WO2017113467A1 - 一种coa基板及其制作方法 - Google Patents

一种coa基板及其制作方法 Download PDF

Info

Publication number
WO2017113467A1
WO2017113467A1 PCT/CN2016/072444 CN2016072444W WO2017113467A1 WO 2017113467 A1 WO2017113467 A1 WO 2017113467A1 CN 2016072444 W CN2016072444 W CN 2016072444W WO 2017113467 A1 WO2017113467 A1 WO 2017113467A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive
passivation layer
filling
substrate
Prior art date
Application number
PCT/CN2016/072444
Other languages
English (en)
French (fr)
Inventor
曾勉
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/915,237 priority Critical patent/US10007157B2/en
Publication of WO2017113467A1 publication Critical patent/WO2017113467A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular to a COA substrate and a method of fabricating the same.
  • TFT-LCD thin film transistor liquid crystal display
  • the liquid crystal display is usually formed by a color film substrate and an array substrate, and the R, G, and B color resistances are located on the color filter substrate.
  • the COA (Color Filter on Array) substrate is a structure in which a color filter substrate is fabricated on an array substrate, which can effectively reduce the light leakage problem caused by the deviation of the box and reduce the coupling capacitance between the signal line and the pixel electrode. , thereby effectively increasing the pixel aperture ratio. Therefore, it is currently widely used in the field of liquid crystal display.
  • the color filter since the color filter is thick, it usually has a thickness of several micrometers, which makes the contact hole of the communication signal line and the pixel electrode need to be large to ensure effective. contact. Since the distance between the foot and the foot of the contact hole is large and the through hole is deep, it is easy to hide excess gas during the manufacturing process, so that bubbles are bad in the late liquid crystal panel. Moreover, at the position of the via hole, the liquid crystal molecules may be arranged irregularly, resulting in light leakage. usually In order to avoid light leakage, the occlusion here is increased and the aperture ratio is lowered. At the same time, due to the large slope of the via hole, the pixel electrode may be broken and the pixel electrode may not be charged, thereby affecting the display quality of the liquid crystal panel.
  • An object of the present invention is to provide a COA substrate and a method for fabricating the same, which solves the problems of bubble defects caused by excessive contact and excessively large via holes in the conventional COA substrate, a decrease in pixel aperture ratio, and a broken pixel of a pixel electrode.
  • a first aspect of the present invention provides a COA substrate, including:
  • a gate electrode disposed on the substrate substrate
  • a gate insulating layer disposed on the gate and the substrate to cover the substrate and the gate;
  • An active layer disposed on the gate insulating layer above the gate for forming a channel
  • a source and a drain are disposed on the gate insulating layer and are respectively in contact with both ends of the active layer;
  • a first passivation layer covering the source, the drain, the gate insulating layer, and the active layer
  • a color resist layer disposed on the first passivation layer, the color resist layer being provided with a first through via penetrating to expose the first passivation layer;
  • a second passivation layer is disposed on the color resist layer and in the first via hole, and the first via hole is provided with a portion penetrating the second passivation layer and the first passivation layer Two vias to make the source and drain dew;
  • a conductive filling layer filling the first via and the second via, the conductive filling material of the conductive filling layer comprising an organic conductive material;
  • a transparent conductive layer disposed on the second passivation layer and the conductive filling layer.
  • the organic conductive material is one of polyparaphenylene (PPP), polypyrrole (PPY), polythiophene (PTH), polyphenylacetylene (PPV), polyaniline (PANI) or A variety.
  • the conductive filling layer is obtained by a method using inkjet printing.
  • the conductive filling layer is obtained by coating the organic conductive material, coating a photoresist, and then performing a photolithography process.
  • the surface of the conductive filling layer is flush with the surface of the second passivation layer.
  • a second aspect of the present invention provides a method of fabricating a COA substrate, comprising the steps of:
  • a conductive filling material in the first via hole and the second via hole to form a conductive filling layer, the conductive filling material of the conductive filling layer comprising an organic conductive material;
  • the organic conductive material is in polyparaphenylene (PPP), polypyrrole (PPY), polythiophene (PTH), polyphenylacetylene (PPV), polyaniline (PANI).
