WO2020235237A1 - 金属多孔体シート、燃料電池及び水電解装置 - Google Patents

金属多孔体シート、燃料電池及び水電解装置 Download PDF

Info

Publication number
WO2020235237A1
WO2020235237A1 PCT/JP2020/015526 JP2020015526W WO2020235237A1 WO 2020235237 A1 WO2020235237 A1 WO 2020235237A1 JP 2020015526 W JP2020015526 W JP 2020015526W WO 2020235237 A1 WO2020235237 A1 WO 2020235237A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal porous
porous sheet
groove
view
oxygen
Prior art date
Application number
PCT/JP2020/015526
Other languages
English (en)
French (fr)
Inventor
昂真 沼田
真嶋 正利
光靖 小川
孝浩 東野
奥野 一樹
博匡 俵山
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US17/251,889 priority Critical patent/US20210119229A1/en
Priority to EP20809042.3A priority patent/EP3798335A4/en
Priority to CN202080003383.1A priority patent/CN112313367B/zh
Priority to JP2020566008A priority patent/JP7355040B2/ja
Publication of WO2020235237A1 publication Critical patent/WO2020235237A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a metal porous sheet, a fuel cell, and a water electrolyzer.
  • This application claims priority based on Japanese Patent Application No. 2019-096228, which is a Japanese patent application filed on May 22, 2019. All the contents of the Japanese patent application are incorporated herein by reference.
  • a solid oxide fuel cell As a type of fuel cell, a solid oxide fuel cell (SOFC: Solid Oxide Fuel Cell) has been conventionally known.
  • a solid oxide fuel cell generally has a first interconnector, a fuel electrode current collector (gas diffusion layer) arranged on the first interconnector, and a fuel arranged on the fuel electrode current collector.
  • a pole a solid electrolyte arranged on the fuel electrode, an oxygen electrode arranged on the solid electrolyte, an oxygen electrode current collector arranged on the oxygen electrode, and a second interchange arranged on the oxygen electrode current collector. It has a connector (hereinafter, the first interconnector and the second interconnector are referred to as "interconnectors", and the fuel electrode current collector and the oxygen electrode current collector are referred to as "current collectors").
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2017-33918
  • Japanese Unexamined Patent Publication No. 2017-33918 Japanese Unexamined Patent Publication No. 2017-33918
  • the metal porous body sheet of the present disclosure is formed of a metal porous body having a skeleton having a three-dimensional network structure, and has a main surface in which grooves are formed.
  • the groove depth is at least 10 percent of the thickness of the metal porous sheet.
  • the area of the groove is 10% or more of the area of the main surface.
  • FIG. 1 is a perspective view of the metal porous sheet 10.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • FIG. 3 is a schematic view showing the internal structure of the metal porous sheet 10.
  • FIG. 4 is an enlarged cross-sectional view showing the internal structure of the metal porous sheet 10.
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG.
  • FIG. 6 is a process diagram showing a method for manufacturing the metal porous sheet 10.
  • FIG. 7 is an exploded perspective view of the fuel cell 100.
  • FIG. 8 is a cross-sectional view of the water electrolyzer 200.
  • FIG. 9 is a first explanatory diagram for explaining a method for evaluating a pressure loss in an embodiment.
  • FIG. 9 is a first explanatory diagram for explaining a method for evaluating a pressure loss in an embodiment.
  • FIG. 9 is a first explanatory diagram for explaining a method for evaluating a pressure loss in an embodiment.
  • FIG. 10 is a second explanatory diagram for explaining a method of evaluating the pressure loss in the embodiment.
  • FIG. 11A is a cross-sectional view of the metal porous sheet 10 according to the first modification.
  • FIG. 11B is a cross-sectional view of the metal porous sheet 10 according to the second modification.
  • FIG. 12A is a plan view of the metal porous sheet 10 according to the third modification.
  • FIG. 12B is a plan view of the metal porous sheet 10 according to the fourth modification.
  • FIG. 12C is a plan view of the metal porous sheet 10 according to the fifth modification.
  • FIG. 12D is a plan view of the metal porous sheet 10 according to the sixth modification.
  • FIG. 12E is a plan view of the metal porous sheet 10 according to the seventh modification.
  • FIG. 11A is a cross-sectional view of the metal porous sheet 10 according to the first modification.
  • FIG. 11B is a cross-sectional view of the metal porous sheet 10 according to the second modification.
  • FIG. 13 is a plan view of the metal porous sheet 10A.
  • FIG. 14 is a cross-sectional view taken along the line XIV-XIV in FIG.
  • FIG. 15 is a schematic cross-sectional view of the unit cell of the water electrolyzer 300.
  • FIG. 16 is a schematic view for explaining the effect of the water electrolyzer 300 using the metal porous sheet 10A.
  • FIG. 17 is a cross-sectional view of the metal porous sheet 10A according to the modified example.
  • FIG. 18 is a cross-sectional view of the metal porous sheet 10B.
  • FIG. 19 is a cross-sectional view of the metal porous sheet 10C.
  • FIG. 20 is a cross-sectional view of the metal porous sheet 10D.
  • FIG. 21 is a plan view of the metal porous sheet 10E.
  • FIG. 22 is a plan view of the metal porous sheet 10F.
  • FIG. 23 is a plan view of the metal porous sheet 10G.
  • FIG. 24 is a plan view of the metal porous sheet 10H.
  • FIG. 25 is a plan view of the metal porous sheet 10I.
  • FIG. 26 is a plan view of the metal porous sheet 10J.
  • FIG. 27 is a plan view of the metal porous sheet 10K.
  • FIG. 28 is a plan view of the metal porous sheet 10L.
  • a groove may be formed on the main surface of the interconnector facing the current collector in order to allow gas to flow uniformly through the current collector.
  • the interconnector is made of, for example, an iron (Fe) -chromium (Cr) alloy. Since the iron-chromium alloy is a difficult-to-process alloy, it is difficult to form the above groove by machining. Further, the above-mentioned groove can be formed by, for example, etching, but the manufacturing cost increases.
  • An object of the present disclosure is to provide a metal porous sheet capable of reducing manufacturing costs while suppressing an increase in pressure loss due to gas flow.
  • the metal porous sheet according to the embodiment is formed of a metal porous body having a skeleton having a three-dimensional network structure, and has a main surface in which grooves are formed.
  • the groove depth is at least 10 percent of the thickness of the metal porous sheet.
  • the area of the groove is 10% or more of the area of the main surface.
  • metal porous sheet it is possible to reduce the manufacturing cost while suppressing the increase in pressure loss due to the flow of gas.
  • the groove depth may be 30% or more and 90% or less of the thickness of the metal porous sheet. In this case, it is possible to improve the uniformity of the gas flow in the fuel cell current collector while further suppressing the increase in pressure loss due to the gas flow.
  • the area of the groove may be 30% or more and 90% or less of the area of the main surface in a plan view. In this case, it is possible to improve the uniformity of the gas flow in the metal porous sheet while further suppressing the increase in pressure loss due to the gas flow.
  • the grooves may have a first side surface and a second side surface facing each other in a cross-sectional view.
  • the distance between the first side surface and the second side surface may decrease as the distance from the main surface increases.
  • the grooves may be arranged so as to form a plurality of rows along the first direction in a plan view.
  • Each of the depths of the grooves belonging to the row may increase from one side in the first direction to the other side in the first direction.
  • the fuel cell according to the embodiment includes the above-mentioned metal porous sheet and an interconnector arranged so as to face the main surface of the above-mentioned metal porous sheet.
  • the metal porous sheet may be arranged so that gas is supplied along the direction intersecting the groove. In this case, the metal porous sheet enables uniform gas flow.
  • the metal porous sheet may be arranged so that gas is supplied along a direction parallel to the groove. In this case, it is possible to further suppress an increase in pressure loss due to gas flow.
  • the water electrolyzer according to the embodiment includes the above-mentioned metal porous sheet and an interconnector arranged to face the main surface of the above-mentioned metal porous sheet.
  • the uniformity of the flow of the aqueous solution in the hydrogen generating electrode and the oxygen generating electrode can be improved, and the pressure loss when the aqueous solution passes through the hydrogen generating electrode and the oxygen generating electrode is reduced. be able to. As a result, it becomes possible to reduce the voltage applied between the hydrogen generating electrode and the oxygen generating electrode when generating the hydrogen gas and the oxygen gas.
  • metal porous sheet 10 Structure of metal porous sheet according to the first embodiment
  • metal porous sheet 10 the configuration of the metal porous sheet according to the first embodiment
  • FIG. 1 is a perspective view of the metal porous sheet 10.
  • the metal porous sheet 10 is, for example, a current collector for a fuel cell.
  • the metal porous sheet 10 may be an electrode for a water electrolyzer.
  • the metal porous sheet 10 has a sheet-like shape.
  • the metal porous sheet 10 has a first main surface 10a and a second main surface 10b.
  • the first main surface 10a and the second main surface 10b are a pair of surfaces having a relatively larger area than the other surfaces among the plurality of surfaces constituting the metal porous sheet 10.
  • the metal porous sheet 10 has a rectangular shape in a plan view.
  • the plan view means a case where the metal porous sheet 10 is viewed from a direction orthogonal to the first main surface 10a.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • a groove 10c is formed on the first main surface 10a.
  • the first main surface 10a is recessed in the groove 10c toward the second main surface 10b side. That is, the portion of the first main surface 10a that is recessed toward the second main surface 10b with respect to the surroundings is the groove 10c.
  • the metal porous sheet 10 has a thickness T.
  • the thickness T is the distance between the first main surface 10a and the second main surface 10b.
  • the groove 10c has a depth D.
  • the depth D is the distance between the first main surface 10a and the bottom of the groove 10c located closest to the second main surface 10b in the portion where the groove 10c is not formed.
  • the depth D is 10% or more of the thickness T.
  • the depth D is preferably 30% or more of the thickness T.
  • the depth D is 90 percent or less of the thickness T.
  • the groove 10c extends along the first direction DR1 in a plan view.
  • a plurality of grooves 10c are formed at intervals along the second direction DR2.
  • the second direction DR2 is a direction orthogonal to the first direction DR1.
  • the groove 10c has a rectangular shape in a cross-sectional view orthogonal to the first direction DR1.
  • the groove 10c has a side surface 10ca and a side surface 10cc.
  • the side surface 10ca and the side surface 10cc face each other in the second direction DR2.
  • the distance between the side surface 10ca and the side surface 10cc is defined as the width W of the groove 10c.
  • the width W is preferably 1 mm or more.
  • the width W is more preferably 5 mm or more.
  • the width W may be 25 mm or more.
  • the minimum value of the distance between the side surface 10ca of a certain groove 10c and the side surface 10cc of the groove 10c adjacent to the groove 10c in the second direction DR2 is called a pitch P.
  • the pitch P is, for example, constant.
  • the total area of the groove 10c is defined as the first area.
  • the area of the first main surface 10a is referred to as the second area.
  • the first area is 10% or more of the second area.
  • the first area is preferably 30% or more of the second area.
  • the first area is 90% or less of the second area.
  • the ratio of the first area to the second area may be referred to as the groove ratio.
  • FIG. 3 is a schematic view showing the internal structure of the metal porous sheet 10.
  • the metal porous sheet 10 is formed of a metal porous body.
  • the metal porous body has a skeleton 11 having a three-dimensional network structure.
  • FIG. 4 is an enlarged cross-sectional view showing the internal structure of the metal porous sheet 10.
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG.
  • the skeleton 11 has a hollow tubular shape. That is, the skeleton 11 has a skeleton body 11a and an internal space 11b defined by the skeleton body 11a.
  • the skeleton body 11a is made of a metal material.
  • the metal material is, for example, nickel (Ni) or a nickel alloy.
  • the skeleton body 11a has a triangular shape in a cross-sectional view intersecting in the extending direction. The triangular shape does not have to be a mathematically exact triangular shape.
  • the skeleton 11 may be solid.
  • the space between the skeletons 11 is pores.
  • the porosity in the metal porous body is, for example, 40% or more and 98% or less.
  • the porosity in the metal porous body is calculated by ⁇ apparent volume of the metal porous body- (weight of the metal porous body ⁇ density of the metal material constituting the skeleton) ⁇ ⁇ apparent volume of the metal porous body ⁇ 100.
  • the metal porous sheet 10 may be formed of a sintered body made of a material having pores formed therein.
  • FIG. 6 is a process diagram showing a method for manufacturing the metal porous sheet 10.
  • the method for producing the metal porous sheet 10 includes a metal porous body forming step S1 and a groove forming step S2.
  • the metal porous body forming step S1 includes a base porous body preparation step S11, a conductive treatment step S12, a plating step S13, and a post-treatment step S14.
  • the base porous body is prepared.
  • the base porous body is a porous body formed of a resin material such as urethane foam or styrene foam.
  • the base porous body has a sheet-like shape.
  • a conductive coating layer is formed on the surface of the base porous body.
  • the conductive coating layer is formed of a conductive material such as a metal material or a carbon material.
  • the conductive treatment step S12 is appropriately performed by a sputtering method, a plating method, or the like, depending on the material of the conductive coating layer.
  • a material constituting the skeleton body 11a is formed on the surface of the base porous body (that is, on the conductive coating layer).
  • the plating step S13 is performed by, for example, an electroplating method.
  • the base porous body is removed.
  • the first heat treatment and the second heat treatment are performed.
  • the first heat treatment is a heat treatment for removing the base porous body by oxidation.
  • the first heat treatment is performed in an oxidizing atmosphere.
  • the base porous body is removed by oxidation, and the skeleton body 11a formed on the surface of the base porous body is oxidized.
  • the space where the base porous body existed before the first heat treatment becomes the internal space 11b of the skeleton 11 after the first heat treatment.
  • the second heat treatment is a heat treatment in a reducing atmosphere for reducing the skeleton body 11a oxidized in the first heat treatment.
  • a sheet-shaped metal porous body having a skeleton 11 having a three-dimensional network structure is formed.
  • the sheet-shaped metal porous body formed in the metal porous body forming step S1 has a first main surface 10a and a second main surface 10b.
  • the groove 10c is formed on the first main surface 10a.
  • the groove 10c is formed by pressing the mold against the first main surface 10a. Since the mold has a convex portion corresponding to the shape of the groove 10c, the shape of the convex portion is transferred to the first main surface 10a by pressing the mold against the first main surface 10a, and the groove 10c Is formed. As a result, the metal porous sheet 10 is formed.
  • fuel cell 100 Structure of fuel cell according to the first embodiment
  • the configuration of the fuel cell (hereinafter referred to as “fuel cell 100”) according to the first embodiment will be described below.
  • FIG. 7 is an exploded perspective view of the fuel cell 100. As shown in FIG. 7, the fuel cell 100 is a flat plate type solid oxide fuel cell.
  • the fuel cell 100 has an interconnector 20, a fuel electrode current collector 30, a fuel electrode 40, a solid electrolyte 50, an oxygen electrode 60, an oxygen electrode current collector 70, and an interconnector 80. ..
