WO2017105140A1 - 장내 생존율이 증대된 유산균의 코팅 방법 - Google Patents

장내 생존율이 증대된 유산균의 코팅 방법 Download PDF

Info

Publication number
WO2017105140A1
WO2017105140A1 PCT/KR2016/014824 KR2016014824W WO2017105140A1 WO 2017105140 A1 WO2017105140 A1 WO 2017105140A1 KR 2016014824 W KR2016014824 W KR 2016014824W WO 2017105140 A1 WO2017105140 A1 WO 2017105140A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactic acid
acid bacteria
lactobacillus plantarum
lactobacillus
casein
Prior art date
Application number
PCT/KR2016/014824
Other languages
English (en)
French (fr)
Inventor
신동주
여말희
김태현
문병석
박재승
Original Assignee
씨제이제일제당(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당(주) filed Critical 씨제이제일제당(주)
Priority to EP16876082.5A priority Critical patent/EP3391757A4/en
Priority to CN201680081897.2A priority patent/CN108697138A/zh
Priority to AU2016373461A priority patent/AU2016373461B2/en
Priority to US16/063,141 priority patent/US20190029311A1/en
Priority to JP2018531489A priority patent/JP6820340B2/ja
Publication of WO2017105140A1 publication Critical patent/WO2017105140A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/065Microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • A23P10/35Encapsulation of particles, e.g. foodstuff additives with oils, lipids, monoglycerides or diglycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/15Reconstituted or recombined milk products containing neither non-milk fat nor non-milk proteins
    • A23C9/1512Reconstituted or recombined milk products containing neither non-milk fat nor non-milk proteins containing isolated milk or whey proteins, caseinates or cheese; Enrichment of milk products with milk proteins in isolated or concentrated form, e.g. ultrafiltration retentate
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/04Preserving or maintaining viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/10Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a carbohydrate
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/32Foods, ingredients or supplements having a functional effect on health having an effect on the health of the digestive tract
    • A23V2200/3202Prebiotics, ingredients fermented in the gastrointestinal tract by beneficial microflora
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/32Foods, ingredients or supplements having a functional effect on health having an effect on the health of the digestive tract
    • A23V2200/3204Probiotics, living bacteria to be ingested for action in the digestive tract
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/169Plantarum