  • PPP polyparaphenylene
  • PPY polypyrrole
  • PTH polythiophene
  • PV polyphenylacetylene
  • PANI polyaniline
  • the specific operation of filling the first via and the second via with a conductive filling material to form a conductive filling layer is: using an inkjet printing method to organically A conductive material is filled in the first via and the second via.
  • the specific operation of filling the first via and the second via with a conductive filling material to form a conductive filling layer is: in the first via and the The organic conductive material is coated in the second via, coated with a photoresist, and then obtained by a photolithography process.
  • the conductive filling layer is planarized so that the surface of the conductive filling layer is flush with the surface of the second passivation layer.
  • the invention has the beneficial effects that the method of filling the via hole by using the conductive filling material, filling the inside of the contact via hole with the conductive filling material, reducing the topographical deviation, preventing the liquid crystal from being reversed, and further increasing the pixel aperture ratio; More importantly, the possibility of hiding gas in the contact hole is reduced, and the risk of bad Bubble is reduced at the later stage; at the same time, the problem of pixel electrode climbing and disconnection is prevented, and the display quality of the liquid crystal panel is improved.
  • FIG. 1 is a schematic structural view of a prior art COA substrate
  • FIG. 2 is a schematic structural view of a COA substrate of the present invention
  • FIG. 3 is a flow chart of a method for fabricating a COA substrate of the present invention.
  • FIG. 1 is a schematic structural view of a COA substrate of the prior art.
  • the prior art COA substrate includes a base substrate 11, a gate electrode 12, a gate insulating layer 13, an active layer 14, a source and a drain 15, a first passivation layer 16, and a color resist layer 17. a second passivation layer 18 and a transparent conductive layer 19.
  • FIG. 2 is a schematic structural view of a COA substrate according to the present invention.
  • the COA substrate of the present invention includes a base substrate 21, a gate electrode 22, a gate insulating layer 23, an active layer 24, a source and a drain 25, a first passivation layer 26, a color resist layer 27, and a first The second passivation layer 28, the conductive filling layer 29, and the transparent conductive layer 30.
  • the gate 22 is disposed on the base substrate 21;
  • the gate insulating layer 23 is disposed on the gate electrode 22 and the substrate substrate 21 to cover the substrate base Board 21 and gate 22;
  • the active layer 24 is disposed on the gate insulating layer 23 above the gate electrode 22 for forming a channel
  • the source and drain electrodes 25 are disposed on the gate insulating layer 23 and are respectively in contact with both ends of the active layer 24;
  • the first passivation layer 26 covers the source and drain electrodes 25, the gate insulating layer 23, and the active layer 24;
  • the color resist layer 27 is disposed on the first passivation layer 26, and the color resist layer 27 is provided with a first through via 30 penetrating to expose the first passivation layer 26;
  • the second passivation layer 28 is disposed on the color resist layer 27 and in the first via 201.
  • the first via 201 is provided through the second passivation layer 28 and the a second via 202 of the first passivation layer 26 to expose the source and drain electrodes 25;
  • the conductive filling layer 29 is filled with the first via 201 and the second via 202, and the conductive filling material of the conductive filling layer 29 comprises an organic conductive material;
  • the transparent conductive layer 30 is disposed on the second passivation layer 28 and the conductive filling layer 29 .
  • the organic conductive material of the conductive filling layer 29 may be polyparaphenylene (PPP), polypyrrole (PPY), polythiophene (PTH), polyphenylacetylene (PPV), polyaniline (PANI). One or more of them.
  • the conductive fill layer is obtained by a method using inkjet printing.
  • the conductive filling layer is coated with the organic conductive material, and then coated with a photoresist, and then subjected to a normal photolithography process: exposure, development, etching, and strip forming to form a via hole. Fill the pattern.
  • the photoresist can be a common type of lithography process in the art.
  • the first via 201 and the second via 202 are filled with a conductive filling material and electrically connected to the source and drain 25 (ie, the SD electrode).
  • the surface of the conductive filling layer 29 is flush with the surface of the second passivation layer 28.