  • the fuel cell 100 has a single cell structure including an interconnector 20, a fuel electrode current collector 30, a fuel electrode 40, a solid electrolyte 50, an oxygen electrode 60, an oxygen electrode current collector 70, and an interconnector 80. It has a cell stack configured by stacking.
  • the interconnector 20 is a flat plate-shaped member.
  • the interconnector 20 is made of, for example, an iron-chromium alloy.
  • the surface of the interconnector 20 on the fuel electrode current collector 30 side is flat (no groove is formed).
  • a fuel electrode current collector 30 is arranged on the interconnector 20.
  • a metal porous sheet 10 is used for the fuel electrode current collector 30.
  • the fuel electrode current collector 30 is arranged so that the first main surface 10a faces the interconnector 20.
  • the fuel electrode 40 is a sheet-shaped porous body.
  • the porous body constituting the fuel electrode 40 is formed of, for example, a mixture of zirconia (ZrO 2 ) and nickel.
  • the fuel pole 40 is arranged on the fuel pole current collector 30 (more specifically, on the second main surface 10b).
  • the solid electrolyte 50 is a sheet-like member that allows oxygen ions to permeate.
  • the solid electrolyte 50 is formed of, for example, stabilized zirconia (YSZ).
  • the solid electrolyte 50 is arranged on the fuel electrode 40.
  • the oxygen electrode 60 is a flat plate-shaped porous body.
  • the porous body constituting the oxygen electrode 60 is formed of, for example, (La, Sr) MnO 3 (lanthanum strontium manganate), (La, Sr) CoO 3 (lanthanum strontium cobaltite) and the like.
  • the oxygen electrode 60 is arranged on the solid electrolyte 50.
  • a metal porous sheet 10 is used for the oxygen electrode current collector 70.
  • the oxygen electrode current collector 70 is arranged on the oxygen electrode 60 so that the second main surface 10b faces the oxygen electrode 60.
  • the interconnector 80 is a flat plate-shaped member.
  • the interconnector 80 is made of, for example, an iron-chromium alloy.
  • the interconnector 80 is arranged on the oxygen electrode current collector 70 so as to face the first main surface 10a of the oxygen electrode current collector 70.
  • the surface of the interconnector 20 on the fuel electrode current collector 30 side is flat (no groove is formed). Although not shown, the interconnector 80 is electrically connected to the interconnector 20.
  • Hydrogen (H 2 ) gas is supplied to the fuel electrode current collector 30.
  • the fuel electrode current collector 30 is arranged so that the groove 10c and the hydrogen gas supply direction intersect with each other. More preferably, the fuel electrode current collector 30 is arranged so that the groove 10c and the hydrogen gas supply direction are orthogonal to each other. The fuel electrode current collector 30 may be arranged so that the groove 10c and the hydrogen gas supply direction are parallel to each other.
  • Oxygen (O 2 ) gas is supplied to the oxygen electrode current collector 70.
  • the oxygen electrode current collector 70 is arranged so that the groove 10c and the oxygen gas supply direction intersect. More preferably, the oxygen electrode current collector 70 is arranged so that the groove 10c and the supply direction of the oxygen gas are orthogonal to each other.
  • the oxygen electrode current collector 70 may be arranged so that the groove 10c and the hydrogen gas supply direction are parallel to each other.
  • Oxygen ions move from the oxygen electrode 60 to the fuel electrode 40 via the solid electrolyte 50. Oxygen ions reaching the fuel electrode 40 via the fuel electrode current collector 30 was reacted with hydrogen gas supplied to the fuel electrode 40 to generate water (H 2 O) and electrons. The generated electrons are supplied to the oxygen electrode 60 via the interconnector 20, the interconnector 80, and the oxygen electrode current collector 70, and ionize the oxygen gas supplied to the oxygen electrode 60 via the oxygen electrode current collector 70. .. By repeating the above reaction, the fuel cell 100 generates electricity.
  • water electrolyzer 200 Structure of water electrolyzer according to the first embodiment
  • the configuration of the water electrolyzer according to the first embodiment (hereinafter referred to as “water electrolyzer 200") will be described below.
  • the water electrolyzer 200 is, for example, an alkaline water electrolyzer.
  • FIG. 8 is a cross-sectional view of the water electrolyzer 200. As shown in FIG. 8, the water electrolyzer 200 has an interconnector 110, a hydrogen generating electrode 120, a diaphragm 130, an oxygen evolving electrode 140, and an interconnector 150.
  • the interconnector 110 is a flat plate-shaped member, and is formed of, for example, an iron-chromium alloy.
  • the surface of the interconnector 110 on the hydrogen generating electrode 120 side is flat (no groove is formed).
  • a hydrogen generating electrode 120 is arranged on the interconnector 110.
  • a metal porous sheet 10 is used for the hydrogen generating electrode 120.
  • the hydrogen generating electrode 120 is arranged so that the first main surface 10a faces the interconnector 110.
  • a diaphragm 130 is arranged on the hydrogen generating electrode 120.
  • the diaphragm 130 is made of a material that allows H + (hydrogen ions) to pass through.
  • An oxygen evolving pole 140 is arranged on the diaphragm 130.
  • a metal porous sheet 10 is used for the oxygen evolving electrode 140.
  • the oxygen-evolving electrode 140 is arranged on the diaphragm 130 so that the second main surface 10b faces the diaphragm 130.
  • the interconnector 150 is a flat plate-shaped member, and is formed of, for example, an iron-chromium alloy.
  • the interconnector 150 is arranged on the oxygen evolving pole 140 so as to face the first main surface 10a of the oxygen evolving pole 140. Although not shown, the interconnector 150 is electrically connected to the interconnector 110.
  • a voltage is applied between the interconnector 110 and the interconnector 150 so that the potential at the hydrogen generating electrode 120 is lower than the potential at the oxygen generating electrode 140.
  • an alkaline aqueous solution is supplied to the hydrogen generating electrode 120 and the oxygen generating electrode 140.
  • the alkaline aqueous solution is, for example, a potassium hydroxide (KOH) aqueous solution or a sodium hydroxide (NaOH) aqueous solution.
  • KOH potassium hydroxide
  • NaOH sodium hydroxide
  • the alkaline aqueous solution may be supplied to the hydrogen generating electrode 120 and the oxygen generating electrode 140 along the direction intersecting the groove 10c, or may be supplied along the direction parallel to the groove 10c.
  • oxygen gas is generated by oxidizing the hydroxide ions contained in the alkaline aqueous solution at the oxygen evolving electrode 140. From the oxygen-evolving electrode 140, hydrogen ions move to the hydrogen-evolving electrode 120 via the diaphragm 130. At the hydrogen generating electrode 120, hydrogen gas is generated by reducing the hydrogen ions. By repeating such a reaction, hydrogen gas and oxygen gas are generated at the hydrogen generating electrode 120 and the oxygen generating electrode 140.
  • FIG. 9 is a first explanatory diagram for explaining a method for evaluating a pressure loss in an embodiment.
  • FIG. 10 is a second explanatory diagram for explaining a method of evaluating the pressure loss in the embodiment.
  • hydrogen gas is supplied to the metal porous sheet 10 from one end side of the metal porous sheet 10 and the metal porous sheet 10 is evaluated. The hydrogen gas was discharged from the other end side.
  • the flow rate of hydrogen gas was 0.5 L / min.
  • the temperature of the hydrogen gas was set to 800 ° C.
  • the evaluation of the pressure loss in the examples was performed when the hydrogen gas supply direction was parallel to the groove 10c (in the case of FIG. 9) and when the hydrogen gas supply direction was orthogonal to the groove 10c (in the case of FIG. 10).
  • the pressure loss was evaluated by the ratio of the pressure of the hydrogen gas discharged from the metal porous sheet 10 to the pressure of the hydrogen gas supplied to the metal porous sheet 10.
  • the pressure loss was evaluated as good when it was less than 80% of the pressure loss in Sample 1 (hereinafter referred to as "reference pressure loss").
  • Table 1 shows the details of the samples used for the pressure drop evaluation. As shown in Table 1, the groove 10c was not formed in the sample 1, and the groove 10c was formed in the samples 2 to 25.
  • the thickness T of Samples 1 to 25 was set to 500 ⁇ m.
  • the metal porous sheet 10 was arranged so that the hydrogen gas supply direction and the groove 10c were parallel to each other.
  • the metal porous sheet 10 was arranged so that the hydrogen gas supply direction and the groove 10c were orthogonal to each other.
  • Table 1 further shows the output in the fuel cell 100 in which Samples 1 to 25 are used for the fuel electrode current collector 30 and the oxygen electrode current collector 70.
  • the output of the fuel cell 100 exceeds 1.15 times the output of the fuel cell 100 (hereinafter referred to as “reference output”) in which sample 1 is used for the fuel electrode current collector 30 and the oxygen electrode current collector 70. If so, it was evaluated as good.
  • the high and low output of the fuel cell 100 is whether or not the gas (hydrogen gas and oxygen gas) is uniformly flowing in the metal porous sheet 10 (fuel electrode current collector 30 and oxygen electrode current collector 70). It becomes an index.
  • the output of the fuel cell 100 using the sample 2 and the output of the fuel cell 100 using the sample 14 were 1.15 times or less of the reference output.
  • Output of fuel cell 100 using sample 6 output of fuel cell 100 using sample 7, output of fuel cell 100 using sample 11, output of fuel cell 100 using sample 14, fuel using sample 19.
  • the output of the battery 100 and the output of the fuel cell 100 using the sample 23 were 1.15 times or less of the reference output.
  • the output of the fuel cell 100 using Samples 3 to 5, Samples 8 to 10, Samples 12 and 13, respectively, is the fuel using Samples 15 to 17, Samples 20 to 22, Samples 24 and Sample 25, respectively. It was smaller than the output of the battery 100. From this comparison, by arranging the metal porous sheet 10 (fuel electrode current collector 30 and oxygen electrode current collector 70) so that the groove 10c intersects the supply direction of the gas (hydrogen gas and oxygen gas), It has been clarified that the uniformity of gas flow in the metal porous sheet 10 (fuel electrode current collector 30 and oxygen electrode current collector 70) can be further improved.
  • the metal porous body constituting the metal porous body sheet 10 is formed by the skeleton 11 having a three-dimensional network structure, it has high deformability. Therefore, the groove 10c can be easily formed by pressing the mold against the first main surface 10a and transferring the shape of the convex portion of the mold. As described above, the metal porous sheet 10 makes it possible to reduce the manufacturing cost.
  • the depth D is 10% or more of the thickness T, and the groove ratio is 10% or more. Therefore, the pressure at which the gas passes through the metal porous sheet 10 The loss can be reduced.
  • the pressure loss when the gas passes through the metal porous sheet 10 can be further reduced by setting the depth D to 30% or more of the thickness T.
  • the pressure loss when the gas passes through the metal porous sheet 10 can be further reduced.
  • the uniformity of gas flow in the metal porous sheet 10 can be improved.
  • the groove ratio of the metal porous sheet 10 is set to 90% or less, the uniformity of gas flow in the metal porous sheet 10 can be improved.
  • the metal porous sheet 10 (fuel electrode current collector 30 and oxygen electrode current collector 70) is arranged so that the supply direction of the gas (hydrogen gas and oxygen gas) intersects the groove 10c. , The uniformity of gas flow in the metal porous sheet 10 (fuel electrode current collector 30 and oxygen electrode current collector 70) can be further improved.
  • the metal porous sheet 10 (fuel electrode current collector 30 and oxygen electrode current collector 70) is arranged so that the supply direction of the gas (hydrogen gas and oxygen gas) is parallel to the groove 10c.
  • the pressure loss when the gas (hydrogen gas and oxygen gas) passes through the metal porous sheet 10 (fuel electrode current collector 30 and oxygen electrode current collector 70) can be further reduced.
  • the water electrolyzer 200 can improve the uniformity of the flow of the alkaline aqueous solution in the hydrogen generating electrode 120 and the oxygen generating electrode 140. , It is possible to reduce the pressure loss when the alkaline aqueous solution passes through the hydrogen generating electrode 120 and the oxygen generating electrode 140. As a result, the water electrolyzer 200 can reduce the voltage applied between the hydrogen generating electrode 120 and the oxygen generating electrode 140 when generating the hydrogen gas and the oxygen gas.
  • FIG. 11A is a cross-sectional view of the metal porous sheet 10 according to the first modification.
  • the cross-sectional shape of the groove 10c is not limited to the rectangular shape.
  • the cross-sectional shape of the groove 10c may be a semicircular shape (see FIG. 11B).
  • FIG. 11B is a cross-sectional view of the metal porous sheet 10 according to the second modification. As shown in FIG. 11B, the cross-sectional shapes of the two grooves 10c arranged adjacent to each other may be different from each other.
  • FIG. 12A is a plan view of the metal porous sheet 10 according to the third modification. As shown in FIG. 12A, the widths W of the two grooves 10c arranged adjacent to each other may be different from each other.
  • FIG. 12B is a plan view of the metal porous sheet 10 according to the fourth modification. As shown in FIG. 12B, the grooves 10c may be formed concentrically.
  • FIG. 12C is a plan view of the metal porous sheet 10 according to the fifth modification. The groove 10c may be formed in a spiral shape.
  • FIG. 12D is a plan view of the metal porous sheet 10 according to the sixth modification.
  • FIG. 12E is a plan view of the metal porous sheet 10 according to the seventh modification.
  • the grooves 10c may be formed radially.
  • the metal porous sheet 10 may have a shape other than the rectangular shape in a plan view. Specifically, the metal porous sheet 10 may have a circular shape in a plan view.
  • metal porous sheet 10A (Structure of metal porous sheet according to the second embodiment)
  • metal porous sheet 10A the configuration of the metal porous sheet according to the second embodiment
  • the points different from the configuration of the metal porous sheet 10 will be mainly described, and the overlapping description will not be repeated.
  • FIG. 13 is a plan view of the metal porous sheet 10A.
  • FIG. 14 is a cross-sectional view taken along the line XIV-XIV in FIG.
  • the groove 10c is a hole having a circular bottom portion 10e in a plan view.
  • the grooves 10c are arranged in a grid pattern (more specifically, a square grid pattern) in a plan view. From another point of view, the grooves 10c are arranged so as to form a plurality of rows along the first direction DR1. In these respects, the groove 10c has a different structure of the metal porous sheet 10A from that of the metal porous sheet 10.
  • the groove 10c includes a circular bottomed hole in a plan view
  • the length L of the groove 10c with respect to the width W is not particularly limited.
  • water electrolyzer 300 The configuration of the water electrolyzer according to the second embodiment (hereinafter referred to as “water electrolyzer 300") will be described below.
  • FIG. 15 is a schematic cross-sectional view of the unit cell of the water electrolyzer 300.
  • the top and bottom of FIG. 15 correspond to the vertically upper side and the vertical lower side, respectively.
  • the unit cells of the water electrolyzer 300 include a hydrogen generating electrode 310, an oxygen generating electrode 320, a diaphragm 330, a compound electrode plate 340, a leaf spring 350a and a leaf spring 350b, a frame 360a, and the frame 360a. It has a frame 360b.
  • the water electrolyzer 300 is configured by arranging a plurality of the unit cells.
  • the hydrogen generating electrode 310 and the oxygen generating electrode 320 each have a metal porous sheet 10A and a support 370.
  • a diaphragm 330 is sandwiched between the hydrogen-evolving electrode 310 and the oxygen-evolving electrode 320.
  • the diaphragm 330 is a membrane that allows hydroxide ions (or hydrogen ions) to permeate.
  • the second main surface 10b of the metal porous sheet 10A contained in the hydrogen generating electrode 310 and the second main surface 10b of the metal porous sheet 10A contained in the oxygen generating electrode 320 face the diaphragm 330.
