WO2014057877A1 - 燃料電池およびその操業方法 - Google Patents

燃料電池およびその操業方法 Download PDF

Info

Publication number
WO2014057877A1
WO2014057877A1 PCT/JP2013/077064 JP2013077064W WO2014057877A1 WO 2014057877 A1 WO2014057877 A1 WO 2014057877A1 JP 2013077064 W JP2013077064 W JP 2013077064W WO 2014057877 A1 WO2014057877 A1 WO 2014057877A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel cell
current collector
air
electrode
Prior art date
Application number
PCT/JP2013/077064
Other languages
English (en)
French (fr)
Inventor
千尋 平岩
真嶋 正利
細江 晃久
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/432,248 priority Critical patent/US9692062B2/en
Priority to CN201380053468.0A priority patent/CN104737344B/zh
Priority to EP13845321.2A priority patent/EP2908371B1/en
Priority to KR1020157008321A priority patent/KR20150070124A/ko
Publication of WO2014057877A1 publication Critical patent/WO2014057877A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell and an operation method thereof, and more specifically, to a fuel cell excellent in energy efficiency and an operation method thereof.
  • a fuel cell includes a membrane electrode assembly or a membrane electrode assembly (MEA) composed of a fuel electrode (anode) / solid oxide electrolyte / air electrode (cathode) in a basic part. Further, a fuel electrode current collector that is in contact with the fuel electrode of the MEA and a fuel electrode channel that supplies a fuel gas such as hydrogen to the fuel electrode are provided, and air that is in contact with the air electrode is also formed on the paired air electrode side. An electrode current collector and an air flow path for supplying air to the air electrode are provided.
  • the fuel electrode current collector and the air electrode current collector are conductive porous bodies, and a fuel gas or hydrogen, and an oxidizing gas or air flow through the porous body. That is, each electrode current collector functions as a gas flow path while performing the function of the current collector. For this reason, first, the electrode current collector is required to have high electrical conductivity and not to increase the pressure loss of the gas flow. On the other hand, in order for the electrochemical reaction in the fuel cell to proceed at a reaction rate of a practical level, the temperature of MEA, fuel gas, etc. is not slightly higher than room temperature, and must be heated using a heating device.
  • the temperature of the MEA or the like is usually about 700 ° C. to 900 ° C. .
  • the power required for heating reduces energy efficiency.
  • it is important that the gas introduced from the outside into the flow path of the fuel cell is heated as close to the inlet as possible. For this reason, the method of preheating gas is usually taken.
  • it is desirable that the time required for starting the fuel cell and for the inside (MEA, fuel gas flow path, etc.) to reach a predetermined temperature is short.
  • the material constituting the anode current collector or the like is required to have high-temperature oxidation resistance, and a material such as nickel (Ni) is usually used.
  • a material such as nickel (Ni) is usually used.
  • Ni felt or Ni mesh is used for an electrode current collector so far.
  • Patent Document 4 an example in which a Ni-plated porous body or the like is applied to a fuel electrode current collector is also disclosed.
  • the above materials have the following problems.
  • Ni-plated porous body when a Ni-plated porous body is used, there is no inconvenience in terms of porosity (pressure loss) and conductivity, but there is a problem that the internal temperature rise does not proceed rapidly because of low thermal conductivity.
  • the present invention can shorten the time from start-up to operation, and has high power generation efficiency and economical efficiency.
  • An object is to provide a fuel cell and a method of operating the same.
  • the fuel cell of the present invention generates electric power from a fuel gas containing hydrogen by an electrochemical reaction.
  • This fuel cell includes a membrane electrode assembly (MEA) composed of a fuel electrode, a solid electrolyte, and an air electrode, a porous metal fuel electrode current collector that collects electricity in contact with the fuel electrode, and electric power.
  • a solid metal electrolyte is a proton permeable electrolyte
  • a fuel gas flow path is configured such that the fuel gas flows through the anode current collector, and the porous metal body constituting the anode current collector Is made of aluminum or an aluminum alloy.
  • the hydrogen-containing fuel gas may be hydrogen gas itself, a hydrogen-based gas mixed with residual components after reforming methane or the like, or city gas. Air is intended for oxygen and includes the meaning of oxidizing gas.
  • the thermal conductivity can be increased as compared with a metal porous body such as nickel.
  • the thermal conductivity of aluminum is 238 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 (0 ° C. to 100 ° C.) compared to the thermal conductivity of nickel 88.5 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 (0 ° C. to 100 ° C.) It can be increased by about 2.7 times.
  • the temperature can be raised to a predetermined operating temperature within a short time after the apparatus is started. This is extremely important for those who use the product, and is an important factor in selecting the product. For example, in offices, factories, homes, etc.
  • the thermal conductivity of the aluminum alloy and the electrical resistivity appearing thereafter can be considered to be almost the same as that of aluminum.
  • the operating temperature must be set so that the aluminum or aluminum alloy forming the anode current collector does not melt.
  • the operating temperature varies depending on the position of the temperature.
  • the temperature of the anode current collector must be lower than the melting point of aluminum or aluminum alloy.
  • the melting point of aluminum is about 660 ° C. (933.25 K). Since the solidus temperature of the aluminum alloy is in the range of 520 ° C. to 590 ° C., it must be lower. The fact that it is possible to obtain a power generation density, power generation efficiency, etc.
  • the operation temperature is a temperature measured by a temperature sensor disposed in the fuel cell main body (cell stack).
  • the temperature is determined by a thermocouple embedded in an outer member that forms the outermost fuel gas flow path of the cell stack.
  • aluminum has an electric resistivity of 2.67 ⁇ ⁇ cm (20 ° C.), which is halved compared to 6.9 ⁇ ⁇ cm (20 ° C.) of nickel. For this reason, the electrical resistance of the whole fuel cell electrical system can be reduced. This factor of electrical conductivity can contribute to the improvement of power generation efficiency. Further, aluminum and the like are more economical than nickel.
  • the metal porous body constituting the fuel electrode current collector can be a plated porous body of aluminum or aluminum alloy.
  • the plated porous body is formed by subjecting the foamed resin to a pore continuation treatment for making the bubbles continuous, then plating the metal, and then removing the resin.
  • aluminum or an aluminum alloy is plated.
  • a temperature control system for controlling at least one of input power to a heating device, a flow rate of fuel gas, and a flow rate of air so that aluminum or an aluminum alloy in the anode current collector does not melt, and the temperature control system
  • the temperature control system may have a temperature sensor that monitors the temperature of the fuel cell body.
  • the fuel cell main body is an assembly including a plurality of units stacked and assembled with (fuel electrode current collector / MEA / air electrode current collector) as one unit, including members necessary for stacking. This is the cell stack.
  • a temperature sensor (thermocouple) embedded in an end plate that is the uppermost surface or the lowermost surface of the cell stack is a temperature sensor that monitors the temperature of the fuel cell body. Accordingly, the fuel electrode current collector formed of aluminum or an aluminum alloy can be stably operated without melting.
  • the composition is expressed as ABC oxide
  • A is one or two of (Ba, Sr)
  • B is one of (Zr, Ce).
  • 2 types and C may contain 1 or more types of (Y, Ho, Er, Tm, Yb, Lu, Sc, In, Gd). This makes it possible to obtain sufficient power generation efficiency, power generation density, and the like even when aluminum or the like is used for the fuel electrode current collector and the operation is performed at a temperature lower than its melting point.
  • Examples of the proton permeable electrolyte include barium-containing BCY (yttrium-added barium cerate), BZY (yttrium-added barium zirconate), and BZCY as an intermediate thereof. Further, there are SZY (yttrium-added strontium zirconate), SCY (yttrium-added strontium cerate), SZCY as an intermediate, and the like containing strontium.
  • the fuel cell includes a fuel cell body that is a subsequent device including a fuel gas inlet and an air inlet, and a reformer that reforms the fuel gas in a front stage of the fuel cell body.
  • the operating temperature of the apparatus can be set higher than the operating temperature of the fuel cell. Accordingly, the fuel cell body including the anode current collector such as aluminum can be stably operated while maintaining an appropriate operation temperature of the reformer.
  • a humidifier that adds moisture may be provided before introducing air into the air electrode and / or before introducing fuel gas into the fuel electrode. Accordingly, the proton permeable solid electrolyte can be operated without lowering the proton moving speed or the moving proton density.
  • the operating method of the fuel cell of the present invention is an operating method of a fuel cell that generates electric power from a fuel gas containing hydrogen by an electrochemical reaction.
  • a fuel cell is a fuel comprising a membrane electrode assembly composed of a fuel electrode, a proton permeable solid electrolyte, and an air electrode, and a porous metal body of aluminum or aluminum alloy that collects electricity in contact with the fuel electrode. It has an electrode current collector and a heating device using electric power, and the flow rate of fuel gas and air and the electric power to the heating device so that the temperature of the fuel electrode current collector does not exceed the range of 550 ° C to 650 ° C. It is characterized by controlling the charging.