  • the material of the transparent conductive layer 30 is a conventional material in the industry, and the specific arrangement thereof is also in the prior art, and the invention is not particularly limited.
  • the COA substrate provided by the embodiment of the present invention adds a conductive filling layer for filling the via holes, so that the inside of the contact via is filled with the conductive filling material, which reduces the topographical deviation and prevents the liquid crystal from being reversed. Further increasing the pixel aperture ratio; more importantly, reducing the possibility of hiding gas in the via hole, reducing the risk of poor Bubble in the later stage; at the same time, preventing the problem of pixel electrode climbing and disconnection, and improving the problem The display quality of the LCD panel.
  • the COA substrate provided by the embodiment of the invention can be applied to a COA type liquid crystal display panel in various display modes.
  • FIG. 3 is a flow chart of a method for fabricating a COA substrate according to the present invention. As shown in FIG. 3, the method for fabricating the COA substrate of the present invention comprises the following steps:
  • the color resist layer 27 is provided with a through first via 201 to expose the first passivation layer 26;
  • the organic conductive material may be poly(p-phenylene) (PPP), polypyrrole (PPY), polythiophene (PTH), polyphenylacetylene (PPV), polyaniline (PANI).
  • PPP poly(p-phenylene)
  • PPY polypyrrole
  • PTH polythiophene
  • PV polyphenylacetylene
  • PANI polyaniline
  • the specific operation of filling the first via hole and the second via hole with a conductive filling material to form a conductive filling layer is: filling the organic conductive material by inkjet printing. Within the first via and the second via.
  • the specific operation of filling the first via and the second via with a conductive filling material to form a conductive filling layer is: at the first via and the second
  • the organic conductive material is coated in the via hole, and then coated with a photoresist, and then formed into a via filling pattern by a normal photolithography process: exposure, development, etching, and strip.
  • the photoresist can be a common type of lithography process in the art.
  • step S08 after filling the conductive filling material, the conductive The filling layer 29 is planarized so that the surface of the conductive filling layer 29 is flush with the surface of the second passivation layer 28. Specifically, the conductive filling material other than the first via 201 is removed by exposure and development, and as far as possible, only the contact vias (refer to the first via 201 and the second via 202) are ensured, and just fill in level.
  • the specific manufacturing method of each layer is not particularly limited, and the present invention can be realized.
  • the gate 22, the gate insulating layer 23, the active layer 24, and the source may be continuously fabricated by PVD (or CVD) film formation, exposure, development, etching, etc. according to a conventional process.
  • the drain 25, the first passivation layer 26, and the RGB color resist is formed on the first passivation layer 26 to form the color resist layer 27, and the first via hole on the color resist layer 27 is formed by exposure development or the like.
  • a second passivation layer 28 is deposited on the color resist layer 27 and the first via 201, and the second via 202 is formed by exposure, development, and etching, and is connected to the pixel electrode.
  • the SD electrode 25 is exposed; then, the first via 201 and the second via 202 are filled with a conductive filling material to form a conductive filling layer 29, so that the first via 201 and the second via 202 are filled with a conductive filling material.
  • a transparent conductive layer 30 is formed on the second passivation layer 28 and the conductive filling layer 29, and the transparent conductive layer 30 is exposed, developed, and etched to form a pixel. Electrode pattern.
  • the transparent conductive layer 30 may be made of ITO, IZO or a thin layer of metal.
  • the via hole formed by the COA process is filled by a conductive filling material Coating process, and then planarized. After that, the ITO Sputter process was performed again, and finally the ITO was patterned.
  • the manufacturing method can not only effectively eliminate the topographical fault at the contact hole, but also reduce the risk of bubbles appearing in the COA liquid crystal panel; and because the ITO has almost no topographical deviation in the entire pixel area, the possibility of climbing and disconnecting the pixel electrode is avoided; At the same time, since the liquid crystal at the contact via is also effectively controlled, The aperture ratio of the pixel is also improved to some extent, thereby improving the display quality of the entire liquid crystal panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