  • the metal porous sheet 10A contained in the hydrogen generating electrode 310 and the metal porous sheet 10A contained in the oxygen generating electrode 320 are arranged so that, for example, the first direction DR1 is along the vertical direction.
  • the support 370 is, for example, an expanded metal.
  • the support 370 is formed with an opening penetrating the support 370 along the thickness direction.
  • the support 370 is arranged on the first main surface 10a of the metal porous sheet 10A contained in the hydrogen generating electrode 310 and on the first main surface 10a of the metal porous sheet 10A contained in the oxygen generating electrode 320.
  • the groove 10c is exposed from the opening of the support 370.
  • An opening 360aa is formed in the frame 360a.
  • the opening 360a penetrates the frame 360a along the thickness direction.
  • a hole 360ab and a hole 360ac are formed in the frame 360a.
  • the hole 360ab extends vertically downward from the opening 360aa and connects the opening 360aa to the outside of the frame 360a.
  • the hole 36ac extends vertically upward from the opening 360aa and connects the opening 360aa to the outside of the frame 360a.
  • An opening 360ba is formed in the frame 360b.
  • the opening 360ba penetrates the frame 360b along the thickness direction.
  • a hole 360bb and a hole 360bc are formed in the frame 360b.
  • the hole 360bb extends vertically downward from the opening 360ba and connects the opening 360ba to the outside of the frame 360b.
  • the hole 36ac extends vertically upward from the opening 360ba and connects the opening 360ba to the outside of the frame 360b.
  • the frame 360a and the frame 360b are arranged so that the opening 360a and the opening 360ba overlap each other.
  • the diaphragm 330 is sandwiched between the frame 360a and the frame 360b so as to be exposed from the opening 360aa and the opening 360ba.
  • the frame 360a and the frame 360b are sandwiched by two double electrode plates 340.
  • the multi-pole plate 340 electrically connects adjacent unit cells. Although not shown, the multi-pole plate 340 is electrically connected to a power source at the end of the water electrolyzer 300.
  • the compound electrode plate 340 is arranged so as to face the support 370 included in the hydrogen generating electrode 310 (oxygen generating electrode 320).
  • a hydrogen generating electrode 310 is arranged in the space defined by the diaphragm 330, the compound electrode plate 340, and the opening 360aa.
  • An oxygen-evolving electrode 320 is arranged in the space defined by the diaphragm 330, the compound electrode plate 340, and the opening 360ba.
  • a leaf spring 350a is arranged between the double pole plate 340 and the support 370 included in the hydrogen generating pole 310.
  • a leaf spring 350b is arranged between the multi-pole plate 340 and the support 370 included in the oxygen-evolving pole 320.
  • An alkaline aqueous solution is supplied from the hole 360ab into the space defined by the diaphragm 330, the double electrode plate 340, and the opening 360aa.
  • An alkaline aqueous solution is supplied from the hole 360bb into the space defined by the diaphragm 330, the double electrode plate 340, and the opening 360ba.
  • the space defined by the diaphragm 330, the dipole plate 340 and the opening 360aa and the space defined by the diaphragm 330, the dipole plate 340 and the opening 360ba are filled with the alkaline aqueous solution as the electrolytic solution.
  • This alkaline aqueous solution is, for example, a potassium hydroxide aqueous solution.
  • a voltage is applied between the dipole plates 340 at both ends of the unit cell so that the potential at the hydrogen generating electrode 310 is lower than the potential at the oxygen generating electrode 320.
  • the hydrogen generating electrode 310 the water in the alkaline aqueous solution is reduced and hydrogen gas is generated.
  • the hydrogen gas generated at the hydrogen generating electrode 310 is discharged together with the alkaline aqueous solution through the hole 360ac from the space defined by the diaphragm 330, the dipole plate 340 and the opening 360aa.
  • the hydroxide ion in the alkaline aqueous solution moves from the hydrogen-evolving electrode 310 side to the oxygen-evolving electrode 320 side through the diaphragm 330.
  • the hydroxide ion that has moved to the oxygen evolution pole 320 side is oxidized at the oxygen evolution pole 320.
  • oxygen gas is generated at the oxygen generating electrode 320.
  • the oxygen gas generated at the oxygen-evolving electrode 320 is discharged together with the alkaline aqueous solution from the space defined by the diaphragm 330, the multi-pole plate 340 and the opening 360ba through the hole 360bc.
  • the water electrolyzer 300 produces hydrogen gas and oxygen gas.
  • FIG. 16 is a schematic view for explaining the effect of the water electrolyzer 300 using the metal porous sheet 10A.
  • hydrogen gas oxygen gas
  • This hydrogen gas becomes bubbles B.
  • Bubble B moves vertically upward due to the action of buoyancy and reaches the groove 10c.
  • the bubbles B that have reached the groove 10c are discharged to the outside of the metal porous sheet 10A through the groove 10c.
  • the generated bubbles B are less likely to interfere with the reaction at the hydrogen generating electrode 310 (oxygen generating electrode 320). In this way, by applying the metal porous sheet 10A to the water electrolysis apparatus 300, it is possible to reduce the electrolysis voltage when performing water electrolysis.
  • the bottom portion 10e is located on the second main surface 10b side of the groove 10c, the bubbles B that have reached the groove 10c are unlikely to be discharged from the second main surface 10b side. Therefore, by applying the metal porous sheet 10A to the water electrolyzer 300, it is possible to prevent bubbles B from accumulating in the vicinity of the diaphragm 330.
  • the metal porous sheet 10A is applied to the water electrolyzer 300, but the metal porous sheet 10A may be applied to the water electrolyzer 300. Further, in the above, the metal porous sheet 10A is applied to the water electrolyzer 300, but the metal porous sheet 10A may be applied to the fuel cell 100 or the water electrolyzer 200.
  • FIG. 17 is a cross-sectional view of the metal porous sheet 10A according to the modified example.
  • the depth D of the groove 10c increases from one side in the first direction DR1 (left side in the figure) to the other side in the first direction DR1 (right side in the figure). May be good.
  • the metal porous sheet 10A according to the modified example is arranged so that one side in the first direction DR1 corresponds vertically downward and the other side in the second direction corresponds vertically upward. Is preferable.
  • the depth D becomes larger as the groove 10c located vertically above the groove 10c, so that the bubbles B are more easily discharged to the outside of the metal porous sheet 10A.
  • metal porous sheet 10B the metal porous sheet according to the fourth embodiment
  • metal porous sheet 10D the metal porous sheet according to the fifth embodiment
  • FIG. 18 is a cross-sectional view of the metal porous sheet 10B.
  • the cross-sectional shape of the groove 10c is a triangular shape.
  • the distance between the side surface 10ca and the side surface 10cc decreases from the first main surface 10a side to the second main surface 10b side.
  • the width W is the distance between the side surface 10ca and the side surface 10cc on the first main surface 10a.
  • FIG. 19 is a cross-sectional view of the metal porous sheet 10C.
  • the bottom surface of the groove 10c is formed by a curved line that is convex toward the second main surface 10b side. This curve is, for example, a semicircle.
  • FIG. 20 is a cross-sectional view of the metal porous sheet 10D.
  • the distance between the side surface 10ca and the side surface 10cc decreases from the first main surface 10a side to the second main surface 10b side.
  • the width W is the distance between the side surface 10ca and the side surface 10cc on the first main surface 10a.
  • the distance between the side surface 10ca and the side surface 10cc on the bottommost side is defined as the width W1.
  • the width W1 is smaller than the width W.
  • metal porous sheet 10E The metal porous sheet according to the sixth embodiment (hereinafter referred to as “metal porous sheet 10E”) will be described below. Here, the differences from the metal porous sheet 10 will be mainly described, and the overlapping description will not be repeated.
  • FIG. 21 is a plan view of the metal porous sheet 10E.
  • the groove 10c extends so as to be inclined with respect to each side constituting the first main surface 10a.
  • the sides forming the first main surface 10a are the first side 10fa, the second side 10fb, the third side 10fc, and the fourth side 10fd.
  • the first side 10fa and the second side 10fb are along the first direction DR1.
  • the third side and the fourth side 10fd are along the second direction DR2.
  • the direction from the third side 10fc to the fourth side 10fd is referred to as the third direction DR3, and the direction from the fourth side 10fd to the third side 10fc is referred to as the fourth direction DR4.
  • the direction from the first side 10fa to the second side 10fb is referred to as the fifth direction DR5
  • the direction from the second side 10fb to the first side 10fa is referred to as the sixth direction DR6.
  • the groove 10c is inclined so as to approach the third side 10fc as the distance from the second side 10fb is increased (inclined so as to approach the fourth side 10fd as the distance from the first side 10fa is increased).
  • metal porous sheet 10F the metal porous sheet according to the seventh embodiment
  • metal porous sheet 10F the metal porous sheet according to the seventh embodiment
  • the differences from the metal porous sheet 10 will be mainly described, and the overlapping description will not be repeated.
  • FIG. 22 is a plan view of the metal porous sheet 10F. As shown in FIG. 22, a groove 10d is further formed on the first main surface 10a of the metal porous sheet 10F. The groove 10d extends along a direction orthogonal to the groove 10c. The pitch of the groove 10d is equal to the pitch P. The width of the groove 10d is equal to the width W.
  • metal porous sheet 10G The metal porous sheet according to the eighth embodiment (hereinafter referred to as “metal porous sheet 10G”) will be described below. Here, the differences from the metal porous sheet 10 will be mainly described, and the overlapping description will not be repeated.
  • FIG. 23 is a plan view of the metal porous sheet 10G.
  • the width W increases from the 3rd side 10fc side to the 4th side 10fp side.
  • the width W on the third side 10fc is defined as the width W2
  • the width W on the fourth side 10fd is defined as the width W3.
  • the width W3 is larger than the width W2.
  • the depth D of the groove 10c may become smaller from the third side 10fc side toward the fourth side 10fd side.
  • the depth D on the third side 10fc is defined as the depth D1
  • the depth on the fourth side 10fc is defined as the depth D2.
  • the depth D2 may be larger than the depth D1.
  • metal porous sheet 10H the metal porous sheet according to the ninth embodiment.
  • the differences from the metal porous sheet 10 will be mainly described, and the overlapping description will not be repeated.
  • FIG. 24 is a plan view of the metal porous sheet 10H.
  • the groove 10c is an elliptical bottomed hole in a plan view.
  • the long axis of this elliptical shape is along the first direction DR1.
  • the grooves 10c are arranged in a grid pattern (specifically, a square grid pattern) in a plan view.
  • the grooves 10c are arranged so as to form a plurality of rows along the first direction DR1.
  • Each of the plurality of grooves 10c included in the row along the first direction DR1 has a larger width W as it is arranged closer to the fourth side 10fd.
  • the width W of the groove 10c arranged on the third side 10fc side of the plurality of grooves 10c included in the row along the first direction DR1 is defined as the width W4, and the plurality of grooves 10c included in the row along the first direction DR1.
  • the width W of the groove 10c arranged on the fourth side 10fd side of the grooves 10c is defined as the width W5.
  • the width W5 is larger than the width W4.
  • the depth D of each of the plurality of grooves 10c included in the row along the first direction DR1 is smaller as they are arranged closer to the fourth side 10fd.
  • the depth D of the groove 10c arranged on the third side 10fc side of the plurality of grooves 10c included in the row along the first direction DR1 is defined as the depth D3, and is included in the row along the first direction DR1.
  • the depth D of the groove 10c arranged on the fourth side 10fd side of the plurality of grooves 10c is defined as the depth D4.
  • the depth D4 may be larger than the depth D3.
  • metal porous sheet 10I the metal porous sheet according to the tenth embodiment
  • metal porous sheet 10E the differences from the metal porous sheet 10E will be mainly described, and the overlapping description will not be repeated.
  • FIG. 25 is a plan view of the metal porous sheet 10I. As shown in FIG. 25, a groove 10d is further formed on the first main surface 10a of the metal porous sheet 10F. The groove 10d extends along a direction orthogonal to the groove 10c. The pitch of the groove 10d is equal to the pitch P. The width of the groove 10d is equal to the width W.
  • metal porous sheet 10J the metal porous sheet according to the eleventh embodiment
  • metal porous sheet 10J the metal porous sheet according to the eleventh embodiment
  • FIG. 26 is a plan view of the metal porous sheet 10J.
  • the groove 10c is a square bottomed hole in a plan view. The diagonals of the squares are along the first direction DR1 and the second direction DR2, respectively.
  • the grooves 10c are arranged in a grid pattern (specifically, a houndstooth pattern) in a plan view.
  • the metal porous sheet is formed by reversing the positions where the grooves 10c and 10d are formed and the positions where the grooves 10c and 10d are not formed in the metal porous sheet 10I.
  • a structure of 10J can be obtained.
  • the width W is the distance between the opposite sides of the square shape.
  • metal porous sheet 10K the metal porous sheet according to the twelfth embodiment (hereinafter, referred to as “metal porous sheet 10K”) will be described.
  • metal porous sheet 10I the differences from the metal porous sheet 10I will be mainly described, and the overlapping description will not be repeated.
  • FIG. 27 is a plan view of the metal porous sheet 10K. As shown in FIG. 27, in the metal porous sheet 10K, the grooves 10c and the grooves 10d intersect each other but are not orthogonal to each other.
  • the distance in the first direction DR1 between two adjacent grooves 10c (grooves 10d) is defined as pitch P1.
  • the distance in the second direction DR2 between two adjacent grooves 10c (grooves 10d) is defined as pitch P2.
  • the pitch P2 is larger than the pitch P1.
  • metal porous sheet 10L The metal porous sheet according to the thirteenth embodiment (hereinafter, referred to as “metal porous sheet 10L”) will be described below. Here, the differences from the metal porous sheet 10 will be mainly described, and the overlapping description will not be repeated.
  • FIG. 28 is a plan view of the metal porous sheet 10L.
  • the groove 10c is a diamond-shaped bottomed hole in a plan view.
  • the rhombus has a first diagonal and a second diagonal that is longer than the first diagonal.
  • the first diagonal and the second diagonal are along the first direction DR1 and the second direction DR2, respectively.
  • the grooves 10c are arranged in a grid pattern (specifically, a houndstooth pattern) in a plan view. From another point of view, the metal porous sheet is formed by reversing the positions where the grooves 10c and 10d are formed and the positions where the grooves 10c and 10d are not formed in the metal porous sheet 10K.
  • the groove 10c has a width W6 and a width W7.
  • the width W6 and width W7 are equal to the length of the first diagonal and the second diagonal, respectively. That is, the width W7 is larger than the width W6.
  • Tables 2 and 3 show the details of the samples used for the pressure drop evaluation. As shown in Tables 2 and 3, grooves 10c were formed in Samples 26 to 58. The thickness T of Samples 26 to 58 was set to 500 ⁇ m. Tables 2 and 3 show the groove ratio in each sample, the ratio of the depth D to the thickness T, and other groove shape characteristics. Further, Tables 2 and 3 show the pressure loss (relative value with respect to the sample 1) and the output in each sample.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

