because self-discharge due to internal micro-shorts tends to be small.
- the thickness of the film composed of organic or inorganic fine particles is 10 ⁇ m or less, the output characteristics of a non-aqueous alkaline metal storage battery such as a lithium ion secondary battery tend to be high, which is preferable.
- the separator may contain an organic polymer that swells due to permeation of a non-aqueous electrolyte, or an organic polymer alone may be used as an alternative to the separator.
- an organic polymer Affinity with non-aqueous electrolyte solution is good, and what gelatinizes by making electrolyte solution osmose
- the organic polymer for example, polyethylene oxide, polyacrylonitrile, poly (vinylidene fluoride), polymethyl methacrylate, and a mixture thereof can be suitably used because they can exhibit high lithium ion conductivity when gelled.
- the organic polymer can include an electrolytic solution in the organic polymer. Therefore, when an exterior body is damaged, there exists an effect which prevents that an electrolyte solution flows out from a lithium ion secondary battery, and it is preferable on safety.
- the lithium ion secondary battery can include a solid electrolyte in addition to the positive electrode and the negative electrode.
- a solid electrolyte When a solid electrolyte is used, the positive electrode precursor and the negative electrode are stacked via the solid electrolyte, but it is important to secure a lithium ion conduction path.
- the method is not particularly limited.
- the material used for the solid electrolyte is not particularly limited as long as it has a function as a solid electrolyte material, and the same material as that used for a general solid lithium ion secondary battery should be used. Can do.
- Examples of the inorganic solid electrolyte include LiN, LISICON, Thio-LISICON, La 0.51 Li 0.34 TiO 2.94 having a perovskite structure, and Li 1.3 Al 0.3 Ti having a NASICON structure.
- oxide-based solid electrolytes such as Li 7 La 3 Zr 2 O 12 having a garnet-type structure, and Li 2 SP—S 2 S 5 system, LiI—Li 2 SP—S 2 S 5 Sulfide, amorphous solid electrolytes such as Li 3 PO 4 —Li 2 S—Si 2 S system, Li 10 GeP 2 S 12, etc., including inorganic oxides and inorganic sulfides having lithium ion conductivity An inorganic solid electrolyte containing one or more of the above substances is preferred.
- the lithium ion secondary battery in this embodiment can be produced by the following method using the positive electrode precursor and the negative electrode formed as described above: (1) housing a laminate composed of a positive electrode precursor containing a positive electrode active material and a lithium compound, a negative electrode, and a separator in an outer package (cell assembly); (2) injecting a non-aqueous electrolyte into the exterior body (electrolyte injection), and (3) decomposing the lithium compound by applying a voltage between the positive electrode precursor and the negative electrode ( Pre-dope)
- the ratio A 1 / B 1 between the A 1 [g / m 2 ] and the B 1 [Ah / m 2 ] is 0.05 [g / Ah] or more and 0.30 [g / Ah] or less, and
- the manufacturing method of the lithium ion secondary battery whose voltage applied in the said pre dope is 4.2V or more.
- a positive electrode terminal and a negative electrode terminal are connected to a laminate formed by laminating a positive electrode precursor and a negative electrode cut into a sheet shape via a separator to produce an electrode laminate.
- a positive electrode terminal and a negative electrode terminal are connected to the winding body which laminated
- the shape of the electrode winding body may be a cylindrical shape or a flat shape.
- connection method of the positive electrode terminal and the negative electrode terminal is not particularly limited, but can be performed by a method such as resistance welding or ultrasonic welding.
- a metal can, a laminate packaging material, or the like can be used as the exterior body.
- the metal is preferably made of aluminum.
- the laminate packaging material a film obtained by laminating a metal foil and a resin film is preferable, and a laminate packaging material composed of three layers of outer layer resin film / metal foil / interior resin film is exemplified.
- the outer layer resin film is for preventing the metal foil from being damaged by contact or the like, and a resin such as nylon or polyester can be suitably used.
- the metal foil is for preventing the permeation of moisture and gas, and foils of copper, aluminum, stainless steel and the like can be suitably used.
- the interior resin film protects the metal foil from the electrolyte contained in the interior, and melts and seals the exterior body during heat sealing. Polyolefin, acid-modified polyolefin, and the like can be suitably used.
- the dried electrode laminate or electrode winding body is preferably housed in an exterior body typified by a metal can or a laminate packaging material, and is sealed with only one opening left.
- an exterior body typified by a metal can or a laminate packaging material
- the sealing method of an exterior body is not specifically limited, When using a laminate packaging material, methods, such as a heat seal and an impulse seal, can be used.
- the residual solvent it is preferable to remove the residual solvent by drying the electrode laminate or the electrode winding body housed in the exterior body. Although a drying method is not limited, it can dry by vacuum drying etc.
- the residual solvent is preferably 1.5% by mass or less based on the weight of the positive electrode active material layer or the negative electrode active material layer. When the residual solvent is more than 1.5% by mass, the solvent remains in the system, and the self-discharge characteristics and the cycle characteristics may be deteriorated.
- the electrolytic solution in the present embodiment is a non-aqueous electrolytic solution containing alkali metal ions such as lithium ions. That is, this non-aqueous electrolyte contains a non-aqueous solvent described later.
- the non-aqueous electrolyte solution preferably contains an alkali metal salt such as a lithium salt of 0.5 mol / L or more based on the total volume of the non-aqueous electrolyte solution. That is, the nonaqueous electrolytic solution contains alkali metal ions such as lithium ions as an electrolyte.
- a lithium salt is preferably used as the electrolyte.
- lithium salt examples include (LiN (SO 2 F) 2 ), LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 2 F 5 ), LiN (SO 2 CF 3 ) (SO 2 C 2 F 4 H), LiC (SO 2 F) 3 , LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3 , LiCF 3 SO 3, LiC 4 F 9 SO 3, LiPF 6, and LiBF 4 and the like. These can be used alone or may be used in combination of two or more.
- the lithium salt preferably contains LiPF 6 and / or LiN (SO 2 F) 2 because it can exhibit high conductivity.
- the lithium salt concentration in the non-aqueous electrolyte is preferably 0.5 mol / L or more, and more preferably in the range of 0.5 to 2.0 mol / L. If the lithium salt concentration is 0.5 mol / L or more, since the anion is sufficiently present, the battery capacity can be sufficiently increased. When the lithium salt concentration is 2.0 mol / L or less, it is possible to prevent undissolved lithium salt from precipitating in the non-aqueous electrolyte and preventing the viscosity of the non-aqueous electrolyte from becoming too high, resulting in a decrease in conductivity. It is preferable because the output characteristics are difficult to be lowered.
- the nonaqueous electrolytic solution in the present embodiment preferably contains a cyclic carbonate and a chain carbonate as a nonaqueous solvent.
- the nonaqueous electrolytic solution containing a cyclic carbonate and a chain carbonate is advantageous in that a desired concentration of an alkali metal salt is dissolved and a high ionic conductivity is exhibited.
- the cyclic carbonate include alkylene carbonate compounds represented by ethylene carbonate, propylene carbonate, butylene carbonate, and the like. The alkylene carbonate compound is typically unsubstituted.
- chain carbonate examples include dialkyl carbonate compounds represented by dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, dipropyl carbonate, dibutyl carbonate and the like.
- the dialkyl carbonate compound is typically unsubstituted.
- the total content of the cyclic carbonate and the chain carbonate is preferably 50% by mass or more, more preferably 65% by mass or more, still more preferably 95% by mass or less, and still more preferably, based on the total mass of the nonaqueous electrolytic solution. 90% by mass or less.
- the total content of the cyclic carbonate and the chain carbonate is 50% by mass or more, it is possible to dissolve an alkali metal salt having a desired concentration, and to express high ionic conductivity.
- the electrolytic solution can further contain an additive described later.
- the non-aqueous electrolyte in the present embodiment may further contain an additive.
- the additive is not particularly limited, and examples thereof include sultone compounds, cyclic phosphazenes, acyclic fluorine-containing ethers, fluorine-containing cyclic carbonates, cyclic carbonates, cyclic carboxylic acid esters, and cyclic acid anhydrides. They can be used alone or in admixture of two or more.
- a Lewis acid a Lewis base, or the like to the non-aqueous electrolyte solution of the lithium ion secondary battery.
- the Lewis acid is coordinated to the anion of the lithium compound, and the oxidation reaction can be promoted by lowering the HOMO (High Occupied Molecular Orbital) of the anion.
- the Lewis acid is not particularly limited as long as it can form a complex with an anion of a lithium compound.
- a monophosphine metal complex having triphenylphosphine or the like as a ligand a phosphine complex such as diphosphine metal complex having BINAP or the like as a ligand; an amine metal complex having triethylamine or the like as a ligand, TMEDA (tetramethylethylenediamine) ) And other amine complexes such as diamine metal complexes; pyridine or porphyrins as imine metal complexes; cyclopentadienyl groups as metallocene complexes; oxalate complexes; cyanate complexes; Complexes; acac (acetylacetone) complexes; carbonyl complexes; amino acid complexes; alkenyl complexes; alkynyl complexes can be used.
- a complex containing one or two or more of these ligands may be used, and these ligands may be halogen atoms such as fluorine and chlorine; alkyl groups such as methyl groups; aryl groups such as phenyl groups; It may be modified with a functional group such as alkoxy group such as methoxy group; sulfonyl group; amino group; carboxyl group;
- Lewis acids for example, boron, aluminum, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, molybdenum, ruthenium, rhodium, palladium, silver, iridium, platinum Gold, etc.
- Lewis acid metal oxides such as aluminum oxide, manganese oxide, magnesium oxide, zinc oxide, and boron oxide can be used.
- the Lewis base is not particularly limited as long as it can form a complex with lithium ions.
- ether compounds such as crown ether and furan can be suitably used. Of these, crown ether is preferred.
- 12-crown-4-ether can be preferably used because it can form a stable complex with lithium ions.
- the amount of Lewis acid used is preferably 0.5% by mass to 5% by mass, more preferably 1% by mass to 4% by mass, based on the total mass of the non-aqueous electrolyte solution. By setting the amount to be used in this range, the lithium ion pre-doping to the negative electrode can proceed under milder conditions without impairing the self-discharge characteristics of the lithium ion secondary battery.
- the amount of Lewis base used is preferably 1% by mass to 10% by mass, more preferably 2% by mass to 8% by mass, based on the total mass of the non-aqueous electrolyte. By setting the amount to be used in this range, the lithium ion pre-doping to the negative electrode can proceed under milder conditions without impairing the self-discharge characteristics of the lithium ion secondary battery.
- a non-aqueous electrolyte is injected into the electrode laminate housed in the exterior body. It is desirable that further impregnation is performed after the injection, and the positive electrode, the negative electrode, and the separator are sufficiently immersed in the nonaqueous electrolytic solution.
- the pre-doping proceeds in a non-uniform manner in the pre-doping described later, and thus the resistance of the obtained lithium ion secondary battery increases. Durability may decrease.
- the impregnation method is not particularly limited.
- the electrode laminate is placed in a decompression chamber with the exterior material opened, and the inside of the chamber is decompressed using a vacuum pump. A method of returning the pressure to atmospheric pressure again can be used. After the impregnation, the electrode laminate can be sealed while being decompressed in a state where the exterior material is opened, and can be sealed.
- the positive electrode active material, lithium compound, and / or alkali metal carbonate containing alkali metal ions such as lithium ions function as a dopant source of alkali metal ions to the negative electrode active material.
- a voltage is applied between the positive electrode precursor and the negative electrode, the lithium compound and / or alkali metal carbonate in the positive electrode precursor is decomposed to release alkali metal ions, and the alkali metal ions are reduced at the negative electrode.
- a 1 / B 1 is It is preferable to adjust the value of A 1 or B 1 so as to be 0.05 or more and 0.30 or less. If A 1 / B 1 is 0.05 or more, a sufficient amount of lithium ions can be pre-doped in the negative electrode, so that the energy density of the non-aqueous lithium ion storage element can be increased. When A 1 / B 1 is 0.30 or less, pre-doping of excessive lithium ions to the negative electrode can be suppressed, and precipitation of metallic lithium on the negative electrode can be suppressed.
- the capacity per unit area in the negative electrode can be determined by the following method. Electrolysis using a non-aqueous solvent containing a lithium salt as an electrolyte, using a negative electrode before pre-doping as a working electrode cut into a fixed area (Z [cm 2 ]), using metallic lithium as a counter electrode and a reference electrode, respectively. A cell is produced. Using a charging / discharging device, under a 25 ° C. environment, the electrochemical cell was charged at a current value of 0.5 mA / cm 2 until the voltage value became 0.01 V. Constant voltage charging is performed until the current reaches 01 mA / cm 2 . The sum of the charge capacities at the time of constant current charge and constant voltage charge is evaluated as the negative electrode capacity (Y [Ah]). Using the obtained Z and Y, the capacity B 1 per unit area of the negative electrode can be calculated from Y / Z.
- the positive electrode In order to adjust the lithium compound amount A 1 per unit area in the positive electrode precursor, in addition to adjusting the compounding amount of the lithium compound at the time of preparing the positive electrode precursor forming slurry as described above, the positive electrode It can be adjusted by adjusting the amount of slurry applied to the current collector. In order to adjust the capacity B 1 per unit area of the negative electrode, in addition to selecting the type and amount of the negative electrode active material used at the time of producing the negative electrode, by adjusting the amount of slurry applied to the negative electrode current collector Can be adjusted.
- the voltage applied between the positive electrode precursor and the negative electrode during pre-doping is 4.2 V or more.
- This voltage is preferably 4.2 to 5.0V, and more preferably 4.3 to 4.9V.
- the voltage application method is not particularly limited, and a method of applying a constant voltage at a voltage of 4.2 V or higher using a charging / discharging device, a power source, etc .; a method of superimposing a pulse voltage when a constant voltage of 4.2 V or higher is applied; The method etc. which implement a charging / discharging cycle in the voltage range containing a voltage of 4.2V or more using a charging / discharging apparatus can be used.
- a gas such as CO 2 is generated with the oxidative decomposition of the alkali metal carbonate and / or the lithium compound in the positive electrode precursor. Therefore, when applying a voltage, it is preferable to provide a means for releasing the generated gas to the outside of the exterior body.
- a method in which a voltage is applied in a state where a part of the exterior body is opened; in a state in which an appropriate gas releasing means such as a gas vent valve or a gas permeable film is previously installed in a part of the exterior body A method of applying a voltage; Etc.
- the electrode laminate After pre-doping, it is preferable to age the electrode laminate after pre-doping. In aging, the solvent in the non-aqueous electrolyte is decomposed at the negative electrode, and a lithium polymer permeable solid polymer film is formed on the negative electrode surface.
- the aging method is not particularly limited, and for example, a method of reacting a solvent in the electrolytic solution under a high temperature environment can be used.
- the degassing method is not particularly limited.
- a method in which the electrode stack is placed in a decompression chamber with the exterior body opened, and the interior of the chamber is decompressed using a vacuum pump can be used.
- the exterior body is sealed to seal the exterior body, and a non-aqueous alkali metal storage element can be manufactured.
- the lithium ion secondary battery includes a positive electrode having a porous positive electrode active material layer having pores that are traces of decomposition and dissipation of a lithium compound contained in a positive electrode precursor, and a lithium compound. And a negative electrode having a negative electrode active material layer doped with a dopant source.
- the positive electrode may contain a lithium compound that has not been decomposed by pre-doping.
- the bulk density of the positive electrode active material layer is preferably 1.0 g / cm 3 or more, more preferably 1.2 g / cm 3 or more and 4.5 g / cm 3 or less.
- the bulk density of the positive electrode active material layer is 1.2 g / cm 3 or more, a high energy density can be expressed, and the power storage device can be reduced in size.
- the bulk density of the positive electrode active material layer is 4.5 g / cm 3 or less, the electrolyte solution is sufficiently diffused in the pores in the positive electrode active material layer, and high output characteristics are obtained.
- the positive electrode active material layer after pre-doping contains 3.8 ⁇ 10 ⁇ 9 mol / g of at least one compound selected from the following formulas (1) to (3) per unit mass of the positive electrode material layer. Contains ⁇ 3.0 ⁇ 10 -2 mol / g.
- R 1 is an alkylene group having 1 to 4 carbon atoms or a halogenated alkylene group having 1 to 4 carbon atoms
- X 1 and X 2 are each independently — (COO) n (where , N is 0 or 1.).
- R 1 is an alkylene group having 1 to 4 carbon atoms or a halogenated alkylene group having 1 to 4 carbon atoms
- R 2 is hydrogen, an alkyl group having 1 to 10 carbon atoms, or 1 carbon atom.
- X 1 and X 2 are each independently - (COO) n (where, n is 0 or 1.) is.
- R 1 is an alkylene group having 1 to 4 carbon atoms or a halogenated alkylene group having 1 to 4 carbon atoms
- R 2 and R 3 are each independently hydrogen, 1 to 10 carbon atoms Alkyl group, mono- or polyhydroxyalkyl group having 1 to 10 carbon atoms, alkenyl group having 2 to 10 carbon atoms, mono- or polyhydroxyalkenyl group having 2 to 10 carbon atoms, cycloalkyl group having 3 to 6 carbon atoms, or aryl X 1 and X 2 are each independently — (COO) n (where n is 0 or 1).
- ⁇ is an alkylene group having 1 to 4 carbon atoms or a halogenated alkylene group having 1 to 4 carbon atoms
- R 2 and R 3 are each independently hydrogen, 1 to 10 carbon atoms Alkyl group, mono- or polyhydroxyalkyl group having 1 to 10 carbon atoms, alkenyl group having 2 to 10 carbon atoms, mono- or
- Particularly preferred compounds as the compound of formula (1) are not limited, but for example, LiOC 2 H 4 OLi, LiOC 3 H 6 OLi, LiOC 2 H 4 OCOOLi, LiOCOOC 3 H 6 OLi, LiOCOOC 2 H 4 OCOOLi, and LiOCOOC 3 A compound represented by H 6 OCOOLi is given.
- Particularly preferable compounds as the compound of the formula (2) are not limited, but for example, LiOC 2 H 4 OH, LiOC 3 H 6 OH, LiOC 2 H 4 OCOOH, LiOC 3 H 6 OCOOH, LiOCOOC 2 H 4 OCOOH, LiOCOOC 3 H 6 OCOOH, LiOC 2 H 4 OCH 3, LiOC 3 H 6 OCH 3, LiOC 2 H 4 OCOOCH 3, LiOC 3 H 6 OCOOCH 3, LiOCOOC 2 H 4 OCOOCH 3, LiOCOOC 3 H 6 OCOOCH 3, LiOC 2 H 4 OC in 2 H 5, LiOC 3 H 6 OC 2 H 5, LiOC 2 H 4 OCOOC 2 H 5, LiOC 3 H 6 OCOOC 2 H 5, LiOCOOC 2 H 4 OCOOC 2 H 5, LiOCOOC 3 H 6 OCOOC 2 H 5 It includes compounds.
- Particularly preferred compounds as the compound of the formula (3) are not limited, but for example, HOC 2 H 4 OH, HOC 3 H 6 OH, HOC 2 H 4 OCOOH, HOC 3 H 6 OCOOH, HOCOOC 2 H 4 OCOOH, HOCOOC 3 H 6 OCOOH, HOC 2 H 4 OCH 3, HOC 3 H 6 OCH 3, HOC 2 H 4 OCOOCH 3, HOC 3 H 6 OCOOCH 3, HOCOOC 2 H 4 OCOOCH 3, HOCOOC 3 H 6 OCOOCH 3, HOC 2 H 4 OC 2 H 5 , HOC 3 H 6 OC 2 H 5 , HOC 2 H 4 OCOOC 2 H 5 , HOC 3 H 6 OCOOC 2 H 5 , HOCOOC 2 H 4 OCOOC 2 H 5 , HOCOOC 3 H 6 OCOOC 2 H 5 , 3 OC 2 H 4 OCOOC 2 H 5 , 3 OC 2 H 4 OCOOC 2 H 5 , 3 OC 2 H 4 OCOOC 2 H
- the compounds of the formulas (1) to (3) are added to the positive electrode active material layer.
- a method of mixing; a method of adsorbing the compounds of formulas (1) to (3) on the positive electrode active material layer; and a method of electrochemically depositing the compounds of formulas (1) to (3) on the positive electrode active material layer. Can be mentioned.
- a precursor that can be decomposed to produce these compounds is contained in a non-aqueous electrolyte solution, and lithium ions are added.
- a method of decomposing this precursor when depositing the secondary battery and depositing the compound in the positive electrode active material layer is preferable.
- the precursor that decomposes to form the compounds of formulas (1) to (3) includes at least one organic solvent selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and fluoroethylene carbonate Of these, ethylene carbonate and propylene carbonate are preferred.
- the total amount of the compounds of the formulas (1) to (3) is preferably 3.8 ⁇ 10 ⁇ 9 mol / g or more, more preferably 2.0 ⁇ 10 ⁇ 8 mol / g per unit mass of the positive electrode active material layer. Most preferably, it is g or more. If the total amount of the compounds of formulas (1) to (3) is 3.8 ⁇ 10 ⁇ 9 mol / g or more per unit mass of the positive electrode active material layer, the non-aqueous electrolyte solution is less likely to come into contact with the positive electrode active material, It can suppress more effectively that a non-aqueous electrolyte solution decomposes oxidatively.
- the total amount of the compounds of the formulas (1) to (3) is preferably 3.0 ⁇ 10 ⁇ 2 mol / g or less, more preferably 7.0 ⁇ 10 ⁇ 3 mol / g per unit mass of the positive electrode active material layer. g or less, more preferably 3.0 ⁇ 10 ⁇ 5 mol / g or less.
- the total amount of the compounds of the formulas (1) to (3) is 3.0 ⁇ 10 ⁇ 2 mol / g or less per unit mass of the positive electrode active material layer, the diffusion of lithium (Li) ions is hardly inhibited, Higher input / output characteristics can be expressed.
- the positive electrode active material layer in the positive electrode after pre-doping described later has a fine pore distribution curve indicating the relationship between the pore diameter and the Log differential pore volume when the pore distribution is measured by mercury porosimetry. It is preferable that one or more peaks having a peak value of Log differential pore volume of 0.10 mL / g or more and 1.0 mL / g or less exist in the pore diameter range of 0.3 ⁇ m or more and 50 ⁇ m or less.
- peaks having a peak value of Log differential pore volume of 0.10 mL / g or more and 1.0 mL / g or less in a pore diameter range of 0.1 ⁇ m or more and 50 ⁇ m or less.
- the upper limit of the pore diameter range in which one or more peaks having a log differential pore volume of 0.10 mL / g or more and 1.0 mL / g or less exist It is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, most preferably 10 ⁇ m or less, and the lower limit of the pore diameter range is preferably 0.5 ⁇ m or more, more preferably 0.7 ⁇ m or more.
- the upper limit and the lower limit of the pore diameter range can be arbitrarily combined.
- the presence of a peak means that a peak having a peak top position in the pore diameter range exists.
- the origin of the peak in the pore distribution curve of the positive electrode active material layer in the positive electrode is not particularly limited, but the peak is derived from the gap between the positive electrode active material layer constituting materials such as the positive electrode active material and the conductive filler.
- the peak is derived from the gap between the positive electrode active material layer constituting materials such as the positive electrode active material and the conductive filler.
- the pore diameter range in which one or more peaks having a log differential pore volume of 0.10 mL / g or more and 1.0 mL / g or less exist is 0.3 ⁇ m or more. If it is, good vacancies that can hold the electrolyte solution inside the positive electrode are formed, and lithium ion conductivity is high, so that it shows high input / output characteristics when incorporated in a lithium ion secondary battery, and at the time of repeated charge and discharge, In particular, in high load charge / discharge, ions are supplied as needed from the electrolyte in the pores formed in the vicinity of the positive electrode active material, so that the high load charge / discharge cycle characteristics are excellent.
- the pore diameter range in which one or more peaks having a peak value of Log differential pore volume of 0.10 mL / g or more and 1.0 mL / g or less exist is 50 ⁇ m or less. Then, a high energy density is obtained when it is incorporated in a lithium ion secondary battery.
- the Log differential pore volume is 0.10 mL / g or more and 1.0 mL / g or less in the pore diameter range of 0.3 ⁇ m or more and 50 ⁇ m or less.
- the lower limit of the peak value is more preferably a Log differential pore volume of 0.15 mL / g or more, and a Log differential pore volume of 0.20 mL / g or more is more preferable. .
- the peak value is a Log differential pore volume of 0.10 mL / g or more, there are sufficient pores that can hold the electrolyte, and high input / output characteristics and excellent high load charge when incorporated in a lithium ion secondary battery. Discharge cycle characteristics can be obtained.
- the peak value is a Log differential pore volume of 1.0 mL / g or less, a high energy density can be obtained when it is incorporated in a lithium ion secondary battery.
- Vp in the pore distribution curve of the positive electrode active material layer in the positive electrode, is 0.03 mL / g or more and 0 when the total cumulative pore volume in the pore diameter range of 0.3 ⁇ m to 50 ⁇ m is Vp. .2 mL / g or less.
- Vp is more preferably 0.05 mL / g or more and 0.19 mL / g or less, and further preferably 0.07 mL / g or more and 0.18 mL / g or less.
- Vp is pre-doped with a gap between the positive electrode active material layer constituent materials such as the positive electrode active material and the conductive filler described above and a lithium compound contained in the positive electrode active material layer of the positive electrode precursor, for example. It is considered to indicate the total volume of pores remaining after oxidative decomposition. If Vp is 0.03 mL / g or more, the diffusibility of lithium ions is sufficiently secured, and high input / output characteristics and excellent high-load charge / discharge cycle characteristics are obtained. On the other hand, if Vp is 0.2 mL / g or less, the bonding between the constituent materials in the positive electrode is ensured, and a sufficiently high positive electrode strength is obtained, and a high energy density is also obtained.
- the total integrated pore volume and the Log differential pore volume by the mercury intrusion method in the present embodiment are values obtained by the following methods, respectively.
- the container containing the sample is evacuated, filled with mercury, and pressure is applied to the mercury, and the amount of mercury intrusion is measured against the applied pressure.
- the applied pressure is converted into the pore diameter from the following formula, the mercury penetration amount is converted into the pore volume, and the pore distribution is obtained.
- P ⁇ D ⁇ 4 ⁇ ⁇ ⁇ cos ⁇ ⁇
- P pressure
- D pore diameter
- ⁇ surface tension of mercury 485 mN / m
- ⁇ contact angle of mercury 130 °.
- the total integration within a specific pore diameter range for example, 0.3 ⁇ m or more and 50 ⁇ m or less.
- the pore volume (Vp) is expressed by the following formula: (Cumulative pore volume at a pore diameter of 0.3 ⁇ m) ⁇ (accumulated pore volume at a pore diameter of 50 ⁇ m) Is calculated by In addition, the log differential of the difference dV / d (logD) obtained by dividing the pore volume difference value dV between the measurement points by the logarithm d (logD) of the pore diameter difference value between the measurement points with respect to the average pore diameter of the measurement point interval.
- the unit weight (g) of the total cumulative pore volume (mL / g) and the Log differential pore volume (mL / g) of the positive electrode active material layer in this embodiment is defined as the weight of the entire positive electrode active material layer. .
- the electrolyte contained in the electrolytic solution is decomposed to generate fluorine ions.
- the generated fluorine ions are not preferred because they mainly form lithium fluoride at the negative electrode and increase the internal resistance of the lithium ion secondary battery.
- the lithium compound can adsorb fluorine ions, formation of lithium fluoride at the negative electrode can be suppressed. Therefore, it is preferable that the lithium compound is present in the positive electrode active material layer because an increase in internal resistance of the lithium ion secondary battery can be suppressed.
- the average particle size of the lithium compound after pre-doping is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 5 ⁇ m or less.
- the average particle size of the lithium compound is 0.1 ⁇ m or more, it is possible to suppress characteristic deterioration and gas generation due to high temperature storage by efficiently adsorbing fluorine ions generated by high temperature storage.
- the average particle diameter of the lithium compound is 10 ⁇ m or less, the reaction area with fluorine ions generated in a high-load charge / discharge cycle increases, so that fluorine ions can be adsorbed efficiently.
- the method for measuring the average particle diameter of the lithium compound is not particularly limited, but can be calculated from the SEM image and SEM-EDX image of the cross section of the positive electrode.
- BIB processing can be used in which an Ar beam is irradiated from the upper part of the positive electrode and a smooth cross section is produced along the end of the shielding plate placed immediately above the sample.
- the distribution of carbonate ions can be obtained by measuring Raman imaging of the cross section of the positive electrode.
- the identification method of the lithium compound contained in a positive electrode active material is not specifically limited, For example, it can identify by the following method. It is preferable to identify a lithium compound by combining a plurality of analysis methods described below.
- the lithium ion secondary battery is disassembled in an argon box, the positive electrode is taken out, and the electrolyte attached to the positive electrode surface is washed before measurement. Preferably it is done.
- the solvent for washing the positive electrode it is only necessary to wash away the electrolyte attached to the surface of the positive electrode.
- carbonate solvents such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate can be suitably used.
- the positive electrode is immersed in a diethyl carbonate solvent 50 to 100 times the weight of the positive electrode for 10 minutes or more, and then the solvent is changed and the positive electrode is immersed again. Thereafter, the positive electrode is taken out from diethyl carbonate and vacuum-dried, and then SEM-EDX, Raman spectroscopy, and XPS analysis are performed.
- the conditions for vacuum drying are such that the remaining amount of diethyl carbonate in the positive electrode is 1% by mass or less in the range of temperature: 0 to 200 ° C., pressure: 0 to 20 kPa, and time: 1 to 40 hours.
- cleaning mentioned later and liquid volume adjustment can be measured, and it can quantify based on the analytical curve created beforehand.
- anions can be identified by analyzing the water after washing the positive electrode with distilled water.
- Li-solid NMR Li-solid NMR
- XRD X-ray diffraction
- TOF-SIMS time-of-flight secondary ion mass spectrometry
- AES Alger
- Lithium compounds can also be identified by using electron spectroscopy, TPD / MS (heat generation gas mass spectrometry), DSC (differential scanning calorimetry), or the like.
- the identification method of the lithium compound by SEM observation of the positive electrode cross section is exemplified below.
- the lithium compound in the case of lithium carbonate, can be discriminated by carbon mapping and oxygen mapping based on the SEM-EDX image of the cross section of the positive electrode measured at an observation magnification of 1000 to 4000.
- the SEM-EDX image measurement method it is preferable to adjust the luminance and contrast so that there is no pixel that reaches the maximum brightness, and the average brightness is in the range of 40% to 60%.
