WO2017104806A1 - プロトン伝導体、セル構造体およびこれらの製造方法、燃料電池ならびに水電解装置 - Google Patents

プロトン伝導体、セル構造体およびこれらの製造方法、燃料電池ならびに水電解装置 Download PDF

Info

Publication number
WO2017104806A1
WO2017104806A1 PCT/JP2016/087563 JP2016087563W WO2017104806A1 WO 2017104806 A1 WO2017104806 A1 WO 2017104806A1 JP 2016087563 W JP2016087563 W JP 2016087563W WO 2017104806 A1 WO2017104806 A1 WO 2017104806A1
Authority
WO
WIPO (PCT)
Prior art keywords
proton conductor
anode
firing
solid electrolyte
cathode
Prior art date
Application number
PCT/JP2016/087563
Other languages
English (en)
French (fr)
Inventor
孝浩 東野
陽平 野田
一成 宮元
千尋 平岩
奈保 水原
博匡 俵山
竹内 久雄
真嶋 正利
哲也 宇田
東麟 韓
崇之 大西
祐基 大谷
Original Assignee
住友電気工業株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 国立大学法人京都大学 filed Critical 住友電気工業株式会社
Priority to CN201680072458.5A priority Critical patent/CN108370041A/zh
Priority to US16/061,888 priority patent/US20180375114A1/en
Priority to KR1020187010071A priority patent/KR20180089384A/ko
Priority to EP16875780.5A priority patent/EP3396757A4/en
Priority to JP2017556465A priority patent/JPWO2017104806A1/ja
Publication of WO2017104806A1 publication Critical patent/WO2017104806A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • H01M4/8889Cosintering or cofiring of a catalytic active layer with another type of layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0236Glass; Ceramics; Cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a proton conductor, a cell structure, a manufacturing method thereof, a fuel cell, and a water electrolysis apparatus.
  • This application claims priority based on Japanese application No. 2015-247968 filed on December 18, 2015 and Japanese application No. 2016-108339 filed on May 31, 2016, and is described in the Japanese application. The entire description is incorporated herein by reference.
  • Patent Documents 1 and 2 as solid electrolytes of fuel cells, for example, yttrium-doped barium zirconate (BZY), yttrium-doped barium cerate (BCY), and yttrium-doped zirconate
  • BZY yttrium-doped barium zirconate
  • BCY yttrium-doped barium cerate
  • BZCY barium / barium cerate mixed oxide
  • Patent Document 3 describes, for example, that an anode of a fuel cell is formed by firing a mixture of a metal oxide powder such as BZY and a nickel oxide powder.
  • Non-Patent Document 1 describes that BaY 2 NiO 5 is generated as a by-product when a mixture of a metal oxide powder such as BZY and a nickel oxide powder is fired.
  • A is at least one element selected from the group consisting of barium (Ba), calcium (Ca) and strontium (Sr), and B is selected from the group consisting of cerium (Ce) and zirconium (Zr).
  • M is composed of yttrium (Y), ytterbium (Yb), erbium (Er), holmium (Ho), thulium (Tm), gadolinium (Gd), indium (In), and scandium (Sc).
  • the standard deviation in the triangular diagram representing the atomic composition ratio of A, B, and M contained in the proton conductor is 0.04 or less. , Relating to proton conductors.
  • a metal oxide represented by A preparation step of preparing a raw material containing the element represented by A, the element represented by B, and the element represented by M at a ratio satisfying the a, the b, and the c, respectively; A firing step of firing the raw material at a
  • Still another aspect of the present invention includes a cathode, an anode, and a solid electrolyte layer interposed between the cathode and the anode and having proton conductivity, and the anode includes the proton conductor described above,
  • the present invention relates to a cell structure including a nickel compound.
  • Still another aspect of the present invention provides a step of preparing a cathode material, a proton conductive solid electrolyte material, and an anode material, The step of laminating the layer containing the anode material and the layer containing the solid electrolyte material, and firing the obtained laminate at a second firing temperature to form a joined body of the anode and the solid electrolyte layer
  • the anode material includes a proton conductor and a nickel compound, and the proton conductor is the proton conductor described above.
  • Still another aspect of the present invention provides a step of preparing a cathode material, a proton conductive solid electrolyte material, and an anode material, A step of laminating the layer containing the anode material and the layer containing the solid electrolyte material and then firing the obtained laminate at a third firing temperature to form a joined body of the anode and the solid electrolyte layer.
  • the anode material includes a proton conductor and a nickel compound, the proton conductor has a perovskite structure, and the formula (1): A a B b M c O 3- ⁇ (1)
  • A is at least one element selected from the group consisting of Ba, Ca and Sr
  • B is at least one element selected from the group consisting of Ce and Zr
  • M is Y, Yb, Er, Ho
  • a is a number satisfying 0.85 ⁇ a ⁇ 1
  • b is a number satisfying 0.5 ⁇ b ⁇ 1
  • the present invention provides a proton conductor capable of reducing the amount of by-products that can generate decomposition products that limit oxidation and reduction reactions, a method for producing the same, and a cell structure capable of ensuring high power generation efficiency. And a method for producing the same, a fuel cell capable of obtaining high power generation efficiency, and a water electrolysis device capable of obtaining hydrogen and oxygen with high production efficiency.
  • a proton conductor capable of reducing the amount of by-products that can generate decomposition products that limit oxidation and reduction reactions, a method for producing the same, and a cell structure capable of obtaining high power generation efficiency And a manufacturing method thereof, a fuel cell capable of obtaining high power generation efficiency, and a water electrolysis device capable of obtaining hydrogen and oxygen with high production efficiency.
  • the metal oxide represented by these is included.
  • the standard deviation in the triangular diagram representing the atomic composition ratios of A, B and M contained in the proton conductor is 0.04 or less.
  • a by-product that closes the gap in the anode and the cathode and generates a decomposition product that restricts the oxidation reaction at the anode and the reduction reaction at the cathode is also referred to as “specific by-product”.
  • specific by-product include, but are not particularly limited to, BaY 2 NiO 5 .
  • the A preferably includes Ba.
  • B preferably contains Zr.
  • M preferably includes Y.
  • the standard deviation in the triangular figure showing the atomic composition ratio of said A, said B, and said M contained in the said proton conductor is 0.037 or less.
  • a method for producing a proton conductor according to an embodiment of the present invention has a perovskite structure and has the formula (1): A a B b M c O 3- ⁇ (1)
  • A is at least one element selected from the group consisting of Ba, Ca and Sr
  • B is at least one element selected from the group consisting of Ce and Zr
  • M is Y, Yb, Er
  • a is a number satisfying 0.85 ⁇ a ⁇ 1
  • b is a number satisfying 0.5 ⁇ b ⁇ 1
  • is an oxygen deficiency amount
  • the element represented by A, the element represented by B, and the element represented by M are respectively represented by a, b, and c.
  • the method further includes (6) a pulverizing step of pulverizing the pre-baked raw material after the pre-baking step and before the baking step.
  • the first firing temperature is preferably 1600 ° C. or higher. This is because the effect of reducing the content of a specific byproduct is further improved.
  • a cell structure according to an embodiment of the present invention includes a cathode, an anode, and a solid electrolyte layer interposed between the cathode and the anode and having proton conductivity.
  • the anode includes the proton conductor described above and a nickel compound. According to this cell structure, high power generation efficiency can be obtained.
  • a method of manufacturing a cell structure includes a step of preparing a cathode material, a proton conductive solid electrolyte material, and an anode material; A step of laminating the layer containing the anode material and the layer containing the solid electrolyte material, and firing the obtained laminate to form a joined body of the anode and the solid electrolyte layer; A step of laminating the layer containing the cathode material on the surface of the solid electrolyte layer and then firing the obtained laminate at a second firing temperature to form a cathode; including.
  • the anode material includes a proton conductor and a nickel compound.
  • the proton conductor is the proton conductor of (1). According to the cell structure obtained by this method, high power generation efficiency can be obtained.
  • a method of manufacturing a cell structure includes a step of preparing a cathode material, a proton conductive solid electrolyte material, and an anode material; A step of laminating the layer containing the anode material and the layer containing the solid electrolyte material and then firing the obtained laminate at a third firing temperature to form a joined body of the anode and the solid electrolyte layer.
  • the anode material includes a proton conductor and a nickel compound.
  • the proton conductor has a perovskite structure and has the formula (1): A a B b M c O 3- ⁇ (1)
  • A is at least one element selected from the group consisting of Ba, Ca and Sr
  • B is at least one element selected from the group consisting of Ce and Zr
  • M is Y, Yb, Er, Ho
  • a is a number satisfying 0.85 ⁇ a ⁇ 1
  • b is a number satisfying 0.5 ⁇ b ⁇ 1
  • the first firing temperature is preferably equal to or higher than the third firing temperature. This is because the effect of reducing the content of a specific byproduct is further improved.
  • a fuel cell according to an embodiment of the present invention is a fuel cell including an anode including the proton conductor according to any one of (1) to (3). According to the fuel cell described in (12), high power generation efficiency can be obtained.
  • a water electrolysis apparatus is a water electrolysis apparatus including an anode including the proton conductor according to any one of (1) to (3). According to the water electrolysis apparatus described in (13), hydrogen and oxygen can be obtained with high production efficiency.
  • the proton conductor of the present embodiment can be used as a raw material for producing an anode, for example.
  • the shape of the proton conductor is usually a powder.
  • the proton conductor of the present embodiment is also referred to as “powder proton conductor”.
  • the metal oxide represented by these is included.
  • the element represented by “A” in formula (1) is also referred to as “element A”.
  • the element represented by “B” in formula (1) is also referred to as “element B”.
  • the element represented by “M” in Formula (1) is also referred to as “element M”.
  • the anode is formed by performing the following operations. First, a powder proton conductor and a nickel compound are mixed to obtain a mixture. The resulting mixture is then fired to form the anode. When forming the anode, a reaction between the element A contained in the powder proton conductor and nickel (Ni) derived from the nickel compound produces a low melting point compound. The low melting point compound constitutes a liquid phase during firing. The liquid phase penetrates between the powder proton conductors. When the low melting point compound contained in the invading liquid phase reacts with the element M contained in the powder proton conductor, a by-product is generated. The by-product is easily decomposed in an operating atmosphere of a fuel cell, a gas decomposition apparatus, or the like.
  • decomposition products are formed in the anode and the cathode. Since the decomposition products block the anode gap and the cathode gap, the oxidation reaction at the anode and the reduction reaction at the cathode are limited.
  • the low melting point compound include BaNiO 2 , but are not particularly limited.
  • the by-product include BaY 2 NiO 5 , but are not particularly limited.
  • the decomposition products include Ba (OH) 2 and BaCO 3 , but are not particularly limited.
  • the element A is Ba
  • BaNiO 2 is generated as a low melting point compound.
  • BaY 2 NiO 5 is produced as the by-product.
  • Ba (OH) 2 and BaCO 3 are produced as decomposition products.
  • the atomic composition ratio of the powder proton conductor varies, the element A, element B or element M is not uniformly arranged at the A site or B site of the perovskite structure formed by firing. Therefore, the secondary particle of the powder proton conductor has an element A rich region, an element B rich region, and an element M rich region.
  • the liquid phase (the low melting point compound) is likely to be generated in an element A-rich region with many reaction points, and the generated liquid phase generates many by-products in the element M-rich region.
  • the atomic composition ratio of the powder proton conductor varies means that the atomic composition ratio varies depending on the position in the secondary particle.
  • the “primary particle” means a single crystal particle having a uniform crystal orientation.
  • Secondary particles refer to aggregates in which a plurality of primary particles are aggregated by chemical bonding or the like.
  • a powder proton conductor having an atomic composition ratio with little variation is provided. That is, in the powder proton conductor of this embodiment, the standard deviation ⁇ in the triangular diagram representing the atomic composition ratio of the element A, the element B, and the element M is 0.04 or less. The standard deviation ⁇ is more preferably 0.037 or less.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • An arbitrary secondary particle A is selected from the secondary particles of the powder proton conductor, and the smallest rectangle R in contact with the outer edge of the secondary particle A when the secondary particle A is viewed from one direction is determined.
  • the rectangle R is equally divided into 36 to determine the centroids C (C1 to C36) of the secondary particles A included in the regions R (R1 to R36) (in FIG. 1, C1, C15, C18 and C36). Only shown).
  • the center of gravity C may be determined on the assumption that the specific gravity of the secondary particles A is uniform within each region. When the secondary particles A are not included in the region, the center of gravity C is determined for the region excluding this region.
  • the atomic composition ratio at each determined center of gravity C is obtained by energy dispersive X-ray spectroscopy (EDX).
  • EDX energy dispersive X-ray spectroscopy
  • the obtained atomic composition ratio CR at each center of gravity C is plotted in a triangular diagram (triangular graph) representing the atomic composition ratios of element A, element B, and element M.
  • This triangular figure is a figure generally used when showing the composition ratio of the ternary compound.
  • the atomic composition ratio CRx in the region Rx is not the raw material composition ratio of the raw material containing all three components (element A, element B, and element M) among the raw materials used when manufacturing the powder proton conductor,
  • the atomic composition ratio CRx is not subject to plotting.
  • region Rx x indicates the number of each region. For example, when the region R is R1, x is 1. In other words, when an attempt is made to plot the atomic composition ratio CRx in a triangular diagram, the atomic composition ratio CRx is not plotted when the plot rides on each side including the apex.
  • the atomic composition ratio CRy of another point Y in the region Rx (for example, an arbitrary point in the vicinity of the center of gravity Cx, not shown) is calculated and plotted in a triangular diagram.
  • the raw material composition ratio of the raw material including all of the three components (element A, element B, and element M) is not equivalent” corresponds to, for example, a raw material including one of element A, element B, and element M
  • the atomic composition ratio include an atomic composition ratio corresponding to a raw material containing two of element A, element B, and element M.
  • the side indicating the atomic composition ratio of the element M is the X axis
  • the axis perpendicular to the X axis is the Y axis.
  • c in the atomic composition ratio is 0 (zero)
  • b in the atomic composition ratio is 0 (zero)
  • a in the atomic composition ratio is 1.
  • the triangle is placed so that the vertex of the triangle is located at the origin (0, 0).
  • c in the atomic composition ratio is 1, for element A, a in the atomic composition ratio is 0 (zero), and for element B, b in the atomic composition ratio is 0 (zero).
  • the coordinates of the apex of the triangular diagram are (1, 0), for element B, b in the atomic composition ratio is 1, for element M, c in the atomic composition ratio is 1, and for element A, in the atomic composition ratio
  • the coordinates of the apex of the triangular diagram in which a is 0 (zero) is (1/2, ⁇ 3 / 2).
  • the coordinates (x, y) of the atomic composition ratio CR of the plotted 36 points (36 x points when there are x regions not including the secondary particles A. 0 ⁇ x ⁇ 36) are obtained, and the average Coordinates (x 0 , y 0 ) are calculated.
  • the average coordinates (x 0 , y 0 ) can be calculated by dividing the sum of the x values and the sum of the y values at the coordinates of all plotted points by (36 ⁇ x), respectively.
  • the distance D between the average coordinates (x 0 , y 0 ) and the plotted coordinates (x, y) is obtained.
  • the distance D may be actually measured or may be calculated using the Pythagorean theorem.
  • the standard deviation ⁇ d of the distance D indicates the variation of the coordinates (x, y) with respect to the average coordinates (x 0 , y 0 ). That is, the standard deviation ⁇ d indicates the variation (standard deviation ⁇ ) in the atomic composition ratio of the elements A, B, and M in the triangular diagram.
  • the powder proton conductor is a compound other than the metal oxide represented by the formula (1), for example, a raw material of the powder proton conductor, a metal oxide having no perovskite structure, and an atomic composition ratio of 0.85 ⁇ a ⁇ 1. And a metal oxide having a perovskite structure having an atomic composition ratio not satisfying 0.5 ⁇ b ⁇ 1 may be included.
  • the powder proton conductor preferably has a small content of compounds other than the metal oxide represented by the formula (1).
  • the compound other than the metal oxide represented by the formula (1) is preferably contained in the proton conductor with a content (for example, 5% by mass) less than a level at which a peak can be barely confirmed by X-ray diffraction.
  • the standard deviation ⁇ is calculated by excluding the raw material of the powder proton conductor.
  • the secondary particle diameter of the powder proton conductor is not particularly limited, and is, for example, 50 to 500 nm. Among these, from the viewpoint of sinterability, the secondary particle diameter is preferably 50 to 300 nm. In the present specification, the secondary particle diameter of the powder proton conductor is a secondary particle diameter determined by a laser diffraction type particle size distribution measuring apparatus.
  • A represents at least one element selected from the group consisting of Ba (barium), Ca (calcium), and Sr (strontium).
  • the A preferably contains Ba, more preferably Ba alone.
  • the ratio of Ba in A is preferably 50 atomic% or more, and more preferably 80 atomic% or more from the viewpoint of obtaining good proton conductivity.
  • a [the ratio of the element A to the total of the elements B and M] may be 0.85 or more and 1 or less (0.85 ⁇ a ⁇ 1), and is not particularly limited.
  • the a in the formula (1) is preferably 0.99 or less, more preferably 0.98 or less, and still more preferably 0.96. It is as follows.
  • a is preferably 0.86 or more, and more preferably 0.88 or more, from the viewpoint of ensuring good proton conductivity.
  • B represents at least one element selected from the group consisting of Ce (cerium) and Zr (zirconium).
  • B preferably includes Zr, and more preferably only Zr.
  • the ratio of Zr in B is preferably 50 atomic% or more, and preferably 80 atomic% or more from the viewpoint of ensuring sufficient durability for the cell structure.