金属多孔体シートは、三次元網目状構造の骨格を有する金属多孔体により形成されており、溝が形成された主面を有している。溝の深さは、金属多孔体シートの厚さの10パーセント以上である。平面視において、溝の面積は、主面の面積の10パーセント以上である。

Description

金属多孔体シート、燃料電池及び水電解装置
 本開示は、金属多孔体シート、燃料電池及び水電解装置に関する。本出願は、2019年5月22日に出願した日本特許出願である特願2019-096228号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 燃料電池の一種として、従来から、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)が知られている。固体酸化物形燃料電池は、一般的に、第1インターコネクタと、第1インターコネクタ上に配置された燃料極集電体(ガス拡散層)と、燃料極集電体上に配置された燃料極と、燃料極上に配置された固体電解質と、固体電解質上に配置された酸素極と、酸素極上に配置された酸素極集電体と、酸素極集電体上に配置された第2インターコネクタとを有している(以下においては、第1インターコネクタ及び第2インターコネクタを「インターコネクタ」といい、燃料極集電体及び酸素極集電体を「集電体」という)。
 例えば、特許文献1(特開2017-33918号公報)においては、集電体として、三次元網目状構造の骨格を有する金属多孔体を適用することが提案されている。
特開2017-33918号公報
 本開示の金属多孔体シートは、三次元網目状構造の骨格を有する金属多孔体により形成されており、溝が形成された主面を有している。溝の深さは、金属多孔体シートの厚さの10パーセント以上である。平面視において、溝の面積は、主面の面積の10パーセント以上である。
図1は、金属多孔体シート10の斜視図である。 図2は、図1のII-IIにおける断面図である。 図3は、金属多孔体シート10の内部構造を示す模式図である。 図4は、金属多孔体シート10の内部構造を示す拡大断面図である。 図5は、図4のV-Vにおける断面図である。 図6は、金属多孔体シート10の製造方法を示す工程図である。 図7は、燃料電池100の分解斜視図である。 図8は、水電解装置200の断面図である。 図9は、実施例における圧力損失の評価方法を説明するための第1説明図である。 図10は、実施例における圧力損失の評価方法を説明するための第2説明図である。 図11Aは、第1変形例に係る金属多孔体シート10の断面図である。 図11Bは、第2変形例に係る金属多孔体シート10の断面図である。 図12Aは、第3変形例に係る金属多孔体シート10の平面図である。 図12Bは、第4変形例に係る金属多孔体シート10の平面図である。 図12Cは、第5変形例に係る金属多孔体シート10の平面図である。 図12Dは、第6変形例に係る金属多孔体シート10の平面図である。 図12Eは、第7変形例に係る金属多孔体シート10の平面図である。 図13は、金属多孔体シート10Aの平面図である。 図14は、図13におけるXIV-XIVにおける断面図である。 図15は、水電解装置300の単位セルの模式的な断面図である。 図16は、金属多孔体シート10Aを用いた水電解装置300の効果を説明するための模式図である。 図17は、変形例に係る金属多孔体シート10Aの断面図である。 図18は、金属多孔体シート10Bの断面図である。 図19は、金属多孔体シート10Cの断面図である。 図20は、金属多孔体シート10Dの断面図である。 図21は、金属多孔体シート10Eの平面図である。 図22は、金属多孔体シート10Fの平面図である。 図23は、金属多孔体シート10Gの平面図である。 図24は、金属多孔体シート10Hの平面図である。 図25は、金属多孔体シート10Iの平面図である。 図26は、金属多孔体シート10Jの平面図である。 図27は、金属多孔体シート10Kの平面図である。 図28は、金属多孔体シート10Lの平面図である。
 [本開示が解決しようとする課題]
 固体酸化物形燃料電池においては、集電体にガスを均一に流すために、集電体と対向するインターコネクタの主面に溝を形成することがある。インターコネクタは、例えば、鉄(Fe)-クロム(Cr)合金で形成されている。鉄-クロム合金は難加工性の合金であるため、機械加工により上記の溝を形成することが困難である。また、上記の溝は、例えばエッチングにより形成することが可能であるが、製造コストが増大してしまう。
 上記の溝を形成しない場合(すなわち、集電体に対向しているインターコネクタの面が平坦である場合)、ガスは、集電体の内部のみを通ることになるため、ガスの流通に伴う圧力損失が大きくなる。
 本開示の目的は、ガスの流通に伴う圧力損失の増大を抑制しつつ、製造コストの低減が可能な金属多孔体シートを提供することである。
 [本開示の効果]
 本開示の金属多孔体シートによると、ガスの流通に伴う圧力損失の増大を抑制しつつ、製造コストの低減が可能である。
 [本開示の実施形態の説明]
 まず、本開示の実施形態を列記して説明する。
 (1)一実施形態に係る金属多孔体シートは、三次元網目状構造の骨格を有する金属多孔体により形成されており、溝が形成された主面を有している。溝の深さは、金属多孔体シートの厚さの10パーセント以上である。平面視において、溝の面積は、主面の面積の10パーセント以上である。
 上記の金属多孔体シートによると、ガスの流通に伴う圧力損失の増大を抑制しつつ、製造コストの低減が可能である。
 (2)上記の金属多孔体シートでは、溝の深さは、金属多孔体シートの厚さの30パーセント以上90パーセント以下であってもよい。この場合、ガスの流通に伴う圧力損失の増大をさらに抑制しつつ、燃料電池集電体中におけるガスの流れの均一性を高めることが可能である。
 (3)上記の金属多孔体シートでは、平面視において、溝の面積は、主面の面積の30パーセント以上90パーセント以下であってもよい。この場合、ガスの流通に伴う圧力損失の増大をさらに抑制しつつ、金属多孔体シート中におけるガスの流れの均一性を高めることができる。
 (4)上記の金属多孔体シートでは、溝は、断面視において互いに対向する第1側面及び第2側面を有していてもよい。第1側面と第2側面との間の距離は、主面から離れるにしたがって小さくなっていてもよい。
 (5)上記の金属多孔体シートでは、溝は、平面視において第1方向に沿う複数の列をなすように配置されていてもよい。列に属する溝の深さの各々は、第1方向における一方側から第1方向における他方側に向かうにしたがって大きくなっていてもよい。
 (6)一実施形態に係る燃料電池は、上記の金属多孔体シートと、上記の金属多孔体シートの主面に対向配置されるインターコネクタとを備える。
 上記の燃料電池によると、ガスの流通に伴う圧力損失の増大を抑制しつつ、製造コストの低減が可能である。
 (7)上記の燃料電池では、金属多孔体シートは、溝に交差する方向に沿ってガスが供給されるように配置されていてもよい。この場合、金属多孔体シートにより均一にガスを流すことが可能となる。
 (8)上記の燃料電池では、金属多孔体シートは、溝と平行な方向に沿ってガスが供給されるように配置されていてもよい。この場合、ガスの流通に伴う圧力損失の増大をさらに抑制することが可能となる。
 (9)一実施形態に係る水電解装置は、上記の金属多孔体シートと、上記の金属多孔体シートの主面に対向配置されるインターコネクタとを備える。
 上記の水電解装置によると、水素発生極及び酸素発生極中における水溶液の流れの均一性を向上させることができるとともに、水溶液が水素発生極及び酸素発生極を通過する際の圧力損失を低減することができる。その結果、水素ガス及び酸素ガスを発生させる際に水素発生極と酸素発生極との間に印加される電圧を下げることが可能になる。
 [本開示の実施形態の詳細]
 次に、本開示の実施形態の詳細を、図面を参酌しながら説明する。以下の図面においては、同一又は相当する部分に同一の参照符号を付し、重複する説明は繰り返さないものとする。
 (第1実施形態に係る金属多孔体シートの構成)
 以下に、第1実施形態に係る金属多孔体シート(以下においては、「金属多孔体シート10」という)の構成を説明する。
 図1は、金属多孔体シート10の斜視図である。金属多孔体シート10は、例えば、燃料電池用集電体である。金属多孔体シート10は、水電解装置用の電極であってもよい。図1に示されるように、金属多孔体シート10は、シート状の形状を有している。金属多孔体シート10は、第1主面10aと、第2主面10bとを有している。第1主面10a及び第2主面10bは、金属多孔体シート10を構成する複数の面のうち、他の面によりも面積が相対的に大きい一対の面である。金属多孔体シート10は、平面視において、矩形形状を有している。以下において、平面視とは、第1主面10aに直交する方向から金属多孔体シート10を見た場合をいう。
 図2は、図1のII-IIにおける断面図である。図2に示されるように、第1主面10aには、溝10cが形成されている。第1主面10aは、溝10cにおいて、第2主面10b側に向かって窪んでいる。すなわち、周囲よりも第2主面10b側に窪んでいる第1主面10aの部分が、溝10cである。
 金属多孔体シート10は、厚さTを有している。厚さTは、第1主面10aと第2主面10bとの間の距離である。溝10cは、深さDを有している。深さDは、溝10cが形成されていない部分の第1主面10aと第2主面10bに最も近い位置にある溝10cの底部との間の距離である。深さDは、厚さTの10パーセント以上である。深さDは、厚さTの30パーセント以上であることが好ましい。深さDは、厚さTの90パーセント以下である。
 図1に示されるように、溝10cは、平面視において、第1方向DR1に沿って延在している。溝10cは、第2方向DR2に沿って間隔を空けながら、複数形成されている。第2方向DR2は、第1方向DR1と直交する方向である。
 図2に示されるように、溝10cは、第1方向DR1に直交する断面視において、矩形形状を有している。溝10cは、側面10caと、側面10cbとを有している。側面10ca及び側面10cbは、第2方向DR2において、互いに対向している。側面10caと側面10cbとの間の距離を、溝10cの幅Wとする。幅Wは、1mm以上であることが好ましい。幅Wは、5mm以上であることがさらに好ましい。幅Wは、25mm以上であってもよい。
 ある溝10cの側面10caと第2方向DR2において当該溝10cの隣にある溝10cの側面10cbとの間の距離の最小値を、ピッチPという。ピッチPは、例えば一定である。
 平面視において、溝10cの総面積を、第1面積とする。平面視において、第1主面10aの面積を、第2面積という。第1面積は、第2面積の10パーセント以上である。第1面積は、第2面積の30パーセント以上であることが好ましい。第1面積は、第2面積の90パーセント以下である。以下においては、第2面積に対する第1面積の比率を、溝割合ということがある。
 図3は、金属多孔体シート10の内部構造を示す模式図である。金属多孔体シート10は、図3に示されるように、金属多孔体により形成されている。金属多孔体は、三次元網目状構造を有する骨格11を有している。
 図4は、金属多孔体シート10の内部構造を示す拡大断面図である。図5は、図4のV-Vにおける断面図である。図4及び図5に示されるように、骨格11は、中空の筒状形状を有している。すなわち、骨格11は、骨格本体11aと、骨格本体11aによって画された内部空間11bとを有している。骨格本体11aは、金属材料で形成されている。金属材料は、例えばニッケル(Ni)、ニッケル合金である。骨格本体11aは、延在方向に交差する断面視において、三角形形状を有している。なお、三角形形状は、数学的に厳密な三角形形状である必要はない。骨格11は、中実になっていてもよい。
 金属多孔体中においては、骨格11の間にある空間が、気孔になっている。金属多孔体中における気孔率は、例えば、40パーセント以上98パーセント以下である。なお、金属多孔体中の気孔率は、{金属多孔体の見かけ体積-(金属多孔体の重量÷骨格を構成する金属材料の密度)}÷金属多孔体の見かけ体積×100により算出される。
 なお、上記の例の他、金属多孔体シート10は、内部に気孔が形成された材料の焼結体により形成されてもよい。
 (第1実施形態に係る金属多孔体シートの製造方法)
 以下に、金属多孔体シート10の製造方法を説明する。
 図6は、金属多孔体シート10の製造方法を示す工程図である。金属多孔体シート10の製造方法は、図6に示されるように、金属多孔体形成工程S1と、溝形成工程S2とを有している。金属多孔体形成工程S1は、ベース多孔体準備工程S11と、導電化処理工程S12と、めっき工程S13と、後処理工程S14とを有している。
 ベース多孔体準備工程S11においては、ベース多孔体の準備が行われる。ベース多孔体は、例えば発泡ウレタン、発泡スチレン等の樹脂材料で形成されている多孔体である。ベース多孔体は、シート状の形状を有している。