  • the temperature of the heating device for housing the main body of the fuel cell is ultimately lowered by 100 ° C. or more. It will be. As a result, the amount of power required for power generation can be reduced.
  • an expensive alloy such as high-temperature oxidation-resistant inconel for the electrode terminal or interconnector for extracting the generated power. It was.
  • the fuel cell includes a fuel cell main body and a reformer located in the preceding stage, and the operating temperature of the reformer can be higher than the operating temperature of the fuel cell main body. As a result, the reformer and the fuel cell main body can be stably and efficiently operated.
  • a fuel electrode current collector having satisfactory performance in three points of pressure loss, electrical conductivity, and thermal conductivity is used, so that the power generation efficiency and the power generation density are not less than the practical level.
  • a battery and a method for operating the battery can be provided.
  • FIG. 1 It is a figure which shows the whole fuel cell in embodiment of this invention. It is a perspective view which shows the fuel cell main body of FIG. It is sectional drawing of a fuel cell main body. It is a figure for demonstrating the electrochemical reaction in a cell (power generation element). It is a figure which shows the aluminum plating porous body which forms a fuel electrode electrical power collector, and shows the scanning electron microscope (SEM) image which shows a pore form. It is a figure which shows the aluminum plating porous body which forms a fuel electrode electrical power collector, and shows a sheet-like product. It is a figure which shows the relationship between the specific surface area of a plating porous body, and a hole diameter. It is a figure which shows the evaluation result of the electric power generation performance of the fuel cell of Example 1. It is a figure which shows the evaluation result of the power generation performance of the fuel cell of Example 2.
  • FIG. 1 is a schematic diagram showing a fuel cell 50 according to an embodiment of the present invention.
  • the fuel gas introduced into the fuel cell main body 10 is desirably hydrogen gas itself or a gas having a high hydrogen concentration.
  • propane, methane, methanol, or the like is used as a raw material from the viewpoints of versatility, economy, and the like, but these raw materials are reformed by a reformer 72 to be a fuel gas having a high hydrogen concentration.
  • High purity hydrogen at an industrial level may be used, or a hydrogen-based gas containing a considerable amount of hydrocarbons produced by reforming may be used.
  • fuel gas is introduced into a fuel cell main body (cell stack) 10 through a reformer 72 from a cylinder 71 that stores raw materials such as propane, methane, methanol, and ethanol. Air is taken from the atmosphere by the compressor 75 and introduced into the fuel cell main body 10.
  • the operation temperature T 2 of the reformer 72 can be made higher than the operation temperature T 1 of the fuel cell body 10.
  • the fuel cell body 10 is set to 550 ° C. to 650 ° C.
  • the reformer 72 is set to 660 ° C. to 750 ° C.
  • the city gas may be introduced directly into the fuel cell main body 10 without passing through the reformer, or the city gas is reformed by the reformer 72 to increase the hydrogen concentration and the fuel cell main body. 10 may be introduced.
  • FIG. 2 is a perspective view showing the fuel cell main body 10 or the cell stack 10.
  • a cell 5 that is a power generation element is stacked between a first plate (upper end plate) 21 and a second plate (lower end plate) 22.
  • the cell 5 is composed of (fuel electrode current collector / MEA / air electrode current collector), which will be described later, and is one unit of power generation in the fuel cell.
  • a fuel gas having a hydrogen concentration increased by reforming hydrocarbons or the like is introduced from an inlet 61 provided in the upper end plate. Further, the air sent out from the compressor is introduced from the inlet 62. Most of the fuel gas and air that have undergone the electrochemical reaction are converted into water vapor and discharged from the outlet 63 or the like.
  • both the fuel gas and air are introduced from the upper end plate 21, but either one may be introduced from the lower end plate 22.
  • FIG. 3 is a cross-sectional view of the fuel cell body 10.
  • the cell 5 of the power generation element is constituted by a fuel electrode current collector 7 / membrane electrode assembly (MEA) / air electrode current collector 8, and is separated from adjacent cells vertically by an insulator 13.
  • MEA membrane electrode assembly
  • the MEA will be described later, but a fuel electrode (anode) 2, a solid electrolyte 1, and an air electrode (cathode) 3 are integrally formed.
  • the fuel gas is guided from the fuel gas inlet 61 to the fuel gas flow path 11 occupied by the aluminum plating body constituting the fuel electrode current collector 7.
  • Air is guided from the air inlet 62 to the air flow path 12 occupied by the porous body (Ni mesh or the like) constituting the air electrode current collector 8 by a mechanism (not shown).
  • the fuel gas flow path 11 is a space sandwiched between a MEA in the cell 5 and a separator (interconnector) 13 that separates the upper cell, and forms a fuel electrode current collector 7. Occupied by the aluminum plated porous body.
  • the air flow path 12 is a space sandwiched between the MEA in the cell 5 and the separator (interconnector) 13 that separates the lower cell, and forms an air current collector 8. Occupied by a porous metal body.
  • the stacked cells 5 are connected in series by an interconnector 13.
  • the electric power generated and collected by the cell stack 10 is taken out by the anode terminal 7a and the cathode terminal 8a.
  • the cell stack 10 is fastened by bolts or the like that are locked to the upper end plate 21 and the lower end plate 22.
  • FIG. 4 is a diagram for explaining an electrochemical reaction that occurs in the cell 5 of the power generation element.
  • the fuel gas such as hydrogen flows in the aluminum plated porous body 7 occupying the fuel gas flow path 11, it is in a turbulent state.
  • the hydrogen in the turbulent state is increased in contact opportunity and contact time with the fuel electrode 2. Therefore, triggered by the catalyst of the fuel electrode 2, the fuel electrode (anode) reaction: H 2 ⁇ 2H + + 2e ⁇ proceeds at a high speed.
  • Proton H + generated at the fuel electrode flows from the fuel electrode 2 through the solid electrolyte 1 to the air electrode 3.
  • the electrons e ⁇ cannot pass through the solid electrolyte 1 and flow through the wiring of an electric circuit (not shown) to reach the air electrode (cathode).
  • the air electrode (cathode) 3 is in contact with oxygen O 2 in the air, and protons H + and electrons e ⁇ that have reached the air electrode 3 react with this oxygen under the catalytic action of the air electrode 3.
  • Examples of the material of the fuel electrode 2 include ceramics such as ZrO 2 ceramics such as zirconia and CeO 2 ceramics stabilized by at least one of metals such as Ni and Fe and rare earth elements such as Se and Y. And a mixture with at least one of them.
  • metals such as Pt, Au, Ag, Pd, Ir, Ru, Rh, Ni, and Fe, can be mentioned. These metals may be used alone or in an alloy of two or more metals. Furthermore, a mixture (including cermet) of these metals and / or alloys and at least one of the above ceramics may be used. Moreover, the mixture of metal oxides, such as Ni and Fe, and at least 1 sort (s) of the said ceramic may be sufficient.
  • the material of the air electrode 3 for example, various metals, metal oxides, metal double oxides, and the like can be used.
  • the metal include metals such as Pt, Au, Ag, Pd, Ir, Ru and Rh, or alloys containing two or more of these.
  • oxides such as La, Sr, Ce, Co, Mn, and Fe (La 2 O 3 , SrO, Ce 2 O 3 , Co 2 O 3 , MnO 2, FeO, etc.) are used as metal oxides. be able to.
  • the double oxide a double oxide containing at least La, Pr, Sm, Sr, Ba, Co, Fe, Mn, etc.
  • the material of the solid electrolyte 1 is extremely important. Since an aluminum-plated porous body is used for the fuel electrode current collector 7, the temperature of the fuel cell main body 10 must be maintained at a melting point of aluminum below 660 ° C. However, whether or not the above-described electrochemical reaction proceeds at a sufficiently high rate and reaches a practical level when heated to 600 ° C., for example, depends on the solid electrolyte. This point will be described later in the section of heating temperature.
  • the anode current collector 7 is formed of an aluminum plated porous body. That is, the aluminum plating porous body 7 occupies the fuel gas flow path 11 so as to be closed.
  • the following items can be given as effects unique to the aluminum plated porous body 7.
  • A1 Compared to a conventional porous metal body, as a great advantage, since it is made of aluminum, it has a high thermal conductivity and can be operated in a short time from the start of the fuel cell 50. This characteristic is extremely important for those who use the product, and is an important factor in selecting the product. For example, in offices, factories, homes, etc. that rely on fuel cells for power during a power outage, it is desirable to make the time from startup to operation as short as possible.
  • a nickel-plated porous body other than aluminum has advantages as follows.
  • (B1) The flow of the fuel gas can be turbulent, and the portion of the gas flow contacting the surface of the fuel electrode (anode) 2 can be continuously peeled off to supply new hydrogen. As a result, hydrogen decomposition efficiency can be increased.
  • (B2) Due to the presence of the plated porous body, it is possible to reduce the ratio of passing hydrogen unreacted.
  • (B3) The porosity can be high and can be 0.65 or more and 0.99 or less, for example, 0.95 or more and 0.98 or less. Therefore, the aluminum-plated porous body 7 that is entirely formed by plating can suppress an increase in pressure loss.
  • FIG. 5A and FIG. 5B show an aluminum-plated porous body
  • FIG. 5A is a view showing the form of pores
  • FIG. 5B is a view showing a sheet-like product. From FIG. 5A, it seems that the porosity is high and the porosity is 0.95 or more.
  • FIG. 5B shows a rectangular sheet with side lengths of 10 cm to 20 cm.