Definitions

  • the present application relates to a method for coating lactic acid bacteria and lactic acid bacteria composites produced thereby.
  • Lactic acid bacteria is also known as lactic acid bacteria or lactic acid bacteria, and is an important bacteria used as a formal agent by preventing abnormal fermentation by various bacteria inhabiting in the intestines of mammals.
  • Bulgaria lactic acid bacteria L. bulgaricus
  • aerobic lactic acid bacteria L. acidophilus
  • L. lactis produces DL-lactic acid, which is always present in milk and used to make butter or cheese and is the most important bacterium for dairy lactic acid bacteria.
  • Useful lactic acid bacteria as described above to settle in the intestine exerts various physiological activities, such as activation of intestinal motility, inhibiting harmful bacteria, promoting vitamins and immune enhancing substances and alleviating atopic skin.
  • physiological activities such as activation of intestinal motility, inhibiting harmful bacteria, promoting vitamins and immune enhancing substances and alleviating atopic skin.
  • lactic acid bacteria when lactic acid bacteria are made into powder or capsule form, many lactic acid bacteria are killed by gastric acid and bile acids in the long-term distribution process or in the body, and thus, many lactic acid bacteria cannot exhibit their original bioactive functions. Therefore, in order to overcome these drawbacks, a large capsule or a microcapsule of 50 ⁇ m or more is prepared by using starch, gelatin, alginic acid, cellulose, hardened oil, various emulsifiers as a coating material by coating various lactic acid bacteria with various coating agents. In addition, a method for encapsulating the functional unsaturated fatty acid in a high concentration than necessary to maintain the quality within the shelf life has been developed.
  • the present inventors completed the present application by developing a coating method of lactic acid bacteria which significantly improves the distribution stability and intestinal viability by coating the lactic acid bacteria by suspension / emulsion and extrusion methods.
  • step (c) adding the mixture of step (b) to a calcium-containing solution to form alginate-calcium beads, wherein the casein-coated lactic acid bacteria, coating agent, edible oil and lactobacillus plantarum EPS are Provided is a coating method of lactic acid bacteria, which is contained in the alginic acid-calcium beads.
  • the lactic acid bacteria complex may include alginate-calcium beads, casein-coated lactic acid bacteria, Lactobacillus plantarum EPS, coating agent and edible oils and fats.
  • the lactic acid bacteria is a lactic acid bacterium which can produce acid and proliferate in weakly acidic conditions, but are not limited to Lactobacillus genus (Lactobacillus sp.), Bifidobacterium (Bifidobacterium sp . ), Streptococcus sp. , Lactococcus sp . ), Enterococcus sp . Pediococcus sp .) Leuconostoc sp . ), The genus Vissela ( Weissella sp . ) Is characterized in that one.
  • Lactobacillus plantarum Lactobacillus casei , Lactobacillus rhamnosus , Lactobacillus acidophilus , Bifidobacterium bifiderum ( Lactobacillus plantarum ) Bifidobacterium bifidum), ronggum Bifidobacterium (Bifidobacterium longum), Bifidobacterium breather bracket (Bifidobacterium breve ), Streptococcus faecalis , Lactococcus lactis subsp. may be one of the lactis), more specifically, Korea Patent Registration No. 1178217 No.
  • Lactobacillus Planta room CJLP243 (Lactobacillus plantarum CJLP243), Korea Patent Registration No. 1486999 No. Lactobacillus Planta room CJ133 (Lactobacillus described in described in plantarum CJLP133), Korea Patent Registration No. 1075558 No. Lactobacillus Planta room CJLP136 (Lactobacillus plantarum CJLP136), Korea Patent Registration No. No. 1.25505 million Lactobacillus Planta room CJLP55 (Lactobacillus plantarum as described in described in CJLP55 ) and Lactobacillus plantarum CJLP56 ( Lactobacillus plantarum CJLP56 ) described in Korean Patent Registration No. 1075557.
  • the medium containing casein may be, for example, a medium including skim milk powder.
  • the casein may be spontaneously aggregated and granulated at an isoelectric point (pH 4.6) by an organic acid, which is a metabolite of proliferating lactic acid bacteria, and the microorganisms are collected together to form a casein-bacteria matrix during the granulation process.
  • the content of skim milk powder including casein may be 0.005% to 0.2% by weight based on 100% of the total medium composition. Specifically, the weight ratio may be 0.01 wt% to 0.1 wt%, and most specifically 0.02 wt% to 0.05 wt%.
  • the amount of skim milk powder is 0.2 wt% or more based on 100 wt% of the total medium composition, the amount of casein that is aggregated is high so that the suspension efficiency is low after collecting and if the amount of casein is less than 0.005 wt%, the casein-bacterial matrix ( It is difficult to form a matrix, which may reduce the efficiency of the coating.
  • the content of casein may range from 20% to 30% by weight in skim milk powder.
  • step (b) lactic acid bacteria coated in the step (a), Coatings, edible oils, Lactobacillus Plantarum EPS ( Extracellular Polymeric Substance) and mixing with a solution containing alginic acid.
  • Step (b) is a suspension and / or emulsion (suspension and / or emulsion) step of the lactic acid bacteria coated with casein produced in step (a) by a method such as centrifugal separation, coating, edible oil, lactobacillus It is mixed with a solution containing Planarum Extracellular Polymeric Substance (EPS) and alginic acid.
  • EPS Planarum Extracellular Polymeric Substance
  • the coating agent is used for the purpose of protecting the lactic acid bacteria from the external environment, and specifically, at least one of a porous polymer, a protein, and a thick polysaccharide may be selected.
  • the coating agent may be included in the range of 6 wt% to 61 wt%, specifically 10 wt% to 50 wt%, based on the weight of the lactic acid bacteria.
  • the porous polymer is a substrate having porous granularity, and serves to block inflow of external moisture and air.
  • the porous polymer is not particularly limited thereto, but may be any one or more of maltodextrin, chitosan, starch, polyethylene glycol, triacetin, and glycerin, and specifically, may include maltodextrin.
  • the porous polymer may be 5% to 50% by weight relative to the weight of lactic acid bacteria, specifically 10% to 30% by weight, and more specifically 14% to 16% by weight.
  • the protein serves to fill the pores.
  • the protein may be, but is not limited to, any one or more of skim milk powder, whey protein, and soy protein, and specifically, may be skim milk powder or whey protein.
  • the protein may be 1% to 10% by weight based on the weight of the lactic acid bacteria, specifically 2% to 8% by weight, more specifically 3% to 7% by weight.
  • the thickened polysaccharide plays a role of giving stability to the porous polymer, protein, etc. when used with the porous polymer, protein, and the like. It gives a sense of stability to the coating.
  • the thickened polysaccharide is not particularly limited thereto, but may be any one or more of gelatin, pectin, guar gum, agar, xanthan gum and gellan gum, and specifically, may be xanthan gum or gellan gum.
  • the thickened polysaccharide may be 0.001% to 1% by weight based on the weight of the lactic acid bacteria, specifically 0.005% to 0.5% by weight, and more specifically 0.008% to 0.1% by weight.
  • the solution containing the alginic acid may be an alginate such as sodium alginate, for example, in a concentration of 2 wt% to 4 wt%.
  • the ratio of the weight of the alginic acid-containing solution to the weight of the casein coated lactic acid bacteria may be 1: 1 to 10: 1, specifically 1: 1 to 8: 1, and most specifically 1: 1 to 4: 1. .
  • the edible oil and fat may be saturated fat such as palm oil and palm oil, and in one example, edible oil and fat may be used.
  • the edible oil and fat (A) dissolving the edible oil by heating to a temperature of 90 °C to 110 °C; And (b) cooling the heated edible oil in the range of 40 °C to 60 °C; it can be prepared by a method comprising a. More specifically, the solution may be prepared by heating and dissolving in saturated edible fat at 100 ° C., cooling it to 50 ° C., mixing the edible oil in a ratio of 1: 0.005 to 1: 0.1, or 0.2% by weight of the solution.
  • soybean lecithin After adding% soybean lecithin, it can be added to make an emulsion solution of about 10% by weight by emulsification through a homogenizer, and can be mixed at a ratio of 1: 0.05 to 1: 1 by weight of lactic acid bacteria by cooling to 50 ° C. .
  • EPS Extracellular Polymeric Substance of the Lactobacillus plantarum is a viscous polysaccharide, and has the characteristics of helping to improve intestinal viability and intestinal adhesion.
  • the Lactobacillus plantarum is Lactobacillus plantarum CJLP243 ( Lactobacillus plantarum in one example) CJLP243 ).
  • the EPS of the Lactobacillus plantarum is (a) adding 1% to 5% by weight of Glucose to the culture medium; (b) culturing the Lactobacillus plantarum in the medium at a temperature of 25 ° C. to 40 ° C., culturing until the glucose concentration in the medium is 0.01% by weight or less; And (c) separating the obtained culture by centrifugation to separate only the supernatant.
  • the method further comprises the step of concentrating the separated supernatant three to four times after step (c), or mixing 7 to 10 times the weight of dextrin with respect to the culture solution obtained after step (b).
  • the method may further include drying and powdering the mixture. Specifically, after sterilizing the culture medium added with 3% by weight of glucose to the MRS Broth (Difco) medium, the Lactobacillus plantarum, most specifically, Lactobacillus plantarum CJLP243 at 30 °C until the point of completely exhausted glucose After incubation, the sterilization filtrate obtained through centrifugation can be used as a concentrate or powdered.
  • the EPS of the Lactobacillus plantarum may be in the range of 0.01 wt% or less of residual glucose, Brix 7 to 8, used in the form of 3 to 4 times the concentrate, or 7 to 10 times the dextrin relative to the weight of the culture solid. Can be mixed and dried to powder.
  • the amount of the EPS added may be 1% by weight to 50% by weight based on the weight of the lactic acid bacteria.
  • the step of mixing the casein-coated lactic acid bacteria with a solution comprising a coating agent, edible oil, Extracellular Polymeric Substance (EPS) and alginic acid of Lactobacillus plantarum, each of these components are added simultaneously or sequentially added, Time difference may include mixing.
  • the lactic acid bacteria coated with casein and the coating agent may be mixed first, and water may be added to the mixture to obtain an aqueous mixture, and the alginic acid-containing solution may be further mixed with the aqueous mixture.
  • casein-coated lactic acid bacteria, coating agent and alginic acid-containing solution may be added and mixed together, or casein-coated lactic acid bacteria and alginic acid-containing solution may be mixed first, and then the coating agent may be added.
  • edible oils and fats can be added to suspend and / or emulsify the aqueous mixture.
  • prebiotics can optionally be further added. Specifically, when the lactic acid bacteria and the coating agent are mixed, the prebiotics may be added and mixed. The prebiotics serve to feed the lactic acid bacteria.
  • the prebiotics are not limited thereto, but may be any one or more selected from fructooligosaccharide, galactooligosaccharide, maltitol, lactinol, and inulin, and specifically, may be fructooligosaccharide or inulin.
  • the prebiotics may be 0.1% to 5% by weight based on the weight of the lactic acid bacteria.
  • a cryoprotectant may optionally be further added.
  • the cryoprotectant serves to prevent the lactic acid bacteria from being damaged or killed due to lyophilization.
  • the cryoprotectant may be, but is not limited to, for example, any one or more of dextrin, sucrose, glycerol, mannitol, and trehalose, and specifically includes trehalose and may or may not further include other cryoprotectants. .
  • the cryoprotectant may be 5% to 50% by weight, specifically 10% to 30% by weight, more specifically 14% to 16% by weight relative to the weight of the lactic acid bacteria.
  • the freeze protection agent may be added at any stage before freeze-drying, specifically, when the lactic acid bacteria and the coating agent are mixed, the freeze protection agent may be added and mixed.
  • the weight ratio of the coating agent and the cryoprotectant to the casein-coated lactic acid bacteria is preferably mixed so that the weight ratio is 0.1: 1 to 5: 1.
  • step (c) adding the mixture of step (b) to a calcium-containing solution, With casein Coated lactic acid bacteria, coatings, edible oils, Lactobacillus Plantarum Alginate-calcium containing EPS inside Bead Forming step.
  • Step (c) is an extrusion step, in which the suspension and / or emulsion coated coated lactic acid bacteria and alginic acid-containing mixture are reacted with a calcium-containing solution to form a matrix through alginate-calcium crosslinking. Due to the lactic acid bacteria are collected in the beads in the calcium-containing solution, the coating agent, EPS, edible oil and the like mixed in the step (b) may be collected together in the beads.
  • the bead particle production through the alginic acid-calcium reaction is a process condition is carried out under room temperature conditions (for example, 25? J), less physical stress, less adverse effects on the survival rate of live bacteria.
  • room temperature conditions for example, 25? J
  • the formation of alginate-calcium bead particles using the extrusion method has a pH-dependent release property, which does not decompose in an acid such as gastric acid, but decomposes slowly in neutral, which is an intestinal environment, thereby improving the intestinal viability of lactic acid bacteria. It is a big help.
  • step (b) (1) maintaining the mixture of step (b) at 25 ° C to 35 ° C;
  • step (b) injecting the mixture of step (b) into the stirred calcium ion solution under pressure to prepare a solution containing alginate-calcium beads.