 導電化処理工程S12においては、ベース多孔体の表面に、導電被覆層が形成される。導電被覆層は、金属材料、炭素材料等の導電性材料で形成されている。導電化処理工程S12は、導電被覆層の材質に応じて、スパッタリング、めっき法等により適宜行われる。
 めっき工程S13においては、ベース多孔体の表面に(すなわち、導電被覆層上に)、骨格本体11aを構成する材料が形成される。めっき工程S13は、例えば、電気めっき法により行われる。
 後処理工程S14においては、ベース多孔体の除去が行われる。後処理工程S14においては、第1熱処理と、第2熱処理とが行われる。第1熱処理は、ベース多孔体を酸化により除去するための熱処理である。第1熱処理は、酸化性雰囲気下において行われる。この際、ベース多孔体が酸化により除去されるとともにベース多孔体の表面に形成されていた骨格本体11aが酸化される。第1熱処理前にベース多孔体が存在していた空間は、第1熱処理後には、骨格11の内部空間11bになる。第2熱処理は、第1熱処理において酸化された骨格本体11aを還元するための還元性雰囲気下での熱処理である。以上により、三次元網目状構造を有する骨格11を有するシート状の金属多孔体が形成される。
 金属多孔体形成工程S1において形成されたシート状の金属多孔体は、第1主面10aと、第2主面10bとを有している。溝形成工程S2においては、第1主面10aに、溝10cが形成される。溝10cの形成は、第1主面10aに対して、金型を押し付けることにより行われる。金型は、溝10cの形状に対応した凸部を有しているため、金型を第1主面10aに押し付けることにより、当該凸部の形状が第1主面10aに転写され、溝10cが形成される。以上により、金属多孔体シート10が形成される。
 (第1実施形態に係る燃料電池の構成)
 以下に、第1実施形態に係る燃料電池(以下においては、「燃料電池100」という)の構成を説明する。
 図7は、燃料電池100の分解斜視図である。図7に示されるように、燃料電池100は、平板型の固体酸化物形燃料電池である。
 燃料電池100は、インターコネクタ20と、燃料極集電体30と、燃料極40と、固体電解質50と、酸素極60と、酸素極集電体70と、インターコネクタ80とを有している。燃料電池100は、図示されていないが、インターコネクタ20、燃料極集電体30、燃料極40、固体電解質50、酸素極60、酸素極集電体70及びインターコネクタ80を含む単セル構造を積層することにより構成されたセルスタックを有している。
 インターコネクタ20は、平板状の部材である。インターコネクタ20は、例えば、鉄-クロム合金で形成されている。インターコネクタ20の燃料極集電体30側の面は、平坦である(溝が形成されていない)。インターコネクタ20上には、燃料極集電体30が配置されている。燃料極集電体30には、金属多孔体シート10が用いられている。燃料極集電体30は、第1主面10aがインターコネクタ20と対向するように配置されている。
 燃料極40は、シート状の多孔体である。燃料極40を構成する多孔体は、例えばジルコニア(ZrO)及びニッケルの混合物により形成されている。燃料極40は、燃料極集電体30上(より具体的には、第2主面10b上)に配置されている。
 固体電解質50は、酸素イオンを透過させるシート状部材である。固体電解質50は、例えば安定化ジルコニア(YSZ)により形成されている。固体電解質50は、燃料極40上に配置されている。
 酸素極60は、平板状の多孔体である。酸素極60を構成する多孔体は、例えば、(La,Sr)MnO(ランタンストロンチウムマンガナイト)、(La,Sr)CoO(ランタンストロンチウムコバルタイト)等により形成されている。酸素極60は、固体電解質50上に配置されている。
 酸素極集電体70には金属多孔体シート10が用いられている。酸素極集電体70は、第2主面10bが酸素極60と対向するように、酸素極60上に配置されている。インターコネクタ80は、平板状の部材である。インターコネクタ80は、例えば、鉄-クロム合金で形成されている。インターコネクタ80は、酸素極集電体70の第1主面10aと対向するように、酸素極集電体70上に配置されている。インターコネクタ20の燃料極集電体30側の面は、平坦である(溝が形成されていない)。図示されていないが、インターコネクタ80は、インターコネクタ20に電気的に接続されている。
 燃料極集電体30には、水素(H)ガスが供給される。好ましくは、燃料極集電体30は、溝10cと水素ガスの供給方向とが交差するように配置されている。さらに好ましくは、燃料極集電体30は、溝10cと水素ガスの供給方向とが直交するように配置されている。燃料極集電体30は、溝10cと水素ガスの供給方向とが平行になるように配置されていてもよい。
 酸素極集電体70には、酸素(O)ガスが供給される。好ましくは、酸素極集電体70は、溝10cと酸素ガスの供給方向とが交差するように配置されている。さらに好ましくは、酸素極集電体70は、溝10cと酸素ガスの供給方向とが直交するように配置されている。酸素極集電体70は、溝10cと水素ガスの供給方向とが平行になるように配置されていてもよい。
 酸素イオンは、固体電解質50を介して、酸素極60から燃料極40へと移動する。燃料極40に到達した酸素イオンは、燃料極集電体30を介して燃料極40に供給された水素ガスと反応し、水(HO)及び電子を発生させる。発生した電子は、インターコネクタ20、インターコネクタ80及び酸素極集電体70を介して酸素極60に供給され、酸素極集電体70を介して酸素極60に供給された酸素ガスをイオン化する。以上の反応が繰り返されることにより、燃料電池100は、発電を行う。
 (第1実施形態に係る水電解装置の構成)
 以下に、第1実施形態に係る水電解装置(以下においては、「水電解装置200」という)の構成を説明する。
 水電解装置200は、例えば、アルカリ水電解装置である。図8は、水電解装置200の断面図である。図8に示されるように、水電解装置200は、インターコネクタ110と、水素発生極120と、隔膜130と、酸素発生極140と、インターコネクタ150とを有している。
 インターコネクタ110は、平板状の部材であり、例えば、鉄-クロム合金で形成されている。インターコネクタ110の水素発生極120側の面は、平坦である(溝が形成されていない)。インターコネクタ110上には、水素発生極120が配置されている。水素発生極120には、金属多孔体シート10が用いられている。水素発生極120は、第1主面10aがインターコネクタ110と対向するように配置されている。
 水素発生極120上には、隔膜130が配置されている。隔膜130は、H(水素イオン)を透過させる材料により形成されている。隔膜130上には、酸素発生極140が配置されている。酸素発生極140には、金属多孔体シート10が用いられている。酸素発生極140は、第2主面10bが隔膜130と対向するように隔膜130上に配置されている。インターコネクタ150は、平板状の部材であり、例えば鉄-クロム合金で形成されている。インターコネクタ150は、酸素発生極140の第1主面10aと対向するように、酸素発生極140上に配置されている。なお、図示されていないが、インターコネクタ150は、インターコネクタ110に電気的に接続されている。
 水電解装置200の動作時には、水素発生極120における電位が酸素発生極140における電位よりも低くなるようにインターコネクタ110とインターコネクタ150との間に電圧が印加される。水電解装置200の動作時には、水素発生極120及び酸素発生極140にアルカリ水溶液が供給される。アルカリ水溶液は、例えば水酸化カリウム(KOH)水溶液、水酸化ナトリウム(NaOH)水溶液である。アルカリ水溶液は、溝10cと交差する方向に沿って水素発生極120及び酸素発生極140に供給されてもよく、溝10cと平行な方向に沿って供給されてもよい。
 水電解装置200の動作時には、酸素発生極140において、アルカリ水溶液中に含まれる水酸化物イオンが酸化されることにより、酸素ガスが発生する。酸素発生極140からは、隔膜130を介して水素イオンが水素発生極120へと移動する。水素発生極120においては、当該水素イオンが還元されることにより、水素ガスが発生する。このような反応が繰り返されることにより、水素発生極120及び酸素発生極140において、水素ガス及び酸素ガスが発生する。
 (実施例)
 以下に、金属多孔体シート10及び燃料電池100の実施例を説明する。
 図9は、実施例における圧力損失の評価方法を説明するための第1説明図である。図10は、実施例における圧力損失の評価方法を説明するための第2説明図である。図9及び図10に示されるように、実施例における圧力損失の評価においては、金属多孔体シート10の一方端側から水素ガスを金属多孔体シート10に供給するとともに、金属多孔体シート10の他方端側から当該水素ガスを排出させた。圧力損失の評価において、水素ガスの流量は、0.5L/分とされた。圧力損失の評価において、水素ガスの温度は、800℃とされた。
 実施例における圧力損失の評価は、水素ガスの供給方向が溝10cと平行な場合(図9の場合)及び水素ガスの供給方向が溝10cと直交する場合(図10の場合)に関して行った。圧力損失の評価は、金属多孔体シート10に供給される水素ガスの圧力に対する金属多孔体シート10から排出された水素ガスの圧力の比率により、評価された。圧力損失は、サンプル1における圧力損失(以下においては、「基準圧力損失」という)の80パーセント未満の場合に、良好であると評価された。
 表1には、圧力損失の評価に供されたサンプルの詳細が示されている。表1に示されるように、サンプル1には溝10cが形成されておらず、サンプル2~サンプル25には溝10cが形成された。サンプル1~サンプル25の厚さTは、全て500μmとされた。
 サンプル2~サンプル13においては、金属多孔体シート10は、水素ガスの供給方向と溝10cとが平行になるように配置された。サンプル14~サンプル25において、金属多孔体シート10は、水素ガスの供給方向と溝10cとが直交するように配置された。
 サンプル2~サンプル6及びサンプル14~サンプル18においては、幅W及び溝割合を一定とした上で、厚さTに対する深さDの割合を8パーセント以上96パーセント以下の範囲で変化させた。なお、サンプル2~サンプル6及びサンプル14~サンプル18においては、幅W及び溝割合が一定となっているため、ピッチPも一定になっている。
 サンプル7~サンプル11及びサンプル19~サンプル23においては、厚さTに対する深さDの割合及び幅Wを一定とした上で、溝割合を8パーセント以上91パーセント以下の範囲で変化させた。なお、サンプル7~サンプル11及びサンプル19~サンプル23においては、幅Wが一定になっている一方で、溝割合を変化させているため、溝割合の変化に比例して、ピッチPも変化している。
 サンプル12、サンプル13、サンプル24及びサンプル25においては、厚さTに対する深さDの割合及び溝割合を一定とした上で、幅W及びピッチPを変化させた。
 サンプル2、サンプル14及びサンプル19においては、圧力損失が、基準圧力損失の80パーセント以上100パーセント未満になっていた。サンプル1、サンプル2、サンプル14及びサンプル19以外のサンプルにおいては、圧力損失が、基準圧力損失の80パーセント未満となっていた。この比較から、厚さTに対する深さDの割合が10パーセント以上とするとともに、溝割合を10パーセント以上とすることにより、圧力損失を低減できることが明らかになった。
 サンプル2~サンプル6及びサンプル14~サンプル18においては、厚さTに対する深さDの割合が大きくなるほど圧力損失が減少していた。サンプル12、サンプル13、サンプル24及びサンプル25においては、幅W及びピッチPを変化させても、圧力損失が変化していなかった。サンプル7~サンプル11及びサンプル19~サンプル23においては、溝割合が大きくなるほど、圧力損失が減少していた。
 表1には、さらに、サンプル1~サンプル25を燃料極集電体30及び酸素極集電体70に用いた燃料電池100における出力が示されている。燃料電池100の出力は、サンプル1を燃料極集電体30及び酸素極集電体70に用いた燃料電池100の出力(以下においては、「基準出力」という)の1.15倍を超えている場合に、良好であると評価した。なお、燃料電池100の出力の高低は、ガス(水素ガス及び酸素ガス)が金属多孔体シート10(燃料極集電体30及び酸素極集電体70)中において均一に流れているか否かの指標となる。
 表1に示されるように、サンプル2を用いた燃料電池100の出力及びサンプル14を用いた燃料電池100の出力は、基準出力の1.15倍以下であった。サンプル6を用いた燃料電池100の出力、サンプル7を用いた燃料電池100の出力、サンプル11を用いた燃料電池100の出力、サンプル14を用いた燃料電池100の出力、サンプル19を用いた燃料電池100の出力及びサンプル23を用いた燃料電池100の出力は、基準出力の1.15倍以下であった。