  • the b [ratio of the element B to the total of the element A and the element M] may be 0.5 or more and less than 1 (0.5 ⁇ b ⁇ 1), and is not particularly limited.
  • the b in the formula (1) is preferably 0.1 or more, more preferably 0.12 or more.
  • the b in the formula (1) is preferably 0.25 or less, more preferably 0.20 or less.
  • the M is from Y (yttrium), Yb (ytterbium), Er (erbium), Ho (holmium), Tm (thulium), Gd (gadolinium), In (indium), and Sc (scandium).
  • At least one element selected from the group consisting of: Element M is a dopant. Since such a dopant causes oxygen defects, the metal oxide having a perovskite structure exhibits proton conductivity.
  • said M contains at least 1 sort (s) of Y and Yb, and it is more preferable that it is comprised only by Y.
  • the total ratio of the number of Y and the number of Yb with respect to the total number of atoms contained in M is preferably 50 atomic% or more, and 80 atomic% or more. It is preferable.
  • the proton conductor according to the present embodiment includes a step of preparing a raw material containing the element A, the element B, and the element M, and a firing in which the raw material is fired at a first firing temperature of 1500 ° C. or higher for 20 hours or longer And a step (first firing step). Then, a powder proton conductor is obtained by grind
  • the degree of variation in the atomic composition ratio can be inferred from the lattice constant of the powder proton conductor.
  • the powder proton conductor is a metal oxide represented by Ba a Zr 0.8 Y 0.2 O 3-d (where a is a number satisfying 0.98 ⁇ a ⁇ 1). If the lattice constant in the state where water is not contained in the crystal is in the range of 4.220 or more and 4.225 or less, it can be said that the variation in the atomic composition ratio is small.
  • the powder proton conductor is a metal oxide represented by Ba a Zr 0.8 Y 0.2 O 3-d (wherein a is a number satisfying 0.85 ⁇ a ⁇ 0.98). In some cases, it can be said that the variation in the atomic composition ratio is small when the lattice constant in a state where water is not included in the crystal is in the range of 4.200 or more and less than 4.220.
  • the first firing step is performed in an oxygen-containing atmosphere.
  • the oxygen content of the atmosphere used for the first firing step is not particularly limited.
  • the first firing may be performed, for example, in an air atmosphere (oxygen content: about 20% by volume) or in pure oxygen (oxygen content: 100% by volume).
  • the first firing temperature is preferably 1600 ° C. or higher in that the variation in the atomic composition ratio is further reduced. Moreover, it is preferable that a 1st baking temperature is 1650 degrees C or less from a viewpoint of an improvement of productivity.
  • the holding time of the first firing temperature is preferably 20 hours or more, and more preferably 22 hours or more. Further, from the viewpoint of improving productivity, the holding time at the first firing temperature is preferably 100 hours or less, and more preferably 72 hours or less.
  • the holding time at the first firing temperature is a period excluding the temperature raising process and the temperature lowering process.
  • the first firing temperature is an average temperature during the holding time. Therefore, it is allowed to be less than 1600 ° C.
  • the temperature of the firing atmosphere is maintained in the above temperature range, that is, 1600 ° C. or more for a time of 80% or more of the holding time. The same applies to the second firing temperature and the third firing temperature described later.
  • the metal oxide constituting the proton conductor is usually sintered at a temperature of 1200 ° C. or higher and lower than 1500 ° C.
  • the standard deviation ⁇ of the atomic composition ratio is larger than 0.04, and the content of unreacted raw materials (For example, 5% by mass or more).
  • the metal oxide constituting the proton conductor is sintered at a temperature of 1500 ° C. or higher, the variation in the atomic composition ratio is reduced.
  • a pre-baking step of pre-baking the raw material at a pre-baking temperature of less than 1500 ° C. may be provided prior to the first firing step.
  • a pre-baking step of pre-baking the raw material at a pre-baking temperature of less than 1500 ° C.
  • generation of a metal oxide that is a target product proceeds mainly.
  • generation of the metal oxide which is a target object progresses from normal temperature to 1st baking temperature among 1st baking processes. For this reason, by performing the pre-baking step, the generation of the metal oxide is likely to proceed sufficiently.
  • the pre-baking step is not particularly limited as long as it is performed at a temperature lower than the first baking temperature (less than 1500 ° C.).
  • the preliminary firing step is performed, for example, in an air atmosphere at a temperature condition of 1200 ° C. or higher and lower than 1500 ° C. for 5 to 20 hours. When the pre-baking step is performed under this temperature condition, the synthesis of the metal oxide is sufficiently easy to proceed.
  • the pre-baking step may be performed a plurality of times.
  • the raw material may be once cooled (for example, to 100 ° C. or lower) and then the first firing step may be performed.
  • the preliminary firing is performed by raising the temperature from the preliminary firing temperature to the first firing temperature as it is. You may perform a process and a 1st baking process continuously.
  • the raw material Prior to the pre-baking step, the raw material may be fired to remove crystal water or organic matter contained in the raw material.
  • the firing before the preliminary firing step is also referred to as temporary firing.
  • the conditions for the preliminary firing are not particularly limited.
  • the raw material is heat-treated at a temperature of 900 ° C. to 1100 ° C. for 5 hours to 20 hours.
  • pulverization process which grind
  • the holding time at the first baking temperature in the first baking step is, for example, 20 hours or more and 72 hours or less.
  • Examples of the method of pulverizing the pre-fired raw material include a method using a pulverizer such as a ball mill, a rod mill, a pulverizing roll, and a jet mill, but are not particularly limited.
  • the conditions for pulverization are not particularly limited.
  • the pulverization step may be performed at a rotational speed of 100 rpm to 650 rpm for 2 hours to 50 hours after cooling the pre-fired raw material.
  • the raw material of the powder proton conductor may contain element A, element B and element M.
  • the raw material for the powder proton conductor include, but are not limited to, compounds such as oxides, carbonates, and nitrates. Examples of such a compound include barium oxide, barium carbonate, zirconium oxide, cerium oxide, yttrium oxide, ytterbium oxide, holmium oxide, erbium oxide, and yttrium-doped zirconium dioxide (YSZ). It is not limited.
  • the raw material may be a single compound including the element A, the element B, and the element M, or may be a combination of a plurality of types of compounds including at least one element selected from the elements A, B, and M. .
  • Examples of the single compound containing the element A, the element B, and the element M include, but are not limited to, zirconium dioxide (YSZ) doped with yttrium.
  • Examples of the compound containing at least one element selected from the elements A, B, and M include barium oxide, barium carbonate, zirconium oxide, cerium oxide, yttrium oxide, ytterbium oxide, holmium oxide, and erbium oxide. There is no particular limitation.
  • FIG. 3 is a cross-sectional view schematically showing the cell structure 1.
  • the cell structure 1 of the present embodiment includes a cathode 2, an anode 3, and a solid electrolyte layer 4 interposed between the cathode 2 and the anode 3 and having proton conductivity.
  • the anode 3 includes the sintered body of the proton conductor and the sintered body of the nickel compound of the present embodiment. Such an anode 3 is formed by firing a mixture (anode material) of the powder proton conductor powder and the nickel compound powder of the present embodiment.
  • the composition of the sintered body of the obtained proton conductor is also uniform. As a result, the proton conductivity of the obtained anode 3 is improved, and the power generation performance is improved.
  • FIG. 3 shows a stacked cell structure 1 as an example of the cell structure of the present embodiment, but the shape of the cell structure 1 is not limited to this.
  • the shape of the cell structure 1 may be, for example, a cylindrical shape rounded with the anode 3 inside so as to have a hollow.
  • the thickness of the anode 3 is larger than the thickness of the cathode 2.
  • the anode 3 functions as a support that supports the solid electrolyte layer 4 (and thus the cell structure 1).
  • the thickness of the anode 3 is not necessarily larger than the thickness of the cathode 2.
  • the thickness of the anode 3 and the thickness of the cathode 2 may be approximately the same.
  • the cell structure 1 of the present embodiment has a small variation in the atomic composition ratio of the proton conductor used as a raw material, the generation of the liquid phase is suppressed, and the specific by-product contained in the obtained anode 3 The amount is reduced. As a result, the power generation performance is further improved.
  • the A when the A includes Ba and the M includes Y, BaY 2 NiO 5 is usually generated as a by-product upon firing with the nickel compound. This by-product is particularly easy to decompose.
  • the proton conductor used as a raw material contains Ba and Y, the production of BaY 2 NiO 5 is suppressed. This is because the standard deviation ⁇ of the proton conductor is 0.04.
  • the content of the nickel compound in the anode material is preferably 40% by mass to 90% by mass and more preferably 60% by mass to 90% by mass in consideration of the balance between the linear expansion coefficient and the power generation efficiency.
  • nickel compound examples include, but are not limited to, nickel oxide, nickel hydroxide, nickel salt, nickel halide, and the like.
  • nickel salt examples include nickel inorganic acid salts such as nickel carbonate, but are not particularly limited. Among these, nickel oxides such as NiO are preferable from the viewpoint of reducing manufacturing costs.
  • a nickel compound may be used independently and may be used in combination of 2 or more types.
  • the thickness of the anode 3 is not particularly limited.
  • the thickness of the anode 3 may be, for example, 10 ⁇ m to 2 mm, or 10 ⁇ m to 100 ⁇ m.
  • the thickness of the anode 3 can be appropriately selected from a range of 100 ⁇ m to 2 mm, for example.
  • the sintered body of the proton conductor and the sintered body of the nickel compound of the present embodiment may occupy at least a part of the anode 3.
  • the entire anode 3 may be composed of a sintered body of the proton conductor and a sintered body of the nickel compound.
  • the entire anode 3 is composed of a sintered body of the proton conductor and a sintered body of the nickel compound from the viewpoint of power generation efficiency.
  • the thickness of the anode 3 is 30 ⁇ m or more, from the viewpoint of power generation efficiency, a region of at least 30 ⁇ m from the boundary surface between the solid electrolyte layer 4 and the anode 3 is sintered between the proton conductor and the nickel compound.
  • the body preferably occupies.
  • the “interface between the solid electrolyte layer 4 and the anode 3” means, for example, in the direction from the solid electrolyte layer 4 to the anode 3, the first region containing almost no Ni and the second region containing a small amount of Ni. If there is a third region in which the Ni content rapidly increases as compared with the second region, the boundary between the second region and the third region.
  • the second region is a region that is a part of the solid electrolyte layer 4 and contains a small amount of Ni diffused from the anode 3.
  • the raw material of the region constituted by other than the proton conductor sintered body and the nickel compound sintered body is not particularly limited.
  • a nickel compound, only the proton conductor, only a proton conductor other than the powder proton conductor, and a mixture of a proton conductor other than the powder proton conductor and a nickel compound may be used.
  • Proton conductors other than the powder proton conductor are not particularly limited, and can be appropriately selected from, for example, known metal oxides.
  • the solid electrolyte layer 4 includes a solid electrolyte having proton conductivity.
  • the solid electrolyte layer 4 is formed by laminating a solid electrolyte material containing a solid electrolyte on the anode 3 and then firing it. When firing the solid electrolyte layer 4, Ni may diffuse from the anode 3 to the solid electrolyte layer 4 and react with the solid electrolyte in the solid electrolyte layer 4. In this case, a specific by-product may be generated also in the solid electrolyte layer 4. When the by-product contained in the solid electrolyte layer 4 is decomposed to generate a decomposition product, the resistance of the solid electrolyte layer 4 tends to increase.
  • the cell structure 1 including such an anode 3 can also suppress the restriction of the reduction reaction at the cathode 2.
  • a conventionally known material can be used as the solid electrolyte.
  • the formula (2) A1 a1 B1 1-b1 M1 b1 O 3- ⁇ (2) (Wherein A1 is at least one element selected from the group consisting of Ba, Ca and Sr, B1 is at least one element selected from the group consisting of Ce and Zr, M1 is Y, Yb, Er, And at least one element selected from the group consisting of Ho, Tm, Gd, In and Sc, a1 is a number satisfying 0.85 ⁇ a1 ⁇ 1, and b1 is a number satisfying 0 ⁇ b1 ⁇ 0.5 Yes, ⁇ is oxygen deficiency)
  • the element represented by “A1” in Formula (2) is also referred to as “element A1”.
  • the element represented by “B1” in Formula (2) is also referred to as “element B1”.
  • the element A1 examples include the metal elements exemplified as the element A. Especially, it is preferable that element A1 contains Ba in said range from a proton conductive viewpoint.
  • the element B1 examples include the metal elements exemplified as the element B. Especially, it is preferable that element B1 contains Zr in said range from a durable viewpoint.
  • the element M1 the metal element illustrated as the element M can be illustrated similarly. Among these, from the viewpoint of proton conductivity, the element M1 preferably includes at least one of Y and Yb in the above range, and more preferably includes only Y.
  • the solid electrolyte layer 4 preferably contains the powder proton conductor of the present embodiment as a raw material in that the amount of by-products generated is further reduced.
  • the solid electrolyte layer 4 may contain components other than the compound having a perovskite crystal structure represented by the formula (2) as the solid electrolyte, but the content thereof is preferably small from the viewpoint of proton conductivity. For example, it is preferable that 50% by mass or more or 70% by mass or more of the solid electrolyte layer 4 is the solid electrolyte.
  • the component other than the solid electrolyte is not particularly limited, and examples of the solid electrolyte include other known compounds (including compounds not having proton conductivity).
  • the thickness of the solid electrolyte layer 4 is, for example, 1 ⁇ m to 50 ⁇ m, preferably 3 ⁇ m to 20 ⁇ m. When the thickness of the solid electrolyte layer 4 is within such a range, the resistance of the solid electrolyte layer 4 can be kept low.
  • the cathode 2 is formed by laminating a cathode material containing the following metal oxide on the solid electrolyte layer 4 and then firing it.
  • the metal oxide contained in the cathode material for example, lanthanum strontium cobalt ferrite (LSCF, La 1-d Sr d Co 1-e Fe e O 3- ⁇ , 0 ⁇ d ⁇ 1,0 ⁇ e ⁇ 1, ⁇ is oxygen deficiency), lanthanum strontium manganite (LSM, La 1 -f Sr f MnO 3 - ⁇ , 0 ⁇ f ⁇ 1, ⁇ is oxygen deficiency), lanthanum strontium cobaltite (LSC, La 1-g Sr g CoO 3- ⁇ , 0 ⁇ g ⁇ 1, ⁇ is the oxygen deficiency), samarium strontium cobaltite (SSC, Sm 1-h Sr h CoO 3- ⁇ , 0 ⁇ h ⁇ 1, ⁇ Is the amount of
  • the cathode 2 may contain a catalyst such as Ag or Pt. This is because the reaction between the proton and the oxidizing agent is promoted.
  • the cathode 2 can be formed by mixing the catalyst and the above materials and sintering.
  • the thickness of the cathode 2 is not particularly limited, but may be about 10 ⁇ m to 30 ⁇ m.
  • Cell structure manufacturing method includes a step of preparing a cathode material, a material for solid electrolyte having proton conductivity, and an anode material (first step), and a layer containing the anode material and a solid After laminating the layer containing the electrolyte material, the obtained laminate is fired at the second firing temperature or the third firing temperature to form a joined body of the anode 3 and the solid electrolyte layer 4 (second step). And a step of forming the cathode 2 by laminating the layer containing the cathode material on the surface of the solid electrolyte layer 4 and then forming the cathode 2 (third step). Manufactured.
  • a mixture of the aforementioned proton conductor and nickel compound is used as the anode material.
  • a powder proton conductor having a standard deviation ⁇ of 0.04 or less or a powder proton conductor sintered at 1500 ° C. or more is used as the anode material. Since these powder proton conductors have little variation in the atomic composition ratio, the anode 3 using any of these powder proton conductors hardly generates by-products.
  • the manufacturing method of the cell structure 1 includes a first step of preparing a cathode material, a proton conductive solid electrolyte material, and an anode material, and an anode material. And a layer containing the solid electrolyte material, and then firing the obtained laminate at a second firing temperature to form a joined body of the anode 3 and the solid electrolyte layer 4; A layer containing a cathode material on the surface of the solid electrolyte layer 4 and then firing the resulting laminate to form the cathode 2 (hereinafter referred to as “cell structure 1 of Also referred to as “Production Method A”).
  • the anode material includes a proton conductor and a nickel compound.
  • the proton conductor is the aforementioned proton conductor.
  • a cathode material, a solid electrolyte material having proton conductivity, and a first step of preparing an anode material, and a layer containing the anode material After laminating the layer containing the solid electrolyte material, the obtained laminate is fired at a third firing temperature to form a joined body of the anode 3 and the solid electrolyte layer 4, and the solid electrolyte layer 4 And laminating the layer containing the cathode material on the surface and then firing the resulting laminate to form the cathode 2 (hereinafter also referred to as “Production Method B of Cell Structure 1”).
  • the anode material includes the element represented by A, the element represented by B, and the element represented by M in Formula (1), respectively, a, A proton conductor (“a powder proton conductor sintered at 1500 ° C. or higher”) obtained by baking a raw material containing a ratio satisfying the above b and c at a first baking temperature of 1500 ° C. or higher for 20 hours or more; And nickel compounds.
  • a proton conductor (“a powder proton conductor sintered at 1500 ° C. or higher”) obtained by baking a raw material containing a ratio satisfying the above b and c at a first baking temperature of 1500 ° C. or higher for 20 hours or more; And nickel compounds.
  • a solid electrolyte material, an anode material, and a cathode material are prepared.
  • the powder proton conductor is included in at least the anode material.
  • a layer containing the anode material and a layer containing the solid electrolyte material are laminated and fired to form a joined body of the anode 3 and the solid electrolyte layer 4.
  • the paste or slurry containing the anode material is also referred to as an “anode dispersion”.