- the regions containing 50% or more of the bright portion binarized based on the average value of brightness are defined as the carbon region and the oxygen region, respectively.
- the overlapping portion can be identified as lithium carbonate.
- the average particle diameter of the lithium compound can be determined by measuring in the same field of view as SEM-EDX of the positive electrode cross section and analyzing the obtained image.
- the cross-sectional area S is obtained for all the lithium compound particles identified in the SEM image of the positive electrode cross section, and the particle diameter d calculated by the following Equation 3 is obtained.
- the circumference ratio is ⁇ .
- d 2 ⁇ (S / ⁇ ) 1/2 (Equation 3)
- the amount of the lithium compound contained in the positive electrode after pre-doping is preferably 0.1% by mass to 18% by mass, more preferably 0.3% by mass to 15%, based on the total mass of the positive electrode active material layer in the positive electrode. It is 0.5 mass% or less, More preferably, it is 0.5 mass% or more and 13 mass% or less. If the amount of the lithium compound is 0.1% by mass or more, a sufficient amount of the lithium compound that adsorbs the fluorine ions generated in the high load charge / discharge cycle is present, so that the high load charge / discharge cycle characteristics are improved. When the amount of the lithium compound is 18% by mass or less, the energy density of the lithium ion secondary battery can be increased.
- the positive electrode precursor When a lithium compound is contained in the positive electrode precursor, good vacancies capable of holding the electrolytic solution are formed inside the positive electrode by oxidative decomposition of the lithium compound.
- the positive electrode having such vacancies is supplied with ions from the electrolyte in the vacancies formed in the vicinity of the active material at any time during charge and discharge, and therefore has high load charge / discharge cycle characteristics. It is thought to improve.
- the peak area at ⁇ 40 ppm to 40 ppm obtained by measurement with a repetition waiting time of 10 seconds is set to a, and ⁇ 40 ppm obtained by measurement with a repetition waiting time of 3000 seconds.
- the peak area at ⁇ 40 ppm is b, preferably 1.04 ⁇ b / a ⁇ 5.56, more preferably 1.05 ⁇ b / a ⁇ 3.79, and even more preferably 1.09 ⁇ b / a. ⁇ 3.32, more preferably 1.14 ⁇ b / a ⁇ 2.86.
- the lithium ion secondary battery of the present embodiment can suppress deterioration of characteristics and gas generation due to high temperature storage while maintaining high input / output characteristics by adjusting the b / a to a specific range.
- the principle is not clear and is not limited to theory, but it is presumed as follows.
- the peak area a is considered to be a peak mainly derived from lithium ions occluded in the positive electrode active material or an attached lithium-containing film, and is considered to represent the amount of the positive electrode active material relatively.
- the peak area b is considered to be obtained by integrating the peaks derived from the lithium compound separated from the positive electrode active material in addition to the peak area a.
- b / a represents the amount of the lithium compound isolated with respect to the positive electrode active material.
- the lithium compound isolated from the positive electrode active material can maintain high input / output characteristics without hindering electron conduction and ion diffusion between the positive electrode active materials. Further, the lithium compound adsorbs active products such as fluorine ions generated by high temperature storage, thereby suppressing characteristic deterioration and gas generation due to high temperature storage.
- the amount of the lithium compound relative to the positive electrode active material is sufficient, so that the lithium compound adsorbs an active product such as fluorine ions generated by high-temperature storage, so that the high-temperature storage is achieved. Suppresses characteristic deterioration and gas generation due to When the b / a is 5.56 or less, the lithium compound can maintain high input / output characteristics without hindering electron conduction and ion diffusion between the positive electrode active materials.
- Solid 7 Li-NMR spectrum measurement of positive electrode active material layer In the solid 7 Li-NMR spectrum of the positive electrode active material layer, the peak area a at ⁇ 40 ppm to 40 ppm when the repetition waiting time is 10 seconds, and the peak area b at ⁇ 40 ppm to 40 ppm when the repetition waiting time is 3000 seconds;
- the area ratio b / a can be calculated by the following method.
- a commercially available apparatus can be used as an apparatus for measuring solid 7 Li-NMR. Under a room temperature environment, the measurement is performed by a single pulse method with a magic angle spinning speed of 14.5 kHz and an irradiation pulse width of 45 ° pulse. Measurement is performed for each of the cases where the repetition waiting time is 10 seconds and 3000 seconds, and a solid 7 Li-NMR spectrum is obtained. In obtaining the solid 7 Li-NMR spectrum, the measurement conditions other than the repetition waiting time, that is, the number of integrations, the receiver gain, etc., are all made the same. A 1 mol / L lithium chloride aqueous solution is used as a shift reference, and the shift position separately measured as an external standard is 0 ppm. When measuring the lithium chloride aqueous solution, the sample is not rotated and the irradiation pulse width is set to 45 ° pulse, and the measurement is performed by the single pulse method.
- V 1 l 1 ⁇ w 1 ⁇ t 1 is calculated.
- Ah / L) is a value obtained by the equation.
- the room temperature internal resistance Ra ( ⁇ ) is a value obtained by the following method.
- constant-current charging is performed until the voltage reaches 0.1V at a current value of 0.1 C in a thermostatic chamber set to 25 ° C. with a cell corresponding to the non-aqueous alkali metal storage element, followed by a constant voltage of 4.2V.
- Constant voltage charging for applying voltage is performed for 30 minutes.
- a constant current discharge is performed up to 3.0 V at a current value of 5 C to obtain a discharge curve (time-voltage).
- the internal resistance after the high temperature storage test is defined as Rb ( ⁇ ), which is the resistance value obtained using the same measurement method as that for the normal temperature internal resistance.
- the value (Vb-Va) / Q obtained by dividing the amount of gas (Vb-Va) generated when stored for 2 months at a cell voltage of 4.2 V and an environmental temperature of 60 ° C. by the capacity Q is the characteristics of the device.
- the value measured at 25 ° C. is preferably 2.7 cc / Ah or less, more preferably 2.0 cc / Ah or less, and further preferably 1.5 cc / Ah or less.
- the gas amount measured at 25 ° C. is 2.7 cc / Ah or less, the cell is less likely to expand due to gas generation even when the non-aqueous alkali metal storage element is exposed to a high temperature for a long period of time. Therefore, a power storage element having sufficient safety and durability can be obtained.
- Rb / Ra The change in internal resistance before and after the high temperature storage test is represented by Rb / Ra.
- Rb / Ra is preferably 3.0 or less, more preferably 2 from the viewpoint of developing sufficient charge capacity and discharge capacity for a large current when exposed to a high temperature environment for a long time. 0.0 or less, more preferably 1.5 or less. If Rb / Ra is 3.0 or less, excellent output characteristics can be obtained stably over a long period of time, leading to a long life of the non-aqueous alkali metal storage element.
- the rate of increase in resistance (Rd / Ra) after the high-load charge / discharge cycle test is measured by the following method: First, constant-current charging is performed until a voltage of 1 C reaches 4.2 V in a thermostatic chamber set at 25 ° C. with a cell corresponding to the non-aqueous alkali metal storage element, and then at a current value of 1 C, 3. Constant current discharge is performed until the voltage reaches 0V. The charging / discharging operation was repeated 500 times, and the internal resistance was measured before the test was started and after the test was finished. When the internal resistance before the test started was Ra ( ⁇ ) and the internal resistance after the test was finished was Rd ( ⁇ ), The rate of increase in resistance after the high load charge / discharge cycle test before the start of the test is calculated by Rd / Ra.
- the obtained positive electrode slurry was applied and dried on both sides or one side of a 15 ⁇ m-thick aluminum foil as a positive electrode current collector, and pressed to obtain a positive electrode precursor (hereinafter, “single-side positive electrode precursor” and “ A double-sided positive electrode precursor ”) was obtained.
- the thickness of the positive electrode active material layer of the positive electrode precursor was approximately 65 ⁇ m per side, although there were some differences depending on the average particle diameter of lithium carbonate.
- the obtained double-sided negative electrode and double-sided positive electrode precursor were cut into 10 cm ⁇ 10 cm (100 cm 2 ).
- the uppermost and lowermost surfaces use a single-sided positive electrode precursor, and further use 21 double-sided negative electrodes and 20 double-sided positive electrode precursors, with a microporous membrane separator having a thickness of 15 ⁇ m sandwiched between the negative electrode and the positive electrode precursor. did.
- the negative electrode terminal and the positive electrode terminal were connected to the negative electrode and the positive electrode precursor, respectively, by ultrasonic welding to obtain an electrode laminate.
- This electrode laminate is housed in an exterior body made of an aluminum laminate packaging material, and the electrode body 3 and the exterior body 3 at the bottom are heated under conditions of a temperature of 180 ° C., a sealing time of 20 sec, and a sealing pressure of 1.0 MPa. Sealed. This was vacuum-dried under the conditions of a temperature of 80 ° C., a pressure of 50 Pa, and a drying time of 60 hours.
- EC ethylene carbonate
- EMC methyl ethyl carbonate
- a solution obtained by dissolving each electrolyte salt so that the sum of the concentrations of 75:25 (molar ratio) and LiN (SO 2 F) 2 and LiPF 6 is 1.2 mol / L is non-aqueous electrolysis. Used as a liquid.
- the concentrations of LiN (SO 2 F) 2 and LiPF 6 in the electrolytic solution prepared here were 0.9 mol / L and 0.3 mol / L, respectively.
- the electrode laminate that is housed in the aluminum laminate packaging material and impregnated with the non-aqueous electrolyte is put into a vacuum sealing machine, and sealed at 180 ° C. for 10 seconds at a pressure of 0.1 MPa in a state where the pressure is reduced to ⁇ 95 kPa.
- the aluminum laminate packaging material was sealed to produce a lithium ion secondary battery.
- Pre-dope Using the charge / discharge device (TOSCAT-3100U) manufactured by Toyo System Co., Ltd., the obtained lithium ion secondary battery was constant current until it reached a voltage of 4.5 V at a current value of 0.5 A in a 45 ° C. environment. After charging, initial charging was performed by continuously performing 4.5 V constant voltage charging for an arbitrary time, and pre-doping was performed on the negative electrode. Table 1 summarizes the time for 4.5V constant voltage charging.
- the pre-doped lithium ion secondary battery was subjected to constant current discharge in a 25 ° C. environment at 0.5 A until reaching a voltage of 3.0 V, and then subjected to 3.0 V constant current discharge for 1 hour to obtain a voltage of 3. Adjusted to 0V. Subsequently, the lithium ion secondary battery was stored in a constant temperature bath at 60 ° C. for 5 hours.
- the positive electrode after drying was transferred from the side box to the Ar box in a state where exposure to air was not performed, and immersion extraction was performed with heavy water to obtain a positive electrode extract.
- the analysis of the extract was performed by (i) IC and (ii) 1 H-NMR.
- the abundance (mol / g) of each compound deposited on the positive electrode per unit mass of the positive electrode active material layer was determined.
- the mass of the positive electrode active material layer used for extraction was determined by the following method.
- the mixture (positive electrode active material layer) was peeled off from the current collector of the positive electrode remaining after the heavy water extraction, and the peeled mixture was washed with water and then vacuum dried.
- the mixture obtained by vacuum drying was washed with NMP or DMF. Subsequently, the obtained positive electrode active material layer was vacuum-dried again and weighed to examine the mass of the positive electrode active material layer used for extraction.
- the positive electrode extract was put into a 3 mm ⁇ NMR tube (PN-002 manufactured by Shigemi Co., Ltd.), and a 5 mm ⁇ NMR tube containing deuterated chloroform containing 1,2,4,5-tetrafluorobenzene (N-5 manufactured by Japan Precision Science Co., Ltd.). ) And 1 H NMR measurement was performed by a double tube method. Normalization was performed with a signal of 1,2,4,5-tetrafluorobenzene of 7.1 ppm (m, 2H), and an integral value of each observed compound was obtained.
- deuterated chloroform containing dimethyl sulfoxide of known concentration is put into a 3 mm ⁇ NMR tube (PN-002 manufactured by Shigemi Co., Ltd.), and the same deuterated chloroform containing 1,2,4,5-tetrafluorobenzene as above.
- PN-002 manufactured by Shigemi Co., Ltd.
- the same deuterated chloroform containing 1,2,4,5-tetrafluorobenzene as above. was inserted into a 5 mm ⁇ NMR tube (N-5 manufactured by Japan Precision Science Co., Ltd.), and 1 H NMR measurement was performed by a double tube method.
- the signal was normalized with 7.1 ppm (m, 2H) of 1,2,4,5-tetrafluorobenzene, and the integral value of 2.6 ppm (s, 6H) of dimethyl sulfoxide was obtained. From the relationship between the concentration of dimethyl sulfoxide used and the integral value, the concentration A of each compound in the positive electrode extract
- the signal (3.7 ppm) is XOCH 2 CH 2 OX of CH 2, since the overlaps with CH 3 CH 2 OX of CH 2 O signals (3.7 ppm), the CH 3 CH 2 OX Excluding the CH 2 O equivalent of CH 3 CH 2 OX calculated from the CH 3 signal (1.2 ppm), the amount of the compounds of formulas (1) to (3) was calculated.
- X represents — (COO) n Li or — (COO) n R 1 (where n is 0 or 1, R 1 is an alkyl group having 1 to 4 carbon atoms, 1 to 4 carbon atoms, respectively) Of the halogenated alkyl group.
- the formula contained in the positive electrode active material layer from the concentration of each compound obtained by the analysis of (i) and (ii) above, the volume of heavy water used for extraction, and the active material mass of the positive electrode used for extraction
- the abundance of the compounds (1) to (3) was measured and summarized in Table 1.
- Comparative Example 1-1 in which lithium carbonate was not added to the positive electrode precursor, the compounds of the formulas (1) to (3) were hardly present in the positive electrode active material layer. It can be seen that the compounds of the formulas (1) to (3) exist depending on the 5 V constant voltage charging time.
- the obtained lithium ion secondary battery was disassembled in an argon box with a dew point temperature of ⁇ 72 ° C., and a positive electrode having a positive electrode active material layer coated on both sides was cut out to a size of 10 cm ⁇ 5 cm, and the weight was measured. It was 0.512 g.
- the obtained positive electrode was immersed in 30 g of diethyl carbonate solvent, and the positive electrode was occasionally moved with tweezers and washed for 10 minutes.
- the positive electrode was taken out, air-dried in an argon box for 5 minutes, immersed in 30 g of diethyl carbonate solvent newly prepared, and washed for 10 minutes in the same manner as described above.
- the positive electrode was taken out from the argon box and dried for 20 hours under the conditions of a temperature of 25 ° C. and a pressure of 1 kPa using a vacuum dryer (manufactured by Yamato Kagaku, DP33) to obtain a positive electrode sample 1.
- the average particle size of lithium carbonate is smaller after the lithium ion secondary battery is manufactured than the average particle size of lithium carbonate added when the positive electrode precursor is manufactured. I understand. This means that lithium carbonate functions as a dopant source.
- the lithium ion secondary battery produced above is charged at a constant current up to 2.9 V at a current of 50 mA at an ambient temperature of 25 ° C. using a charge / discharge device (ACD-01) manufactured by Asuka Electronics. Then, constant current and constant voltage charging for applying a constant voltage of 2.9 V was performed for 2 hours.
- ACD-01 charge / discharge device manufactured by Asuka Electronics.
- the positive electrode active material layer was collected in an argon atmosphere.
- the lithium ion secondary battery was disassembled under an argon atmosphere, and the positive electrode was taken out. Subsequently, the obtained positive electrode was immersed in diethyl carbonate for 2 minutes or more to remove lithium salt and the like. After dipping in diethyl carbonate again under the same conditions, it was air-dried. Thereafter, a positive electrode active material layer was collected from the positive electrode.
- solid 7 Li-NMR measurement was performed.
- ECA700 manufactured by JEOL RESONANCE 7 Li-NMR resonance frequency is 272.1 MHz
- the rotation speed of magic angle spinning is 14.5 kHz
- the irradiation pulse width is 45 ° pulse in a room temperature environment.
- Measured by the single pulse method The observation range was ⁇ 400 ppm to 400 ppm, and the number of points was 4096.
- Measurement conditions other than the repetition waiting time for example, the number of integrations, receiver gain, etc., are all made the same, and the measurement is performed for each case where the repetition waiting time is 10 seconds and 3000 seconds, and an NMR spectrum is obtained. It was.
- a 1 mol / L lithium chloride aqueous solution was used as a shift reference, and the shift position separately measured as an external standard was set to 0 ppm.
- the sample was not rotated, and the irradiation pulse width was 45 ° pulse, and measurement was performed by the single pulse method.
- the internal resistance Ra at 25 ° C. is summarized in Table 1.
- the amount of the compounds of formulas (1) to (3) contained in the positive electrode active material layer is 3.8 ⁇ 10 ⁇ 9 mol / g or more and 3.0 ⁇ 10 ⁇ 2 mol / g or less.
- a lithium ion secondary battery having a small Ra, low internal resistance, small (Vb ⁇ Va) / Q and Rb / Ra, and excellent durability due to high-temperature storage is provided.
- the reason is that the compounds of the formulas (1) to (3) contained in the positive electrode active material layer function as a good ionic conductor by being present on the surface of the positive electrode active material, This is thought to be due to the role of reducing internal resistance and preventing the decomposition of the electrolytic solution under high temperature storage by covering the reaction active sites on the positive electrode active material.
- the obtained positive electrode slurry was applied to one side and both sides of an aluminum foil having a thickness of 15 ⁇ m as a positive electrode current collector, dried and pressed to obtain a positive electrode precursor (hereinafter referred to as “single-side positive electrode precursor”, And “double-sided positive electrode precursor”).
- the thickness of the positive electrode active material layer of the positive electrode precursor was approximately 95 ⁇ m per side, although there were some differences depending on the average particle diameter of lithium carbonate.
- This electrode laminate was housed in an outer package made of an aluminum laminate packaging material, and the electrode terminal part and the bottom part of the outer package 3 were heat-sealed under conditions of a temperature of 180 ° C., a sealing time of 20 sec, and a sealing pressure of 1.0 MPa. . This was vacuum-dried under the conditions of a temperature of 80 ° C., a pressure of 50 Pa, and a drying time of 60 hours.
- Examples 1-1 to 1-16 and Comparative Examples 1-1 to 1- 1 were placed on an electrode laminate housed in an aluminum laminate packaging material in a dry air environment at a temperature of 25 ° C. and a dew point of ⁇ 40 ° C. or less. About 80 g of the non-aqueous electrolyte similar to 3 was injected under atmospheric pressure. Subsequently, this was placed in a vacuum chamber, depressurized from atmospheric pressure to ⁇ 87 kPa, then returned to atmospheric pressure and allowed to stand for 5 minutes. Then, after reducing the pressure from atmospheric pressure to -87 kPa, the operation of returning to atmospheric pressure was repeated 4 times, and then allowed to stand for 15 minutes.
- the pressure was reduced from atmospheric pressure to -91 kPa, and then returned to atmospheric pressure.
- the operation of depressurizing and returning to atmospheric pressure was repeated a total of 7 times (reduced pressure from atmospheric pressure to -95, -96, -97, -81, -97, -97, -97 kPa, respectively).
- the electrode laminate was impregnated with the nonaqueous electrolytic solution.
- the electrode laminate that is housed in the aluminum laminate packaging material and impregnated with the non-aqueous electrolyte is put into a vacuum sealing machine, and sealed at 180 ° C. for 10 seconds at a pressure of 0.1 MPa in a state where the pressure is reduced to ⁇ 95 kPa.
- the aluminum laminate packaging material was sealed to produce a lithium ion secondary battery.
- the pre-doped lithium ion secondary battery was subjected to constant current discharge in a 25 ° C. environment at 0.5 A until reaching a voltage of 3.0 V, and then subjected to 3.0 V constant current discharge for 1 hour to obtain a voltage of 3. Adjusted to 0V. Subsequently, the lithium ion secondary battery was stored in a constant temperature bath at 60 ° C. for 5 hours.
- the internal resistance Ra at 25 ° C. is summarized in Table 2.
- the amount of the compounds of the formulas (1) to (3) contained in the positive electrode active material layer is 3.8 ⁇ 10 ⁇ 9 mol / g or more and 3.0 ⁇ 10 ⁇ 2 mol / g or less.
- a lithium ion secondary battery having a small Ra, low internal resistance, small (Vb ⁇ Va) / Q and Rb / Ra, and excellent durability due to high-temperature storage is provided.
- the reason is that the same effects as in Examples 1-1 to 1-16 and Comparative Examples 1-1 to 1-3 using LiCoO 2 as the positive electrode active material are different in LiFePO 4 having different positive electrode active materials. This also means that it occurs even in a lithium ion secondary battery using 4 . That is, this effect suggests that it does not concern the kind of positive electrode active material.
- Example 1-38> In the production of the positive electrode precursor, Examples 1-1 to 1-21 and Comparative Examples 1-1 to 1- 1 were used except that lithium oxide having an average particle size of 2.15 ⁇ m was used as the lithium compound added to the positive electrode precursor.
- the lithium ion secondary battery was produced by performing the same operation as 3 and various evaluations were performed. The results are listed in Table 3.
- Example 1-39 In the production of the positive electrode precursor, Examples 1-1 to 1-21 and Comparative Examples 1-1 to 1 to 1 except that lithium hydroxide having an average particle size of 2.29 ⁇ m was used as the lithium compound added to the positive electrode precursor. A lithium ion secondary battery was produced by performing the same operation as in -3, and various evaluations were performed. The results are listed in Table 3.
- Examples 1-38 and 1-39 in Table 3 suggest that lithium oxide and lithium hydroxide can also be used as dopant sources as lithium compounds used in lithium ion secondary batteries and can exhibit good characteristics. .
- Example 2-1> [Production of positive electrode precursor] (Production of positive electrode precursor 1) 87.0 parts by mass of LiCoO 2 powder (manufactured by Nichia Chemical Industry Co., Ltd.) having an average particle size of 4 ⁇ m as a positive electrode active material, 5.0 parts by mass of acetylene black, 3.0 parts by weight of an arbitrary lithium compound, and PVdF (polyvinylidene fluoride) 5.0 parts by mass and NMP (N-methylpyrrolidone) were mixed to obtain a positive electrode slurry having a solid concentration of 42% by mass.
- the type and average particle size of the lithium compound are as described in Table 4.
- the obtained positive electrode slurry was applied to one or both sides of a 15 ⁇ m thick aluminum foil serving as a positive electrode current collector, dried and pressed to obtain a positive electrode precursor 1.
- the thickness of the positive electrode active material layer of the positive electrode precursor 1 was approximately 70 ⁇ m per side, although there were some differences depending on the type of lithium compound and the average particle size.
- Positive electrode precursor 2 As the positive electrode active material, 74.5 parts by mass of LiFePO 4 powder having an average particle diameter of 2 ⁇ m, 13.0 parts by mass of acetylene black, 9.0 parts by weight of an arbitrary lithium compound, and 3.5 PVdF (polyvinylidene fluoride) 3.5 Part by mass and NMP (N-methylpyrrolidone) were mixed to obtain a positive electrode slurry having a solid content concentration of 32% by mass. The type and average particle size of the lithium compound are as described in Table 5. The obtained positive electrode slurry was applied to one or both sides of a 15 ⁇ m thick aluminum foil serving as a positive electrode current collector, dried and pressed to obtain a positive electrode precursor 2. The thickness of the positive electrode active material layer of the positive electrode precursor 2 was about 100 ⁇ m per side, although there were some differences depending on the type of lithium compound and the average particle size.
- Adjustment of negative electrode 2 84.0 parts by mass of commercially available hard carbon (manufactured by Kureha Co., Ltd.), 8.0 parts by mass of acetylene black, 6.0 parts by mass of PVdF (polyvinylidene fluoride), and NMP (N-methylpyrrolidone) are mixed Thus, a negative electrode slurry was obtained.
- the obtained negative electrode slurry was applied to both surfaces of a 10 ⁇ m thick electrolytic copper foil serving as a negative electrode current collector, dried and pressed to obtain a negative electrode 2.
- the thickness of the negative electrode active material layer in the obtained negative electrode 2 was 90 ⁇ m per side.
- a solution obtained by dissolving each electrolyte salt so that the sum of the concentrations of 75:25 (molar ratio) and LiN (SO 2 F) 2 and LiPF 6 is 1.2 mol / L is non-aqueous electrolysis. Used as a liquid.
- the concentrations of LiN (SO 2 F) 2 and LiPF 6 in the electrolytic solution prepared here were 0.9 mol / L and 0.3 mol / L, respectively.
- This electrode laminate was housed in an outer package made of an aluminum laminate packaging material, and the electrode terminal part and the bottom part of the outer package 3 were heat sealed under conditions of a temperature of 180 ° C., a sealing time of 20 sec, and a sealing pressure of 1.0 MPa. . This was vacuum-dried under the conditions of a temperature of 80 ° C., a pressure of 50 Pa, and a drying time of 60 hours.
- Liquid injection, impregnation, sealing About 80 g of the above non-aqueous electrolyte solution is injected under atmospheric pressure into the electrode laminate housed in the aluminum laminate packaging material in a dry air environment at a temperature of 25 ° C. and a dew point of ⁇ 40 ° C. or less, and pre-dope treatment The previous lithium ion secondary battery was formed. Subsequently, the lithium ion secondary battery was placed in a decompression chamber, decompressed from normal pressure to -87 kPa, returned to atmospheric pressure, and allowed to stand for 5 minutes.
- Pre-dope Using the charge / discharge device (TOSCAT-3100U) manufactured by Toyo System Co., Ltd., the obtained lithium ion secondary battery was kept at a constant current until reaching a voltage of 4.5 V at a current value of 0.5 A in a 25 ° C. environment. After charging, initial charging was performed by a method in which 4.5 V constant voltage charging was continued for 24 hours, and the negative electrode was pre-doped.
- TOSCAT-3100U charge / discharge device manufactured by Toyo System Co., Ltd.
- the pre-doped lithium ion secondary battery was subjected to constant current discharge in a 25 ° C. environment at 0.5 A until reaching a voltage of 3.0 V, and then subjected to 3.0 V constant current discharge for 1 hour to obtain a voltage of 3. Adjusted to 0V. Subsequently, the lithium ion secondary battery was stored in a constant temperature bath at 60 ° C. for 6 hours.
- the obtained lithium ion secondary battery was disassembled in an argon box having a dew point temperature of ⁇ 72 ° C., and a positive electrode having a positive electrode active material layer coated on both sides was cut out to a size of 10 cm ⁇ 5 cm, and 30 g of diethyl carbonate solvent was used. Immersion, occasionally move the positive electrode with tweezers and wash for 10 minutes. Subsequently, the positive electrode was taken out, air-dried in an argon box for 5 minutes, immersed in 30 g of diethyl carbonate solvent newly prepared, and washed for 10 minutes in the same manner as described above.
- the positive electrode was taken out of the argon box and dried for 20 hours under the conditions of a temperature of 25 ° C. and a pressure of 1 kPa using a vacuum dryer (manufactured by Yamato Kagaku, DP33) to obtain a positive electrode sample.
- peaks having a peak value of Log differential pore volume of 0.01 mL / g or more existing in the range of pore diameters of 0.1 ⁇ m or more and 100 ⁇ m or less are designated as P1 and P2 in order from the smallest pore diameter, and the peak top position
- the pore diameter and Log differential pore volume are shown together in Table 4.
- Examples 2-2 to 2-10 and Comparative Example 2-1 Lithium ion secondary batteries of Examples 2-2 to 2-10 and Comparative Example 2-1 were the same as Example 2-1, except that the types of lithium compounds and their average particle sizes were as shown in Table 4 respectively. Each was manufactured and various evaluation was performed. The evaluation results of the obtained lithium ion secondary battery are shown in Table 4.
- the composition of the positive electrode precursor is 81.0 parts by mass of LiCoO 2 powder (manufactured by Nichia Corporation) having an average particle diameter of 4 ⁇ m as the positive electrode active material, 5.0 parts by mass of acetylene black, and the average particles as the lithium compound Example 2-1 except that 9.0 parts by weight of lithium carbonate having a diameter of 2.4 ⁇ m and 5.0 parts by weight of PVdF (polyvinylidene fluoride) (shown as “positive electrode precursor 1 ′” in Table 1) Similarly, a lithium ion secondary battery of Comparative Example 2-2 was produced and evaluated in various ways. The evaluation results of the obtained lithium ion secondary battery are shown in Table 4.
- the composition of the positive electrode precursor is 90.0 parts by mass of LiCoO 2 powder (manufactured by Nichia Corporation) having an average particle diameter of 4 ⁇ m as the positive electrode active material, 5.0 parts by mass of acetylene black, and PVdF (polyfluoride).
- a lithium ion secondary battery of Comparative Example 2-3 was produced in the same manner as in Example 2-1, except that the amount of vinylidene) was 5.0 parts by mass, and various evaluations were performed. The evaluation results of the obtained lithium ion secondary battery are shown in Table 4.
- the average particle size of lithium carbonate was larger than the average particle size of lithium carbonate added when preparing the positive electrode precursor, except for Comparative Example 2-3. It can be seen that the diameter is small. This means that lithium carbonate functions as a dopant source.
- one or more peaks having a peak value of Log differential pore volume of 0.10 mL / g or more and 1.0 mL / g or less exist in the range of pore diameters of 0.3 ⁇ m or more and 50 ⁇ m or less.
- the total pore volume Vp in the pore diameter range of 0.3 ⁇ m or more and 50 ⁇ m or less is 0.03 mL / g or more and 0.2 mL / g or less
- Ra is small (internal resistance is low, that is, input / output characteristics) It is clear that the discharge capacity is high, the Rd / Ra is also small, and excellent high-load charge / discharge cycle characteristics are obtained.
- Examples 2-11 to 2-20 and Comparative Example 2-4 were the same as Example 2-1, except that the positive electrode precursor, the type of lithium compound, the average particle size thereof, and the negative electrode were as shown in Table 5. At least two lithium ion secondary batteries of Examples 2-11 to 2-20 and Comparative Example 2-4 were produced.
- the composition of the positive electrode precursor is 69.5 parts by mass of LiFePO 4 powder having an average particle diameter of 2 ⁇ m as a positive electrode active material, 13.0 parts by mass of acetylene black, and 14 lithium carbonate having an average particle diameter of 2.4 ⁇ m as a lithium compound.
- Comparative Example 2-5 was carried out in the same manner as Example 2-11 except that 0.0 part by weight and 3.5 parts by weight of PVdF (polyvinylidene fluoride) (represented as “positive electrode precursor 2 ′” in Table 5) were used.