  • Forming the alginic acid-calcium beads may further include (4) storing the alginic acid-calcium bead containing solution at a temperature of 4 ° C. to 20 ° C. for 30 minutes to 60 minutes.
  • Step (c) maintains the mixture of step (b) suspended and / or emulsion at a temperature of 25 °C to 35 °C.
  • a solution of calcium ions at a concentration of 0.1 M to 1 M can be used, specifically, for example, a 100 mM calcium lactate solution is placed in a glass beaker and stirred.
  • the mixture of step (b) previously emulsified and / or suspended is directly reacted with the calcium ion solution bath, for example, by injection of a 10 mL syringe in the form of a needle or spraying through a micronozzle, and a calcium ion solution bath. Maintains agitation to prevent individual reaction particles from agglomerating with each other.
  • step (b) pressure may be applied to form a bead by direct dropping into a calcium ion solution beaker.
  • the solution bath including the beads can be aged by further storing for 30 to 60 minutes at 4 °C to 20 °C conditions. Through the aging process it is possible to increase the density of the particle structure.
  • beads are collected through a 100 to 200 mesh screen in a spraying process using a microspray nozzle and washed twice with distilled water to remove residual calcium solution. You can collect the back beads.
  • step (d) containing lactic acid bacteria prepared in step (c) Alkyne acid - Calcium beads Freeze drying step.
  • Step (d) is a step of freeze-drying, the lactic acid bacteria-containing alginate-calcium beads prepared after the step (c) are transferred to a freeze-drying tray (Tray), a rapid freezing condition at a temperature of -40 °C to -70 °C 12 After holding for about 24 hours to 24 hours, water can be removed while thawing in a freeze dryer.
  • a freeze-drying tray Tray
  • a rapid freezing condition at a temperature of -40 °C to -70 °C 12
  • the lactic acid bacteria complex may include alginic acid-calcium beads, casein coated lactic acid bacteria, Lactobacillus plantarum EPS, coating agent and edible oils and fats.
  • the alginate-calcium beads may include the lactic acid bacteria coated with casein and EPS of the Lactobacillus plantarum.
  • the lactic acid bacteria complex, including lactic acid-calcium beads and EPS of lactic acid bacteria and lactic acid bacteria coated with casein, in the calcium alginate beads further include any one or more of edible oils, coatings, prebiotics and cryoprotectants. Can be. Specifically, edible oils and fats may be included in the calcium alginate beads.
  • the lactic acid bacteria complex can be significantly improved in storage stability and intestinal viability compared to conventional lactic acid bacteria by casein coating the lactic acid bacteria and inclusion in alginate-calcium beads.
  • the lactic acid bacteria complex may be in the form of a solid, specifically a powder, more specifically a freeze-dried powder.
  • each component of the lactic acid bacteria complex is the same as described in the embodiment of the lactic acid bacteria coating method, so the description is omitted in order to avoid overlapping substrates.
  • the present applicants can improve the distribution stability and intestinal viability of lactic acid bacteria by producing lactic acid bacteria complexes by multiplying the lactic acid bacteria by suspension and / or emulsion and extrusion methods.
  • 1 is a flow chart illustrating the manufacturing process of the lactic acid bacteria complex according to an aspect of the present application.
  • Lactobacillus plantarum CJLP243 strain was incubated for 18 to 24 hours at 37 °C in MRS liquid medium (Difco, USA) containing 0.02% by weight of skim milk powder. The supernatant was discarded using a centrifuge, and only lactic acid bacteria coated with casein were recovered.
  • MRS liquid medium Difco, USA
  • trehalose about 15% by weight of the cell weight
  • maltodextrin about 15% by weight of the cell weight
  • skim milk powder about 4% by weight of the cell weight
  • xanthan gum about 0.01% by weight of the cell weight
  • pr Lactoligosaccharides 2% by weight of bacteria
  • sodium alginate was solubilized at 2% by weight to prepare an alginic acid solution.
  • the lactic acid bacteria mixed with the cryoprotectant, the coating agent and the prebiotics-containing solution and the weight of the prepared alginic acid solution were mixed in a ratio of 1: 4 to the weight of the lactic acid bacteria.
  • Saturated fat solids such as palm oil
  • 0.2% by weight of soybean lecithin to the weight of the solution was added and then emulsified through a homogenizer to make an emulsion of about 10% by weight, and cooled to 50 °C to the final step of emulsification Lactobacillus was added with EPS at a ratio of 1: 0.5.
  • the EPS is sterilized after the culture medium added 3% by weight of glucose to MRS Broth (Difco) medium, the microorganism Lactobacillus plantarum CJLP243 strain at 30 °C until the concentration of glucose in the medium is 0.01% by weight or less, centrifugation
  • the sterilization filtrate obtained through the separation is concentrated or powdered.
  • Concentrate form or culture solids were used by mixing 7 to 10 times the dextrin mixed with the concentrated form or culture solids to dry and powdered.
  • the EPS concentrate or powder was added by suspension at a concentration of 1: 0.2 relative to the weight of the cells.
  • the suspended lactic acid bacteria-containing mixture was kept at 30 ° C. prior to coating for proper viscosity maintenance.
  • Comparative example 1 Preparation of Lactic Acid Bacteria Freeze-dried Body
  • Lactobacillus plantarum CJLP243 strain was incubated at 37 ° C. for 18 to 24 hours in MRS liquid medium (Difco, USA). The supernatant was discarded using a centrifugal separator and only lactic acid bacteria were recovered. Trehalose (about 15% by weight of the cell weight) was sterilized by hydrolysis and solubilization. The lactic acid bacteria and the cryoprotectant were mixed and suspended. The lactic acid bacteria were collected using a centrifuge. The collected lactic acid bacteria were transferred to a lyophilized tray, held for about 12 hours to 24 hours under rapid freezing conditions (-40 ° C. or lower), and then water was removed while thawing in a freeze dryer.
  • Comparative Example 1 compared with Example 1, the step of culturing in a medium containing casein, mixing the coating agent and prebiotics, mixing the alginic acid solution, mixing the edible oil and fat, and EPS Mixing and forming calcium alginate beads were omitted.
  • Lactobacillus plantarum CJLP243 strain was incubated for 18 to 24 hours at 37 °C in MRS liquid medium (Difco, USA) containing 0.02% by weight of skim milk powder. The supernatant was discarded using a centrifuge, and only lactic acid bacteria coated with casein were recovered.
  • MRS liquid medium Difco, USA
  • trehalose about 15% by weight of the cell weight
  • maltodextrin about 15% by weight of the weight of the cell
  • skim milk powder about 4% by weight of the weight of the cell
  • xanthan gum about 0.01% by weight of the weight of the cell
  • Example 1 In comparison with Example 1, the mixing of the prebiotics, the mixing of the alginic acid solution, the mixing of edible oils and EPS, and the step of forming calcium alginate beads were omitted in comparison with Example 1.
  • Comparative example 3 alginic acid-calcium Bead of mine, With casein Coated lactic acid bacteria-containing complexes (coating agents, edible oils and Prebiotics Processed, EPS not processed) Freeze-dried Produce
  • Lactobacillus plantarum CJLP243 strain was incubated for 18 to 24 hours at 37 °C in MRS liquid medium (Difco, USA) containing 0.02% by weight of skim milk powder. The supernatant was discarded using a centrifuge, and only lactic acid bacteria coated with casein were recovered.
  • MRS liquid medium Difco, USA
  • trehalose about 15% by weight of the cell weight
  • maltodextrin about 15% by weight of the weight of the cell
  • skim milk powder about 4% by weight of the weight of the cell
  • xanthan gum about 0.01% by weight of the weight of the cell
  • fructooligosaccharide 2% by weight of the cell weight
  • the lactic acid bacteria and the cryoprotectant and the coating-containing solution were mixed and suspended. Thereafter, sodium alginate was solubilized at 2% by weight to prepare an alginic acid solution.
  • the alginic acid solution was mixed at a ratio of 1: 4 based on the weight of the lactic acid bacteria.
  • Saturated fat solids, such as palm oil, were dissolved by heating to 100 °C, 0.2% by weight of soybean lecithin to the weight of the solution was added and then emulsified through a homogenizer to make an emulsion of about 10% by weight, and cooled to 50 °C to the final step of emulsification Lactobacillus was added in a ratio of 1: 0.5 by weight.
  • the suspended lactic acid bacteria-containing solution was maintained at 30 °C to maintain an appropriate viscosity.
  • 100 mM calcium lactate solution was placed in a glass beaker to maintain stirring conditions.
  • beads were applied by dropping directly onto a calcium lactate solution beaker.
  • the solution bath containing the beads was cooled to 4 °C condition and stored for 30 minutes.
  • Beads were collected through a 100 mesh sieve and washed twice with distilled water to collect the beads. The collected particles were transferred to a lyophilized tray, held at about 12 hours to 24 hours under rapid freezing conditions (-40 ° C. or lower), and then water was removed while thawing in a freeze dryer.
  • Example 1 The prepared lactic acid bacteria or lactic acid bacteria complexes of Example 1 and Comparative Examples 1 to 3 were evaluated for intestinal viability and circulation storage by the following method and the results are shown in Tables 1 to 4 below.
  • the lactic acid bacteria pass through the digestive tract and are in an environment that can be killed by various factors.
  • the main causes include death by gastric acid secreted from the stomach and bile acid secreted by the duodenum.
  • the strong acid of gastric acid directly acts on the bacteria to induce death, and bile acids act on the killing of bacteria by various digestive enzymes (mainly lipolytic enzymes) or osmotic stress.
  • Simulated Stomach Duodenum Passage (SSDP) MG Vizoso Pinto, CMAP Franz, U. Schillinger, and WH Holzapfel, “A simplified model of one of the methods for evaluating viability of viable bacteria by gastric / biliary acid. Lactobacillus spp.
  • the main test method of SSDP is to maintain and incubate a certain concentration of live or live bacteria powder in MRS medium under acidic conditions (pH 3.0, pH condition above food intake) for 1 hour, and further, bile acid conditions (artificial bile solutions, Oxgall / salts) is a method of checking the survival rate of bacteria by 1 hour by staying incubated for 2 hours.
  • the SSDP assay is a continuous application of gastric-biliary conditions, it is more severe than the survival of the bacteria, but more suitable for the human digestive environment.
  • the dehydrated and powder formulated lactic acid bacteria may be more vulnerable in the harsh environment of the SSDP test because the cells are inactivated, but are considered to be more suitable for the evaluation model for the final intake of powdered lactic acid bacteria.
  • test sample was diluted to a ratio of 1: 100 in Saline Buffer and placed in a sterile bag and homogenized. Samples that were serially diluted with Saline Buffer in accordance with cell weight were plated on MRS agar medium (Agar Plate). Plates were harvested and incubated for 24 hours under 37 ° C aerobic conditions and counted (initial bacterial count data).
  • MRS Broth was completely dissolved in distilled water at a concentration of 55 g / l, adjusted to pH 3.0 with 5M HCl under stirring, and then sterilized (121 ° C., 15 minutes) to prepare an acidic MRS medium.
  • 50 ml of acidic MRS medium was dispensed into a sterile Flask, and 1/100 equivalent of the sample was added and shaken sufficiently to dissolve. (Check the exact time when the sample was dissolved.)
  • Shake culture was performed at 37 ° C. and 80 rpm. After 1 hour, 1 ml of the sample was serially diluted with Saline Buffer and plated on MRS Agar Plate. Plates were harvested and left incubated for 24 hours under 37 ° C. aerobic conditions and counted. (1 Hour Data)
  • 10 wt% Oxgall Solution After dissolving Oxgall (Difco) in distilled water at a concentration of 10 wt%, sterilization (121 °C 15 minutes) to prepare a 10 wt% Oxgall Solution. Immediately after taking the sample, 20 ml of 10 wt% Oxgall Solution was added to the Flask, followed by the addition of 85 ml of artificial bile Buffer and shaken well. The artificial bile buffer was dissolved in distilled water at a concentration of NaHCO 3 (6.4 g / l), KCl (0.239 g / l), NaCl (1.28 g / l), sterilized after adjusting to pH 7.4 with 5M HCl (121 ° C.
  • Table 1 is a logarithm of the experimental results
  • Table 2 is a measured value of the experimental results.
  • the amount of reduction was about 4.3 log in gastric acid and 1.1 log in bile acid.
  • it was stable in gastric acid, but decreased by about 2.3 log in bile acid.
  • the survival rate was improved by about 2 log (100 times) compared to Comparative Example 2 with a 0.4 log reduction width under gastric / bile acid conditions.
  • the survival rate of 0.1 log or more was improved compared to Comparative Example 3.
  • the freeze-dried lactic acid bacteria powder gradually decreases in activity with storage temperature and storage period.
  • factors affecting activity include temperature, oxygen, and moisture.
  • lyophilized lactic acid bacteria powder is very hygroscopic, so a lot of content reduction occurs at the beginning of storage.
  • deoxygenating agent to the packaging material or dehumidification, but ultimately, the storage period of the lactobacillus powder itself depends on the degree of coating. Therefore, in order to alleviate hygroscopicity due to the raw material properties, excipients such as glucose and dextrin are mixed and stored within a range of 1 to 10 times compared to the original.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nutrition Science (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