  • the paste or slurry containing the solid electrolyte material is also referred to as “solid electrolyte dispersion”.
  • the binder include, but are not particularly limited to, known materials used for manufacturing ceramic materials, such as polymer binders and waxes.
  • Examples of the polymer binder include, but are not particularly limited to, cellulose derivatives, vinyl acetate resins, acrylic resins, and the like.
  • Examples of the cellulose derivative include ethyl cellulose and cellulose ether, but are not particularly limited.
  • the concept of the vinyl acetate resin includes a saponified product of vinyl acetate resin such as provinyl alcohol.
  • Examples of the wax include paraffin wax, but are not particularly limited.
  • the amount of the binder contained in the solid electrolyte dispersion is, for example, 1 part by mass to 20 parts by mass, preferably 1.5 parts by mass to 15 parts by mass with respect to 100 parts by mass of the solid electrolyte.
  • the amount of the binder contained in the anode dispersion is, for example, 1 part by weight to 15 parts by weight, preferably 3 parts by weight with respect to 100 parts by weight of the total amount of the mixture. ⁇ 10 parts by mass.
  • the amount of the binder contained in the anode dispersion is, for example, 1 to 20 parts by mass, preferably 1.5 to 15 parts by mass.
  • each dispersion medium examples include water and organic solvents, but are not particularly limited.
  • the organic solvent include, but are not limited to, hydrocarbons such as toluene; alcohols such as ethanol and isopropanol; carbitols such as butyl carbitol acetate.
  • each dispersion may contain various additives such as a surfactant and a peptizer as necessary.
  • the peptizer include, but are not particularly limited to, polycarboxylic acids.
  • each layer is not particularly limited, and may be appropriately selected according to the desired thickness of each layer.
  • each dispersion may be formed by press molding or tape molding and then laminated.
  • each dispersion may be laminated by being applied by screen printing, spray coating, spin coating, dip coating, or the like.
  • the solid electrolyte dispersion is usually laminated by being applied to the surface of the layer containing the anode material by screen printing, spray coating, spin coating, dip coating, or the like.
  • the anode dispersion is formed into a layer having a predetermined shape by press molding.
  • the predetermined shape include a pellet shape, a plate shape, and a sheet shape.
  • the anode dispersion may be granulated to form a granulated product. If necessary, the obtained granulated product may be pulverized and the pulverized product may be subjected to molding.
  • the anode 3 includes a region composed of a compound other than the sintered body, for example, after forming a layer to be a region composed of a compound other than the sintered body by the same method, the sintered body The layers forming the are stacked.
  • a solid electrolyte dispersion is applied to the surface of the formed layer containing the anode material by, for example, screen printing, spray coating, spin coating, dip coating, etc., and the layer containing the solid electrolyte material is laminated. To obtain a laminate.
  • a step of pre-baking the layer containing the anode material may be performed.
  • the temporary firing may be performed at a temperature lower than the temperature at which the anode material is sintered (eg, 900 ° C. to 1100 ° C.). By performing the preliminary firing, the solid electrolyte dispersion is easily applied.
  • the laminate is fired (main firing).
  • the main firing is performed by heating the obtained laminated body at a predetermined temperature in an oxygen-containing atmosphere.
  • the main firing is performed at the second firing temperature.
  • the main firing is performed at the third firing temperature.
  • the oxygen content in the main firing atmosphere is not particularly limited, and may be the same conditions as in the second firing step.
  • the second firing temperature and the third firing temperature are, for example, 1300 ° C. to 1700 ° C., and preferably 1350 ° C. to 1600 ° C.
  • Temperature) is preferably equal to or higher than the third baking temperature.
  • the main firing of the laminate can be performed under normal pressure or under pressure.
  • resin components such as a binder contained in each layer may be removed. That is, after applying the solid electrolyte dispersion, the laminate may be heated in air to a relatively low temperature of about 500 ° C. to 700 ° C. to remove the resin component contained in each paste. Thereafter, the main baking is performed. By this firing, the anode material and the solid electrolyte material are co-sintered. That is, by the main firing, an electrolyte layer-anode assembly in which the anode 3 and the solid electrolyte layer 4 are integrated is formed.
  • a layer containing a cathode material is laminated on the surface of the solid electrolyte layer 4 of the electrolyte layer-anode assembly, and fired at, for example, 800 ° C. to 1100 ° C. to form the cathode 2. Firing is performed in an oxygen-containing atmosphere similar to the above.
  • the cathode material may be laminated on the surface of the solid electrolyte layer 4 using a cathode dispersion such as paste or slurry mixed with a binder or the like.
  • a cathode dispersion such as paste or slurry mixed with a binder or the like.
  • Examples of the method for laminating the cathode dispersion include the same method as described above.
  • the amount of the binder contained in the cathode dispersion is, for example, 1 part by mass to 15 parts by mass, preferably 3 parts by mass with respect to 100 parts by mass of the metal oxide when the cathode dispersion is subjected to press molding. In other cases, for example, 1 to 20 parts by mass, preferably 1.5 to 15 parts by mass.
  • Fuel Cell A fuel cell according to an embodiment of the present invention includes an anode including the proton conductor described above.
  • the configuration of the fuel cell may be the same as that of the conventional fuel cell except for the anode including the proton conductor. Since the fuel cell according to the present embodiment includes an anode including a proton conductor, high power generation efficiency can be obtained.
  • Water electrolysis apparatus A water electrolysis apparatus according to an embodiment of the present invention includes an anode including the proton conductor described above.
  • the structure of the water electrolysis apparatus may be the same as that of a conventional water electrolysis apparatus that electrolyzes hydrogen and oxygen by applying a voltage to water, except for an anode including a proton conductor. Since the water electrolysis apparatus according to this embodiment includes an anode including a proton conductor, hydrogen and oxygen can be obtained with high production efficiency.
  • the metal oxide represented by was produced by performing the following operations.
  • the compound represented by Formula (3) is 1 type of the compound included by the compound represented by Formula (1).
  • the powder obtained through the two preliminary firing steps was pulverized for 24 hours by a ball mill (rotation speed: 300 rpm) (pulverization step).
  • the obtained pulverized product was dried and then uniaxially molded to obtain pellets.
  • the obtained pellets were fired at 1600 ° C. (first firing temperature) for 24 hours in an air atmosphere (first firing step).
  • a proton conductor A containing a metal oxide having a perovskite structure was obtained.
  • the obtained proton conductor A was pulverized with a ball mill (rotation speed: 300 rpm) for 50 hours to obtain a powder proton conductor A.
  • the secondary particles of the obtained powder proton conductor A had a particle diameter of 100 nm to 300 nm.
  • the standard deviation ⁇ was calculated according to the method described above.
  • the standard deviation ⁇ of the powder proton conductor A was 0.0237.
  • the obtained powder proton conductor A was heated at 1000 ° C. in a dry atmosphere to remove moisture from the metal oxide crystals constituting the metal oxide constituting the powder proton conductor A.
  • the X-ray diffraction of the powder proton conductor A after moisture removal was examined, and the lattice constant was determined.
  • FIG. 4 shows the analysis results. From the results shown in FIG.
  • the lattice constant of the powder proton conductor A is in the range of 4.220 or more and 4.225 or less. From these results, the lattice constant of the powdered proton conductor A almost coincides with the theoretical lattice constant of the perovskite compound having the same composition as the charged composition calculated from the charged amounts of barium carbonate, zirconium oxide and yttrium oxide. It is presumed that the powder proton conductor A has a small variation in the atomic composition ratio and has a desired perovskite structure.
  • Example 2 Preparation of anode powder
  • the powder proton conductor A obtained in Example 1 (1) was used as an anode material.
  • the powder proton conductor A and nickel oxide (NiO) were mixed together with an appropriate amount of isopropanol by a ball mill.
  • the obtained mixture was dried to obtain an anode powder.
  • the powder proton conductor A and NiO were mixed so that the powder proton conductor A / NiO (mass ratio) was 30/70.
  • Example 3 Preparation of solid electrolyte paste
  • the powder proton conductor A obtained in Example 1 (1) was used as the solid electrolyte.
  • the powder proton conductor A, ethyl cellulose (binder, ethoxylation degree: about 49%), and ⁇ -terpineol (solvent) were mixed to prepare a solid electrolyte paste.
  • Example 1 (2) was uniaxially formed to form disk-shaped pellets (diameter 11 mm). The obtained pellets were fired (pre-baked) at 1000 ° C.
  • the solid electrolyte paste obtained in Example 1 (3) was applied by spin coating to one main surface of the pellets after the temporary firing to form a coating film. The pellet having the coating film was heated at 600 ° C. for 10 hours to remove the binder. Next, the obtained pellets were fired (main firing) at 1500 ° C. (third firing temperature) for 10 hours to obtain a solid electrolyte layer-anode assembly A (hereinafter also simply referred to as “joint A”). The thickness of the joined body A was about 1.4 mm, and the thickness of the solid electrolyte layer was 10 ⁇ m.
  • the surface of the solid electrolyte layer of the obtained bonded body A was photographed using a scanning electron microscope (SEM).
  • SEM image of the joined body A obtained in Example 1 (4) is shown in FIG. From the results shown in FIG. 5, it can be seen that the surface of the solid electrolyte layer is uniform, and needle-like or plate-like crystals that appear to be BaY 2 NiO 5 cannot be confirmed. Further, the X-ray diffraction of the surface of the solid electrolyte layer of the obtained joined body A was examined.
  • the results of X-ray diffraction were analyzed by the Rietveld method, and the BaZrO 3 phase and by-products (BaY 2 NiO 5 , Y 2 O 3 ) were quantified.
  • the BaZrO 3 phase was 98% by mass
  • BaY 2 NiO 5 was 0% by mass
  • Y 2 O 3 was 2% by mass.
  • Example 2 Except that the first firing temperature was set to 1500 ° C., the same operation as in Example 1 was performed to prepare a powder proton conductor B. 90% by volume or more of the secondary particles of the obtained powder proton conductor B had a particle diameter of 100 nm to 300 nm.
  • the standard deviation ⁇ was calculated according to the method described above. As a result, the standard deviation ⁇ of the powder proton conductor B was 0.0114. Further, moisture was removed from the metal oxide crystals constituting the obtained powder proton conductor B. The X-ray diffraction of the powder proton conductor B after moisture removal was examined, and the lattice constant was determined.
  • FIG. 4 shows the analysis results. From the results shown in FIG.
  • the lattice constant of the powder proton conductor B is in the range of 4.220 or more and 4.225 or less. From these results, the lattice constant of the powder proton conductor B almost coincides with the theoretical lattice constant of the perovskite compound having the same composition as the charged composition calculated from the charged amounts of barium carbonate, zirconium oxide and yttrium oxide. It is presumed that the powder proton conductor B has a small variation in the atomic composition ratio and has a desired perovskite structure.
  • Example 3 Barium carbonate, zirconium oxide, and yttrium oxide, a molar ratio in which a in formula (3) is 0.98, b in formula (3) is 0.8, and c in formula (3) is 0.2.
  • a powder proton conductor C was produced in the same manner as in Example 1 except that mixing was performed.
  • the standard deviation ⁇ of the powder proton conductor C was 0.0165.
  • 90 volume% or more of the secondary particles of the obtained powder proton conductor C had a particle diameter of 100 nm to 300 nm.
  • Water was removed from the metal oxide crystals constituting the obtained powder proton conductor C. The X-ray diffraction of the powder proton conductor C after removing water was examined, and the lattice constant was determined.
  • the lattice constant of the powder proton conductor C is in the range of 4.200 or more and less than 4.220. From these results, the lattice constant of the powder proton conductor C almost coincides with the theoretical lattice constant of the perovskite compound having the same composition as the charged composition calculated from the charged amounts of barium carbonate, zirconium oxide and yttrium oxide. It is presumed that the powder proton conductor C has a small variation in the atomic composition ratio and has a desired perovskite structure.
  • Example 4 Example 1 except that barium carbonate, zirconium oxide, and yttrium oxide were mixed so that the ratio a of the number of Ba to the total number of atoms in formula (3) was a molar ratio of 0.95. The same operation was performed to prepare a powder proton conductor D.
  • the standard deviation ⁇ of the powder proton conductor D was 0.0366. 90% by volume or more of the secondary particles of the obtained powder proton conductor D had a particle diameter of 100 nm to 300 nm. Water was removed from the metal oxide crystals constituting the obtained powder proton conductor D. The X-ray diffraction of the powder proton conductor D after moisture removal was examined, and the lattice constant was determined.
  • FIG. 4 shows the analysis results.
  • the lattice constant of the powder proton conductor D is in the range of 4.200 or more and less than 4.220. From these results, the lattice constant of the powder proton conductor D almost coincides with the theoretical lattice constant of the perovskite compound having the same composition as the charged composition calculated from the charged amounts of barium carbonate, zirconium oxide and yttrium oxide. It is presumed that the powder proton conductor D has a small variation in the atomic composition ratio and has a desired perovskite structure.
  • Example 1 Except that the first firing temperature was 1300 ° C., the same operation as in Example 1 was performed, and the powder proton conductor a and the solid electrolyte layer-anode assembly a (hereinafter also simply referred to as “joint a”). Was made.
  • the standard deviation ⁇ was calculated according to the method described above.
  • the standard deviation ⁇ of the powder proton conductor a was 0.0631. Further, moisture was removed from the metal oxide crystals constituting the powder proton conductor a.
  • the X-ray diffraction of the powder proton conductor a after removing water was examined, and the lattice constant was determined.
  • FIG. 4 shows the analysis results. From the results shown in FIG.
  • the lattice constant of the proton conductor a is in the range of 4.195 to 4.2. From these results, since the range of the lattice constant of the powder proton conductor a is outside the range of the lattice constant of the powder proton conductor obtained in Examples 1 to 4, the powder proton conductor a has an atomic composition ratio. It is inferred that there is a large variation in.
  • the surface of the solid electrolyte layer of the obtained joined body a was photographed using SEM.
  • the SEM image of the joined body a obtained in Comparative Example 1 is shown in FIG. From the results shown in FIG. 5, it can be seen that needle-like or plate-like crystals that appear to be BaY 2 NiO 5 exist on the surface of the solid electrolyte layer.
  • the conjugate a the procedure of Example 1 was quantified BaZrO 3 phases and by-product (BaY 2 NiO 5, Y 2 O 3). As a result, the BaZrO 3 phase was 88.2% by mass, BaY 2 NiO 5 was 8.5% by mass, and Y 2 O 3 was 3.3% by mass.
  • Example 1 The powder proton conductor A and NiO obtained in Example 1 were mixed so that the powder proton conductor A / NiO (mass ratio) was 3/7. The obtained mixture was dried to obtain an anode powder. The obtained anode powder was uniaxially molded to obtain a disk-shaped pellet A (diameter 11 mm). Next, the obtained pellet A was fired (main firing) for 10 hours at the third firing temperature (temperature in the range of 800 to 1600 ° C.) shown in Table 1 to prepare anodes A1 to A9. That is, without forming the solid electrolyte layer, the pellets A were fired at the third firing temperature shown in Table 1 to obtain anodes A1 to A9.
  • the by-product BaY 2 NiO 5 is easily decomposed.
  • the decomposition product of BaY 2 NiO 5 is a compound that blocks the gap between the anode and the cathode and prevents the oxidation reaction.
  • the by-product Y 2 O 3 is a compound that is difficult to decompose. From the results shown in Table 4, by-products in the anodes a1 to a9 of Comparative Production Example 1 were obtained, particularly at the normal temperature (around 1000 to 1300 ° C.) at which the solid electrolyte layer-anode assembly was subjected to main firing. It can be seen that a large amount of BaY 2 NiO 5 is produced.
  • the anodes A1 to A9 of Production Example 1, the anodes C1 to C9 of Production Example 2, and the anodes D1 to D9 of Production Example 3 have the third firing temperature. Regardless, it can be seen that the production of the by-product BaY 2 NiO 5 is suppressed. In particular, in the anodes of Production Examples 2 and 3 in which the ratio a of the number of Ba to the total number of atoms in the formula (3) is small, generation of the by-product BaY 2 NiO 5 was not confirmed.
  • the powder proton conductor a (standard deviation ⁇ : 0.0631) of Comparative Example 1 is used as a raw material for the anodes a1 to a9 of Comparative Production Example 1.
  • the powder proton conductor A of Example 1 (standard deviation ⁇ : 0.0237) is used as a raw material.
  • the powder proton conductor B of Example 3 (standard deviation ⁇ : 0.0165) is used as a raw material.
  • powder proton conductor B of Example 4 (standard deviation ⁇ : 0.0366) is used as a raw material.
  • the cell structure It can be seen that in the production of the body, the amount of by-products that can produce degradation products that limit the oxidation and reduction reactions can be reduced. Further, according to the cell structure in which the proton conductor is used as a raw material, since the amount of the by-product is reduced, an oxidation reaction and a reduction reaction are performed during operation of a fuel cell, a gas decomposition apparatus, and the like. It is difficult to produce a limiting decomposition product. Therefore, according to the cell structure, it is expected to ensure high expression efficiency.
  • the powder proton conductor a of Comparative Example 1 is produced by performing the first firing at the first firing temperature of 1300 ° C.
  • the powder proton conductor A of Example 1, the powder proton conductor B of Example 3, and the powder proton conductor B of Example 4 were produced by performing first firing at a first firing temperature of 1600 ° C. ing.
  • Table 1 to Table 4 by performing the first firing at the first firing temperature of 1500 ° C. or higher, the by-product contained in the cell structure obtained is oxidized. It can be seen that the amount of by-products that can produce degradation products that limit the reaction and reduction reaction can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structural Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Conductive Materials (AREA)