- PVdF polyvinylidene fluoride
- Titanium ion secondary batteries were produced and evaluated in various ways. The evaluation results of the obtained lithium ion secondary battery are shown in Table 5.
- the composition of the positive electrode precursor is 83.5 parts by mass of LiFePO 4 powder having an average particle diameter of 2 ⁇ m as the positive electrode active material, 13.0 parts by mass of acetylene black, and 3.5 parts by mass of PVdF (polyvinylidene fluoride). Otherwise, a lithium ion secondary battery of Comparative Example 2-6 was produced in the same manner as in Example 2-11, and various evaluations were performed. The evaluation results of the obtained lithium ion secondary battery are shown in Table 5.
- the pore distribution of the positive electrode has a peak having a peak value of Log differential pore volume of 0.10 mL / g or more and 1.0 mL / g or less in the range of the pore diameter of 0.3 ⁇ m or more and 50 ⁇ m or less. If the total accumulated pore volume Vp in the range of not less than 0.3 ⁇ m and not more than 50 ⁇ m is 0.03 mL / g or more and 0.2 mL / g or less, Ra is small (internal resistance is low, ie, It can be seen that the output characteristics are high), the discharge capacity is high, Rd / Ra is small, and excellent high-load charge / discharge cycle characteristics are obtained.
- the average particle size of lithium carbonate is as described in Table 6.
- the obtained positive electrode slurry was applied to one or both sides of a 15 ⁇ m-thick aluminum foil serving as a positive electrode current collector, dried and pressed to obtain a positive electrode precursor (hereinafter referred to as “single-side positive electrode precursor”, And “double-sided positive electrode precursor”).
- the film thickness of the positive electrode active material layer of the positive electrode precursor was 67 ⁇ m per side.
- Preparation Example 3-2 A composite material 2 was produced in the same manner as in Preparation Example 1 except that silicon monoxide having an average particle size of 1.0 ⁇ m was used instead of silicon. The average particle diameter of the obtained composite material 2 was 1.2 ⁇ m.
- Preparation Example 3-3 A composite material 3 was produced in the same manner as in Preparation Example 1 except that tin having an average particle diameter of 0.8 ⁇ m was used instead of silicon. The average particle size of the obtained composite material 3 was 1.0 ⁇ m.
- Preparation Example 3-4 A composite material 4 was produced in the same manner as in Preparation Example 1 except that tin dioxide having an average particle diameter of 1.1 ⁇ m was used instead of silicon. The average particle diameter of the obtained composite material 4 was 1.3 ⁇ m.
- a negative electrode was obtained (hereinafter also referred to as “double-sided negative electrode”).
- the obtained negative electrode was pressed using a roll press machine under conditions of a pressure of 4 kN / cm and a surface temperature of the pressed part of 25 ° C.
- the total thickness of the obtained negative electrode was measured at any 10 locations on the negative electrode using a thickness gauge Linear Gauge Sensor GS-551 manufactured by Ono Keiki Co., Ltd.
- the film thickness of the negative electrode active material layer of the negative electrode was determined by subtracting the thickness of the copper foil from the average value of the measured total thickness. As a result, the film thickness of the negative electrode active material layer of the negative electrode was 25 ⁇ m per side.
- EC ethylene carbonate
- EMC methyl ethyl carbonate
- the concentrations of LiN (SO 2 F) 2 and LiPF 6 in the non-aqueous electrolyte prepared here were 0.9 mol / L and 0.3 mol / L, respectively.
- the obtained double-sided negative electrode and double-sided positive electrode precursor were cut into 10 cm ⁇ 10 cm (100 cm 2 ).
- the uppermost and lowermost surfaces use a single-sided positive electrode precursor, and further use 21 double-sided negative electrodes and 20 double-sided positive electrode precursors, with a microporous membrane separator having a thickness of 15 ⁇ m sandwiched between the negative electrode and the positive electrode precursor. did.
- the negative electrode terminal and the positive electrode terminal were connected to the negative electrode and the positive electrode precursor, respectively, by ultrasonic welding to obtain an electrode laminate.
- This electrode laminate is housed in an exterior body made of an aluminum laminate packaging material, and the electrode body 3 and the exterior body 3 at the bottom are heated under conditions of a temperature of 180 ° C., a sealing time of 20 sec, and a sealing pressure of 1.0 MPa. Sealed. This was vacuum-dried under the conditions of a temperature of 80 ° C., a pressure of 50 Pa, and a drying time of 60 hours.
- the electrode laminate that is housed in the aluminum laminate packaging material and impregnated with the non-aqueous electrolyte is put into a vacuum sealing machine, and sealed at 180 ° C. for 10 seconds at a pressure of 0.1 MPa in a state where the pressure is reduced to ⁇ 95 kPa.
- the aluminum laminate packaging material was sealed to produce a lithium ion secondary battery.
- the pre-doped lithium ion secondary battery was subjected to constant current discharge in a 45 ° C. environment at 0.5 A until reaching a voltage of 3.0 V, and then subjected to 3.0 V constant current discharge for 1 hour to obtain a voltage of 3. Adjusted to 0V. Subsequently, the lithium ion secondary battery was stored in a constant temperature bath at 60 ° C. for 12 hours.
- the lithium ion secondary battery produced above is charged at a constant current up to 2.9 V at a current of 50 mA at an ambient temperature of 25 ° C. using a charge / discharge device (ACD-01) manufactured by Asuka Electronics. Then, constant current and constant voltage charging for applying a constant voltage of 2.9 V was performed for 2 hours.
- ACD-01 charge / discharge device manufactured by Asuka Electronics.
- the positive electrode active material layer was collected in an argon atmosphere.
- the lithium ion secondary battery was disassembled under an argon atmosphere, and the positive electrode was taken out. Subsequently, the obtained positive electrode was immersed in diethyl carbonate for 2 minutes or more to remove lithium salt and the like. After dipping in diethyl carbonate again under the same conditions, it was air-dried. Thereafter, a positive electrode active material layer was collected from the positive electrode.
- solid 7 Li-NMR measurement was performed.
- ECA700 manufactured by JEOL RESONANCE 7 Li-NMR resonance frequency is 272.1 MHz
- the rotation speed of magic angle spinning is 14.5 kHz
- the irradiation pulse width is 45 ° pulse in a room temperature environment.
- Measured by the single pulse method The observation range was ⁇ 400 ppm to 400 ppm, and the number of points was 4096.
- Measurement conditions other than the repetition waiting time for example, the number of integrations, receiver gain, etc., are all made the same, and the measurement is performed for each case where the repetition waiting time is 10 seconds and 3000 seconds, and an NMR spectrum is obtained. It was.
- a 1 mol / L lithium chloride aqueous solution was used as a shift reference, and the shift position separately measured as an external standard was set to 0 ppm.
- the sample was not rotated, and the irradiation pulse width was 45 ° pulse, and measurement was performed by the single pulse method.
- the positive electrode after drying was transferred from the side box to the Ar box in a state where exposure to air was not performed, and immersion extraction was performed with heavy water to obtain a positive electrode extract.
- the analysis of the extract was performed by (i) IC and (ii) 1 H-NMR.
- the abundance (mol / g) of each compound deposited on the positive electrode per unit mass of the positive electrode active material layer was determined.
- the mass of the positive electrode active material layer used for extraction was determined by the following method.
- the mixture (positive electrode active material layer) was peeled off from the positive electrode current collector remaining after the heavy water extraction, and the peeled mixture was washed with water and then vacuum dried.
- the mixture obtained by vacuum drying was washed with NMP or DMF. Subsequently, the obtained positive electrode active material layer was vacuum-dried again and weighed to examine the mass of the positive electrode active material layer used for extraction.
- the positive electrode extract was put into a 3 mm ⁇ NMR tube (PN-002 manufactured by Shigemi Co., Ltd.), and a 5 mm ⁇ NMR tube containing deuterated chloroform containing 1,2,4,5-tetrafluorobenzene (N-5 manufactured by Japan Precision Science Co., Ltd.). ) And 1 H NMR measurement was performed by a double tube method. Normalization was performed with a signal of 1,2,4,5-tetrafluorobenzene of 7.1 ppm (m, 2H), and an integral value of each observed compound was obtained.
- deuterated chloroform containing dimethyl sulfoxide of known concentration is put into a 3 mm ⁇ NMR tube (PN-002 manufactured by Shigemi Co., Ltd.), and the same deuterated chloroform containing 1,2,4,5-tetrafluorobenzene as above.
- PN-002 manufactured by Shigemi Co., Ltd.
- 1 H NMR measurement was performed by a double tube method.
- the signal was normalized with 7.1 ppm (m, 2H) of 1,2,4,5-tetrafluorobenzene, and the integral value of 2.6 ppm (s, 6H) of dimethyl sulfoxide was obtained. From the relationship between the concentration of dimethyl sulfoxide used and the integral value, the concentration A of each compound of formulas (1) to (3) in the positive electrode extract was determined.
- the signal (3.7 ppm) is XOCH 2 CH 2 OX of CH 2, since the overlaps with CH 3 CH 2 OX of CH 2 O signals (3.7 ppm), the CH 3 CH 2 OX The amount of XOCH 2 CH 2 OX was calculated by excluding the CH 2 CH 2 OX equivalent of CH 3 CH 2 OX calculated from the CH 3 signal (1.2 ppm).
- X represents — (COO) n Li or — (COO) n R 1 (where n is 0 or 1, R 1 is an alkyl group having 1 to 4 carbon atoms, 1 to 4 carbon atoms, respectively) Of the halogenated alkyl group.
- the obtained lithium ion secondary battery was disassembled in an argon box with a dew point temperature of ⁇ 72 ° C., and a positive electrode having a positive electrode active material layer coated on both sides was cut out to a size of 10 cm ⁇ 5 cm.
- the obtained positive electrode was immersed in 30 g of diethyl carbonate solvent, and the positive electrode was occasionally moved with tweezers and washed for 10 minutes. Subsequently, the positive electrode was taken out, air-dried in an argon box for 5 minutes, immersed in 30 g of diethyl carbonate solvent newly prepared, and washed for 10 minutes in the same manner as described above.
- the positive electrode was taken out of the argon box and dried for 20 hours under the conditions of a temperature of 25 ° C. and a pressure of 1 kPa using a vacuum dryer (manufactured by Yamato Kagaku, DP33) to obtain a positive electrode sample.
- a 1 cm ⁇ 1 cm piece was cut from the positive electrode sample, and the surface was coated with gold by sputtering in a vacuum of 10 Pa. Subsequently, SEM and EDX on the surface of the positive electrode were measured under atmospheric exposure under the following conditions.
- a negative electrode was produced in the same manner as in Example 3-1, except that the film thickness per side of the negative electrode active material and the negative electrode active material layer was as shown in Tables 6 and 7.
- a positive electrode precursor was produced in the same manner as in Example 3-1, except that the positive electrode active material, the average particle size of lithium carbonate, the positive electrode active material, and the parts by mass of lithium carbonate were as shown in Table 7.
- the average particle size of lithium carbonate is as described in Table 8.
- the obtained positive electrode slurry was applied to one side and both sides of an aluminum foil having a thickness of 15 ⁇ m as a positive electrode current collector, dried and pressed to obtain a positive electrode precursor (hereinafter referred to as “single-side positive electrode precursor”, And “double-sided positive electrode precursor”).
- the film thickness of the positive electrode active material layer of the positive electrode precursor was 97 ⁇ m.
- a negative electrode was produced in the same manner as in Example 3-1, except that the negative electrode active material and the film thickness per side of the negative electrode active material layer were as shown in Table 8.
- a lithium ion secondary battery was manufactured in the same manner as in Example 3-1, except that the constant voltage charging time in pre-doping was as shown in Table 8.
- Examples 3-29 to 3-53 and Comparative Examples 3-9 to 3-11> ⁇ Production of positive electrode precursor> A positive electrode precursor was produced in the same manner as in Example 3-28 except that the positive electrode active material, the average particle diameter of lithium carbonate, the positive electrode active material, and the mass parts of lithium carbonate were as shown in Tables 8 and 9.
- a negative electrode was produced in the same manner as in Example 3-28 except that the film thickness per side of the negative electrode active material and the negative electrode active material layer was as shown in Tables 8 and 9.
- a positive electrode precursor was produced in the same manner as in Example 3-28, except that the positive electrode active material, the average particle size of lithium carbonate, the positive electrode active material, and the parts by mass of lithium carbonate were as shown in Table 9.
- a negative electrode was produced in the same manner as in Comparative Example 3-4 except that the film thickness per side of the negative electrode active material and the negative electrode active material layer was as shown in Table 9.
- the compounds contained in the positive electrode active material layer are present on the surface of the positive electrode active material so as to cover the reaction active sites on the positive electrode active material and to decompose the non-aqueous electrolyte under high temperature storage. This is thought to be due to prevention.
- Example 4-1> [Preparation of positive electrode precursor] 86.5 parts by mass of LiCoO 2 powder (manufactured by Nichia Corporation) as a positive electrode active material, 5.0 parts by mass of acetylene black, and 3.5% by weight of lithium carbonate having an average particle size of 5.1 ⁇ m as a lithium compound Parts, PTFE (polytetrafluoroethylene) 5.0 parts by mass, and NMP (N-methylpyrrolidone) were mixed to obtain a positive electrode slurry having a solid concentration of 21% by mass.
- the obtained positive electrode slurry was applied to one side of a 15 ⁇ m thick aluminum foil serving as a positive electrode current collector, dried and pressed to obtain a positive electrode precursor.
- the thickness of the positive electrode active material layer in the obtained positive electrode precursor was 67 ⁇ m.
- the lithium oxide amount A 1 per unit area of the positive electrode precursor was 6.3 g / m 2 , and A 1 / C 1 was 0.036.
- the cathode precursor obtained above to a size of 1.4cm ⁇ 2.0cm (2.8cm 2) and one cutout working electrode, respectively using metallic lithium as a counter electrode and a reference electrode, propylene carbonate as an electrolyte
- An electrochemical cell was produced in an argon box using a non-aqueous solution in which LiPF 6 was dissolved in (PC) at a concentration of 1.0 mol / L.
- the initial charge capacity of this electrochemical cell was measured by the following procedure using a charge / discharge device (TOSCAT-3100U) manufactured by Toyo System Co., Ltd.
- the electrochemical cell was subjected to constant current charging at a temperature of 25 ° C.
- This laminate is put into a container formed of a laminate film made of polypipropylene and aluminum foil, and an electrolytic solution in which LiPF 6 is dissolved in propylene carbonate (PC) to a concentration of 1.2 mol / L is injected, An electrochemical cell was prepared.
- the obtained electrochemical cell was charged with a constant current using a charge / discharge device (TOSCAT-3100U) manufactured by Toyo System Co., Ltd. in a 25 ° C. environment until a voltage of 4.5 V was reached at a current value of 2 mA. Subsequently, 4.5 V constant voltage charging was continued for 72 hours, and the negative electrode was pre-doped with lithium ions to produce a lithium ion secondary battery of Example 4-1.
- a total of three lithium ion secondary batteries of Example 4-1 were produced by the same method.
- ESR equivalent series resistance
- the second lithium ion secondary battery is set in a thermostatic chamber set at 25 ° C., using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, with a charging current of 20 mA and a discharging current of 20 mA, and a lower limit voltage of 3.
- a high load charge / discharge cycle by constant current charge and constant current discharge was repeated 500 times between 0 V and the upper limit voltage of 4.2 V. After the end of the high load charge / discharge cycle, the discharge capacity and ESR were measured in the same manner as described above.
- the third lithium ion secondary battery was set in a thermostatic chamber set at 25 ° C., using an Aska Electronics charge / discharge device (ACD-01) for 4 hours at a maximum current of 4 mA and a maximum voltage of 4.2 V. Current constant voltage charging was performed. Next, the volume was measured by immersing the lithium ion secondary battery in Fluorinert FC40 (trade name, manufactured by 3M, fluorine-based inert liquid) whose temperature was adjusted to 25 ° C., and then in a thermostatic chamber set at 60 ° C. And stored for 30 days. After 30 days, the sample was stored in a thermostat adjusted to 25 ° C.
- Fluorinert FC40 trade name, manufactured by 3M, fluorine-based inert liquid
- the volume of the lithium ion secondary battery was measured by the same method as described above. By comparing the volumes before and after storage at 60 ° C. for 30 days, it was confirmed that the amount of gas generated during storage was only 0.3 cc.
- Example 4-1 [Preparation of positive electrode 2] A positive electrode precursor was produced in the same manner as in Example 4-1, except that lithium carbonate was not added. The thickness of the positive electrode active material layer in the obtained positive electrode precursor was 63 ⁇ m. One piece of the obtained positive electrode precursor was cut into a size of 1.4 cm ⁇ 2.0 cm (2.8 cm 2 ), and the discharge capacity of the positive electrode precursor was measured in the same manner as in Example 4-1, It was 8.5 mAh.
- Examples 4-2 to 4-9 and Comparative Examples 4-2 to 4-9> A positive electrode precursor of a lithium ion secondary battery was produced in the same manner as in Example 4-1, except that the amount of lithium carbonate in the positive electrode precursor and the amount of positive electrode slurry applied to the positive electrode current collector were changed. did.
- a negative electrode of a lithium ion secondary battery was produced in the same manner as in Example 4-1, except that the amount of the negative electrode slurry applied to the negative electrode current collector was adjusted.
- a lithium ion secondary battery was produced and evaluated in the same manner as in Example 4-1, except that the positive electrode precursor and negative electrode obtained above were used. Table 10 shows the evaluation results.
- a 1 / C 1 is in the case of less than 0.05, the discharge capacity is decreased. It is thought that this is because the lithium ion in the lithium ion secondary battery is consumed by generating a solid electrolyte membrane by decomposition of the electrolytic solution on the negative electrode.
- a 1 / C 1 exceeded 0.30, the discharge capacity was low and the resistance value was large. In this case, it is considered that metal lithium is deposited on the negative electrode, and the deposited metal lithium is grown after the high load charge / discharge cycle.
- the discharge capacity increases when A 1 / C 1 is 0.05 or more and 0.30 or less. This is probably because the lithium ion consumption was compensated for by the oxidation reaction of the lithium compound.
- Example 4-10> A lithium ion secondary battery was prepared in the same manner as in Example 4-1, except that 4.2V constant voltage charging was performed for 168 hours in a 60 ° C environment under the condition of pre-doping lithium ions into the negative electrode. Was made. The discharge capacity of the obtained lithium ion secondary battery was 8.2 mAh.
- Example 4-10 A lithium ion secondary battery was prepared in the same manner as in Example 4-2, except that 4.1 V constant voltage charging was performed for 168 hours in a 60 ° C. environment under the condition of pre-doping lithium ions into the negative electrode. Was made. The discharge capacity of the obtained lithium ion secondary battery was 6.7 mAh.
- Example 4-10 in order to decompose the lithium compound contained in the positive electrode of the lithium ion secondary battery and perform pre-doping of lithium ions on the negative electrode, a voltage of 4.2 V or higher It was found that it was necessary to apply.
- Examples 4-11 to 4-21 and Comparative Examples 4-11 to 4-21> The same method as in Example 4-1, except that a lithium-containing transition metal oxide of the type described in Table 11 was used as the positive electrode active material, and lithium hydroxide having an average particle size of 3.3 ⁇ m was used as the lithium compound.
- a positive electrode precursor was prepared, and a lithium ion secondary battery was prepared and evaluated using the positive electrode precursor.
- the value of A 1, B 1, and C 1, respectively, to a value described in Table 11 were adjusted the amount of each component.
- the evaluation results are shown in Table 11.
- Example 4-22> A positive electrode precursor was prepared in the same manner as in Example 4-1, except that LiCoO 2 was used as the positive electrode active material and lithium oxide having an average particle size of 7.3 ⁇ m was used as the lithium compound.
- a total of three lithium ion secondary batteries were produced and evaluated.
- a 1 is the 3.2g / m 2
- C 1 is such that the 181 g / m 2, was adjusted amount of each component.
- the value of A 1 / B 1 was 0.13 g / Ah
- the value of A 1 / C 1 was 0.018, confirming that the requirements of the present invention were satisfied.
- the initial characteristics of one of the produced lithium ion secondary batteries were measured.
- the discharge capacity was 7.9 mAh and the ESR was 12.2 ⁇ .
- the lithium ion secondary battery after ESR measurement was disassembled in an argon box, and it was confirmed that no lithium metal was deposited on the negative electrode surface.
- the high load charge / discharge cycle characteristics were evaluated for the second lithium ion secondary battery.
- the discharge capacity after the high load charge / discharge cycle was 7.1 Ah, and the ESR was 14.2 ⁇ .
- the amount of gas generated after high-temperature storage measured for the third lithium ion secondary battery was 0.2 cc.
- Example 4-23> LiPF 6 was dissolved to a concentration of 1.5 mol / L in a solvent in which ethylene carbonate (EC) and methyl ethyl carbonate (EMC) were mixed at a mass ratio of 1: 2, and ferrocene (Ferrocene) was added as an additive.
- An electrolyte solution was prepared by adding 3% by mass. Using this electrolyte, the conditions for pre-doping lithium ions into the negative electrode were the same as in Example 4-1, except that 4.2 V constant voltage charging was performed for 168 hours in a 45 ° C. environment. A lithium ion secondary battery was produced. The obtained lithium ion secondary battery had a discharge capacity of 8.5 mAh, and it was verified that the pre-doping of lithium ions on the negative electrode was in progress.
- Example 4-24 A lithium ion secondary battery was fabricated in the same manner as in Example 4-23, except that 3% by mass of titanocene dichloride was used as an additive for the electrolytic solution.
- the obtained lithium ion secondary battery had a discharge capacity of 8.4 mAh, and it was verified that lithium ion pre-doping with respect to the negative electrode was in progress.
- Example 4-25> A lithium ion secondary battery was produced in the same manner as in Example 4-23, except that 5% by mass of 12-crown 4-ether was used as an additive for the electrolytic solution.
- the obtained lithium ion secondary battery had a discharge capacity of 8.5 mAh, and it was verified that the pre-doping of lithium ions on the negative electrode was in progress.
- Example 4-1 One positive electrode obtained in Example 4-1 was cut into a size of 1.4 cm ⁇ 2.0 cm (2.8 cm 2 ) as a working electrode, and metallic lithium was used as a counter electrode and a reference electrode, respectively.
- an electrochemical cell was produced in an argon box in the same manner as in Example 4-1, using a nonaqueous electrolytic solution in which LiPF 6 was dissolved in propylene carbonate (PC) at a concentration of 1.0 mol / L.
- the initial charge capacity of this electrochemical cell was measured by the following procedure using a charge / discharge device (TOSCAT-3100U) manufactured by Toyo System Co., Ltd.
- the electrochemical cell was subjected to constant current charging at a temperature of 25 ° C.
- Example 5-1 [Crushing lithium carbonate] 20 g of lithium carbonate having an average particle size of 53 ⁇ m, which was allowed to stand for 2 hours in an environment of a temperature of 60 ° C. and a humidity of 80% RH, was adjusted to ⁇ 20 ° C. using a rotation and revolution type pulverizer (NP-100) manufactured by Shinky Corporation. After cooling, zirconia beads having a diameter of 0.1 mm were used and pulverized at 1700 rpm for 20 minutes to obtain lithium carbonate 1 having an average particle diameter of 0.5 ⁇ m.
- NP-100 rotation and revolution type pulverizer
- positive electrode precursor As the positive electrode active material, 86.5 parts by mass of LiCoO 2 powder (manufactured by Nichia Corporation), 5.0 parts by weight of lithium carbonate 1, 5.0 parts by mass of acetylene black, and PVdF (polyvinylidene fluoride) And a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 99: 1 were mixed to obtain a positive electrode slurry having a solid content concentration of 38% by mass. The obtained positive electrode slurry was applied to one side of an aluminum foil having a thickness of 15 ⁇ m serving as a positive electrode current collector and dried to prepare a positive electrode precursor 1.
- NMP N-methylpyrrolidone
- the obtained positive electrode precursor 1 was pressed using a roll press machine under conditions of a pressure of 6 kN / cm and a surface temperature of the pressing part of 25 ° C.
- the thickness of the positive electrode active material layer of the obtained positive electrode precursor 1 was measured by using an average thickness gauge Linear Gauge Sensor GS-551 manufactured by Ono Keiki Co., Ltd. The value was obtained by subtracting the thickness of the aluminum foil from the value. As a result, the film thickness of the positive electrode active material layer was 65 ⁇ m.
- sample preparation A small piece of 1 cm ⁇ 1 cm was cut out from the positive electrode precursor 1 and used as a sample for microscopic Raman spectroscopy measurement on the surface of the positive electrode precursor. Further, a 1 cm ⁇ 1 cm piece is cut out from the positive electrode precursor 1, SM-90020CP manufactured by JEOL Ltd. is used, argon gas is used, and an acceleration voltage of 4 kV and a beam diameter of 500 ⁇ m are provided in the plane direction of the positive electrode precursor 1. A vertical section was prepared and used as a sample for microscopic Raman spectroscopy measurement of the positive electrode precursor section.
- Carbonate ion mapping was performed using a Renishaw micro-Raman spectrometer inVia Reflex.
- the laser wavelength of the excitation light was 532 nm, and the light was condensed to a power of about 0.7 mW at the sample position using a 50 ⁇ objective lens with a long working distance.
- a range of 90 ⁇ m in the thickness direction of the positive electrode cross section and 30 ⁇ m in the direction perpendicular to the thickness direction was point-scanned at 1 ⁇ m intervals to obtain Raman spectra at each measurement point.
- the area A 2 of the carbonate ion mapping was calculated as follows. In the Raman spectrum of 2700 points obtained at each measurement position on the surface of the positive electrode precursor, a straight baseline was set at positions 1071, 1104 cm ⁇ 1 , and the area higher than the baseline was positively Mapping data of area (a) was created with the area as negative. Subsequently, the histogram A is created by dividing the minimum value from the maximum value of the area (a) into the number of 100 sections, and a minimum two parts are obtained using a Gaussian function for a portion on the negative side of the area value giving the maximum frequency.
- the noise component was approximated by a Gaussian function B by fitting by multiplication.
- a difference obtained by subtracting the fitted Gaussian function B from the original histogram A was defined as a histogram C of the peak area of CO 3 2 ⁇ .
- the cumulative frequency equal to or greater than the area (b) giving the maximum frequency was found to be 87 when the CO 3 2- ion mapping frequency was determined.
- a 3 2.91%.
- the coating liquid is applied to one side of an electrolytic copper foil having a thickness of 10 ⁇ m with a clearance of 200 ⁇ m at a coating speed of 1 m / min, and dried at a drying temperature of 120 ° C.
- negative electrode 1 was obtained.
- the obtained negative electrode 1 was pressed using a roll press machine under conditions of a pressure of 5 kN / cm and a surface temperature of the pressed part of 25 ° C.
- the film thickness of the negative electrode active material layer of the obtained negative electrode 1 was 88 ⁇ m.
- the positive electrode terminal and the negative electrode terminal were ultrasonically welded to the obtained electrode laminate, put into a container formed of an aluminum laminate packaging material, and three sides including the electrode terminal portion were sealed by heat sealing.
- the electrode laminate impregnated with the non-aqueous electrolyte solution was put into a vacuum sealer and sealed at 180 ° C. for 10 seconds with a pressure of 0.1 MPa in a state where the pressure was reduced to ⁇ 95 kPa, thereby sealing the aluminum laminate packaging material. .
- Pre-dope The obtained electrode laminate was placed in an argon box having a temperature of 25 ° C., a dew point of ⁇ 60 ° C., and an oxygen concentration of 1 ppm.
- the surplus portion of the aluminum laminate packaging material was cut and opened, and constant current charging was performed using a power source (P4LT18-0.2) manufactured by Matsusada Precision Co., Ltd. until the voltage reached 4.5 V at a current value of 2 mA. Thereafter, initial charging was performed by a method in which 4.5 V constant voltage charging was continued for 2 hours, and the negative electrode was pre-doped.
- the aluminum laminate was sealed using a heat sealing machine (FA-300) manufactured by Fuji Impulse.
- the electrode laminate after pre-doping is taken out from the argon box, subjected to constant current discharge at 50 mA and reaching a voltage of 3.8 V in an environment of 25 ° C., and then subjected to 3.8 V constant current discharge for 1 hour to reduce the voltage to 3 Adjusted to .8V. Subsequently, the electrode laminate was stored in a constant temperature bath at 60 ° C. for 8 hours.
- a part of the aluminum laminate packaging material was unsealed in a dry air environment at a temperature of 25 ° C and a dew point of -40 ° C. Subsequently, this was put in a vacuum chamber, and the pressure was reduced from atmospheric pressure to ⁇ 80 kPa over 3 minutes using a diaphragm pump (KNF, N816.3KT.45.18), and then atmospheric pressure was applied over 3 minutes. The operation to return to was repeated 3 times in total. Thereafter, this is put into a vacuum sealing machine, and after reducing the pressure to ⁇ 90 kPa, the aluminum laminate packaging material is sealed by sealing at 200 ° C. for 10 seconds with a pressure of 0.1 MPa. Was made.
- Example 5-2> The same procedure as in Example 5-1, except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 98: 2 was used as a dispersion solvent for the positive electrode coating solution, and a positive electrode precursor was prepared. Thus, a non-aqueous alkali metal storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-3 The same procedure as in Example 5-1, except that a mixed solvent with a weight ratio of 97: 3 of NMP (N-methylpyrrolidone) and pure water was used as a dispersion solvent for the positive electrode coating solution, and a positive electrode precursor was prepared. Thus, a non-aqueous alkali metal storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-4> Regarding the composition of the coating solution for the positive electrode, 88.2 parts by mass of LiCoO 2 powder, 3.1 parts by mass of lithium carbonate 1, 5.1 parts by mass of Ketjen black, and PVDF (polyvinylidene fluoride) 3.
- a non-aqueous alkali metal storage element was produced in the same manner as in Example 5-1, except that the positive electrode precursor was produced by using 6 parts by mass.
- Example 5-5 The same procedure as in Example 5-4 was conducted except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water in a weight ratio of 98: 2 was used as a dispersion solvent for the positive electrode coating solution, and a positive electrode precursor was prepared. Thus, a non-aqueous alkali metal storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-6> The same procedure as in Example 5-4 was conducted, except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 97: 3 was used as a dispersion solvent for the positive electrode coating solution, and a positive electrode precursor was prepared. Thus, a non-aqueous alkali metal storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-7 Regarding the composition of the coating solution for the positive electrode, 89.6 parts by mass of LiCoO 2 powder, 1.6 parts by mass of lithium carbonate 1, 5.2 parts by mass of Ketjen black, and PVDF (polyvinylidene fluoride) 3. A non-aqueous alkali metal storage element was produced in the same manner as in Example 5-1, except that the positive electrode precursor was produced by using 6 parts by mass.