  • Various metal plated porous bodies such as nickel have been commercialized, and FIGS. 5A and 5B are aluminum plated porous bodies. It is commercially available under the trade name Celmet (registered trademark) manufactured by Sumitomo Electric Industries, Ltd.
  • the manufacturing method of the plated porous body of aluminum or aluminum alloy is as follows. First, a foamed resin is prepared by foaming a resin such as urethane. Subsequently, the pore continuation process which continues the foamed pore is performed.
  • the pore continuation process mainly includes a film removal process. The thin film formed on the pores is continuously pored by removing the membrane by pressure treatment such as explosion treatment or chemical treatment. Thereafter, a conductive carbon film is attached to the pore inner walls, or a conductive thin film is formed by electroless plating or the like. Next, a metal plating layer is formed on the conductive carbon film or the conductive thin film by electroplating. This metal plating layer becomes a skeleton part of the solid network metal body.
  • Metal plating uses a plating solution containing aluminum ions to form an Al plating layer. Next, the resin is dissipated by heat treatment, and only the metal plating layer is left to form an Al plated porous body.
  • Al has both high electrical conductivity and thermal conductivity, it has been considered that demand is hardly expected because the melting point is as low as 660 ° C. For this reason, the aluminum plating porous body was not taken up.
  • FIG. 6 shows the relationship between the specific surface area (y: m 2 / m 3 ) and the pore diameter (x: mm) of the plated porous body 7 manufactured by the above method.
  • the actual measurement data is data of the Ni-plated porous body, but the same numerical value is obtained by the same manufacturing method also in the Al-plated porous body. For this reason, the relationship of FIG. 6 can see the data of the Al plating porous body.
  • the hole diameter of 0.05 mm to 3.2 mm can be manufactured by the above method.
  • the minimum limit value (asymptotic line) of 0.3 mm of the hyperboloid hole diameter is obtained when urethane is used.
  • the value of (x ⁇ 0.3) y is large, an effect of reducing the pressure loss while maintaining the function of allowing the fuel electrode 2 to always contact and react with a new gas by making the gas turbulent. Therefore, it is preferable that 400 ⁇ (x ⁇ 0.3) y. More preferably, 600 ⁇ (x ⁇ 0.3) y. If the hole diameter is made too large, there is a risk that fuel gas may pass through, so the upper limit is about 3000, more preferably about 2000.
  • the minimum limit value of the pore diameter is 0.05 mm.
  • the formula of the product of pore diameter and specific surface area is not shown, but if the porosity falls within the range of 0.6 to 0.99, the metal made using melamine Porous materials are also within the scope of the present invention.
  • the hole diameter is in the range of 0.05 mm to 0.3 mm, more preferably in the range of 0.10 to 0.2 mm.
  • the porosity is also affected by the shape of the skeleton, but generally the higher the porosity, the greater the specific surface area. Therefore, the Al plated porous body 7 can reduce the pressure loss as compared with the metal powder sintered body while obtaining the same conductivity and the same turbulent flow generation action.
  • the cathode current collector 8 must also be a conductive porous body.
  • oxygen which is an oxidizing gas, participates in the reaction, so that oxidation resistance is important.
  • a Fe—Cr alloy mesh, a Pt mesh, or the like is used for the air electrode current collector.
  • the mesh may be a knitted mesh made up of vertical lines and horizontal lines with a fine line interval as a predetermined interval, or may be a lattice (mesh) shape punched out of a metal plate.
  • Fe—Cr, Pt, etc. show sufficiently high oxidation resistance at about 650 ° C. or less.
  • the aluminum electrode porous body is used for the fuel electrode current collector 7 in the present embodiment. Therefore, the temperature of the fuel cell main body 10 must be maintained at a melting point of aluminum below 660 ° C. For this reason, for example, it must be heated to 600 ° C. and the electrochemical reaction of power generation must proceed at a sufficiently high rate to reach a practical level.
  • One important factor that enables this is to make the solid electrolyte 1 proton permeable. Protons move faster in the solid electrolyte 1 than, for example, oxygen ions, and the time for passing through the solid electrolyte 1 is shortened.
  • the proton-permeable solid electrolyte has a perovskite structure or a perovskite-like structure, and when expressed as ABC oxide, A is one or two of (Ba, Sr), and B is one of (Zr, Ce). Or 2 types and C may contain 1 or more types of (Y, Ho, Er, Tm, Yb, Lu, Sc, In, Gd).
  • particularly effective solid electrolytes include BCY (yttrium-added barium cerate), BZY (yttrium-added barium zirconate), and BZCY as an intermediate thereof. Further, there are SZY (yttrium-added strontium zirconate), SCY (yttrium-added strontium cerate), SZCY as an intermediate, and the like containing strontium.
  • the materials for the anode terminal 7a and the cathode terminal 8a are required to have high-temperature oxidation resistance at a conventional heating temperature of 700 ° C. to 900 ° C., and high alloy Inconel or conductive ceramic is used. However, all these materials are very expensive, and the ratio to the manufacturing cost of the fuel cell main body is high.
  • inconel or the like is unnecessary for the anode terminal 7a or the like, and can be replaced with general-purpose stainless steel SUS304 or the like. . Thereby, the manufacturing cost of the fuel cell can be greatly reduced.
  • Example 1-Influence of heating temperature- An anode support type MEA was manufactured and performance was evaluated.
  • NiO and BCY yttrium-added barium cerate
  • This serves as a fuel electrode (anode) and is an anode 2 of Ni-containing BCY.
  • a BCY paste to be the solid electrolyte 1 was applied to the pre-sintered anode by screen printing.
  • the binder added at the time of screen printing was skipped by debinding at 750 ° C., and co-sintered at 1400 ° C.
  • LSM latitude strontium manganite serving as the air electrode (cathode) 3
  • a cell 5 was formed by disposing an aluminum-plated porous body 7 on the fuel electrode 2 and an FeCr alloy wire mesh or a Pt wire mesh on the air electrode 3.
  • the configuration of the cell 5 is as follows.
  • the air electrode 3 has a thickness of 20 ⁇ m to 30 ⁇ m
  • the solid electrolyte 1 has a thickness of 30 ⁇ m to 50 ⁇ m
  • the fuel electrode has a thickness of 500 ⁇ m to 1 mm.
  • the cell stack 10 five layers of cells 5 are stacked. The cell stack 10 was heated to four temperatures of 600 ° C., 650 ° C., 700 ° C., and 800 ° C. to evaluate the power generation performance. The temperature was monitored by a thermocouple embedded in the upper end plate 21.
  • FIG. 7 illustrates the evaluation results. According to FIG. 7, the tendency that the power generation density increases as the temperature rises is clearly recognized. However, a power generation density of 300 mW ⁇ cm ⁇ 2 was obtained at 600 ° C., which was found to exceed the practical level. In Example 1, since the anode support MEA was used, the thickness of the solid electrolyte was reduced, and inspection was conducted after the evaluation. As a result, cracks were found in a part of the solid electrolyte. For this reason, mixing of hydrogen and air occurs, and it is considered that the power generation density was relatively small as compared with Example 2 described later.
  • Example 2 An electrolyte support MEA was fabricated to evaluate the influence of humidification. First, BZY (yttrium-added barium zirconate) powder was ball milled, calcined at 1000 ° C., and further pulverized by ball milling. Thereafter, uniaxial molding was performed and heat treatment was performed at 1600 ° C. for 24 hours in an oxygen atmosphere to obtain a solid electrolyte 1. The obtained solid electrolyte 1 was coated with LSCF serving as an air electrode and fired at 1000 ° C. As the fuel electrode 2, an MEA was manufactured by forming a film of silver (Ag) by electroless plating. Thereafter, an electrode current collector was disposed in the same manner as in the example.
  • BZY (yttrium-added barium zirconate) powder was ball milled, calcined at 1000 ° C., and further pulverized by ball milling. Thereafter, uniaxial molding was performed and heat treatment was performed at 1600 ° C. for 24 hours in
  • the configuration of the cell 5 is as follows. (Air electrode current collector 8 (Fe—Cr alloy or Pt mesh or Ag mesh) / Air electrode 3 (LSCF) / Solid electrolyte 1 (BZY) / Fuel electrode 2 (Ag or Ni—BZY, NiFe alloy) / Fuel electrode current collector 7 (aluminum-plated porous body)
  • the thickness of the solid electrolyte 1 was 30 ⁇ m to 50 ⁇ m in Example 1, but the thickness was 275 ⁇ m because the electrolyte support was used in Example 2.
  • the thickness of the air electrode 3 was 40 ⁇ m, and the thickness of the fuel electrode 2 was 40 ⁇ m.
  • FIG. 8 illustrates the evaluation results.
  • a large power generation density of 160 mWcm ⁇ 2 was obtained when heating on the cathode side at 600 ° C.
  • 80 mW ⁇ cm ⁇ 2 was obtained even without humidification.
  • the effect of humidification is not a solid electrolyte, it is also known in the well-known Nafion (registered trademark) due to proton conductivity, and the importance of moisture in proton conductivity could be confirmed even in a solid electrolyte.
  • the evaluation results in FIG. 8 indicate that by selecting a proton conductive solid electrolyte and performing humidification or the like, it is possible to obtain power generation efficiency that is sufficiently practical at a heating temperature of about 600 ° C.
  • the operating temperature is reduced to an unprecedented low temperature of 650 ° C. or less, and the time from start-up to operation is shortened.
  • the fuel cell with high power generation efficiency and the like and excellent in economic efficiency and an operation method thereof.
  • 1 solid electrolyte 2 fuel electrode (anode), 3 air electrode (cathode), 5 cell (power generation element), 7 fuel electrode current collector, 7a anode terminal, 8 air electrode current collector, 8a cathode terminal, 10 fuel cell Main body (cell stack), 11 fuel gas passage, 12 air passage, 13 interconnector (separator), 21 first plate (upper end plate), 22 second plate (lower end plate), 50 fuel cell, 61 fuel Gas inlet, 62 air inlet, 63 outlet, 71 fuel gas feed cylinder, 72 reformer, 75 compressor.