본 출원은, (a) 유산균을 카제인이 포함된 배지에서 배양하여 상기 유산균을 카제인으로 코팅하는 단계; (b) 상기 카제인으로 코팅된 유산균을, 코팅제, 식용유지, 락토바실러스 플란타룸의 EPS(Extracellular Polymeric Substance) 및 알긴산을 포함하는 용액과 혼합하는 단계; 및 (c) 상기 (b)단계의 혼합물을 칼슘 함유 용액에 첨가하여 알긴산-칼슘 비드를 형성하는 단계를 포함하고, 상기 카제인으로 코팅된 유산균, 코팅제, 식용유지 및 락토바실러스 플란타룸의 EPS는 상기 알긴산-칼슘 비드 내부에 포함되는 것인, 유산균의 코팅 방법, 및 상기 코팅 방법에 의해 제조된 유산균 복합체에 관한 것이다.

Description

장내 생존율이 증대된 유산균의 코팅 방법
본 출원은 유산균의 코팅 방법 및 그에 의해 제조된 유산균 복합체에 관한 것이다.
유산균(lactic acid bacteria)은 락트산균 또는 젖산균이라고도 하며, 포유류의 장내에 서식하여 잡균에 의한 이상 발효를 방지하여 정장제로도 이용되는 중요한 세균이다. 예를 들어, 불가리아 젖산균(L. bulgaricus )은 가장 오래 전부터 알려진 유산균으로, 요구르트의 제조에 사용되며, 치즈나 발효 버터 제조 시의 스타터로도 사용된다. 또한, 호기성 젖산균(L. acidophilus)은 사람 및 모든 포유류와 그 밖의 동물의 장에 존재하며, 버터 또는 우유의 제조나 장내 자가 중독의 치료에 사용된다. 또한, 락티스 젖산 구균(L. lactis)은 DL-젖산을 생성하며, 이것은 항상 우유 속에 존재하여 버터 또는 치즈 제조에 사용되며 낙농용 젖산균으로서 가장 중요한 균이다.
상기와 같이 유용한 유산균은 장에 정착하여 장관 운동 활성화, 유해균 억제, 비타민 및 면역증강 물질 촉진 및 아토피 피부의 완화 등 다양한 생리활성 효과를 발휘한다. 그러나 상기 생리학적 효과를 발휘하기 위해서는, 기존에 요거트 등 식품으로 섭취하는 양보다 훨씬 더 많은 양의 유산균을 섭취해야 한다. 따라서 유산균만을 분리하여 분말이나 캡슐 형태로 간편하게 먹는 방법이 대중화되어 있다.
그러나 유산균을 분말이나 캡슐형으로 만들게 되면, 장기적인 유통 과정 중에 또는 체내에 위산 및 담즙산으로 인해 사멸하는 유산균이 많아 유산균 본래의 생리 활성 기능을 발휘하지 못하게 되는 경우가 많다. 따라서 최근에는 이러한 단점을 극복하기 위해, 각종 피복제를 사용하여 유산균을 코팅시키는 방법으로 전분, 젤라틴, 알긴산, 셀룰로오스, 경화유, 각종 유화제 등을 코팅 물질로 사용하여 거대 캡슐이나 50μm 이상의 미세 캡슐을 제조하거나, 기능성 불포화지방산을 필요 이상 고농도로 함유하도록 캡슐화하여 유통기간 내에 품질을 유지하도록 하는 방법이 개발되고 있다.
이에 본 발명자들은 현탁/유화(suspension and emulsion) 및 압출 (extrusion) 방법으로 유산균을 코팅하여 유통 안정성 및 장내 생존율이 현저하게 개선되는 유산균의 코팅 방법을 개발함으로써 본 출원을 완성하였다.
상기와 같은 과제를 해결하기 위하여, 본 출원의 일 양태는,
(a) 유산균을 카제인이 포함된 배지에서 배양하여 상기 유산균을 카제인으로 코팅하는 단계;
(b) 상기 카제인으로 코팅된 유산균을, 코팅제, 식용유지, 락토바실러스 플란타룸의 EPS(Extracellular Polymeric Substance) 및 알긴산을 포함하는 용액과 혼합하는 단계; 및
(c) 상기 (b)단계의 혼합물을 칼슘 함유 용액에 첨가하여 알긴산-칼슘 비드를 형성하는 단계를 포함하고, 상기 카제인으로 코팅된 유산균, 코팅제, 식용유지 및 락토바실러스 플란타룸의 EPS는 상기 알긴산-칼슘 비드 내부에 포함되는 것인, 유산균의 코팅 방법을 제공한다.
또한, 본 출원의 다른 양태는 상기의 제조 방법으로 제조된 코팅된 유산균 복합체를 제공한다. 상기 유산균 복합체는, 알긴산-칼슘 비드, 카제인으로 코팅된 유산균, 락토바실러스 플란타룸의 EPS, 코팅제 및 식용유지를 포함할 수 있다.
이하, 본 출원의 양태들에 대해 상세히 설명한다.
(a) 유산균을 카제인이 포함된 배지에서 배양하여 유산균을 카제인으로 코팅하는 단계.
상기 유산균은 산을 생성하고 약산성 조건에서도 증식할 수 있는 유산균으로서, 이에 한정되지는 않지만 락토바실러스 속(Lactobacillus sp .), 비피도박테리움 속(Bifidobacterium sp .), 스트렙토코커스 속(Streptococcus sp.), 락토코커스 속(Lactococcus sp .), 엔테로코커스 속(Enterococcus sp .), 페디오코커스 속(Pediococcus sp.) 류코노스톡 속(Leuconostoc sp .), 비셀라 속(Weissella sp .) 중 어느 하나인 것을 특징으로 한다. 구체적으로는, 락토바실러스 플란타룸 (Lactobacillus plantarum), 락토바실러스 카제이 (Lactobacillus casei), 락토바실러스 람노서스(Lactobacillus rhamnosus), 락토바실러스 아시도필루스 (Lactobacillus acidophilus), 비피도박테리움 비피덤 (Bifidobacterium bifidum), 비피도박테리움 롱굼 (Bifidobacterium longum), 비피도박테리움 브레브 (Bifidobacterium breve), 스트렙토코커스 훼칼리스 (Streptococcus faecalis), 락토코커스 락티스 (Lactococcus lactis subsp. lactis) 중 하나일 수 있으며, 더욱 구체적으로는 한국특허등록번호 제 1178217호에 기재된 락토바실러스 플란타룸 CJLP243(Lactobacillus plantarum CJLP243), 한국특허등록번호 제 1486999호에 기재된 락토바실러스 플란타룸 CJ133(Lactobacillus plantarum CJLP133), 한국특허등록번호 제 1075558호에 기재된 락토바실러스 플란타룸 CJLP136 (Lactobacillus plantarum CJLP136), 한국특허등록번호 제 1255050호에 기재된 락토바실러스 플란타룸 CJLP55 (Lactobacillus plantarum CJLP55) 및 한국특허등록번호 제 1075557호에 기재된 락토바실러스 플란타룸 CJLP56(Lactobacillus plantarum CJLP56) 중 어느 하나 이상일 수 있다.
상기 균주는 생명공학연구원 유전자은행에 기탁되어 있으며, 당업자가 생명공학연구원 유전자은행에서 용이하게 입수 가능한 균주이다.
상기 카제인이 포함된 배지는 예컨대, 탈지 분유를 포함한 배지일 수 있다. 상기 카제인은 증식 중인 유산균들의 대사 산물인 유기산 등에 의해 등전점 (pH 4.6)에 이르러 자연적으로 응집하여 입자화될 수 있고, 입자화 과정 중에 미생물들을 함께 포집하여 카제인-균 매트릭스(Matrix)를 형성하여 유산균을 코팅할 수 있다. 카제인이 포함된 탈지 분유의 함량은 전체 배지 조성물을 100 중량을 기준으로, 0.005 중량% 내지 0.2 중량% 일 수 있다. 구체적으로는 0.01 중량% 내지 0.1 중량% 일 수 있고, 가장 구체적으로는 0.02 중량% 내지 0.05 중량% 일 수 있다. 탈지 분유의 함량이 전체 배지 조성물 100 중량을 기준으로, 0.2 중량% 이상인 경우 응집되는 카제인의 양이 많아 집균 후 현탁(suspension) 효율이 떨어지고 0.005 중량% 이하일 경우 카제인의 양이 적어 카제인-균 매트릭스(Matrix)의 형성이 어려워 코팅의 효율이 감소할 수 있다. 카제인의 함량은 탈지 분유 중 20 중량% 내지 30 중량%의 범위일 수 있다.
(b) 상기 (a) 단계에서 코팅된 유산균을, 코팅제, 식용유지, 락토바실러스 플란타룸의 EPS( Extracellular Polymeric Substance) 및 알긴산을 포함하는 용액과 혼합하는 단계.
(b)단계는 현탁 및/또는 유화 (suspension and/or emulsion) 단계로 상기 (a)단계에서 생성된 카제인으로 코팅된 유산균을 원심 분리 등의 방법으로 집균한 후, 코팅제, 식용유지, 락토바실러스 플란타룸의 EPS(Extracellular Polymeric Substance) 및 알긴산을 포함하는 용액과 혼합한다.
상기 코팅제는 유산균을 외부환경으로 보호하기 위한 목적으로 사용되며, 구체적으로는 다공성 폴리머, 단백질 및 증점 다당류 중에서 어느 하나 이상 선택될 수 있다. 상기 코팅제는 유산균 중량 대비 6 중량% 내지 61 중량%, 구체적으로는 10 중량% 내지 50 중량%의 범위로 포함될 수 있다.
상기 다공성 폴리머는 다공성 입자성을 가진 기제로서, 외부 수분 및 공기의 유입을 차단하는 역할을 한다. 상기 다공성 폴리머는 구체적으로 이에 한정되지는 않지만 말토덱스트린, 키토산, 전분, 폴리에틸렌글리콜, 트리아세틴 및 글리세린 중에 어느 하나 이상 일 수 있고, 구체적으로는 말토덱스트린를 포함할 수 있다.
상기 다공성 폴리머는 유산균 중량 대비 5 중량% 내지 50중량% 일 수 있고, 구체적으로 10중량% 내지 30중량%일 수 있고, 더 구체적으로는 14중량% 내지 16중량% 일 수 있다.
상기 단백질은 공극을 채우기 위한 역할을 한다. 상기 단백질은 구체적으로 이에 한정되지는 않지만 탈지 분유, 유청 단백 및 대두 단백질 중에 어느 하나 이상일 수 있고, 구체적으로는 탈지 분유 또는 유청 단백 일 수 있다.
상기 단백질은 유산균 중량 대비 1중량% 내지 10중량% 일 수 있고, 구체적으로 2중량% 내지 8중량%일 수 있고, 더 구체적으로는 3중량% 내지 7중량% 일 수 있다.
상기 증점 다당류는 다공성 폴리머, 단백질 등과 함께 사용 시, 다공성 폴리머, 단백질 등에 안정감을 주는 역할을 한다. 코팅제에 안정감을 주는 역할을 한다. 상기 증점 다당류는 구체적으로 이에 한정되지는 않지만, 젤라틴, 펙틴, 구아검, 한천, 잔탄검 및 젤란검 중에 어느 하나 이상 일 수 있고, 구체적으로는 잔탄검 또는 젤란검 일 수 있다.
상기 증점 다당류는 유산균 중량 대비 0.001중량% 내지 1중량% 일 수 있고, 구체적으로 0.005중량% 내지 0.5중량%일 수 있고, 더 구체적으로는 0.008중량% 내지 0.1중량% 일 수 있다.
상기 알긴산을 포함하는 용액은, 알기네이트, 예컨대, 알긴산 나트륨을 예컨대 2중량% 내지 4중량% 농도로 수용화한 것일 수 있다. 알긴산 함유 용액의 중량과 카제인 코팅된 유산균 중량의 비는 1:1 내지 10:1, 구체적으로는 1:1 내지 8:1 일 수 있으며, 가장 구체적으로는 1:1 내지 4:1일 수 있다.
상기 식용유지는 야자유, 팜유 등의 포화지방일 수 있으며, 일 예에서 고체 상태 식용유지를 사용할 수 있다.
상기 식용유지는 (a) 식용유지를 90℃ 내지 110 ℃의 온도로 가열하여 용해시키는 단계; 및 (b) 상기 가열된 식용유지를 40℃ 내지 60 ℃의 범위로 냉각하는 단계;를 포함하는 방법으로 제조될 수 있다. 보다 구체적으로, 식용 포화지방에 가수하여 100 ℃로 가열 용해 후, 50℃로 냉각하여 제조할 수 있으며, 유산균 중량 대비 식용유지를 1:0.005 내지 1:0.1의 비율로 혼합하거나, 용액 중량대비 0.2중량%의 대두 레시틴을 첨가 후, 가수 하여 균질기를 통해 유화해 약 10중량%의 유화 solution을 만들어서 첨가할 수 있으며, 50 ℃로 냉각하여 유산균 중량 대비 1: 0.05 내지 1:1 비율로 혼합할 수 있다.
상기 락토바실러스 플란타룸의 EPS (Extracellular Polymeric Substance)는 점성이 있는 다당류이며, 장내 생존율 향상 및 장내 부착성 향상에 도움을 주는 특징이 있다.
상기 락토바실러스 플란타룸은 일 예에서 락토바실러스 플란타룸 CJLP243 (Lactobacillus plantarum CJLP243)일 수 있다.
상기 락토바실러스 플란타룸의 EPS는 (a) 배양 배지에 Glucose를 1 중량% 내지 5 중량%를 첨가하는 단계; (b) 락토바실러스 플란타룸을 25℃ 내지 40 ℃의 온도에서 상기 배지에서 배양하는 단계로, 당해 배지 내 glucose 농도가 0.01 중량% 이하일 때까지 배양하는 단계; 및 (c) 수득된 배양물을 원심분리를 통해 상등액만을 분리하는 단계를 포함하는 방법으로 제조될 수 있다.
임의로, 상기 (c)단계 이후 상기 분리된 상등액을 3배 내지 4배로 농축시키는 단계를 추가로 포함하거나, 상기 (b) 단계 이후 수득된 배양액에 대해 고형분 대비 7 내지 10 배 중량의 덱스트린을 혼합하고, 상기 혼합물을 건조하고 분말화하는 단계를 추가로 포함할 수 있다. 구체적으로는, MRS Broth(Difco) 배지에 glucose를 3중량% 첨가한 배양액을 멸균 후에 상기 락토바실러스 플란타룸, 가장 구체적으로는 락토바실러스 플란타룸 CJLP243을 30℃에서 glucose를 완전히 소진할 시점까지 배양한 후, 원심분리를 통해 습득한 제균 여액을 농축액 또는 분말화 하여 사용할 수 있다.
상기 락토바실러스 플란타룸의 EPS는 잔존 glucose 농도 0.01중량% 이하, Brix 7 내지 8의 범위일 수 있고, 3 배 내지 4배의 농축액 형태로 사용하거나, 배양액 고형분 중량 대비 7 배 내지 10 배의 덱스트린을 혼합하여 건조해 분말화시켜 사용할 수 있다.
상기 EPS의 첨가량은 유산균 중량 대비 1중량% 내지 50중량%일 수 있다.
상기 카제인으로 코팅된 유산균을, 코팅제, 식용유지, 락토바실러스 플란타룸의 EPS(Extracellular Polymeric Substance) 및 알긴산을 포함하는 용액과 혼합하는 단계는, 이들 각 성분을 동시에 첨가하거나 혹은 순차적으로 첨가하거나, 시간 차를 두어 혼합하는 것을 포함할 수 있다. 구체적으로는 카제인으로 코팅된 유산균과 코팅제를 먼저 혼합하고, 상기 혼합물에 물을 첨가하여 수성 혼합물을 얻고, 상기 수성 혼합물에 알긴산 함유 용액을 추가 혼합할 수 있다. 다른 예에서는 카제인으로 코팅된 유산균, 코팅제 및 알긴산 함유 용액을 함께 첨가하여 혼합하거나, 카제인으로 코팅된 유산균과 알긴산 함유 용액을 먼저 혼합하고, 이후 코팅제를 추가하는 것도 가능하다.
이후, 카제인으로 코팅된 유산균, 코팅제 및 알긴산 함유 용액을 포함하는 수성 혼합물에, 식용유지와 EPS를 첨가하여 상기 수성 혼합물을 현탁 및/또는 유화시킬 수 있다.
상기 (b) 단계의 혼합시, 프리바이오틱스를 임의로 추가 첨가할 수 있다. 구체적으로는 유산균과 코팅제를 혼합시 프리바이오틱스를 추가 첨가하여 혼합할 수 있다. 상기 프리바이오틱스는 유산균의 먹이가 되는 역할을 한다. 상기 프리바이오틱스는 이에 한정되지는 않지만 프락토올리고당, 갈락토올리고당, 말티톨, 락티놀 및 이눌린 중에서 선택된 어느 하나 이상일 수 있고, 구체적으로는 프락토올리고당 또는 이눌린일 수 있다.
상기 프리바이오틱스는 유산균 중량 대비 0.1중량% 내지 5중량% 일 수 있다.
또한, 상기 (b) 단계의 혼합시, 동결 보호제를 임의로 추가 첨가할 수 있다.
상기 동결 보호제는 동결건조로 인해, 유산균이 손상 또는 사멸하는 것을 방지하는 역할을 한다. 상기 동결 보호제는 이에 한정되지는 않지만, 예를 들어, 덱스트린, 자당, 글리세롤, 만니톨 및 트레할로스 중에 어느 하나 이상일 수 있고, 구체적으로는 트레할로스를 포함하며 다른 동결 보호제를 추가로 포함하거나 포함하지 않을 수 있다.
상기 동결 보호제는 유산균 중량 대비 5 중량% 내지 50 중량% 일 수 있고, 구체적으로 10 중량% 내지 30 중량%일 수 있고, 더 구체적으로는 14 중량% 내지 16 중량%일 수 있다.
상기 동결 보호제는 동결 건조 전 임의의 단계에 첨가될 수 있으나, 구체적으로는, 유산균과 코팅제를 혼합시 동결 보호제를 추가 첨가하여 혼합할 수 있다. 이때 코팅제 및 동결 보호제의 중량합 대 카제인 코팅된 유산균의 중량비가 0.1:1 내지 5:1이 되도록 혼합하는 것이 좋다.
(c) 상기 (b)단계의 혼합물을 칼슘 함유 용액에 첨가하여, 카제인으로 코팅된 유산균, 코팅제, 식용유지 및 락토바실러스 플란타룸의 EPS를 내부에 포함하는 알긴산-칼슘 비드를 형성하는 단계.
상기 (c)단계는 압출 (extrusion) 단계로, 현탁 및/또는 유화 (suspension and/or emulsion)된 코팅된 유산균 및 알긴산 함유 혼합물을 칼슘 함유 용액과 반응시키면 알긴산-칼슘 가교결합을 통한 매트릭스 형성으로 인해 칼슘 함유 용액 내에서 유산균이 비드 내부에 포집되며, 이때 (b) 단계에서 혼합된 코팅제, EPS, 식용유지 등이 비드 내 함께 포집될 수 있다.
상기 알긴산-칼슘 반응을 통한 비드 입자 제조는 공정조건이 상온조건(예: 25?J) 아래에서 진행하고, 별도의 물리적인 스트레스가 적어, 생균의 생존율에 미치는 악영향이 적다. 또한, 압출 (extrusion) 방식을 이용한 알긴산-칼슘 비드 입자 형성은 pH 의존성 방출 성질이 있어, 위산과 같은 산성에서는 분해되지 않고, 장내 환경인 중성에서는 서서히 분해되는 특성이 있어, 유산균의 장내 생존율 향상에 큰 도움이 된다.
상기 알긴산-칼슘 비드를 형성하는 (c) 단계는,
(1) 상기 (b) 단계의 혼합물을 25℃ 내지 35℃로 유지하는 단계;
(2) 100mM 내지 1M의 칼슘 이온 용액을 교반하는 단계; 및
(3) 상기 (b) 단계의 혼합물을 가압하에 상기 교반된 칼슘 이온 용액에 점적하여 알긴산-칼슘 비드 함유 용액을 제조하는 단계를 포함할 수 있다.
상기 알긴산-칼슘 비드를 형성하는 단계는, 추가로, (4) 상기 알긴산-칼슘 비드 함유 용액을 4 ℃ 내지 20 ℃의 온도에서 30분 내지 60분간 보관하는 단계를 포함할 수 있다.
상기 (c) 단계는 현탁 및/또는 유화(suspension and/or emulsion)된 (b) 단계의 혼합물을 25℃ 내지 35℃의 온도로 유지한다. 0.1M 내지 1M의 농도의 칼슘 이온 용액을 사용할 수 있으며, 구체적으로 예컨대 100mM의 젖산칼슘 용액을 유리 비커에 담고 교반한다. 앞서 유화(emulsion) 및/또는 현탁된 상기 (b) 단계의 혼합물은, 예컨대 10mL 주사기의 바늘 형태의 압출 또는 미세노즐을 통한 분사 공정을 통해 칼슘 이온 용액 수조에 직접 반응시키게 되며, 칼슘 이온 용액 수조는 교반을 유지하여 개별 반응 입자들이 서로 뭉치는 것을 방지한다. 10mL 주사기에 상기 (b) 단계의 혼합물을 충전한 후에 압력을 가하여 칼슘 이온 용액 비커에 직접 점적하여 비드를 형성할 수 있다. 비드 형성이 끝나면 비드를 포함한 용액 수조를, 추가로 4 ℃ 내지 20 ℃ 조건으로 30 분 내지 60 분간 보관하여 숙성할 수 있다. 상기 숙성 과정을 거쳐 입자 조직의 치밀성을 높일 수 있다.
주사기 바늘 형태의 압출 방식일 경우 20 내지 100 mesh 체망을, 미세분사 노즐을 이용한 분사공정을 통한 방식의 경우 100 내지 200 mesh 체망을 통해 비드를 수거하고 증류수로 2회 세척하여 잔존 칼슘 용액을 제거한 한 뒤 비드를 수거할 수 있다.
(d) 상기 (c)단계에서 제조된 유산균 포함 알킨산 - 칼슘비드를 동결 건조하는 단계.
상기 (c) 단계 이후, 임의로 (d) 단계를 추가로 포함할 수 있다. (d) 단계는 동결 건조하는 단계로, 상기 (c)단계 후 제조된 유산균 포함 알긴산-칼슘 비드를 동결건조 트레이(Tray)에 옮겨 담아, 급속 동결 조건 -40℃ 내지 -70℃의 온도에서 12 시간 내지 24 시간 전후로 유지 후, 동결 건조기에서 해동하면서 수분을 제거할 수 있다.
본 출원의 다른 양태에서 상기 방법 중 어느 하나의 방법으로 제조된 코팅된 유산균 복합체를 제공할 수 있다.
유산균 복합체는, 알긴산-칼슘 비드, 카제인으로 코팅된 유산균, 락토바실러스 플란타룸의 EPS, 코팅제 및 식용유지를 포함할 수 있다. 상기 알긴산-칼슘 비드 내부에 상기 카제인으로 코팅된 유산균 및 상기 락토바실러스 플란타룸의 EPS를 포함할 수 있다. 또는, 유산균 복합체는, 알긴산-칼슘 비드 및 상기 알긴산 칼슘 비드 내, 카제인으로 코팅된 유산균 및 유산균의 EPS를 포함하고, 식용유지, 코팅제, 프리바이오틱스 및 동결보호제 중 어느 하나 이상을 추가로 포함할 수 있다. 구체적으로는, 식용유지 및 코팅제를 상기 알긴산 칼슘 비드 내 포함할 수 있다. 유산균 복합체는 유산균을 카제인 코팅하고 알긴산-칼슘 비드 내 포접시킴으로써, 종래 유산균에 비해 보관 안정성 및 장내 생존율이 현저히 개선될 수 있다. 상기 유산균 복합체는, 고체, 구체적으로 분말 형태, 보다 구체적으로는 동결 건조된 분말 형태일 수 있다.
유산균 복합체의 각 성분에 대한 상세한 설명은 앞의 유산균 코팅 방법의 양태에서 설명한 것과 동일하므로 중복 기재를 피하기 위해 기재를 생략한다.
이에 본 출원자들은 현탁 및/또는 유화 (suspension and/or emulsion) 및 압출 (extrusion) 방법으로 유산균 복합체를 제조하여 유산균을 다중 보호함으로써 유산균의 유통 안정성 및 장내 생존율을 개선할 수 있다.
도 1은 본 출원의 일 양태에 따른 유산균 복합체의 제조과정을 플로우-차트(flow-chart)로 나타낸 것이다.
이하 본 출원을 위해 실시예를 들어 상세히 설명하면 다음과 같다. 단 하기 실시예는 본원 발명의 일 예시에 불과하며 발명의 내용이 이에 한정되는 것으로 해석되어서는 안 된다.
실시예 1: 유산균 함유 복합체의 제조
락토바실러스 플란타룸 CJLP243 균주를 0.02중량%의 탈지분유를 포함하는 MRS액체 배지(Difco, USA)에 37 ℃에서 18 시간 내지 24 시간 배양하였다. 원심 분리기를 이용하여 상등액은 버리고, 카제인으로 코팅된 유산균만을 회수하였다.
이후, 트레할로스 (균체 중량 대비 15중량% 내외), 말토덱스트린 (균체 중량 대비 15중량% 내외), 탈지분유 (균체 중량 대비 4중량% 내외), 잔탄검 (균체 중량 대비 0.01중량%내외) 및 프락토올리고당 (균체 중량 대비 2중량%)을 혼합하여 동결 보호제, 코팅제 및 프리바이오틱스 함유 용액을 제조하였고, 이 용액을 가수 및 수용화하여 멸균하였다. 회수한 유산균과 상기 동결 보호제, 코팅제, 및 프리바이오틱스 함유 용액을 혼합하여 현탁하였다.
그 뒤에 알긴산 나트륨을 2중량%로 수용화하여 알긴산 용액을 만들었다. 상기 동결 보호제, 코팅제 및 프리바이오틱스 함유 용액과 혼합된 유산균과, 상기 제조된 알긴산 용액의 중량을, 유산균 중량 대비 1:4 비율로 혼합하였다.
팜유 등의 포화지방 고형분을 가수 하여 100 ℃로 가열 용해 후 용액 중량 대비 0.2중량%의 대두 레시틴을 첨가 후 균질기를 통해 유화하여 약 10중량%의 유화액을 만들었고, 50 ℃로 냉각하여 유화 마지막 단계에 유산균 중량 대비 1:0.5 비율로 EPS와 함께 후첨 하였다. 상기 EPS는 MRS Broth(Difco) 배지에 glucose를 3중량% 첨가한 배양액을 멸균 후에 미생물 락토바실러스 플란타룸 CJLP243 균주를 30℃에서 배지 내 glucose의 농도가 0.01중량% 이하일 때까지 배양한 후, 원심분리를 통해 습득한 제균 여액을 농축액 형태 또는 분말화한 것이다. 농축액 형태 또는 배양액 고형분은 농축액 형태 또는 배양액 고형분 대비 7 내지 10 배의 덱스트린을 혼합하여 건조하여 분말화한 뒤 사용하였다. 상기 EPS의 농축액 또는 분말은 균체 중량대비 1:0.2 농도로 현탁 하여 첨가하였다. 상기 현탁된 유산균 함유 혼합물을 적절한 점도유지를 위해 코팅 전 30 ℃로 유지하였다. 100mM의 젖산칼슘 용액을 유리 비커에 담고 교반 조건을 유지하였다. 10mL 주사기에 유산균 함유 혼합물을 충전한 후에 압력을 가하여 젖산칼슘 용액 비커에 직접 점적하여 비드를 형성하였다. 비드 형성이 끝나면 비드를 포함한 용액 수조를 4℃ 조건으로 냉각하여 30분간 보관하였다. 100mesh 크기의 체망을 통해 비드를 수거하고 증류수로 2회 세척하여 비드를 수거하였다. 수거한 입자는 동결건조 트레이에 옮겨 담아, 급속 동결 조건(-40℃ 이하)에서 12 시간 내지 24 시간 전후로 유지한 후, 동결 건조기에서 해동하면서 수분을 제거하여, 알긴산-칼슘 비드 내 유산균이 포획되어 있는 유산균 복합체 건조 분말을 수득하였다.
비교예 1: 유산균 동결 건조체의 제조
락토바실러스 플란타룸 CJLP243 균주를 MRS 액체 배지(Difco, USA)에 37 ℃에서 18 시간 내지 24 시간 배양하였다. 원심 분리기를 이용하여 상등액은 버리고, 유산균만을 회수하였다. 트레할로스(Trehalose) (균체 중량 대비 15중량% 내외)를 가수 및 수용화 하여 멸균하였다. 유산균과 상기 동결 보호제를 혼합하여 현탁 (suspension) 하였다. 상기 유산균을 원심분리기를 이용하여 집균 하였다. 수거한 유산균은 동결건조 트레이(Tray)에 옮겨 담아, 급속 동결 조건(-40℃ 이하)에서 12 시간 내지 24 시간 전후로 유지한 후, 동결 건조기에서 해동하면서 수분을 제거하였다.
즉, 비교예 1은 실시예 1과 대비하여, 카제인이 포함되는 배지에서 배양하는 단계, 코팅제 및 프리바이오틱스를 혼합하는 단계, 알긴산 용액을 혼합하는 단계, 식용 유지를 혼합하는 단계, 및 EPS를 혼합하는 단계 및 알긴산 칼슘 비드를 형성하는 단계가 생략되었다.
비교예 2: 카제인으로 코팅된 유산균 (코팅제 처리) 동결 건조체의 제조
락토바실러스 플란타룸 CJLP243 균주를 0.02중량%의 탈지분유를 포함하는 MRS 액체 배지(Difco, USA)에 37 ℃에서 18 시간 내지 24 시간 배양하였다. 원심 분리기를 이용하여 상등액은 버리고, 카제인으로 코팅된 유산균만을 회수하였다.
이후, 트레할로스(Trehalose) (균체 중량 대비 15중량% 내외), 말토덱스트린 (균체 중량 대비 15중량% 내외), 탈지분유 (균체 중량 대비 4중량% 내외) 및 잔탄검 (균체 중량 대비 0.01중량%내외)을 혼합하여 동결 보호제와 코팅제 함유 용액을 제조하였고, 이 용액을 가수 및 수용화 하여 멸균하였다. 회수한 유산균과 상기 동결 보호제 및 코팅제 함유 용액을 혼합하여 현탁 (suspension) 하였다. 상기 유산균을 원심분리기를 이용하여 집균하였다. 수거한 유산균은 동결건조 트레이(tray)에 옮겨 담아, 급속 동결 조건(-40℃ 이하)에서 12 시간 내지 24 시간 전후로 유지 한후, 동결 건조기에서 해동하면서 수분을 제거하였다.
즉, 비교예 2는 실시예 1과 대비하여, 프리바이오틱스를 혼합하는 단계, 알긴산 용액을 혼합하는 단계, 식용 유지 및 EPS를 혼합하는 단계 및 알긴산 칼슘 비드를 형성하는 단계가 생략되었다.
비교예 3: 알긴산-칼슘 비드 내, 카제인으로 코팅된 유산균 함유 복합체 (코팅제, 식용유지 및 프리바이오틱스 처리, EPS 미처리) 동결건조체의 제조
락토바실러스 플란타룸 CJLP243 균주를 0.02중량%의 탈지분유를 포함하는 MRS 액체 배지(Difco, USA)에 37 ℃에서 18 시간 내지 24 시간 배양하였다. 원심 분리기를 이용하여 상등액은 버리고, 카제인으로 코팅된 유산균만을 회수하였다.
이후, 트레할로스(Trehalose) (균체 중량 대비 15중량% 내외), 말토덱스트린 (균체 중량 대비 15중량% 내외), 탈지분유 (균체 중량 대비 4중량% 내외), 잔탄검 (균체 중량 대비 0.01중량%내외) 및 프락토올리고당 (균체 중량 대비 2중량%)을 혼합하여 프리바이오틱스, 동결 보호제 및 코팅제 함유 용액을 제조하였고, 이 용액을 가수 및 수용화 하여 멸균하였다.
유산균과 상기 동결 보호제 및 코팅제 함유 용액을 혼합하여 현탁(suspension) 하였다. 그 뒤에 알긴산 나트륨을 2중량%로 수용화하여 알긴산 용액을 만들었다. 상기 알긴산 용액을 유산균 중량 대비 1:4 비율로 혼합하였다. 팜유 등의 포화지방 고형분을 가수 하여 100 ℃로 가열 용해 후 용액 중량 대비 0.2중량%의 대두 레시틴을 첨가 후 균질기를 통해 유화하여 약 10중량%의 유화액을 만들었고, 50 ℃로 냉각하여 유화 마지막 단계에 유산균 중량 대비 1:0.5 비율로 후첨 하였다. 상기 현탁된 유산균 함유액을 적절한 점도유지를 위해 30℃로 유지하였다. 100mM의 젖산칼슘 용액을 유리 비커에 담고 교반 조건을 유지하였다. 10mL 주사기에 유산균함유액을 충전한 후에 압력을 가하여 젖산칼슘 용액 비커에 직접 점적하여 비드를 형성하였다. 비드 형성이 끝나면 비드를 포함한 용액 수조를 4℃ 조건으로 냉각하여 30분간 보관하였다. 100mesh 크기의 체망을 통해 비드를 수거하고 증류수로 2회 세척하여 비드를 수거하였다. 수거한 입자는 동결건조 트레이에 옮겨 담아, 급속 동결 조건(-40℃ 이하)에서 12 시간 내지 24 시간 전후로 유지한 후, 동결 건조기에서 해동하면서 수분을 제거하였다.
즉, 비교예 3은 실시예 1과 대비하여, EPS를 혼합하는 단계가 생략되었다.
상기 제조된 실시예 1 및 비교예 1 내지 3의 유산균 또는 유산균 복합체에 대해 아래와 같은 방법으로 장내 생존율, 유통 저장성을 평가하고 그 결과를 아래 표 1 내지 4에 나타내었다.
실험예 1: 장내 생존율 평가
유산균은 섭취 후에 소화기관을 거치면서 여러 요인에 의해 사멸될 수 있는 환경에 처하게 되는데, 가장 주요한 원인으로는 위에서 분비되는 위산에 의한 사멸과 십이지장에서 분비되는 담즙산에 의한 사멸을 들 수 있다. 구체적으로 위산의 강산은 균에 직접 작용하여 사멸을 유도하고, 담즙산은 다양한 소화효소(주로 지방분해 효소에 의한)나, 삼투압의 스트레스로 균의 사멸에 작용한다. 위/담즙산에 의한 생균의 생존율 평가 방법 중 하나의 간이모델로서, 가상 위/담즙 경로 시험법(Simulated Stomach Duodenum Passage, SSDP)) (M. G. Vizoso Pinto, C. M. A. P. Franz, U. Schillinger, and W. H. Holzapfel,“Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products,” International Journal of Food Microbiology, vol. 109, no. 3, pp. 205-214, 2006)이 제안되었다. SSDP의 주요 시험법은 일정 농도의 생균 또는 생균 분말을 산성 조건 하(pH 3.0, 음식물을 섭취한 위의 pH조건)의 MRS 배지 상에서 1 시간 동안 체류 배양하고, 추가로 담즙산 조건(인공담즙액, Oxgall / salts)으로 2 시간 동안 체류 배양하여 균의 생존율을 1 시간 단위로 체크하는 방법이다. SSDP 시험법은 위-담즙 조건을 연속적으로 적용하기 때문에, 균의 생존에서는 개별적으로 적용하는 것보다 더 가혹한 조건이지만, 실제 인체의 소화기 환경에는 더 적합하다고 할 수 있다. 특히, 탈수 및 분말 제형화 된 유산균의 경우 균체가 비활성화 상태이기 때문에, SSDP 시험의 가혹한 환경에서 더 취약할 수 있으나, 분말 형태의 유산균을 최종적으로 섭취하는 평가 모델에는 더 적합한 방법이라고 본다.
실험군 시료를 Saline Buffer에 1:100의 배율로 희석하여 멸균백에 담은 후 균질화하였다. 균체 량에 맞게 Saline Buffer로 연속적 희석을 진행한 샘플을 MRS 아가 배지에 (Agar Plate)에 도말하였다. 플레이트 (Plate)를 수거하여 37℃ 호기조건 하에서 24 시간 정치배양하고 계수하였다.(초기 균수 Data)
증류수에 MRS Broth를 55g/l의 농도로 완전히 저어 녹이고, 교반(Stirring) 조건으로 5M HCl로 pH 3.0으로 조정 후 멸균(121℃, 15분) 산성 MRS 배지를 만들었다. 산성 MRS 배지 50ml를 멸균 Flask에 분주하고, 1/100 당량의 시료를 투입 후 충분히 흔들어서 녹였다. (샘플을 녹인 시점의 정확한 시간을 체크한다) 37℃ 80rpm의 조건으로 진탕 배양하였다. 1 시간 후, 1ml을 취하여 Saline Buffer로 연속적인 희석을 진행한 샘플을 MRS 아가 플레이트 (Agar Plate)에 도말하였다. 플레이트 (Plate)를 수거하여 37℃ 호기조건 하에서 24 시간 정치배양하고 계수하였다. (1 시간 Data)
10중량% Oxgall Solution: 증류수에 Oxgall (Difco)을 10중량% 농도로 용해한 후 멸균(121℃ 15분)하여 10중량% Oxgall Solution를 제조하였다. 시료를 취한 직후, 10중량% Oxgall Solution 20ml을 Flask에 첨가하고, 이어서 85ml의 인공담즙액 Buffer를 첨가하고 충분히 흔들어서 섞어주었다. 상기 인공 담즙액 buffer은 증류수에 NaHCO3 (6.4 g/l), KCl (0.239 g/l), NaCl (1.28 g/l) 농도로 용해한 다음, 5M HCl로 pH 7.4로 조정 후 멸균(121℃ 15분) 한 후 제조하였다. 37℃ 80rpm의 조건으로 진탕 배양하였다. 향후 2 시간 동안 1 시간 단위로 시료를 취하여 Buffer로 연속적인 희석을 진행한 샘플을 MRS 아가 플레이트 (Agar Plate)에 도말 하였다. 플레이트 (Plate)를 수거하여 37℃ 호기조건 하에서 24 시간 정치배양하고 계수하였다. (2 시간, 3 시간 Data)
조건 0hr (초기) 1hr (위산) 2hr (위+담즙산) 3hr (위+담즙산) 감소량(Log CFU/g)
비교예 1 12.23 7.97 6.67 6.9 5.33
비교예 2 11.02 11.01 8.76 8.69 2.33
비교예 3 10.60 10.48 10.16 10.21 0.39
실시예 1 10.44 10.45 10.02 10.16 0.28
조건 0hr (초기) 1hr (위산) 2hr (위+담즙산) 3hr (위+담즙산) 생존율(%)
비교예 1 1.70.E+12 9.33.E+07 4.68.E+06 7.94.E+06 0.0005
비교예 2 1.05.E+11 1.02.E+11 5.75.E+08 4.90.E+08 0.47
비교예 3 3.98.E+10 3.02.E+10 1.45.E+10 1.62.E+10 41
실시예 1 2.75.E+10 2.82.E+10 1.05.E+10 1.45.E+10 52
상기 표 1은 실험 결과의 로그값이고, 표 2은 실험 결과의 실측값이다. 비교예 1 에서는 위산에서 4.3 log 가량, 담즙산에서 1.1 log 가량 감소 폭을 보였다. 비교예 2에서는 위산에서 안정하였으나, 담즙산에서 약 2.3 log 가량 감소하였다. 비교예 3의 적용 조건하에서는 위산/담즙산 조건하에서 0.4 log 감소 폭으로 비교예 2 대비 약 2 log (100배) 가량 생존율이 향상되었다. 실시예 1의 적용 조건 하에서 비교예 3에 비해서도 0.1 log 이상의 생존율이 개선되었다.
2. 유통 저장성 평가 ( 50 ℃ 72 시간 저장)
동결 건조화된 유산균 원말은 저장온도 및 저장 기간에 따라 점차 활성이 감소한다. 일반적으로 활성에 영향을 주는 요인으로는 온도, 산소, 수분 등이 꼽힌다. 1차적으로 동결 건조화 된 유산균 원말은 흡습성이 매우 강하여, 저장 초기에 많은 함량 감소가 일어나게 된다. 유통 저장성을 향상하기 위하여 포장재에 탈산소제를 적용하거나, 제습을 위한 여러 가지 방법들이 있지만, 궁극적으로는 유산균 원말 자체의 코팅 정도에 따라 저장 기간에 많은 차이를 보이게 된다. 따라서 원료 특성에 기인한 흡습성을 완화하기 위해 포도당과 덱스트린과 같은 부형제를 원말 대비 1배 내지 10배 범위 이내에서 혼합하여 보관한다. 본 실험에서는 말토덱스트린과 무수결정포도당이 1:1 비율로 혼합된 부형제를 원말 1: 혼합부형제 3의 비율로 혼합하여 보관하였다. 저장 기간 중의 공기 투과성을 배제하기 위하여 알루미늄 파우치에 개별 포장하여 보관하였으며, 보관 온도는 50℃에서 3일간 보관하여 단기 가혹 조건에서의 생존율을 분석하였다.
동결건조 분말화한 비교예 1, 비교예 2, 비교예 3 및 실시예 1 시료를 알루미늄 파우치 포장에 일정량을 담아 개별 포장을 밀봉하였다. 시료는 각각 50℃ incubator에 72 시간 보관하였다. 72 시간이 지난 후 실험군 시료를 Saline Buffer에 1:100의 배율로 희석하여 멸균백에 담은 후 균질화하였다. Saline Buffer로 연속적인 희석을 진행한 샘플을 MRS 아가 플레이트 (Agar Plate)에 도말 하였다. 플레이트 (Plate)를 수거하여 37℃ 호기조건 하에서 24 시간 정치배양하고 계수하였다.
비교예 1 비교예 2 비교예 3 실시예 1
초기 10.95 10.72 10.68 10.52
50℃ 72hr 4.88 8.75 9.74 9.91
감소량(Log) 6.07 1.97 0.94 0.61
비교예 1 비교예 2 비교예 3 실시예 1
초기 8.90E+10 5.25.E+10 4.79.E+10 3.31.E+10
50℃ 72hr 7.60.E+04 5.62.E+08 5.50.E+09 8.13.E+09
생존율(%) 0.00009 1.1 11.5 24.6
단기 가혹 조건을 적용하여 균의 활성을 전후 비교 측정하였다. 상기 표 3은 실험 결과의 로그값이고, 표 4은 실험 결과의 실측값이다. 비교예 2 에서는 약 2 log의 활성 감소가 관측되었다. 비교예 3 에서는 약 0.9 log 폭으로 생존율이 향상되었다. 실시예 1 에서는 0.6 log 수준으로 생존율이 추가로 향상되었다.