- Example 5-8 The same procedure as in Example 5-7 was used, except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water in a weight ratio of 98: 2 was used as a dispersion solvent for the positive electrode coating solution, and a positive electrode precursor was prepared. Thus, a non-aqueous alkali metal storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-9 The same procedure as in Example 5-7 was used, except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 97: 3 was used as a dispersion solvent for the positive electrode coating solution, and a positive electrode precursor was prepared. Thus, a non-aqueous alkali metal storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-10> Regarding the composition of the coating solution for the positive electrode, 82.0 parts by mass of LiCoO 2 powder, 10.0 parts by mass of lithium carbonate 1, 4.7 parts by mass of Ketjen black, and PVDF (polyvinylidene fluoride) 3.
- a non-aqueous alkali metal storage element was produced in the same manner as in Example 5-1, except that the positive electrode precursor was produced by using 3 parts by mass.
- Example 5-11> The same procedure as in Example 5-10 was used, except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 98: 2 was used as a dispersion solvent for the positive electrode coating solution, and a positive electrode precursor was prepared. Thus, a non-aqueous alkali metal storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-12 The same procedure as in Example 5-10 was performed, except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 97: 3 was used as a dispersion solvent for the positive electrode coating solution, and a positive electrode precursor was prepared. Thus, a non-aqueous alkali metal storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-13> Regarding the composition of the coating solution for the positive electrode, 77.8 parts by mass of LiCoO 2 powder, 14.5 parts by mass of lithium carbonate 1, 4.5 parts by mass of ketjen black, and PVDF (polyvinylidene fluoride) 3.
- a non-aqueous alkaline metal storage element was produced in the same manner as in Example 5-1, except that the positive electrode precursor was produced by using 2 parts by mass.
- Example 5-14> The same procedure as in Example 5-13 was used, except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 98: 2 was used as a dispersion solvent for the positive electrode coating solution, and a positive electrode precursor was prepared. Thus, a non-aqueous alkali metal storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-15 The same procedure as in Example 5-13 was used, except that a mixed solvent with a weight ratio of 97: 3 of NMP (N-methylpyrrolidone) and pure water was used as a dispersion solvent for the positive electrode coating solution, and a positive electrode precursor was prepared. Thus, a non-aqueous alkali metal storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-16> Regarding the composition of the coating solution for the positive electrode, 73.3 parts by mass of LiCoO 2 powder, 19.5 parts by mass of lithium carbonate 1, 4.2 parts by mass of Ketjen black, and PVDF (polyvinylidene fluoride) 3. A non-aqueous alkali metal storage element was produced in the same manner as in Example 5-1, except that the positive electrode precursor was produced by using 0 part by mass.
- Example 5-17> The same procedure as in Example 5-16 was conducted, except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water in a weight ratio of 98: 2 was used as a dispersion solvent for the positive electrode coating solution, and a positive electrode precursor was prepared. Thus, a non-aqueous alkali metal storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-18> The same procedure as in Example 5-16 was conducted, except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 97: 3 was used as a dispersion solvent for the positive electrode coating solution, and a positive electrode precursor was prepared. Thus, a non-aqueous alkali metal storage element was produced.
- NMP N-methylpyrrolidone
- Comparative Example 5-1 Comparative Example 5-1 except that a positive electrode precursor was prepared using a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 99.9: 0.1 as a dispersion solvent for the positive electrode coating solution.
- NMP N-methylpyrrolidone
- a non-aqueous alkali metal storage element was produced in the same manner.
- ⁇ Comparative Example 5-3> Regarding the composition of the coating solution for the positive electrode, 91.0 parts by mass of LiCoO 2 powder, 0.1 part by mass of lithium carbonate 2, 5.2 parts by mass of Ketjen black, and PVDF (polyvinylidene fluoride) 3.
- a non-aqueous alkali metal storage element was produced in the same manner as in Comparative Example 5-1, except that the positive electrode precursor was produced by using 7 parts by mass and using NMP (N-methylpyrrolidone) as the dispersion solvent.
- Comparative Example 5-4 Comparative Example 5-3 except that a positive electrode precursor was prepared using a mixed solvent of NMP (N-methylpyrrolidone) and pure water in a weight ratio of 99.9: 0.1 as a dispersion solvent for the positive electrode coating solution.
- NMP N-methylpyrrolidone
- a non-aqueous alkali metal storage element was produced in the same manner.
- ⁇ Comparative Example 5-5> Regarding the composition of the coating solution for the positive electrode, 86.5 parts by mass of LiCoO 2 powder, 5.0 parts by mass of lithium carbonate 2, 5.0 parts by mass of Ketjen black, and PVDF (polyvinylidene fluoride) 3.
- a non-aqueous alkali metal storage element was produced in the same manner as in Comparative Example 5-1, except that the positive electrode precursor was produced by using 5 parts by mass and using NMP (N-methylpyrrolidone) as the dispersion solvent.
- Comparative Example 5-6 Comparative Example 5-5 except that a positive electrode precursor was prepared using a mixed solvent of NMP (N-methylpyrrolidone) and pure water in a weight ratio of 99.9: 0.1 as a dispersion solvent for the positive electrode coating solution.
- NMP N-methylpyrrolidone
- a non-aqueous alkali metal storage element was produced in the same manner.
- ⁇ Comparative Example 5-7> Regarding the composition of the coating solution for the positive electrode, 82.0 parts by mass of LiCoO 2 powder, 10.0 parts by mass of lithium carbonate 2, 4.7 parts by mass of Ketjen black, and PVDF (polyvinylidene fluoride) 3.
- a non-aqueous alkaline metal storage element was prepared in the same manner as in Comparative Example 5-1, except that the positive electrode precursor was prepared by using 3 parts by mass and using NMP (N-methylpyrrolidone) as the dispersion solvent.
- Comparative Example 5-8 The same procedure as in Comparative Example 5-7 was used except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water in a weight ratio of 80:20 was used as a dispersion solvent for the positive electrode coating solution, and a positive electrode precursor was prepared. Thus, a non-aqueous alkali metal storage element was produced.
- NMP N-methylpyrrolidone
- ⁇ Comparative Example 5-9> Regarding the composition of the coating solution for the positive electrode, 77.8 parts by mass of LiCoO 2 powder, 14.6 parts by mass of lithium carbonate 2, 4.5 parts by mass of Ketjen black, and PVDF (polyvinylidene fluoride) 3. 1 part by mass, using a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 90:10 as a dispersion solvent, and using the same method as Comparative Example 5-1, except that a positive electrode precursor was prepared. A non-aqueous alkali metal storage element was produced.
- NMP N-methylpyrrolidone
- Comparative Example 5-10> The same procedure as in Comparative Example 5-9 was conducted except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 80:20 was used as a dispersion solvent for the positive electrode coating solution, and a positive electrode precursor was prepared. Thus, a non-aqueous alkali metal storage element was produced.
- NMP N-methylpyrrolidone
- ⁇ Comparative Example 5-11> Regarding the composition of the coating solution for the positive electrode, 70.5 parts by mass of LiCoO 2 powder, 22.5 parts by mass of lithium carbonate 2, 4.1 parts by mass of Ketjen black, and 2. 2 parts of PVDF (polyvinylidene fluoride). 9 parts by mass, using a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 90:10 as a dispersion solvent, and using the same method as Comparative Example 5-1, except that a positive electrode precursor was prepared. A non-aqueous alkali metal storage element was produced.
- NMP N-methylpyrrolidone
- Comparative Example 5-12 The same procedure as in Comparative Example 5-11 was performed except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water in a weight ratio of 80:20 was used as a dispersion solvent for the positive electrode coating solution, and a positive electrode precursor was prepared. Thus, a non-aqueous alkali metal storage element was produced.
- NMP N-methylpyrrolidone
- Table 12 shows the evaluation results of the positive electrode precursors of Examples 5-1 to 5-18 and Comparative Examples 5-1 to 5-12 and the evaluation results of the non-aqueous alkali metal storage element.
- the alkali metal carbonate contained in the positive electrode precursor is decomposed, and alkali metal ions that can participate in charge / discharge are pre-doped into the negative electrode, or released into the electrolyte solution, so that non-aqueous alkaline It is thought that charging / discharging of a metal-type electrical storage element will advance.
- the discharge capacity of the non-aqueous alkali metal storage element has a maximum value.
- this is because when X is less than 1, the discharge capacity is low because alkali metal ions are consumed to form the solid polymer film on the negative electrode surface, and when X is greater than 20, Since the surface of the active material is excessively covered with the alkali metal carbonate, the pre-doping rate is slow, and when A 2 is less than 1 or A 2 / X is less than 0.5, the positive electrode active material, the alkali metal carbonate, Insufficient electron conduction increases the reaction overvoltage during pre-doping, and when A 2 is greater than 30 or A 2 / X is greater than 2.0, alkali metal carbonate is present on the surface of the positive electrode active material.
- the capacity of the positive electrode active material could be maximized by supplementing the alkali metal ions consumed for the production of the solid polymer film on the negative electrode surface with the alkali metal carbonate contained in the positive electrode precursor.
- Example 5-19 A non-aqueous alkali metal storage element was produced in the same manner as in Example 5-1, except that sodium carbonate (Na 2 CO 3 ) was used as the alkali metal carbonate.
- Example 5-20> A non-aqueous alkali metal storage element was produced in the same manner as in Example 5-1, except that potassium carbonate (K 2 CO 3 ) was used as the alkali metal carbonate.
- Example 5-21> A non-aqueous alkali metal storage element was produced in the same manner as in Example 5-1, except that a 9: 1 weight ratio mixture of lithium carbonate and sodium carbonate was used as the alkali metal carbonate.
- Example 5-22> A non-aqueous alkali metal storage element was produced in the same manner as in Example 5-1, except that a 1: 1 weight ratio mixture of lithium carbonate and sodium carbonate was used as the alkali metal carbonate.
- Example 5-23 A non-aqueous alkali metal storage element was produced in the same manner as in Example 5-1, except that a mixture of lithium carbonate and sodium carbonate in a weight ratio of 1: 9 was used as the alkali metal carbonate.
- Example 5-24> A non-aqueous alkali metal storage element was produced in the same manner as in Example 5-1, except that a 9: 1 weight ratio mixture of lithium carbonate and potassium carbonate was used as the alkali metal carbonate.
- Example 5-25> A non-aqueous alkali metal storage element was produced in the same manner as in Example 5-1, except that a mixture of lithium carbonate and rubidium carbonate (Rb 2 CO 3 ) in a weight ratio of 9: 1 was used as the alkali metal carbonate. did.
- Example 5-26> A non-aqueous alkali metal storage element was produced in the same manner as in Example 5-1, except that a 9: 1 weight ratio mixture of lithium carbonate and cesium carbonate (Cs 2 CO 3 ) was used as the alkali metal carbonate. did.
- Example 5-27 A non-aqueous alkaline metal-type electricity storage was performed in the same manner as in Example 5-1, except that a mixture of lithium carbonate, sodium carbonate and potassium carbonate in a weight ratio of 9: 0.5: 0.5 was used as the alkali metal carbonate. An element was produced.
- Example 5-13 A non-aqueous alkali metal type was prepared in the same manner as in Example 5-19, except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 90:10 was used as the dispersion solvent for the positive electrode coating solution. A storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-14> A non-aqueous alkali metal type was prepared in the same manner as in Example 5-20, except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 90:10 was used as a dispersion solvent for the positive electrode coating solution. A storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-15 A non-aqueous alkali metal type was prepared in the same manner as in Example 5-21, except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 90:10 was used as a dispersion solvent for the positive electrode coating solution. A storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-16 A non-aqueous alkali metal type was prepared in the same manner as in Example 5-22, except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 90:10 was used as a dispersion solvent for the positive electrode coating solution. A storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-17> A non-aqueous alkali metal type was prepared in the same manner as in Example 5-23, except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 90:10 was used as the dispersion solvent for the positive electrode coating solution. A storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-19 A non-aqueous alkali metal type was prepared in the same manner as in Example 5-25, except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 90:10 was used as a dispersion solvent for the positive electrode coating solution. A storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-20> A non-aqueous alkali metal type was prepared in the same manner as in Example 5-26, except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 90:10 was used as the dispersion solvent for the positive electrode coating solution. A storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-21 A non-aqueous alkali metal type was prepared in the same manner as in Example 5-27, except that a mixed solvent of NMP (N-methylpyrrolidone) and pure water at a weight ratio of 90:10 was used as a dispersion solvent for the positive electrode coating solution. A storage element was produced.
- NMP N-methylpyrrolidone
- Example 5-28> A non-aqueous alkali metal storage element was produced in the same manner as in Example 5-1, except that a 9: 1 weight mixture of lithium carbonate and sodium oxide (NaO) was used as the alkali metal carbonate.
- Example 5-29> A non-aqueous alkali metal storage element was produced in the same manner as in Example 5-1, except that a 1: 1 weight ratio mixture of lithium carbonate and potassium hydroxide (KOH) was used as the alkali metal carbonate.
- KOH potassium hydroxide
- Example 5-30> A non-aqueous alkali metal storage element was produced in the same manner as in Example 5-1, except that a 9: 1 weight ratio mixture of lithium carbonate and sodium chloride (NaCl) was used as the alkali metal carbonate.
- Example 5-31> A non-aqueous alkali metal storage element was produced in the same manner as in Example 5-1, except that a 9: 1 weight mixture of lithium carbonate and potassium fluoride (KF) was used as the alkali metal carbonate.
- KF potassium fluoride
- Table 13 shows the evaluation results of the positive electrode precursors of Examples 5-19 to 5-31 and Comparative Examples 5-13 to 5-21 and the evaluation results of the non-aqueous alkali metal storage element.
- the lithium ion secondary battery of the present invention can be formed by connecting a plurality of lithium ion secondary batteries in series or in parallel.
- the lithium ion secondary battery and the power storage module of the present invention can be used in various power storage systems, for example: a power regeneration system of a hybrid drive system of an automobile that requires high load charge / discharge cycle characteristics; natural power generation such as solar power generation and wind power generation Power load leveling system in power plants and microgrids, etc .; Uninterruptible power supply systems in factory production facilities, etc .; Non-contact power supply systems for leveling voltage fluctuations and energy storage such as microwave transmission and electrolytic resonance; and vibration It can be suitably used for an energy harvesting system for the purpose of using power generated by power generation or the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Separators (AREA)
Abstract
Description
[1]
正極と、負極と、セパレータと、リチウムイオンを含む非水系電解液とを備えるリチウムイオン二次電池であって、
上記負極は、負極集電体と、上記負極集電体の片面又は両面上に設けられた、負極活物質を含む負極活物質層とを有し、
上記正極は、正極集電体と、上記正極集電体の片面又は両面上に設けられた、正極活物質を含む正極活物質層とを有し、上記正極活物質はリチウムイオンを吸蔵及び放出が可能な遷移金属酸化物を含み、
上記正極活物質層は、下記式(1)~(3)からなる群から選択される少なくとも1種の化合物を、上記正極活物質層の単位質量当たり3.8×10-9mol/g~3.0×10-2mol/g含有する、リチウムイオン二次電池。
[2]
上記正極活物質層の水銀圧入法による細孔分布を測定したとき、細孔径とLog微分細孔容積との関係を示す細孔分布曲線において、Log微分細孔容積0.10mL/g以上1.0mL/g以下のピーク値を有するピークが、細孔径0.3μm以上50μm以下の範囲で1つ以上存在し、かつ上記細孔径0.3μm以上50μm以下の範囲における総積算細孔容積Vpが、0.03mL/g以上0.2mL/g以下である、
請求項1に記載のリチウムイオン二次電池。
[3]
上記正極活物質層の上記細孔分布曲線において、上記Log微分細孔容積0.10mL/g以上1.0mL/g以下のピーク値を有するピークが、細孔径0.1μm以上50μm以下の範囲で2つ以上存在する、請求項1又は2に記載のリチウムイオン二次電池。
[4]
上記正極活物質層の上記細孔分布曲線において、上記Log微分細孔容積0.10mL/g以上1.0mL/g以下のピーク値を有するピークの1つ以上が、細孔径0.5μm以上20μm以下の範囲に存在する、請求項1~3のいずれか1項に記載のリチウムイオン二次電池。
[5]
上記負極活物質は、リチウムと合金を形成する合金系負極材料を含む、請求項1~4のいずれか1項に記載のリチウムイオン二次電池。
[6]
上記合金系負極材料は、ケイ素、ケイ素化合物、錫、錫化合物、及びこれらの炭素又は炭素質材料との複合材料からなる群から選択される少なくとも1種である、請求項5に記載のリチウムイオン二次電池。
[7]
上記負極活物質層の膜厚が、片面当たり10μm以上75μm以下である、請求項5又は6に記載のリチウムイオン二次電池。
[8]
上記正極に、上記遷移金属酸化物とは異なるリチウム化合物を1種以上含み、上記リチウム化合物の平均粒径が0.1μm以上10μm以下である、請求項1~7のいずれか1項に記載のリチウムイオン二次電池。
[9]
上記リチウム化合物は、炭酸リチウム、酸化リチウム、及び水酸化リチウムからなる群から選択される少なくとも一種のリチウム化合物である、請求項8に記載のリチウムイオン二次電池。
[10]
上記正極に含まれる上記リチウム化合物が、炭酸リチウムである、請求項8又は9に記載のリチウムイオン二次電池。
[11]
上記正極活物質層の固体7Li-NMRスペクトルについて、繰り返し待ち時間を10秒とした測定により得られる-40ppm~40ppmにおけるピーク面積をaとし、繰り返し待ち時間を3000秒とした測定により得られる-40ppm~40ppmにおけるピーク面積をbとしたとき、1.04≦b/a≦5.56である、請求項1~10のいずれか1項に記載のリチウムイオン二次電池。
[12]
上記セパレータが、上記非水系電解液の浸透により膨潤するポリマーを含む、請求項1~11のいずれか1項に記載のリチウムイオン二次電池。
[13]
上記セパレータが、固体電解質を含む、請求項1~12のいずれか1項に記載のリチウムイオン二次電池。
[14]
上記固体電解質が、リチウムイオン伝導性を有する無機酸化物及び無機硫化物から選ばれる一種以上を含む、請求項13に記載のリチウムイオン二次電池。
[15]
(1)リチウム含有遷移金属酸化物を含む正極活物質と、炭酸リチウム、酸化リチウム、及び水酸化リチウムから選択されるリチウム化合物とを含む正極前駆体、
リチウムイオンを吸蔵放出可能な負極活物質を含む負極、並びに
セパレータ
からなる積層体を外装体に収納することと、
(2)上記外装体内に、リチウムイオンを含有する電解質を含む非水系電解液を注入することと、並びに
(3)上記正極前駆体と負極との間に電圧を印加して上記リチウム化合物を分解することと
を、上記に記載の順で含み、
上記正極前駆体における単位面積当たりの上記リチウム化合物の量をA1[g/m2]とし、上記負極の単位面積当たりの容量をB1[Ah/m2]としたときの比A1/B1が0.05[g/Ah]以上0.30[g/Ah]以下であり、そして
上記リチウム化合物の分解において印加する電圧が4.2V以上である、リチウムイオン二次電池の製造方法。
[16]
上記正極活物質の単位面積当たりの重量をC1[g/m2]とするとき、比A1/C1が0.01以上0.10以下である、請求項15に記載のリチウムイオン二次電池の製造方法。
[17]
上記リチウム化合物が、平均粒子径0.1μm以上100μm以下の粒子状である、請求項15又は16に記載のリチウムイオン二次電池の製造方法。
[18]
上記非水系電解液中に、0.5重量%以上5重量%以下のルイス酸を含む、請求項15~17のいずれか一項に記載のリチウムイオン二次電池の製造方法。
[19]