Abstract

熱伝導性等に優れた燃料極集電体を用いることで、発電効率、経済性に優れた燃料電池およびその操業方法を提供する。膜電極アセンブリ(MEA)と、燃料極に接して集電する金属多孔体の燃料極集電体と、電力による加熱装置とを備え、固体電解質がプロトン透過性電解質であり、燃料気体が燃料極集電体を流れるように、燃料気体流路が構成され、該燃料極集電体を構成する金属多孔体が、アルミニウムもしくはアルミニウム合金からなることを特徴とする。

Description

燃料電池およびその操業方法
  本発明は、燃料電池およびその操業方法であって、より具体的には、エネルギ効率に優れた燃料電池、およびその操業方法、に関するものである。
  固体電解質燃料電池(以下、燃料電池と記す)は、発電効率が高く、排熱を利用できるなどの利点を有するため、開発が進んでいる。燃料電池は、基本部分に、燃料極(アノード)/固体酸化物電解質/空気極(カソード)から構成される膜電極アセンブリもしくは膜電極複合体(MEA:Membrane  Electrode  Assembly)を備える。さらに、MEAの燃料極に接する燃料極集電体とその燃料極に水素等の燃料気体を供給する燃料極流路とを備え、対をなす空気極側にも同様に、空気極に接する空気極集電体と、その空気極に空気を供給する空気流路とを備える。通常、燃料極集電体および空気極集電体は、導電性の多孔体であって、多孔体の中を燃料気体もしくは水素、および、酸化性ガスもしくは空気が流される。すなわち各電極集電体は、集電体の機能を奏しながら気体の流路の役目を果たす。このため、電極集電体には、第1に、電気伝導性が高いこと、および気体流れの圧力損失を増大させないこと、が求められる。
  一方、燃料電池における電気化学反応を、実用レベルの反応速度で進行させるには、MEAおよび燃料ガス等の温度は、常温よりも少し高い程度ではなく、加熱装置を用いて加熱しなければならない。電気化学反応において生じるプロトンH等が固体電解質中を走行する時間を短縮するために、かつ電気化学反応自体を促進させるために、MEA等の温度は、通常700℃~900℃程度とされる。当然、加熱に要する電力はエネルギ効率を低くする。外部から燃料電池の流路に導入される気体は、できるだけ入口に近い部分で昇温されることが電気化学反応の速度を高める上で重要である。このため気体を予熱する方法がとられるのが普通である。この場合、燃料電池を起動して内部(MEA、燃料気体流路など)が所定の温度に到達する時間が短いことが望ましい。起動後に燃料電池の内部が短時間で昇温されるためには、気体流路を構成する燃料極集電体等の熱伝導率を高くすることが決め手となる。
  上記のように燃料電池では、高温に加熱されるため、燃料極集電体等を構成する材料には、耐高温酸化性が求められ、通常、ニッケル(Ni)等の材料が用いられる。圧力損失の増大を抑制し、電気伝導性および熱伝導性を確保するために、これまで、NiフェルトやNiメッシュを電極集電体に用いた例が開示されている(特許文献1、2,3)。さらにNiめっき多孔体等を燃料極集電体に適用した例も開示されている(特許文献4)。
  上記の金属多孔体を用いることで、上記の諸特性をある程度満たす電極集電体を得ることが可能である。
特開平10-079258号公報 特開2006-324025号公報 特開2007-141743号公報 特開2009-187887公報
  しかしながら、上記の材料はつぎの点で問題がある。まず、NiフェルトやNiメッシュを適用した場合、気孔率が低いため、圧力損失を抑えて気体を流すと、気体の供給量が過少となってしまう。また、Niフェルト等は電極との接触面積を十分とることができず、接触の電気抵抗が高くなることが避けられない。一方、Niめっき多孔体を用いた場合、気孔率(圧力損失)および導電性については、不都合はないが、熱伝導率が低いために、内部の昇温が迅速に進まない問題がある。
本発明は、圧力損失、導電性、および熱伝導性の3点において満足すべき性能を有する電極集電体を用いることで、起動から稼働までの時間を短縮できる、高い発電効率および経済性の燃料電池およびその操業方法を提供することを目的とする。
  本発明の燃料電池は、水素を含む燃料気体から電気化学反応によって発電する。この燃料電池は、燃料極、固体電解質、および空気極から構成される膜電極アセンブリ(MEA:Membrane  Electrode  Assembly)と、燃料極に接して集電する金属多孔体の燃料極集電体と、電力による加熱装置とを備え、固体電解質がプロトン透過性電解質であり、燃料気体が燃料極集電体を流れるように、燃料気体流路が構成され、該燃料極集電体を構成する金属多孔体が、アルミニウムもしくはアルミニウム合金からなることを特徴とする。ここで、水素を含む燃料気体は、水素ガスそのものであってもよく、メタン等を改質したあとの残存余成分が混入した水素主体の気体でもよく、また都市ガスでもよい。
また、空気は酸素を対象にしており、酸化性気体という意味も含んでいる。
  上記の構成によれば、燃料極集電体が金属多孔体であって、アルミニウムもしくはアルミニウム合金から構成されるので、たとえばニッケル等の金属多孔体に比べて熱伝導性を高めることができる。ニッケルの熱伝導率88.5W・m-1・K-1(0℃~100℃)であるのに比べてアルミニウムの熱伝導率238W・m-1・K-1(0℃~100℃)であり、約2.7倍高めることができる。これによって装置を起動後、短時間のうちに所定の操業温度に昇温することができる。これは、製品を使用する者にとっては極めて重要であり、製品を選択する際の重要な要素となる。たとえば、停電時の電力を燃料電池に依存している事務所、工場、家庭等では、起動から稼働までできるだけ短時間にすることが望まれる。停電の瞬間から燃料電池の稼働まで蓄電池でつなぐにしても、燃料電池の立ち上がり時間が短いほうが蓄電池を容量の小さいものとできる。また、安心・安全上好ましい。
  なお、アルミニウム合金の熱伝導率およびこのあとで出てくる電気抵抗率は、アルミニウムとほぼ同じとみてよい。
  本発明の燃料電池においては、操業温度は、燃料極集電体を形成しているアルミニウムもしくはアルミニウム合金が溶融しないように設定しなければならない。たとえば燃料電池を、Ni-Cr線、グラファイト等を発熱体とする炉内に収納する加熱形態をとった場合、操業温度はどの位置の温度とするかで変わってくる。しかし、どの位置の温度を操業温度とするにせよ、燃料極集電体の位置の温度は、アルミニウムもしくはアルミニウム合金の融点より低くなるようにしなければならない。アルミニウムの融点は約660℃(933.25K)である。アルミニウム合金の固相線温度は520℃~590℃の範囲にあるので、それより低くしなければならない。このような低い温度で操業して、実用レベルの発電密度、発電効率等を得ることを可能にしたのは、固体電解質をプロトン透過性電解質としたことの貢献が大きい。
  なお、本発明においては、操業温度は、燃料電池本体(セルスタック)に配置された温度センサによる温度とする。たとえばセルスタックの最外層の燃料気体流路を形成する外側の部材に埋め込まれた熱電対などによる温度とする。
  上記の熱伝導率の要因の他に、アルミニウムは電気抵抗率2.67μΩ・cm(20℃)であり、ニッケルの6.9μΩ・cm(20℃)に比べて半減する。このため燃料電池の電気システム全体の電気抵抗を減少させることができる。この電気伝導率の要因によって発電効率の向上に寄与することができる。
  さらに、アルミニウム等は、ニッケルに比べて経済性に優れている。
  燃料極集電体を構成する金属多孔体を、アルミニウムもしくはアルミニウム合金のめっき多孔体とすることができる。
  めっき多孔体は、発泡させた樹脂にその泡を連続化する気孔連続化処理を施して、次いで金属をめっきして、その後、樹脂を除くことで形成される。本発明の場合、アルミニウムもしくはアルミニウム合金のめっき処理を行う。これによって、気孔率が高いため圧力損失が小さく、電気抵抗が低い上に、焦点である熱伝導率を向上させためっき金属多孔体を得ることができる。
  燃料極集電体におけるアルミニウムもしくはアルミニウム合金が溶融しないように、加熱装置への投入電力、燃料気体の流量、および空気の流量、の少なくとも1つを制御する温度制御システムを備え、該温度制御システムが、燃料電池本体の温度をモニタする温度センサを有することができる。
  ここで、燃料電池本体とは、(燃料極集電体/MEA/空気極集電体)を1単位として複数単位が積層されて組み上げられた、積層するのに必要な部材も含めた集合体である、セルスタックをいう。たとえばセルスタックの最上面もしくは最下面となるエンドプレートに埋め込まれた温度センサ(熱電対)は、燃料電池本体の温度をモニタする温度センサである。
  これによって、アルミニウムもしくはアルミニウム合金で形成された燃料極集電体を溶融させずに安定して操業することができる。
  プロトン透過性電解質が、ペロブスカイト構造またはペロブスカイト類似構造を有し、組成をABC酸化物と表示したとき、Aが(Ba、Sr)の1種または2種、Bが(Zr、Ce)の1種または2種、Cが(Y、Ho、Er、Tm、Yb、Lu、Sc、In、Gd)の1種以上を含むものとできる。
  これによって、アルミニウム等を燃料極集電体に用いて、その融点未満の低温操業を行っても、十分な発電効率、発電密度等を得ることが可能になる。上記のプロトン透過性電解質としては、バリウムを含む、BCY(イットリウム添加セリウム酸バリウム)、BZY(イットリウム添加ジルコン酸バリウム)、これらの中間体であるBZCYなどがある。またストロンチウムを含む、SZY(イットリウム添加ジルコン酸ストロンチウム)、SCY(イットリウム添加セリウム酸ストロンチウム)、中間体であるSZCYなどがある。
  燃料電池は、燃料気体の導入口および空気の導入口、を含む以降の装置である燃料電池本体と、該燃料電池本体の前段において燃料気体を改質する改質装置とを備え、その改質装置の操業温度が、燃料電池の操業温度よりも高く設定されているものとできる。
  これによって、改質装置の適切な操業温度を維持しながら、アルミニウム等の燃料極集電体を含む燃料電池本体を安定的に操業することができる。
  空気極に空気を導入する前段に、および/または、燃料極に燃料気体を導入する前段に、湿分を加える加湿装置を備えることができる。
  これによって、上記のプロトン透過性固体電解質のプロトンの移動速度、もしくは移動するプロトン密度を低下させることなく作動させることができる。
  本発明の燃料電池の操業方法は、水素を含む燃料気体から電気化学反応によって発電する燃料電池の操業方法である。この操業方法では、燃料電池は、燃料極、プロトン透過性の固体電解質、および空気極から構成される膜電極アセンブリと、燃料極に接して集電するアルミニウムもしくはアルミニウム合金の金属多孔体からなる燃料極集電体と、電力による加熱装置とを備えており、燃料極集電体の温度が550℃~650℃の範囲を超えないように、燃料気体および空気の流量、および加熱装置への電力投入、を制御することを特徴とする。