 サンプル1、サンプル2、サンプル6、サンプル7、サンプル11、サンプル14、サンプル19及びサンプル23以外のサンプルを用いた燃料電池100の出力は、基準出力の1.15倍を超えていた。この比較から、厚さTに対する深さDの割合を10パーセント以上90パーセント以下にするとともに、溝割合を10パーセント90パーセント以下とすることにより、圧力損失を低減しつつ、金属多孔体シート10中におけるガスの流れの均一性の向上が可能になることが明らかにされた。
 サンプル3~サンプル5、サンプル8~サンプル10、サンプル12及びサンプル13における圧力損失は、それぞれ、サンプル15~サンプル17、サンプル20~サンプル22、サンプル24及びサンプル25における圧力損失よりも小さくなっていた。この比較から、金属多孔体シート10(燃料極集電体30及び酸素極集電体70)を、溝10cがガス(水素ガス及び酸素ガス)の供給方向と平行になるように配置することにより、圧力損失のさらなる低減が可能であることが明らかになった。
 サンプル3~サンプル5、サンプル8~サンプル10、サンプル12及びサンプル13を用いた燃料電池100の出力は、それぞれ、サンプル15~サンプル17、サンプル20~サンプル22、サンプル24及びサンプル25を用いた燃料電池100の出力よりも小さくなっていた。この比較から、金属多孔体シート10(燃料極集電体30及び酸素極集電体70)を、溝10cがガス(水素ガス及び酸素ガス)の供給方向と交差するように配置することにより、金属多孔体シート10(燃料極集電体30及び酸素極集電体70)中におけるガスの流れの均一性のさらなる向上が可能になることが明らかにされた。
Figure JPOXMLDOC01-appb-T000001
 (第1実施形態に係る金属多孔体シート、燃料電池及び水電解装置の効果)
 以下に、金属多孔体シート10及び燃料電池100の効果を説明する。
 金属多孔体シート10を構成している金属多孔体は、三次元網目状構造を有する骨格11により形成されているため、変形能が高い。そのため、第1主面10aに金型を押し当てて金型の凸部の形状を転写することにより、溝10cを容易に形成することができる。このように、金属多孔体シート10によると、製造コストの低減が可能となる。
 金属多孔体シート10においては、深さDが厚さTの10パーセント以上となっているとともに、溝割合が10パーセント以上となっているため、ガスが金属多孔体シート10を通過する際の圧力損失を低減することができる。
 金属多孔体シート10においては、深さDを厚さTの30パーセント以上とすることにより、ガスが金属多孔体シート10を通過する際の圧力損失をさらに低減することができる。金属多孔体シート10において、溝比率を30パーセント以上とすることにより、ガスが金属多孔体シート10を通過する際の圧力損失をさらに低減することができる。
 金属多孔体シート10において、深さDを厚さTの90パーセント以下とすることにより、金属多孔体シート10中におけるガスの流れの均一性を向上させることができる。金属多孔体シート10において、溝比率を90パーセント以下とすることにより、金属多孔体シート10中におけるガスの流れの均一性を向上させることができる。
 燃料電池100において、金属多孔体シート10(燃料極集電体30及び酸素極集電体70)を、ガス(水素ガス及び酸素ガス)の供給方向が溝10cと交差するように配置することにより、金属多孔体シート10(燃料極集電体30及び酸素極集電体70)中におけるガスの流れの均一性をさらに向上させることができる。
 燃料電池100において、金属多孔体シート10(燃料極集電体30及び酸素極集電体70)を、ガス(水素ガス及び酸素ガス)の供給方向が溝10cと平行になるように配置することにより、ガス(水素ガス及び酸素ガス)が金属多孔体シート10(燃料極集電体30及び酸素極集電体70)を通過する際の圧力損失をさらに低減することができる。
 水電解装置200は、金属多孔体シートを水素発生極120及び酸素発生極140として用いることにより、水素発生極120及び酸素発生極140中におけるアルカリ水溶液の流れの均一性を向上させることができるとともに、アルカリ水溶液が水素発生極120及び酸素発生極140を通過する際の圧力損失を低減することができる。その結果、水電解装置200は、水素ガス及び酸素ガスを発生させる際に水素発生極120と酸素発生極140との間に印加される電圧を下げることができる。
 (溝の断面形状に関する変形例)
 図11Aは、第1変形例に係る金属多孔体シート10の断面図である。図11Aに示されるように、溝10cの断面形状は、矩形形状に限られない。溝10cの断面形状は、半円形状(図11B参照)であってもよい。図11Bは、第2変形例に係る金属多孔体シート10の断面図である。図11Bに示されるように、隣り合って配置されている2つの溝10cの断面形状は、互いに異なっていてもよい。
 (溝の平面形状に関する変形例)
 図12Aは、第3変形例に係る金属多孔体シート10の平面図である。図12Aに示されるように、隣り合って配置される2つの溝10cの幅Wは互いに異なっていてもよい。
 図12Bは、第4変形例に係る金属多孔体シート10の平面図である。図12Bに示されるように、溝10cは、同心円状に形成されていてもよい。図12Cは、第5変形例に係る金属多孔体シート10の平面図である。溝10cは、渦巻き状に形成されていてもよい。
 図12Dは、第6変形例に係る金属多孔体シート10の平面図である。図12Eは、第7変形例に係る金属多孔体シート10の平面図である。図12D及び図12Eに示されるように、溝10cは、放射状に形成されていてもよい。図12Eに示されるように、金属多孔体シート10は、平面視において、矩形形状以外の形状を有していてもよい。具体的には、金属多孔体シート10は、平面視において、円形形状を有していてもよい。
 (第2実施形態に係る金属多孔体シートの構成)
 以下に、第2実施形態に係る金属多孔体シート(以下においては、「金属多孔体シート10A」という)の構成を説明する。ここでは、金属多孔体シート10の構成と異なる点を主に説明し、重複する説明は繰り返さない。
 図13は、金属多孔体シート10Aの平面図である。図14は、図13におけるXIV-XIVにおける断面図である。図13及び図14に示されるように、溝10cは、平面視において円形形状の底部10eを有する穴である。溝10cは、平面視において、格子状(より具体的には正方格子状)に配列されている。このことを別の観点から言えば、溝10cは、第1方向DR1に沿って複数の列をなすように配列されている。溝10cは、これらの点に関して、金属多孔体シート10Aの構成は、金属多孔体シート10の構成と異なっている。なお、溝10cに平面視において円形形状の有底穴が含まれるとされていることから明らかなように、幅Wに対する溝10cの長さL(図13参照、幅Wの方向に直交している方向における溝10cの長さ)は、特に限定されていない。
 (第2実施形態に係る水電解装置)
 以下に、第2実施形態に係る水電解装置(以下においては、「水電解装置300」とする)の構成を説明する。
 図15は、水電解装置300の単位セルの模式的な断面図である。図15の上下は、それぞれ鉛直上方及び鉛直下方に対応している。図15に示されるように、水電解装置300の単位セルは、水素発生極310及び酸素発生極320と、隔膜330と、複極板340と、板バネ350a及び板バネ350bと、フレーム360a及びフレーム360bとを有している。水電解装置300は、この単位セルを複数配列することにより構成されている。
 水素発生極310及び酸素発生極320は、それぞれ、金属多孔体シート10Aと、支持体370とを有している。水素発生極310と酸素発生極320との間には、隔膜330が挟み込まれている。隔膜330は、水酸化物イオン(又は水素イオン)を透過させる膜である。水素発生極310に含まれる金属多孔体シート10Aの第2主面10b及び酸素発生極320に含まれる金属多孔体シート10Aの第2主面10bは、隔膜330と対向している。水素発生極310に含まれる金属多孔体シート10A及び酸素発生極320に含まれる金属多孔体シート10Aは、例えば、第1方向DR1が鉛直方向に沿うように配置されている。
 支持体370は、例えば、エキスパンドメタルである。支持体370には、厚さ方向に沿って支持体370を貫通している開口が形成されている。支持体370は、水素発生極310に含まれる金属多孔体シート10Aの第1主面10a上及び酸素発生極320に含まれる金属多孔体シート10Aの第1主面10a上に配置されている。支持体370の開口からは、溝10cが露出している。
 フレーム360aには、開口部360aaが形成されている。開口部360aaは、厚さ方向に沿ってフレーム360aを貫通している。フレーム360aには、穴360ab及び穴360acが形成されている。穴360abは、開口部360aaから鉛直下方に向かって延びており、開口部360aaとフレーム360aの外部とを接続している。穴36acは、開口部360aaから鉛直上方に向かって延びており、開口部360aaとフレーム360aの外部とを接続している。
 フレーム360bには、開口部360baが形成されている。開口部360baは、厚さ方向に沿ってフレーム360bを貫通している。フレーム360bには、穴360bb及び穴360bcが形成されている。穴360bbは、開口部360baから鉛直下方に向かって延びており、開口部360baとフレーム360bの外部とを接続している。穴36acは、開口部360baから鉛直上方に向かって延びており、開口部360baとフレーム360bの外部とを接続している。
 フレーム360a及びフレーム360bは、開口部360aa及び開口部360baが互いに重なるように配置されている。隔膜330は、開口部360aa及び開口部360baから露出するように、フレーム360a及びフレーム360bに挟み込まれている。
 フレーム360a及びフレーム360bは、2枚の複極板340により挟み込まれている。複極板340は、隣り合う単位セルを電気的に接続している。図示されていないが、複極板340は、水電解装置300の終端部において、電源に電気的に接続されている。複極板340は、水素発生極310(酸素発生極320)に含まれている支持体370に対向するように配置されている。
 隔膜330、複極板340及び開口部360aaにより画される空間内には、水素発生極310が配置されている。隔膜330、複極板340及び開口部360baにより画される空間内には、酸素発生極320が配置されている。
 複極板340と水素発生極310に含まれている支持体370との間には、板バネ350aが配置されている。複極板340と酸素発生極320に含まれている支持体370との間には、板バネ350bが配置されている。その結果、水素発生極310に含まれている金属多孔体シート10及び酸素発生極320に含まれている金属多孔体シート10Aが隔膜330に押し付けられる。
 穴360abから隔膜330、複極板340及び開口部360aaにより画される空間内に、アルカリ水溶液が供給される。穴360bbから隔膜330、複極板340及び開口部360baにより画される空間内に、アルカリ水溶液が供給される。これにより、隔膜330、複極板340及び開口部360aaにより画される空間内及び隔膜330、複極板340及び開口部360baにより画される空間内が、電解液としてのアルカリ水溶液により満たされる。このアルカリ水溶液は、例えば、水酸化カリウム水溶液である。
 水電解装置300の動作時には、水素発生極310における電位が酸素発生極320における電位よりも低くなるように、単位セルの両端にある複極板340の間に電圧が印加される。これにより、水素発生極310において、アルカリ水溶液中の水が還元され、水素ガスが発生する。水素発生極310において発生した水素ガスは、アルカリ水溶液とともに、隔膜330、複極板340及び開口部360aaにより画される空間から穴360acを通って排出される。また、この際、アルカリ水溶液中の水酸化物イオンが、隔膜330を通って、水素発生極310側から酸素発生極320側に移動する。
 酸素発生極320側へと移動してきた水酸化物イオンは、酸素発生極320において酸化される。これにより、酸素発生極320において、酸素ガスが発生する。酸素発生極320において発生した酸素ガスは、アルカリ水溶液とともに、隔膜330、複極板340及び開口部360baにより画される空間から穴360bcを通って排出される。このような反応が継続することにより、水電解装置300は水素ガス及び酸素ガスを生成する。
 (第2実施形態に係る金属多孔体シート及び水電解装置の効果)
 以下に、金属多孔体シート10A及び水電解装置300の効果を説明する。
 図16は、金属多孔体シート10Aを用いた水電解装置300の効果を説明するための模式図である。図16に示されるように、水素発生極310(酸素発生極320)に含まれる金属多孔体シート10Aの内部では、電解液の電解に伴い、水素ガス(酸素ガス)が発生する。この水素ガス(酸素ガス)は、泡Bとなる。