上記非水系電解液中に、1.0重量%以上10.0重量%以下のクラウンエーテルを含む、請求項15~18のいずれか一項に記載のリチウムイオン二次電池の製造方法。
[20]
正極活物質と、上記正極活物質以外のアルカリ金属炭酸塩とを含む正極活物質層を有する正極前駆体であって、上記正極前駆体の上記正極活物質層中における上記アルカリ金属炭酸塩の重量比をX[質量%]とするとき、1≦X≦20であり、上記正極前駆体の表面の顕微ラマン分光測定により得られるイメージング画像において、炭酸イオンマッピングの面積をA2[%]とすると1≦A2≦30であり、0.5≦A2/X≦2.0である、正極前駆体。
[21]
上記正極前駆体の断面の顕微ラマン分光測定により得られるイメージング画像において、炭酸イオンマッピングの面積をA3[%]とすると1≦A3≦30であり、0.5≦A3/X≦2.0である、請求項20に記載の正極前駆体。
[22]
上記アルカリ金属炭酸塩が、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、及び炭酸セシウムからなる群から選択される少なくとも1種である、請求項20又は21に記載の正極前駆体。
[23]
上記アルカリ金属炭酸塩は、炭酸リチウムを10質量%以上含む、請求項20~22のいずれか1項に記載の正極前駆体。
[24]
上記アルカリ金属炭酸塩の平均粒子径が0.1μm以上10μm以下である、請求項20~23のいずれか1項に記載の正極前駆体。
[25]
請求項1~19のいずれか1項に記載のリチウムイオン二次電池を用いた蓄電モジュール。
[26]
請求項1~19のいずれか1項に記載のリチウムイオン二次電池を用いた電力回生システム。
[27]
請求項1~19のいずれか1項に記載のリチウムイオン二次電池を用いた電力負荷平準化システム。
[28]
請求項1~19のいずれか1項に記載のリチウムイオン二次電池を用いた無停電電源システム。
[29]
請求項1~19のいずれか1項に記載のリチウムイオン二次電池を用いた非接触給電システム。
[30]
請求項1~19のいずれか1項に記載のリチウムイオン二次電池を用いたエナジーハーベストシステム。
[31]
請求項1~19のいずれか1項に記載のリチウムイオン二次電池を用いた蓄電システム。
リチウムイオン二次電池を含む非水系アルカリ金属型蓄電素子は、セパレータ(及び電解液)の代わりに固体電解質を用いることもできる。
本実施形態における正極は、正極集電体と、その片面又は両面上に設けられた、正極活物質を含む正極活物質層とを有する。
正極前駆体は、非水系アルカリ金属型蓄電素子の正極を構成することができるように、正極集電体と、その片面又は両面に存在する正極活物質層とを有するものであってよい。本実施形態の正極前駆体は、蓄電素子を組み立ててプレドープ後に正極を構成する。後述のように、本実施形態では、蓄電素子の組み立てにおいて、負極にアルカリ金属イオンをプレドープすることが好ましい。プレドープ方法としては、本実施形態の正極前駆体と、負極と、セパレータと、外装体と、非水系電解液とを用いて蓄電素子を組み立てた後に、正極前駆体と負極との間に電圧を印加することが好ましい。
正極活物質層は、遷移金属酸化物を含む正極活物質を含み、これ以外に、必要に応じて、導電性フィラー、結着剤、及び分散安定剤等の任意成分を含んでいてもよい。
正極活物質としては、リチウムを吸蔵及び放出可能な遷移金属酸化物を含む。正極活物質として用いられる遷移金属酸化物には、特に制限はない。遷移金属酸化物としては、例えば、コバルト、ニッケル、マンガン、鉄、バナジウム、及びクロムからなる群より選ばれる少なくとも1種の元素を含む酸化物が挙げられる。遷移金属酸化物として具体的には、例えば、LixCoO2、LixNiO2、LixNiyM(1-y)O2(MはCo、Mn、Al、Fe、Mg、及びTiからなる群より選ばれる少なくとも1種の元素であり、yは0.2<y<0.97を満たす。)、LixNi1/3Co1/3Mn1/3O2、LixMnO2、α-LixFeO2、LixVO2、LixCrO2、LixFePO4、LixMn2O4、LixMyMn(2-y)O4(MはCo、Mn、Al、Fe、Mg、及びTiからなる群より選ばれる少なくとも1種の元素であり、yは0.2<y<0.97を満たす。)、LixNiaCobAl(1-a-b)O2(a及びbは0.2<a<0.97、0.2<b<0.97を満たす。)、LixNicCodMn(1-c-d)O2(c及びdは0.2<c<0.97、0.2<d<0.97を満たす。)(xは0≦x≦1を満たす)等が挙げられる。
本実施形態では、正極活物質とは異なるリチウム化合物及び/又はアルカリ金属炭酸塩が正極前駆体に含まれていれば、プレドープにてリチウム化合物及び/又はアルカリ金属炭酸塩がアルカリ金属のドーパント源となり負極にプレドープができるため、遷移金属化合物にあらかじめアルカリ金属が含まれていなくても(すなわちx=0であっても)、非水系アルカリ金属型蓄電素子として電気化学的な充放電をすることができる。
正極活物質層における正極活物質の含有割合は、上記の範囲内において、後述の、正極前駆体における単位面積当たりのリチウム化合物量A1と正極活物質重量C1[g/m2]との比A1/C1の規定を満たすものであることが好ましい。
本実施形態におけるアルカリ金属炭酸塩としては、正極前駆体中で分解して陽イオンを放出し、負極で還元することでプレドープすることが可能である、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウムから選択される1種以上が好適に用いられる。中でも、単位重量当たりの容量が高いという観点から炭酸リチウムが好適に用いられる。正極前駆体中に含まれるアルカリ金属炭酸塩は1種でもよく、2種以上のアルカリ金属炭酸塩を含んでいてもよい。本実施形態の正極前駆体は少なくとも1種のアルカリ金属炭酸塩を含んでいればよく、アルカリ金属炭酸塩の他に、MをLi、Na、K、Rb、Csから選ばれる1種以上として、M2O等の酸化物、MOH等の水酸化物、MFやMCl等のハロゲン化物、M2(CO2)2等の蓚酸塩、RCOOM(RはH、アルキル基、アリール基)等のカルボン酸塩を1種以上含んでいてもよい。また、BeCO3、MgCO3、CaCO3、SrCO3、BaCO3から選ばれるアルカリ土類金属炭酸塩や、アルカリ土類金属酸化物、アルカリ土類金属水酸化物、アルカリ土類金属ハロゲン化物、アルカリ土類金属シュウ酸塩、アルカリ土類金属カルボン酸塩を1種以上含んでいてもよい。アルカリ金属炭酸塩は、炭酸リチウムを好ましくは10質量%以上、より好ましくは50質量%以上、更に好ましくは90質量%以上含む。
本願明細書において、「リチウム化合物」とは、正極活物質ではなく、かつ式(1)~(3)の化合物でもないリチウム化合物を意味する。
正極活物質層におけるリチウム化合物の含有割合は、上記の範囲内において、後述の、
正極前駆体における単位面積当たりのリチウム化合物量A1と正極活物質重量C1[g/m2]との比A1/C1、及び
上記A1と負極における単位面積当たりの容量B1との比A1/B1
の規定を満たすものであることが好ましい。
本実施形態における正極活物質層は、必要に応じて、正極活物質、リチウム化合物及び/又はアルカリ金属炭酸塩の他に、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
本実施形態における正極集電体を構成する材料としては、電子伝導性が高く、電解液への溶出及び電解質又はイオンとの反応等による劣化が起こりにくい材料であれば特に制限はないが、金属箔が好ましい。本実施形態の非水系アルカリ金属型蓄電素子のための正極集電体としては、アルミニウム箔が特に好ましい。
正極前駆体は、正極集電体の片面又は両面上に正極活物質層を有する。典型的には、正極活物質層は正極集電体の片面又は両面上に固着している。
本実施形態において、正極前駆体は、既知のリチウムイオン電池、電気二重層キャパシタ等における電極の製造技術によって製造して、非水系アルカリ金属型蓄電素子の正極を構成することが可能である。例えば、正極活物質、リチウム化合物及び/又はアルカリ金属炭酸塩、並びに必要に応じて使用されるその他の任意成分を、水又は有機溶剤中に分散又は溶解してスラリー状の塗工液を調製し、この塗工液を正極集電体上の片面又は両面に塗工して塗膜を形成し、これを乾燥することにより正極前駆体を得ることができる。得られた正極前駆体にプレスを施して、正極活物質層の膜厚や嵩密度を調整してもよい。或いは、溶剤を使用せずに、正極活物質、リチウム化合物及び/又はアルカリ金属炭酸塩、並びに必要に応じて使用されるその他の任意成分を乾式で混合し、得られた混合物をプレス成型した後、導電性接着剤を用いて正極集電体に貼り付ける方法も可能である。
A1/C1が0.01以上であれば、負極に十分な量のリチウムイオンをプレドープすることができる。A1/C1が0.10以下であれば、リチウム化合物が反応した後の正極密度を高くすることができ、正極の強度を保つことができる。
正極前駆体中に含まれるアルカリ金属炭酸塩の同定方法は特に限定されないが、例えば下記の方法により同定することができる。アルカリ金属炭酸塩の同定には、以下に記載する複数の解析手法を組み合わせて同定することが好ましい。
アルカリ金属炭酸塩及び正極活物質は、観察倍率を1000倍~4000倍にして測定した正極前駆体表面の炭酸イオンのラマンイメージングにより判別できる。測定条件の例として、励起光を532nm、励起光強度を1%、対物レンズの長作動を50倍、回折格子を1800gr/mm、マッピング方式を点走査(スリット65mm、ビニング5pix)、1mmステップ、1点当たりの露光時間を3秒、積算回数を1回、ノイズフィルター有りの条件にて測定することができる。測定したラマンスペクトルについて、1071~1104cm-1の範囲で直線のベースラインを設定し、ベースラインより正の値を炭酸イオンのピークとして面積を算出し、頻度を積算するが、この時にノイズ成分をガウス型関数で近似した炭酸イオンピーク面積に対する頻度を炭酸イオンの頻度分布から差し引く。
XPSにより電子状態を解析することによりアルカリ金属元素の結合状態を判別することができる。測定条件の例として、X線源を単色化AlKα、X線ビーム径を100μmφ(25W、15kV)、パスエネルギーをナロースキャン:58.70eV、帯電中和を有り、スイープ数をナロースキャン:10回(炭素、酸素)20回(フッ素)30回(リン)40回(アルカリ金属元素)50回(ケイ素)、エネルギーステップをナロースキャン:0.25eVの条件にて測定できる。XPSの測定前に正極の表面をスパッタリングにてクリーニングすることが好ましい。スパッタリングの条件として例えば、加速電圧1.0kV、2mm×2mmの範囲を1分間(SiO2換算で1.25nm/min)の条件にて正極の表面をクリーニングすることができる。得られたXPSスペクトルについて、Li1sの結合エネルギー50~54eVのピークをLiO2またはLi-C結合、55~60eVのピークをLiF、Li2CO3、LixPOyFz(x、y、zは1~6の整数);C1sの結合エネルギー285eVのピークをC-C結合、286eVのピークをC-O結合、288eVのピークをCOO、290~292eVのピークをCO3 2-、C-F結合;O1sの結合エネルギー527~530eVのピークをO2-(Li2O)、531~532eVのピークをCO、CO3、OH、POx(xは1~4の整数)、SiOx(xは1~4の整数)、533eVのピークをC-O、SiOx(xは1~4の整数);F1sの結合エネルギー685eVのピークをLiF、687eVのピークをC-F結合、LixPOyFz(x、y、zは1~6の整数)、PF6 -;P2pの結合エネルギーについて、133eVのピークをPOx(xは1~4の整数)、134~136eVのピークをPFx(xは1~6の整数);Si2pの結合エネルギー99eVのピークをSi、シリサイド、101~107eVのピークをSixOy(x、yは任意の整数)として帰属することができる。得られたスペクトルについて、ピークが重なる場合には、ガウス関数又はローレンツ関数を仮定してピーク分離し、スペクトルを帰属することが好ましい。得られた電子状態の測定結果及び存在元素比の結果から、存在するアルカリ金属化合物を同定することができる。
観察倍率を1000倍~4000倍にして測定した正極前駆体表面のSEM-EDX分析により、正極前駆体中に含まれる元素を定量化できる。SEM-EDX画像の測定例としては、加速電圧を10kV、エミッション電流を1μA、測定画素数を256×256ピクセル、積算回数を50回として測定できる。試料の帯電を防止するために、金、白金、オスミウム等を真空蒸着やスパッタリング等の方法により表面処理することもできる。
正極前駆体を蒸留水で洗浄し、洗浄した後の水をイオンクロマトグラフィーで解析することにより、水中に溶出したアニオン種を同定することができる。使用するカラムとしては、イオン交換型、イオン排除型、逆相イオン対型を使用することができる。検出器としては、電気伝導度検出器、紫外可視吸光光度検出器、電気化学検出器等を使用することができ、検出器の前にサプレッサーを設置するサプレッサー方式、またはサプレッサーを配置せずに電気伝導度の低い溶液を溶離液に用いるノンサプレッサー方式を用いることができる。また、質量分析計や荷電化粒子検出器を検出器と組み合わせて測定することもできるため、SEM-EDX、ラマン分光法、XPSの解析結果から同定されたリチウム化合物に基づいて、適切なカラム及び検出器を組み合わせることが好ましい。
正極前駆体中に含まれるアルカリ金属炭酸塩の定量方法を以下に記載する。正極前駆体を蒸留水で洗浄し、蒸留水による洗浄前後の正極重量変化からアルカリ金属炭酸塩を定量することができる。測定する正極前駆体の面積は特に制限されないが、測定のばらつきを軽減するという観点から5cm2以上200cm2以下であることが好ましく、更に好ましくは25cm2以上150cm2以下である。面積が5cm2以上あれば測定の再現性が確保される。面積が200cm2以下であればサンプルの取扱い性に優れる。
切断した正極前駆体について重量を測定しM0[g]とする。続いて、25℃環境下、正極前駆体の重量の100倍(100M0[g])の蒸留水に正極を3日間以上十分に浸漬させ、アルカリ金属炭酸塩を水中に溶出させる。この時、蒸留水が揮発しないよう容器に蓋をする等の対策を施すことが好ましい。3日間以上浸漬させた後、蒸留水から正極前駆体を取り出し(イオンクロマトグラフィーを測定する場合は、蒸留水の量が100M0[g]になるように液量を調整する。)、真空乾燥する。真空乾燥の条件としては、例えば、温度:100~200℃、圧力:0~10kPa、時間:5~20時間の範囲で正極前駆体中の残存水分量が1質量%以下になる条件が好ましい。水分の残存量については、カールフィッシャー法により定量することができる。真空乾燥後の正極前駆体の重量をM1[g]とし、続いて、得られた正極前駆体の集電体の重量を測定するため、スパチュラ、ブラシ、刷毛等を用いて集電体上の正極活物質層を取り除く。得られた正極集電体の重量をM2[g]とすると、正極前駆体の活物質層中に含まれるアルカリ金属炭酸塩の重量比X[質量%]は、下記数式1にて算出できる。
X=100×(M0-M1)/(M0-M2) (数式1)
正極前駆体について、濃硝酸、濃塩酸、王水等の強酸を用いて酸分解し、得られた溶液を2%~3%の酸濃度になるように純水で希釈する。酸分解については、適宜加熱、加圧し分解することもできる。得られた希釈液をICP-MSにより解析するがこの際に内部標準として既知量の元素を加えておくことが好ましい。測定対象のアルカリ金属元素が測定上限濃度以上になる場合には、酸濃度を維持したまま希釈液を更に希釈することが好ましい。得られた測定結果に対し、化学分析用の標準液を用いて予め作成した検量線を基に、各元素を定量することができる。
本実施形態における負極は、負極集電体と、その片面又は両面上に設けられた、負極活物質を含む負極活物質層とを有する。
負極活物質層は、リチウムイオンを吸蔵・放出できる負極活物質を含み、必要に応じて、導電性フィラー、結着剤、分散材安定剤等の任意成分を含んでいてもよい。
負極活物質は、リチウムイオン等のアルカリ金属イオンを吸蔵・放出可能な物質を用いることができる。負極活物質としては、具体的には、炭素材料、チタン酸化物、ケイ素、ケイ素酸化物、ケイ素合金、ケイ素化合物、錫、及び錫化合物等が挙げられる。
炭素材料としては、例えば、難黒鉛化性炭素材料;易黒鉛化性炭素材料;カーボンブラック;カーボンナノ粒子;活性炭;人造黒鉛;天然黒鉛;黒鉛化メソフェーズカーボン小球体;黒鉛ウイスカ;ポリアセン系物質等のアモルファス炭素質材料;石油系のピッチ、石炭系のピッチ、メソカーボンマイクロビーズ、コークス、合成樹脂(例えばフェノール樹脂等)等の炭素質材料前駆体を熱処理して得られる炭素質材料;フルフリルアルコール樹脂又はノボラック樹脂の熱分解物;フラーレン;カーボンナノフォーン;及びこれらの複合炭素材料を挙げることができる。
(1)BJH法で算出されたメソ孔量(直径が2nm以上50nm以下である細孔の量)Vm1(cc/g)が、0.01≦Vm1<0.10の条件を満たす。
(2)MP法で算出されたマイクロ孔量(直径が2nm未満である細孔の量)Vm2(cc/g)が、0.01≦Vm2<0.30の条件を満たす。
前記負極活物質としては、リチウムと合金を形成する材料(以下、「合金系負極材料」ともいう。)であってもよく、ケイ素、ケイ素化合物、錫、錫化合物、及びこれらと炭素又は炭素質材料との複合材料からなる群から選択される少なくとも1種を含むことが好ましい。また、ケイ素化合物はケイ素酸化物であることが好ましく、SiOx(0.01≦x≦1)であることがより好ましい。
1)活物質の粉体を電子顕微鏡で数視野撮影し、それらの視野中の粒子の粒子径を、全自動画像処理装置等を用いて2,000~3,000個程度計測し、これらを算術平均した値を1次粒子径とする方法。
2)得られた電極の表面及び/又は断面を電子顕微鏡で数視野撮影し、上記の方法で算術平均して求める方法。
本実施形態における負極活物質層は、負極活物質の他に、必要に応じて、導電性フィラー、結着剤、分散材安定剤等の任意成分を含んでいてもよい。
本実施形態における負極集電体を構成する材料としては、電子伝導性が高く、非水系電解液への溶出及び電解質又はイオンとの反応等による劣化がおこりにくい金属箔であることが好ましい。このような金属箔としては、特に制限はなく、例えば、アルミニウム箔、銅箔、ニッケル箔、ステンレス鋼箔等が挙げられる。本実施形態のリチウムイオン二次電池における負極集電体としては、銅箔が好ましい。
負極は、負極集電体の片面又は両面上に負極活物質層を有する。典型的には、負極活物質層は負極集電体の片面又は両面上に固着している。
負極は、負極集電体の片面又は両面上に負極活物質層を有する。典型的には、負極活物質層は負極集電体の片面又は両面上に固着している。
1)負極活物質を含む各種材料を、水又は有機溶剤中に分散又は溶解してスラリー状の塗工液を調製し、この塗工液を負極集電体の片面又は両面上に塗工して塗膜を形成し、これを乾燥することにより負極を得ることができる。さらに得られた負極にプレスを施して、負極活物質層の膜厚や嵩密度を調整してもよい。
2)溶剤を使用せずに、負極活物質を含む各種材料を乾式で混合し、得られた混合物をプレス成型した後、導電性接着剤を用いて負極集電体に貼り付けることにより負極を得ることができる。
3)負極集電体上に負極活物質層を成膜することにより負極を得ることもできる。成膜方法としては、無電解めっき法、電解めっき法、化学還元法、真空蒸着法、イオンプレーティング法、スパッタリング法、化学気相成長(CVD)法、レーザーアブレーション法、溶射法等を好適に用いることができる。
上述した負極の製造方法の中で量産性の観点から1)の方法が好ましい。
正極前駆体及び負極は、一般に、セパレータを介して積層又は捲回され、正極前駆体と、負極と、セパレータとを有する電極積層体、又は電極捲回体を形成する。
本発明の別の実施形態では、リチウムイオン二次電池は、正極及び負極に加えて、固体電解質を備えることができる。
固体電解質を用いる場合、正極前駆体及び負極は、固体電解質を介して積層されるが、リチウムイオン伝導パスの確保が重要である。その方法は、特に限定されないが、例えば、無機固体電解質であれば、正極前駆体及び負極に固体電解質層を添加する等の方法で活物質粒子との固体界面を適切に構築することが挙げられる。
前記固体電解質に用いられる材料としては、固体電解質材料としての機能を有するものであれば特に限定されるものではなく、一般的な固体リチウムイオン二次電池に用いられるものと同様のものを用いることができる。無機固体電解質としては、例えば、LiN、LISICON類、Thio-LISICON類、ペロブスカイト型構造を有するLa0.51Li0.34TiO2.94、NASICON型構造を有するLi1.3Al0.3Ti1.7P3O12、ガーネット型構造を有するLi7La3Zr2O12などの酸化物系固体電解質、及びLi2S-P2S5系、LiI-Li2S-P2S5系、Li3PO4-Li2S-Si2S系、Li10GeP2S12などの硫化物系非晶質固体電解質などが挙げられるが、リチウムイオン伝導性を有する無機酸化物及び無機硫化物の一種以上を含む無機固体電解質が好ましい。
本実施態様におけるリチウムイオン二次電池は、上記のように成形された正極前駆体及び負極を用いて、以下の方法により製造することができる:
(1)正極活物質とリチウム化合物とを含む正極前駆体、負極、及びセパレータからなる積層体を外装体に収納することと(セル組み立て)、
(2)該外装体内に非水系電解液を注入することと(電解液注入)、並びに
(3)前記正極前駆体と負極との間に電圧を印加して前記リチウム化合物を分解することと(プレドープ)
を、上記に記載の順で含み、
前記A1[g/m2]と前記B1[Ah/m2]との比A1/B1が0.05[g/Ah]以上0.30[g/Ah]以下であり、そして
前記プレドープにおいて印加する電圧が4.2V以上である、リチウムイオン二次電池の製造方法。
[組立]
セル組み立てでは、枚葉の形状にカットした正極前駆体及び負極を、セパレータを介して積層して成る積層体に、正極端子及び負極端子を接続して、電極積層体を作製する。あるいは、正極前駆体及び負極を、セパレータを介して積層及び捲回した捲回体に、正極端子及び負極端子を接続して、電極捲回体を作製する。電極捲回体の形状は円筒型であっても、扁平型であってもよい。
外装体としては、金属缶、ラミネート包材等を使用できる。金属缶としては、アルミニウム製のものが好ましい。ラミネート包材としては、金属箔と樹脂フィルムとを積層したフィルムが好ましく、外層樹脂フィルム/金属箔/内装樹脂フィルムの3層から構成されるラミネート包材が例示される。外層樹脂フィルムは、接触等により金属箔が損傷を受けることを防止するためのものであり、ナイロン又はポリエステル等の樹脂が好適に使用できる。金属箔は水分及びガスの透過を防ぐためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。また、内装樹脂フィルムは、内部に収納する電解液から金属箔を保護するとともに、外装体のヒートシール時に溶融封口させるためのものであり、ポリオレフィン、酸変成ポリオレフィン等が好適に使用できる。
乾燥した電極積層体または電極捲回体は、金属缶やラミネート包材に代表される外装体の中に収納し、開口部を1方だけ残して封止することが好ましい。外装体の封止方法は特に限定されないが、ラミネート包材を用いる場合は、ヒートシールやインパルスシールなどの方法を用いることができる。
外装体の中に収納した電極積層体または電極捲回体は、乾燥することで残存溶媒を除去することが好ましい。乾燥方法は限定されないが、真空乾燥などにより乾燥することができる。残存溶媒は、正極活物質層または負極活物質層の重量を基準として、1.5質量%以下が好ましい。残存溶媒が1.5質量%より多いと、系内に溶媒が残存し、自己放電特性やサイクル特性を悪化させることがあるため好ましくない。
本実施形態における電解液は、リチウムイオン等のアルカリ金属イオンを含む非水系電解液である。すなわちこの非水系電解液は、後述する非水溶媒を含む。非水系電解液は、非水系電解液の合計体積を基準として、0.5mol/L以上のリチウム塩等のアルカリ金属塩を含有することが好ましい。すなわち、非水系電解液は、リチウムイオン等のアルカリ金属イオンを電解質として含む。電解質として用いるアルカリ金属塩は、リチウム塩が好適に用いられる。
ルイス酸の添加により、リチウム化合物のアニオンにルイス酸が配位し、前記アニオンのHOMO(Highest Occupied Molecular Orbital)を下げることにより酸化反応を促進させることができる。ルイス酸としては、リチウム化合物のアニオンと錯形成可能なものであれば特に限定されない。例えば、トリフェニルホスフィン等を配位子とするモノホスフィン金属錯体、BINAP等を配位子とするジホスフィン金属錯体等のホスフィン錯体;トリエチルアミン等を配位子とするアミン金属錯体、TMEDA(テトラメチルエチレンジアミン)等を配位子とするジアミン金属錯体等のアミン錯体;ピリジン又はポルフィリンを配位子とするイミン金属錯体;シクロペンタジエニル基を配位子とするメタロセン錯体;オキサラト錯体;シアナト錯体;ニトロ錯体;acac(アセチルアセトン)錯体;カルボニル錯体;アミノ酸錯体;アルケニル錯体;アルキニル錯体等を用いることができる。これらの配位子を1種、又は2種以上含む錯体を用いてもよいし、これらの配位子がフッ素、塩素等のハロゲン原子;メチル基等のアルキル基;フェニル基等のアリール基;メトキシ基等のアルコキシ基;スルホニル基;アミノ基;カルボキシル基;水酸基等の官能基により修飾されていてもよい。
ルイス酸として、酸化アルミ、酸化マンガン、酸化マグネシウム、酸化亜鉛、酸化ホウ素等の金属酸化物を用いることもできる。
ルイス塩基の使用量は、非水系電解液の全質量を基準として、1質量%~10質量%とすることが好ましく、2質量%~8質量%とすることがより好ましい。この範囲の使用量とすることにより、リチウムイオン二次電池の自己放電特性を損なうことなく、負極へのリチウムイオンのプレドープをより温和な条件下で進行できることとなる。
組立後に、外装体の中に収納された電極積層体に、非水系電解液を注液する。注液後に、更に含浸を行い、正極、負極、及びセパレータを非水系電解液で十分に浸すことが望ましい。正極、負極、及びセパレータのうちの少なくとも一部に非水系電解液が浸っていない状態では、後述するプレドープにおいて、プレドープが不均一に進むため、得られるリチウムイオン二次電池の抵抗が上昇したり、耐久性が低下したりする。含浸の方法としては、特に制限されないが、例えば、非水系電解液を注液後に、電極積層体を外装材が開口した状態で減圧チャンバーに設置し、真空ポンプを用いてチャンバー内を減圧状態にし、再度大気圧に戻す方法等を用いることができる。含浸後には、外装材が開口した状態で電極積層体を減圧しながら封止することで密閉することができる。
本実施形態において、リチウムイオン等のアルカリ金属イオンを含む正極活物質、リチウム化合物及び/又はアルカリ金属炭酸塩が、負極活物質へのアルカリ金属イオンのドーパント源として機能する。プレドープでは、正極前駆体と負極との間に電圧を印加して、正極前駆体中のリチウム化合物及び/又はアルカリ金属炭酸塩を分解してアルカリ金属イオンを放出し、負極でアルカリ金属イオンを還元することにより負極活物質層にアルカリ金属イオンをプレドープすることが好ましい。
前記正極前駆体における単位面積当たりのリチウム化合物量をA1[g/m2]とし、前記負極における単位面積当たりの容量をB1[Ah/m2]とするとき、A1/B1が0.05以上0.30以下になるように、A1又はB1の値を調整することが好ましい。A1/B1が0.05以上であれば、負極に十分な量のリチウムイオンをプレドープさせることができるために、非水系リウムイオン型蓄電素子のエネルギー密度を高めることができる。A1/B1が0.30以下であれば、負極への過剰なリチウムイオンのプレドープを抑制することができ、負極上での金属リチウムの析出を抑制することができる。
プレドープ前の負極を一定面積(Z[cm2]とする)に切り出し作用極とし、対極及び参照極としてそれぞれ金属リチウムを用い、電解液としてリチウム塩を含有する非水系溶媒を用いて、電気化学セルを作製する。充放電装置を用いて、25℃環境下、前記電気化学セルに対して電流値0.5mA/cm2で電圧値が0.01Vになるまで定電流充電を行った後、電流値が0.01mA/cm2になるまで定電圧充電を行う。この定電流充電及び定電圧充電の時の充電容量の和を負極の容量(Y[Ah])として評価する。得られたZ及びYを用い、Y/Zより当該負極の単位面積当たり容量B1を算出することができる。
電圧印加の方法としては特に制限されず、充放電装置、電源等を用いて4.2V以上の電圧で一定電圧を印加する方法;4.2V以上の一定電圧印加時にパルス電圧を重畳させる方法;充放電装置を用いて4.2V以上の電圧を含む電圧範囲で充放電サイクルを実施する方法等を用いることができる。
等を挙げることができる。
プレドープ後に、電極積層体にエージングを行うことが好ましい。エージングでは、非水系電解液中の溶媒が負極で分解し、負極表面にリチウムイオン透過性の固体高分子被膜が形成される。
エージング後に、更にガス抜きを行い、電解液、正極、及び負極中に残存しているガスを確実に除去することが好ましい。電解液、正極、及び負極の少なくとも一部にガスが残存している状態では、イオン伝導が阻害されるため、得られる非水系アルカリ金属型蓄電素子の抵抗が上昇してしまう。
以上の方法により、リチウムイオン二次電池を製造することができる。このリチウムイオン二次電池は、一実施形態において、正極前駆体に含有されていたリチウム化合物が分解されて散逸した跡である空孔を有する多孔性の正極活物質層を有する正極と、リチウム化合物をドーパント源としてドープされた負極活物質層を有する負極と、を具備する。正極は、プレドープにて分解しなかったリチウム化合物を含んでいてもよい。
正極活物質層の嵩密度は、好ましくは1.0g/cm3以上、より好ましくは1.2g/cm3以上4.5g/cm3以下の範囲である。正極活物質層の嵩密度が1.2g/cm3以上であれば、高いエネルギー密度を発現でき、蓄電素子の小型化を達成できる。正極活物質層の嵩密度が4.5g/cm3以下であれば、正極活物質層内の空孔における電解液の拡散が十分となり、高い出力特性が得られる。
本実施形態におけるプレドープ後の正極活物質層は、下記式(1)~(3)から選択される少なくとも1種の化合物を、正極物質層の単位質量当たり3.8×10-9mol/g~3.0×10-2mol/g含有する。
本実施形態では、後述のプレドープ後の正極における正極活物質層は、水銀圧入法による細孔分布を測定したとき、細孔径とLog微分細孔容積との関係を示す細孔分布曲線において、細孔径0.3μm以上50μm以下の範囲で、Log微分細孔容積0.10mL/g以上1.0mL/g以下のピーク値を有するピークが、1つ以上存在することが好ましい。更に好ましくは、細孔径0.1μm以上50μm以下の範囲で、Log微分細孔容積0.10mL/g以上1.0mL/g以下のピーク値を有するピークが2つ以上存在する。
正極における正極活物質層の細孔分布曲線において、Log微分細孔容積0.10mL/g以上1.0mL/g以下のピーク値を有するピークが1つ以上存在する細孔径範囲の上限としては、30μm以下が好ましく、20μm以下がさらに好ましく、10μm以下が最も好ましく、細孔径範囲の下限としては、0.5μm以上が好ましく、0.7μm以上がさらに好ましい。細孔径範囲の上限と下限は、任意に組み合わせることができる。
ここで、ピークが存在するとは、ピークトップ位置を上記細孔径範囲に有するピークが存在することを示す。本実施形態においては、正極における正極活物質層の細孔分布曲線におけるピークの由来は特に限定はされないが、正極活物質や導電性フィラー等の正極活物質層構成材料同士の間隙に由来するピークと、例えば正極前駆体の正極活物質層に含有したリチウム化合物がプレドープで酸化分解した後に残る空孔に由来するピークとが存在することが好ましい。これらのピークはピークトップ位置の細孔径が重なり、1つのピークとして観察されてもよい。
正極における正極活物質層の細孔分布曲線において、Log微分細孔容積0.10mL/g以上1.0mL/g以下のピーク値を有するピークが1つ以上存在する細孔径範囲が0.3μm以上であれば、正極内部に電解液を保持できる良好な空孔が形成され、リチウムイオン伝導性が高いため、リチウムイオン二次電池に組み込んだ時に高い入出力特性を示すと共に、充放電繰り返し時、特に高負荷充放電において、正極活物質近傍に形成された空孔内の電解液からイオンが随時供給されるため、高負荷充放電サイクル特性に優れる。
一方、正極における正極活物質層の細孔分布曲線において、Log微分細孔容積0.10mL/g以上1.0mL/g以下のピーク値を有するピークが1つ以上存在する細孔径範囲が50μm以下であれば、リチウムイオン二次電池に組み込んだ時に高いエネルギー密度が得られる。
本実施形態における水銀圧入法による総積算細孔容積、Log微分細孔容積はそれぞれ以下の方法によって求められる値である。
試料の入った容器を真空排気した後に水銀を満たし、水銀に圧力を掛けて、掛けた圧力に対する水銀侵入量の測定を行う。掛けた圧力を下記式から細孔径に換算し、水銀侵入量を細孔容積に換算し、細孔分布を得る。
P×D=-4×σ×cosθ
{ここで、P;圧力、D;細孔径、σ;水銀の表面張力485mN/m、θ;水銀の接触角130°とする。}
横軸が細孔径(μm)、縦軸が積算細孔容積(mL/g)の積算細孔容積分布から、或る特定の細孔径の範囲、例えば0.3μm以上50μm以下の範囲の総積算細孔容積(Vp)が、下記式:
(細孔径0.3μmにおける積算細孔容積)-(細孔径50μmにおける積算細孔容積)
によって算出される。
また、測定ポイント間の細孔容積差分値dVを、測定ポイント間の細孔径差分値の対数d(logD)で割った値dV/d(logD)を、測定ポイント区間の平均細孔径に対するLog微分細孔容積とする。
なお、本実施形態における正極活物質層の総積算細孔容積(mL/g)及びLog微分細孔容積(mL/g)の単位重量(g)は、正極活物質層全体の重量と定義する。
一般的に、リチウムイオン二次電池は保存や使用などを重ねることで、電解液に含まれる電解質が分解し、フッ素イオンを発生させる。発生したフッ素イオンは主に負極でフッ化リチウムを形成し、リチウムイオン二次電池の内部抵抗を増大させるため好ましくない。一方でリチウム化合物はフッ素イオンを吸着することができるため、負極でのフッ化リチウムの形成を抑制できる。そのため、リチウム化合物を正極活物質層中に存在させることで、リチウムイオン二次電池の内部抵抗の増大を抑制することができるため、好ましい。
正極活物質中に含まれるリチウム化合物の同定方法は特に限定されないが、例えば下記の方法により同定することができる。リチウム化合物の同定には、以下に記載する複数の解析手法を組み合わせて同定することが好ましい。
リチウム化合物の平均粒子径は、上記正極断面のSEM-EDXと同視野にて測定し、得られた画像を解析することで求めることができる。正極断面のSEM画像にて判別されたリチウム化合物の粒子全てについて断面積Sを求め、下記数式3にて算出される粒子径dを求める。(円周率をπとする。)
d=2×(S/π)1/2 ・・・(数式3)
リチウムイオン二次電池を充放電する際、電解液中のリチウムイオンが充放電に伴って移動し、活物質と反応する。ここで、活物質へのイオンの挿入反応及び脱離反応の活性化エネルギーは、それぞれ異なる。そのため、特に充放電の負荷が大きい場合、イオンは充放電の変化に追従できなくなる。その結果、バルク電解液中の電解質濃度が下がるため、リチウムイオン二次電池の抵抗が上昇してしまう。
正極活物質層の固体7Li-NMRスペクトルについて、繰り返し待ち時間10秒とした測定により得られた-40ppm~40ppmにおけるピーク面積をaとし、繰り返し待ち時間3000秒とした測定により得られた-40ppm~40ppmにおけるピーク面積をbとしたとき、好ましくは1.04≦b/a≦5.56、より好ましくは1.05≦b/a≦3.79、さらに好ましくは1.09≦b/a≦3.32、よりさらに好ましくは1.14≦b/a≦2.86である。
正極活物質層の固体7Li-NMRスペクトルにおける、繰り返し待ち時間10秒とした場合の-40ppm~40ppmにおけるピーク面積aと、繰り返し待ち時間3000秒とした場合の-40ppm~40ppmにおけるピーク面積bとの面積比b/aは以下の方法により算出することができる。
本発明におけるリチウムイオン二次電池を含む非水系アルカリ金属型蓄電素子の特性評価を以下に示すが、正極活物質及び負極活物質の組み合わせによって作動電圧が変わるため、充放電の電圧については非水系アルカリ金属型蓄電素子によって設定値を変更する必要がある。以下に例示する特性評価の充放電電圧については、これに特に限定されることはない。
(放電容量)
本明細書では、容量Q(Ah)とは、以下の方法によって得られる値である。
[体積]
リチウムイオン二次電池を含む非水系アルカリ金属型蓄電素子の体積は、電極積層体又は電極捲回体のうち、正極活物質層及び負極活物質層が積重された領域が、外装体によって収納された部分の体積を指す。
本明細書において、エネルギー密度とは、リチウムイオン二次電池を含む非水系アルカリ金属型蓄電素子の電気容量Q及び体積Vi(i=1、2、3)を用いて、Q/Vi(Ah/L)の式により得られる値である。
本明細書では、常温内部抵抗Ra(Ω)とは、以下の方法によって得られる値である。
(高温保存試験後のガス発生量及び内部抵抗)
本明細書では、高温保存試験時のガス発生量は、以下の方法によって測定する。
本明細書では、高負荷充放電サイクル試験後の抵抗上昇率(Rd/Ra)は、以下の方法によって測定する:
先ず、非水系アルカリ金属型蓄電素子と対応するセルを25℃に設定した恒温槽内で、1Cの電流値で4.2Vに到達するまで定電流充電し、続いて1Cの電流値で3.0Vに到達するまで定電流放電を行う。前記充放電操作を500回繰り返し、試験開始前と、試験終了後に内部抵抗測定を行い、試験開始前の内部抵抗をRa(Ω)、試験終了後の内部抵抗をRd(Ω)としたとき、試験開始前に対する高負荷充放電サイクル試験後の抵抗上昇率はRd/Raにより算出される。
[正極前駆体の製造]
正極活物質としてLiCoO2粉体(日亜化学工業株式会社製)を86.5質量部、アセチレンブラックを5.0質量部、リチウム化合物として炭酸リチウムを3.5重量部、及びPVdF(ポリフッ化ビニリデン)5.0質量部、並びにNMP(N-メチルピロリドン)を混合して、固形分濃度45質量%の正極用スラリーを得た。炭酸リチウムの平均粒子径は、表1に記載したとおりである。得られた正極用スラリーを、正極集電体としての厚さ15μmのアルミニウム箔の両面又は片面に塗布乾燥し、プレスすることにより、正極前駆体(以下、それぞれ「片面正極前駆体」、及び「両面正極前駆体」という。)を得た。正極前駆体の正極活物質層の厚さは、炭酸リチウムの平均粒子径により多少の差はあるが、片面あたりおおよそ65μmであった。
市販のハードカーボン(株式会社クレハ製)を85.4質量部、アセチレンブラックを8.3質量部、及びPVdF(ポリフッ化ビニリデン)を6.3質量部、並びにNMP(N-メチルピロリドン)を混合して負極用スラリーを得た。得られた負極用スラリーを、負極集電体としての厚さ10μmの電解銅箔の両面に塗布乾燥し、プレスして負極を得た(以下、「両面負極」ともいう。)。得られた負極における負極活物質層の片面あたりの厚さは115μmであった。
得られた両面負極および両面正極前駆体を10cm×10cm(100cm2)にカットした。最上面と最下面は片面正極前駆体を用い、更に両面負極21枚と両面正極前駆体20枚とを用い、負極と正極前駆体との間に、厚み15μmの微多孔膜セパレータを挟んで積層した。その後、負極と正極前駆体とに、それぞれ負極端子及び正極端子を超音波溶接にて接続して電極積層体とした。この電極積層体を、アルミラミネート包材から構成される外装体内に収納し、電極端子部およびボトム部の外装体3方を、温度180℃、シール時間20sec、シール圧1.0MPaの条件でヒートシールした。これを、温度80℃、圧力50Paで、乾燥時間60hrの条件で真空乾燥した。
有機溶媒として、エチレンカーボネート(EC):メチルエチルカーボネート(EMC)=33:67(体積比)の混合溶媒を用い、全電解液に対してLiN(SO2F)2及びLiPF6の濃度比が75:25(モル比)であり、かつLiN(SO2F)2及びLiPF6の濃度の和が1.2mol/Lとなるようにそれぞれの電解質塩を溶解して得た溶液を非水系電解液として使用した。
アルミラミネート包材の中に収納された電極積層体に、大気圧下、温度25℃、露点-40℃以下のドライエアー環境下にて、上記非水系電解液を約80g注入した。続いて、これを減圧チャンバーの中に入れ、大気圧から-87kPaまで減圧した後、大気圧に戻し、5分間静置した。その後、大気圧から-87kPaまで減圧した後、大気圧に戻す操作を4回繰り返したのち、15分間静置した。さらに、大気圧から-91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す操作を合計7回繰り返した。(大気圧から、それぞれ-95,-96,-97,-81,-97,-97,-97kPaまで減圧した)。以上の手順により、非水系電解液を電極積層体に含浸させた。
得られたリチウムイオン二次電池に対して、東洋システム社製の充放電装置(TOSCAT-3100U)を用いて、45℃環境下、電流値0.5Aで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を任意時間行うことで初期充電を行い、負極にプレドープを行った。表1に、4.5V定電圧充電の時間をまとめて記載した。
プレドープ後のリチウムイオン二次電池を25℃環境下、0.5Aで電圧3.0Vに到達するまで定電流放電を行った後、3.0V定電流放電を1時間行うことにより電圧を3.0Vに調整した。続いて、リチウムイオン二次電池を60℃の恒温槽に5時間保管した。
エージング後のリチウムイオン二次電池を、温度25℃、露点-40℃のドライエアー環境下でアルミラミネート包材の一部を開封した。続いて、減圧チャンバーの中に前記リチウムイオン二次電池を入れ、大気圧から-80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す操作を合計3回繰り返した。その後、減圧シール機にリチウムイオン二次電池を入れ、-90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
得られたリチウムイオン二次電池を2.9Vに調整した後、23℃の部屋に設置された露点-90℃以下、酸素濃度1ppm以下で管理されているアルゴン(Ar)ボックス内で解体して正極を取り出した。取り出した正極をジメチルカーボネート(DMC)で浸漬洗浄した後、大気非暴露を維持した状態で、サイドボックス中で真空乾燥させた。
単位質量当たりの存在量(mol/g)=A×B÷C ・・・(数式4)
により、正極に堆積する各化合物の、正極活物質層単位質量当たりの存在量(mol/g)を求めた。
[XOCH2CH2OXについて]
XOCH2CH2OXのCH2:3.7ppm(s,4H)
CH3OX:3.3ppm(s,3H)
CH3CH2OXのCH3:1.2ppm(t,3H)
CH3CH2OXのCH2O:3.7ppm(q,2H)
得られたリチウムイオン二次電池を、露点温度-72℃のアルゴンボックス中で解体し、両面に正極活物質層が塗工された正極を10cm×5cmの大きさに切り出し、重量を測定したところ0.512gであった。得られた正極を30gのジエチルカーボネート溶媒に浸し、時折ピンセットで正極を動かし、10分間洗浄した。続いて正極を取り出し、アルゴンボックス中で5分間風乾させ、新たに用意した30gのジエチルカーボネート溶媒に正極を浸し、上記と同様の方法にて10分間洗浄した。正極をアルゴンボックスから取り出し、真空乾燥機(ヤマト科学製、DP33)を用いて、温度25℃、圧力1kPaの条件にて20時間乾燥し、正極試料1を得た。
正極試料1から1cm×1cmの小片を切り出し、10Paの真空中にてスパッタリングにより表面に金をコーティングした。続いて以下に示す条件にて、大気暴露下で正極表面のSEM、及びEDXを測定した。
・測定装置:日立ハイテクノロジー製、電解放出型走査型電子顕微鏡 FE-SEM S-4700
・加速電圧:10kV
・エミッション電流:1μA
・測定倍率:2000倍
・電子線入射角度:90°
・X線取出角度:30°
・デッドタイム:15%
・マッピング元素:C、O
・測定画素数:256×256ピクセル
・測定時間:60sec.