  これによって、確実にアルミニウム等の融点未満の温度を維持して、安定的に発電を継続することができる。燃料極集電体の温度が550℃~650℃の範囲を超えないようにするには、結局、燃料電池の本体部を収納する加熱装置の温度を従来よりも100℃以上は低い温度にすることになる。これによって発電にかかる電力量を節減できる。しかしそれだけでなく、より大きな経済性は、従来の800℃程度の加熱温度の場合、発電された電力を取り出す電極端子もしくはインターコネクタ等に耐高温酸化性のインコネルなど高価な合金を用いる必要があった。耐高温酸化合金の代わりに導電性セラミックスを用いる提案もあるが、この導電性セラミックスも高価である。本発明では650℃以下の加熱温度なので、SUS304等の汎用ステンレス鋼を用いることができ、この点で経済的な大きな利点を得ることができる。
  燃料電池が、燃料電池本体と、その前段に位置する改質装置とを備えるものであり、該改質装置の操業温度を、燃料電池本体の操業温度より高くすることができる。
  これよって、改質装置および燃料電池本体を安定的に高能率で操業することができる。
  本発明によれば、圧力損失、導電性、および熱伝導性の3点において、満足すべき性能を有する燃料極集電体を用いることで、発電効率、発電密度を実用レベル以上とした、燃料電池およびその操業方法を提供することができる。
本発明の実施の形態における燃料電池の全体を示す図である。 図1の燃料電池本体を示す斜視図である。 燃料電池本体の断面図である。 セル(発電素子)での電気化学反応を説明するための図である。 燃料極集電体を形成するアルミニウムめっき多孔体を示し、気孔形態を示す走査型電子顕微鏡(SEM)像を示す図である。 燃料極集電体を形成するアルミニウムめっき多孔体を示し、シート状の製品を示す図である。 めっき多孔体の比表面積と孔径との関係を示す図である。 実施例1の燃料電池の発電性能の評価結果を示す図である。 実施例2の燃料電池の発電性能の評価結果を示す図である。
  図1は、本発明の実施の形態における燃料電池50を示す概要図である。燃料電池本体10に導入する燃料気体は、水素ガスそのもの、もしくは水素濃度が高い気体であることが望ましい。原料には、汎用性、経済性等の点からプロパン、メタン、メタノール等を用いる場合が多いが、これらの原料は、改質装置72によって改質して水素濃度を高めた燃料気体とする。工業レベルでの高純度の水素にしてもよいし、改質して生成する炭化水素等を相当程度含有する水素主体の気体であってもよい。図1では、燃料気体は、プロパン、メタン、メタノール、エタノール等の原料を収納するボンベ71から改質装置72を経て燃料電池本体(セルスタック)10に導入される。空気は、コンプレッサ75によって大気から取り込まれて、燃料電池本体10に導入される。図1において、改質装置72の操業温度Tが、燃料電池本体10の操業温度Tより高くすることができる。たとえば、燃料電池本体10は550℃~650℃とし、改質装置72は660℃~750℃とする。
  また、原料は、都市ガスを、改質装置を通さずに直接、燃料電池本体10に導入してもよいし、都市ガスを改質装置72で改質して水素濃度を高めて燃料電池本体10に導入してもよい。
  図2は、燃料電池本体10もしくはセルスタック10を示す斜視図である。セルスタック10は、第1プレート(上エンドプレート)21と第2プレート(下エンドプレート)22の間に、発電素子であるセル5が積層されている。セル5は、このあと説明する、(燃料極集電体/MEA/空気極集電体)から構成され、燃料電池における発電の1単位である。炭化水素等が改質されて水素濃度を高めた燃料気体が上エンドプレートに設けられた入口61から導入される。また、コンプレッサを送り出された空気が入口62から導入される。電気化学反応を経た燃料気体および空気は、多くが水蒸気となって排出口63等から排出される。排出時に、可燃性気体の濃度が高い場合、燃料電池の中に燃焼部等を配置することができる。図2では、燃料気体および空気ともに、上エンドプレート21から導入されているが、下エンドプレート22からどちらか一方を導入してもよい。
  図3は、燃料電池本体10の断面図である。図3においてセル5は5層、重ねられているが、より多く、たとえば10層~50層重ねてもよい。発電素子のセル5は、燃料極集電体7/膜電極アセンブリ(MEA)/空気極集電体8、によって構成され、上下に隣接する隣のセルとは絶縁体13によって隔絶される。MEAは、このあと説明するが、燃料極(アノード)2と、固体電解質1と、空気極(カソード)3とが一体形成されている。
  燃料気体は、燃料気体入口61から燃料極集電体7を構成するアルミニウムめっき体が占有する燃料気体流路11へと誘導される。また空気は空気入口62から、図示しない機構によって、空気極集電体8を構成する多孔質体(Niメッシュ等)が占有する空気流路12へと誘導される。
  燃料気体の流路11は、そのセル5内のMEAと上のセルとを隔てるセパレータ(インターコネクタ)13との間にはさまれた空間であり、燃料極集電体7を形成しているアルミニウムめっき多孔体に占有されている。また、空気の流路12は、そのセル5内のMEAと下のセルとを隔てるセパレータ(インターコネクタ)13との間にはさまれた空間であり、空気極集電体8を形成している金属多孔体で占有されている。
  積層されたセル5はインターコネクタ13によって直列接続されている。セルスタック10で発電され集電された電力は、アノード端子7aと、カソード端子8aとによって外部に取り出される。セルスタック10は、上エンドプレート21と下エンドプレート22とに係止されるボルト等によって締結されている。
  図4は、発電素子のセル5で生じる電気化学反応を説明するための図である。水素等の燃料気体は、燃料気体流路11をふさぐように占有するアルミニウムめっき多孔体7の中を流れるとき、乱流状態とされる。乱流状態とされた水素は、燃料極2との接触機会、接触時間を増やされる。このため、燃料極2の触媒等に触発されて、燃料極(アノード)反応:H→2H+2eが大きな速度で進行する。燃料極で発生したプロトンHは、燃料極2から固体電解質1を通って空気極3へと流れてゆく。電子eは固体電解質1中を通ることができず、図示しない電気回路の配線中を流れて空気極(カソード)に到達する。空気極(カソード)3には、空気中の酸素Oが接していて、空気極3に到達したプロトンHおよび電子eは、空気極3の触媒作用の下、この酸素と反応して、空気極(カソード)反応:2H+2e+1/2O→HOが進行する。
  燃料極2の材料は、たとえば、NiおよびFe等の金属と、Se、Y等の希土類元素のうちの少なくとも1種により安定化されたジルコニア等のZrO系セラミック、CeO系セラミック等のセラミックのうちの少なくとも1種との混合物などがあげられる。また、Pt、Au、Ag、Pd、Ir、Ru、Rh、NiおよびFe等の金属をあげることができる。これらの金属は、1種のみでもよいし、2種以上の金属の合金でもよい。さらに、これらの金属、および/または、合金と、上記セラミックの少なくとも1種との混合物(サーメットを含む)でもよい。また、NiおよびFe等の金属の酸化物と、上記セラミックの少なくとも1種との混合物でもよい。
  空気極3の材料は、たとえば、各種の金属、金属の酸化物、金属の複酸化物等を用いることができる。金属としては、Pt、Au、Ag、Pd、Ir、RuおよびRh等の金属、またはこれらの2種以上を含有する合金をあげることができる。さらに、金属の酸化物としては、La、Sr、Ce、Co、MnおよびFe等の酸化物(La、SrO、Ce、Co、MnOおよびFeO等)を用いることができる。また、複酸化物としては、少なくともLa、Pr、Sm、Sr、Ba、Co、FeおよびMn等を含有する複酸化物(La1-xSrCoO系複酸化物、La1-xSrFeO系複酸化物、La1-xSrCo1-yFe系複酸化物、La1-xSrMnO系複酸化物、Pr1-xBaCoO系複酸化物およびSm1-xSrCoO系複酸化物をあげることができる。
  本発明において、固体電解質1の材料はきわめて重要である。燃料極集電体7にアルミニウムめっき多孔体を用いたので、燃料電池本体10の温度をアルミニウムの融点660℃未満に維持しなければならない。しかし、たとえば600℃に加熱して上記の電気化学反応が十分高い速度で進行して実用レベルに達するかどうかは、固体電解質に依存している。この点について、このあと加熱温度の項で説明する。
  本実施の形態の重要なポイントの一つは、燃料極集電体7をアルミニウムめっき多孔体によって形成することにある。すなわちアルミニウムめっき多孔体7は、燃料気体の流路11を塞ぐように占めている。アルミニウムめっき多孔体7特有の効果としてつぎの事項をあげることができる。
(A1)従来の金属多孔体と比べて、大きな利点として、アルミニウムで形成しているので、熱伝導率が高く、燃料電池50の起動から短時間で稼働が可能な点をあげることができる。この特性は、製品を使用する者にとっては極めて重要であり、製品を選択する際の重要な要素となる。たとえば、停電時の電力を燃料電池に依存する事務所、工場、家庭等では、起動から稼働までできるだけ短時間にすることが望まれる。この場合、停電の瞬間から燃料電池の稼働まで蓄電池でつなぐにしても、燃料電池の立ち上がり時間は短いほうが蓄電池を容量の小さいものとできるし、また安心・安全上からも非常に好ましい。
(A2)電気伝導度が高いため、もしくは電気抵抗が低いため、電気抵抗の低い燃料極(アノード)集電体として機能して、システム全体の電気抵抗を下げることができる。これによって燃料電池の発電効率を向上することができる。
  そのほかの利点は、アルミニウム以外のたとえばニッケルめっき多孔体でも得られるものである。それらは次のとおりである。
(B1)燃料気体の流れを乱流化して、燃料極(アノード)2の表面に接触する気体流の部分を絶えず剥ぎ取り、新たな水素を供給することができる。この結果、水素の分解効率を高めることができる。
(B2)めっき多孔体の存在によって、水素を未反応のまま素通りする割合を減らすことができる。
(B3)気孔率を高く、0.65以上0.99以下、たとえば0.95以上0.98以下にとることができる。したがって、すべてめっきで形成されたアルミニウムめっき多孔体7は、圧力損失の増大を抑制することができる。
  図5A及びBは、アルミニウムめっき多孔体を示し、図5Aは気孔の形態、図5Bはシート状の製品、を示す図である。図5Aより、気孔率は高く、気効率0.95以上ということを裏付けているように見える。図5Bは、10cm~20cmの辺長さの矩形のシートを示す。ニッケル等の各種の金属のめっき多孔体が製品化されているが、図5A、図5Bはアルミニウムのめっき多孔体である。住友電気工業株式会社製の商品名セルメット(登録商標)で市販されている。