Claims (19)

  1. (a) 유산균을 카제인이 포함된 배지에서 배양하여 상기 유산균을 카제인으로 코팅하는 단계;
    (b) 상기 카제인으로 코팅된 유산균을, 코팅제, 식용유지, 락토바실러스 플란타룸의 EPS(Extracellular Polymeric Substance) 및 알긴산을 포함하는 용액과 혼합하는 단계; 및
    (c) 상기 (b) 단계의 혼합물을 칼슘 함유 용액에 첨가하여 알긴산-칼슘 비드를 형성하는 단계를 포함하고, 상기 카제인으로 코팅된 유산균, 코팅제, 식용유지 및 락토바실러스 플란타룸의 EPS는 상기 알긴산-칼슘 비드 내부에 포함되는 것인, 유산균의 코팅 방법.
  2. 제 1항에 있어서, 상기 유산균은 락토바실러스 속(Lactobacillus sp .), 비피도박테리움 속(Bifidobacterium sp .), 스트렙토코커스 속(Streptococcus sp.), 락토코커스 속(Lactococcus sp .), 엔테로코커스 속(Enterococcus sp .), 페디오코커스 속(Pediococcus sp .) 류코노스톡 속(Leuconostoc sp .) 및 비셀라 속(Weissella sp .)으로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는, 유산균의 코팅 방법.
  3. 제 1항에 있어서, 상기 유산균은 락토바실러스 플란타룸 (Lactobacillus plantarum), 락토바실러스 카제이 (Lactobacillus casei), 락토바실러스 람노서스(Lactobacillus rhamnosus), 락토바실러스 아시도필루스 (Lactobacillus acidophilus), 비피도박테리움 비피덤 (Bifidobacterium bifidum), 비피도박테리움 롱굼 (Bifidobacterium longum), 비피도박테리움 브레브 (Bifidobacterium breve), 스트렙토코커스 훼칼리스 (Streptococcus faecalis) 및 락토코커스 락티스 (Lactococcus lactis subsp . lactis)로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는, 유산균의 코팅 방법.
  4. 제 1항에 있어서, 상기 유산균은 락토바실러스 플란타룸 CJLP243(Lactobacillus plantarum CJLP243), 락토바실러스 플란타룸 CJLP133(Lactobacillus plantarum CJLP133), 락토바실러스 플란타룸 CJLP136 (Lactobacillus plantarum CJLP136), 락토바실러스 플란타룸 CJLP55 (Lactobacillus plantarum CJLP55) 및 락토바실러스 플란타룸 CJLP56(Lactobacillus plantarum CJLP56)으로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는, 유산균의 코팅 방법.
  5. 제 1항에 있어서, 상기 카제인이 포함된 배지는 탈지분유를 포함하는, 유산균의 코팅 방법.
  6. 제 1항에 있어서, 상기 코팅제는 다공성 폴리머, 단백질 및 증점 다당류로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는, 유산균의 코팅 방법.
  7. 제 1항에 있어서, 상기 (b)단계의 용액에 프리바이오틱스를 추가로 포함하는, 유산균의 코팅 방법.
  8. 제 1항에 있어서, 상기 알긴산 용액은 알긴산 나트륨을 2 중량% 내지 4 중량%로 수용화한 것이며, 알긴산 용액의 중량과 카제인으로 코팅된 유산균 중량의 비는 1:1 내지 10:1인, 유산균의 코팅 방법.
  9. 제 1항에 있어서, 상기 (b)단계의 락토바실러스 플란타룸은 락토바실러스 플란타룸 CJLP243 (Lactobacillus plantarum CJLP243)인, 유산균의 코팅 방법.
  10. 제 1항에 있어서, 상기 카제인으로 코팅된 유산균, 코팅제, 식용유지 및 락토바실러스 플란타룸의 EPS를 내부에 포함하는 알긴산-칼슘 비드를 동결 건조하는 단계를 추가로 포함하는, 유산균의 코팅 방법.
  11. 제 1항에 있어서, 상기 (b)단계의 용액에 동결 보호제를 추가로 포함하는, 유산균의 코팅 방법.
  12. 카제인으로 코팅된 유산균, 코팅제, 식용유지, 락토바실러스 플란타룸의 EPS, 및 알긴산-칼슘 비드를 포함하는, 유산균 복합체.
  13. 제 12항에 있어서, 상기 알긴산-칼슘 비드는 내부에 상기 카제인으로 코팅된 유산균, 및 상기 락토바실러스 플란타룸의 EPS를 포함하는 것인, 유산균 복합체.
  14. 제 12항에 있어서, 상기 유산균 복합체에 프리바이오틱스, 동결 보호제로 이루어진 군으로부터 선택되는 적어도 하나를 추가로 포함하는, 유산균 복합체.
  15. 제 12항에 있어서, 상기 코팅제는 다공성 폴리머, 단백질 및 증점 다당류로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는, 유산균 복합체.
  16. 제 12항에 있어서, 상기 유산균은 락토바실러스 속(Lactobacillus sp.), 비피도박테리움 속(Bifidobacterium sp .), 스트렙토코커스 속(Streptococcus sp .), 락토코커스 속(Lactococcus sp .), 엔테로코커스 속(Enterococcus sp .), 페디오코커스 속(Pediococcus sp .) 류코노스톡 속(Leuconostoc sp .) 및 비셀라 속(Weissella sp .)으로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는, 유산균 복합체.
  17. 제 12항에 있어서, 상기 유산균은 락토바실러스 플란타룸 (Lactobacillus plantarum), 락토바실러스 카제이 (Lactobacillus casei), 락토바실러스 람노서스(Lactobacillus rhamnosus), 락토바실러스 아시도필루스 (Lactobacillus acidophilus), 비피도박테리움 비피덤 (Bifidobacterium bifidum), 비피도박테리움 롱굼 (Bifidobacterium longum), 비피도박테리움 브레브 (Bifidobacterium breve), 스트렙토코커스 훼칼리스 (Streptococcus faecalis) 및 락토코커스 락티스 (Lactococcus lactis subsp . lactis)로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는, 유산균 복합체.
  18. 제 12항에 있어서, 상기 유산균은 락토바실러스 플란타룸 CJLP243(Lactobacillus plantarum CJLP243), 락토바실러스 플란타룸 CJLP133(Lactobacillus plantarum CJLP133), 락토바실러스 플란타룸 CJLP136 (Lactobacillus plantarum CJLP136), 락토바실러스 플란타룸 CJLP55 (Lactobacillus plantarum CJLP55) 및 락토바실러스 플란타룸 CJLP56(Lactobacillus plantarum CJLP56)으로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는, 유산균 복합체.
  19. 제 12항에 있어서, 상기 락토바실러스 플란타룸은 락토바실러스 플란타룸 CJLP243 (Lactobacillus plantarum CJLP243)인, 유산균 복합체.
PCT/KR2016/014824 2015-12-17 2016-12-16 장내 생존율이 증대된 유산균의 코팅 방법 WO2017105140A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16876082.5A EP3391757A4 (en) 2015-12-17 2016-12-16 METHOD FOR COATING LACTIC ACID BACTERIA WITH INCREASED INTESTINAL SURVIVAL RATE
CN201680081897.2A CN108697138A (zh) 2015-12-17 2016-12-16 肠道存活率提高的乳酸菌的涂布方法
AU2016373461A AU2016373461B2 (en) 2015-12-17 2016-12-16 Coating method of lactic acid bacteria with increased intestinal survival rate
US16/063,141 US20190029311A1 (en) 2015-12-17 2016-12-16 Coating method of lactic acid bacteria with increased intestinal survival rate
JP2018531489A JP6820340B2 (ja) 2015-12-17 2016-12-16 腸内生存率が高められた乳酸菌のコーティング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150180965 2015-12-17
KR10-2015-0180965 2015-12-17