・積算回数:50回
・明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%~60%の範囲に入るように輝度及びコントラストを調整した。
上記で得たリチウムイオン二次電池の正極につき、正極活物質層の固体7Li-NMR測定を行った。
得られたリチウムイオン二次電池について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置を用いて、0.1Cの電流値で4.2Vに到達するまで定電流充電を行い、続いて4.2Vの定電圧を印加する定電圧充電を合計で30分行った。その後、3.0Vまで0.1Cの電流値で定電流放電を施した際の放電容量Qを、表1にまとめた。
得られたリチウムイオン二次電池について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置を用いて、5Cの電流値で4.2Vに到達するまで定電流充電し、続いて4.2Vの定電圧を印加する定電圧充電を合計で30分間行い、続いて、5Cの電流値で3.0Vまで定電流放電を行って、放電カーブ(時間-電圧)を得た。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとし、降下電圧ΔE=4.2-Eo、及びR=ΔE/(5C(電流値A))により常温内部抵抗Raを算出した。25℃における内部抵抗Raを、表1にまとめた。
得られたリチウムイオン二次電池について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置を用いて、0.1Cの電流値で4.2Vに到達するまで定電流充電し、続いて4.2Vの定電圧を印加する定電圧充電を合計で30分間行った。その後、セルを60℃環境下に保存し、2週間毎に60℃環境下から取り出し、同様の充電操作にてセル電圧を4.2Vに充電した後、再びセルを60℃環境下で保存した。この操作を2か月間繰り返し実施し、保存試験開始前のセル体積Va、保存試験2か月後のセルの体積Vbをアルキメデス法によって測定した。(Vb-Va)/Qにより求めたガス発生量を、表1にまとめた。
前記高温保存試験後の蓄電素子に対して、前記[Raの算出]と同様にして高温保存試験後の常温内部抵抗Rbを算出した。
[正極前駆体の製造]
正極活物質としてLiFePO4粉体を77質量部、アセチレンブラックを13質量部、リチウム化合物として炭酸リチウムを6.5重量部、及びPVdF(ポリフッ化ビニリデン)3.5質量部、並びにNMP(N-メチルピロリドン)を混合して、固形分濃度35質量%の正極用スラリーを得た。炭酸リチウムの平均粒子径は、表2に記載したとおりである。得られた正極用スラリーを、正極集電体としての厚さ15μmのアルミニウム箔の片面及び両面に塗布し、乾燥し、プレスすることにより、正極前駆体(以下、それぞれ「片面正極前駆体」、及び「両面正極前駆体」という。)を得た。正極前駆体の正極活物質層の厚さは、炭酸リチウムの平均粒子径により多少の差はあるが、片面あたりおおよそ95μmであった。
市販のハードカーボン(株式会社クレハ製)を85.4質量部、アセチレンブラックを8.3質量部、及びPVdF(ポリフッ化ビニリデン)を6.3質量部、並びにNMP(N-メチルピロリドン)を混合して負極用スラリーを得た。得られた負極用スラリーを、負極集電体としての厚さ10μmの電解銅箔の両面に塗布し、乾燥し、プレスして負極を得た(以下、「両面負極」ともいう。)。得られた負極における負極活物質層の厚さは、片面あたり85μmであった。
実施例1-1~1-21および比較例1-1~1-3と同様の両面負極と、上記で得られた両面正極前駆体を10cm×10cm(100cm2)にカットした。最上面と最下面は片面正極前駆体を用い、更に両面負極21枚と両面正極前駆体20枚とを用い、負極と正極前駆体との間に、厚み15μmの微多孔膜セパレータを挟んで積層した。その後、負極と正極前駆体とに、それぞれ負極端子と正極端子を超音波溶接にて接続して電極積層体とした。この電極積層体を、アルミラミネート包材からなる外装体内に収納し、電極端子部およびボトム部の外装体3方を、温度180℃、シール時間20sec、シール圧1.0MPaの条件でヒートシールした。これを、温度80℃、圧力50Paで、乾燥時間60hrの条件で真空乾燥した。
アルミラミネート包材の中に収納された電極積層体に、温度25℃、露点-40℃以下のドライエアー環境下にて、実施例1-1~1-16および比較例1-1~1-3と同様の非水系電解液約80gを大気圧下で注入した。続いて、これを減圧チャンバーの中に入れ、大気圧から-87kPaまで減圧した後、大気圧に戻し、5分間静置した。その後、大気圧から-87kPaまで減圧した後、大気圧に戻す操作を4回繰り返したのち、15分間静置した。さらに、大気圧から-91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す操作を合計7回繰り返した(大気圧から、それぞれ-95,-96,-97,-81,-97,-97,-97kPaまで減圧した)。以上の操作により、非水系電解液を電極積層体に含浸させた。
得られたリチウムイオン二次電池に対して、東洋システム社製の充放電装置(TOSCAT-3100U)を用いて、45℃環境下、電流値0.5Aで電圧4.6Vに到達するまで定電流充電を行った後、続けて4.6V定電圧充電を任意時間行うことで初期充電を行い、負極にプレドープを行った。表2に、4.6V定電圧充電の時間をまとめて記載した。
プレドープ後のリチウムイオン二次電池を25℃環境下、0.5Aで電圧3.0Vに到達するまで定電流放電を行った後、3.0V定電流放電を1時間行うことにより電圧を3.0Vに調整した。続いて、リチウムイオン二次電池を60℃の恒温槽に5時間保管した。
エージング後のリチウムイオン二次電池を、温度25℃、露点-40℃のドライエアー環境下でアルミラミネート包材の一部を開封した。続いて、減圧チャンバーの中に前記リチウムイオン二次電池を入れ、大気圧から-80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す操作を合計3回繰り返した。その後、減圧シール機にリチウムイオン二次電池を入れ、-90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
得られたリチウムイオン二次電池について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置を用いて、0.1Cの電流値で4.0Vに到達するまで定電流充電を行い、続いて4.0Vの定電圧を印加する定電圧充電を合計で30分行った。その後、3.0Vまで0.1Cの電流値で定電流放電を施した際の容量を、表2にまとめた。
得られたリチウムイオン二次電池について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置を用いて、5Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を合計で30分間行い、続いて、5Cの電流値で3.0Vまで定電流放電を行って、放電カーブ(時間-電圧)を得た。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとし、降下電圧ΔE=4.0-Eo、及びR=ΔE/(5C(電流値A))により常温内部抵抗Raを算出した。25℃における内部抵抗Raを、表2にまとめた。
得られたリチウムイオン二次電池について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置を用いて、0.1Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を合計で30分間行った。その後、セルを60℃環境下に保存し、2週間毎に60℃環境下から取り出し、同様の充電操作にてセル電圧を4.0Vに充電した後、再びセルを60℃環境下で保存した。この操作を2か月間繰り返し実施し、保存試験開始前のセル体積Va、保存試験2か月後のセルの体積Vbをアルキメデス法によって測定した。(Vb-Va)/Qにより求めたガス発生量を、表2にまとめた。
前記高温保存試験後のリチウムイオン二次電池に対して、前記[Raの算出]と同様にして高温保存試験後の常温内部抵抗Rbを算出した。
正極前駆体の製造において、正極前駆体に添加するリチウム化合物として平均粒子径2.15μmの酸化リチウムを用いたこと以外は、実施例1-1~1-21および比較例1-1~1-3と同様の操作を行うことでリチウムイオン二次電池を作製し、各種評価を行った。結果を表3に記載する。
正極前駆体の製造において、正極前駆体に添加するリチウム化合物として平均粒子径2.29μmの水酸化リチウムを用いたこと以外は、実施例1-1~1-21および比較例1-1~1-3と同様の操作を行うことでリチウムイオン二次電池を作製し、各種評価を行った。結果を表3に記載する。
[正極前駆体の製造]
(正極前駆体1の製造)
正極活物質として平均粒子径4μmのLiCoO2粉体(日亜化学工業株式会社製)を87.0質量部、アセチレンブラックを5.0質量部、任意のリチウム化合物を3.0重量部、及びPVdF(ポリフッ化ビニリデン)5.0質量部、並びにNMP(N-メチルピロリドン)を混合して、固形分濃度42質量%の正極用スラリーを得た。リチウム化合物の種類及び平均粒子径は表4に記載したとおりである。得られた正極用スラリーを、正極集電体となる厚み15μmのアルミニウム箔の片面又は両面に塗布し、乾燥し、プレスすることにより、正極前駆体1を得た。正極前駆体1の正極活物質層の厚みは、リチウム化合物の種類及び平均粒子径により多少の差はあるが、片面当りおおよそ70μmであった。
正極活物質として平均粒子径2μmのLiFePO4粉体を74.5質量部、アセチレンブラックを13.0質量部、任意のリチウム化合物を9.0重量部、及びPVdF(ポリフッ化ビニリデン)3.5質量部、並びにNMP(N-メチルピロリドン)を混合して、固形分濃度32質量%の正極用スラリーを得た。リチウム化合物の種類及び平均粒子径は表5に記載したとおりである。得られた正極用スラリーを、正極集電体となる厚み15μmのアルミニウム箔の片面又は両面に塗布し、乾燥し、プレスすることにより、正極前駆体2を得た。正極前駆体2の正極活物質層の厚みは、リチウム化合物の種類及び平均粒子径により多少の差はあるが、片面当りおおよそ100μmであった。
(負極1の調整)
市販のハードカーボン(株式会社クレハ製)を84.0質量部、アセチレンブラックを8.0質量部、及びPVdF(ポリフッ化ビニリデン)を6.0質量部、並びにNMP(N-メチルピロリドン)を混合して負極用スラリーを得た。得られた負極用スラリーを、負極集電体となる厚み10μmの電解銅箔の両面に塗布し、乾燥し、プレスして負極1を得た。得られた負極1における負極活物質層の厚みは片面当り120μmであった。
市販のハードカーボン(株式会社クレハ製)を84.0質量部、アセチレンブラックを8.0質量部、及びPVdF(ポリフッ化ビニリデン)を6.0質量部、並びにNMP(N-メチルピロリドン)を混合して負極用スラリーを得た。得られた負極用スラリーを、負極集電体となる厚み10μmの電解銅箔の両面に塗布し、乾燥し、プレスして負極2を得た。得られた負極2における負極活物質層の厚みは片面当り90μmであった。
有機溶媒として、エチレンカーボネート(EC):メチルエチルカーボネート(EMC)=33:67(体積比)の混合溶媒を用い、全電解液に対してLiN(SO2F)2及びLiPF6の濃度比が75:25(モル比)であり、かつLiN(SO2F)2及びLiPF6の濃度の和が1.2mol/Lとなるようにそれぞれの電解質塩を溶解して得た溶液を非水系電解液として使用した。
ここで調製した電解液におけるLiN(SO2F)2及びLiPF6の濃度は、それぞれ、0.9mol/L及び0.3mol/Lであった。
(蓄電素子の組立、乾燥)
得られた両面正極前駆体1及び両面負極1を10cm×10cm(100cm2)にカットした。最上面と最下面は片面正極前駆体1を用い、更に両面負極21枚と両面正極前駆体20枚とを用い、負極と正極前駆体との間に、厚み15μmの微多孔膜セパレータを挟んで積層した。その後、負極と正極前駆体とに、それぞれ負極端子と正極端子を超音波溶接にて接続して電極積層体とした。この電極積層体を、アルミラミネート包材から成る外装体内に収納し、電極端子部およびボトム部の外装体3方を、温度180℃、シール時間20sec、シール圧1.0MPaの条件でヒートシールした。これを、温度80℃、圧力50Paで、乾燥時間60hrの条件で真空乾燥した。
アルミラミネート包材の中に収納された電極積層体に、温度25℃、露点-40℃以下のドライエアー環境下にて、上記非水系電解液約80gを大気圧下で注入して、プレドープ処理前のリチウムイオン二次電池を形成した。続いて、減圧チャンバーの中に前記リチウムイオン二次電池を入れ、常圧から-87kPaまで減圧した後、大気圧に戻し、5分間静置した。その後、常圧から-87kPaまで減圧した後、大気圧に戻す操作を4回繰り返したのち、電池を15分間静置した。さらに、常圧から-91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す操作を合計7回繰り返した。(それぞれ-95,-96,-97,-81,-97,-97,-97kPaまで減圧した)。以上の手順により、非水系電解液を電極積層体に含浸させた。
その後、リチウムイオン二次電池を減圧シール機に入れ、-95kPaに減圧した状態で、180℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
得られたリチウムイオン二次電池に対して、東洋システム社製の充放電装置(TOSCAT-3100U)を用いて、25℃環境下、電流値0.5Aで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を24時間継続する手法により初期充電を行い、負極にプレドープを行った。
プレドープ後のリチウムイオン二次電池を25℃環境下、0.5Aで電圧3.0Vに到達するまで定電流放電を行った後、3.0V定電流放電を1時間行うことにより電圧を3.0Vに調整した。続いて、リチウムイオン二次電池を60℃の恒温槽に6時間保管した。
温度25℃、露点-40℃のドライエアー環境下で、エージング後のリチウムイオン二次電池のアルミラミネート包材の一部を開封した。続いて、減圧チャンバーの中に前記リチウムイオン二次電池を入れ、大気圧から-80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す操作を合計3回繰り返した。その後、減圧シール機にリチウムイオン二次電池を入れ、-90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
以上の手順により、少なくとも2つのリチウムイオン二次電池を完成させた。
上記で得たリチウムイオン二次電池の内、1つは後述する放電容量、Raの測定及び高負荷充放電サイクル試験を実施した。次いで、もう1つは後述する正極の水銀圧入法による細孔分布測定、及び正極断面SEM-EDX測定を実施した。
得られたリチウムイオン二次電池について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置を用いて、0.1Cの電流値で4.2Vに到達するまで定電流充電を行い、続いて4.2Vの定電圧を印加する定電圧充電を合計で30分行った。その後、3.0Vまで0.1Cの電流値で定電流放電を施した際の放電容量Qを表4に示した。
得られたリチウムイオン二次電池について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置を用いて、5Cの電流値で4.2Vに到達するまで定電流充電し、続いて4.2Vの定電圧を印加する定電圧充電を合計で30分間行い、続いて、5Cの電流値で3.0Vまで定電流放電を行って、放電カーブ(時間-電圧)を得た。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとし、降下電圧ΔE=4.2-Eo、及びR=ΔE/(5C(電流値A))により常温内部抵抗Raを算出した。得られた結果を表4に示した。
得られたチウムイオン二次電池について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、1Cの電流値で4.2Vに到達するまで定電流充電し、続いて1Cの電流値で3.0Vに到達するまで定電流放電を行う充放電操作を500回繰り返し、高負荷充放電サイクル試験後の常温内部抵抗Rdを算出し、Rd/Raを得た。得られた結果を表4に示した。
得られたリチウムイオン二次電池を露点温度-72℃のアルゴンボックス中で解体し、両面に正極活物質層が塗工された正極を10cm×5cmの大きさに切り出し、30gのジエチルカーボネート溶媒に浸し、時折ピンセットで正極を動かし、10分間洗浄した。続いて正極を取り出し、アルゴンボックス中で5分間風乾させ、新たに用意した30gのジエチルカーボネート溶媒に正極を浸し、前記と同様の方法にて10分間洗浄した。正極をアルゴンボックスから取り出し、真空乾燥機(ヤマト科学製、DP33)を用いて、温度25℃、圧力1kPaの条件にて20時間乾燥し、正極試料を得た。
前記正極試料から大きさ4cm×5cmの小片を切り出し、水銀ポロシメーター(マイクロメリティクス社製オートポアIV9510型)を使用し、細孔径400μm~0.01μmの測定範囲にて、水銀圧入法による細孔分布測定を実施した。上述した方法により、Vpを算出し、得られた結果を表4に示した。また、細孔径0.1μm以上100μm以下の範囲に存在するLog微分細孔容積0.01mL/g以上のピーク値を有するピークを、細孔径が小さい方から順にP1、P2として、ピークトップ位置の細孔径及びLog微分細孔容積を表4に合わせて示した。
正極試料から1cm×1cmの小片を切り出し、日本電子製のSM-09020CPを用い、アルゴンガスを使用し、加速電圧4kV、ビーム径500μmの条件にて正極試料の面方向に垂直な断面を作製した。その後、10Paの真空中にて金をスパッタリングにより表面にコーティングした。続いて以下に示す条件にて、大気暴露下で、切り出された正極表面のSEM、及びEDXを測定した。
・測定装置:日立ハイテクノロジー製、電解放出型走査型電子顕微鏡 FE-SEM S-4700
・加速電圧:10kV
・エミッション電流:1μA
・測定倍率:2000倍
・電子線入射角度:90°
・X線取出角度:30°
・デッドタイム:15%
・マッピング元素:C、O
・測定画素数:256×256ピクセル
・測定時間:60sec.
・積算回数:50回
・明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%~60%の範囲に入るように輝度及びコントラストを調整した。
リチウム化合物の種類及びその平均粒子径をそれぞれ表4に示すとおりとした他は実施例2-1と同様にして実施例2-2~2-10と比較例2-1のリチウムイオン二次電池をそれぞれ作製し、各種の評価を行った。得られたリチウムイオン二次電池の評価結果を表4に示した。
正極前駆体の組成を、正極活物質として平均粒子径4μmのLiCoO2粉体(日亜化学工業株式会社製)を81.0質量部、アセチレンブラックを5.0質量部、リチウム化合物として平均粒子径2.4μmの炭酸リチウムを9.0重量部、及びPVdF(ポリフッ化ビニリデン)5.0質量部(表1では「正極前駆体1’」として表す)とした他は実施例2-1と同様にして比較例2-2のチウムイオン二次電池をそれぞれ作製し、各種の評価を行った。得られたリチウムイオン二次電池の評価結果を表4に示した。
正極前駆体の組成を、正極活物質として平均粒子径4μmのLiCoO2粉体(日亜化学工業株式会社製)を90.0質量部、アセチレンブラックを5.0質量部、及びPVdF(ポリフッ化ビニリデン)を5.0質量部とした他は実施例2-1と同様にして比較例2-3のチウムイオン二次電池をそれぞれ作製し、各種の評価を行った。得られたリチウムイオン二次電池の評価結果を表4に示した。
[リチウムイオン二次電池の作製]
正極前駆体、リチウム化合物の種類及びその平均粒子径、負極をそれぞれ表5に示すとおりとした他は実施例2-1と同様にして実施例2-11~2-20と比較例2-4のリチウムイオン二次電池を、実施例2-11~2-20と比較例2-4のそれぞれについて、少なくとも2つ作製した。
上記で得たリチウムイオン二次電池の内、1つは後述する放電容量、Raの測定及び高負荷充放電サイクル試験を実施した。次いで、もう1つは実施例2-1と同様にして正極の水銀圧入法による細孔分布測定、及び正極断面SEM-EDX測定を実施し、得られた評価結果を表5に示した。
得られたリチウムイオン二次電池について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置を用いて、0.1Cの電流値で4.0Vに到達するまで定電流充電を行い、続いて4.0Vの定電圧を印加する定電圧充電を合計で30分行った。その後、3.0Vまで0.1Cの電流値で定電流放電を施した際の放電容量Qを表5に示した。
得られたリチウムイオン二次電池について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置を用いて、5Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を合計で30分間行い、続いて、5Cの電流値で3.0Vまで定電流放電を行って、放電カーブ(時間-電圧)を得た。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとし、降下電圧ΔE=4.0-Eo、及びR=ΔE/(5C(電流値A))により常温内部抵抗Raを算出した。得られた結果を表5に示した。
得られたチウムイオン二次電池について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、1Cの電流値で4.0Vに到達するまで定電流充電し、続いて1Cの電流値で3.0Vに到達するまで定電流放電を行う充放電操作を500回繰り返し、高負荷充放電サイクル試験後の常温内部抵抗Rdを算出し、Rd/Raを得た。得られた結果を表5に示した。
正極前駆体の組成を、正極活物質として平均粒子径2μmのLiFePO4粉体を69.5質量部、アセチレンブラックを13.0質量部、リチウム化合物として平均粒子径2.4μmの炭酸リチウムを14.0重量部、及びPVdF(ポリフッ化ビニリデン)3.5質量部(表5では「正極前駆体2’」として表す)とした他は実施例2-11と同様にして比較例2-5のチウムイオン二次電池をそれぞれ作製し、各種の評価を行った。得られたリチウムイオン二次電池の評価結果を表5に示した。
正極前駆体の組成を、正極活物質として平均粒子径2μmのLiFePO4粉体を83.5質量部、アセチレンブラックを13.0質量部、及びPVdF(ポリフッ化ビニリデン)を3.5質量部とした他は実施例2-11と同様にして比較例2-6のチウムイオン二次電池をそれぞれ作製し、各種の評価を行った。得られたリチウムイオン二次電池の評価結果を表5に示した。
<正極前駆体の製造>
正極活物質としてLiCoO2粉体(日亜化学工業株式会社製)を86.5質量部、アセチレンブラックを5.0質量部、リチウム化合物として炭酸リチウムを3.5質量部、及びPTFE(ポリテトラフルオロエチレン)5.0質量部、並びにNMP(N-メチルピロリドン)を混合して、固形分濃度45質量%の正極用スラリーを得た。炭酸リチウムの平均粒子径は、表6に記載したとおりである。得られた正極用スラリーを、正極集電体としての厚さ15μmのアルミニウム箔の片面又は両面に塗布し、乾燥し、プレスすることにより、正極前駆体(以下、それぞれ「片面正極前駆体」、及び「両面正極前駆体」という。)を得た。正極前駆体の正極活物質層の膜厚は、片面あたり67μmであった。
[調製例3-1]
平均粒子径0.9μmのケイ素を100gステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:50℃)30gを入れたステンレス製バットの上に置き、両者を電気炉(炉内有効寸法300mm×300mm×300mm)内に設置した。これを1000℃まで15時間で昇温し、同温度で6時間保持することにより熱反応させ、複合材料1を得た。得られた複合材料1を自然冷却により60℃まで冷却した後、電気炉から取り出した。得られた複合材料1の平均粒子径は1.1μmであった。
ケイ素の代わりに平均粒子径1.0μmの一酸化ケイ素を用いた他は調整例1と同様にして複合材料2を製造した。得られた複合材料2の平均粒子径は1.2μmであった。
ケイ素の代わりに平均粒子径0.8μmの錫を用いた他は調整例1と同様にして複合材料3を製造した。得られた複合材料3の平均粒子径は1.0μmであった。
ケイ素の代わりに平均粒子径1.1μmの二酸化錫を用いた他は調整例1と同様にして複合材料4を製造した。得られた複合材料4の平均粒子径は1.3μmであった。
平均粒子径0.9μmのケイ素を75質量部、ケッチェンブラックを10質量部、及びポリイミドバインダーを15質量部、並びにNMP(N-メチルピロリドン)を混合しそれをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液を得た。上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚さ10μm、Rzjis1.5μmの電解銅箔の両面に塗工速度1m/sの条件で塗工し、乾燥温度85℃で乾燥して負極を得た(以下、「両面負極」ともいう。)。得られた負極についてロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスを実施した。得られた負極の全厚を小野計器社製膜厚計Linear Gauge Sensor GS-551を用いて、負極の任意の10か所で測定した。測定された全厚の平均値から銅箔の厚さを引いて、負極の負極活物質層の膜厚を求めた。その結果、負極の負極活物質層の膜厚は、片面あたり25μmであった。
有機溶媒として、エチレンカーボネート(EC):メチルエチルカーボネート(EMC)=33:67(体積比)の混合溶媒を用い、全非水系電解液に対してLiN(SO2F)2及びLiPF6の濃度比が75:25(モル比)であり、かつLiN(SO2F)2及びLiPF6の濃度の和が1.2mol/Lとなるようにそれぞれの電解質塩を溶解して得た溶液を非水系電解液として使用した。
上記で得た正極前駆体と負極を用いて、後述する条件で複数のリチウムイオン二次電池を製造した。
得られた両面負極および両面正極前駆体を10cm×10cm(100cm2)にカットした。最上面と最下面は片面正極前駆体を用い、更に両面負極21枚と両面正極前駆体20枚とを用い、負極と正極前駆体との間に、厚み15μmの微多孔膜セパレータを挟んで積層した。その後、負極と正極前駆体とに、それぞれ負極端子及び正極端子を超音波溶接にて接続して電極積層体とした。この電極積層体を、アルミラミネート包材から構成される外装体内に収納し、電極端子部およびボトム部の外装体3方を、温度180℃、シール時間20sec、シール圧1.0MPaの条件でヒートシールした。これを、温度80℃、圧力50Paで、乾燥時間60hrの条件で真空乾燥した。
アルミラミネート包材の中に収納された電極積層体に、大気圧下、温度25℃、露点-40℃以下のドライエアー環境下にて、上記非水系電解液約を80g注入した。続いて、これを減圧チャンバーの中に入れ、大気圧から-87kPaまで減圧した後、大気圧に戻し、5分間静置した。その後、大気圧から-87kPaまで減圧した後、大気圧に戻す操作を4回繰り返したのち、15分間静置した。さらに、大気圧から-91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す操作を合計7回繰り返した。(大気圧から、それぞれ-95,-96,-97,-81,-97,-97,-97kPaまで減圧した)。以上の手順により、非水系電解液を電極積層体に含浸させた。
得られたリチウムイオン二次電池に対して、東洋システム社製の充放電装置(TOSCAT-3100U)を用いて、45℃環境下、電流値0.5Aで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を5時間行うことで初期充電を行い、負極にプレドープを行った。
プレドープ後のリチウムイオン二次電池を45℃環境下、0.5Aで電圧3.0Vに到達するまで定電流放電を行った後、3.0V定電流放電を1時間行うことにより電圧を3.0Vに調整した。続いて、リチウムイオン二次電池を60℃の恒温槽に12時間保管した。
エージング後のリチウムイオン二次電池を、温度25℃、露点-40℃のドライエアー環境下でアルミラミネート包材の一部を開封した。続いて、減圧チャンバーの中に前記リチウムイオン二次電池を入れ、大気圧から-80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す操作を合計3回繰り返した。その後、減圧シール機にリチウムイオン二次電池を入れ、-90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
上記で得たリチウムイオン二次電池のうち、1つについては後述する[放電容量、常温内部抵抗の測定]及び[高温保存試験]を実施した。また、残りのリチウムイオン二次電池を用いて後述する[固体7Li-NMR測定]、[正極活物質層に含まれる化合物の定量]及び[リチウム化合物の平均粒子径の測定]をそれぞれ実施した。
得られたリチウムイオン二次電池について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置を用いて、Vmax=4.0V、Vmin=2.7Vとして、上述した方法により放電容量Qと常温内部抵抗Raを測定した。得られたエネルギー密度Q/V1を表6に示した。
得られたリチウムイオン二次電池について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置を用いて、Vmax=4.0V、Vmin=2.7Vとして、上述した方法により2か月後ガス発生量(Vb-Va)と高温保存試験前後の抵抗変化率Rb/Raを測定した。その結果を表6に示した。
上記で得たリチウムイオン二次電池の正極につき、正極活物質層の固体7Li-NMR測定を行った。
得られたリチウムイオン二次電池を2.9Vに調整した後、23℃の部屋に設置された露点-90℃以下、酸素濃度1ppm以下で管理されているアルゴン(Ar)ボックス内で解体して正極を取り出した。取り出した正極をジメチルカーボネート(DMC)で浸漬洗浄した後、大気非暴露を維持した状態で、サイドボックス中で真空乾燥させた。
単位質量当たりの存在量(mol/g)=A×B÷C ・・・(数式4)
により、正極に堆積する各化合物の、正極活物質層単位質量当たりの存在量(mol/g)を求めた。
[XOCH2CH2OXについて]
XOCH2CH2OXのCH2:3.7ppm(s,4H)
CH3OX:3.3ppm(s,3H)
CH3CH2OXのCH3:1.2ppm(t,3H)
CH3CH2OXのCH2O:3.7ppm(q,2H)
得られたリチウムイオン二次電池を、露点温度-72℃のアルゴンボックス中で解体し、両面に正極活物質層が塗工された正極を10cm×5cmの大きさに切り出した。得られた正極を30gのジエチルカーボネート溶媒に浸し、時折ピンセットで正極を動かし、10分間洗浄した。続いて正極を取り出し、アルゴンボックス中で5分間風乾させ、新たに用意した30gのジエチルカーボネート溶媒に正極を浸し、上記と同様の方法にて10分間洗浄した。正極をアルゴンボックスから取り出し、真空乾燥機(ヤマト科学製、DP33)を用いて、温度25℃、圧力1kPaの条件にて20時間乾燥し、正極試料を得た。
・測定装置:日立ハイテクノロジー製、電解放出型走査型電子顕微鏡 FE-SEM S-4700
・加速電圧:10kV
・エミッション電流:1μA
・測定倍率:2000倍
・電子線入射角度:90°
・X線取出角度:30°
・デッドタイム:15%
・マッピング元素:O、C
・測定画素数:256×256ピクセル
・測定時間:60sec.