  アルミニウムまたはアルミニウム合金のめっき多孔体の製造方法は、次のとおりである。まずウレタン等の樹脂に発泡処理を施し発泡させたものを準備する。次いで、発泡した気孔を連続する気孔連続化処理を行う。気孔連続化処理は、除膜処理を主内容とする。孔の上に出来た薄膜を爆発処理等の加圧処理もしくは化学処理により除膜することで連続気孔化する。このあと、気孔内壁に、導電性炭素膜を付着させるか、または無電解めっき等により導電薄膜を形成する。次いで、電気めっきによって、金属めっき層を導電性炭素膜または導電薄膜上に形成する。この金属めっき層が立体網状金属体の骨格部となる。金属めっきはアルミニウムイオンを含むめっき液を用い、Alめっき層を形成する。次いで、熱処理によって樹脂を消散させて、金属めっき層のみを残して、Alめっき多孔体とする。
  Alは、高い電気伝導度と熱伝導性を併せ持っているが、融点が660℃と低いため需要がほとんど見込めないと考えられてきた。このため、アルミニウムめっき多孔体が取り上げられることはなかった。
  上記の方法で製造しためっき多孔体7の、比表面積(y:m/m)と孔径(x:mm)との関係を図6に示す。図6において、実測データはNiめっき多孔体のデータであるが、Alめっき多孔体においても同じ製法により同じ数値が得られている。このため図6の関係はAlめっき多孔体のデータをみることができる。孔径0.05mm~3.2mmにわたって、上記の方法で製造することができる。実測値は、ウレタンを用いた場合は、(x-0.3)y=400または600の双曲線に比して、同じ孔径において大きな比表面積を持つ。ここで双曲線の孔径の最小極限値(漸近線)の0.3mmは、ウレタンを用いた場合のものである。(x-0.3)yの値が大きいと、気体を乱流状態にして燃料極2が常に新しい気体と接触して反応できる機能を保持しながら、圧力損失を低くできる効果を生み出す。このため、400≦(x-0.3)y、とするのがよい。より好ましくは、600≦(x-0.3)y、とするのがよい。孔径をあまり大きくすると、燃料気体の素通りなどが生じるおそれがあるので、上限は3000程度、より好ましくは2000程度とするのがよい。
  なお、ウレタンの代わりにメラミンを用いた場合には、孔径の最小極限値は0.05mmとなる。メラミンを用いて製作した骨格部については、孔径と比表面積との積の表式は示さないが、気孔率が0.6以上0.99以下の範囲に入れば、メラミンを用いて製作した金属多孔体も本発明の範囲に入る。
  金属粉焼結体の場合、孔径は0.05mm~0.3mmの範囲、より好ましくは0.10~0.2mmの範囲にある。また、比表面積は、ウレタンの樹脂多孔体鋳型を用いて製作した図6に示す関係(x-0.3)y=400よりも、かなり小さい範囲にある。気孔率は、骨格の形状にも影響を受けるが、一般的に気孔率が高いものほど比表面積は大きい。したがって、Alめっき多孔体7は、同じ導電性、同じ乱流生成作用を得ながら、金属粉焼結体よりも圧力損失を低下することができる。
  空気極集電体8も、導電性の多孔体でなければならない。空気極3の側では、酸化性の気体である酸素が反応に参加するので、耐酸化性が重要となる。このため、空気極集電体は、Fe-Cr合金のメッシュ、Ptのメッシュなどが用いられる。メッシュは、細線の間隔を所定の間隔として、縦線と横線とから構成される編みメッシュでもよいし、金属板を打ち抜いた格子(メッシュ)状のものでもよい。Fe-Cr、Ptなどは、650℃程度以下で、十分高い耐酸化性を示す。
<燃料電池本体の操業温度および固体電解質について>:
  上記のとおり、本実施の形態では燃料極集電体7にアルミニウムめっき多孔体を用いたので、燃料電池本体10の温度をアルミニウムの融点660℃未満に維持しなければならない。このため、たとえば600℃に加熱して発電の電気化学反応が十分高い速度で進行して実用レベルに達しなければならない。それを可能にする重要な要因の一つが、固体電解質1をプロトン透過性とすることである。プロトンは、たとえば酸素イオン等と比べると固体電解質1中の移動速度は大きく、固体電解質1を通過する時間は短縮される。このため、従来のように700℃~900℃に加熱しなくても、600℃程度で十分な発電効率および発電密度を得ることができる。
  プロトン透過性の固体電解質は、ペロブスカイト構造またはペロブスカイト類似構造を有し、ABC酸化物と表示したとき、Aが(Ba、Sr)の1種または2種、Bが(Zr、Ce)の1種または2種、Cが(Y、Ho、Er、Tm、Yb、Lu、Sc、In、Gd)の1種以上を含むものとできる。この中でも、特に有力な固体電解質は、バリウムを含む、BCY(イットリウム添加セリウム酸バリウム)、BZY(イットリウム添加ジルコン酸バリウム)、これらの中間体であるBZCYなどがある。またストロンチウムを含む、SZY(イットリウム添加ジルコン酸ストロンチウム)、SCY(イットリウム添加セリウム酸ストロンチウム)、中間体であるSZCYなどがある。
  燃料電池本体10の操業温度を550℃~650℃の範囲を超えない温度とした場合、加熱に消費される電力を抑制してその分、発電効率を向上させることができる。その他に、大きな利点として、つぎのものがある。図3において、アノード端子7aおよびカソード端子8aの材料は、従来の700℃~900℃の加熱温度では、耐高温酸化性が必要とされ、高合金のインコネルや導電性セラミックが用いられていた。しかしこれらの材料はいずれも非常に高価であり、燃料電池本体の製造費に占める比率が高かった。しかし、本実施の形態のように、550℃~650℃の所定温度を超えない加熱温度とする場合、アノード端子7a等にインコネル等は不要であり、汎用のステンレス鋼SUS304等に置き換えることができる。これによって、燃料電池の製造費を大きく削減することができる。
(実施例1-加熱温度の影響-):
  アノードサポート型のMEAを製作して性能評価を行った。まず、NiOとBCY(イットリウム添加セリウム酸バリウム)をボールミリングした後、一軸成形加工によりシート状に成形した。これは燃料極(アノード)となるもので、Ni含有BCYのアノード2である。1000℃で仮焼結した後、固体電解質1となるBCYペーストを仮焼結したアノードにスクリーン印刷により塗布した。スクリーン印刷時に添加されたバインダを、750℃での脱バインダ処理によってとばして、1400℃で共焼結を行った。その後、共焼結体に空気極(カソード)3となるLSM(ランタンストロンチウムマンガナイト)を塗布し、1000℃で焼成する。燃料極2にアルミニウムめっき多孔体7を、また空気極3にFeCr合金線のメッシュ、またはPt線のメッシュを配置して、セル5を形成した。セル5の構成はつぎのとおりである。
(空気極集電体8(Fe-Cr合金またはPtのメッシュ)/空気極3(LSM)/固体電解質1(BCY)/燃料極2(Ni-BCY)/燃料極集電体7(アルミニウムめっき多孔体)
  上記の積層体において、空気極3の厚み20μm~30μm、固体電解質1の厚み30μm~50μm、燃料極の厚み500μm~1mm、である。
  セルスタック10では、5層のセル5が積層されている。このセルスタック10を600℃、650℃、700℃、800℃の4温度に加熱して、発電性能を評価した。温度は上エンドプレート21に埋め込んだ熱電対によってモニタした。
  図7に評価結果を図示する。図7によれば、高温になるほど発電密度は高くなる傾向ははっきり認められる。しかし、600℃において、300mW・cm-2の発電密度が得られており、実用レベルを超えることが判明した。本実施例1では、アノードサポートのMEAとしたので、固体電解質の厚みを薄くしたため評価後に検査したところ、固体電解質の一部にクラックが認められた。このため、水素と空気の混合が生じ、発電密度がこのあと説明する実施例2に比べて比較的小さかったものと考える。
(実施例2)
  電解質サポートのMEAを製作して加湿の影響等を評価した。まず、BZY(イットリウム添加ジルコン酸バリウム)粉末をボールミリングしたあと、1000℃で仮焼きし、さらにボールミリングにより再粉砕した。その後、一軸成形加工して酸素雰囲気下で1600℃24h熱処理を行って固体電解質1を得た。得られた固体電解質1に空気極となるLSCFを塗布し、1000℃で焼成した。燃料極2としては、銀(Ag)を無電解めっきで成膜して、MEAを製作した。この後、実施例と同様に電極集電体を配置した。セル5の構成はつぎのとおりである。
(空気極集電体8(Fe-Cr合金またはPtのメッシュまたはAgメッシュ)/空気極3(LSCF)/固体電解質1(BZY)/燃料極2(AgまたはNi-BZY、NiFe系合金)/燃料極集電体7(アルミニウムめっき多孔体)
  固体電解質1の厚みは、実施例1では30μm~50μmであったが、本実施例2では電解質サポートとしたので厚み275μmとした。空気極3の厚みは40μm、燃料極2の厚みは40μmとした。
  図8に評価結果を図示する。図8によれば、600℃においてカソード側加熱したとき160mWcm-2という大きな発電密度が得られた。また、加湿がない場合でも80mW・cm-2が得られた。加湿の効果は、固体電解質ではないが、プロトン導電性によって周知のナフィオン(登録商標)においても知られており、プロトン導電性において水分の重要性が、固体電解質でも確認することができた。
  図8の評価結果は、プロトン導電性の固体電解質を選択し、加湿等を行うことで、600℃程度の加熱温度において十分実用にたえる発電効率を得られることを示している。
  上記開示された本発明の実施形態の構造は、あくまで例示であって、本発明の範囲はこれらの記載の範囲に限定されるものではない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内でのすべての変更を含むものである。
  本発明によれば、燃料極集電体にアルミニウムもしくはアルミニウム合金のめっき多孔体を用いることで、操業温度を650℃以下という従来にない低温度とした上で、起動から稼働までの時間を短縮することができる、発電効率等が高く、経済性に優れた燃料電池およびその操業方法を提供することができる。
  1  固体電解質、2  燃料極(アノード)、3  空気極(カソード)、5  セル(発電素子)、7  燃料極集電体、7a  アノード端子、8  空気極集電体、8a  カソード端子、10  燃料電池本体(セルスタック)、11  燃料気体流路、12  空気流路、13  インターコネクタ(セパレータ)、21  第1プレート(上エンドプレート)、22  第2プレート(下エンドプレート)、50  燃料電池、61  燃料気体入口、62  空気入口、63  出口、71  燃料気体の原料ボンベ、72  改質装置、75  コンプレッサ。