Abstract

ペロブスカイト型構造を有し、かつA3-δ(AはBa、CaおよびSrの少なくとも1種、BはCeおよびZrの少なくとも1種、MはY、Yb、Er、Ho、Tm、GdおよびScの少なくとも1種、0.85≦a≦1、0.5≦b<1、c=1-b、δは酸素欠損量)で表される金属酸化物を含み、前記A、前記Bおよび前記Mの原子組成比を表す三角図における標準偏差が0.04以下のプロトン伝導体。

Description

プロトン伝導体、セル構造体およびこれらの製造方法、燃料電池ならびに水電解装置
 本発明は、プロトン伝導体、セル構造体およびこれらの製造方法、燃料電池ならびに水電解装置に関する。本出願は、2015年12月18日出願の日本出願第2015-247968号および2016年5月31日出願の日本出願第2016-108339号に基づく優先権を主張し、前記日本出願に記載されたすべての記載内容は、参照により本明細書に組み込まれる。
 特許文献1および特許文献2には、燃料電池の固体電解質として、例えば、イットリウムがドープされたジルコン酸バリウム(BZY)、イットリウムがドープされたセリウム酸バリウム(BCY)、イットリウムがドープされたジルコン酸バリウム/セリウム酸バリウムの混合酸化物(BZCY)などのペロブスカイト型構造(perovskite structure)を有する金属酸化物が記載されている。
 また、特許文献3には、例えば、燃料電池のアノードを、BZYなどの金属酸化物の粉末および酸化ニッケル粉末の混合物を焼成することによって形成することが記載されている。
 さらに、非特許文献1には、前記BZYなどの金属酸化物の粉末および酸化ニッケル粉末の混合物を焼成する際、副生成物としてBaY2NiO5が生成することが記載されている。
特開2001-307546号公報 特開2007-197315号公報 特開2015-46251号公報
Journal of Power Sources 278 (2015) 614-622
 本開示の1つの側面は、ペロブスカイト型構造を有し、かつ式(1):
 A3-δ             (1)
(式中、Aはバリウム(Ba)、カルシウム(Ca)およびストロンチウム(Sr)からなる群より選ばれた少なくとも1種の元素、Bはセリウム(Ce)およびジルコニウム(Zr)からなる群より選ばれた少なくとも1種の元素、Mはイットリウム(Y)、イッテルビウム(Yb)、エルビウム(Er)、ホルミウム(Ho)、ツリウム(Tm)、ガドリニウム(Gd)、インジウム(In)およびスカンジウム(Sc)からなる群より選ばれた少なくとも1種の元素を示し、aは0.85≦a≦1を満たす数、bは0.5≦b<1を満たす数、cはc=1-bを満たす数、δは酸素欠損量である)
で表される金属酸化物を含むプロトン伝導体であって、前記プロトン伝導体に含まれる前記A、前記Bおよび前記Mの原子組成比を表す三角図における標準偏差が、0.04以下である、プロトン伝導体に関する。
 本開示の他の側面は、プロトン伝導体の製造方法であって、前記プロトン伝導体は、ペロブスカイト型構造を有し、かつ式(1):
 A3-δ             (1)
(式中、AはBa、CaおよびSrからなる群より選ばれた少なくとも1種の元素、BはCeおよびZrからなる群より選ばれた少なくとも1種の元素、MはY、Yb、Er、Ho、Tm、Gd、InおよびScからなる群より選ばれた少なくとも1種の元素を示し、aは0.85≦a≦1を満たす数、bは0.5≦b<1を満たす数、cはc=1-bを満たす数、δは酸素欠損量である)
で表される金属酸化物を含み、
 前記Aで表される元素、前記Bで表される元素および前記Mで表される元素を、それぞれ前記a、前記bおよび前記cを満たす比率で含む原料を準備する準備工程と、
 前記原料を、1500℃以上の第1焼成温度で20時間以上、焼成する焼成工程と、
を含む、プロトン伝導体の製造方法に関する。
 本発明のさらに他の側面は、カソードと、アノードと、前記カソードおよび前記アノードの間に介在し、プロトン伝導性を有する固体電解質層と、を備え、前記アノードが、前述したプロトン伝導体と、ニッケル化合物とを含む、セル構造体に関する。
 本発明のさらに他の側面は、カソード用材料、プロトン伝導性を有する固体電解質用材料、および、アノード用材料を準備する工程と、
 前記アノード用材料を含む層と前記固体電解質用材料を含む層とを積層した後、得られた積層体を第2焼成温度で焼成して、アノードと固体電解質層との接合体を形成する工程と、
 前記固体電解質層の表面に、前記カソード用材料を含む層を積層した後、得られた積層体を焼成して、カソードを形成する工程と、
を含み、前記アノード用材料が、プロトン伝導体と、ニッケル化合物とを含み、前記プロトン伝導体が、前述したプロトン伝導体である、セル構造体の製造方法に関する。
 本発明のさらに他の側面は、カソード用材料、プロトン伝導性を有する固体電解質用材料、および、アノード用材料を準備する工程と、
 前記アノード用材料を含む層と前記固体電解質用材料を含む層とを積層した後、得られた積層体を第3焼成温度で焼成して、アノードと固体電解質層との接合体を形成する工程と、
 前記固体電解質層の表面に、前記カソード用材料を含む層を積層した後、得られた積層体を焼成して、カソードを形成する工程と、
を含み、前記アノード用材料が、プロトン伝導体と、ニッケル化合物とを含み、前記プロトン伝導体が、ペロブスカイト型構造を有し、かつ式(1):
 A3-δ             (1)
(式中、AはBa、CaおよびSrからなる群より選ばれた少なくとも1種の元素、BはCeおよびZrからなる群より選ばれた少なくとも1種、MはY、Yb、Er、Ho、Tm、Gd、InおよびScからなる群より選ばれた少なくとも1種の元素を示し、aは0.85≦a≦1を満たす数、bは0.5≦b<1を満たす数、cはc=1-bを満たす数、δは酸素欠損量である)
で表される金属酸化物を含み、前記Aで表される元素、前記Bで表される元素および前記Mで表される元素を、それぞれ前記a、前記bおよび前記cを満たす比率で含む原料を1500℃以上の第1焼成温度で20時間以上焼成することによって得られるプロトン伝導体である、セル構造体の製造方法に関する。
標準偏差を算出する方法を説明する図であって、プロトン伝導体の二次粒子を模式的に示す上面図である。 標準偏差を算出する方法を説明する図であって、原子組成比の三角図にXY座標系を導入した図である。 本発明の一実施形態に係るセル構造体を模式的に示す断面図である。 実施例および比較例に係るプロトン伝導体の格子定数を示すグラフである。 実施例1に係る接合体の走査型電子顕微鏡写真である。 比較例1に係る接合体の走査型電子顕微鏡写真である。
[本開示が解決しようとする課題]
 本発明者らの検討によれば、燃料電池、ガス分解装置などの稼働時に、前記BaY2NiO5などの副生成物が分解され、アノードの空隙およびカソードの空隙を塞ぐ分解生成物を生じ得ること、および前記分解生成物によってアノードの空隙およびカソードの空隙が塞がれてアノードにおける酸化反応およびカソードにおける還元反応が制限されることが見出されている。
 そこで、本発明は、酸化反応および還元反応を制限する分解生成物を生じ得る副生成物の量を低減することができるプロトン伝導体およびその製造方法、高い発電効率を確保することができるセル構造体およびその製造方法、高い発電効率を得ることができる燃料電池、ならびに水素および酸素を高い生成効率で得ることができる水電解装置を提供することを含む。
[本開示の効果]
 本開示によれば、酸化反応および還元反応を制限する分解生成物を生じ得る副生成物の量を低減することができるプロトン伝導体およびその製造方法、高い発電効率を得ることができるセル構造体およびその製造方法、高い発電効率を得ることができる燃料電池、ならびに水素および酸素を高い生成効率で得ることができる水電解装置を提供することができる。
[発明の実施形態の説明]
 最初に、本発明の実施形態の内容を列記して説明する。
 (1)本発明の一実施形態に係るプロトン伝導体は、ペロブスカイト型構造を有し、かつ式(1):
 A3-δ             (1)
(式中、AはBa、CaおよびSrからなる群より選ばれた少なくとも1種の元素、BはCeおよびZrからなる群より選ばれた少なくとも1種の元素、MはY、Yb、Er、Ho、Tm、Gd、InおよびScからなる群より選ばれた少なくとも1種の元素を示し、aは0.85≦a≦1を満たす数、bは0.5≦b<1を満たす数、cはc=1-bを満たす数、δは酸素欠損量である)
で表される金属酸化物を含む。前記プロトン伝導体に含まれる前記A、前記Bおよび前記Mの原子組成比を表す三角図における標準偏差は、0.04以下である。このプロトン伝導体をセル構造体の製造に用いることにより、得られるセル構造体に含まれる副生成物であって、アノードの空隙およびカソードの空隙を塞いでアノードにおける酸化反応およびカソードにおける還元反応を制限する分解生成物を生じ得る副生成物の量を低減することができる。なお、以下において、「アノードの空隙およびカソードの空隙を塞いでアノードにおける酸化反応およびカソードにおける還元反応を制限する分解生成物を生じ得る副生成物」を、「特定の副生成物」ともいう。前記特定の副生成物としては、例えば、BaY2NiO5などが挙げられるが、特に限定されない。
 (2)前記式(1)において、前記Aは、Baを含むことが好ましい。また、前記式(1)において、前記Bは、Zrを含むことが好ましい。さらに、前記式(1)において、前記Mは、Yを含むことが好ましい。このプロトン伝導体をセル構造体の製造に用いることにより、得られるセル構造体のプロトン伝導性および耐久性を向上させることができる。また、(3)前記プロトン伝導体に含まれる前記A、前記Bおよび前記Mの原子組成比を表す三角図における標準偏差が0.037以下であることが好ましい。このプロトン伝導体をセル構造体の製造に用いることにより、得られるセル構造体に含まれる前記副生成物の量をより一層低減することができる。
 (4)本発明の一実施形態に係るプロトン伝導体の製造方法は、ペロブスカイト型構造を有し、かつ式(1):
 A3-δ             (1)
(式中、AはBa、CaおよびSrからなる群より選ばれた少なくとも1種の元素、BはCeおよびZrからなる群より選ばれた少なくとも1種であり、MはY、Yb、Er、Ho、Tm、Gd、InおよびScからなる群より選ばれた少なくとも1種の元素を示し、aは0.85≦a≦1を満たす数、bは0.5≦b<1を満たす数、cはc=1-bを満たす数、δは酸素欠損量である)
で表される金属酸化物を含むプロトン伝導体の製造方法である。本発明の一実施形態に係るプロトン伝導体の製造方法は、前記Aで表される元素、前記Bで表される元素および前記Mで表される元素を、それぞれ前記a、前記bおよび前記cを満たす比率で含む原料を準備する工程と、前記原料を、1500℃以上の第1焼成温度で20時間以上焼成する焼成工程と、を含む。この方法によって得られるプロトン伝導体をセル構造体の製造に用いることにより、得られるセル構造体に含まれる前記特定の副生成物の量を低減することができる。
 (5)前記準備工程の後、前記焼成工程の前に、前記原料を、1500℃未満の温度で予備焼成する予備焼成工程をさらに含んでもよい。この場合、(6)前記予備焼成工程の後、前記焼成工程の前に、予備焼成された前記原料を、粉砕する粉砕工程をさらに含むことが好ましい。粉砕工程により、焼成工程に供される原料の原子組成比のばらつきを予め小さくすることができる。したがって、焼成工程を経て得られるプロトン伝導体の原子組成比のばらつきが、さらに小さくなり易い。また、焼成工程に要する時間を短縮することができる。
 (7)前記第1焼成温度は、1600℃以上であることが好ましい。特定の副生成物の含有量の低減効果が、さらに向上するためである。
 (8)本発明の一実施形態に係るセル構造体は、カソードと、アノードと、前記カソードおよび前記アノードの間に介在し、プロトン伝導性を有する固体電解質層と、を備える。この場合、前記アノードが、前述のプロトン伝導体と、ニッケル化合物とを含む。このセル構造体によれば、高い発電効率を得ることができる。
 (9)本発明の一実施形態に係るセル構造体の製造方法は、カソード用材料、プロトン伝導性を有する固体電解質用材料、および、アノード用材料を準備する工程と、
 前記アノード用材料を含む層と前記固体電解質用材料を含む層とを積層した後、得られた積層体を焼成して、アノードと固体電解質層との接合体を形成する工程と、
 前記固体電解質層の表面に、前記カソード用材料を含む層を積層した後、得られた積層体を第2焼成温度で焼成して、カソードを形成する工程と、
を含む。前記アノード用材料は、プロトン伝導体とニッケル化合物とを含む。前記プロトン伝導体は、前記(1)のプロトン伝導体である。この方法により得られるセル構造体によれば、高い発電効率を得ることができる。
 (10)本発明の他の一実施形態に係るセル構造体の製造方法は、カソード用材料、プロトン伝導性を有する固体電解質用材料、および、アノード用材料を準備する工程と、
 前記アノード用材料を含む層と前記固体電解質用材料を含む層とを積層した後、得られた積層体を第3焼成温度で焼成して、アノードと固体電解質層との接合体を形成する工程と、
 前記固体電解質層の表面に、前記カソード用材料を含む層を積層した後、得られた積層体を焼成して、カソードを形成する工程と、を含む。前記アノード用材料は、プロトン伝導体と、ニッケル化合物とを含む。前記プロトン伝導体は、ペロブスカイト型構造を有し、かつ式(1):
 A3-δ             (1)
(式中、AはBa、CaおよびSrからなる群より選ばれた少なくとも1種の元素、BはCeおよびZrからなる群より選ばれた少なくとも1種、MはY、Yb、Er、Ho、Tm、Gd、InおよびScからなる群より選ばれた少なくとも1種の元素を示し、aは0.85≦a≦1を満たす数、bは0.5≦b<1を満たす数、cはc=1-bを満たす数、δは酸素欠損量である)
で表される金属酸化物を含み、前記Aで表される元素、前記Bで表される元素および前記Mで表される元素を、それぞれ前記a、前記bおよび前記cを満たす比率で含む原料を1500℃以上の第1焼成温度で20時間以上焼成することによって得られるプロトン伝導体である。この方法により得られるセル構造体によれば、前記(8)のセル構造体および前記(9)の方法によって得られるセル構造体と同様に、高い発電効率を得ることができる。
 (11)前記第1焼成温度は、前記第3焼成温度以上であることが好ましい。特定の副生成物の含有量の低減効果が、さらに向上するためである。
 (12)本発明の一実施形態に係る燃料電池は、前記(1)から前記(3)のいずれか一に記載のプロトン伝導体を含むアノードを備える燃料電池である。前記(12)に記載の燃料電池によれば、高い発電効率を得ることができる。
 (13)本発明の一実施形態に係る水電解装置は、前記(1)から前記(3)のいずれか一に記載のプロトン伝導体を含むアノードを備える水電解装置である。前記(13)に記載の水電解装置によれば、水素および酸素を高い生成効率で得ることができる。
[発明の実施形態の詳細]
 本発明の実施形態の具体例を、適宜図面を参照しつつ以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、添付の特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
1.プロトン伝導体
 本実施形態のプロトン伝導体は、例えば、アノードを作製する際の原料などとして用いることができる。プロトン伝導体の形状は、通常、粉体状である。以下、本実施形態のプロトン伝導体を「粉末プロトン伝導体」ともいう。粉末プロトン伝導体は、ペロブスカイト型構造を有し、かつ式(1):
 A3-δ             (1)
(式中、AはBa、CaおよびSrからなる群より選ばれた少なくとも1種の元素、BはCeおよびZrからなる群より選ばれた少なくとも1種の元素、MはY、Yb、Er、Ho、Tm、Gd、InおよびScからなる群より選ばれた少なくとも1種の元素を示し、aは0.85≦a≦1を満たす数、bは0.5≦b<1を満たす数、cはc=1-bを満たす数、δは酸素欠損量である)
で表される金属酸化物を含む。なお、本明細書において、式(1)における前記「A」で表される元素を「元素A」ともいう。また、式(1)における前記「B」で表される元素を「元素B」ともいう。さらに、式(1)における前記「M」で表される元素を「元素M」ともいう。
 アノードは、以下の操作を行うことによって形成される。まず、粉末プロトン伝導体と、ニッケル化合物とを混合して混合物を得る。つぎに、得られた混合物を焼成してアノードを形成する。アノードを形成する際、粉末プロトン伝導体に含まれる元素Aと前記ニッケル化合物に由来するニッケル(Ni)との反応により、低融点化合物が生じる。前記低融点化合物は、焼成中、液相を構成している。液相は、粉末プロトン伝導体間に侵入する。侵入した液相に含まれる低融点化合物が粉末プロトン伝導体に含まれる元素Mと反応すると、副生成物が生じる。前記副生成物は、燃料電池、ガス分解装置などの稼働時の雰囲気下で分解し易い。前記副生成物が分解されると、アノード中およびカソード中に分解生成物を生じる。前記分解生成物がアノードの空隙およびカソードの空隙を塞ぐため、アノードにおける酸化反応およびカソードにおける還元反応が制限される。前記低融点化合物としては、例えば、BaNiO2などが挙げられるが、特に限定されない。また、前記副生成物としては、例えば、BaY2NiO5などが挙げられるが、特に限定されない。前記分解生成物としては、例えば、Ba(OH)2、BaCO3などが挙げられるが、特に限定されない。例えば、前記元素AがBaである場合、低融点化合物として、BaNiO2が生じる。この場合、前記副生成物として、BaY2NiO5が生じる。また、分解生成物として、Ba(OH)2、BaCO3が生じる。
 本発明者らの検討によれば、粉末プロトン伝導体の原子組成比のばらつきが大きいほど、上記液相が生成し易くなって、結果的に副生成物の生成量が増大することが判明した。粉末プロトン伝導体の原子組成比にばらつきがある場合、元素A、元素Bまたは元素Mは、焼成により形成されるペロブスカイト構造のAサイトまたはBサイトに一様に配置されない。そのため、粉末プロトン伝導体の二次粒子には、元素Aリッチな領域、元素Bリッチな領域、さらには元素Mリッチな領域がそれぞれ存在している。上記のとおり、液相(前記低融点化合物)は、反応点の多い元素Aリッチな領域で生じ易く、生成した液相は、元素Mリッチな領域で多くの副生成物を生成する。なお、本明細書において、「粉末プロトン伝導体の原子組成比にばらつきがある」とは、二次粒子内での位置により原子組成比が異なっていることをいう。また、「一次粒子」とは、結晶方位のそろった単一の結晶粒子をいう。「二次粒子」とは、複数個の一次粒子が化学的な結合などによって凝集した凝集体をいう。
 そこで、本実施形態では、ばらつきの少ない原子組成比を有する粉末プロトン伝導体を提供する。すなわち、本実施形態の粉末プロトン伝導体において、元素A、元素Bおよび元素Mの原子組成比を表す三角図における標準偏差σは、0.04以下である。標準偏差σは、0.037以下であることがより好ましい。
 標準偏差σの算出方法を、図1および図2を参照しながら説明する。まず、粉末プロトン伝導体の二次粒子を観察するために、透過型電子顕微鏡(TEM)を準備する。プロトン伝導性に影響を与えるような組成のばらつき(すなわち、原子組成比のばらつき)を確認するためには、粉末プロトン伝導体の二次粒子レベルでの分析が必要となる。二次粒子の粒径はナノオーダーであるため、走査型電子顕微鏡(SEM)を用いる場合、以下の分析を行うことは困難である。
 粉末プロトン伝導体の二次粒子の中から、任意の1つの二次粒子Aを選択し、二次粒子Aを一方向から見たときの、二次粒子Aの外縁と接する最小の矩形Rを想定する。次に、矩形Rを36等分して、各領域R(R1~R36)に含まれる二次粒子Aの重心C(C1~C36)をそれぞれ決める(図1では、C1、C15、C18およびC36のみ図示)。重心Cは、二次粒子Aの比重が各領域内で均一であると仮定して決定すればよい。なお、領域内に二次粒子Aが含まれない場合、この領域を除く領域について重心Cを決める。決定された各重心Cにおける原子組成比を、エネルギー分散型X線分光法(EDX)により求める。得られた各重心Cにおける原子組成比CRを、元素A、元素Bおよび元素Mの原子組成比を表す三角図(三角グラフ)にプロットする。この三角図は、三元系化合物の組成比を示す際に一般的に用いられる図である。
 領域Rxにおける原子組成比CRxが、粉末プロトン伝導体を製造する際に用いられる原料のうち、3成分(元素A、元素Bおよび元素M)のすべてを含む原料の原料組成比ではない場合、当該原子組成比CRxはプロットの対象としない。なお、「領域Rx」において、xは各領域の番号を示す。例えば、領域RがR1である場合、xは1である。言い換えれば、原子組成比CRxを三角図にプロットしようとしたとき、プロットが頂点を含む各辺上に乗る場合には、この原子組成比CRxはプロットしない。この場合、領域Rx内の他の地点Y(例えば、重心Cx近傍の任意の地点。図示せず)の原子組成比CRyを算出し、これを三角図にプロットする。「3成分(元素A、元素Bおよび元素M)のすべてを含む原料の原料組成比ではない場合」としては、例えば、元素A、元素Bおよび元素Mのうちの1種を含む原料に相当する原子組成比である場合、元素A、元素Bおよび元素Mのうちの2種を含む原料に相当する原子組成比である場合などが挙げられる。
 次に、三角図に対して座標系を導入する。例えば、図2に示すように、元素Mの原子組成比を示す辺をX軸、このX軸に垂直な軸をY軸とする。このとき、元素Mについて、原子組成比におけるcが0(ゼロ)であり、元素Bについて、原子組成比におけるbが0(ゼロ)であり、元素Aについて、原子組成比におけるaが1である三角図の頂点が、原点(0,0)に位置するように、三角図を置く。この場合、元素Mについて、原子組成比におけるcが1であり、元素Aについて、原子組成比におけるaが0(ゼロ)であり、元素Bについて、原子組成比におけるbが0(ゼロ)である三角図の頂点の座標は(1,0)となり、元素Bについて、原子組成比におけるbが1であり、元素Mについて、原子組成比におけるcが1であり、元素Aについて、原子組成比におけるaが0(ゼロ)である三角図の頂点の座標は(1/2,√3/2)となる。
 プロットされた36点(二次粒子Aを含まない領域がx箇所ある場合には、36-x点。0≦x<36)の原子組成比CRの座標(x,y)をそれぞれ求め、平均座標(x、y)を算出する。平均座標(x、y)は、プロットされたすべての点の座標におけるx値を足したものとy値を足したものとを、それぞれ(36-x)で除すことにより算出できる。次に、平均座標(x、y)とプロットされた各座標(x,y)との距離Dを求める。距離Dは、実際に計測してもよいし、ピタゴラスの定理を用いて算出してもよい。最後に、距離Dの標準偏差σdを求める。この距離Dの標準偏差σdは、平均座標(x、y)に対する座標(x,y)のばらつきを示すものである。すなわち、標準偏差σdは、三角図における元素A、元素Bおよび元素Mの原子組成比のばらつき(標準偏差σ)を示す。
 粉末プロトン伝導体は、式(1)で表わされる金属酸化物以外の化合物、例えば、粉末プロトン伝導体の原料、ペロブスカイト構造を有さない金属酸化物、原子組成比が0.85≦a≦1および0.5≦b<1を満たさない原子組成比であるペロブスカイト構造を有する金属酸化物などを含んでいてもよい。前記粉末プロトン伝導体は、式(1)で表わされる金属酸化物以外の化合物の含有量が少ないことが好ましい。例えば、式(1)で表わされる金属酸化物以外の化合物は、X線回折によって辛うじてピークが確認できる程度の含有量(例えば、5質量%)未満でプロトン伝導体に含まれることが好ましい。なお、標準偏差σは、上記のとおり、粉末プロトン伝導体の原料などを除外して算出される。
 粉末プロトン伝導体の二次粒子径は、特に限定されず、例えば50~500nmである。なかでも、焼結性の観点から、二次粒子径は、50~300nmであることが好ましい。なお、本明細書において、粉末プロトン伝導体の二次粒子径は、レーザー回折式の粒度分布測定装置により求められる二次粒子径である。
 式(1)において、前記Aは、Ba(バリウム)、Ca(カルシウム)およびSr(ストロンチウム)からなる群より選ばれた少なくとも1種の元素を示す。なかでも、良好なプロトン伝導性を得る観点から、式(1)において、前記Aは、Baを含むことが好ましく、Baのみであることがより好ましい。前記AにおけるBaの比率は、良好なプロトン伝導性を得る観点から、50原子%以上であることが好ましく、80原子%以上であることがより好ましい。
 式(1)において、前記a〔元素Bおよび元素Mの合計に対する元素Aの比率〕は、0.85以上、1以下(0.85≦a≦1)であればよく、特に限定されない。なかでも、副生成物BaYNiOの生成量がさらに低減する観点から、式(1)における前記aは、好ましくは0.99以下、より好ましくは0.98以下、さらに好ましくは0.96以下である。また、式(1)において、前記aは、良好なプロトン伝導性を確保する観点から、好ましくは0.86以上、より好ましくは0.88以上である。
 式(1)において、前記Bは、Ce(セリウム)およびZr(ジルコニウム)からなる群より選ばれた少なくとも1種の元素を示す。なかでも、セル構造体に用いた場合の耐久性を確保する観点から、式(1)において、前記Bは、Zrを含むことが好ましく、Zrのみであることがより好ましい。前記BにおけるZrの比率は、セル構造体に十分な耐久性を確保する観点から、50原子%以上であることが好ましく、80原子%以上であることが好ましい。
 式(1)において、前記b〔元素Aおよび元素Mの合計に対する元素Bの比率〕は、0.5以上、1未満(0.5≦b<1)であればよく、特に限定されない。なかでも、プロトン伝導性を確保する観点から、式(1)における前記bは、好ましくは0.1以上、より好ましくは0.12以上である。化学的安定性を確保する観点から、式(1)における前記bは、好ましくは0.25以下、より好ましくは0.20以下である。
 式(1)において、前記Mは、Y(イットリウム)、Yb(イッテルビウム)、Er(エルビウム)、Ho(ホルミウム)、Tm(ツリウム)、Gd(ガドリニウム)、In(インジウム)およびSc(スカンジウム)からなる群より選ばれた少なくとも1種の元素である。元素Mはドーパントである。かかるドーパントにより、酸素欠陥が生じるので、ペロブスカイト型構造を有する金属酸化物は、プロトン伝導性を発現する。なかでも、良好なプロトン伝導性を確保する観点から、式(1)において、前記MはYおよびYbの少なくとも1種を含むことが好ましく、Yのみで構成されることがより好ましい。良好なプロトン伝導性を確保する観点から、前記Mに含まれる全原子数に対するYの数とYbの数との合計の比率は、50原子%以上であることが好ましく、80原子%以上であることが好ましい。
 式(1)において、前記c〔式(1)における全原子数に対する元素Mの原子の数の割合〕は、c=1-bを満たす数であればよく、特に限定されない。
2.プロトン伝導体の製造方法
 本実施形態に係るプロトン伝導体は、元素A、元素Bおよび元素Mを含む原料を準備する工程と、原料を1500℃以上の第1焼成温度で20時間以上焼成する焼成工程(第1焼成工程)と、を含む方法により製造することができる。その後、得られた焼結体を粉砕することにより、粉末プロトン伝導体が得られる。このとき、原料は、式(1)における前記a、前記bおよび前記cを満たす比率で元素A、元素Bおよび元素Mを含む。
 このように、原料を高い焼成温度で焼結させることにより、原子組成比のばらつきが小さい(標準偏差σが0.04以下である)粉末プロトン伝導体を得ることができる。その結果、原料として当該粉末プロトン伝導体を用いて作製されるセル構造体に含まれる副生成物の量が、低減する。
 原子組成比のばらつきの程度は、粉末プロトン伝導体の格子定数から推察することができる。例えば、粉末プロトン伝導体が、BaZr0.80.23-d(式中、aは0.98<a≦1を満たす数である)で表わされる金属酸化物である場合、結晶中に水を含まない状態での格子定数が4.220以上、4.225以下の範囲であれば、原子組成比のばらつきが小さいといえる。また、粉末プロトン伝導体が、BaZr0.80.23-d(式中、aは0.85<a≦0.98を満たす数である)で表わされる金属酸化物である場合、結晶中に水を含まない状態での格子定数が4.200以上、4.220未満の範囲であれば、原子組成比のばらつきが小さいといえる。
 第1焼成工程は、酸素含有雰囲気で行われる。第1焼成工程に用いられる雰囲気の酸素含有量は、特に限定されない。第1焼成は、例えば、大気雰囲気(酸素含有率:約20体積%)で行ってもよく、純酸素(酸素含有率:100体積%)中で行ってもよい。
 原子組成比のばらつきがさらに小さくなる点で、第1焼成温度は、1600℃以上であることが好ましい。また、生産性の向上の観点から、第1焼成温度は1650℃以下であることが好ましい。原子組成比のばらつきがさらに小さくなる点で、第1焼成温度の保持時間は、20時間以上であることが好ましく、22時間以上であることがより好ましい。また、生産性の向上の観点から、第1焼成温度での保持時間は、100時間以下であることが好ましく、72時間以下であることがより好ましい。第1焼成温度での保持時間とは、昇温過程および降温過程を除く期間である。第1焼成温度は、前記保持時間中の平均的な温度である。よって、前記保持時間中に、瞬間的に、または短時間だけ1600℃未満になることは許容される。ここで、「瞬間的」とは、15分間以内をいう。「短時間」とは、前記保持時間の20%未満であることをいう。ただし、前記保持時間の80%以上の時間は、焼成雰囲気の温度が上記温度範囲、すなわち、1600℃以上に維持されることが好ましい。後述する第2焼成温度および第3焼成温度についても同様である。
 プロトン伝導体を構成する金属酸化物は、通常、1200℃以上1500℃未満の温度で焼結される。このような低い温度で焼結されたプロトン伝導体について、原子組成比を二次粒子レベルで分析すると、原子組成比の標準偏差σが0.04より大きくなるとともに、未反応の原料の含有量が多くなる(例えば、5質量%以上になる)。一方、プロトン伝導体を構成する金属酸化物を1500℃以上の温度で焼結させる場合、原子組成比のばらつきが小さくなる。
 第1焼成工程の前に、原料を、1500℃未満の予備焼成温度で予備焼成する予備焼成工程を備えていてもよい。予備焼成工程では、主に、目的物である金属酸化物の生成が進行する。なお、予備焼成工程を行わない場合、第1焼成工程のうち、常温から第1焼成温度になるまでの間に、目的物である金属酸化物の生成が進行する。そのため、予備焼成工程を行うことにより、金属酸化物の生成が十分に進行し易い。
 予備焼成工程は、第1焼成温度より低い温度(1500℃未満)で行われるのであれば、その条件は特に限定されない。予備焼成工程は、例えば、大気雰囲気において、1200℃以上1500℃未満の温度条件で、5~20時間行われる。予備焼成工程がこの温度条件下で行われる場合、金属酸化物の合成は、十分に進行し易い。予備焼成工程は、複数回行ってもよい。
 予備焼成工程の後、一旦、原料を冷却(例えば、100℃以下に)してから、第1焼成工程を行ってもよく、予備焼成温度からそのまま第1焼成温度まで昇温させて、予備焼成工程と第1焼成工程とを連続的に行ってもよい。
 予備焼成工程の前に、原料を焼成して、原料に含まれる結晶水や有機物などの除去を行ってもよい。以下、予備焼成工程の前における前記焼成を仮焼成ともいう。仮焼成の条件は特に限定されず、例えば、原料を900℃以上1100℃以下の温度条件で、5時間~20時間熱処理することにより行われる。
 予備焼成工程を行う場合、予備焼成工程の後、第1焼成工程の前に、予備焼成された原料を粉砕する粉砕工程を備えることが好ましい。粉砕工程により、第1焼成工程に供される原料の原子組成比のばらつきは小さくなる。そのため、その後に行われる第1焼成工程で得られるプロトン伝導体の原子組成比のばらつきが、さらに小さくなり易い。その結果、第1焼成温度での保持時間を短くすることができる。予備焼成工程を行う場合、第1焼成工程における第1焼成温度での保持時間は、例えば、20時間以上、72時間以下である。
 予備焼成された原料を粉砕する方法としては、例えば、ボールミル、ロッドミル、粉砕ロール、ジェットミルなどの粉砕機を用いた方法などが挙げられるが、特に限定されない。粉砕の条件も特に限定されない。例えば、ボールミルを用いる場合、粉砕工程は、予備焼成された原料を冷却した後、回転数100rpm~650rpmで2時間~50時間行えばよい。
 粉末プロトン伝導体の原料は、元素A、元素Bおよび元素Mを含んでいればよい。前記粉末プロトン伝導体の原料としては、例えば、酸化物、炭酸塩、硝酸塩などの化合物が挙げられるが、特に限定されない。このような化合物としては、例えば、酸化バリウム、炭酸バリウム、酸化ジルコニウム、酸化セリウム、酸化イットリウム、酸化イッテルビウム、酸化ホルミウム、酸化エルビウム、イットリウムがドープされた二酸化ジルコニウム(YSZ)などが挙げられるが、特に限定されない。原料は、元素Aと元素Bと元素Mとを含む単独の化合物であってもよく、元素A、元素Bおよび元素Mの少なくとも1種の元素を含む複数種の化合物の組み合わせであってもよい。元素Aと元素Bと元素Mとを含む単独の化合物としては、例えば、イットリウムがドープされた二酸化ジルコニウム(YSZ)などが挙げられるが、特に限定されない。元素A、元素Bおよび元素Mの少なくとも1種の元素を含む化合物としては、例えば、酸化バリウム、炭酸バリウム、酸化ジルコニウム、酸化セリウム、酸化イットリウム、酸化イッテルビウム、酸化ホルミウム、酸化エルビウムなどが挙げられるが、特に限定されない。
3.セル構造体
 本実施形態のプロトン伝導体は、例えば、図3に示される燃料電池のセル構造体1におけるアノード3の材料として好ましく用いられる。図3は、セル構造体1を模式的に示す断面図である。本実施形態のセル構造体1は、カソード2と、アノード3と、カソード2およびアノード3の間に介在し、プロトン伝導性を備える固体電解質層4とを備える。アノード3は、本実施形態のプロトン伝導体の焼結体およびニッケル化合物の焼結体を含む。このようなアノード3は、本実施形態の粉末プロトン伝導体の粉末とニッケル化合物の粉末との混合物(アノード用材料)を焼成することにより形成される。本実施形態のプロトン伝導体の原子組成比のばらつきが小さいため、得られるプロトン伝導体の焼結体の組成も均質である。その結果、得られるアノード3のプロトン伝導性が向上し、発電性能が向上する。
 図3では、本実施形態のセル構造体の例として、積層型のセル構造体1を示しているが、セル構造体1の形状は、これに限定されない。セル構造体1の形状は、例えば、中空を有するように、アノード3を内側にして丸めた円筒形状であってもよい。また、図3に示す例では、アノード3の厚みは、カソード2の厚みよりも大きくなっている。この場合、アノード3は、固体電解質層4(ひいてはセル構造体1)を支持する支持体として機能している。なお、アノード3の厚みは、必ずしもカソード2の厚みより大きい必要はない。例えば、アノード3の厚みとカソード2の厚みとは同程度であってもよい。
 本実施形態のセル構造体1は、原料として用いられるプロトン伝導体の原子組成比のばらつきが小さいため、上記液相の生成が抑制され、得られるアノード3に含まれる前記特定の副生成物の量が低減される。その結果、発電性能はさらに向上する。
 なお、式(1)において、前記AがBaを含み、前記MがYを含む化合物の場合、通常、ニッケル化合物との焼成の際に副生成物としてBaY2NiO5が生じる。この副生成物は、特に分解し易い。しかし、本実施形態のセル構造体1においては、原料として用いられる前記プロトン伝導体がBaおよびYを含む場合であっても、BaY2NiO5の生成が抑制されている。前記プロトン伝導体における前記標準偏差σが0.04であるからである。
 アノード用材料におけるニッケル化合物の含有率は、線膨張係数および発電効率のバランスを考慮すると、40質量%~90質量%であることが好ましく、60質量%~90質量%であることがより好ましい。
 ニッケル化合物としては、例えば、ニッケル酸化物、ニッケル水酸化物、ニッケル塩、ニッケルハロゲン化物などが挙げられるが、特に限定されない。ニッケル塩としては、例えば、ニッケル炭酸塩などのニッケル無機酸塩などが挙げられるが、特に限定されない。なかでも、製造コストの低減の点で、NiOなどのニッケル酸化物が好ましい。ニッケル化合物は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 アノード3の厚みは、特に限定されない。アノード3の厚みは、例えば、10μm~2mmであってもよく、10μm~100μmであってもよい。アノード3を、固体電解質層4を支持する支持体として機能させる場合、アノード3の厚みは、例えば、100μm~2mmの範囲から適宜選択できる。
 本実施形態のプロトン伝導体の焼結体とニッケル化合物の焼結体とは、アノード3の少なくとも一部を占めていればよい。アノード3全体が当該プロトン伝導体の焼結体とニッケル化合物の焼結体とにより構成されていてもよい。なかでも、アノード3の厚みが30μm未満である場合、発電効率の観点から、アノード3全体が前記プロトン伝導体の焼結体とニッケル化合物の焼結体とにより構成されることが好ましい。アノード3の厚みが30μm以上である場合、発電効率の観点から、固体電解質層4とアノード3との境界面から、少なくとも30μmまでの領域を前記プロトン伝導体の焼結体とニッケル化合物の焼結体とが占めることが好ましい。「固体電解質層4とアノード3との境界面」とは、例えば、固体電解質層4からアノード3に向かう方向において、Niがほとんど含まれていない第1領域から、Niが微量含まれる第2領域を経て、Niの含有量が、第2領域と比較して急激に大きくなる第3領域がある場合、第2領域と第3領域との境界である。第2領域は、固体電解質層4の一部であって、アノード3から拡散した微量のNiを含む領域である。
 アノード3において、前記プロトン伝導体の焼結体およびニッケル化合物の焼結体以外により構成される領域の原料は、特に限定されない。例えば、ニッケル化合物のみ、前記プロトン伝導体のみ、前記粉末プロトン伝導体以外のプロトン伝導体のみ、および前記粉末プロトン伝導体以外のプロトン伝導体とニッケル化合物との混合物のいずれであってもよい。前記粉末プロトン伝導体以外のプロトン伝導体は、特に限定されず、例えば、公知の金属酸化物のなかから適宜選択することができる。
 固体電解質層4は、プロトン伝導性を有する固体電解質を含む。固体電解質層4は、固体電解質を含む固体電解質用材料をアノード3に積層した後、焼成することにより形成される。固体電解質層4の焼成に際し、アノード3から固体電解質層4にNiが拡散して、固体電解質層4中の固体電解質と反応することがある。この場合、固体電解質層4においても、特定の副生成物が生成される場合がある。固体電解質層4に含まれる副生成物が分解して分解生成物が生成されると、固体電解質層4の抵抗が高くなり易い。さらに、固体電解質層4とカソード2との境界面に上記分解生成物が生成されると、カソード2の空隙が塞がれ、カソード2の還元反応が制限される。Niの拡散は、上記液相が固体電解質層4に入り込むことにより起きる。しかし、アノード3に含まれる粉末プロトン伝導体の原子組成比のばらつきが小さいと、上記液相が形成され難くなるため、固体電解質層4へのNiの拡散が生じ難くなる。よって、固体電解質層4で生成する副生成物の量および固体電解質層4とカソード2との境界面で生成する副生成物の量も低減される。そのため、このようなアノード3を備えるセル構造体1は、カソード2における還元反応の制限も抑制することができる。
 固体電解質としては、従来公知の材料を用いることができる。なかでも、プロトン伝導性に優れる点で、固体電解質として、式(2):
A1a1B11-b1M1b13-δ             (2)
(式中、A1はBa、CaおよびSrからなる群より選ばれた少なくとも1種の元素、B1はCeおよびZrからなる群より選ばれた少なくとも1種の元素、M1はY、Yb、Er、Ho、Tm、Gd、InおよびScからなる群より選ばれた少なくとも1種の元素を示し、a1は0.85≦a1≦1を満たす数、b1は0<b1≦0.5を満たす数であり、δは酸素欠損量である)
で表わされるペロブスカイト型の結晶構造を有する化合物が好ましく例示される。なお、本明細書において、式(2)における前記「A1」で表される元素を「元素A1」ともいう。また、式(2)における前記「B1」で表される元素を「元素B1」ともいう。さらに、式(2)における前記「M1」で表される元素を「元素M1」ともいう。
 元素A1としては、元素Aとして例示された金属元素が同じく例示できる。なかでも、プロトン伝導性の観点から、元素A1はBaを上記の範囲で含むことが好ましい。元素B1としては、元素Bとして例示した金属元素が同じく例示できる。なかでも、耐久性の観点から、元素B1はZrを上記の範囲で含むことが好ましい。元素M1としては、元素Mとして例示した金属元素が同じく例示できる。なかでも、プロトン伝導性の観点から、元素M1はYおよびYbの少なくとも1種を上記の範囲で含むことが好ましく、Yのみで構成されることがより好ましい。固体電解質層4は、副生成物の生成量がより低減される点で、本実施形態の粉末プロトン伝導体を原料として含むことが好ましい。
 固体電解質層4は、固体電解質として式(2)で表わされるペロブスカイト型の結晶構造を有する化合物以外の成分を含み得るが、プロトン伝導性の観点から、その含有量は少ないことが好ましい。例えば、固体電解質層4の50質量%以上または70質量%以上が、上記固体電解質であることが好ましい。上記固体電解質以外の成分としては特に限定されず、固体電解質として公知の他の化合物(プロトン伝導性を有さない化合物を含む)を挙げることができる。
 固体電解質層4の厚みは、例えば、1μm~50μm、好ましくは3μm~20μmである。固体電解質層4の厚みがこのような範囲である場合、固体電解質層4の抵抗が低く抑えられる。
 カソード2は、以下のような金属酸化物を含むカソード用材料を固体電解質層4に積層させた後、焼成することにより形成される。カソード用材料に含まれる金属酸化物としては、例えば、ランタンストロンチウムコバルトフェライト(LSCF、La1-dSrCo1-eFe3-δ、0<d<1、0<e<1、δは酸素欠損量である)、ランタンストロンチウムマンガナイト(LSM、La1-fSrMnO3-δ、0<f<1、δは酸素欠損量である)、ランタンストロンチウムコバルタイト(LSC、La1-gSrCoO3-δ、0<g<1、δは酸素欠損量である)、サマリウムストロンチウムコバルタイト(SSC、Sm1-hSrCoO3-δ、0<h<1、δは酸素欠損量である)などが挙げられる。
 カソード2は、Ag、Ptなどの触媒を含んでいてもよい。プロトンと酸化剤との反応が促進されるためである。触媒を含む場合、カソード2は、触媒と上記材料とを混合して、焼結することにより形成することができる。また、カソード2の厚みは、特に限定されないが、10μm~30μm程度であればよい。
4.セル構造体の製造方法
 セル構造体1は、カソード用材料、プロトン伝導性を有する固体電解質用材料、および、アノード用材料を準備する工程(第1工程)と、アノード用材料を含む層と固体電解質用材料を含む層とを積層した後、得られた積層体を第2焼成温度または第3焼成温度で焼成して、アノード3と固体電解質層4との接合体を形成する工程(第2工程)と、固体電解質層4の表面に、カソード用材料を含む層を積層した後、得られた積層体を焼成して、カソード2を形成する工程(第3工程)と、を含む方法により製造される。このとき、アノード用材料として、前述のプロトン伝導体およびニッケル化合物の混合物を用いる。具体的には、アノード用材料として、標準偏差σが0.04以下である粉末プロトン伝導体、あるいは、1500℃以上で焼結された粉末プロトン伝導体を用いる。これらの粉末プロトン伝導体は原子組成比のばらつきが小さいため、これらのいずれかを用いたアノード3は、副生成物を生成し難い。
 より具体的には、セル構造体1の製造方法は、1つの側面では、カソード用材料、プロトン伝導性を有する固体電解質用材料、および、アノード用材料を準備する第1工程と、アノード用材料を含む層と固体電解質用材料を含む層とを積層した後、得られた積層体を第2焼成温度で焼成して、アノード3と固体電解質層4との接合体を形成する第2工程と、固体電解質層4の表面に、カソード用材料を含む層を積層した後、得られた積層体を焼成して、カソード2を形成する第3工程とを含む(以下、「セル構造体1の製造方法A」ともいう)。セル構造体1の製造方法Aでは、前記アノード用材料は、プロトン伝導体と、ニッケル化合物とを含む。この場合、前記プロトン伝導体は、前述のプロトン伝導体である。また、セル構造体1の製造方法は、他の側面では、カソード用材料、プロトン伝導性を有する固体電解質用材料、および、アノード用材料を準備する第1工程と、アノード用材料を含む層と固体電解質用材料を含む層とを積層した後、得られた積層体を第3焼成温度で焼成して、アノード3と固体電解質層4との接合体を形成する工程と、固体電解質層4の表面に、カソード用材料を含む層を積層した後、得られた積層体を焼成して、カソード2を形成する工程とを含む(以下、「セル構造体1の製造方法B」ともいう)。セル構造体1の製造方法Bでは、前記アノード用材料は、式(1)における前記Aで表される元素、前記Bで表される元素および前記Mで表される元素を、それぞれ前記a、前記bおよび前記cを満たす比率で含む原料を1500℃以上の第1焼成温度で20時間以上焼成することによって得られるプロトン伝導体(「1500℃以上で焼結された粉末プロトン伝導体」)と、ニッケル化合物とを含む。以下、各工程について詳細に説明する。