 泡Bは、浮力の作用により鉛直上方に向かって移動して、溝10cに達する。溝10cに達した泡Bは、溝10cを通って、金属多孔体シート10Aの外部に放出される。金属多孔体シート10Aにおいては、泡Bが金属多孔体シート10Aの外部に放出されやすくなっている結果、発生した泡Bが水素発生極310(酸素発生極320)における反応の妨げになりにくい。このように、金属多孔体シート10Aを水電解装置300に適用することにより、水電解を行う際の電解電圧を低下させることができる。また、溝10cの第2主面10b側には底部10eがあるため、溝10cに達した泡Bは、第2主面10b側から放出されにくい。そのため、金属多孔体シート10Aを水電解装置300に適用することにより、隔膜330の近傍に泡Bがたまってしまうことを抑制できる。
 なお、上記においては、水電解装置300に金属多孔体シート10Aを適用したが、水電解装置300には、金属多孔体シート10Aが適用されてもよい。また、上記においては、金属多孔体シート10Aを水電解装置300に適用したが、金属多孔体シート10Aは、燃料電池100又は水電解装置200に適用されてもよい。
 (変形例)
 図17は、変形例に係る金属多孔体シート10Aの断面図である。図17に示されるように、溝10cの深さDは、第1方向DR1における一方側(図中左側)から第1方向DR1における他方側(図中右側)に向かうにしたがって、大きくなっていてもよい。変形例に係る金属多孔体シート10Aは、水電解装置300に適用する際、第1方向DR1における一方側が鉛直下方に対応するとともに、第2方向における他方側が鉛直上方に対応するように配置されることが好ましい。これにより、鉛直上方に位置する溝10cほど深さDが大きくなるため、泡Bが金属多孔体シート10Aの外部にさらに放出されやすくなる。
 (第3実施形態、第4実施形態及び第5実施形態)
 以下に、第3実施形態に係る金属多孔体シート、第4実施形態に係る金属多孔体シート及び第5実施形態に係る金属多孔体シート(以下においては、それぞれ、「金属多孔体シート10B」、「金属多孔体シート10C」及び「金属多孔体シート10D」とする)を説明する。ここでは、金属多孔体シート10と異なる点を主に説明し、重複する説明は繰り返さない。
 図18は、金属多孔体シート10Bの断面図である。図18に示されるように、金属多孔体シート10Bにおいて、溝10cの断面形状は、三角形形状である。金属多孔体シート10Bにおいて、側面10caと側面10cbとの間の距離は、第1主面10a側から第2主面10b側に向かうにしたがって小さくなっている。なお、金属多孔体シート10Bにおいて、幅Wは、第1主面10aにおける側面10caと側面10cbとの間の距離である。
 図19は、金属多孔体シート10Cの断面図である。図19に示されるように、金属多孔体シート10Cにおいて、溝10cの底面は、第2主面10b側に向かって凸の曲線により構成されている。この曲線は、例えば、半円である。
 図20は、金属多孔体シート10Dの断面図である。図20に示されるように、金属多孔体シート10Dにおいて、側面10caと側面10cbとの間の距離は、第1主面10a側から第2主面10b側に向かうにしたがって小さくなっている。金属多孔体シート10Dにおいて、幅Wは、第1主面10aにおける側面10caと側面10cbとの間の距離である。最も底面側における側面10caと側面10cbとの間の距離を、幅W1とする。幅W1は、幅Wよりも小さい。
 (第6実施形態)
 以下に、第6実施形態に係る金属多孔体シート(以下においては「金属多孔体シート10E」とする)を説明する。ここでは、金属多孔体シート10と異なる点を主に説明し、重複する説明は繰り返さない。
 図21は、金属多孔体シート10Eの平面図である。図21に示されるように、溝10cは、第1主面10aを構成する各辺に対して傾斜するように延在している。第1主面10aを構成する辺を、第1辺10fa、第2辺10fb、第3辺10fc及び第4辺10fdとする。第1辺10fa及び第2辺10fbは、第1方向DR1に沿っている。第3辺及び第4辺10fdは、第2方向DR2に沿っている。
 第3辺10fcから第4辺10fdに向かう方向を第3方向DR3とし、第4辺10fdから第3辺10fcに向かう方向を第4方向DR4とする。第1辺10faから第2辺10fbに向かう方向を第5方向DR5とし、第2辺10fbから第1辺10faに向かう方向を第6方向DR6とする。溝10cは、第2辺10fbから離れるにしたがって第3辺10fcに近づくように傾斜している(第1辺10faから離れるにしたがって第4辺10fdに近づくように傾斜している)。
 (第7実施形態)
 以下に、第7実施形態に係る金属多孔体シート(以下においては「金属多孔体シート10F」とする)を説明する。ここでは、金属多孔体シート10と異なる点を主に説明し、重複する説明は繰り返さない。
 図22は、金属多孔体シート10Fの平面図である。図22に示されるように、金属多孔体シート10Fの第1主面10aには、さらに、溝10dが形成されている。溝10dは、溝10cと直交する方向に沿って延在している。溝10dのピッチは、ピッチPに等しい。溝10dの幅は、幅Wに等しい。
 (第8実施形態)
 以下に、第8実施形態に係る金属多孔体シート(以下においては「金属多孔体シート10G」とする)を説明する。ここでは、金属多孔体シート10と異なる点を主に説明し、重複する説明は繰り返さない。
 図23は、金属多孔体シート10Gの平面図である。図23に示されるように、第3辺10fc側から第4辺10fd側に向かうにしたがって、幅Wが大きくなっている。第3辺10fcにおける幅Wを幅W2とし、第4辺10fdにおける幅Wを幅W3とする。幅W3は、幅W2よりも大きい。溝10cの深さDは、第3辺10fc側から第4辺10fd側に向かうにしたがって、小さくなっていてもよい。第3辺10fcにおける深さDを深さD1とし、第4辺10fdにおける深さを深さD2とする。深さD2は、深さD1よりも大きくてもよい。
 (第9実施形態)
 以下に、第9実施形態に係る金属多孔体シート(以下においては「金属多孔体シート10H」とする)を説明する。ここでは、金属多孔体シート10と異なる点を主に説明し、重複する説明は繰り返さない。
 図24は、金属多孔体シート10Hの平面図である。図24に示されるように、金属多孔体シート10Hにおいて、溝10cは、平面視において楕円形状の有底穴である。この楕円形状の長軸は、第1方向DR1に沿っている。溝10cは、平面視において、格子状(具体的には、正方格子状)に配列されている。
 溝10cは、第1方向DR1に沿う複数の列をなすように配列されている。第1方向DR1に沿う列に含まれる複数の溝10cの各々は、第4辺10fdに近い位置に配置されているものほど、幅Wが大きくなっている。第1方向DR1に沿う列に含まれる複数の溝10cのうちの最も第3辺10fc側に配置されている溝10cの幅Wを幅W4とし、第1方向DR1に沿う列に含まれる複数の溝10cのうちの最も第4辺10fd側に配置されている溝10cの幅Wを幅W5とする。幅W5は、幅W4よりも大きい。
 第1方向DR1に沿う列に含まれる複数の溝10cの各々は、第4辺10fdに近い位置に配置されているものほど、深さDが小さくなっている。第1方向DR1に沿う列に含まれる複数の溝10cのうちの最も第3辺10fc側に配置されている溝10cの深さDを深さD3とし、第1方向DR1に沿う列に含まれる複数の溝10cのうちの最も第4辺10fd側に配置されている溝10cの深さDを深さD4とする。深さD4は、深さD3よりも大きくてもよい。
 (第10実施形態)
 以下に、第10実施形態に係る金属多孔体シート(以下においては、「金属多孔体シート10I」とする)を説明する。ここでは、金属多孔体シート10Eと異なる点を主に説明し、重複する説明は繰り返さない。
 図25は、金属多孔体シート10Iの平面図である。図25に示されるように、金属多孔体シート10Fの第1主面10aには、さらに、溝10dが形成されている。溝10dは、溝10cと直交する方向に沿って延在している。溝10dのピッチは、ピッチPに等しい。溝10dの幅は、幅Wに等しい。
 (第11実施形態)
 以下に、第11実施形態に係る金属多孔体シート(以下においては金属多孔体シート10J」とする)を説明する。ここでは、金属多孔体シート10と異なる点を主に説明し、重複する説明は繰り返さない。
 図26は、金属多孔体シート10Jの平面図である。図26に示されるように、金属多孔体シート10Jにおいて、溝10cは、平面視において正方形の有底穴である。正方形の対角線は、それぞれ第1方向DR1及び第2方向DR2に沿っている。溝10cは、平面視において、格子状(具体的には、千鳥格子状)に配列されている。このことを別の観点から言えば、金属多孔体シート10Iにおいて溝10c及び溝10dが形成されている位置と溝10c及び溝10dが形成されていない位置とを反転させることにより、金属多孔体シート10Jの構造が得られる。なお、金属多孔体シート10Jにおいて、幅Wは、正方形形状の対辺の間の距離である。
 (第12実施形態)
 以下に、第12実施形態に係る金属多孔体シート(以下においては、「金属多孔体シート10K」とする)を説明する。ここでは、金属多孔体シート10Iと異なる点を主に説明し、重複する説明は繰り返さない。
 図27は、金属多孔体シート10Kの平面図である。図27に示されるように、金属多孔体シート10Kにおいて、溝10c及び溝10dは、互いに交差しているが、直交していない。隣り合う2つの溝10c(溝10d)の間の第1方向DR1における距離を、ピッチP1とする。隣り合う2つの溝10c(溝10d)の間の第2方向DR2における距離を、ピッチP2とする。ピッチP2は、ピッチP1よりも大きい。
 以下に、第13実施形態に係る金属多孔体シート(以下においては、「金属多孔体シート10L」とする)を説明する。ここでは、金属多孔体シート10と異なる点を主に説明し、重複する説明は繰り返さない。
 図28は、金属多孔体シート10Lの平面図である。図28に示されるように、金属多孔体シート10Lにおいて、溝10cは、平面視において菱形の有底穴である。菱形は、第1対角線と、第1対角線よりも長い第2対角線とを有している。第1対角線及び第2対角線は、それぞれ第1方向DR1及び第2方向DR2に沿っている。溝10cは、平面視において、格子状(具体的には、千鳥格子状)に配列されている。このことを別の観点から言えば、金属多孔体シート10Kにおいて溝10c及び溝10dが形成されている位置と溝10c及び溝10dが形成されていない位置とを反転させることにより、金属多孔体シート10Lの構造が得られる。金属多孔体シート10Kにおいて、溝10cは、幅W6と、幅W7とを有している。幅W6及び幅W7は、それぞれ、第1対角線及び第2対角線の長さに等しい。すなわち、幅W7は、幅W6よりも大きい。
 (実施例)
 以下に、金属多孔体シート10A~金属多孔体シート10L及びそれらの金属多孔体シートを用いた燃料電池100の実施例を説明する。金属多孔体シート10A~金属多孔体シート10Lを用いた燃料電池における圧力損失及び出力は、金属多孔体シート10を用いた燃料電池100と同様の方法により評価された。
 表2及び表3には、圧力損失の評価に供されたサンプルの詳細が示されている。表2及び表3に示されるように、サンプル26~サンプル58には溝10cが形成された。サンプル26~サンプル58の厚さTは、全て500μmとされた。表2及び表3には、各サンプルにおける溝割合、厚さTに対する深さDの割合及びその他の溝形状の特徴が示されている。また、表2及び表3には、各サンプルにおける圧力損失(サンプル1に対する相対値)及び出力が示されている。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 今回開示された実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 10,10A,10B,10C,10D,10E,10F,10G,10H,10I,10J,10K,10L 金属多孔体シート、10a 第1主面、10b 第2主面、10c 溝、10d 溝、10ca,10cb 側面、10e 底部、10fa 第1辺、10fb 第2辺、10fc 第3辺、10fd 第4辺、11 骨格、11a 骨格本体、11b 内部空間、20 インターコネクタ、30 燃料極集電体、40 燃料極、50 固体電解質、60 酸素極、70 酸素極集電体、80 インターコネクタ、100 燃料電池、110 インターコネクタ、120 水素発生極、130 隔膜、140 酸素発生極、150 インターコネクタ、200 水電解装置、300 水電解装置、310 水素発生極、320 酸素発生極、330 隔膜、340 複極板、350a 板バネ350b 板バネ、360a フレーム、360b フレーム、360aa 開口部、360ab 穴、360ac 穴、360ba 開口部、360bb 穴、360bc 穴、370 支持体、D,D1,D2,D3,D4 深さ、DR1 第1方向、DR2 第2方向、DR3 第3方向、DR4 第4方向、DR5 第5方向、DR6 第6方向、P,P1,P2 ピッチ、S1 金属多孔体形成工程、S2 溝形成工程、S11 ベース多孔体準備工程、S12 導電化処理工程、S13 めっき工程、S14 後処理工程、T 厚さ、W,W1,W2,W3,W4,W5,W6,W7 幅、L 長さ。