提供了一种彩色滤光膜阵列(COA)基板,包括衬底基板(21),以及依次设置在衬底基板(21)上的栅极(12)、栅绝缘层(13)、有源层(14)、源极和漏极(15)、第一钝化层(16)、色阻层(17)、第二钝化层(18)、以及透明导电层(19),其中所述色阻层(17)设置有贯通的第一过孔(201),以使所述第一钝化层(16)暴露,所述第二钝化层(18)设置在所述色阻层(17)上和所述第一过孔(201)内,且所述第一过孔(201)内设有贯通所述第二钝化层(18)和所述第一钝化层(16)的第二过孔(202),以使所述源极和漏极(15)暴露,所述第一过孔(201)和第二过孔(202)内设置导电填充层(29)。通过设置导电填充层(29)填充过孔,使接触过孔内部填满导电填充材料,增大了像素开口率,降低了出现气泡不良的风险,同时防止了像素电极爬坡断线,提高了液晶面板的显示品质。还提供了该COA基板的制作方法。

Description

一种COA基板及其制作方法
本申请要求了2015年12月31日提交中国专利局的,申请号201511030775.4,发明名称为“一种COA基板及其制作方法”的在先申请的优先权,上述在先申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及液晶显示技术领域,特别是涉及一种COA基板及其制作方法。
背景技术
TFT-LCD,薄膜晶体管液晶显示器由于具有体积小、功耗低、无辐射等特点而备受关注,在平板显示领域中占据了主导地位,被广泛地应用到各行各业中。该液晶显示器通常由彩膜基板和阵列基板对盒而成,其R、G、B色阻位于彩膜基板上。而COA(Color Filter on Array)基板是一种将彩膜基板制作于阵列基板上的结构,该结构可有效地减少由于对盒偏差导致的漏光问题,并且降低信号线与像素电极间的耦合电容,从而有效地提高像素开口率。因此,目前在液晶显示领域被广泛应用。
然而现有的COA基板结构中,由于彩色滤光片(Color Filter)较厚,通常会有几个微米的厚度,这就使得联通信号线与像素电极的接触过孔需要做很大才能保证有效接触。由于接触过孔的坡脚距离较大,且过孔较深,所以在制造过程中容易隐藏多余的气体,使得在后期液晶面板中出现气泡(Bubble)不良。而且在过孔位置处,液晶分子会出现不规则排列,而导致漏光现象。通常 为了避免漏光现象,会增加此处的遮挡而使得开口率下降。同时,由于过孔坡度较大,将可能引起像素电极的爬坡断线,导致像素电极无法充电,进而影响液晶面板的显示品质。
因此,有必要提供一种新型的COA基板及其制作方法以解决上述方面的不足。
发明内容
本发明的目的在于提供一种COA基板及其制作方法,以解决现有COA基板由于接触过孔过大、过深引起的气泡不良,像素开口率下降,像素电极爬坡断线等问题。
为解决上述问题,本发明第一方面提供了一种COA基板,包括:
衬底基板;
栅极,设于所述衬底基板上;
栅绝缘层,设于所述栅极和所述衬底基板上,覆盖所述衬底基板和所述栅极;
有源层,位于所述栅极上方设于所述栅绝缘层上,用于形成沟道;
源极和漏极,设于所述栅绝缘层上并分别与所述有源层的两端相接触;
第一钝化层,覆盖所述源极、漏极、所述栅绝缘层以及所述有源层;
色阻层,设于所述第一钝化层上,所述色阻层设置有贯通的第一过孔,以使所述第一钝化层暴露;
第二钝化层,设于所述色阻层上和所述第一过孔内,所述第一过孔内设有贯通所述第二钝化层和所述第一钝化层的第二过孔,以使所述源极和漏极暴 露;
导电填充层,所述导电填充层充满所述第一过孔和所述第二过孔,所述导电填充层的导电填充材料包括有机导电材料;
以及透明导电层,设于所述第二钝化层及所述导电填充层上。
在本发明COA基板中,所述有机导电材料为聚对苯(PPP)、聚吡咯(PPY)、聚噻吩(PTH)、聚苯基乙炔(PPV)、聚苯胺(PANI)中的一种或多种。
在本发明COA基板中,所述导电填充层通过采用喷墨打印的方法获得。
在本发明COA基板中,所述导电填充层通过涂覆所述有机导电材料,再涂覆光刻胶,然后经光刻工艺获得。
在本发明COA基板中,所述导电填充层的表面与所述第二钝化层的表面齐平。
本发明第二方面提供了一种COA基板的制作方法,包括以下步骤:
提供衬底基板,在所述衬底基板上形成栅极;
在所述栅极及未被所述栅极覆盖的衬底基板上形成栅绝缘层;
在所述栅极上方所述栅绝缘层上形成有源层;
在所述栅绝缘层上形成分别与所述有源层的两端相接触的源极和漏极;
在所述源极和漏极上形成覆盖所述源极、漏极、所述栅绝缘层以及所述有源层的第一钝化层;