(第1工程)
 第1工程では、固体電解質用材料、アノード用材料およびカソード用材料を準備する。このとき、少なくともアノード用材料に、上記粉末プロトン伝導体を含ませる。
(第2工程)
 第2工程では、アノード用材料を含む層と固体電解質用材料を含む層とを積層し、焼成して、アノード3と固体電解質層4との接合体を形成する。
 アノード用材料を含む層と固体電解質用材料を含む層とを積層する際、成形性の観点から、各材料とバインダと分散媒とを混合し、ペーストまたはスラリーを調整しておくことが好ましい。なお、以下において、アノード用材料を含むペーストまたはスラリーを「アノード分散体」ともいう。また、固体電解質用材料を含むペーストまたはスラリーを「固体電解質分散体」ともいう。バインダとしては、セラミック材料の製造に使用される公知の材料、例えば、ポリマーバインダー、ワックスなどが挙げられるが、特に限定されない。ポリマーバインダーとしては、例えば、セルロース誘導体、酢酸ビニル系樹脂、アクリル樹脂などが挙げられるが、特に限定されない。セルロース誘導体としては、エチルセルロース、セルロースエーテルなどが挙げられるが、特に限定されない。前記酢酸ビニル系樹脂の概念には、プロビニルアルコールなどの酢酸ビニル系樹脂のケン化物も含まれる。ワックスとしては、例えば、パラフィンワックスなどが挙げられるが、特に限定されない。
 固体電解質分散体に含まれるバインダの量は、固体電解質100質量部に対して、例えば、1質量部~20質量部、好ましくは1.5質量部~15質量部である。アノード分散体に含まれるバインダの量は、アノード分散体がプレス成形に供される場合には、混合物の総量100質量部に対して、例えば、1質量部~15質量部、好ましくは3質量部~10質量部である。アノード分散体に含まれるバインダの量は、その他の場合には、例えば、1質量部~20質量部、好ましくは1.5質量部~15質量部である。
 分散媒としては、例えば、水、有機溶媒などが挙げられるが、特に限定されない。有機溶媒としては、例えば、トルエンなどの炭化水素;エタノール、イソプロパノールなどのアルコール;ブチルカルビトールアセテートなどのカルビトールなどが挙げられるが、特に限定されない。さらに、各分散体には、必要に応じて、界面活性剤、解膠剤などの各種添加剤を含ませてもよい。解膠剤としては、例えば、ポリカルボン酸などが挙げられるが、特に限定されない。
 各層の積層方法は、特に限定されず、所望の各層の厚みに応じて適宜選択すればよい。例えば、各層の厚みが数百μm以上である場合、各分散体をプレス成型またはテープ成型などにより成形した後、これらを積層してもよい。各層の厚みが数μm~数百μmである場合、各分散体をスクリーン印刷、スプレー塗布、スピンコート、ディップコートなどにより重ねて塗布することにより、積層させてもよい。また、これらの方法を組み合わせて、各層を積層してもよい。固体電解質分散体は、通常、アノード用材料を含む層の表面に、スクリーン印刷、スプレー塗布、スピンコート、ディップコートなどで塗布されることにより、積層される。
 例えば、まず、アノード分散体をプレス成型により所定の形状を有する層に成形する。所定の形状とは、例えば、ペレット状、プレート状、シート状などである。なお、この成形に先立って、アノード分散体を造粒し、造粒物を成形してもよい。また、必要に応じて、得られた造粒物を粉砕処理し、粉砕物を成形に供してもよい。アノード3が上記焼結体以外の化合物から構成される領域を含む場合、例えば、同様の方法により、上記焼結体以外の化合物から構成される領域となる層を成形した後、上記焼結体を形成する層を積層する。
 次いで、成形されたアノード用材料を含む層の表面に、例えば、スクリーン印刷、スプレー塗布、スピンコート、ディップコートなどにより、固体電解質分散体を塗布し、固体電解質用材料を含む層を積層して、積層体を得る。固体電解質分散体を塗布する前に、アノード用材料を含む層を仮焼成する工程を行ってもよい。仮焼成は、アノード用材料が焼結される温度よりも低い温度(例えば、900℃~1100℃)で行えばよい。仮焼成を行うことにより、固体電解質分散体が塗布され易くなる。
 続いて、上記積層体を焼成する(本焼成)。本焼成は、得られた積層体を、酸素含有雰囲気下で、所定の温度で加熱することにより行われる。アノード用材料として、標準偏差σが0.04以下である粉末プロトン伝導体を用いる場合、第2焼成温度で本焼成を行う。アノード用材料として、1500℃以上で焼結された粉末プロトン伝導体を用いる場合、第3焼成温度で本焼成を行う。本焼成の雰囲気中の酸素含有量は特に限定されず、第2焼成工程と同様の条件であってもよい。第2焼成温度および第3焼成温度は、例えば、1300℃~1700℃であり、好ましくは1350℃~1600℃である。アノード用材料として、1500℃以上で焼結された粉末プロトン伝導体を用いる場合、原子組成比のばらつきがさらに小さくなる点で、粉末プロトン伝導体の原料の第1焼成を行う温度(第1焼成温度)は、第3焼成温度以上であることが好ましい。積層体の本焼成は、常圧下または加圧下で行うことができる。
 積層体の本焼成を行う前に、各層に含まれるバインダなどの樹脂成分を除去してもよい。すなわち、固体電解質分散体を塗布した後、積層体を大気中で500℃~700℃程度の比較的低い温度に加熱して、各ペーストに含まれる樹脂成分を除去してもよい。その後、上記本焼成を行う。本焼成により、アノード用材料および固体電解質用材料が共焼結される。すなわち、本焼成により、アノード3と固体電解質層4とが一体化された、電解質層-アノード接合体が形成される。
(第3工程)
 第3工程では、電解質層-アノード接合体の固体電解質層4の表面に、カソード用材料を含む層を積層し、例えば800℃~1100℃で焼成して、カソード2を形成する。焼成は、上記と同様の酸素含有雰囲気下で行われる。
 カソード用材料もまた、上記と同様に、バインダなどと混合されたペーストあるいはスラリーなどのカソード分散体を用いて、固体電解質層4の表面に積層されてもよい。カソード分散体を積層する方法としては、上記と同じ方法が例示される。カソード分散体に含まれるバインダの量は、カソード分散体がプレス成形に供される場合には、金属酸化物100質量部に対して、例えば、1質量部~15質量部、好ましくは3質量部~10質量部であり、その他の場合には、例えば、1質量部~20質量部、好ましくは1.5質量部~15質量部である。
5.燃料電池
 本発明の一実施形態に係る燃料電池は、前述のプロトン伝導体を含むアノードを備えている。燃料電池の構成は、プロトン伝導体を含むアノードを除き、従来の燃料電池の構成と同様であればよい。本実施形態に係る燃料電池は、プロトン伝導体を含むアノードを備えているので、高い発電効率を得ることができる。
6.水電解装置
 本発明の一実施形態に係る水電解装置は、前述のプロトン伝導体を含むアノードを備えている。水電解装置の構成は、プロトン伝導体を含むアノードを除き、従来の水に電圧をかけて水素と酸素に電気分解する水電解装置の構成と同様であればよい。本実施形態に係る水電解装置は、プロトン伝導体を含むアノードを備えているので、水素および酸素を高い生成効率で得ることができる。
 以下、実施例に基づき、本発明をより具体的に説明するが、以下の実施例は本発明を限定するものではない。
[実施例1]
(1)BaZr3-δを含む粉末プロトン伝導体Aの作製
 式(3):
BaZr3-δ             (3)
(式中、aは0.85≦a≦1を満たす数、bは0.5≦b<1を満たす数、cはc=1-bを満たす数、δは酸素欠損量である)
で表される金属酸化物を以下の操作を行うことにより、作製した。なお、式(3)で表される化合物は、式(1)で表される化合物に包含される化合物の1種である。
 まず、炭酸バリウムと、酸化ジルコニウムと、酸化イットリウムとを、式(3)におけるaが1、式(3)におけるbが0.8、式(3)におけるcが0.2になるモル比となるようにボールミルに入れて24時間混合した。得られた混合物を乾燥させた後、1000℃で10時間焼成した(仮焼成)。仮焼成後の混合物をボールミルで10時間混合した。得られた混合物を一軸成形した。得られた成形体を、大気雰囲気下に1300℃(予備焼成温度)で10時間焼成した(予備焼成工程)。予備焼成後の成形体を乳鉢で粉砕した後、得られた粉末を用いて前記予備焼成工程を再度行った。
 2回の予備焼成工程を経て得られた粉末を、ボールミル(回転数300rpm)で24時間粉砕した(粉砕工程)。次いで、得られた粉砕物を乾燥させた後、一軸成形してペレットを得た。得られたペレットを、大気雰囲気下に1600℃(第1焼成温度)で24時間焼成した(第1焼成工程)。これにより、ペロブスカイト型構造を有する金属酸化物を含むプロトン伝導体Aを得た。その後、得られたプロトン伝導体Aをボールミル(回転数300rpm)で50時間粉砕し、粉末プロトン伝導体Aを得た。
 得られた粉末プロトン伝導体Aの二次粒子の90体積%以上が、100nm~300nmの粒子径を有していた。得られた粉末プロトン伝導体Aについて、前述の方法に従って標準偏差σを算出した。その結果、粉末プロトン伝導体Aの標準偏差σは、0.0237であった。また、得られた粉末プロトン伝導体Aを乾燥雰囲気下に1000℃で加熱することによって粉末プロトン伝導体Aを構成する金属酸化物を構成する金属酸化物の結晶中から水分を除去した。水分除去後の粉末プロトン伝導体AのX線回折を調べ、格子定数を求めた。図4に分析結果を示す。図4に示された結果から、粉末プロトン伝導体Aの格子定数は、4.220以上、4.225以下の範囲にあることがわかる。これらの結果から、粉末プロトン伝導体Aの格子定数は、炭酸バリウム、酸化ジルコニウムおよび酸化イットリウムの仕込み量から算出される仕込み組成と同じ組成を有するペロブスカイト化合物の理論的な格子定数とほぼ一致するため、粉末プロトン伝導体Aは、原子組成比のばらつきが少なく、所望のペロブスカイト構造を有することが推察される。
(2)アノード用粉末の作製
 アノード用材料として、実施例1(1)で得られた粉末プロトン伝導体Aを用いた。前記粉末プロトン伝導体Aと酸化ニッケル(NiO)とを、適量のイソプロパノールとともにボールミルで混合した。得られた混合物を乾燥させ、アノード用粉末を得た。このとき、粉末プロトン伝導体AとNiOとを粉末プロトン伝導体A/NiO(質量比)が30/70となるように混合した。
(3)固体電解質用ペーストの調製
 固体電解質として、実施例1(1)で得られた粉末プロトン伝導体Aを用いた。前記粉末プロトン伝導体Aと、エチルセルロース(バインダ、エトキシ化度約49%)と、αテルピネオール(溶媒)とを混合して、固体電解質用ペーストを調製した。粉末プロトン伝導体A、バインダおよび溶媒の混合比(質量比)は、粉末プロトン伝導体A/バインダ/溶媒=50/2/48とした。
(4)固体電解質層-アノード接合体の作製
 実施例1(2)で得られたアノード用粉末を一軸成形して、円盤状のペレット(直径11mm)を形成した。得られたペレットを1000℃で焼成(仮焼成)した。仮焼成後のペレットの一方の主面に、実施例1(3)で得られた固体電解質用ペーストをスピンコートにより塗布して、塗膜を形成した。前記塗膜を有するペレットを600℃で10時間加熱することにより脱バインダ処理を行った。次いで、得られたペレットを1500℃(第3焼成温度)で10時間焼成(本焼成)し、固体電解質層-アノード接合体A(以下、単に、「接合体A」ともいう)を得た。接合体Aの厚みは約1.4mmであり、固体電解質層の厚みは10μmであった。
 得られた接合体Aの固体電解質層の表面を、走査型電子顕微鏡(SEM)を用いて撮影した。実施例1(4)で得られた接合体AのSEM像を図5に示す。図5に示された結果から、固体電解質層の表面は一様であり、BaY2NiO5と思われるニードル状またはプレート状の結晶は確認できないことがわかる。また、得られた接合体Aの固体電解質層の表面のX線回折を調べた。その後、X線回折(XRD)の結果をリートベルト法により解析し、BaZrO相および副生成物(BaYNiO、Y)を定量した。その結果、BaZrO相は98質量%、BaYNiOは0質量%、Yは2質量%であった。
[実施例2]
 第1焼成温度を1500℃にしたことを除き、実施例1と同様の操作を行い、粉末プロトン伝導体Bを作製した。得られた粉末プロトン伝導体Bの二次粒子の90体積%以上が、100nm~300nmの粒子径を有していた。得られた粉末プロトン伝導体Bについて、前述の方法に従って標準偏差σを算出した。その結果、粉末プロトン伝導体Bの標準偏差σは、0.0114であった。また、得られた粉末プロトン伝導体Bを構成する金属酸化物の結晶中から水分を除去した。水分除去後の粉末プロトン伝導体BのX線回折を調べ、格子定数を求めた。図4に分析結果を示す。図4に示された結果から、粉末プロトン伝導体Bの格子定数は、4.220以上、4.225以下の範囲にあることがわかる。これらの結果から、粉末プロトン伝導体Bの格子定数は、炭酸バリウム、酸化ジルコニウムおよび酸化イットリウムの仕込み量から算出される仕込み組成と同じ組成を有するペロブスカイト化合物の理論的な格子定数とほぼ一致するため、粉末プロトン伝導体Bは、原子組成比のばらつきが少なく、所望のペロブスカイト構造を有することが推察される。
[実施例3]
 炭酸バリウムと、酸化ジルコニウムと、酸化イットリウムとを、式(3)におけるaが0.98、式(3)におけるbが0.8、式(3)におけるcが0.2になるモル比となるように混合したことを除き、実施例1と同様の操作を行い、粉末プロトン伝導体Cを作製した。粉末プロトン伝導体Cの標準偏差σは、0.0165であった。得られた粉末プロトン伝導体Cの二次粒子の90体積%以上が、100nm~300nmの粒子径を有していた。得られた粉末プロトン伝導体Cを構成する金属酸化物の結晶中から水分を除去した。水分除去後の粉末プロトン伝導体CのX線回折を調べ、格子定数を求めた。図4に分析結果を示す。図4に示された結果から、粉末プロトン伝導体Cの格子定数は、4.200以上、4.220未満の範囲にあることがわかる。これらの結果から、粉末プロトン伝導体Cの格子定数は、炭酸バリウム、酸化ジルコニウムおよび酸化イットリウムの仕込み量から算出される仕込み組成と同じ組成を有するペロブスカイト化合物の理論的な格子定数とほぼ一致するため、粉末プロトン伝導体Cは、原子組成比のばらつきが少なく、所望のペロブスカイト構造を有することが推察される。
[実施例4]
 炭酸バリウムと、酸化ジルコニウムと、酸化イットリウムとを、式(3)における全原子数に対するBaの数の割合aが0.95になるモル比となるように混合したことを除き、実施例1と同様の操作を行い、粉末プロトン伝導体Dを作製した。粉末プロトン伝導体Dの標準偏差σは、0.0366であった。得られた粉末プロトン伝導体Dの二次粒子の90体積%以上が、100nm~300nmの粒子径を有していた。得られた粉末プロトン伝導体Dを構成する金属酸化物の結晶中から水分を除去した。水分除去後の粉末プロトン伝導体DのX線回折を調べ、格子定数を求めた。図4に分析結果を示す。図4に示された結果から、粉末プロトン伝導体Dの格子定数は、4.200以上、4.220未満の範囲にあることがわかる。これらの結果から、粉末プロトン伝導体Dの格子定数は、炭酸バリウム、酸化ジルコニウムおよび酸化イットリウムの仕込み量から算出される仕込み組成と同じ組成を有するペロブスカイト化合物の理論的な格子定数とほぼ一致するため、粉末プロトン伝導体Dは、原子組成比のばらつきが少なく、所望のペロブスカイト構造を有することが推察される。
[比較例1]
 第1焼成温度を1300℃にしたことを除き、実施例1と同様の操作を行い、粉末プロトン伝導体aおよび固体電解質層-アノード接合体a(以下、単に、「接合体a」ともいう)を作製した。得られた粉末プロトン伝導体aについて、前述の方法に従って標準偏差σを算出した。粉末プロトン伝導体aの標準偏差σは、0.0631であった。また、粉末プロトン伝導体aを構成する金属酸化物の結晶中から水分を除去した。水分除去後の粉末プロトン伝導体aのX線回折を調べ、格子定数を求めた。図4に分析結果を示す。図4に示された結果から、プロトン伝導体aの格子定数は、4.195~4.2の範囲にあることがわかる。これらの結果から、粉末プロトン伝導体aの格子定数の範囲が実施例1~4で得られた粉末プロトン伝導体の格子定数の範囲から外れているため、粉末プロトン伝導体aは、原子組成比のばらつきが大きいことが推察される。
 得られた接合体aの固体電解質層の表面を、SEMを用いて撮影した。比較例1で得られた接合体aのSEM像を図6に示す。図5に示された結果から、固体電解質層の表面には、BaY2NiO5と思われるニードル状あるいはプレート状の結晶が存在することがわかる。また、接合体aについて、実施例1と同様の操作を行い、BaZrO相および副生成物(BaYNiO、Y)を定量した。その結果、BaZrO相は88.2質量%、BaYNiOは8.5質量%、Yは3.3質量%であった。
[作製例1]
 実施例1で得られた粉末プロトン伝導体AとNiOとを粉末プロトン伝導体A/NiO(質量比)が3/7になるように混合した。得られた混合物を乾燥させ、アノード用粉末を得た。得られたアノード用粉末を一軸成形して、円盤状のペレットA(直径11mm)を得た。次いで、得られたペレットAを表1に示される第3焼成温度(800~1600℃の範囲内の温度)でそれぞれ10時間焼成(本焼成)し、アノードA1~A9を作製した。すなわち、固体電解質層を形成せずに、表1に示される第3焼成温度でペレットAをそれぞれ焼成して、アノードA1~A9を得た。得られたペレットAおよびアノードA1~A9それぞれのX線回折を調べた。その後、X線回折(XRD)の結果をリートベルト法により解析し、BaZrO相、NiOおよび副生成物(BaYNiO、Y)を定量した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[作製例2]
 実施例3で得られた粉末プロトン伝導体CとNiOとを粉末プロトン伝導体C/NiO(質量比)が1/2となるように混合したことを除き、作製例1と同様の操作を行い、ペレットCおよびアノードC1~C9を得た。得られたペレットCおよびアノードC1~C9のX線回折を調べた。その後、X線回折(XRD)の結果をリートベルト法により解析し、BaZrO相、NiOおよび副生成物(BaYNiO、Y)を定量した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
[作製例3]
 実施例4で得られた粉末プロトン伝導体DとNiOとを粉末プロトン伝導体D/NiO(質量比)が1/2となるように混合したことを除き、作製例1と同様の操作を行い、ペレットDおよびアノードD1~D9を得た。得られたペレットDおよびアノードD1~D9のX線回折を調べた。その後、X線回折(XRD)の結果をリートベルト法により解析し、BaZrO相、NiOおよび副生成物(BaYNiO、Y)を定量した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
[比較作製例1]
 比較例1で得られた粉末プロトン伝導体aとNiOとを粉末プロトン伝導体a/NiO(質量比)が3/7となるように混合したことを除き、作製例1と同様の操作を行い、ペレットaおよびアノードa1~a9を得た。得られたペレットaおよびアノードa1~a9のX線回折を調べた。その後、X線回折(XRD)の結果をリートベルト法により解析し、BaZrO相、NiOおよび副生成物(BaYNiO、Y)を定量した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表1~表4において、副生成物BaY2NiO5は、分解し易い。また、このBaY2NiO5の分解生成物は、アノードおよびカソードの空隙を塞いで酸化反応を妨げる化合物である。一方、副生成物Y23は、分解し難い化合物である。表4に示された結果から、比較作製例1のアノードa1~a9においては、特に、固体電解質層-アノード接合体の本焼成を行う通常の温度(1000~1300℃付近)において、副生成物BaY2NiO5が多く生成していることがわかる。これに対し、表1~表3に示された結果から、作製例1のアノードA1~A9、作製例2のアノードC1~C9および作製例3のアノードD1~D9においては、第3焼成温度にかかわらず、副生成物BaY2NiO5の生成が抑制されていることがわかる。なかでも、式(3)における全原子数に対するBaの数の割合aが小さい作製例2および3の各アノードでは、副生成物BaY2NiO5の生成は確認されなかった。
 なお、比較作製例1のアノードa1~a9には、原料として、比較例1の粉末プロトン伝導体a(標準偏差σ:0.0631)が用いられている。一方、作製例1のアノードA1~A9は、原料として、実施例1の粉末プロトン伝導体A(標準偏差σ:0.0237)が用いられている。作製例2のアノードC1~C9には、原料として、実施例3の粉末プロトン伝導体B(標準偏差σ:0.0165)が用いられている。作製例3のアノードD1~D9には、原料として、実施例4の粉末プロトン伝導体B(標準偏差σ:0.0366)が用いられている。これらを考慮すると、表1~表4に示された結果から、式(1)で表される金属酸化物を含み、前記標準偏差が0.04以下であるプロトン伝導体によれば、セル構造体の製造に際し、酸化反応および還元反応を制限する分解生成物を生じ得る副生成物の量を低減することができることがわかる。また、前記プロトン伝導体が原料として用いられたセル構造体によれば、前記副生成物の量が低減されているので、燃料電池、ガス分解装置などの稼働時において、酸化反応および還元反応を制限する分解生成物が生じ難い。したがって、前記セル構造体によれば、高い発現効率を確保することが期待される。
 また、比較例1の粉末プロトン伝導体aは、1300℃の第1焼成温度で第1焼成を行うことによって作製されている。一方、実施例1の粉末プロトン伝導体A、実施例3の粉末プロトン伝導体Bおよび実施例4の粉末プロトン伝導体Bは、1600℃の第1焼成温度で第1焼成を行うことによって作製されている。これらを考慮すると、表1~表4に示された結果から、1500℃以上の第1焼成温度で第1焼成を行うことにより、得られるセル構造体に含まれる副生成物であって、酸化反応および還元反応を制限する分解生成物を生じ得る副生成物の量を低減することができることがわかる。
 1:セル構造体、2:カソード、3:アノード、4:固体電解質層