・積算回数:50回
・明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%~60%の範囲に入るように輝度及びコントラストを調整した。
<正極前駆体の製造>
正極活物質、炭酸リチウムの平均粒子径、正極活物質、及び炭酸リチウムの質量部を表6及び7に示すとおりとした他は実施例3-1と同様にして正極前駆体を製造した。
負極活物質、及び負極活物質層の片面あたりの膜厚を表6及び7に示すとおりとした他は実施例3-1と同様にして負極を製造した。
プレドープにおける定電圧充電時間を表6及び7に示すとおりとした他は実施例3-1と同様にしてリチウムイオン二次電池の製造、評価を実施した。得られた結果を表6及び7に示した。
<正極前駆体の製造>
正極活物質、炭酸リチウムの平均粒子径、正極活物質、及び炭酸リチウムの質量部を表7に示すとおりとした他は実施例3-1と同様にして正極前駆体を製造した。
負極活物質として平均粒子径4.9μmの人造黒鉛、又は平均粒子径6.7μmの天然黒鉛を用い、負極活物質を80質量部、ケッチェンブラックを5質量部、及びPVdF(ポリフッ化ビニリデン)を15質量部、並びにNMP(N-メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液を得た。上記塗工液を用い、負極活物質層の片面あたりの膜厚が表7に示す値になるよう調整した他は、実施例3-1と同様にして負極を製造した。
プレドープにおける定電圧充電時間を表7に示すとおりとした他は実施例3-1と同様にしてリチウムイオン二次電池の製造、評価を実施した。得られた結果を表7に示した。
<正極前駆体の製造>
正極活物質としてLiFePO4粉体(日亜化学工業株式会社製)を86.5質量部、アセチレンブラックを5.0質量部、リチウム化合物として炭酸リチウムを3.5質量部、及びPTFE(ポリテトラフルオロエチレン)5.0質量部、並びにNMP(N-メチルピロリドン)を混合して、固形分濃度45質量%の正極用スラリーを得た。炭酸リチウムの平均粒子径は、表8に記載したとおりである。得られた正極用スラリーを、正極集電体としての厚さ15μmのアルミニウム箔の片面及び両面に塗布し、乾燥し、プレスすることにより、正極前駆体(以下、それぞれ「片面正極前駆体」、及び「両面正極前駆体」という。)を得た。正極前駆体の正極活物質層の膜厚は、97μmであった。
負極活物質、及び負極活物質層の片面あたりの膜厚を表8に示すとおりとした他は実施例3-1と同様にして負極を製造した。
プレドープにおける定電圧充電時間を表8に示すとおりとした他は実施例3-1と同様にしてリチウムイオン二次電池の製造を実施した。得られたリチウムイオン二次電池について、Vmax=3.1V、Vmin=2.3Vとした以外は実施例3-1と同様にリチウムイオン二次電池の評価を行った。得られた結果を表8に示した。
<正極前駆体の製造>
正極活物質、炭酸リチウムの平均粒子径、正極活物質、及び炭酸リチウムの質量部を表8及び9に示すとおりとした他は実施例3-28と同様にして正極前駆体を製造した。
負極活物質、及び負極活物質層の片面あたりの膜厚を表8及び9に示すとおりとした他は実施例3-28と同様にして負極を製造した。
プレドープにおける定電圧充電時間を表8及び9に示すとおりとした他は実施例3-28と同様にしてリチウムイオン二次電池の製造、評価を実施した。得られた結果を表9に示した。
<正極前駆体の製造>
正極活物質、炭酸リチウムの平均粒子径、正極活物質、及び炭酸リチウムの質量部を表9に示すとおりとした他は実施例3-28と同様にして正極前駆体を製造した。
負極活物質、及び負極活物質層の片面あたりの膜厚を表9に示すとおりとした他は比較例3-4と同様にして負極を製造した。
プレドープにおける定電圧充電時間を表9に示すとおりとした他は実施例3-28と同様にしてリチウムイオン二次電池の製造、評価を実施した。得られた結果を表9に示した。
[正極前駆体の作製]
正極活物質としてLiCoO2粉体(日亜化学工業株式会社製)を86.5質量部、アセチレンブラックを5.0質量部、リチウム化合物として平均粒径5.1μmの炭酸リチウムを3.5重量部、及びPTFE(ポリテトラフルオロエチレン)5.0質量部、並びにNMP(N-メチルピロリドン)を混合して、固形分濃度21質量%の正極用スラリーを得た。得られた正極用スラリーを、正極集電体となる厚さ15μmのアルミニウム箔の片面に塗布し、乾燥し、プレスすることにより、正極前駆体を得た。得られた正極前駆体における正極活物質層の厚さは67μmであった。正極前駆体の単位面積当たりの酸化リチウム量A1は6.3g/m2であり、A1/C1は0.036であった。
この電気化学セルについて、東洋システム社製の充放電装置(TOSCAT-3100U)を用いて、以下の手順で初期充電容量を測定した。
電気化学セルに対して、温度25℃において、電流値0.5mA/cm2で電圧値が4.2Vになるまで定電流充電を行った後、継続して2時間定電圧充電を行った。その後、電流値0.5mA/cm2で電圧値が3.0Vになるまで定電流放電を行った。この定電流放電時の放電容量を測定したところ、8.4mAhであった。
市販のハードカーボン(株式会社クレハ製)を85.4質量部、アセチレンブラックを8.3質量部、及びPVdF(ポリフッ化ビニリデン)を6.3質量部、並びにNMP(N-メチルピロリドン)を混合して負極用スラリーを得た。得られた負極用スラリーを、負極集電体となる厚さ10μmの電解銅箔の片面に塗布し、乾燥し、プレスして負極を得た。得られた負極における負極活物質層の厚さは117μmであった。
上記で得られた負極を1.4cm×2.0cm(2.8cm2)の大きさに1枚切り出して作用極とし、対極及び参照極としてそれぞれ金属リチウムを用い、電解液としてプロピレンカーボネート(PC)にLiPF6を1.0mol/Lの濃度で溶解させた非水系溶液を用いて、アルゴンボックス中で電気化学セルを作製した。
得られた電気化学セルについて、東洋システム社製の充放電装置(TOSCAT-3100U)を用いて、以下の手順で初期充電容量を測定した。
電気化学セルに対して、温度25℃において、電流値0.5mA/cm2で電圧値が0.01Vになるまで定電流充電を行った後、更に電流値が0.01mA/cm2になるまで定電圧充電を行った。この定電流充電及び定電圧充電の時の充電容量を初回充電容量として評価したところ、7.4mAhであり、負極の単位面積当たりの容量B1は25.5Ah/m2であった。
上記で作製した正極前駆体を2.0cm×2.0cm(4.0cm2)の大きさに1枚切り出した。上記で作製した負極を2.1cm×2.1cm(4.4cm2)の大きさに1枚切り出した。更に、ポリエチレン製のセパレータ(旭化成イーマテリアルズ製、厚さ20μm)1枚を用意した。これらを用いて、正極前駆体、セパレータ、負極の順に積層し、電極積層体を作製した。この電極積層体において、A1が6.3g/m2であり、B1が25.5Ah/m2であることより、A1/B1の値は0.25g/Ahとなり、本発明の要件を満たすことを確認した。
得られた電気化学セルに対して、東洋システム社製の充放電装置(TOSCAT-3100U)を用いて、25℃環境下、電流値2mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を72時間継続し、負極にリチウムイオンのプレドープを行って、実施例4-1のリチウムイオン二次電池を作製した。
同様の方法にて、実施例4-1のリチウムイオン二次電池を合計3個作製した。
上記で作製したリチウムイオン二次電池のうちの1個につき、25℃に設定した恒温槽内で3.0Vまで放電した。次いで、充電電流2mAで電圧4.2Vに到達した後、同電圧において1時間定電圧充電を行い、更に、放電電流を2mAとして設定電圧が3.0Vに到達するまで定電流放電を行った。
このときの放電容量は8.1mAhであった。
上記の初期特性測定後、日置電機製のバッテリハイテスタ(3561)を用いて周波数1kHzにおける等価直列抵抗(ESR)を測定したところ、12.3Ωだった。
上記の初期等価直列抵抗測定後のリチウムイオン二次電池をアルゴンボックス中で解体し、負極表面に金属リチウムが析出していないことを確認した。
2個目の前記リチウムイオン二次電池を25℃に設定した恒温槽内で、アスカ電子製の充放電装置(ACD-01)を用いて、充電電流20mA、放電電流20mAとし、下限電圧3.0V、上限電圧4.2Vの間で定電流充電、定電流放電による高負荷充放電サイクルを500回繰り返した。高負荷充放電サイクル終了後、前記方法と同様に放電容量及びESRを測定した。
3個目の前記リチウムイオン二次電池を25℃に設定した恒温槽内で、アスカ電子製の充放電装置(ACD-01)を用いて、最大電流4mA、最大電圧4.2Vで4時間定電流定電圧充電を行った。次に、25℃に温度を調整したフロリナートFC40(商品名、3M社製、フッ素系不活性液体)中にリチウムイオン二次電池を浸して体積を測定した後、60℃に設定した恒温槽内で30日間保存した。30日経過後、25℃に調整した恒温槽で2時間保存した後、上記と同様の方法により、リチウムイオン二次電池の体積を測定した。
60℃30日間保存前後の体積を比較することにより、保存中のガス発生量が0.3ccに過ぎないことを確認した。
[正極2の作製]
炭酸リチウムを添加しないこと以外は実施例4-1と同様の方法にて正極前駆体を作製した。得られた正極前駆体における正極活物質層の厚さは63μmであった。得られた正極前駆体を1.4cm×2.0cm(2.8cm2)の大きさに1枚切り出し、実施例4-1と同様の方法にて正極前駆体の放電容量を測定したところ、8.5mAhであった。
上記で作製した正極を用いた以外は実施例4-1と同様の方法にてリチウムイオン二次電池を合計3個作製した。
[リチウムイオン二次電池の評価]
作製したリチウムイオン二次電池のうちの1個につき、初期特性を測定した。放電容量は6.2mAhであり、ESRは12.1Ωであった。ESR測定後のリチウムイオン二次電池をアルゴンボックス中で解体し、負極表面に金属リチウムが析出していないことを確認した。
2個目の前記リチウムイオン二次電池につき、高負荷充放電サイクル特性を評価した。高負荷充放電サイクル後の放電容量は4.5Ahであり、ESRは15.9Ωであった。
3個目の前記リチウムイオン二次電池につき測定した高温保存後のガス発生量は0.4ccであった。
正極前駆体中の炭酸リチウムの量、及び正極集電体に塗布する正極用スラリー量を変更した以外は実施例4-1と同様にして、リチウムイオン二次電池の正極前駆体をそれぞれ、作製した。
負極集電体に塗布する負極用スラリー量を調整した以外は実施例4-1と同様にして、リチウムイオン二次電池の負極を作製した。
上記で得られた正極前駆体及び負極を用いた以外は実施例4-1と同様の方法により、リチウムイオン二次電池をそれぞれ作製し、評価した。評価結果を表10に示す。
これらに対して、A1/C1が0.05以上0.30以下の場合には、放電容量が高くなることが検証された。リチウム化合物の酸化反応により、前記リチウムイオンの消費分が補償されたためと考えられる。
負極へのリチウムイオンのプレドープを行う条件を、60℃環境下において、4.2V定電圧充電を168時間として実施したこと以外は、実施例4-1と同様の方法にてリチウムイオン二次電池を作製した。
得られたリチウムイオン二次電池の放電容量は8.2mAhであった。
負極へのリチウムイオンのプレドープを行う条件を、60℃環境下において、4.1V定電圧充電を168時間として実施したこと以外は、実施例4-2と同様の方法にてリチウムイオン二次電池を作製した。
得られたリチウムイオン二次電池の放電容量は6.7mAhであった。
正極活物質として表11に記載した種類のリチウム含有遷移金属酸化物を用い、リチウム化合物として平均粒径3.3μmの水酸化リチウムを用いた以外は、実施例4-1と同様の方法にて正極前駆体を作製し、該正極前駆体を用いてリチウムイオン二次電池を作製し、評価した。ここで、A1、B1、及びC1の値が、それぞれ、表11に記載の値となるように、各成分の使用量を調整した。
評価結果を表11に示す。
正極活物質としてLiCoO2を用い、リチウム化合物として平均粒径7.3μmの酸化リチウムを用いた以外は、実施例4-1と同様の方法にて正極前駆体を作製し、該正極前駆体を用いてリチウムイオン二次電池を合計3個作製し、評価した。ここで、A1が3.2g/m2、B1が25.5Ah/m2、及びC1が181g/m2となるように、各成分の使用量を調整した。A1/B1の値は0.13g/Ah、A1/C1の値は0.018となり、本発明の要件を満たすことを確認した。
作製したリチウムイオン二次電池のうちの1個につき、初期特性を測定した。放電容量は7.9mAhであり、ESRは12.2Ωであった。ESR測定後のリチウムイオン二次電池をアルゴンボックス中で解体し、負極表面に金属リチウムが析出していないことを確認した。
2個目の前記リチウムイオン二次電池につき、高負荷充放電サイクル特性を評価した。高負荷充放電サイクル後の放電容量は7.1Ahであり、ESRは14.2Ωであった。
3個目の前記リチウムイオン二次電池について測定した高温保存後のガス発生量は0.2ccであった。
エチレンカーボネート(EC)及びメチルエチルカーボネート(EMC)を質量比1:2で混合した溶媒に、LiPF6を濃度1.5mol/Lになるように溶解させた後、添加剤としてフェロセン(Ferrocene)を3質量%添加して、電解液を調製した。
この電解液を使用し、負極へのリチウムイオンのプレドープを行う条件を、45℃環境下において4.2V定電圧充電を168時間としたこと以外は、実施例4-1と同様の方法により、リチウムイオン二次電池を作製した。
得られたリチウムイオン二次電池の放電容量は8.5mAhであり、負極に対するリチウムイオンのプレドープが進行していることが検証された。
電解液の添加剤としてチタノセンジクロリド(Titanocene dichloride)を3質量%使用したこと以外は、実施例4-23と同様の方法により、リチウムイオン二次電池を作製した。
得られたリチウムイオン二次電池の放電容量は8.4mAhであり、負極に対するリチウムイオンのプレドープが進行していることが検証された。
電解液の添加剤として12-クラウン4-エーテル(12-Crown 4-ether)を5質量%使用したこと以外は、実施例4-23と同様の方法により、リチウムイオン二次電池を作製した。
得られたリチウムイオン二次電池の放電容量は8.5mAhであり、負極に対するリチウムイオンのプレドープが進行していることが検証された。
上記実施例4-1で得られた正極を1.4cm×2.0cm(2.8cm2)の大きさに1枚切り出して作用極とし、対極及び参照極としてそれぞれ金属リチウムを用い、電解液としてプロピレンカーボネート(PC)にLiPF6を1.0mol/Lの濃度で溶解させた非水系電解液を用い、実施例4-1と同様にして、アルゴンボックス中で電気化学セルを作製した。
この電気化学セルについて、東洋システム社製の充放電装置(TOSCAT-3100U)を用いて、以下の手順で初期充電容量を測定した。
電気化学セルに対して、温度25℃において、電流値0.5mA/cm2で電圧値が4.2Vになるまで定電流充電を行った後、継続して2時間定電圧充電を行った。その後、電流値0.5mA/cm2で電圧値が3.0Vになるまで定電流放電を行った。この定電流放電時の放電容量は8.4mAhであった。
[炭酸リチウムの粉砕]
温度60℃、湿度80%RHの環境下にて2時間静置した平均粒子径53μmの炭酸リチウム20gを、シンキー社製の自転公転式の粉砕機(NP-100)を用い、-20℃に冷却化した後、φ0.1mmのジルコニアビーズを用い、1700rpmにて20分間粉砕し、平均粒子径0.5μmの炭酸リチウム1を得た。
正極活物質としてLiCoO2粉体(日亜化学工業株式会社製)を86.5質量部、炭酸リチウム1を5.0重量部、アセチレンブラックを5.0質量部、及びPVdF(ポリフッ化ビニリデン)を3.5質量部、並びにNMP(N-メチルピロリドン)と純水の重量比99:1の混合溶媒を混合し、固形分濃度38質量%の正極用スラリーを得た。得られた正極用スラリーを、正極集電体となる厚さ15μmのアルミニウム箔の片面に塗布し、乾燥し、正極前駆体1を作製した。得られた正極前駆体1についてロールプレス機を用いて圧力6kN/cm、プレス部の表面温度25℃の条件でプレスを実施した。得られた正極前駆体1の正極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS-551を用いて、正極前駆体1の任意の10か所で測定した厚さの平均値から、アルミニウム箔の厚さを引いて求めた。その結果、正極活物質層の膜厚は65μmであった。
上述の方法により正極前駆体の正極活物質層中におけるアルカリ金属炭酸塩の重量比Xを算出したところ4.97質量%であった。
(試料の調製)
正極前駆体1から1cm×1cmの小片を切り出し正極前駆体表面の顕微ラマン分光測定用の試料とした。また、正極前駆体1から1cm×1cmの小片を切り出し、日本電子製のSM-09020CPを用い、アルゴンガスを使用し、加速電圧4kV、ビーム径500μmの条件にて正極前駆体1の面方向に垂直な断面を作製し、正極前駆体断面の顕微ラマン分光測定用の試料とした。
炭酸イオンマッピングは、レニショー社の顕微ラマン分光装置inVia Reflexを用いて実施した。励起光のレーザーの波長は532nmとし、長作動距離の50倍対物レンズを用いて、試料位置で約0.7mWのパワーとなるよう集光した。正極断面の厚み方向に90μm、厚み方向と垂直方向に30μmの範囲を1μm間隔で点走査し、各測定点のラマンスペクトルを得た。ラマンスペクトルで1086cm-1に観測される炭酸イオンによるピークについて、1071cm-1から1104cm-1に直線のベースラインを引き、ベースラインより正の領域に現れる面積とベースラインより負に現れる面積をそれぞれピーク面積として算出した。ベースラインより負に現れる面積の符号は負の値となるようにした。この炭酸イオンのピーク面積の空間分布として描き、炭酸イオンのイメージング画像を得た。
炭酸イオンマッピングの面積A2を以下のように算出した。正極前駆体の表面の各測定位置で得られた2700点のラマンスペクトルにおいて1071、1104cm-1の位置で直線のベースラインを設定し、ベースラインよりも高い部分の面積を正に、低い部分の面積を負として面積(a)のマッピングデータを作成した。続いて、面積(a)の最大値から最小値を100個の区間数に分割してヒストグラムAを作成し、最大度数を与える面積値より負側の部分について、ガウス関数を用いて、最小二乗法でフィッティングすることで、ノイズ成分をガウス関数Bで近似した。元のヒストグラムAからこのフィッティングしたガウス関数Bを引いた差分をCO3 2-のピーク面積のヒストグラムCとした。このヒストグラムCにおいて、最大頻度を与える面積(b)以上の累積頻度をCO3 2-イオンのマッピング度数を求めたところ、87であった。これを全体の度数2700で除することによって、炭酸イオンマッピングの面積A2を算出したところ、A2=3.02%であった。同様に正極前駆体の断面の炭酸イオンマッピングの面積A3を算出したところ、A3=2.91%であった。
市販のハードカーボン(カーボトロンP、株式会社クレハ製)を84質量部、アセチレンブラックを10質量部、及びPVdF(ポリフッ化ビニリデン)を6質量部、並びにNMP(N-メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17m/sの条件で分散して塗工液を得た。塗工液をテスター産業製の自動塗工装置を用い、アプリケーターのクリアランスを200μmとして厚さ10μmの電解銅箔の片面に塗工速度1m/minの条件で塗工し、乾燥温度120℃で乾燥して負極1を得た。得られた負極1についてロールプレス機を用いて圧力5kN/cm、プレス部の表面温度25℃の条件でプレスを実施した。得られた負極1の負極活物質層の膜厚は88μmであった。
(組立、注液、含浸、及び封止)
正極前駆体1を、正極活物質層が2.0cm2.0cmの大きさに1枚、負極1を、負極活物質層が2.1cm×2.1cmの大きさに1枚切り出し、2.3cm×2.3cmのポリエチレン製のセパレータ(旭化成製、厚み15μm)1枚を用意した。これらを、正極前駆体1、セパレータ、負極1の順に積層し、電極積層体を得た。得られた電極積層体に正極端子及び負極端子を超音波溶接し、アルミラミネート包材で形成された容器に入れ、電極端子部を含む3辺をヒートシールによりシールした。アルミラミネート包材の中に収納された電極積層体に、温度25℃、露点-40℃以下のドライエアー環境下にて、非水系電解液として電解質濃度1.2MのLiPF6のPC溶液2.0gを大気圧下で注入した。続いて、減圧チャンバーの中に電極積層体を入れ、大気圧から-87kPaまで減圧した後、大気圧に戻し、5分間静置した。その後、大気圧から-87kPaまで減圧した後、大気圧に戻す操作を4回繰り返したのち、15分間静置した。さらに、大気圧から-91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す操作を合計7回繰り返した。(それぞれ-95,-96,-97,-81,-97,-97,-97kPaまで減圧した)。以上の手順により、非水系電解液を電極積層体に含浸させた。
得られた電極積層体を、温度25℃、露点-60℃、酸素濃度1ppmのアルゴンボックス内に入れた。アルミラミネート包材の余剰部を切断して開封し、松定プレシジョン社製の電源(P4LT18-0.2)を用いて、電流値2mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を2時間継続する手法により初期充電を行い、負極にプレドープを行った。プレドープ終了後、富士インパルス社製のヒートシール機(FA-300)を用いてアルミラミネートを封止した。
プレドープ後の電極積層体をアルゴンボックスから取り出し、25℃環境下、50mAで電圧3.8Vに到達するまで定電流放電を行った後、3.8V定電流放電を1時間行うことにより電圧を3.8Vに調整した。続いて、電極積層体を60℃の恒温槽に8時間保管した。
エージング後の電極積層体を、温度25℃、露点-40℃のドライエアー環境下でアルミラミネート包材の一部を開封した。続いて、これを減圧チャンバーの中に入れ、ダイヤフラムポンプ(KNF社製、N816.3KT.45.18)を用いて大気圧から-80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す操作を合計3回繰り返した。その後、これを減圧シール機に入れ、-90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止して、非水系アルカリ金属型蓄電素子を作製した。
(放電容量の測定)
得られた非水系アルカリ金属型蓄電素子について、25℃に設定した恒温槽内で、アスカ電子製の充放電装置(ACD-01)を用いて、0.1Cの電流値(0.8mA)で4.2Vに到達するまで定電流充電を行い、続いて4.2Vの定電圧を印加する定電圧充電を合計で30分行った。その後、3.0Vまで0.1Cの電流値(0.8mA)で定電流放電を施した際の放電容量Qは、8.24mAhであった。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比98:2の混合溶媒を用い、正極前駆体を作製したこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比97:3の混合溶媒を用い、正極前駆体を作製したこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極の塗工液の組成について、LiCoO2粉体を88.2質量部、炭酸リチウム1を3.1質量部、ケッチェンブラックを5.1質量部、及びPVDF(ポリフッ化ビニリデン)を3.6質量部用いることにより正極前駆体を作製したこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比98:2の混合溶媒を用い、正極前駆体を作製したこと以外は実施例5-4と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比97:3の混合溶媒を用い、正極前駆体を作製したこと以外は実施例5-4と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極の塗工液の組成について、LiCoO2粉体を89.6質量部、炭酸リチウム1を1.6質量部、ケッチェンブラックを5.2質量部、及びPVDF(ポリフッ化ビニリデン)を3.6質量部用いることにより正極前駆体を作製したこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比98:2の混合溶媒を用い、正極前駆体を作製したこと以外は実施例5-7と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比97:3の混合溶媒を用い、正極前駆体を作製したこと以外は実施例5-7と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極の塗工液の組成について、LiCoO2粉体を82.0質量部、炭酸リチウム1を10.0質量部、ケッチェンブラックを4.7質量部、及びPVDF(ポリフッ化ビニリデン)を3.3質量部用いることにより正極前駆体を作製したこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比98:2の混合溶媒を用い、正極前駆体を作製したこと以外は実施例5-10と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比97:3の混合溶媒を用い、正極前駆体を作製したこと以外は実施例5-10と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極の塗工液の組成について、LiCoO2粉体を77.8質量部、炭酸リチウム1を14.5質量部、ケッチェンブラックを4.5質量部、及びPVDF(ポリフッ化ビニリデン)を3.2質量部用いることにより正極前駆体を作製したこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比98:2の混合溶媒を用い、正極前駆体を作製したこと以外は実施例5-13と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比97:3の混合溶媒を用い、正極前駆体を作製したこと以外は実施例5-13と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極の塗工液の組成について、LiCoO2粉体を73.3質量部、炭酸リチウム1を19.5質量部、ケッチェンブラックを4.2質量部、及びPVDF(ポリフッ化ビニリデン)を3.0質量部用いることにより正極前駆体を作製したこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比98:2の混合溶媒を用い、正極前駆体を作製したこと以外は実施例5-16と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比97:3の混合溶媒を用い、正極前駆体を作製したこと以外は実施例5-16と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
25℃環境下、平均粒子径53μmの炭酸リチウム20gを、シンキー社製の自転公転式の粉砕機(NP-100)を用い、φ0.1mmのジルコニアビーズを用い、1700rpmにて20分間粉砕し、平均粒子径1.6μmの炭酸リチウム2を得た。
正極の塗工液の組成について、LiCoO2粉体を90.6質量部、炭酸リチウム2を0.5質量部、ケッチェンブラックを5.2質量部、及びPVDF(ポリフッ化ビニリデン)を3.7質量部とし、分散溶媒としてNMP(N-メチルピロリドン)を用いることにより正極前駆体を作製したこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比99.9:0.1の混合溶媒を用い、正極前駆体を作製したこと以外は比較例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極の塗工液の組成について、LiCoO2粉体を91.0質量部、炭酸リチウム2を0.1質量部、ケッチェンブラックを5.2質量部、及びPVDF(ポリフッ化ビニリデン)を3.7質量部とし、分散溶媒としてNMP(N-メチルピロリドン)を用いることにより正極前駆体を作製したこと以外は比較例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比99.9:0.1の混合溶媒を用い、正極前駆体を作製したこと以外は比較例5-3と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極の塗工液の組成について、LiCoO2粉体を86.5質量部、炭酸リチウム2を5.0質量部、ケッチェンブラックを5.0質量部、及びPVDF(ポリフッ化ビニリデン)を3.5質量部とし、分散溶媒としてNMP(N-メチルピロリドン)を用いることにより正極前駆体を作製したこと以外は比較例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比99.9:0.1の混合溶媒を用い、正極前駆体を作製したこと以外は比較例5-5と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極の塗工液の組成について、LiCoO2粉体を82.0質量部、炭酸リチウム2を10.0質量部、ケッチェンブラックを4.7質量部、及びPVDF(ポリフッ化ビニリデン)を3.3質量部とし、分散溶媒としてNMP(N-メチルピロリドン)を用いることにより正極前駆体を作製したこと以外は比較例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比80:20の混合溶媒を用い、正極前駆体を作製したこと以外は比較例5-7と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極の塗工液の組成について、LiCoO2粉体を77.8質量部、炭酸リチウム2を14.6質量部、ケッチェンブラックを4.5質量部、及びPVDF(ポリフッ化ビニリデン)を3.1質量部とし、分散溶媒としてNMP(N-メチルピロリドン)と純水の重量比90:10の混合溶媒を用い、正極前駆体を作製したこと以外は比較例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比80:20の混合溶媒を用い、正極前駆体を作製したこと以外は比較例5-9と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極の塗工液の組成について、LiCoO2粉体を70.5質量部、炭酸リチウム2を22.5質量部、ケッチェンブラックを4.1質量部、及びPVDF(ポリフッ化ビニリデン)を2.9質量部とし、分散溶媒としてNMP(N-メチルピロリドン)と純水の重量比90:10の混合溶媒を用い、正極前駆体を作製したこと以外は比較例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比80:20の混合溶媒を用い、正極前駆体を作製したこと以外は比較例5-11と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
アルカリ金属炭酸塩として炭酸ナトリウム(Na2CO3)を用いたこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
アルカリ金属炭酸塩として炭酸カリウム(K2CO3)を用いたこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
アルカリ金属炭酸塩として炭酸リチウムと炭酸ナトリウムの重量比9:1の混合物を用いたこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
アルカリ金属炭酸塩として炭酸リチウムと炭酸ナトリウムの重量比1:1の混合物を用いたこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
アルカリ金属炭酸塩として炭酸リチウムと炭酸ナトリウムの重量比1:9の混合物を用いたこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
アルカリ金属炭酸塩として炭酸リチウムと炭酸カリウムの重量比9:1の混合物を用いたこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
アルカリ金属炭酸塩として炭酸リチウムと炭酸ルビジウム(Rb2CO3)の重量比9:1の混合物を用いたこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
アルカリ金属炭酸塩として炭酸リチウムと炭酸セシウム(Cs2CO3)の重量比9:1の混合物を用いたこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
アルカリ金属炭酸塩として炭酸リチウムと炭酸ナトリウムと炭酸カリウムの重量比9:0.5:0.5の混合物を用いたこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比90:10の混合溶媒を用いたこと以外は実施例5-19と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比90:10の混合溶媒を用いたこと以外は実施例5-20と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比90:10の混合溶媒を用いたこと以外は実施例5-21と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比90:10の混合溶媒を用いたこと以外は実施例5-22と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比90:10の混合溶媒を用いたこと以外は実施例5-23と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比90:10の混合溶媒を用いたこと以外は実施例24と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比90:10の混合溶媒を用いたこと以外は実施例5-25と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比90:10の混合溶媒を用いたこと以外は実施例5-26と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
正極塗工液の分散溶媒として、NMP(N-メチルピロリドン)と純水の重量比90:10の混合溶媒を用いたこと以外は実施例5-27と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
アルカリ金属炭酸塩として炭酸リチウムと酸化ナトリウム(NaO)の重量比9:1の混合物を用いたこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
アルカリ金属炭酸塩として炭酸リチウムと水酸化カリウム(KOH)の重量比1:1の混合物を用いたこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
アルカリ金属炭酸塩として炭酸リチウムと塩化ナトリウム(NaCl)の重量比9:1の混合物を用いたこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
アルカリ金属炭酸塩として炭酸リチウムとフッ化カリウム(KF)の重量比9:1の混合物を用いたこと以外は実施例5-1と同様の手法にて非水系アルカリ金属型蓄電素子を作製した。
Claims (31)
- 正極と、負極と、セパレータと、リチウムイオンを含む非水系電解液とを備えるリチウムイオン二次電池であって、
前記負極は、負極集電体と、前記負極集電体の片面又は両面上に設けられた、負極活物質を含む負極活物質層とを有し、
前記正極は、正極集電体と、前記正極集電体の片面又は両面上に設けられた、正極活物質を含む正極活物質層とを有し、前記正極活物質はリチウムイオンを吸蔵及び放出が可能な遷移金属酸化物を含み、
前記正極活物質層は、下記式(1)~(3)からなる群から選択される少なくとも1種の化合物を、前記正極活物質層の単位質量当たり3.8×10-9mol/g~3.0×10-2mol/g含有する、リチウムイオン二次電池。