Publications (1)

Publication Number Publication Date
WO2017105140A1 true WO2017105140A1 (ko) 2017-06-22

Family

ID=59057054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014824 WO2017105140A1 (ko) 2015-12-17 2016-12-16 장내 생존율이 증대된 유산균의 코팅 방법

Country Status (7)

Country Link
US (1) US20190029311A1 (ko)
EP (1) EP3391757A4 (ko)
JP (1) JP6820340B2 (ko)
KR (1) KR101918089B1 (ko)
CN (1) CN108697138A (ko)
AU (1) AU2016373461B2 (ko)
WO (1) WO2017105140A1 (ko)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11178884B2 (en) * 2017-10-27 2021-11-23 Chr. Hansen A/S Lactobacillus rhamnosus with increased diacetyl production
WO2019209732A1 (en) 2018-04-23 2019-10-31 Carbon, Inc. Resin extractor for additive manufacturing
KR20190127156A (ko) 2018-05-03 2019-11-13 씨제이제일제당 (주) 항바이러스 및 면역조절 효능을 가지는 락토바실러스 플란타럼 cjlp17 및 이를 포함하는 조성물
AR119653A1 (es) * 2018-07-13 2022-01-05 Cj Cheiljedang Corp Cepa cjlp475 de lactobacillus plantarum que tiene efectos antivirales e inmunomoduladores y una composición que comprende la misma
AR115758A1 (es) 2018-07-13 2021-02-24 Cj Cheildang Corp Composición que comprende la cepa de lactobacillus plantarum cjlp475 y la cepa de lactobacillus plantarum cjlp243 y uso de la misma
AR115757A1 (es) 2018-07-13 2021-02-24 Cj Cheiljedang Corp Composición que comprende la cepa cjlp475 de lactobacillus plantarum y la cepa cjlp17 de lactobacillus plantarum y el uso de la misma
US11919236B2 (en) 2018-09-26 2024-03-05 Carbon, Inc. Spin cleaning method and apparatus for additive manufacturing
KR102287187B1 (ko) * 2018-12-31 2021-08-06 재단법인 전남바이오산업진흥원 김 추출물을 유효성분으로 함유하는 프리바이오틱스 조성물 및 이의 용도
CN113272117A (zh) 2019-01-07 2021-08-17 卡本有限公司 用于增材制造中的树脂回收的系统和方法
JPWO2020179435A1 (ko) * 2019-03-06 2020-09-10
KR102009731B1 (ko) 2019-04-15 2019-08-12 주식회사 쎌바이오텍 단백질 가수분해물을 이용한 단백질-다당류 이중코팅 유산균의 제조방법
CN110338422B (zh) * 2019-07-11 2022-05-13 福建省农业科学院农业工程技术研究所 提高乳酸菌胃肠液耐受性的微细大豆纤维胶囊化包埋方法
US11440259B2 (en) 2020-01-31 2022-09-13 Carbon, Inc. Resin reclamation centrifuge rotor for additively manufactured objects
CN111849853A (zh) * 2020-06-10 2020-10-30 云南皇氏来思尔乳业有限公司 一种提高乳酸菌胆盐耐受性的方法
KR102289556B1 (ko) * 2020-07-02 2021-08-13 전남대학교산학협력단 이산화 타이타늄 다공성 비드에 유산균이 함침된 유산균-비드 복합체 및 이의 제조 방법
JP7199063B2 (ja) * 2020-07-30 2023-01-05 新潟県 新規乳酸菌およびこの乳酸菌を利用した粘性発酵物の製造法
EP4225560A1 (en) 2020-10-09 2023-08-16 Carbon, Inc. Vapor spin cleaning of additively manufactured parts
KR102273663B1 (ko) 2020-10-29 2021-07-05 주식회사 에치와이 코팅 프로바이오틱스 및 이를 포함하는 식품 조성물, 이의 제조방법
AU2021400709A1 (en) * 2020-12-18 2023-07-13 Ildong Pharmaceutical Co., Ltd. Non-stop production process for improving freeze-drying survival, heat tolerance, shelf stability and digestive stability of probiotics using spontaneous matrix-encapsulation technique
CN114209063A (zh) * 2021-12-20 2022-03-22 广西大学 一种佛手多糖包埋副干酪乳杆菌微胶囊的制备方法
KR20230146838A (ko) * 2022-04-13 2023-10-20 씨제이제일제당 (주) 칼슘-알긴산 비드로 포집된 유산균의 제조 방법
KR20230150433A (ko) 2022-04-21 2023-10-31 (주)정가진면역연구소 효소처리된 젤라틴을 이용한 3중 코팅 유산균의 제조 방법 및 이에 따라 제조된 내산성 및 저장성이 개선된 3중 코팅 유산균

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000043838A (ko) * 1998-12-29 2000-07-15 우재영 유산균 함유 마이크로비드
KR20040018665A (ko) * 2002-08-26 2004-03-04 한국생명공학연구원 레반 및 알기네이트 비드로 코팅되어 생존율이 향상된유산균 분말 및 그의 제조방법
KR20050106022A (ko) * 2003-02-21 2005-11-08 마-자 엘린타르비케탈로우덴 투트키무스케스쿠스 젖산균에 의한 글루코시놀레이트의 효소적 분해 조절
KR100878339B1 (ko) * 2007-07-20 2009-01-14 고려대학교 산학협력단 프리바이오틱 기질을 이용한 유산균의 이중 미세피복 방법
KR20120046676A (ko) * 2010-11-02 2012-05-10 주식회사 쎌바이오텍 다중 코팅층을 갖는 유산균 및 이의 제조방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429495B1 (ko) * 2001-02-28 2004-05-03 정명준 단백질 및 다당류를 이용한 이중코팅 유산균 원말의제조방법
KR100473391B1 (ko) * 2001-10-19 2005-03-10 한국생명공학연구원 생리적 특성이 증진된 유산균 분말 및 이의 제조 방법
DE60330781D1 (de) * 2002-08-06 2010-02-11 Danisco Anwendung von lactobacillus zur herstellung von exopolysacchariden in nahrungsmittel und pharmazeutische zusammensetzungen
KR100930427B1 (ko) * 2008-01-25 2009-12-08 정명준 3중 코팅 유산균의 제조방법 및 나노 입자 코팅 방법, 그방법으로 제조된 3중 코팅 유산균 및 이를 포함하는 제품
BRPI1009920A2 (pt) * 2009-05-01 2016-03-15 Micropharma Ltd composições bacterianas para profilaxina e tratamento de doença degenerativa.
KR101178217B1 (ko) * 2009-10-28 2012-09-07 씨제이제일제당 (주) 신규한 락토바실러스 플란타룸 및 이를 포함하는 조성물
JP5923238B2 (ja) * 2010-07-07 2016-05-24 アサヒグループホールディングス株式会社 迷走神経活性化剤
US9308271B2 (en) * 2011-06-30 2016-04-12 Chr. Hansen A/S Compositions
CN103571767B (zh) * 2012-07-26 2016-03-02 细胞生物技术公司 利用食用琼脂的双重涂布乳酸菌粉及其制备方法
KR20150056107A (ko) * 2013-11-14 2015-05-26 주식회사농심 코팅 유산균의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000043838A (ko) * 1998-12-29 2000-07-15 우재영 유산균 함유 마이크로비드
KR20040018665A (ko) * 2002-08-26 2004-03-04 한국생명공학연구원 레반 및 알기네이트 비드로 코팅되어 생존율이 향상된유산균 분말 및 그의 제조방법
KR20050106022A (ko) * 2003-02-21 2005-11-08 마-자 엘린타르비케탈로우덴 투트키무스케스쿠스 젖산균에 의한 글루코시놀레이트의 효소적 분해 조절
KR100878339B1 (ko) * 2007-07-20 2009-01-14 고려대학교 산학협력단 프리바이오틱 기질을 이용한 유산균의 이중 미세피복 방법
KR20120046676A (ko) * 2010-11-02 2012-05-10 주식회사 쎌바이오텍 다중 코팅층을 갖는 유산균 및 이의 제조방법

Also Published As

Publication number Publication date
US20190029311A1 (en) 2019-01-31
AU2016373461A1 (en) 2018-07-05
CN108697138A (zh) 2018-10-23
EP3391757A4 (en) 2019-08-21
JP6820340B2 (ja) 2021-01-27
KR20170072825A (ko) 2017-06-27
KR101918089B1 (ko) 2018-11-13
JP2018537114A (ja) 2018-12-20
EP3391757A1 (en) 2018-10-24
AU2016373461B2 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
WO2017105140A1 (ko) 장내 생존율이 증대된 유산균의 코팅 방법
CN109619593B (zh) 一种益生菌双层微胶囊及其制备方法
CN110025638B (zh) 壳聚糖‐羧甲基纤维素钠层层自组装益生菌微囊及其制备
Liao et al. Oligosaccharides as co-encapsulating agents: effect on oral Lactobacillus fermentum survival in a simulated gastrointestinal tract
Soukoulis et al. Stability of Lactobacillus rhamnosus GG in prebiotic edible films
KR101902035B1 (ko) 산성 분해로부터 미생물 세포의 보호
Tang et al. Whey protein improves survival and release characteristics of bacteriophage Felix O1 encapsulated in alginate microspheres
WO2012060554A2 (ko) 다중 코팅층을 갖는 유산균 및 이의 제조방법
KR101280232B1 (ko) 4중 코팅 유산균의 제조방법 및 그 방법으로 제조된 4중 코팅 유산균
CN112273658A (zh) 一种基于内源乳化的双歧杆菌微胶囊的制备方法
CN113826904A (zh) 一种高活性合生元微胶囊及其制备方法
CN112890204A (zh) 一种利用葡萄籽提取物作为益生元的微胶囊及其制备方法
Jayalalitha et al. In vitro assessment of microencapsulated probiotic beads.
CN114916675A (zh) 一种提高益生菌存活率的水包油包水型复乳凝胶珠、制备方法和应用
de Rezende Rodovalho et al. Propionibacterium freudenreichii: General characteristics and probiotic traits
Shi et al. Milk-alginate microspheres: Protection and delivery of Enterococcus faecalis HZNU P2
US11571387B2 (en) Process for the preparation of powdered probiotic formulations for monogastric animals
BR112020021458A2 (pt) Microcápsula probiótica e método para a preparação de uma microcápsula
WO2022158642A1 (ko) 프로바이오틱스의 장내 생존율과 부착능을 향상시키기 위한 동결 건조 프로바이오틱스의 재활성화 조성물
Liu et al. Preparation and properties of a novel sodium alginate microcapsule
WO2022092472A1 (ko) 코팅 프로바이오틱스 및 이를 포함하는 식품 조성물, 이의 제조방법
KR101172839B1 (ko) 코팅 유산균의 제조방법 및 상기 코팅 유산균을 포함하는 보쌈용 수육의 제조방법
CN114645004B (zh) 一种保持功效递送的动物双歧杆菌乳亚种菌剂的制备方法
RU2743696C1 (ru) Способ производства капсулированной формы антимикробного препарата для терапии заболеваний желудочно-кишечного тракта
Rasham et al. Applying of Microcapsulated Probiotics via Calcium and Zinc Salts into Yoghurt and Study its Chemical, Microbiological and Sensory Properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16876082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018531489

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016373461

Country of ref document: AU

Date of ref document: 20161216

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016876082

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016876082

Country of ref document: EP

Effective date: 20180717