Claims (13)

  1.  ペロブスカイト型構造を有し、かつ式(1):
     A3-δ             (1)
    (式中、AはBa、CaおよびSrからなる群より選ばれた少なくとも1種の元素、BはCeおよびZrからなる群より選ばれた少なくとも1種の元素、MはY、Yb、Er、Ho、Tm、Gd、InおよびScからなる群より選ばれた少なくとも1種の元素を示し、aは0.85≦a≦1を満たす数、bは0.5≦b<1を満たす数、cはc=1-bを満たす数、δは酸素欠損量である)
    で表される金属酸化物を含むプロトン伝導体であって、
     前記プロトン伝導体に含まれる前記A、前記Bおよび前記Mの原子組成比を表す三角図における標準偏差が0.04以下である、プロトン伝導体。
  2.  前記式(1)において、
     前記AがBaを含み、
     前記BがZrを含み、
     前記MがYを含む、請求項1に記載のプロトン伝導体。
  3.  前記プロトン伝導体に含まれる前記A、前記Bおよび前記Mの原子組成比を表す三角図における標準偏差が0.037以下である、請求項1または請求項2に記載のプロトン伝導体。
  4.  プロトン伝導体の製造方法であって、
     前記プロトン伝導体は、ペロブスカイト型構造を有し、かつ式(1):
     A3-δ             (1)
    (式中、AはBa、CaおよびSrからなる群より選ばれた少なくとも1種の元素、BはCeおよびZrからなる群より選ばれた少なくとも1種の元素、MはY、Yb、Er、Ho、Tm、Gd、InおよびScからなる群より選ばれた少なくとも1種の元素を示し、aは0.85≦a≦1を満たす数、bは0.5≦b<1を満たす数、cはc=1-bを満たす数、δは酸素欠損量である)
    で表される金属酸化物を含み、
     前記Aで表される元素、前記Bで表される元素および前記Mで表される元素を、それぞれ前記a、前記bおよび前記cを満たす比率で含む原料を準備する準備工程と、
     前記原料を、1500℃以上の第1焼成温度で20時間以上、焼成する焼成工程と、
    を含む、プロトン伝導体の製造方法。
  5.  前記準備工程の後、前記焼成工程の前に、
     前記原料を、1500℃未満の温度で予備焼成する予備焼成工程
    をさらに含む、請求項4に記載のプロトン伝導体の製造方法。
  6.  前記予備焼成工程の後、前記焼成工程の前に、
     予備焼成された前記原料を、粉砕する粉砕工程
    をさらに含む、請求項5に記載のプロトン伝導体の製造方法。
  7.  前記第1焼成温度が、1600℃以上である、請求項3から請求項5のいずれか一項に記載のプロトン伝導体の製造方法。
  8.  カソードと、
     アノードと、
     前記カソードおよび前記アノードの間に介在し、プロトン伝導性を有する固体電解質層と、
    を備え、
     前記アノードが、請求項1に記載のプロトン伝導体と、ニッケル化合物とを含む、セル構造体。
  9.  カソード用材料、プロトン伝導性を有する固体電解質用材料、および、アノード用材料を準備する工程と、
     前記アノード用材料を含む層と前記固体電解質用材料を含む層とを積層した後、得られた積層体を第2焼成温度で焼成して、アノードと固体電解質層との接合体を形成する工程と、
     前記固体電解質層の表面に、前記カソード用材料を含む層を積層した後、得られた積層体を焼成して、カソードを形成する工程と、
    を含み、
     前記アノード用材料が、プロトン伝導体と、ニッケル化合物とを含み、
     前記プロトン伝導体が、請求項1に記載のプロトン伝導体である、セル構造体の製造方法。
  10.  カソード用材料、プロトン伝導性を有する固体電解質用材料、および、アノード用材料を準備する工程と、
     前記アノード用材料を含む層と前記固体電解質用材料を含む層とを積層した後、得られた積層体を第3焼成温度で焼成して、アノードと固体電解質層との接合体を形成する工程と、
     前記固体電解質層の表面に、前記カソード用材料を含む層を積層した後、得られた積層体を焼成して、カソードを形成する工程と、
    を含み、
     前記アノード用材料が、プロトン伝導体と、ニッケル化合物とを含み、
     前記プロトン伝導体が、ペロブスカイト型構造を有し、かつ式(1):
     A3-δ             (1)
    (式中、AはBa、CaおよびSrからなる群より選ばれた少なくとも1種の元素、BはCeおよびZrからなる群より選ばれた少なくとも1種、MはY、Yb、Er、Ho、Tm、Gd、InおよびScからなる群より選ばれた少なくとも1種の元素を示し、aは0.85≦a≦1を満たす数、bは0.5≦b<1を満たす数、cはc=1-bを満たす数、δは酸素欠損量である)
    で表される金属酸化物を含み、前記Aで表される元素、前記Bで表される元素および前記Mで表される元素を、それぞれ前記a、前記bおよび前記cを満たす比率で含む原料を1500℃以上の第1焼成温度で20時間以上焼成することによって得られるプロトン伝導体である、セル構造体の製造方法。
  11.  前記第1焼成温度が、前記第3焼成温度より高い、請求項10に記載のセル構造体の製造方法。
  12.  請求項1から請求項3のいずれか一項に記載のプロトン伝導体を含むアノードを備える燃料電池。
  13.  請求項1から請求項3のいずれか一項に記載のプロトン伝導体を含むアノードを備える水電解装置。
PCT/JP2016/087563 2015-12-18 2016-12-16 プロトン伝導体、セル構造体およびこれらの製造方法、燃料電池ならびに水電解装置 WO2017104806A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680072458.5A CN108370041A (zh) 2015-12-18 2016-12-16 质子导体、电池结构体、质子导体和电池结构体的制造方法、燃料电池以及水电解装置
US16/061,888 US20180375114A1 (en) 2015-12-18 2016-12-16 Proton conductor, cell structure, methods for producing proton conductor and cell structure, fuel cell, and water electrolysis device
KR1020187010071A KR20180089384A (ko) 2015-12-18 2016-12-16 프로톤 전도체, 셀 구조체 및 이들의 제조 방법, 연료 전지 그리고 수전해 장치
EP16875780.5A EP3396757A4 (en) 2015-12-18 2016-12-16 PROTON DRIVER, CELL STRUCTURE, METHODS FOR PRODUCING PROTON CONDUCTOR AND CELL STRUCTURE, FUEL CELL, AND WATER ELECTROLYSIS DEVICE
JP2017556465A JPWO2017104806A1 (ja) 2015-12-18 2016-12-16 プロトン伝導体、セル構造体およびこれらの製造方法、燃料電池ならびに水電解装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015247968 2015-12-18
JP2015-247968 2015-12-18
JP2016-108339 2016-05-31
JP2016108339 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017104806A1 true WO2017104806A1 (ja) 2017-06-22