Claims (8)

  1.   水素を含む燃料気体および空気から電気化学反応によって発電する燃料電池であって、  燃料極、固体電解質、および空気極から構成される膜電極アセンブリ(MEA:Membrane  Electrode  Assembly)と、
      前記燃料極に接して集電する金属多孔体の燃料極集電体と、
      電力による加熱装置とを備え、
      前記固体電解質がプロトン透過性電解質であり、
      前記燃料気体が前記燃料極集電体を流れるように、燃料気体流路が構成され、
      該燃料極集電体を構成する金属多孔体が、アルミニウムもしくはアルミニウム合金からなることを特徴とする、燃料電池。
  2.   前記燃料極集電体を構成する金属多孔体が、アルミニウムもしくはアルミニウム合金のめっき多孔体であることを特徴とする、請求項1に記載の燃料電池。
  3.   前記燃料極集電体におけるアルミニウムもしくはアルミニウム合金が溶融しないように、前記加熱装置への投入電力、前記燃料気体の流量、および前記空気の流量、の少なくとも1つを制御する温度制御システムを備え、該温度制御システムが、燃料電池本体の温度をモニタする温度センサを有することを特徴とする、請求項1または2に記載の燃料電池。
  4.   前記プロトン透過性電解質が、ペロブスカイト構造またはペロブスカイト類似構造を有し、組成をABC酸化物と表示したとき、Aが(Ba、Sr)の1種または2種、Bが(Zr、Ce)の1種または2種、Cが(Y、Ho、Er、Tm、Yb、Lu、Sc、In、Gd)の1種以上を含むことを特徴とする、請求項1~3のいずれか1項に記載の燃料電池。
  5.   前記燃料電池は、前記燃料気体の導入口および前記空気の導入口、を含む以降の装置である燃料電池本体と、該燃料電池本体の前段において前記燃料気体を改質する改質装置とを備え、前記改質装置の操業温度が、前記燃料電池の操業温度よりも高く設定されていることを特徴とする、請求項1~4のいずれか1項に記載の燃料電池。
  6.   前記空気極に空気を導入する前段に、および/または、前記燃料極に燃料気体を導入する前段に、湿分を加える加湿装置を備えることを特徴とする、請求項1~5のいずれか1項に記載の燃料電池。
  7.   水素を含む燃料気体および空気から電気化学反応によって発電する燃料電池の操業方法であって、
      前記燃料電池は、燃料極、プロトン透過性の固体電解質、および空気極から構成される膜電極アセンブリと、前記燃料極に接して集電するアルミニウムもしくはアルミニウム合金の金属多孔体からなる燃料極集電体と、電力による加熱装置とを備え、
      前記燃料極集電体の温度が550℃~650℃を超えないように、前記燃料気体の流量および前記空気の流量、および前記加熱装置への電力投入、を制御することを特徴とする、燃料電池の操業方法。
  8.   前記燃料電池が、燃料電池本体と、その前段に位置する改質装置とを備えるものであり、該改質装置の操業温度を、前記燃料電池本体の操業温度より高くすることを特徴とする、請求項7に記載の燃料電池の操業方法。
PCT/JP2013/077064 2012-10-12 2013-10-04 燃料電池およびその操業方法 WO2014057877A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/432,248 US9692062B2 (en) 2012-10-12 2013-10-04 Fuel cell and method for operating the fuel cell
CN201380053468.0A CN104737344B (zh) 2012-10-12 2013-10-04 燃料电池以及燃料电池的运行方法
EP13845321.2A EP2908371B1 (en) 2012-10-12 2013-10-04 Fuel battery and operation method thereof
KR1020157008321A KR20150070124A (ko) 2012-10-12 2013-10-04 연료 전지 및 그의 조업 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012227325A JP6024373B2 (ja) 2012-10-12 2012-10-12 燃料電池およびその操業方法
JP2012-227325 2012-10-12