在所述第一钝化层上形成色阻层,所述色阻层设置有贯通的第一过孔,以使所述第一钝化层暴露;
在所述色阻层上和所述第一过孔内形成第二钝化层,所述第一过孔内设有贯通所述第二钝化层和所述第一钝化层的第二过孔,以使所述源极和漏极暴 露;
在所述第一过孔和所述第二过孔内填充导电填充材料形成导电填充层,所述导电填充层的导电填充材料包括有机导电材料;
在所述第二钝化层及所述导电填充层上形成透明导电层,再将所述透明导电层进行图案化处理形成像素电极。
在本发明COA基板的制作方法中,所述有机导电材料为聚对苯(PPP)、聚吡咯(PPY)、聚噻吩(PTH)、聚苯基乙炔(PPV)、聚苯胺(PANI)中的一种或多种。
在本发明COA基板的制作方法中,所述在所述第一过孔和所述第二过孔内填充导电填充材料形成导电填充层的具体操作为:采用喷墨打印的方法将所述有机导电材料填充在所述第一过孔和所述第二过孔内。
在本发明COA基板的制作方法中,所述在所述第一过孔和所述第二过孔内填充导电填充材料形成导电填充层的具体操作为:在所述第一过孔和所述第二过孔内涂覆所述有机导电材料,再涂覆光刻胶,然后经光刻工艺获得。
在本发明COA基板的制作方法中,在填充导电填充材料之后,对所述导电填充层进行平坦化处理,以使所述导电填充层的表面与所述第二钝化层的表面齐平。
本发明的有益效果:本发明通过利用导电填充材料填充过孔的方法,使接触过孔内部填满导电填充材料,减小了地形断差,防止液晶倒向错乱,进一步增大像素开口率;更重要的是,减小了接触过孔内藏匿气体的可能,降低了后期出现Bubble不良的风险;同时,也防止了像素电极爬坡断线的问题,提高了液晶面板的显示品质。
本发明实施例的优点将会在下面的说明书中部分阐明,一部分根据说明书是显而易见的,或者可以通过本发明实施例的实施而获知。
附图说明
图1为现有技术的COA基板的结构示意图;
图2为本发明COA基板的结构示意图;
图3为本发明COA基板的制作方法流程图。
具体实施方式
以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。
请参阅图1,图1为现有技术的COA基板的结构示意图。如图1所示,现有技术的COA基板包括衬底基板11、栅极12、栅绝缘层13、有源层14、源极和漏极15、第一钝化层16、色阻层17、第二钝化层18、以及透明导电层19。
请参阅图2,图2为本发明COA基板的结构示意图。如图2所示,本发明COA基板包括衬底基板21、栅极22、栅绝缘层23、有源层24、源极和漏极25、第一钝化层26、色阻层27、第二钝化层28、导电填充层29、以及透明导电层30。
所述栅极22,设于所述衬底基板21上;
所述栅绝缘层23,设于所述栅极22和衬底基板21上,覆盖所述衬底基 板21和栅极22;
所述有源层24,位于所述栅极22上方设于所述栅绝缘层23上,用于形成沟道;
所述源极和漏极25,设于所述栅绝缘层23上并分别与有源层24的两端相接触;
所述第一钝化层26,覆盖所述源极和漏极25、栅绝缘层23以及有源层24;
所述色阻层27,设于所述第一钝化层26上,色阻层27设置有贯通的第一过孔30,以使所述第一钝化层26暴露;
所述第二钝化层28,设于所述色阻层27上和所述第一过孔201内,所述第一过孔201内设有贯通所述第二钝化层28和所述第一钝化层26的第二过孔202,以使所述源极和漏极25暴露;
所述导电填充层29,所述导电填充层29充满所述第一过孔201和所述第二过孔202,所述导电填充层29的导电填充材料包括有机导电材料;
所述透明导电层30,设于所述第二钝化层28及所述导电填充层29上。
本发明实施方式中,所述导电填充层29的有机导电材料可以为聚对苯(PPP)、聚吡咯(PPY)、聚噻吩(PTH)、聚苯基乙炔(PPV)、聚苯胺(PANI)中的一种或多种。
本发明一实施方式中,所述导电填充层通过采用喷墨打印的方法获得。
本发明另一实施方式中,所述导电填充层通过涂覆所述有机导电材料,再涂覆光刻胶,然后经正常的光刻工艺:曝光、显影、刻蚀、strip完后形成过孔填充图案。所述光刻胶可为本领域内光刻工艺常用种类。
本发明实施方式中,所述第一过孔201和所述第二过孔202内都填满导电填充材料,并与所述源极和漏极25(即SD电极)有电连接。在本发明一优选实施方式中,所述导电填充层29的表面与所述第二钝化层28的表面齐平。
本发明实施方式中,衬底基板21、栅极22、栅绝缘层23、有源层24、源极和漏极25、第一钝化层26、色阻层27、第二钝化层28、以及透明导电层30的材质均为行业内现有常规材料,其具体设置方式也均为业界现有方式,本发明不作特殊限定。
与现有技术相比,本发明实施例提供的COA基板增设了导电填充层用来填充过孔,从而使接触过孔内部填满导电填充材料,减小了地形断差,防止液晶倒向错乱,进一步增大像素开口率;更重要的是,减小了接触过孔内藏匿气体的可能,降低了后期出现Bubble不良的风险;同时,也防止了像素电极爬坡断线的问题,提高了液晶面板的显示品质。本发明实施例提供的COA基板可应用于各种显示模式下的COA型液晶显示面板。
请参阅图3,图3为本发明COA基板的制作方法流程图。如图3所示,本发明COA基板的制作方法,包括以下步骤:
S01、提供一衬底基板21,在所述衬底基板21上形成栅极22;
S02、在所述栅极22及未被所述栅极22覆盖的衬底基板21上形成栅绝缘层13;
S03、在所述栅极22上方所述栅绝缘层23上形成有源层24;
S04、在所述栅绝缘层23上形成分别与所述有源层24的两端相接触的源极和漏极25;
S05、在所述源极和漏极25上形成覆盖所述源极和漏极25、所述栅绝缘 层23以及所述有源层24的第一钝化层26;
S06、在所述第一钝化层26上形成色阻层27,所述色阻层27设置有贯通的第一过孔201,以使所述第一钝化层26暴露;
S07、在所述色阻层27上和所述第一过孔201内形成第二钝化层28,所述第一过孔201内设有贯通所述第二钝化层28和所述第一钝化层26的第二过孔202,以使所述源极和漏极25暴露;
S08、在所述第一过孔201和所述第二过孔202内填充导电填充材料形成导电填充层29,所述导电填充层的导电填充材料包括有机导电材料;
S09、在所述第二钝化层28及所述导电填充层29上形成透明导电层30,再将所述透明导电层30进行图案化处理形成像素电极。
本发明实施方式中,步骤S08中,所述有机导电材料可以为聚对苯(PPP)、聚吡咯(PPY)、聚噻吩(PTH)、聚苯基乙炔(PPV)、聚苯胺(PANI)中的一种或多种。
本发明一实施方式中,所述在所述第一过孔和所述第二过孔内填充导电填充材料形成导电填充层的具体操作为:采用喷墨打印的方法将所述有机导电材料填充在所述第一过孔和所述第二过孔内。
本发明另一实施方式中,所述在所述第一过孔和所述第二过孔内填充导电填充材料形成导电填充层的具体操作为:在所述第一过孔和所述第二过孔内涂覆所述有机导电材料,再涂覆光刻胶,然后经正常的光刻工艺:曝光、显影、刻蚀、strip完后形成过孔填充图案。所述光刻胶可为本领域内光刻工艺常用种类。
本发明实施方式中,步骤S08中,在填充导电填充材料之后,对所述导电 填充层29进行平坦化处理,以使所述导电填充层29的表面与所述第二钝化层28的表面齐平。具体地,通过曝光、显影的方式,去除掉第一过孔201以外多余的导电填充材料,尽量保证只有接触过孔(指第一过孔201和第二过孔202)里面有,并且刚好填平。
本发明实施方式中,各层的具体制作方式不作特殊限定,可实现本发明即可。具体地,本发明实施方式中,可先按传统制程采用PVD(或CVD)成膜、曝光、显影、刻蚀等工艺连续制作出栅极22、栅绝缘层23、有源层24、源极和漏极25、第一钝化层26,再在第一钝化层26上涂布上RGB色阻形成色阻层27,并通过曝光显影等操作形成色阻层27上面的第一过孔201;再在色阻层27上和所述第一过孔201内沉积一层第二钝化层28,并通过曝光、显影、刻蚀形成所述第二过孔202,将与像素电极连接的SD电极25暴露出来;接着在第一过孔201和第二过孔202内填充导电填充材料形成导电填充层29,使得第一过孔201和第二过孔202内都填满导电填充材料,并与SD电极25有电连接;最后在第二钝化层28及所述导电填充层29上形成透明导电层30,再将所述透明导电层30通过曝光、显影、刻蚀,形成像素电极图案。所述透明导电层30的材质可以为ITO、IZO或薄层金属。
本发明实施例提供的COA基板的制作方法,在像素电极ITO Sputter之前,将由于COA制程所形成的过孔通过导电填充材料Coating制程进行填充,然后进行平坦化处理。之后,再次进行ITO的Sputter制程,最后对ITO进行图案化制程。该制作方法不仅可以有效地消除接触过孔处的地形断差,减少COA液晶面板出现气泡的风险;并且由于ITO在整个像素区几乎无地形断差,避免像素电极出现爬坡断线的可能;同时,由于接触过孔处的液晶也能有效控制, 对于像素的开口率也会有一定程度的改善,从而提升了整个液晶面板的显示品质。

Claims (10)

  1. 一种COA基板,其中,包括:
    衬底基板;
    栅极,设于所述衬底基板上;
    栅绝缘层,设于所述栅极和所述衬底基板上,覆盖所述衬底基板和所述栅极;
    有源层,位于所述栅极上方设于所述栅绝缘层上,用于形成沟道;
    源极和漏极,设于所述栅绝缘层上并分别与所述有源层的两端相接触;
    第一钝化层,覆盖所述源极、漏极、所述栅绝缘层以及所述有源层;
    色阻层,设于所述第一钝化层上,所述色阻层设置有贯通的第一过孔,以使所述第一钝化层暴露;
    第二钝化层,设于所述色阻层上和所述第一过孔内,所述第一过孔内设有贯通所述第二钝化层和所述第一钝化层的第二过孔,以使所述源极和漏极暴露;
    导电填充层,所述导电填充层充满所述第一过孔和所述第二过孔,所述导电填充层的导电填充材料包括有机导电材料;
    以及透明导电层,设于所述第二钝化层及所述导电填充层上。
  2. 如权利要求1所述的COA基板,其中,所述有机导电材料为聚对苯、聚吡咯、聚噻吩、聚苯基乙炔和聚苯胺中的一种或多种。
  3. 如权利要求1所述的COA基板,其中,所述导电填充层通过采用喷墨打印的方法获得。
  4. 如权利要求1所述的COA基板,其中,所述导电填充层通过涂覆所述 有机导电材料,再涂覆光刻胶,然后经光刻工艺获得。
  5. 如权利要求1所述的COA基板,其中,所述导电填充层的表面与所述第二钝化层的表面齐平。
  6. 一种COA基板的制作方法,其中,包括以下步骤:
    提供衬底基板,在所述衬底基板上形成栅极;
    在所述栅极及未被所述栅极覆盖的衬底基板上形成栅绝缘层;
    在所述栅极上方所述栅绝缘层上形成有源层;
    在所述栅绝缘层上形成分别与所述有源层的两端相接触的源极和漏极;
    在所述源极和漏极上形成覆盖所述源极、漏极、所述栅绝缘层以及所述有源层的第一钝化层;
    在所述第一钝化层上形成色阻层,所述色阻层设置有贯通的第一过孔,以使所述第一钝化层暴露;
    在所述色阻层上和所述第一过孔内形成第二钝化层,所述第一过孔内设有贯通所述第二钝化层和所述第一钝化层的第二过孔,以使所述源极和漏极暴露;
    在所述第一过孔和所述第二过孔内填充导电填充材料形成导电填充层,所述导电填充层的导电填充材料包括有机导电材料;
    在所述第二钝化层及所述导电填充层上形成透明导电层,再将所述透明导电层进行图案化处理形成像素电极。
  7. 如权利要求6所述的COA基板的制作方法,其中,所述有机导电材料为聚对苯、聚吡咯、聚噻吩、聚苯基乙炔和聚苯胺中的一种或多种。
  8. 如权利要求6所述的COA基板的制作方法,其中,所述在所述第一过 孔和所述第二过孔内填充导电填充材料形成导电填充层的具体操作为:采用喷墨打印的方法将所述有机导电材料填充在所述第一过孔和所述第二过孔内。
  9. 如权利要求6所述的COA基板的制作方法,其中,所述在所述第一过孔和所述第二过孔内填充导电填充材料形成导电填充层的具体操作为:在所述第一过孔和所述第二过孔内涂覆所述有机导电材料,再涂覆光刻胶,然后经光刻工艺获得。
  10. 如权利要求6所述的COA基板的制作方法,其中,在填充导电填充材料之后,对所述导电填充层进行平坦化处理,以使所述导电填充层的表面与所述第二钝化层的表面齐平。
PCT/CN2016/072444 2015-12-31 2016-01-28 一种coa基板及其制作方法 WO2017113467A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/915,237 US10007157B2 (en) 2015-12-31 2016-01-28 Color-filter-on-array substrate and method of manufacturing thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511030775.4 2015-12-31
CN201511030775.4A CN105607365A (zh) 2015-12-31 2015-12-31 一种coa基板及其制作方法

Publications (1)

Publication Number Publication Date
WO2017113467A1 true WO2017113467A1 (zh) 2017-07-06

Family

ID=55987399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072444 WO2017113467A1 (zh) 2015-12-31 2016-01-28 一种coa基板及其制作方法

Country Status (3)