- 前記正極活物質層の水銀圧入法による細孔分布を測定したとき、細孔径とLog微分細孔容積との関係を示す細孔分布曲線において、Log微分細孔容積0.10mL/g以上1.0mL/g以下のピーク値を有するピークが、細孔径0.3μm以上50μm以下の範囲で1つ以上存在し、かつ前記細孔径0.3μm以上50μm以下の範囲における総積算細孔容積Vpが、0.03mL/g以上0.2mL/g以下である、
請求項1に記載のリチウムイオン二次電池。 - 前記正極活物質層の前記細孔分布曲線において、前記Log微分細孔容積0.10mL/g以上1.0mL/g以下のピーク値を有するピークが、細孔径0.1μm以上50μm以下の範囲で2つ以上存在する、請求項1又は2に記載のリチウムイオン二次電池。
- 前記正極活物質層の前記細孔分布曲線において、前記Log微分細孔容積0.10mL/g以上1.0mL/g以下のピーク値を有するピークの1つ以上が、細孔径0.5μm以上20μm以下の範囲に存在する、請求項1~3のいずれか1項に記載のリチウムイオン二次電池。
- 前記負極活物質は、リチウムと合金を形成する合金系負極材料を含む、請求項1~4のいずれか1項に記載のリチウムイオン二次電池。
- 前記合金系負極材料は、ケイ素、ケイ素化合物、錫、錫化合物、及びこれらの炭素又は炭素質材料との複合材料からなる群から選択される少なくとも1種である、請求項5に記載のリチウムイオン二次電池。
- 前記負極活物質層の膜厚が、片面当たり10μm以上75μm以下である、請求項5又は6に記載のリチウムイオン二次電池。
- 前記正極に、前記遷移金属酸化物とは異なるリチウム化合物を1種以上含み、前記リチウム化合物の平均粒径が0.1μm以上10μm以下である、請求項1~7のいずれか1項に記載のリチウムイオン二次電池。
- 前記リチウム化合物は、炭酸リチウム、酸化リチウム、及び水酸化リチウムからなる群から選択される少なくとも一種のリチウム化合物である、請求項8に記載のリチウムイオン二次電池。
- 前記正極に含まれる前記リチウム化合物が、炭酸リチウムである、請求項8又は9に記載のリチウムイオン二次電池。
- 前記正極活物質層の固体7Li-NMRスペクトルについて、繰り返し待ち時間を10秒とした測定により得られる-40ppm~40ppmにおけるピーク面積をaとし、繰り返し待ち時間を3000秒とした測定により得られる-40ppm~40ppmにおけるピーク面積をbとしたとき、1.04≦b/a≦5.56である、請求項1~10のいずれか1項に記載のリチウムイオン二次電池。
- 前記セパレータが、前記非水系電解液の浸透により膨潤するポリマーを含む、請求項1~11のいずれか1項に記載のリチウムイオン二次電池。
- 前記セパレータが、固体電解質を含む、請求項1~12のいずれか1項に記載のリチウムイオン二次電池。
- 前記固体電解質が、リチウムイオン伝導性を有する無機酸化物及び無機硫化物から選ばれる一種以上を含む、請求項13に記載のリチウムイオン二次電池。
- (1)リチウム含有遷移金属酸化物を含む正極活物質と、炭酸リチウム、酸化リチウム、及び水酸化リチウムから選択されるリチウム化合物とを含む正極前駆体、
リチウムイオンを吸蔵放出可能な負極活物質を含む負極、並びに
セパレータ
からなる積層体を外装体に収納することと、
(2)前記外装体内に、リチウムイオンを含有する電解質を含む非水系電解液を注入することと、並びに
(3)前記正極前駆体と負極との間に電圧を印加して前記リチウム化合物を分解することと
を、上記に記載の順で含み、
前記正極前駆体における単位面積当たりの前記リチウム化合物の量をA1[g/m2]とし、前記負極の単位面積当たりの容量をB1[Ah/m2]としたときの比A1/B1が0.05[g/Ah]以上0.30[g/Ah]以下であり、そして
前記リチウム化合物の分解において印加する電圧が4.2V以上である、リチウムイオン二次電池の製造方法。 - 前記正極活物質の単位面積当たりの重量をC1[g/m2]とするとき、比A1/C1が0.01以上0.10以下である、請求項15に記載のリチウムイオン二次電池の製造方法。
- 前記リチウム化合物が、平均粒子径0.1μm以上100μm以下の粒子状である、請求項15又は16に記載のリチウムイオン二次電池の製造方法。
- 前記非水系電解液中に、0.5重量%以上5重量%以下のルイス酸を含む、請求項15~17のいずれか一項に記載のリチウムイオン二次電池の製造方法。
- 前記非水系電解液中に、1.0重量%以上10.0重量%以下のクラウンエーテルを含む、請求項15~18のいずれか一項に記載のリチウムイオン二次電池の製造方法。
- 正極活物質と、前記正極活物質以外のアルカリ金属炭酸塩とを含む正極括物質層を有する正極前駆体であって、前記正極前駆体の前記正極活物質層中における前記アルカリ金属炭酸塩の重量比をX[質量%]とするとき、1≦X≦20であり、前記正極前駆体の表面の顕微ラマン分光測定により得られるイメージング画像において、炭酸イオンマッピングの面積をA2[%]とすると1≦A2≦30であり、0.5≦A2/X≦2.0である、正極前駆体。
- 前記正極前駆体の断面の顕微ラマン分光測定により得られるイメージング画像において、炭酸イオンマッピングの面積をA3[%]とすると1≦A3≦30であり、0.5≦A3/X≦2.0である、請求項20に記載の正極前駆体。
- 前記アルカリ金属炭酸塩が、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、及び炭酸セシウムからなる群から選択される少なくとも1種である、請求項20又は21に記載の正極前駆体。
- 前記アルカリ金属炭酸塩は、炭酸リチウムを10質量%以上含む、請求項20~22のいずれか1項に記載の正極前駆体。
- 前記アルカリ金属炭酸塩の平均粒子径が0.1μm以上10μm以下である、請求項20~23のいずれか1項に記載の正極前駆体。
- 請求項1~19のいずれか1項に記載のリチウムイオン二次電池を用いた蓄電モジュール。
- 請求項1~19のいずれか1項に記載のリチウムイオン二次電池を用いた電力回生システム。
- 請求項1~19のいずれか1項に記載のリチウムイオン二次電池を用いた電力負荷平準化システム。
- 請求項1~19のいずれか1項に記載のリチウムイオン二次電池を用いた無停電電源システム。
- 請求項1~19のいずれか1項に記載のリチウムイオン二次電池を用いた非接触給電システム。
- 請求項1~19のいずれか1項に記載のリチウムイオン二次電池を用いたエナジーハーベストシステム。
- 請求項1~19のいずれか1項に記載のリチウムイオン二次電池を用いた蓄電システム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017509051A JP6251452B1 (ja) | 2016-01-22 | 2017-01-20 | リチウムイオン二次電池 |
KR1020187020892A KR101959701B1 (ko) | 2016-01-22 | 2017-01-20 | 리튬 이온 2 차 전지 |
EP17741559.3A EP3392954B1 (en) | 2016-01-22 | 2017-01-20 | Lithium ion secondary battery |
KR1020187034021A KR102013095B1 (ko) | 2016-01-22 | 2017-01-20 | 리튬 이온 2 차 전지 |
CN201780007150.7A CN108475825B (zh) | 2016-01-22 | 2017-01-20 | 锂离子二次电池 |
US16/070,331 US11038173B2 (en) | 2016-01-22 | 2017-01-20 | Lithium ion secondary battery |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016010757 | 2016-01-22 | ||
JP2016-010757 | 2016-01-22 | ||
JP2016-155802 | 2016-08-08 | ||
JP2016155675 | 2016-08-08 | ||
JP2016-155689 | 2016-08-08 | ||
JP2016-155391 | 2016-08-08 | ||
JP2016-155675 | 2016-08-08 | ||
JP2016155689 | 2016-08-08 | ||
JP2016155802 | 2016-08-08 | ||
JP2016155391 | 2016-08-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017126682A1 true WO2017126682A1 (ja) | 2017-07-27 |
Family
ID=59361963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/001995 WO2017126682A1 (ja) | 2016-01-22 | 2017-01-20 | リチウムイオン二次電池 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11038173B2 (ja) |
EP (1) | EP3392954B1 (ja) |
JP (2) | JP6251452B1 (ja) |
KR (2) | KR102013095B1 (ja) |
CN (1) | CN108475825B (ja) |
TW (2) | TWI658635B (ja) |
WO (1) | WO2017126682A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018055801A (ja) * | 2016-09-26 | 2018-04-05 | 株式会社Gsユアサ | 蓄電素子 |
EP3442054A1 (en) * | 2017-08-10 | 2019-02-13 | Toyota Jidosha Kabushiki Kaisha | Lithium solid battery |
JP2019047084A (ja) * | 2017-09-07 | 2019-03-22 | Fdk株式会社 | 蓄電素子の製造方法 |
WO2019098197A1 (ja) * | 2017-11-14 | 2019-05-23 | 旭化成株式会社 | 正極塗工液、正極前駆体、及び非水系リチウム蓄電素子 |
WO2019098200A1 (ja) * | 2017-11-14 | 2019-05-23 | 旭化成株式会社 | 非水系リチウム型蓄電素子 |
JP2019106374A (ja) * | 2017-12-13 | 2019-06-27 | 三洋化成工業株式会社 | リチウムイオン電池用負極及びリチウムイオン電池 |
JP2019192426A (ja) * | 2018-04-23 | 2019-10-31 | トヨタ自動車株式会社 | 再利用可能な非水電解液二次電池の選別方法 |
JP2020502757A (ja) * | 2017-05-25 | 2020-01-23 | エルジー・ケム・リミテッド | 二次電池用正極の製造方法、それにより製造された二次電池用正極、およびそれを含むリチウム二次電池 |
JP2020013875A (ja) * | 2018-07-18 | 2020-01-23 | 旭化成株式会社 | 非水系リチウム蓄電素子 |
WO2020017515A1 (ja) | 2018-07-18 | 2020-01-23 | 旭化成株式会社 | リチウムイオン二次電池 |
JP2020053488A (ja) * | 2018-09-25 | 2020-04-02 | 太陽誘電株式会社 | 電気化学デバイス用電解液および電気化学デバイス |
JP2021089876A (ja) * | 2019-12-06 | 2021-06-10 | Tdk株式会社 | リチウムイオン二次電池 |
WO2023195434A1 (ja) * | 2022-04-04 | 2023-10-12 | 株式会社Gsユアサ | 蓄電素子及び蓄電装置 |
US12027662B2 (en) | 2019-09-24 | 2024-07-02 | Toyota Jidosha Kabushiki Kaisha | All-solid-state battery |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9761861B1 (en) | 2013-06-25 | 2017-09-12 | Quantumscape Corporation | Pulse plating of lithium material in electrochemical devices |
TWI624980B (zh) * | 2016-01-22 | 2018-05-21 | Asahi Chemical Ind | 非水系鋰型蓄電元件 |
CN107785578B (zh) * | 2016-08-25 | 2019-06-11 | 宁德时代新能源科技股份有限公司 | 正极添加剂及其制备方法、正极片及锂离子二次电池 |
US10646813B2 (en) * | 2016-09-23 | 2020-05-12 | Lehigh University | Gas separation apparatus and methods using same |
WO2018165606A1 (en) * | 2017-03-10 | 2018-09-13 | Quantumscape Corporation | Metal negative electrode ultrasonic charging |
KR102268175B1 (ko) * | 2017-03-15 | 2021-06-22 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지 |
KR102063583B1 (ko) * | 2017-05-08 | 2020-01-09 | 주식회사 엘지화학 | 이차전지, 그의 제조장치 및 방법 |
US11923545B2 (en) * | 2020-01-22 | 2024-03-05 | Enevate Corporation | Crown ethers as additives for silicon-based Li-ion batteries |
JP6941068B2 (ja) | 2018-02-21 | 2021-09-29 | サトーホールディングス株式会社 | アンテナパターンの製造方法、rfidインレイの製造方法、rfidラベルの製造方法及びrfid媒体の製造方法 |
WO2020045226A1 (ja) * | 2018-08-31 | 2020-03-05 | 日本ゼオン株式会社 | 全固体二次電池用バインダー組成物、全固体二次電池電極合材層用スラリー組成物、全固体二次電池固体電解質層用スラリー組成物、および全固体二次電池 |
JPWO2021054466A1 (ja) * | 2019-09-19 | 2021-03-25 | ||
CN110649210A (zh) * | 2019-10-14 | 2020-01-03 | 广东工业大学 | 一种无纺纸离子电池隔膜及其制备方法 |
EP4122030A4 (en) | 2020-03-20 | 2024-06-19 | GRST International Limited | METHOD FOR PREPARING A CATHODE FOR SECONDARY BATTERY |
WO2021184392A1 (en) * | 2020-03-20 | 2021-09-23 | Guangdong Haozhi Technology Co. Limited | Method of preparing cathode for secondary battery |
CN113539694B (zh) * | 2021-09-17 | 2021-12-28 | 中南大学 | 一种降低负极预金属化氧化电势的方法及其应用、电化学储能装置 |
CN115332496B (zh) * | 2022-07-15 | 2023-05-02 | 胜华新材料集团股份有限公司 | 一种锂离子电池所用硅氧复合材料的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005197174A (ja) * | 2004-01-09 | 2005-07-21 | Sony Corp | 電池 |
JP2010232469A (ja) * | 2009-03-27 | 2010-10-14 | Fuji Heavy Ind Ltd | 蓄電デバイスおよびその製造方法 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3010781B2 (ja) * | 1991-04-26 | 2000-02-21 | ソニー株式会社 | 非水電解質二次電池 |
JP3396076B2 (ja) * | 1994-03-17 | 2003-04-14 | 日本化学工業株式会社 | リチウム二次電池用コバルト酸リチウム系正極活物質の製造方法 |
DE69637513T2 (de) * | 1995-03-06 | 2009-06-04 | Ube Industries, Ltd., Ube | Nichtwässrige Lithium-Sekundärzelle |
JP4348771B2 (ja) | 1999-04-21 | 2009-10-21 | パナソニック株式会社 | リチウム二次電池 |
JP4411735B2 (ja) | 2000-03-29 | 2010-02-10 | ソニー株式会社 | リチウムイオン二次電池 |
JP4762411B2 (ja) | 2000-06-26 | 2011-08-31 | パナソニック株式会社 | 二次電池用非水電解液およびこれを用いた非水電解液二次電池 |
JP4702510B2 (ja) * | 2001-09-05 | 2011-06-15 | 信越化学工業株式会社 | リチウム含有酸化珪素粉末及びその製造方法 |
JP5229527B2 (ja) * | 2006-08-25 | 2013-07-03 | ソニー株式会社 | 二次電池用電解液および二次電池 |
US9153836B2 (en) * | 2007-08-23 | 2015-10-06 | Sony Corporation | Electrolytic solutions and battery |
KR20090097124A (ko) | 2008-03-10 | 2009-09-15 | 소니 가부시끼가이샤 | 전해액 및 2차 전지 |
JP4636341B2 (ja) | 2008-04-17 | 2011-02-23 | トヨタ自動車株式会社 | リチウム二次電池およびその製造方法 |
JP4992919B2 (ja) * | 2009-02-04 | 2012-08-08 | ソニー株式会社 | 二次電池 |
JP5773208B2 (ja) | 2010-01-21 | 2015-09-02 | トヨタ自動車株式会社 | リチウム二次電池 |
CN201737540U (zh) | 2010-07-22 | 2011-02-09 | 武汉钢铁(集团)公司 | 工字轮的适配装置 |
JP6069843B2 (ja) | 2011-02-10 | 2017-02-01 | 三菱化学株式会社 | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 |
JP2012209161A (ja) | 2011-03-30 | 2012-10-25 | Toyota Central R&D Labs Inc | リチウム二次電池 |
JP2013084428A (ja) * | 2011-10-07 | 2013-05-09 | Sony Corp | 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
JP5884967B2 (ja) | 2011-10-18 | 2016-03-15 | トヨタ自動車株式会社 | 非水電解液二次電池及びその製造方法 |
CN104011914B (zh) * | 2011-12-14 | 2018-07-20 | 陶氏环球技术有限责任公司 | 含有草酸锂的锂蓄电池电极 |
JP6045581B2 (ja) * | 2012-06-28 | 2016-12-14 | 株式会社クレハ | 非水電解質二次電池用樹脂膜の製造方法および非水電解質二次電池用樹脂膜 |
US9935337B2 (en) * | 2012-07-17 | 2018-04-03 | Nec Corporation | Lithium secondary battery |
JP2014086222A (ja) * | 2012-10-22 | 2014-05-12 | Idemitsu Kosan Co Ltd | 二次電池の製造方法 |
US20150372304A1 (en) | 2013-01-31 | 2015-12-24 | Sanyo Electric Co., Ltd. | Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
JP6218413B2 (ja) * | 2013-03-29 | 2017-10-25 | 株式会社Subaru | プレドープ剤、これを用いた蓄電デバイス及びその製造方法 |
JP2015011920A (ja) * | 2013-07-01 | 2015-01-19 | 三洋電機株式会社 | 電源装置 |
JP6436079B2 (ja) * | 2013-07-10 | 2018-12-12 | 日本ゼオン株式会社 | リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池用電極、及びリチウムイオン二次電池 |
JP5888353B2 (ja) * | 2013-07-25 | 2016-03-22 | 株式会社デンソー | アルカリ金属含有活物質の製造方法および二次電池の製造方法 |
US11721831B2 (en) * | 2013-08-30 | 2023-08-08 | Sila Nanotechnologies, Inc. | Electrolyte or electrode additives for increasing metal content in metal-ion batteries |
-
2017
- 2017-01-20 TW TW107101609A patent/TWI658635B/zh active
- 2017-01-20 JP JP2017509051A patent/JP6251452B1/ja active Active
- 2017-01-20 EP EP17741559.3A patent/EP3392954B1/en active Active
- 2017-01-20 WO PCT/JP2017/001995 patent/WO2017126682A1/ja active Application Filing
- 2017-01-20 KR KR1020187034021A patent/KR102013095B1/ko active IP Right Grant
- 2017-01-20 US US16/070,331 patent/US11038173B2/en active Active
- 2017-01-20 KR KR1020187020892A patent/KR101959701B1/ko active IP Right Grant
- 2017-01-20 CN CN201780007150.7A patent/CN108475825B/zh active Active
- 2017-01-20 TW TW106101997A patent/TWI628825B/zh active
- 2017-10-13 JP JP2017199771A patent/JP6851297B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005197174A (ja) * | 2004-01-09 | 2005-07-21 | Sony Corp | 電池 |
JP2010232469A (ja) * | 2009-03-27 | 2010-10-14 | Fuji Heavy Ind Ltd | 蓄電デバイスおよびその製造方法 |
Non-Patent Citations (3)
Title |
---|
LIU ET AL.: "Surface phenomena of high energy Li (Ni1/3Co1/3Mn1/3) 02/graphite cells at high temperature and high cutoff voltages", J. POWER SOURCES, vol. 269, 2014, pages 920 - 926, XP029043945 * |
NANDA ET AL.: "Local State-of-Charge Mapping of Lithium-Ion Battery Electrodes", ADV.FUNCT.MATER., vol. 21, 9 September 2011 (2011-09-09), pages 3282 - 3290, XP001571448 * |
See also references of EP3392954A4 * |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7011890B2 (ja) | 2016-09-26 | 2022-01-27 | 株式会社Gsユアサ | 蓄電素子 |
JP2018055801A (ja) * | 2016-09-26 | 2018-04-05 | 株式会社Gsユアサ | 蓄電素子 |
JP2020502757A (ja) * | 2017-05-25 | 2020-01-23 | エルジー・ケム・リミテッド | 二次電池用正極の製造方法、それにより製造された二次電池用正極、およびそれを含むリチウム二次電池 |
JP7041807B2 (ja) | 2017-05-25 | 2022-03-25 | エルジー エナジー ソリューション リミテッド | 二次電池用正極の製造方法、それにより製造された二次電池用正極、およびそれを含むリチウム二次電池 |
EP3442054A1 (en) * | 2017-08-10 | 2019-02-13 | Toyota Jidosha Kabushiki Kaisha | Lithium solid battery |
CN109390622A (zh) * | 2017-08-10 | 2019-02-26 | 丰田自动车株式会社 | 锂固体电池 |
US11646443B2 (en) | 2017-08-10 | 2023-05-09 | Toyota Jidosha Kabushiki Kaisha | Lithium solid battery |
JP2019047084A (ja) * | 2017-09-07 | 2019-03-22 | Fdk株式会社 | 蓄電素子の製造方法 |
JPWO2019098200A1 (ja) * | 2017-11-14 | 2020-08-06 | 旭化成株式会社 | 非水系リチウム型蓄電素子 |
JPWO2019098197A1 (ja) * | 2017-11-14 | 2020-07-27 | 旭化成株式会社 | 正極塗工液、正極前駆体、及び非水系リチウム蓄電素子 |
US11942621B2 (en) | 2017-11-14 | 2024-03-26 | Asahi Kasei Kabushiki Kaisha | Positive electrode coating liquid, positive electrode precursor, and nonaqueous lithium electric storage element |
US11824203B2 (en) | 2017-11-14 | 2023-11-21 | Asahi Kasei Kabushiki Kaisha | Non-aqueous lithium-type electricity storage element |
WO2019098197A1 (ja) * | 2017-11-14 | 2019-05-23 | 旭化成株式会社 | 正極塗工液、正極前駆体、及び非水系リチウム蓄電素子 |
KR20200035453A (ko) * | 2017-11-14 | 2020-04-03 | 아사히 가세이 가부시키가이샤 | 비수계 리튬형 축전 소자 |
WO2019098200A1 (ja) * | 2017-11-14 | 2019-05-23 | 旭化成株式会社 | 非水系リチウム型蓄電素子 |
CN111095453A (zh) * | 2017-11-14 | 2020-05-01 | 旭化成株式会社 | 非水系锂型蓄电元件 |
JP6997208B2 (ja) | 2017-11-14 | 2022-02-03 | 旭化成株式会社 | 非水系リチウム型蓄電素子 |
CN111095453B (zh) * | 2017-11-14 | 2022-04-05 | 旭化成株式会社 | 非水系锂型蓄电元件 |
KR102389965B1 (ko) * | 2017-11-14 | 2022-04-22 | 아사히 가세이 가부시키가이샤 | 비수계 리튬형 축전 소자 |
EP3712916A4 (en) * | 2017-11-14 | 2021-01-27 | Asahi Kasei Kabushiki Kaisha | POSITIVE ELECTRODE COATING LIQUID, POSITIVE ELECTRODE PRECURSOR AND WATERLESS ELECTRIC LITHIUM STORAGE ELEMENT |
EP3712915A4 (en) * | 2017-11-14 | 2021-02-17 | Asahi Kasei Kabushiki Kaisha | NON-Aqueous LITHIUM ELECTRICITY STORAGE ELEMENT |
JP7130541B2 (ja) | 2017-12-13 | 2022-09-05 | 三洋化成工業株式会社 | リチウムイオン電池用負極及びリチウムイオン電池 |
JP2019106375A (ja) * | 2017-12-13 | 2019-06-27 | 三洋化成工業株式会社 | リチウムイオン電池用負極及びリチウムイオン電池 |
JP2019106374A (ja) * | 2017-12-13 | 2019-06-27 | 三洋化成工業株式会社 | リチウムイオン電池用負極及びリチウムイオン電池 |
JP7130540B2 (ja) | 2017-12-13 | 2022-09-05 | 三洋化成工業株式会社 | リチウムイオン電池用負極及びリチウムイオン電池 |
JP2019192426A (ja) * | 2018-04-23 | 2019-10-31 | トヨタ自動車株式会社 | 再利用可能な非水電解液二次電池の選別方法 |
CN111095650A (zh) * | 2018-07-18 | 2020-05-01 | 旭化成株式会社 | 锂离子二次电池 |
EP3826093A4 (en) * | 2018-07-18 | 2021-10-20 | Asahi Kasei Kabushiki Kaisha | LITHIUM-ION SECONDARY CELL |
KR20200039742A (ko) | 2018-07-18 | 2020-04-16 | 아사히 가세이 가부시키가이샤 | 리튬 이온 2 차 전지 |
CN111095650B (zh) * | 2018-07-18 | 2023-04-04 | 旭化成株式会社 | 锂离子二次电池 |
WO2020017515A1 (ja) | 2018-07-18 | 2020-01-23 | 旭化成株式会社 | リチウムイオン二次電池 |
US11923541B2 (en) | 2018-07-18 | 2024-03-05 | Asahi Kasei Kabushiki Kaisha | Lithium ion secondary battery |
JP2020013875A (ja) * | 2018-07-18 | 2020-01-23 | 旭化成株式会社 | 非水系リチウム蓄電素子 |
JP2020053488A (ja) * | 2018-09-25 | 2020-04-02 | 太陽誘電株式会社 | 電気化学デバイス用電解液および電気化学デバイス |
US12027662B2 (en) | 2019-09-24 | 2024-07-02 | Toyota Jidosha Kabushiki Kaisha | All-solid-state battery |
JP2021089876A (ja) * | 2019-12-06 | 2021-06-10 | Tdk株式会社 | リチウムイオン二次電池 |
JP7322684B2 (ja) | 2019-12-06 | 2023-08-08 | Tdk株式会社 | リチウムイオン二次電池 |
WO2023195434A1 (ja) * | 2022-04-04 | 2023-10-12 | 株式会社Gsユアサ | 蓄電素子及び蓄電装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2018029073A (ja) | 2018-02-22 |
CN108475825B (zh) | 2019-08-02 |
JP6251452B1 (ja) | 2017-12-20 |
TW201737540A (zh) | 2017-10-16 |
EP3392954A1 (en) | 2018-10-24 |
TWI658635B (zh) | 2019-05-01 |
US11038173B2 (en) | 2021-06-15 |
TW201817064A (zh) | 2018-05-01 |
JPWO2017126682A1 (ja) | 2018-01-25 |
KR101959701B1 (ko) | 2019-03-18 |
EP3392954A4 (en) | 2019-06-26 |
KR20180128985A (ko) | 2018-12-04 |
JP6851297B2 (ja) | 2021-03-31 |
KR102013095B1 (ko) | 2019-08-21 |
TWI628825B (zh) | 2018-07-01 |
KR20180088914A (ko) | 2018-08-07 |
EP3392954B1 (en) | 2020-03-25 |
US20190020034A1 (en) | 2019-01-17 |
CN108475825A (zh) | 2018-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6251452B1 (ja) | リチウムイオン二次電池 | |
JP6227840B1 (ja) | 正極前駆体 | |
JP6955622B2 (ja) | リチウムイオン二次電池 | |
JP6261807B2 (ja) | 非水系リチウム蓄電素子 | |
JP6774396B2 (ja) | 非水系リチウム型蓄電素子の製造方法 | |
WO2017126697A1 (ja) | 非水系リチウム型蓄電素子 | |
JP6815305B2 (ja) | 非水系リチウム蓄電素子の製造方法 | |
JP6912337B2 (ja) | 非水系リチウム蓄電素子 | |
JP6815168B2 (ja) | リチウムイオンキャパシタ用の負極 | |
JP6815148B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6792978B2 (ja) | 非水系アルカリ金属型蓄電素子 | |
JP6815151B2 (ja) | 非水系リチウム型蓄電素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017509051 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17741559 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187020892 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020187020892 Country of ref document: KR Ref document number: 2017741559 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017741559 Country of ref document: EP Effective date: 20180719 |