Claims (9)

  1.  金属多孔体シートであって、
     三次元網目状構造の骨格を有する金属多孔体により形成されており、
     溝が形成された主面を有しており、
     前記溝の深さは、前記金属多孔体シートの厚さの10パーセント以上であり、
     平面視において、前記溝の面積は、前記主面の面積の10パーセント以上である、金属多孔体シート。
  2.  前記溝の深さは、前記金属多孔体シートの厚さの30パーセント以上90パーセント以下である、請求項1に記載の金属多孔体シート。
  3.  平面視において、前記溝の面積は、前記主面の面積の30パーセント以上90パーセント以下である、請求項1又は請求項2に記載の金属多孔体シート。
  4.  前記溝は、断面視において互いに対向する第1側面及び第2側面を有し、
     前記第1側面と前記第2側面との間の距離は、前記主面から離れるにしたがって小さくなっている、請求項1から請求項3のいずれか1項に記載の金属多孔体シート。
  5.  前記溝は、平面視において第1方向に沿う複数の列をなすように配置されており、
     前記列に属する前記溝の深さの各々は、前記第1方向における一方側から前記第1方向における他方側に向かうにしたがって大きくなっている、請求項1から請求項4のいずれか1項に記載の金属多孔体シート。
  6.  請求項1から請求項5のいずれか1項に記載の前記金属多孔体シートと、
     前記主面と対向配置されたインターコネクタとを備える、燃料電池。
  7.  前記金属多孔体シートは、前記溝に交差する方向に沿ってガスが供給されるように配置されている、請求項6に記載の燃料電池。
  8.  前記金属多孔体シートは、前記溝と平行な方向に沿ってガスが供給されるように配置されている、請求項6に記載の燃料電池。
  9.  請求項1から請求項5のいずれか1項に記載の前記金属多孔体シートと、
     前記主面と対向配置されたインターコネクタとを備える、水電解装置。
PCT/JP2020/015526 2019-05-22 2020-04-06 金属多孔体シート、燃料電池及び水電解装置 WO2020235237A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/251,889 US20210119229A1 (en) 2019-05-22 2020-04-06 Metal porous sheet, fuel cell, and water electrolysis device
EP20809042.3A EP3798335A4 (en) 2019-05-22 2020-04-06 POROUS SHEET METAL, FUEL CELL AND WATER ELECTROLYSIS DEVICE
CN202080003383.1A CN112313367B (zh) 2019-05-22 2020-04-06 金属多孔板、燃料电池和水电解装置
JP2020566008A JP7355040B2 (ja) 2019-05-22 2020-04-06 金属多孔体シート、燃料電池及び水電解装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-096228 2019-05-22
JP2019096228 2019-05-22

Publications (1)

Publication Number Publication Date
WO2020235237A1 true WO2020235237A1 (ja) 2020-11-26

Family

ID=73458102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015526 WO2020235237A1 (ja) 2019-05-22 2020-04-06 金属多孔体シート、燃料電池及び水電解装置

Country Status (5)

Country Link
US (1) US20210119229A1 (ja)
EP (1) EP3798335A4 (ja)
JP (1) JP7355040B2 (ja)
CN (1) CN112313367B (ja)
WO (1) WO2020235237A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047934A1 (ja) * 2022-08-31 2024-03-07 国立大学法人横浜国立大学 アルカリ水電解装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3127639B1 (fr) * 2021-09-29 2023-10-27 Commissariat Energie Atomique Interconnecteur pour empilement de cellules à oxydes solides de type SOEC/SOFC comportant des éléments en relief différents
DK181478B1 (en) * 2022-07-01 2024-02-26 Green Hydrogen Systems As Method of assembly of a water electrolysis stack, bipolar plates adapted for use in an electrolyser stack and use of bipolar plates.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134833A (ja) * 1996-11-01 1998-05-22 Murata Mfg Co Ltd 燃料電池
JP2003168448A (ja) * 2001-11-30 2003-06-13 Nissan Motor Co Ltd 固体電解質型燃料電池用単セル
JP2009187887A (ja) * 2008-02-08 2009-08-20 Ngk Spark Plug Co Ltd 燃料極集電体及び固体電解質形燃料電池
WO2014057877A1 (ja) * 2012-10-12 2014-04-17 住友電気工業株式会社 燃料電池およびその操業方法
JP2017033918A (ja) 2015-08-04 2017-02-09 住友電気工業株式会社 金属多孔体、燃料電池、及び金属多孔体の製造方法
JP2019096228A (ja) 2017-11-27 2019-06-20 地方独立行政法人東京都立産業技術研究センター 人体形状モデル可視化システム、人体形状モデル可視化方法およびプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924058B2 (en) * 1999-11-17 2005-08-02 Leroy J. Ohlsen Hydrodynamic transport and flow channel passageways associated with fuel cell electrode structures and fuel cell electrode stack assemblies
CN101265587A (zh) * 2007-03-14 2008-09-17 刘国桢 用于电化学装置的电极构件
CN102544560A (zh) * 2012-03-19 2012-07-04 郭丰亮 多回程的板式固体氧化物燃料电池组
WO2016043109A1 (ja) * 2014-09-19 2016-03-24 株式会社 東芝 電解装置および電極
CN107851814B (zh) * 2015-07-16 2020-09-22 住友电气工业株式会社 燃料电池
EP3567135B1 (en) * 2015-07-16 2023-08-16 Sumitomo Electric Industries, Ltd. Hydrogen production apparatus
CN106374120B (zh) * 2016-11-02 2019-07-19 西安交通大学 一种自密封平板状固体氧化物燃料电池/电解池的结构
CN208014806U (zh) * 2018-03-13 2018-10-26 住友电气工业株式会社 金属多孔体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134833A (ja) * 1996-11-01 1998-05-22 Murata Mfg Co Ltd 燃料電池
JP2003168448A (ja) * 2001-11-30 2003-06-13 Nissan Motor Co Ltd 固体電解質型燃料電池用単セル
JP2009187887A (ja) * 2008-02-08 2009-08-20 Ngk Spark Plug Co Ltd 燃料極集電体及び固体電解質形燃料電池
WO2014057877A1 (ja) * 2012-10-12 2014-04-17 住友電気工業株式会社 燃料電池およびその操業方法
JP2017033918A (ja) 2015-08-04 2017-02-09 住友電気工業株式会社 金属多孔体、燃料電池、及び金属多孔体の製造方法
JP2019096228A (ja) 2017-11-27 2019-06-20 地方独立行政法人東京都立産業技術研究センター 人体形状モデル可視化システム、人体形状モデル可視化方法およびプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047934A1 (ja) * 2022-08-31 2024-03-07 国立大学法人横浜国立大学 アルカリ水電解装置

Also Published As

Publication number Publication date
JP7355040B2 (ja) 2023-10-03
JPWO2020235237A1 (ja) 2020-11-26
CN112313367B (zh) 2024-04-12
EP3798335A4 (en) 2022-05-04
CN112313367A (zh) 2021-02-02
US20210119229A1 (en) 2021-04-22
EP3798335A1 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
Phillips et al. Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas
WO2020235237A1 (ja) 金属多孔体シート、燃料電池及び水電解装置
JP6981524B2 (ja) 水素製造装置および水素の製造方法
KR102546581B1 (ko) 연료 전지
CA2952396C (en) Gas diffusion layer, electrochemical cell having such a gas diffusion layer, and electrolyzer
WO2015151828A1 (ja) 燃料電池用集電体及び燃料電池
WO2015137102A1 (ja) 多孔質集電体、燃料電池及び多孔質集電体の製造方法
JP2017135090A (ja) 固体酸化物型燃料電池
JP6773053B2 (ja) 燃料電池
WO2021045614A1 (en) Compact electrochemical stack using corrugated electrodes
JP6526703B2 (ja) 燃料電池又は電解槽セルスタックのための接触方法及び装置
US20100206722A1 (en) Electrolysis apparatus
JP2006260994A (ja) 燃料電池
CN113097552A (zh) 一种连接板及固体氧化物燃料电池/电解池电堆
KR20240124989A (ko) 중합체 전해질 막 전해조에 사용하기 위한 다공성 수송층, 상기 다공성 수송층을 포함하는 전해조, 상기 다공성 수송층을 얻는 방법 및 상기 다공성 수송층을 사용하여 물을 전기분해시키는 방법
US20090035637A1 (en) Anode supported solid oxide fuel cell
KR20140133301A (ko) 전기화학셀용 막전극 접합체
JP4972884B2 (ja) 燃料電池
US20090181281A1 (en) Electrochemical cell bipolar plate
JPH0633284A (ja) 水電解セル
US20240328000A1 (en) Carbon dioxide electrolysis cell and carbon dioxide electrolysis device
JP2006252941A (ja) 燃料電池
KR100531822B1 (ko) 연료전지의 공기 공급 장치
KR101178532B1 (ko) 분리판 및 그 제조 방법
JP2010009933A (ja) 燃料電池用電極、燃料電池用電極の製造方法、電極−電解質膜積層体、燃料電池セル及び燃料電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020566008

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020809042

Country of ref document: EP

Effective date: 20201218

NENP Non-entry into the national phase

Ref country code: DE