Country Link
US (1) US10007157B2 (zh)
CN (1) CN105607365A (zh)
WO (1) WO2017113467A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783747A (zh) * 2017-01-03 2017-05-31 京东方科技集团股份有限公司 一种阵列基板的制作方法、阵列基板及显示装置
CN106681069A (zh) * 2017-01-03 2017-05-17 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN107068612B (zh) 2017-05-12 2021-04-13 京东方科技集团股份有限公司 一种过孔的制作方法及显示基板的制作方法、显示基板
CN107093562B (zh) * 2017-05-18 2019-03-26 京东方科技集团股份有限公司 一种有机膜基板制备方法、有机膜基板以及显示面板
CN106941094A (zh) * 2017-05-19 2017-07-11 京东方科技集团股份有限公司 阵列基板及其制作方法、显示面板
CN108363249B (zh) * 2018-03-14 2023-06-13 京东方科技集团股份有限公司 一种显示面板、其驱动方法及显示装置
CN109920798B (zh) * 2019-02-01 2021-04-09 云谷(固安)科技有限公司 阵列基板及其制作方法和显示面板
CN110828476B (zh) * 2019-10-16 2022-04-05 武汉华星光电技术有限公司 阵列基板及其制备方法、显示装置
CN110993609A (zh) * 2019-11-15 2020-04-10 深圳市华星光电半导体显示技术有限公司 阵列基板及其制备方法
CN111308794A (zh) * 2020-02-28 2020-06-19 Tcl华星光电技术有限公司 一种显示面板及显示装置
CN112965310B (zh) * 2021-02-26 2023-01-10 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1542520A (zh) * 2003-04-03 2004-11-03 统宝光电股份有限公司 液晶显示器
CN102074505A (zh) * 2009-11-20 2011-05-25 中芯国际集成电路制造(上海)有限公司 硅基液晶器件及其制造方法
CN104157612A (zh) * 2014-08-21 2014-11-19 深圳市华星光电技术有限公司 Tft阵列基板的制作方法及tft阵列基板结构
CN104503127A (zh) * 2014-12-01 2015-04-08 深圳市华星光电技术有限公司 阵列基板及其制作方法
CN104656325A (zh) * 2015-03-18 2015-05-27 深圳市华星光电技术有限公司 Coa型液晶面板的制作方法及coa型液晶面板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100779425B1 (ko) * 2001-12-29 2007-11-26 엘지.필립스 엘시디 주식회사 배면 노광을 이용한 비오에이 구조 액정표시장치 및 그의제조방법
US7893438B2 (en) * 2003-10-16 2011-02-22 Samsung Mobile Display Co., Ltd. Organic light-emitting display device including a planarization pattern and method for manufacturing the same
EP1895545B1 (en) * 2006-08-31 2014-04-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
KR20090082539A (ko) * 2008-01-28 2009-07-31 삼성전자주식회사 표시 기판, 이의 제조 방법 및 이를 구비한 액정표시패널
JP5417383B2 (ja) * 2011-06-13 2014-02-12 株式会社ジャパンディスプレイ 液晶表示装置及びその製造方法
CN102646684B (zh) * 2012-02-17 2015-03-11 京东方科技集团股份有限公司 一种阵列基板及其制造方法和显示设备
CN102810571B (zh) * 2012-08-13 2015-03-11 京东方科技集团股份有限公司 一种基板、显示装置及该基板的制备方法
CN105981148B (zh) * 2014-02-10 2019-01-04 夏普株式会社 半导体器件及其制造方法
CN104503150A (zh) * 2014-12-04 2015-04-08 深圳市华星光电技术有限公司 液晶面板及其制作方法
CN104701383B (zh) * 2015-03-24 2018-09-11 京东方科技集团股份有限公司 薄膜晶体管和阵列基板及其制作方法、显示装置
CN104965366B (zh) * 2015-07-15 2018-11-20 深圳市华星光电技术有限公司 阵列彩膜集成式液晶显示面板的制作方法及其结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1542520A (zh) * 2003-04-03 2004-11-03 统宝光电股份有限公司 液晶显示器
CN102074505A (zh) * 2009-11-20 2011-05-25 中芯国际集成电路制造(上海)有限公司 硅基液晶器件及其制造方法
CN104157612A (zh) * 2014-08-21 2014-11-19 深圳市华星光电技术有限公司 Tft阵列基板的制作方法及tft阵列基板结构
CN104503127A (zh) * 2014-12-01 2015-04-08 深圳市华星光电技术有限公司 阵列基板及其制作方法
CN104656325A (zh) * 2015-03-18 2015-05-27 深圳市华星光电技术有限公司 Coa型液晶面板的制作方法及coa型液晶面板

Also Published As

Publication number Publication date
US10007157B2 (en) 2018-06-26
CN105607365A (zh) 2016-05-25
US20180052373A1 (en) 2018-02-22

Similar Documents

Publication Publication Date Title
WO2017113467A1 (zh) 一种coa基板及其制作方法
US9627461B2 (en) Array substrate, its manufacturing method and display device
US8493541B2 (en) Array substrate, manufacturing method thereof and liquid crystal display
US8211797B2 (en) Metal wiring layer and method of fabricating the same
KR101322885B1 (ko) 어레이 기판과 액정 디스플레이
US6940578B2 (en) Method for fabricating liquid crystal display device
CN104298040A (zh) 一种coa基板及其制作方法和显示装置
JP6521534B2 (ja) 薄膜トランジスタとその作製方法、アレイ基板及び表示装置
WO2015090000A1 (zh) 阵列基板及其制作方法,显示装置
US20160041433A1 (en) Electrode structure and manufacturing method thereof, array substrate and manufacturing method thereof, and display device
CN104091886B (zh) 一种有机薄膜晶体管、阵列基板及制备方法、显示装置
US10871688B2 (en) Array substrate, manufacturing method thereof, and display device
WO2017012306A1 (zh) 阵列基板的制备方法、阵列基板及显示装置
CN107623009A (zh) 阵列基板的制备方法、阵列基板和显示装置
WO2017140058A1 (zh) 阵列基板及其制作方法、显示面板及显示装置
US20160254284A1 (en) Array substrate, method of preparing the same, and display device
CN106129063A (zh) 薄膜晶体管阵列基板及其制造方法
WO2013143294A1 (zh) 阵列基板、其制作方法以及显示装置
CN104392920A (zh) Tft阵列基板及其制作方法、显示装置
US10437122B2 (en) Display device, array substrate, pixel structure, and manufacturing method thereof
CN104952887A (zh) 一种阵列基板及其制备方法、显示装置
CN204116761U (zh) 一种coa基板和显示装置
CN111681990B (zh) 一种显示基板的制备方法、显示基板及显示装置
WO2017206659A1 (zh) Tft阵列基板及其制备方法、显示装置
JP2015233044A (ja) 有機半導体素子の製造方法および有機半導体素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14915237

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880277

Country of ref document: EP

Kind code of ref document: A1