Family

ID=59056727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087563 WO2017104806A1 (ja) 2015-12-18 2016-12-16 プロトン伝導体、セル構造体およびこれらの製造方法、燃料電池ならびに水電解装置

Country Status (6)

Country Link
US (1) US20180375114A1 (ja)
EP (1) EP3396757A4 (ja)
JP (1) JPWO2017104806A1 (ja)
KR (1) KR20180089384A (ja)
CN (1) CN108370041A (ja)
WO (1) WO2017104806A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107194A1 (ja) * 2017-11-29 2019-06-06 国立大学法人京都大学 プロトン伝導体、プロトン伝導型セル構造体、水蒸気電解セルおよび水素極-固体電解質層複合体の製造方法
WO2019235025A1 (ja) * 2018-06-05 2019-12-12 国立大学法人京都大学 プロトン伝導体およびそれを用いた電気化学デバイス
JPWO2020045540A1 (ja) * 2018-08-30 2020-09-03 堺化学工業株式会社 固体酸化物形燃料電池用電解質材料とその前駆体の製造方法
WO2020196101A1 (ja) * 2019-03-25 2020-10-01 堺化学工業株式会社 金属複合酸化物およびその製造方法、ならびに固体酸化物形燃料電池用電極
RU2734310C1 (ru) * 2020-02-14 2020-10-15 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Электролитическая ячейка для генерации чистого водорода из природного углеводородного топлива
WO2020217742A1 (ja) * 2019-04-26 2020-10-29 パナソニックIpマネジメント株式会社 膜電極接合体、電気化学デバイスおよび電気化学システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220149387A1 (en) * 2019-03-13 2022-05-12 Sumitomo Electric Industries, Ltd. Proton conductor, fuel cell, and water electrolysis device
WO2022098535A1 (en) * 2020-11-09 2022-05-12 Phillips 66 Company Anode catalysts for fuel cells

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298020A (ja) * 1988-05-24 1989-12-01 Mitsubishi Mining & Cement Co Ltd 銅アルコキシドの製法とこれを用いた超伝導粉末の製法
JPH06196181A (ja) * 1992-12-25 1994-07-15 Sanyo Electric Co Ltd 平板型固体電解質燃料電池
JP2001307546A (ja) 2000-02-14 2001-11-02 Matsushita Electric Ind Co Ltd イオン伝導体
JP2007197315A (ja) 1999-02-17 2007-08-09 Matsushita Electric Ind Co Ltd 混合イオン伝導体およびこれを用いたデバイス
JP2011150932A (ja) * 2010-01-22 2011-08-04 Tomosuke Okumura 固体電解質の表面に形成された電極、ならびにこれを備える燃料電池、水素発生装置および水素選択透過装置
JP2012043774A (ja) * 2010-07-21 2012-03-01 Ngk Insulators Ltd 電極材料及びそれを含む固体酸化物型燃料電池セル
JP2012138256A (ja) * 2010-12-27 2012-07-19 Agc Seimi Chemical Co Ltd 固体酸化物型燃料電池用空気極材料粉末及びその製造方法
WO2014057877A1 (ja) * 2012-10-12 2014-04-17 住友電気工業株式会社 燃料電池およびその操業方法
WO2015029713A1 (ja) * 2013-08-27 2015-03-05 住友電気工業株式会社 燃料極用電極材料、固体電解質-電極積層体、固体電解質-電極積層体の製造方法及び燃料電池
WO2015114684A1 (ja) * 2014-01-31 2015-08-06 パナソニックIpマネジメント株式会社 プロトン伝導体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5936897B2 (ja) * 2012-03-28 2016-06-22 住友電気工業株式会社 固体電解質、固体電解質の製造方法、固体電解質積層体及び固体電解質積層体の製造方法及び燃料電池
US20150162634A1 (en) * 2013-08-01 2015-06-11 National Central University Preparation method of electrolytes for solid oxide fuel cells
US20180037508A1 (en) * 2015-03-30 2018-02-08 Sumitomo Electric Industries, Ltd. Proton conductor, solid electrolyte layer for fuel cell, cell structure, and fuel cell including the same
CN105140548B (zh) * 2015-07-01 2017-10-20 北京理工大学 一种固体氧化物燃料电池电解质的烧结方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298020A (ja) * 1988-05-24 1989-12-01 Mitsubishi Mining & Cement Co Ltd 銅アルコキシドの製法とこれを用いた超伝導粉末の製法
JPH06196181A (ja) * 1992-12-25 1994-07-15 Sanyo Electric Co Ltd 平板型固体電解質燃料電池
JP2007197315A (ja) 1999-02-17 2007-08-09 Matsushita Electric Ind Co Ltd 混合イオン伝導体およびこれを用いたデバイス
JP2001307546A (ja) 2000-02-14 2001-11-02 Matsushita Electric Ind Co Ltd イオン伝導体
JP2011150932A (ja) * 2010-01-22 2011-08-04 Tomosuke Okumura 固体電解質の表面に形成された電極、ならびにこれを備える燃料電池、水素発生装置および水素選択透過装置
JP2012043774A (ja) * 2010-07-21 2012-03-01 Ngk Insulators Ltd 電極材料及びそれを含む固体酸化物型燃料電池セル
JP2012138256A (ja) * 2010-12-27 2012-07-19 Agc Seimi Chemical Co Ltd 固体酸化物型燃料電池用空気極材料粉末及びその製造方法
WO2014057877A1 (ja) * 2012-10-12 2014-04-17 住友電気工業株式会社 燃料電池およびその操業方法
WO2015029713A1 (ja) * 2013-08-27 2015-03-05 住友電気工業株式会社 燃料極用電極材料、固体電解質-電極積層体、固体電解質-電極積層体の製造方法及び燃料電池
JP2015046251A (ja) 2013-08-27 2015-03-12 住友電気工業株式会社 燃料極用電極材料、固体電解質−電極積層体、固体電解質−電極積層体の製造方法及び燃料電池
WO2015114684A1 (ja) * 2014-01-31 2015-08-06 パナソニックIpマネジメント株式会社 プロトン伝導体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF POWER SOURCES, vol. 278, 2015, pages 614 - 622
See also references of EP3396757A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107194A1 (ja) * 2017-11-29 2019-06-06 国立大学法人京都大学 プロトン伝導体、プロトン伝導型セル構造体、水蒸気電解セルおよび水素極-固体電解質層複合体の製造方法
JP7225113B2 (ja) 2017-11-29 2023-02-20 国立大学法人京都大学 プロトン伝導体、プロトン伝導型セル構造体、水蒸気電解セルおよび水素極-固体電解質層複合体の製造方法
US11545690B2 (en) 2017-11-29 2023-01-03 Kyoto University Proton conductor, proton-conducting cell structure, water vapor electrolysis cell, and method for producing hydrogen electrode-solid electrolyte layer complex
JPWO2019107194A1 (ja) * 2017-11-29 2020-12-17 国立大学法人京都大学 プロトン伝導体、プロトン伝導型セル構造体、水蒸気電解セルおよび水素極−固体電解質層複合体の製造方法
EP3719815A4 (en) * 2017-11-29 2022-01-26 Kyoto University PROTON CONDUCTOR, PROTON CONDUCTIVE CELL STRUCTURE, WATER VAPOR ELECTROLYSIS CELL AND HYDROGEN SOLID ELECTRODE ELECTROLYTE LAYER COMPLEX PRODUCTION METHOD
JP7167145B2 (ja) 2018-06-05 2022-11-08 国立大学法人京都大学 プロトン伝導体およびそれを用いた電気化学デバイス
WO2019235025A1 (ja) * 2018-06-05 2019-12-12 国立大学法人京都大学 プロトン伝導体およびそれを用いた電気化学デバイス
JPWO2019235025A1 (ja) * 2018-06-05 2021-06-24 国立大学法人京都大学 プロトン伝導体およびそれを用いた電気化学デバイス
JPWO2020045540A1 (ja) * 2018-08-30 2020-09-03 堺化学工業株式会社 固体酸化物形燃料電池用電解質材料とその前駆体の製造方法
JP2020170718A (ja) * 2018-08-30 2020-10-15 堺化学工業株式会社 固体酸化物形燃料電池用電解質材料とその前駆体の製造方法
WO2020196101A1 (ja) * 2019-03-25 2020-10-01 堺化学工業株式会社 金属複合酸化物およびその製造方法、ならびに固体酸化物形燃料電池用電極
WO2020217742A1 (ja) * 2019-04-26 2020-10-29 パナソニックIpマネジメント株式会社 膜電極接合体、電気化学デバイスおよび電気化学システム
JP7442071B2 (ja) 2019-04-26 2024-03-04 パナソニックIpマネジメント株式会社 膜電極接合体、電気化学デバイスおよび電気化学システム
RU2734310C1 (ru) * 2020-02-14 2020-10-15 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Электролитическая ячейка для генерации чистого водорода из природного углеводородного топлива

Also Published As

Publication number Publication date
EP3396757A4 (en) 2019-08-14
US20180375114A1 (en) 2018-12-27
JPWO2017104806A1 (ja) 2018-10-11
CN108370041A (zh) 2018-08-03
EP3396757A1 (en) 2018-10-31
KR20180089384A (ko) 2018-08-08

Similar Documents

Publication Publication Date Title
WO2017104806A1 (ja) プロトン伝導体、セル構造体およびこれらの製造方法、燃料電池ならびに水電解装置
US10734665B2 (en) Method for producing cell structure
US9876248B2 (en) Solid electrolyte, method for manufacturing solid electrolyte, solid electrolyte laminate, method for manufacturing solid electrolyte laminate, and fuel cell
CN107210466B (zh) 电极的制造方法、电极、电极结构、燃料电池或金属-空气二次电池、电池模块及组合物
US10581102B2 (en) Ceria electrolyte for low-temperature sintering and solid oxide fuel cell using the same
US20130295484A1 (en) Material for solid oxide fuel cell, cathode for solid oxide fuel cell and solid oxide fuel cell including the same, and method of manufacture thereof
WO2022074881A1 (ja) 固体酸化物型燃料電池およびその製造方法
EP2538474A2 (en) Material for solid oxide fuel cell, cathode including the material, and solid oxide fuel cell including the material
JP6573243B2 (ja) 空気極組成物、空気極およびこれを含む燃料電池
JP5611249B2 (ja) 固体酸化物形燃料電池および該燃料電池のカソード形成用材料
JP2007200664A (ja) 固体電解質型燃料電池の製造方法
JP2011142042A (ja) 固体酸化物形燃料電池用発電セル及びその製造方法
KR101611254B1 (ko) 고체 산화물 연료전지의 에노드 소재의 제조 방법
US20150037694A1 (en) Preparation method of electrolytes for solid oxide fuel cells
JP2016012550A (ja) 固体酸化物型燃料電池の空気極、固体酸化物型燃料電池、及び固体酸化物型燃料電池の空気極の製造方法
JP6664132B2 (ja) 多孔質構造体とその製造方法、及びそれを用いた電気化学セルとその製造方法
JP6315581B2 (ja) 固体酸化物形燃料電池用カソード及びその製造方法、並びに当該カソードを備える固体酸化物形燃料電池
KR102678883B1 (ko) 고체 산화물 연료전지용 캐소드 조성물, 캐소드, 이의 제조방법 및 고체 산화물 연료전지
JP2012156007A (ja) 固体電解質形燃料電池
JP5091433B2 (ja) 固体電解質型燃料電池及びその製造方法
JP2006244810A (ja) 固体酸化物形燃料電池用電極及びその製造方法
US20240208835A1 (en) Cathode material including bismuth-doped manganite-based perovskite and solid oxide fuel cell including same
KR101064154B1 (ko) 고온 수전해용 환원극 물질의 제조방법
US20150162634A1 (en) Preparation method of electrolytes for solid oxide fuel cells
JP2016091857A (ja) 固体酸化物型燃料電池の空気極、固体酸化物型燃料電池、及び固体酸化物型燃料電池の空気極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187010071

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017556465

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016875780

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016875780

Country of ref document: EP

Effective date: 20180718