Publications (1)

Publication Number Publication Date
WO2014057877A1 true WO2014057877A1 (ja) 2014-04-17

Family

ID=50477344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077064 WO2014057877A1 (ja) 2012-10-12 2013-10-04 燃料電池およびその操業方法

Country Status (6)

Country Link
US (1) US9692062B2 (ja)
EP (1) EP2908371B1 (ja)
JP (1) JP6024373B2 (ja)
KR (1) KR20150070124A (ja)
CN (1) CN104737344B (ja)
WO (1) WO2014057877A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104806A1 (ja) * 2015-12-18 2017-06-22 住友電気工業株式会社 プロトン伝導体、セル構造体およびこれらの製造方法、燃料電池ならびに水電解装置
WO2020235237A1 (ja) * 2019-05-22 2020-11-26 住友電気工業株式会社 金属多孔体シート、燃料電池及び水電解装置
US11545690B2 (en) 2017-11-29 2023-01-03 Kyoto University Proton conductor, proton-conducting cell structure, water vapor electrolysis cell, and method for producing hydrogen electrode-solid electrolyte layer complex

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016000044T5 (de) * 2015-07-01 2017-08-17 Ngk Insulators, Ltd. Brennstoffzelle
US10826075B2 (en) * 2016-04-19 2020-11-03 Panasonic Intellectual Property Management Co., Ltd. Membrane electrode assembly of electrochemical device, membrane electrode assembly of fuel cell, fuel cell, membrane electrode assembly of electrochemical hydrogen pump, electrochemical hydrogen pump, membrane electrode assembly of hydrogen sensor, and hydrogen sensor
JP6234628B1 (ja) * 2016-07-27 2017-11-22 日本碍子株式会社 燃料電池
JP7002036B2 (ja) * 2016-11-17 2022-01-20 パナソニックIpマネジメント株式会社 膜電極接合体および固体酸化物形燃料電池
WO2019189844A1 (ja) 2018-03-30 2019-10-03 大阪瓦斯株式会社 燃料電池装置及び燃料電池装置の運転方法
JP6691247B1 (ja) * 2019-01-22 2020-04-28 東京瓦斯株式会社 反応装置及び燃料電池発電システム
KR20200129912A (ko) 2019-05-10 2020-11-18 현대자동차주식회사 연료전지 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079258A (ja) 1996-09-04 1998-03-24 Tokyo Gas Co Ltd 平板型固体電解質燃料電池の集電方法
JP2006324025A (ja) 2005-05-17 2006-11-30 Nippon Telegr & Teleph Corp <Ntt> 平板型固体酸化物形燃料電池スタック
WO2007052633A1 (ja) * 2005-10-31 2007-05-10 Kyocera Corporation 燃料電池システム
JP2007141743A (ja) 2005-11-22 2007-06-07 Nissan Motor Co Ltd 集電体
JP2009187887A (ja) 2008-02-08 2009-08-20 Ngk Spark Plug Co Ltd 燃料極集電体及び固体電解質形燃料電池
WO2012036057A1 (ja) * 2010-09-13 2012-03-22 住友電気工業株式会社 ガス分解素子、電気化学反応素子およびこれらの製造方法
JP2012186134A (ja) * 2011-02-18 2012-09-27 Sumitomo Electric Ind Ltd 集電体用三次元網状アルミニウム多孔体及びその製造方法
JP2012192350A (ja) * 2011-03-16 2012-10-11 Sumitomo Electric Ind Ltd ガス分解素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19705874C2 (de) 1997-02-15 2000-01-20 Forschungszentrum Juelich Gmbh Stromkollektor für SOFC-Brennstoffzellenstapel
CA2429899A1 (en) 2002-05-29 2003-11-29 Sanyo Electric Co., Ltd. Solid oxide fuel cell
KR100729974B1 (ko) 2003-07-31 2007-06-20 도요다 지도샤 가부시끼가이샤 연료전지 스택, 연료전지 시스템 및 연료전지 스택의 제조방법
US7875402B2 (en) * 2005-02-23 2011-01-25 Exxonmobil Research And Engineering Company Proton conducting solid oxide fuel cell systems having temperature swing reforming
CN100537470C (zh) * 2005-03-15 2009-09-09 松下电器产业株式会社 离子导体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079258A (ja) 1996-09-04 1998-03-24 Tokyo Gas Co Ltd 平板型固体電解質燃料電池の集電方法
JP2006324025A (ja) 2005-05-17 2006-11-30 Nippon Telegr & Teleph Corp <Ntt> 平板型固体酸化物形燃料電池スタック
WO2007052633A1 (ja) * 2005-10-31 2007-05-10 Kyocera Corporation 燃料電池システム
JP2007141743A (ja) 2005-11-22 2007-06-07 Nissan Motor Co Ltd 集電体
JP2009187887A (ja) 2008-02-08 2009-08-20 Ngk Spark Plug Co Ltd 燃料極集電体及び固体電解質形燃料電池
WO2012036057A1 (ja) * 2010-09-13 2012-03-22 住友電気工業株式会社 ガス分解素子、電気化学反応素子およびこれらの製造方法
JP2012186134A (ja) * 2011-02-18 2012-09-27 Sumitomo Electric Ind Ltd 集電体用三次元網状アルミニウム多孔体及びその製造方法
JP2012192350A (ja) * 2011-03-16 2012-10-11 Sumitomo Electric Ind Ltd ガス分解素子

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104806A1 (ja) * 2015-12-18 2017-06-22 住友電気工業株式会社 プロトン伝導体、セル構造体およびこれらの製造方法、燃料電池ならびに水電解装置
JPWO2017104806A1 (ja) * 2015-12-18 2018-10-11 住友電気工業株式会社 プロトン伝導体、セル構造体およびこれらの製造方法、燃料電池ならびに水電解装置
US11545690B2 (en) 2017-11-29 2023-01-03 Kyoto University Proton conductor, proton-conducting cell structure, water vapor electrolysis cell, and method for producing hydrogen electrode-solid electrolyte layer complex
WO2020235237A1 (ja) * 2019-05-22 2020-11-26 住友電気工業株式会社 金属多孔体シート、燃料電池及び水電解装置
JPWO2020235237A1 (ja) * 2019-05-22 2020-11-26
CN112313367A (zh) * 2019-05-22 2021-02-02 住友电气工业株式会社 金属多孔板、燃料电池和水电解装置
JP7355040B2 (ja) 2019-05-22 2023-10-03 住友電気工業株式会社 金属多孔体シート、燃料電池及び水電解装置
CN112313367B (zh) * 2019-05-22 2024-04-12 住友电气工业株式会社 金属多孔板、燃料电池和水电解装置

Also Published As

Publication number Publication date
EP2908371A4 (en) 2016-05-25
US9692062B2 (en) 2017-06-27
JP2014082019A (ja) 2014-05-08
EP2908371B1 (en) 2018-09-26
CN104737344A (zh) 2015-06-24
EP2908371A1 (en) 2015-08-19
JP6024373B2 (ja) 2016-11-16
CN104737344B (zh) 2017-10-31
KR20150070124A (ko) 2015-06-24
US20150263355A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP6024373B2 (ja) 燃料電池およびその操業方法
US9118052B2 (en) Integrated natural gas powered SOFC systems
US8617763B2 (en) Internal reforming anode for solid oxide fuel cells
JP7105972B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および電気化学素子の製造方法
JP5013748B2 (ja) 固体酸化物燃料電池
JP5608813B2 (ja) 固体酸化物形燃料電池単位セルの製造方法
JP5309487B2 (ja) 燃料電池
JP2008108647A (ja) 改質器一体型燃料電池
EP2693544A1 (en) Medium-to-low-temperature high-efficiency electrochemical cell and electrochemical reaction system comprising same
JP2010238431A (ja) 燃料電池の発電セル
JP2018125284A (ja) 固体酸化物形燃料電池セル
KR102111859B1 (ko) 고체산화물 연료 전지 및 이를 포함하는 전지 모듈
CN110402514B (zh) 金属支撑型电化学元件用的带电极层基板、电化学元件和制造方法
JP6748518B2 (ja) 電気化学反応セルの製造方法
KR101669469B1 (ko) 연료전지용 하이브리드형 단위전지 및 이를 포함하는 연료전지 스택
JP5117821B2 (ja) 固体酸化物形燃料電池及びその製造方法
JP7202060B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、および固体酸化物形燃料電池
US11417903B2 (en) Electrode-based reformer for solid oxide electrochemical devices
JP2021068493A (ja) 燃料電池
JP6385086B2 (ja) 固体酸化物形燃料電池セルの評価方法および固体酸化物形燃料電池システム
US20210408553A1 (en) Metal-based solid oxide electrochemical devices
US11228041B2 (en) Electrochemical device, energy system and solid oxide fuel cell
JP2007073282A (ja) 可搬型非常用電源
KR20150010156A (ko) 멀티셀 구조를 가지는 평판형 고체산화물 연료전지 및 이의 제조방법
JP2021082594A (ja) プロトン伝導体、固体電解質層、セル構造体、およびそれを備える水蒸気電解セルならびに燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845321

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14432248

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157008321

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013845321

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE