WO2019189844A1 - 燃料電池装置及び燃料電池装置の運転方法 - Google Patents

燃料電池装置及び燃料電池装置の運転方法 Download PDF

Info

Publication number
WO2019189844A1
WO2019189844A1 PCT/JP2019/014223 JP2019014223W WO2019189844A1 WO 2019189844 A1 WO2019189844 A1 WO 2019189844A1 JP 2019014223 W JP2019014223 W JP 2019014223W WO 2019189844 A1 WO2019189844 A1 WO 2019189844A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
fuel
supply path
gas
gas supply
Prior art date
Application number
PCT/JP2019/014223
Other languages
English (en)
French (fr)
Inventor
越後 満秋
大西 久男
神家 規寿
津田 裕司
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Priority to CA3094943A priority Critical patent/CA3094943A1/en
Priority to EP19778068.7A priority patent/EP3780202A4/en
Priority to KR1020207019767A priority patent/KR20200135764A/ko
Priority to CN201980022359.XA priority patent/CN111868985B/zh
Priority to JP2020511139A priority patent/JP7321999B2/ja
Priority to US17/040,450 priority patent/US11749821B2/en
Publication of WO2019189844A1 publication Critical patent/WO2019189844A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04738Temperature of auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/04798Concentration; Density of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0637Direct internal reforming at the anode of the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • C01B2203/1294Evaporation by heat exchange with hot process stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention provides a fuel cell in which an anode electrode layer and a cathode electrode layer are formed with an electrolyte layer interposed therebetween, a reducing gas supply path for supplying a gas containing hydrogen to the anode electrode layer, and oxygen in the cathode electrode layer.
  • the present invention relates to a fuel cell including an oxidizing gas supply path for supplying a gas to be contained.
  • Fuel cell generates electricity by itself by supplying required gas (reducing gas, oxidizing gas) to both electrode layers.
  • a unit including the fuel cell, the reducing gas supply path, and the oxidizing gas supply path is referred to as a “fuel cell single cell unit”.
  • a plurality of these fuel cell single cell units are stacked in a predetermined direction to construct a fuel cell module according to the present invention.
  • This fuel cell module is the core of the fuel cell device referred to in the present invention.
  • Patent Documents 1, 2, and 3 As background art regarding this type of fuel cell, the techniques described in Patent Documents 1, 2, and 3 can be cited.
  • Patent Document 1 is a fuel cell that can prevent both of excessively high temperature during power generation and temperature unevenness without sacrificing power generation performance.
  • a fuel supply that is a flow path for supplying fuel gas (corresponding to “hydrogen-containing gas” of the present invention) to the fuel electrode (corresponding to “anode electrode layer” of the present invention) 112
  • the flow path (equivalent to the “reducing gas supply path” of the present invention) (210, 125) is provided.
  • a reforming catalyst portion PR1 for causing a steam reforming reaction is provided on a surface that is separated from the fuel electrode 112 and faces the fuel electrode 112.
  • the reformed gas reformed by the reforming catalyst part PR1 is introduced into the fuel electrode.
  • the reformed gas is consumed at the fuel electrode and discharged from the outlet of the fuel supply channel.
  • the steam reforming reaction is an endothermic reaction (heat supply is necessary), and the fuel cell is prevented from being heated to a high temperature.
  • the part where the reforming catalyst part PR1 is provided is the part which is upstream of the fuel gas supply with respect to the fuel electrode, and the exhaust gas after the cell reaction is the flow path where the reforming catalyst part PB1 is provided. Is discharged from another exhaust passage (see FIG. 19C).
  • the fuel cell disclosed in Document 1 is a so-called anode electrode supported fuel cell in view of its structure.
  • Patent Documents 2 and 3 a fuel cell is provided in a thin layer on one surface of a metal support.
  • the technique disclosed in Patent Document 2 makes the electrochemical element flat, and the technique disclosed in Patent Document 3 makes the electrochemical element disk-shaped.
  • the technology disclosed in these patent documents relates to an electrochemical element, an electrochemical module, and an electrochemical device.
  • the electrochemical element When the electrochemical element generates power by receiving a gas containing hydrogen and a gas containing oxygen, The element is a fuel cell, the electrochemical module is a fuel cell module, and the electrochemical device is a fuel cell device.
  • each layer constituting the fuel cell formed on one surface of the metal support (at least the anode electrode layer, the electrolyte) Layer and cathode electrode layer) can be very thin thin layers on the order of microns to tens of microns. Of course, it may have a thickness of several millimeters.
  • JP 2017-208232 Japanese Unexamined Patent Publication No. 2016-195029 JP 2017-183177 A
  • the anode electrode layer is thick (generally on the order of several millimeters), and the internal reforming reaction proceeds at a stroke at the inlet portion where the fuel gas is introduced. For this reason, the inlet temperature of the fuel cell is lowered, and the exhaust side is maintained at the original temperature of the fuel cell, conversely, the temperature at which the reforming catalyst section is provided tends to be low, and the temperature between the inlet side and the outlet side It is easy to make a difference. Furthermore, although water vapor is generated in the fuel cell reaction, the exhaust gas that has finished the cell reaction is discharged from the exhaust passage without passing through the reforming catalyst portion, and thus this water vapor is usefully used for the internal reforming reaction. There is nothing.
  • the anode electrode layer formed on the metal support is as thin as several tens of microns, so the anode-supported fuel cell described in Patent Document 1 It is difficult to obtain the effect of the internal reforming reaction, and it is difficult to realize high power generation efficiency as in the anode-supported fuel cell.
  • a technique for suitably using a fuel cell configured to include an internal reforming catalyst layer in a fuel cell single cell unit has not yet been established.
  • the main object of the present invention is to obtain a highly efficient fuel cell that can use the internal reforming reaction rationally and efficiently.
  • the first characteristic configuration of the present invention is: A fuel cell in which an anode electrode layer and a cathode electrode layer are formed with an electrolyte layer interposed therebetween, a reducing gas supply path for supplying a gas containing hydrogen to the anode electrode layer, and oxygen in the cathode electrode layer
  • a fuel cell having an internal reforming catalyst layer including a reforming catalyst for reforming raw fuel gas in at least a part of the reducing gas supply channel.
  • An external reformer including a reforming catalyst for reforming the raw fuel gas is provided upstream of the reducing gas supply path, and the raw fuel gas at least partially reformed by the external reformer is provided. It exists in the point supplied to the said reducing gas supply path.
  • At least hydrogen is supplied to the anode electrode layer constituting the fuel battery cell via the reducing gas supply path.
  • at least oxygen is supplied to the cathode electrode layer through the oxidizing gas supply path.
  • the temperature range required for the battery reaction according to the composition of the fuel cell (for example, when the fuel cell is set to SOFC as described later, the operation is It is necessary to maintain the temperature at about 700 ° C.). Since the battery reaction itself is an exothermic reaction, the battery can continue to be operated by appropriate heat removal in a state where the battery has reached a predetermined temperature range.
  • the fuel cell single cell unit according to the present invention is provided with an internal reforming catalyst layer.
  • the internal reforming of the gas can be caused by supplying a gas that can be subjected to steam reforming (for example, the raw fuel gas in the present invention) to the internal reforming catalyst layer.
  • generated in this way can be used for electric power generation by guide
  • the heat generated by the battery which is an exothermic reaction can be used satisfactorily.
  • the power generation efficiency can be improved as compared with the fuel cell device including only the external reformer without including the internal reforming catalyst layer.
  • the improvement in the region of low S / C ratio (low water vapor / carbon ratio) is remarkable.
  • the hydrogen partial pressure difference between the inlet and outlet of the reducing gas supply path for supplying the hydrogen-containing gas to the anode electrode layer can be reduced, it is possible to suppress deterioration of the fuel cell that is likely to occur under a low hydrogen partial pressure. An effect is also obtained.
  • the hydrogen partial pressure difference (concentration difference) at the inlet / outlet of the fuel cell (reducing gas supply path) is reduced, so that the uneven distribution of power generation amount in the cell is reduced and the temperature difference is also reduced. Since the reduction of the thermal stress of the fuel battery cell is achieved, durability and reliability are improved.
  • carbon monoxide may be generated together with hydrogen as will be described later, both of which serve for power generation.
  • the gas (hydrogen and carbon monoxide) that reacts with oxygen ions moving to the anode electrode layer in the fuel cell is referred to as “power generation fuel gas”.
  • a fuel cell device with high energy efficiency can be realized by performing both the external reforming and the internal reforming that occurs in the fuel cell single cell unit.
  • the second characteristic configuration of the present invention is:
  • the anode electrode layer of the fuel battery cell is formed in a thin layer.
  • the third characteristic configuration of the present invention is:
  • the present invention has a water vapor supply path through which water vapor generated in the fuel cell is supplied to the reducing gas supply path.
  • the provision of the water vapor supply path facilitates the supply of water vapor to the internal reforming catalyst layer, and the supply of hydrogen to the anode electrode layer through the reducing gas supply path allows the steam reforming to be performed in the fuel cell.
  • the power can be generated efficiently in the single cell unit, and efficient power generation can be performed.
  • the fourth characteristic configuration of the present invention is:
  • the fuel cell single cell unit includes one fuel cell formed in a thin layer on a metal support, the reducing gas supply path, and the oxidizing gas supply path.
  • An internal reforming catalyst layer that generates at least hydrogen from the raw fuel gas by a steam reforming reaction is provided in the fuel cell single cell unit,
  • An internal reforming fuel that discharges water vapor generated by a power generation reaction from the anode electrode layer, guides it to the internal reforming catalyst layer, and guides at least hydrogen generated in the internal reforming catalyst layer to the anode electrode layer
  • the supply path is provided.
  • the fuel cell is supported by a strong metal support separate from the cell.
  • the anode electrode layer needs to be thickened to maintain the strength of the fuel cell.
  • the fuel cell can be made thin to a thickness of several tens to several hundreds of microns. As a result, the amount of expensive ceramic material used for the fuel cell can be reduced, and a low-cost, compact and high-performance fuel cell device can be realized.
  • carbon monoxide is also generated. These gases are used as power generation fuel gas in the anode electrode layer for power generation. Is done.
  • the fifth characteristic configuration of the present invention is:
  • the internal reforming catalyst layer is provided on a surface of the metal support that is different from the surface on which the fuel cells are formed.
  • a specific surface on the metal support which is different from the surface on which the fuel cells are provided, can be used for internal reforming.
  • an internal reforming catalyst layer can be formed on a specific surface on the metal support and used for internal reforming, a compact and high-performance fuel cell device can be obtained at low cost.
  • the sixth characteristic configuration of the present invention is: A plurality of through holes penetrating the metal support are provided, The anode electrode layer is provided on one surface of the metal support, and the reducing gas supply path is provided along the other surface; The internal reforming catalyst layer is provided on at least a part of the other surface; With respect to the flow direction in the reducing gas supply path, the through hole works to form the internal reformed fuel supply path.
  • the internal reforming fuel supply path in the present invention has a role as a discharge part of water vapor discharged from the anode electrode layer, and a supply part for re-directing the power generation fuel gas generated by the steam reforming to the anode electrode layer. It becomes the structure which serves as both.
  • the area of the opening of the through hole on the other surface is larger than the area of the opening of the through hole on the surface on the side where the anode electrode layer of the metal support is provided. This is because it makes it easier to supply power generation fuel gas to the anode electrode layer.
  • the seventh characteristic configuration of the present invention is: The internal reforming catalyst layer is provided inside the through hole.
  • the through holes provided in the metal support can be used to supply for internal reforming.
  • an internal reforming catalyst layer can be formed in the through hole and used for internal reforming, a compact and high-performance fuel cell device can be obtained at low cost.
  • the eighth feature of the present invention is
  • the fuel cell single cell unit includes at least one metal separator that partitions the reducing gas supply path and the oxidizing gas supply path,
  • the internal reforming catalyst layer is provided on at least a part of the metal separator on the reducing gas supply path side.
  • This characteristic configuration can be used for internal reforming by utilizing the specific surface forming the reducing gas supply path of the metal separator.
  • an internal reforming catalyst layer can be formed on at least a part of the reducing gas supply path side of the metal separator and used for internal reforming, a low-cost, compact and high-performance fuel cell device is obtained. be able to.
  • the ninth feature of the present invention is
  • the reforming catalyst contained in the internal reforming catalyst layer is a catalyst in which a metal is supported on at least a carrier.
  • a high-performance internal reforming catalyst layer can be obtained even if the amount of metal used in the catalyst is reduced, so that the cost is low. And a high-performance fuel cell device can be obtained.
  • the tenth characteristic configuration of the present invention is
  • the reforming catalyst contained in the internal reforming catalyst layer is a catalyst containing Ni.
  • steam reforming can be caused in the internal reforming catalyst layer using Ni, which is a relatively easily available and inexpensive metal.
  • the eleventh characteristic configuration of the present invention is The present invention resides in that a turbulence promoting body that disturbs the flow in the reducing gas supply path is provided in the reducing gas supply path.
  • the gas flow that flows in the reducing gas supply path is likely to be a laminar flow due to the flow path configuration.
  • a turbulence promoter in this flow path, the flow is disturbed and the gas flow in the reducing gas supply path A direction different from the main flow direction (for example, a flow orthogonal to the main flow) can be formed.
  • the gas containing hydrogen can be efficiently supplied to the anode electrode layer.
  • the internal reforming by the internal reforming catalyst layer can be further promoted by promoting the mixing / release of a predetermined gas (raw fuel gas or steam before reforming) to the internal reforming catalyst layer described so far.
  • the twelfth feature of the present invention is
  • the fuel cell is a solid oxide fuel cell.
  • the reformed gas reformed by the external reformer is directly applied to the solid oxide fuel cell without undergoing an additional reforming process such as carbon monoxide removal in the reformed gas. Since it can supply and generate electric power, it can be set as the fuel cell apparatus of a simple structure. Furthermore, the solid oxide fuel cell can be used in a high temperature range where the power generation operating temperature is 650 ° C. or higher. However, the heat of this temperature range is effectively used for the internal reforming reaction, and highly efficient power generation is possible. Can be realized.
  • a thirteenth characteristic configuration of the present invention is a method of operating a fuel cell device that has been described so far.
  • the steam / carbon ratio (S / C ratio) at the inlet of the external reformer is controlled in the range of 1.5 to 3.0.
  • the amount of steam supplied to the external reformer is reduced by performing the steam reforming in both the external reforming in the external reformer and the internal reforming in the single unit of the fuel cell.
  • the above range is preferable because high power generation efficiency can be obtained in a wider S / C ratio range than before.
  • the S / C ratio at the inlet of the external reformer is controlled in the range of 1.5 or more and 2.5 or less, because the effect of improving the power generation efficiency by this configuration can be enjoyed more.
  • the amount of heat required for the external reformer can be reduced by 60%, and the amount of heat transfer required for steam generation can be reduced by 20%. As a result, the DC power generation efficiency can be improved by 3.6%.
  • the steam / carbon ratio (S / C ratio) at the inlet of the external reformer can be controlled to be low, and the power generation efficiency can be improved.
  • a fourteenth characteristic configuration of the present invention is a method of operating a fuel cell device that has been described so far.
  • the reforming temperature in the external reformer is controlled to be lower than the temperature in the internal reforming catalyst layer provided in the reducing gas supply path.
  • a fifteenth characteristic configuration of the present invention is a method of operating a fuel cell device that has been described so far.
  • the point of operation is that the fuel gas partial pressure for power generation at the inlet of the reducing gas supply path is 50% or less of the total gas pressure.
  • the fuel gas can be internally reformed, so that the fuel gas for power generation generated inside the fuel cell single cell unit can be used for power generation. Even if the partial pressure of the fuel gas for power generation near the inlet of the (reducing gas supply path) is lowered, power generation corresponding to the power load can be realized without any trouble.
  • a sixteenth characteristic configuration of the present invention is a method of operating a fuel cell device described so far,
  • the ratio of the power generation fuel gas partial pressure at the inlet of the reducing gas supply path to the total gas at the inlet is the inlet ratio
  • the ratio of the power generation fuel gas partial pressure at the outlet of the reducing gas supply path at the outlet is the outlet ratio.
  • the difference is that the difference between the inlet ratio and the outlet ratio in percentage display is maintained within 40%.
  • the internal reforming of the raw fuel gas is possible, so that the fuel gas for power generation generated inside the fuel cell single cell unit can be used for power generation. Even if the partial pressure of the fuel gas for power generation near the inlet of the cell (reducing gas supply path) is lowered, the difference in the partial pressure of the fuel gas for power generation at the inlet and outlet of the reducing gas supply path is lower than before. It can be made smaller. Thereby, the extreme fall of the hydrogen partial pressure inside a fuel cell can be suppressed, and deterioration of a fuel cell can be suppressed.
  • a seventeenth characteristic configuration of the present invention is a method of operating a fuel cell device that has been described so far.
  • the reforming rate of the raw fuel gas reformed by the external reformer is 30% or more and 60% or less.
  • the reforming rate of the raw fuel gas reformed by the external reformer is set to 30% or more and 60% or less, so that external reforming and internal reforming by the external reformer can be performed.
  • the balance is good, and the power generation efficiency of the fuel cell device can be improved as compared with the prior art.
  • the balance between external reforming and internal reforming becomes better, it is more preferably 35% or more, and further preferably 40% or more.
  • it becomes easier to obtain the effect of improving the power generation efficiency of the fuel cell device it is more preferably 55% or less, and further preferably 50% or less. If it is lower than 30%, the internal reforming load becomes too large. On the other hand, if it is higher than 60%, it is difficult to obtain the effect of improving the power generation efficiency of the fuel cell device.
  • An eighteenth characteristic configuration of the present invention is a method of operating a fuel cell device that has been described so far.
  • the sulfur concentration contained in the raw fuel gas is 1 vol.
  • the point is to desulfurize to ppb or less (more preferably 0.1 vol. ppb or less) and to supply to the external reformer.
  • the figure which shows schematic structure of the fuel cell apparatus of 1st Embodiment The top view which shows the structure of the fuel cell single cell unit of 1st Embodiment Sectional drawing which shows the structure of the fuel cell single cell unit of 1st Embodiment Perspective cross-sectional view showing the structure of the protruding current collector plate Sectional drawing which shows the structure of the fuel cell module of 1st Embodiment Explanatory drawing of battery reaction and reforming reaction in 1st Embodiment
  • Front view and plane sectional view showing structure of fuel cell module of second embodiment The perspective view which shows the structure of the fuel cell single cell unit of 2nd Embodiment.
  • the figure which shows the power generation efficiency comparison of the fuel cell with and without the internal reforming in the fuel cell single cell unit The figure which shows the fuel gas partial pressure for electric power generation in the fuel cell inlet_port
  • Comparative explanatory view showing the arrangement configuration of the internal reforming catalyst layer in the fuel cell single cell unit The figure which shows another embodiment of a turbulent flow promoting body
  • the first embodiment, the second embodiment, and the third embodiment will be introduced as embodiments of the present invention.
  • the fuel cell module M provided in the fuel cell device Y, and the fuel that builds the fuel cell module M in a stacked state The battery single cell unit U will be described.
  • the feature of the first embodiment is that the fuel cell module M has a disk shape, and the fuel cell module M itself operates by receiving a supply of reducing gas and oxidizing gas, whereas the fuel cell module M in the second embodiment is operated.
  • M is a substantially rectangular shape, and this fuel cell module M is housed in the housing 10 housing the external reformer 34 and the vaporizer 33 and operates as a battery.
  • the structure of the first embodiment is basically followed, and the fuel cell module M having a disk shape in the first embodiment is rectangular.
  • the fuel cells R of the first embodiment and the third embodiment can be made very thin.
  • the fuel cell R of the second embodiment can be made thicker than the fuel cell R of the first embodiment. Of course, it may be configured relatively thin.
  • the configuration of the fuel cell device Y of this embodiment is shown in FIG. ⁇ Fuel cell device>
  • the fuel cell device Y is a so-called “cogeneration system” that can generate and supply both electric power and heat. Electric power is output through the inverter 38, and heat can be recovered and used as hot water by the heat exchanger 36 from the heat stored in the exhaust gas.
  • the inverter 38 converts the direct current of the fuel cell module M, converts the direct current of the fuel cell module M into the same voltage and the same frequency as the power received from the commercial system (not shown), and outputs the same.
  • the control unit 39 appropriately controls the inverter 38 and also controls the operation of each device constituting the fuel cell device Y.
  • the fuel cell device Y includes a booster pump 30, a desulfurizer 31, a reforming water tank 32, a vaporizer 33, and an external device as main devices for supplying reducing gas to the fuel cell module M that is responsible for power generation.
  • a reformer 34 is provided.
  • the main device for supplying the oxidizing gas is a blower 35. The blower 35 sucks air and can supply an oxidizing gas containing oxygen.
  • hydrocarbon-based raw materials such as city gas (gas containing methane as the main component and containing ethane, propane, butane, etc.).
  • city gas gas containing methane as the main component and containing ethane, propane, butane, etc.
  • the fuel gas is sucked and boosted by the booster pump 30 and sent to the fuel cell module M. Since the city gas contains a sulfur compound component, it is necessary to remove (desulfurize) the sulfur compound component in the desulfurizer 31.
  • the desulfurizer 31 contains a copper-zinc-based desulfurizing agent, and the sulfur component contained in the raw fuel gas has a sulfur content of 1 vol. Reduce to ppb or less (more preferably, 0.1 vol. ppb or less).
  • copper oxide-zinc oxide prepared by a coprecipitation method using a copper compound (eg, copper nitrate, copper acetate, etc.) and a zinc compound (eg, zinc nitrate, zinc acetate, etc.)
  • a copper oxide-zinc oxide-aluminum oxide mixture prepared by co-precipitation using a desulfurization agent obtained by reducing the mixture with hydrogen or a copper compound, a zinc compound and an aluminum compound (for example, aluminum nitrate, sodium aluminate, etc.)
  • a desulfurization agent obtained by hydrogen reduction can be typically used.
  • the raw fuel gas after desulfurization is mixed with the reformed water supplied from the reformed water tank 32 on the rear stage side of the vaporizer 33, and the water is turned into steam in the vaporizer 33.
  • the raw fuel gas and steam are sent to the external reformer 34, and the raw fuel gas is steam reformed.
  • This steam reforming reaction is a reaction by a reforming catalyst housed in a reformer, and a hydrocarbon-based raw fuel gas (for example, methane) is partially reformed as in the internal reforming reaction described later.
  • a gas containing at least hydrogen (reformed gas) is generated and used for power generation.
  • the gas sent to the anode electrode layer A constituting the fuel cell R provided in the fuel cell module M is a mixed gas of raw fuel gas (pre-reforming gas) and reformed gas. Become. This reformed gas contains hydrogen and carbon monoxide, which are the fuel gas for power generation described so far.
  • the mixed gas is supplied to a reducing gas supply path L1 provided in the fuel cell single cell unit U.
  • a reducing gas supply path L1 for supplying a gas containing hydrogen for power generation to the anode electrode layer A is provided.
  • a gas mixture (including the raw fuel gas (pre-reforming gas) and the reformed gas) is supplied to the gas supply path L1, and at least hydrogen contained in the mixed gas is used in the fuel cell reaction in the fuel cell R.
  • the Exhaust gas containing residual hydrogen that has not been used for the reaction is discharged from the single unit U of the fuel cell.
  • the heat exchanger 36 exchanges heat between the exhaust gas from the fuel cell module M and the supplied cold water to generate hot water.
  • the heat exchanger 36 serves as an exhaust heat utilization unit of the fuel cell device Y.
  • the exhaust gas discharged from the fuel cell module M may be utilized for heat generation. That is, since the exhaust gas contains residual hydrogen, carbon monoxide, and raw fuel gas that have not been used for the reaction in the fuel cell single cell unit U, heat generated by the combustion of these combustible gases is generated. It can also be used. In the second embodiment to be described later, the remaining combustion components are used as fuel for heating the external reformer 34 and the vaporizer 33.
  • the fuel cell single cell unit U has a fuel cell R formed on the metal support 1 and a metal separator (projected current collector plate 3) joined to the opposite side of the fuel cell R. Configured.
  • the metal support 1 in the present embodiment has a disk shape, and the fuel cell R includes at least an anode electrode layer A, an electrolyte layer B, and a cathode electrode layer C, and is formed on the front side 1e of the metal support 1.
  • the electrolyte layer B is disposed and sandwiched between the anode electrode layer A and the cathode electrode layer C.
  • the metal separator 3 is positioned on the back side 1 f of the metal support 1. That is, the fuel cell R and the metal separator 3 are positioned with the metal support 1 interposed therebetween.
  • the fuel cell single cell unit U includes the fuel cell R formed on the metal support 1 and the metal separator 3, so that at least hydrogen is supplied to the anode electrode layer A via the reducing gas supply path L 1.
  • the gas containing oxygen can be generated by supplying a gas containing oxygen to the cathode electrode layer C via the oxidizing gas supply path L2.
  • the metal oxide layer x is formed on the front side 1e of the metal support 1 with the surface of the anode electrode layer A (the anode electrode layer A and the electrolyte layer B covering it).
  • the intermediate layer y further includes a reaction preventing layer z on the surface of the electrolyte layer B (including the interface between the electrolyte layer B and the cathode electrode layer C covering the same).
  • the metal oxide layer x, the intermediate layer y, and the reaction preventing layer z are layers provided for suppressing diffusion of constituent materials between material layers sandwiching the layers x, y, and z, and are easy to understand. For this reason, it is shown in FIG.
  • the metal support 1 is a flat plate having a metal disk shape. As can be seen from FIGS. 2 and 3, an opening 1 b concentric with the metal support 1 is formed at the center of the metal support 1.
  • a plurality of through holes 1a are formed in the metal support 1 through the front side 1e and the back side 1f. Gas can flow between the front side 1e and the back side 1f of the metal support 1 through the through hole 1a.
  • the gas flowing through the through hole 1a is the reformed gas (containing hydrogen H 2 ) described above and the water vapor H 2 O generated by the power generation reaction in the fuel cell R (see FIG. 6).
  • the material of the metal support a material excellent in electron conductivity, heat resistance, oxidation resistance and corrosion resistance is used.
  • ferritic stainless steel, austenitic stainless steel, nickel base alloy, or the like is used.
  • an alloy containing chromium is preferably used.
  • the metal support 1 uses an Fe—Cr alloy containing 18% by mass or more and 25% by mass or less of Cr, but an Fe—Cr alloy containing 0.05% by mass or more of Mn, Fe—Cr-based alloy containing 0.15 to 1.0% by mass of Ti, Fe—Cr-based alloy containing 0.15 to 1.0% by mass of Zr, Ti and Zr Fe—Cr alloy having a total content of Ti and Zr of 0.15% by mass or more and 1.0% by mass or less, Fe—Cr system containing Cu of 0.10% by mass or more and 1.0% by mass or less An alloy is particularly preferable.
  • the metal support 1 is plate-shaped as a whole.
  • the metal support 1 has a plurality of through holes 1a penetrating from the front side 1e to the back side 1f with the surface on which the anode electrode layer A is provided as the front side 1e.
  • the through hole 1a has a function of allowing gas to pass from the back side 1f of the metal support 1 to the front side 1e.
  • the surface of the metal support 1 is provided with a metal oxide layer x as a diffusion suppressing layer (see FIG. 6). That is, a diffusion suppression layer is formed between the metal support 1 and an anode electrode layer A described later.
  • the metal oxide layer x is provided not only on the surface exposed to the outside of the metal support 1 but also on the contact surface (interface) with the anode electrode layer A. Moreover, it can also provide in the surface inside the through-hole 1a.
  • This metal oxide layer x can suppress elemental interdiffusion between the metal support 1 and the anode electrode layer A.
  • the metal oxide layer x is mainly chromium oxide.
  • the metal oxide layer x which has a chromium oxide as a main component suppresses that the chromium atom etc. of the metal support body 1 diffuse to the anode electrode layer A or the electrolyte layer B.
  • the thickness of the metal oxide layer x may be a thickness that can achieve both high diffusion prevention performance and low electrical resistance.
  • the metal oxide layer x can be formed by various methods, but a method of oxidizing the surface of the metal support 1 to form a metal oxide is preferably used. Further, a metal oxide layer x is spray coated on the surface of the metal support 1 (a spraying method, an aerosol deposition method, an aerosol gas deposition method, a powder jet deposition method, a particle jet deposition method, a cold spray method, etc. Method), PVD method such as sputtering method or PLD method, CVD method or the like, or plating and oxidation treatment. Further, the metal oxide layer x may include a spinel phase having high conductivity.
  • YSZ yttria stabilized zirconia
  • GDC also referred to as gadolinium doped ceria, CGO
  • the fuel cell R is not easily damaged even when the low temperature and high temperature cycles are repeated. Therefore, it is preferable because the fuel battery cell R excellent in long-term durability can be realized.
  • the metal support 1 has a plurality of through holes 1a provided through the front side 1e and the back side 1f.
  • the through-hole 1a can be provided in the metal support 1 by mechanical, chemical or optical drilling.
  • the through hole 1a has a tapered shape in which the front side 1e of the metal support 1 is substantially narrow.
  • This through hole 1 a has a function of allowing gas to permeate from both the front and back sides of the metal support 1.
  • a porous metal can also be used.
  • the metal support 1 can use a sintered metal, a foam metal, or the like.
  • the fuel cell R has an anode electrode layer A, an electrolyte layer B, a cathode electrode layer C, and an intermediate layer y and a reaction preventing layer z appropriately between these layers. Is done.
  • the fuel cell R is a solid oxide fuel cell SOFC.
  • the fuel cell R shown as the embodiment includes the intermediate layer y and the reaction preventing layer z, so that the electrolyte layer B is indirectly sandwiched between the anode electrode layer A and the cathode electrode layer C. Become. In terms of generating only battery power generation, it is possible to generate power by forming the anode electrode layer A on one surface of the electrolyte layer B and the cathode electrode layer C on the other surface.
  • the anode electrode layer A can be provided in a thin layer in a region on the front side 1e of the metal support 1 that is larger than the region where the through holes 1a are provided.
  • the thickness can be, for example, about 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 50 ⁇ m. With such a thickness, it is possible to ensure sufficient electrode performance while reducing the amount of expensive electrode layer material used and reducing costs.
  • the entire region in which the through hole 1a is provided is covered with the anode electrode layer A. That is, the through hole 1a is formed inside the region of the metal support 1 where the anode electrode layer A is formed. In other words, all the through holes 1a are provided facing the anode electrode layer A.
  • a composite material such as NiO—GDC, Ni—GDC, NiO—YSZ, Ni—YSZ, CuO—CeO 2 , and Cu—CeO 2 can be used.
  • GDC, YSZ, and CeO 2 can be referred to as composite aggregates.
  • the anode electrode layer A is formed by a low-temperature baking method (for example, a wet method using a baking process in a low temperature range that does not perform a baking process in a high temperature range higher than 1100 ° C.) or a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol It is preferably formed by a gas deposition method, a powder jet deposition method, a particle jet deposition method, a cold spray method or the like), a PVD method (such as a sputtering method or a pulse laser deposition method), a CVD method or the like.
  • a low-temperature baking method for example, a wet method using a baking process in a low temperature range that does not perform a baking process in a high temperature range higher than 1100 ° C.
  • a spray coating method a thermal spraying method, an aerosol deposition method, an aerosol It is preferably formed by a gas deposition method, a powder jet deposition method, a
  • a favorable anode electrode layer A can be obtained without using firing in a high temperature range higher than 1100 ° C., for example. Therefore, it is preferable because the elemental interdiffusion between the metal support 1 and the anode electrode layer A can be suppressed without damaging the metal support 1 and an electrochemical element having excellent durability can be realized. Furthermore, it is more preferable to use a low-temperature firing method because handling of raw materials becomes easy.
  • the amount of Ni contained in the anode electrode layer A can be in the range of 35% by mass to 85% by mass.
  • the amount of Ni contained in the anode electrode layer A is more preferably more than 40% by mass, and more preferably more than 45% by mass, since the power generation performance can be further improved. On the other hand, since it becomes easy to reduce cost, it is more preferable in it being 80 mass% or less.
  • the anode electrode layer A has a plurality of pores (not shown) inside and on the surface in order to provide gas permeability. That is, the anode electrode layer A is formed as a porous layer.
  • the anode electrode layer A is formed, for example, so that the density thereof is 30% or more and less than 80%.
  • As the size of the pores a size suitable for a smooth reaction to proceed during the electrochemical reaction can be appropriately selected.
  • the fine density is the ratio of the material constituting the layer to the space, and can be expressed as (1-porosity), and is equivalent to the relative density.
  • the intermediate layer y can be formed in a thin layer on the anode electrode layer A while covering the anode electrode layer A.
  • the thickness can be, for example, about 1 ⁇ m to 100 ⁇ m, preferably about 2 ⁇ m to 50 ⁇ m, more preferably about 4 ⁇ m to 25 ⁇ m. With such a thickness, it is possible to ensure sufficient performance while reducing the cost by reducing the amount of expensive intermediate layer material used.
  • YSZ yttria stabilized zirconia
  • SSZ scandium stabilized zirconia
  • GDC gadolinium doped ceria
  • YDC yttrium doped ceria
  • SDC sinarium doped ceria Ceria
  • ceria-based ceramics are preferably used.
  • the intermediate layer y is formed by a low-temperature baking method (for example, a wet method using a baking process in a low temperature range that does not perform a baking process in a high temperature range higher than 1100 ° C.) or a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas deposition). It is preferably formed by a method such as a method such as a powder jet deposition method, a particle jet deposition method, or a cold spray method), a PVD method (such as a sputtering method or a pulse laser deposition method), or a CVD method.
  • a low-temperature baking method for example, a wet method using a baking process in a low temperature range that does not perform a baking process in a high temperature range higher than 1100 ° C.
  • a spray coating method a thermal spraying method, an aerosol deposition method, an aerosol gas deposition. It is preferably formed by a method such as a method such as a
  • the intermediate layer y can be obtained without firing in a high temperature range higher than 1100 ° C., for example. Therefore, elemental interdiffusion between the metal support 1 and the anode electrode layer A can be suppressed without damaging the metal support 1, and a fuel cell R having excellent durability can be realized. Further, it is more preferable to use a low-temperature baking method because handling of raw materials becomes easy.
  • the intermediate layer y has oxygen ion (oxide ion) conductivity. Further, it is more preferable to have mixed conductivity of oxygen ions (oxide ions) and electrons.
  • the intermediate layer y having these properties is suitable for application to the fuel cell R.
  • the electrolyte layer B is formed in a thin layer on the intermediate layer y in a state of covering the anode electrode layer A and the intermediate layer y. Moreover, it can also form in the state of a thin film whose thickness is 10 micrometers or less. Specifically, as shown in FIGS. 3 and 6, the electrolyte layer B is provided over (stranding) the intermediate layer y and the metal support 1. By comprising in this way and joining the electrolyte layer B to the metal support 1, the whole electrochemical element can be excellent in robustness.
  • the electrolyte layer B is provided in a region on the front side 1e of the metal support 1 and larger than the region in which the through hole 1a is provided. That is, the through hole 1a is formed inside the region of the metal support 1 where the electrolyte layer B is formed.
  • gas leakage from the anode electrode layer A and the intermediate layer y can be suppressed around the electrolyte layer B.
  • gas is supplied from the back side of the metal support 1 to the anode electrode layer A through the through hole 1a.
  • gas leakage can be suppressed without providing another member such as a gasket.
  • the entire periphery of the anode electrode layer A is covered with the electrolyte layer B.
  • the electrolyte layer B may be provided on the anode electrode layer A and the intermediate layer y, and a gasket or the like may be provided on the periphery. .
  • YSZ yttria stabilized zirconia
  • SSZ scandium stabilized zirconia
  • GDC gadolinium doped ceria
  • YDC yttrium doped ceria
  • SDC sinarium doped ceria
  • LSGM strontium / magnesium-added lanthanum gallate
  • zirconia ceramics are preferably used.
  • the system raw fuel is a hydrocarbon-based raw fuel such as city gas or LPG .
  • a system configuration in which the raw fuel is made into a SOFC reducing gas by steam reforming or the like, a high-efficiency SOFC system that uses heat generated in the SOFC cell stack for reforming the raw fuel gas can be constructed.
  • the electrolyte layer B is formed by a low-temperature firing method (for example, a wet method using a firing treatment in a low temperature range that does not perform a firing treatment in a high temperature range exceeding 1100 ° C.) or a spray coating method (a thermal spraying method, an aerosol deposition method, an aerosol gas deposition). It is preferably formed by a method such as a method such as a powder jet deposition method, a particle jet deposition method, or a cold spray method), a PVD method (such as a sputtering method or a pulse laser deposition method), or a CVD method.
  • a low-temperature firing method for example, a wet method using a firing treatment in a low temperature range that does not perform a firing treatment in a high temperature range exceeding 1100 ° C.
  • a spray coating method a thermal spraying method, an aerosol deposition method, an aerosol gas deposition. It is preferably formed by a method such as a method such as a
  • a dense electrolyte layer B having high gas tightness and gas barrier properties can be obtained without using firing in a high temperature range exceeding 1100 ° C., for example. Therefore, damage to the metal support 1 can be suppressed, elemental interdiffusion between the metal support 1 and the anode electrode layer A can be suppressed, and a fuel cell R excellent in performance and durability can be realized.
  • a low-temperature firing method or a spray coating method because a low-cost element can be realized.
  • it is more preferable to use a spray coating method because a dense electrolyte layer having a high gas tightness and gas barrier property can be easily obtained in a low temperature range.
  • the electrolyte layer B is densely configured to shield gas leakage of reducing gas and oxidizing gas and to exhibit high ion conductivity.
  • the density of the electrolyte layer B is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more.
  • the density is preferably 95% or more, and more preferably 98% or more.
  • the electrolyte layer B is configured in a plurality of layers, it is preferable that at least a part thereof includes a layer (dense electrolyte layer) having a density of 98% or more, and 99% It is more preferable that the above layer (dense electrolyte layer) is included.
  • the reaction preventing layer z can be formed on the electrolyte layer B in a thin layer state.
  • the thickness can be, for example, about 1 ⁇ m to 100 ⁇ m, preferably about 2 ⁇ m to 50 ⁇ m, more preferably about 3 ⁇ m to 15 ⁇ m. With such a thickness, it is possible to secure sufficient performance while reducing the cost by reducing the amount of expensive reaction preventing layer material used.
  • the material of the reaction preventing layer z may be any material that can prevent the reaction between the component of the electrolyte layer B and the component of the cathode electrode layer C. For example, a ceria-based material or the like is used.
  • a material containing at least one element selected from the group consisting of Sm, Gd and Y is preferably used as the material for the reaction preventing layer z. Note that it is preferable that at least one element selected from the group consisting of Sm, Gd, and Y is contained, and the total content of these elements is 1.0% by mass or more and 10% by mass or less.
  • the formation of the reaction preventing layer z is appropriately performed using a method that can be formed at a processing temperature of 1100 ° C. or less, and the damage to the metal support 1 is suppressed, and the mutual elements of the metal support 1 and the anode electrode layer A are reduced. Diffusion can be suppressed, and a fuel cell R excellent in performance and durability can be realized, which is preferable.
  • low-temperature firing methods for example, wet methods using a firing treatment in a low temperature range that does not perform a firing treatment in a high temperature range exceeding 1100 ° C.
  • spray coating methods thermal spraying method, aerosol deposition method, aerosol gas deposition method, powder
  • a PVD method a sputtering method, a pulse laser deposition method, or the like
  • CVD method or the like
  • it is preferable to use a low-temperature firing method or a spray coating method because a low-cost element can be realized.
  • it is more preferable to use a low-temperature firing method because handling of raw materials becomes easy.
  • the cathode electrode layer C can be formed as a thin layer on the electrolyte layer B or the reaction preventing layer z.
  • the thickness can be, for example, about 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 50 ⁇ m. With such a thickness, it is possible to ensure sufficient electrode performance while reducing the cost by reducing the amount of expensive cathode electrode layer material used.
  • the material of the cathode electrode layer C for example, composite oxides such as LSCF and LSM, ceria-based oxides, and mixtures thereof can be used.
  • the cathode electrode layer C preferably contains a perovskite oxide containing two or more elements selected from the group consisting of La, Sr, Sm, Mn, Co and Fe.
  • the cathode electrode layer C formed using the above materials functions as a cathode.
  • the cathode electrode layer C is formed by appropriately using a method that can be formed at a processing temperature of 1100 ° C. or less, and the damage to the metal support 1 is suppressed, and between the metal support 1 and the anode electrode layer A The interdiffusion of elements can be suppressed, and a fuel cell R excellent in performance and durability can be realized, which is preferable.
  • low-temperature firing methods for example, wet methods using a firing treatment in a low temperature range that does not perform a firing treatment in a high temperature range exceeding 1100 ° C.
  • spray coating methods thermal spraying method, aerosol deposition method, aerosol gas deposition method, powder
  • a method such as a jet deposition method, a particle jet deposition method, or a cold spray method
  • a PDV method a sputtering method, a pulse laser deposition method, etc.
  • CVD method or the like
  • it is preferable to use a low-temperature firing method or a spray coating method because a low-cost element can be realized.
  • it is more preferable to use a low-temperature firing method because handling of raw materials becomes easy.
  • the fuel cell R generates power by receiving supply of both a reducing gas containing hydrogen and an oxidizing gas containing oxygen.
  • a reducing gas containing hydrogen a gas that is supplied to each electrode layer (the anode electrode layer A and the cathode electrode layer C) of the fuel cell R, as shown in FIG. 6, oxygen molecules O 2 are converted into electrons e in the cathode electrode layer C. Reacts with - to produce oxygen ion O 2- .
  • the oxygen ions O 2 ⁇ move through the electrolyte layer B to the anode electrode layer A.
  • the fuel gas for power generation (hydrogen H 2 and carbon monoxide CO) reacts with the oxygen ions O 2 ⁇ to generate water vapor H 2 O, carbon dioxide CO 2 and electrons e ⁇ .
  • The an electromotive force is generated between the anode electrode layer A and the cathode electrode layer C, and power generation is performed.
  • This power generation principle is the same in the second embodiment (see FIG. 11).
  • the fuel cell single cell unit U includes a protruding current collector plate 3 as a metal separator.
  • the bumped current collector plate 3 is a metal disk-shaped plate having a concavo-convex structure portion 3a including one or more concave portions or convex portions, and having a metal support. It arrange
  • the uneven structure portion 3a is connected to the cathode electrode layer C of another fuel cell single cell unit U when a plurality of fuel cell single cell units U are stacked.
  • the protruding current collector plate 3 is electrically connected to the metal support 1 and further to the anode electrode layer A. In the bumped current collector plate 3, no gas flows between the front and back surfaces.
  • the metal support 1 side (in other words, the anode electrode layer A side) of the protruding current collector plate 3 is the reducing gas supply path L1 described so far, and the back side (from the metal support 1) The separated side) can be the oxidizing gas supply path L2 described so far.
  • the fuel cell single cell unit U is provided with a gas supply pipe 2.
  • the gas supply pipe 2 supplies the reducing gas and the oxidizing gas separately to spaces formed above and below the protruding current collector plate 3 (each serving as a supply path that flows radially outward).
  • the gas supply pipe 2 is a metal cylindrical member, and is inserted into the opening 1b of the metal support 1 and fixed by welding in a state where the center axis Z coincides with the center axis Z of the metal support 1. Is done. Further, the metal support 1 may be biased with respect to the gas supply pipe 2 with a sealing material interposed therebetween.
  • the material of the gas supply pipe 2 the same material as that of the metal support 1 described above can be used. Further, it is preferable to form a diffusion prevention film similar to that of the metal support 1 on the surface of the gas supply pipe 2 because Cr scattering can be suppressed.
  • the gas supply pipe 2 only needs to have sufficient strength to constitute the fuel cell single cell unit U and a fuel cell module M described later.
  • the gas supply pipe 2 may be made of sintered metal, foamed metal, or the like. In this case, a treatment such as surface coating may be performed so that the gas does not permeate.
  • the gas supply pipe 2 is partitioned into a first flow path 2b and a second flow path 2c, with a partition wall 2a disposed in parallel to the central axis Z on the inside.
  • the first flow path 2b and the second flow path 2c are configured such that the gases do not flow with each other so that different gases can flow therethrough.
  • the gas supply pipe 2 is formed with a first flow hole 2d and a second flow hole 2e penetrating the inner side and the outer side.
  • the first flow hole 2d connects the space between the metal support 1 and the protruding current collector plate 3 (which becomes the reducing gas supply path L1 of the present invention) and the first flow path 2b, and between them.
  • the gas can flow through.
  • the 2nd flow hole 2e connects the space (it becomes the oxidizing gas supply path L2 of this invention) and the 2nd flow path 2c on the opposite side to the metal support body 1 with respect to the protruding current collector plate 3, and both Gas can flow between the two.
  • the first flow hole 2 d and the second flow hole 2 e are formed at different positions with respect to the direction along the central axis Z of the gas supply pipe 2, and are formed on both sides of the protruding current collector plate 3. ing. Therefore, in the present embodiment, the first flow path 2b is connected to the reducing gas supply path L1 formed on the upper side of the protruding current collector plate 3, and the second flow path 2c is below the protruding current collector plate 3. Connected to the oxidizing gas supply path L2.
  • the bumped current collector plate 3 is formed with a plurality of concave and convex structure portions 3 a projecting upward and downward from the disk surface of the bumped current collector plate 3.
  • the concavo-convex structure portion 3a has a conical shape with a gentle vertex.
  • the protruding current collector plate 3 is disposed facing the back side 1 f of the metal support 1 and is bonded to the metal support 1 through the bonding portion W.
  • the protruding current collecting plate 3 can be directly urged and joined to the metal support 1, but in this case, the apex of the concavo-convex structure portion 3 a and the portion where the metal support 1 is in contact with the joining portion W become.
  • the bumpy current collecting plate 3 can be urged and joined to the metal support 1 with a metal felt or the like sandwiched between the bumped current collector 3 and the metal support 1.
  • the bumpy current collector plate 3 and the metal support 1 can be joined to each other at some or all of the apexes of the concavo-convex structure portion 3a while forming the joint portion W by brazing.
  • the protruding current collecting plate 3 is arranged in a form in which the gas supply pipe 2 passes through the opening 3b.
  • the protruding current collector plate 3 and the gas supply pipe 2 are joined by welding around the opening 3b.
  • the protruding current collector plate 3 may be biased with respect to the gas supply pipe 2 with a sealing material interposed therebetween.
  • the same material as the metal support 1 described above can be used. Further, it is preferable to form a diffusion prevention film similar to that of the metal support 1 on the surface of the bumpy current collector plate 3 because Cr scattering can be suppressed.
  • the bumped current collector plate 3 configured as described above can be manufactured at low cost by press molding or the like.
  • the bumped current collecting plate 3 is made of a material that does not transmit gas so that gas cannot flow between the front side 1e and the back side 1f.
  • the protruding current collector plate 3 as a metal separator is electrically connected to the anode electrode layer A constituting the fuel cell R via the metal support 1.
  • the protruding current collector plate 3 is also electrically connected to the cathode electrode layer C.
  • the protruding current collector plate 3 is sufficient if it has sufficient strength to constitute the fuel cell single cell unit U and the fuel cell module M described later, and is, for example, about 0.1 mm to 2 mm, preferably 0.1 mm to The thickness of about 1 mm, more preferably about 0.1 mm to 0.5 mm can be used.
  • the bumped current collecting plate 3 may be made of sintered metal, foamed metal, or the like, but in this case, a treatment such as surface coating may be applied so that gas does not permeate.
  • the bumped current collector plate 3 has the concavo-convex structure portion 3 a, and the apex of the concavo-convex structure portion 3 a is joined to the back side 1 f of the metal support 1.
  • a disk-shaped (doughnut-shaped) space (reducing gas supply path L1) that is axially symmetric with respect to the central axis Z is formed between the metal support 1 and the protruding current collector plate 3. Is done.
  • the reducing gas is supplied from the first flow path 2b to the supply path L1 through the first flow hole 2d of the gas supply pipe 2.
  • the reducing gas is supplied to the through hole 1 a of the metal support 1 and supplied to the anode electrode layer A.
  • the apex of the concavo-convex structure portion 3a of the protruding current collector plate 3 is joined to the cathode electrode layer C of the fuel cell single cell unit U located on the lower side, so that the gas supply pipe 2 A space (oxidizing gas supply path L2) in which gas can be supplied to the cathode electrode layer C through the second flow hole 2e is formed.
  • the reducing gas supply path L1 for supplying a gas containing hydrogen to the anode electrode layer A is provided between the protruding current collector plate 3 and the metal support 1. Is formed. As indicated by arrows in FIG. 5, the gas flowing through the supply path L ⁇ b> 1 is in one direction from the gas supply pipe 2 side positioned on the disc center side to the radially outward side. Then, hydrogen for power generation reaction can be supplied to the anode electrode layer A through a through hole 1 a provided through the front and back of the metal support 1.
  • the power generation reaction in the fuel cell R is as described above, and accompanying this reaction, the water vapor H is transferred from the anode electrode layer A to the through hole 1a and the reducing gas supply path L1. 2 O is released.
  • the reducing gas supply path L1 of the present invention serves as a supply unit that supplies a gas containing hydrogen H 2 to the anode electrode layer A, and at the same time serves as a discharge destination of water vapor H 2 O.
  • the internal reforming catalyst layer D is provided on the reducing gas supply path L1 side surface (surface on the metal support 1 side) of the protruding current collector plate 3.
  • the reducing gas supply path L1 includes, in addition to hydrogen H 2 obtained by external reforming, raw fuel gas to be reformed (pre-reforming gas: methane CH in the illustrated example). 4 ) flows, but by returning the water vapor H 2 O generated in the anode electrode layer A to the reducing gas supply path L1, the fuel gas CH 4 can be reformed by flowing into the supply path L1.
  • the produced hydrogen H 2 and carbon monoxide CO can be supplied to the anode electrode layer A via the through hole 1a on the downstream side and used for power generation.
  • the internal reforming catalyst layer D As a material of the internal reforming catalyst layer D, for example, a large number of ceramic porous granular materials holding a reforming catalyst such as nickel, ruthenium, platinum, etc. can be formed in a state that allows ventilation.
  • this internal reforming catalyst layer D contains Ni
  • the content of Ni can be in the range of 0.1% by mass to 50% by mass.
  • the internal reforming catalyst layer D contains Ni
  • the Ni content is more preferably 1% by mass or more, and further preferably 5% by mass or more. This is because higher internal reforming performance can be obtained in this way.
  • the internal reforming catalyst layer D contains Ni
  • the content of Ni is more preferably 45% by mass or less, and further preferably 40% by mass or less.
  • the internal reforming catalyst layer D may be formed by a low-temperature firing method (for example, a wet method using a firing process in a low temperature range that does not perform a firing process in a high temperature range higher than 1100 ° C.) or a spray coating method (a spraying method or an aerosol deposition method). , Aerosol gas deposition method, powder jet deposition method, particle jet deposition method, cold spray method, etc.), PVD method (sputtering method, pulsed laser deposition method, etc.), CVD method, etc. are preferable. .
  • Such an internal reforming catalyst layer D has a thickness of, for example, preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and even more preferably 5 ⁇ m or more. This is because by making such a thickness, the contact area with the fuel gas or water vapor can be increased and the internal reforming rate can be increased.
  • the thickness is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and even more preferably 100 ⁇ m or less. This is because by using such a thickness, the amount of expensive internal reforming catalyst material used can be reduced to reduce the cost.
  • the temperature of the reducing gas supply path L1 (internal reforming catalyst layer D) is practically 600 ° C. to 900 ° C., which is the operating temperature of the fuel cell R.
  • the fuel cell module M of the first embodiment is configured in a state where a plurality of fuel cell single cell units U are stacked. That is, a plurality of fuel cell single cell units U are stacked with the gasket 6 interposed therebetween.
  • the gasket 6 is disposed between the gas supply pipe 2 of one fuel cell single cell unit U and the gas supply pipe 2 of the other fuel cell single cell unit U.
  • the gasket 6 includes a metal support 1, a gas supply pipe 2 and a protruding current collector plate 3 of one fuel cell single cell unit U, and a metal support 1 and a gas supply pipe 2 of the other fuel cell single cell unit U.
  • the projection current collector plate 3 is electrically insulated from the bumped current collector plate 3.
  • the gasket 6 is connected to a connecting portion (gas supply) of the single unit of the fuel cell unit U so that the gas flowing through the first flow path 2b and the second flow path 2c of the gas supply pipe 2 does not leak or mix.
  • the connection part of the tube 2) is kept airtight.
  • the gasket 6 is made of, for example, vermiculite, mica, alumina, or the like so that the above electrical insulation and airtightness can be maintained.
  • the protruding current collection board 3 has electrically connected the metal support body 1 and the cathode electrode layer C of one fuel cell single cell unit U. As shown in FIG. Therefore, in the fuel cell single cell unit U according to the present embodiment, the fuel cells R of each fuel cell single cell unit U are electrically connected in series.
  • the configuration of the reducing gas supply path L1 may be the bumped current collecting plate 3 having the shape shown in FIG. 4A, or may be as shown in FIGS. 4B and 4C.
  • the common technical elements are a reducing gas containing hydrogen (specifically, a mixed gas of a gas before reforming and a reformed gas) and an oxidizing gas which is a gas containing oxygen. (Specifically, air) may be configured to move to the outer diameter side and be exhausted as exhaust gas.
  • the reducing gas supply path L1 flows from the supply side of the mixed gas to the discharge side, and the anode of the gas containing hydrogen H 2 with respect to a plurality (a large number) of through holes 1a provided therebetween. Distribution to the electrode layer A is performed. Then, steam reforming is performed by returning the steam H 2 O produced in the anode electrode layer A to the internal reforming catalyst layer D, and hydrogen and carbon monoxide that are fuel gas for power generation are produced. It becomes possible to generate power by supplying a power generation fuel gas containing hydrogen H 2 to the anode electrode layer A from the through hole 1a located.
  • Such a gas path is referred to as an internal reformed fuel supply path L3
  • a generated steam H 2 O discharge side is referred to as a discharge section L3a
  • an internally reformed hydrogen H 2 supply side is referred to as a supply section.
  • Called L3b is also a water vapor supply path of the present invention.
  • the discharge part L3a can also bear the function as the supply part L3b at the same time
  • the supply part L3b can also bear the function as the discharge part L3a at the same time.
  • FIG. 7 shows an outline of the fuel cell device Y.
  • the fuel cell device Y also includes a fuel cell module M, and performs a power generation operation using a reducing gas containing hydrogen and an oxidizing gas containing oxygen supplied to the fuel cell module M.
  • the fuel cell module M is configured in a substantially rectangular shape, and includes the fuel cell module M, an external reformer 34, a vaporizer 33, and the like in one housing 10. ing.
  • the function of each device (the booster pump 30, the desulfurizer 31, the reforming water tank 32, the vaporizer 33, and the external reformer 34) provided in the reducing gas supply system is the same as that of the first embodiment described above. It is the same.
  • the fuel cell module M of the second embodiment is provided with an exhaust gas combustion portion 101 containing hydrogen at the upper portion thereof, and the remaining combustion components (specifically, the exhaust gas of the fuel cell at this portion 101 is specifically described. Hydrogen, carbon monoxide and methane), and the heat can be used for steam reforming and vaporization.
  • the fuel cell device Y is a so-called “cogeneration system” that can generate and supply both electric power and heat.
  • this embodiment has a unique configuration. 7 and 11, the gas manifold 102 is provided on the downstream side of the external reformer 34, and the pre-reforming gas (raw fuel gas) and the reformed gas are supplied.
  • the fuel cell single cell unit U is configured to be distributed and supplied to the reducing gas supply path L1 provided in the fuel cell single cell unit U, and to supply the reducing gas containing hydrogen to the anode electrode layer A from the supply path L1.
  • oxygen is supplied to the oxidizing gas supply path L2 by sucking air into the housing 10 by the blower 35, and oxidizing the oxygen gas containing the sucked oxygen into the fuel cell single cell unit U, the current collector CP.
  • the cathode electrode layer C is configured to be supplied through an oxidizing gas supply path L2 provided in each.
  • the combustion unit 101 is provided between the fuel cell module M and the external reformer 34, but the air sucked by the blower 35 is also used for the combustion of the remaining fuel in the combustion unit 101.
  • the exhaust gas generated by the predetermined battery reaction and combustion reaction is sent to the heat exchanger 36 and used for predetermined heat utilization.
  • the device 103a provided in the exhaust port 103 of the housing 10 is a device for exhaust gas treatment.
  • FIG. 8A shows a side view of the fuel cell module M
  • FIG. 8B shows a cross-sectional view thereof (cross section VIII-VIII in FIG. 8A).
  • the fuel cell module M is configured by laminating a plurality of fuel cell single cell units U in the lateral direction (left-right direction in FIG. 8).
  • Each of the fuel cell single cell units U can be specifically configured to stand on the gas manifold 102 described above. That is, the fuel cell module M is constructed by erecting the metal support 1 that supports the fuel cell R on the gas manifold 102.
  • the metal support 1 is formed in a cylindrical shape including a reducing gas supply path L1 extending in the vertical direction in the standing state.
  • a form electrically connected to the metal support 1 an uneven current collecting plate CP is provided, and the current collecting plate CP has air permeability so that it is sucked into the peripheral portion of the fuel cell module M.
  • the oxidizing gas specifically, air
  • the fuel cell module M includes a plurality of fuel cell single cell units U, a gas manifold 102, a current collecting plate CP, a termination member 104, and a current drawing portion 105. Composed.
  • the fuel cell single cell unit U includes a fuel cell R on one surface of a metal support 1 that is a hollow cylinder, and has a shape of a long flat plate or a flat bar as a whole.
  • One end portion of the fuel cell single cell unit U in the longitudinal direction is fixed to the gas manifold 102 by an adhesive member such as a glass sealing material.
  • the metal support 1 and the gas manifold 102 are electrically insulated.
  • the fuel cell R is configured as a thin film or a layer as a whole (in the present invention, a form including both is referred to as a “thin layer”). Even in this embodiment, there is no change in that the fuel cell R is configured to include the anode electrode layer A, the electrolyte layer B, and the cathode electrode layer C. The same applies to the point of providing the metal oxide layer x, the intermediate layer y, and the reaction preventing layer z described above. These metal oxide layer x, intermediate layer y, and reaction preventing layer z are shown in FIG.
  • the plurality of fuel cell single cell units U are placed in a state where the current collector plate CP of another fuel cell single cell unit U is in contact with the back surface of the metal support 1 of one fuel cell single cell unit. By laminating, a predetermined electrical output can be taken out.
  • the current collector plate CP a member having conductivity, gas permeability, and elasticity in the direction of the stacked parallel arrangement of the fuel cell single cell units U is used.
  • the current collector plate CP an expanded metal using a metal foil, a metal mesh, or a felt-like member is used.
  • air supplied from the blower 35 can pass through or flow through the current collector CP and be supplied to the cathode electrode layer C of the fuel cell R.
  • the flow path in which the fuel cell single cell unit U is configured and the gas containing oxygen passes through the current collector CP is referred to as an oxidizing gas supply path L2 (see FIG. 11).
  • the metal support 1 cantilevered by the gas manifold 102 can be displaced in the direction of parallel arrangement, and vibration The robustness of the fuel cell module M against disturbances such as temperature changes and the like is improved.
  • a plurality of fuel cell single cell units U arranged in parallel are sandwiched between a pair of termination members 104.
  • the end member 104 is a conductive and elastically deformable member, and the lower end thereof is fixed to the gas manifold 102.
  • the termination member 104 is connected to a current extraction portion 105 that extends outward along the direction in which the fuel cell single cell units U are arranged in parallel.
  • the current drawing unit 105 is connected to the inverter 38 and sends a current generated by the power generation of the fuel cell R to the inverter 38.
  • FIG. 9 and 10 show a schematic configuration of the fuel cell single cell unit U of the second embodiment.
  • FIG. 9 is a perspective view of the fuel cell single cell unit U
  • FIG. 10 shows a procedure for forming the unit U.
  • the fuel cell single cell unit U is configured to include the conductive metal support 1 and the fuel cell R, and the fuel cell R sandwiches the electrolyte layer B. In this state, an anode electrode layer A and a cathode electrode layer C are provided.
  • the metal support 1 includes a rectangular flat plate member 72, a U-shaped member 73 having a U-shaped cross section orthogonal to the longitudinal direction, and a lid 74.
  • the long side of the flat plate member 72 and the long side of the U-shaped member 73 are joined, and one end (the upper end side in the figure) is closed by the lid 74. It is.
  • a metal support 1 having a flat space or a flat bar as a whole is formed.
  • the flat plate member 72 is disposed in parallel to the central axis of the metal support 1.
  • the internal space of the metal support 1 is the reducing gas supply path L1 described so far.
  • the lid 74 is provided with an exhaust gas outlet 77 through which the gas flowing through the reducing gas supply path L1 is discharged to the outside of the metal support 1.
  • the exhaust side (upper side) of the exhaust gas outlet 77 is the combustion unit 101 described above.
  • the end on the side opposite to the end where the lid 74 is provided is open, and the inlet of the reducing gas supply path L1 Is done.
  • the material for the flat plate member 72, the U-shaped member 73, and the lid portion 74 a material having excellent conductivity, heat resistance, oxidation resistance, and corrosion resistance is used.
  • a material having excellent conductivity, heat resistance, oxidation resistance, and corrosion resistance is used.
  • ferritic stainless steel, austenitic stainless steel, nickel base alloy or the like is used. That is, the metal support 1 is configured to be robust.
  • ferritic stainless steel is preferably used.
  • the material of the metal support 1 it is preferable to use a material thermal conductivity greater than 3Wm -1 K -1, more preferably as long as the material above the 10Wm -1 K -1.
  • a material thermal conductivity greater than 3Wm -1 K -1, more preferably as long as the material above the 10Wm -1 K -1.
  • stainless steel is suitable as a material for the metal support 1 because its thermal conductivity is about 15 to 30 Wm ⁇ 1 K ⁇ 1 .
  • the material of the metal support 1 is more preferably a high toughness material that does not cause brittle fracture. Compared to ceramic materials and the like, metal materials have high toughness and are suitable as the metal support 1.
  • the flat plate member 72 is provided with a plurality of through holes 78 that penetrate the front surface and the back surface of the flat plate member 72. Gas can flow between the inside and outside of the metal support 1 through the through-hole 78. On the other hand, gas cannot flow between the inside and the outside of the metal support 1 in the region where the through hole 78 in the flat plate member 72 and the U-shaped member 73 is not provided.
  • the reducing gas supply path L ⁇ b> 1 for supplying the gas containing the hydrogen of the anode electrode layer A is formed in the metal support 1. And as shown also by the dashed-dotted arrow in FIG. 9, the gas in this supply path L1 is made into one direction from the axial direction opening side (lower side) of the metal support body 1 to the axial direction cover part side (upper side). . Hydrogen H 2 for power generation reaction can be supplied to the anode electrode layer A through a through-hole 78 provided through the front and back of the flat plate member 72.
  • a part of the through-passage 78 and the reducing gas supply path L1 of the present embodiment is a supply part L3b that supplies a gas containing hydrogen H 2 , and at the same time, a discharge part L3a of water vapor H 2 O.
  • an internal reforming catalyst layer D is provided on the back surface 72 b of the flat plate member 72 and the inner surface 73 b of the metal support 1.
  • a gas before reforming raw fuel gas to be reformed, which is methane CH in the illustrated example. 4
  • steam reforming is performed by returning steam H 2 O produced in the anode electrode layer A to the internal reforming catalyst layer D, and is located downstream (in the case of FIG. 11, on the back side of the paper). It becomes possible to generate power by supplying hydrogen H 2 from the through hole 78 to the anode electrode layer A.
  • the internal reforming fuel supply path L3 is constituted by the generated steam H 2 O discharge part L3a and the internally reformed hydrogen H 2 supply part L3b, in the first embodiment. It is the same.
  • the discharge part L3a can also bear the function as the supply part L3b at the same time, and the supply part L3b can also bear the function as the discharge part L3a at the same time.
  • This discharge part L3a is a water vapor supply path.
  • the material and thickness of the internal reforming catalyst layer D are the same as described above.
  • steam reforming is caused in the metal support 1 using steam H 2 O discharged from the anode electrode layer A, and hydrogen H 2 obtained by reforming and Carbon monoxide CO can be supplied to and used in the anode electrode layer A as a fuel gas for power generation.
  • the fuel cell single cell unit of the second embodiment is practically structured as shown in FIG.
  • FIG. 12 is a schematic diagram showing the overall configuration of the fuel cell device Y, showing the fuel gas supply system FL, the oxidizing gas supply system AL, and the anode off-gas circulation system RL connected to the fuel cell module M, which is the fuel cell body. ing.
  • the fuel cell module M a single fuel cell single cell unit U constituting a fuel cell module M is schematically shown.
  • the fuel cell single cell unit U includes the fuel cell R.
  • the metal support 1 is formed in a disc shape.
  • it is set as a basic square and the fuel cell R, the reducing gas supply path L1, and the oxidizing gas supply path L2 are formed along the longitudinal direction.
  • the features of the third embodiment are the following two points. 1. When the fuel cell completes startup and is in a steady operation state in which power generation is performed according to the electric power load, steam circulated through the anode off-gas circulation system RL is used for reforming. 2. An internal reforming catalyst layer D is provided in a reducing gas supply path L1 provided in the fuel cell single cell unit U, and a turbulence promoting body E is provided.
  • the fuel cell device Y is configured as a so-called cogeneration system (thermoelectric parallel supply system), and has a heat exchanger 36 as an exhaust heat utilization unit that utilizes heat exhausted from the fuel cell device Y.
  • a heat exchanger 36 as an exhaust heat utilization unit that utilizes heat exhausted from the fuel cell device Y.
  • an inverter 38 is provided as an output converter for outputting electric power generated by the fuel cell device Y.
  • the control unit 39 controls the operation of the entire fuel cell device Y according to the power load required for the fuel cell device Y. Each device to be controlled is described in the description of the device.
  • the input information to the control unit 39 is the start / stop information of the fuel cell device Y and the power load required for the device Y.
  • the fuel cell device Y includes a fuel cell module M, a fuel gas supply system FL, an oxidizing gas supply system AL, and an anode off-gas circulation system RL.
  • the fuel gas supply system FL corresponds to the fuel supply path of the present invention.
  • the fuel gas supply system FL includes a raw fuel gas supply system FLa including a booster pump 30 and a desulfurizer 31, and a reforming water tank 32, a reforming water pump 32p, and a vaporizer 33 include a steam supply system FLb. .
  • the raw fuel gas supply system FLa and the steam supply system FLb are configured to join the anode off-gas circulation system RL, and supply the raw fuel gas and steam to the external reformer 34 provided on the lower side.
  • the external reformer 34 is connected to a reducing gas supply path L1 formed in the fuel cell single cell unit U constituting the fuel cell module M on the lower side.
  • the booster pump 30 pressurizes a hydrocarbon gas such as city gas, which is an example of the raw fuel gas, and supplies it to the fuel cell device Y.
  • a hydrocarbon gas such as city gas
  • an amount of raw fuel gas corresponding to the power load required for the fuel cell device Y is supplied in accordance with a command from the control unit 39.
  • the desulfurizer 31 removes (desulfurizes) sulfur compound components contained in city gas and the like.
  • the reforming water tank 32 stores reforming water (basically pure water) in order to supply steam necessary for steam reforming in the external reformer 34.
  • the supply mode is to supply only an amount in accordance with a command from the control unit 39 in order to obtain fuel gas corresponding to the power load required for the fuel cell device Y.
  • the water vapor contained in the anode off gas can cover the water vapor necessary for the steam reforming.
  • the supply of the reforming water from 32 and the vaporization in the vaporizer 33 mainly play a role when the fuel cell device Y is started.
  • the vaporizer 33 uses the reformed water supplied from the reformed water tank 32 as steam.
  • the external reformer 34 steam-reforms the raw fuel gas desulfurized by the desulfurizer 31 using the steam generated by the vaporizer 33 to obtain a reformed gas that is a gas containing hydrogen.
  • the internal reforming catalyst layer D is provided in the single fuel cell unit U of the present invention, the reforming of the raw fuel gas is also performed in the unit U.
  • the external reformer 34 a part of the raw fuel gas is reformed, and the remaining part is supplied as it is to the reducing gas supply path L1 of the fuel cell single cell unit U.
  • a steam reforming catalyst is accommodated in the external reformer 34.
  • this type of catalyst include a ruthenium catalyst and a nickel catalyst. More specifically, a Ru / Al 2 O 3 catalyst obtained by supporting a ruthenium component on an alumina support, a Ni / Al 2 O 3 catalyst obtained by supporting a nickel component on an alumina support, or the like can be used.
  • the operation operation in the steady operation state where the fuel cell device Y continuously generates power according to the power load will be described below.
  • the fuel cell is an oxide ion conduction type
  • the exhaust gas (anode off gas) discharged from the reducing gas supply path L1 provided in the fuel cell single cell unit U contains water vapor. Therefore, an operation mode is adopted in which the gas is cooled and excess anode water is condensed and removed, and the anode off-gas whose water vapor partial pressure is adjusted is returned to the external reformer 34 and used for steam reforming.
  • the fuel cell device Y includes an anode off-gas circulation system RL.
  • the cooler 32a that cools the anode off-gas flowing through the anode off-gas circulation system RL, and further cools and removes the condensed water of the anode off-gas flowing inside.
  • a condenser 32b for adjusting the partial pressure of water vapor and a heater 32c for raising the temperature of the anode off gas returned to the external reformer 34 are provided.
  • the circulation pump 32d is operated, and the amount of water vapor input to the external reformer 34 can be attributed to the gas circulated through the anode off-gas circulation system RL.
  • the condensation temperature in the final stage condenser 32b it becomes possible to adjust the partial pressure of water vapor circulated through the anode off-gas circulation system RL.
  • Carbon ratio (S / C ratio) can be controlled.
  • the amount of water vapor required for reforming at least part of the raw fuel gas by the external reformer 34 in accordance with the power load required for the fuel cell device Y is determined in the external reformer 34.
  • An appropriate S / C ratio is set, and the operation is performed in accordance with a command from the control unit 39.
  • the control object here is the setting and control of the circulation amount by the circulation pump 32d, the pressure setting, and the condensation temperature (resulting in the outlet water vapor partial pressure) in the condenser 32b as the final cooling stage.
  • the blower 35 is provided in the oxidizing gas supply system AL, and the lower side thereof is connected to the oxidizing gas supply path L2 formed in the fuel cell single cell unit U constituting the fuel cell module M.
  • the air suction amount of the blower 35 also secures an air amount sufficient to cause a power generation reaction in the fuel cell in accordance with the power load, and operates according to a command from the control unit 39.
  • the internal reforming catalyst layer D is provided in the fuel cell single cell unit U, and the internal reforming is performed.
  • the steam generated by the power generation is consumed by steam reforming, so the condenser 32b to be provided for steam condensation contained in the anode off-gas described above. Load is reduced.
  • the fuel cell device Y according to the present invention is advantageous also in this respect.
  • the fuel cell single cell unit U of the third embodiment is formed in a substantially rectangular box shape as viewed from above, as shown in FIGS.
  • the flow direction of the oxidizing gas is a specific direction. This direction in FIGS. 13 and 14 is rising to the right in the figure.
  • the internal reforming catalyst layer D is provided.
  • the reducing gas is supplied to the anode electrode layer A and generated in the anode electrode layer A as shown in FIG. A through-hole 1a provided to discharge water vapor to the reducing gas supply path L1, and in the flow direction of the reducing gas, is the same position as the most upstream through-hole 1a and downstream of the position.
  • the internal reforming catalyst layer D is limited to the position. By providing the internal reforming catalyst layer D from such a position, water vapor generated in the anode electrode layer A can be effectively used according to the object of the present invention.
  • the fuel cell single cell unit U of the third embodiment is practically structured as shown in FIG.
  • a reducing gas supply passage L1 for supplying fuel gas to the anode electrode layer A has a turbulence promoter E ( Ea) is provided. More specifically, the formation surface of the fuel cell R, which is the inflow side of the reducing gas that is a gas containing hydrogen, with respect to the through hole 1a formed through the metal support 1
  • the mesh body Ea is provided on the opposite surface. Specifically, the mesh body Ea is formed by attaching a lath metal or a metal wire mesh on the metal support 1.
  • the hydrogen-containing gas flowing in the reducing gas supply path L1 is disturbed by the mesh body Ea, inducing a flow direction component toward the through hole 1a and a flow flowing out of the through hole 1a, and the anode of the fuel gas Supply to the electrode layer A and derivation of water vapor from the anode electrode layer A can be favorably caused.
  • the above is the internal reforming (steam reforming in the fuel cell R) using the steam H 2 O generated in the anode electrode layer A of the fuel cell R in the fuel cell single cell unit U according to the present invention.
  • This is a description of the structure of the fuel cell that performs quality.
  • FIG. 15 shows a comparison of the power generation efficiency of the fuel cell between when the internal reforming is performed and when it is not performed.
  • FIGS. 16 and 17 show the fuel cell R inlet / outlet (specifically, between the two) Indicates the fuel gas partial pressure for power generation including hydrogen and carbon monoxide at the inlet / outlet of the reducing gas supply path L1.
  • FIG. 18 is a diagram showing a difference in power generation fuel gas partial pressure between the inlet and the outlet. The description of the fuel gas partial pressure for power generation is shown as a percentage (%) of the total gas pressure. Further, the difference in fuel gas partial pressure for power generation is as follows.
  • a black square mark indicates a case where the internal reforming according to the present invention is performed, and a white diamond mark corresponds to a case where the internal reforming is not performed.
  • the horizontal axis represents the molar ratio (S / C ratio) between water vapor (S) and carbon (C) introduced into the fuel cell.
  • This S / C ratio is the S / C of the gas (mixed gas of raw fuel gas and water vapor) introduced into the external reformer 34 in the configuration of the fuel cell device Y shown in FIGS.
  • This is an operating parameter that may change depending on operating conditions such as the power load of the fuel cell.
  • the S / C ratio was changed from 1.5 to 3.0 in steps of 0.5.
  • This range is a range that may change normally in the operation of the fuel cell device Y.
  • Fuel cell single cell unit power generation voltage 0.8V Fuel cell temperature ( internal reforming temperature) 700 ° C Fuel cell total fuel utilization 80% This fuel cell total fuel utilization efficiency is the ratio of the power generation fuel gas (H 2 + CO) consumed by the power generation reaction in the fuel cell device Y, and is expressed by the following equation.
  • the low temperature of the external reformer 34 and the reduction of the S / C ratio can be achieved by supplying steam reforming reaction heat and evaporative heat, water self-sustained In the state, it is provided for the condenser (the anode off-gas circulation circuit RL described in the third embodiment) for the steam reforming using only steam (water) generated by power generation to obtain the fuel gas by performing steam reforming.
  • the heat transfer area of the condenser 32b) can be reduced, which is advantageous in terms of cost.
  • the S / C ratio 2.5
  • the S / C ratio 2.0.
  • the amount of heat required for the generator 34 is reduced by 60%, the amount of heat transfer of the vaporizer 33 required for steam generation is reduced by 20%, and the DC power generation efficiency is improved by 3.6%.
  • the partial pressure of the fuel gas for power generation at the fuel cell inlet can be lowered by lowering the temperature of the external reformer 34 (500 ° C.). Since the steam reforming reaction occurs promptly, the power generation fuel gas partial pressure at the fuel cell outlet increases. A high partial pressure at the battery outlet is advantageous for stabilizing off-gas combustion.
  • the power generation fuel gas partial pressure difference (concentration difference) at the fuel cell inlet / outlet is reduced, so that the uneven generation of the power generation amount in the fuel cell R is reduced and the temperature difference is also reduced. Therefore, durability and reliability are improved by reducing the thermal stress of the fuel cell.
  • the water vapor / carbon ratio (S / C ratio) at the inlet of the external reformer 34 is controlled in the range of 1.5 to 3.0. More preferably, it is controlled in the range of 1.5 or more and 2.5 or less.
  • the sulfur concentration contained in the raw fuel gas is set to 1 vol. By setting it to ppb or less (more preferably, 0.1 vol. ppb or less), stable operation can be ensured over a long period of time.
  • the reforming temperature in the external reformer 34 is controlled to be lower than the temperature in the internal reforming catalyst layer D provided in the reducing gas supply path L1.
  • Operation is performed with the fuel gas partial pressure for power generation at the inlet of the reducing gas supply path L1 being 50% or less of the total gas pressure. That is, under the same power load, when the fuel gas partial pressure for power generation at the inlet of the reducing gas supply path L1 is mainly reformed by the external reformer 34 (for example, the fuel cell device Y
  • the power generation fuel gas partial pressure at the inlet of the reducing gas supply path L1 set at the time of starting is controlled to be low.
  • the reforming rate of the fuel gas reformed by the external reformer 34 is set to 30% to 60%.
  • the anode electrode layer A is disposed between the metal support 1 and the electrolyte layer B, and the cathode electrode layer C is disposed on the opposite side of the metal support 1 as viewed from the electrolyte layer B. did.
  • a configuration in which the anode electrode layer A and the cathode electrode layer C are disposed in reverse is also possible. That is, a configuration in which the cathode electrode layer C is disposed between the metal support 1 and the electrolyte layer B and the anode electrode layer A is disposed on the side opposite to the metal support 1 when viewed from the electrolyte layer B is also possible.
  • the positional relationship between the reducing gas supply path L1 and the oxidizing gas supply path L2 is reversed, and as described above, the reducing gas supply path L1 side (in this case, the lower side of the metal separator 7).
  • a single fuel cell R is formed on the metal support 1, but a plurality of fuel cells R are partitioned on the front side of the metal support 1. A plurality of them may be arranged.
  • the formation site of the internal reforming catalyst layer D is formed on the back side 1f of the metal support 1 and the inner surface of the metal separators 3 and 7 on the reducing gas supply path L1 side.
  • the internal reforming catalyst layer D serves as an internal reforming if it is formed in a portion where the water vapor generated in the anode electrode layer A flows, so that the through holes 1a provided in the metal support 1 are formed. It may be provided on the inner surface.
  • the reformer 34 performs steam reforming.
  • the load on the external reformer 34 can be reduced.
  • a reformer that performs reforming other than steam reforming, for example, partial combustion reforming or autothermal reforming can also be employed.
  • the raw fuel gas used in the present invention is a so-called hydrocarbon fuel, and it is sufficient that at least hydrogen can be generated by reforming the raw fuel gas.
  • the turbulent flow promoting body E is formed of the mesh body Ea and is attached to the surface of the metal support 1.
  • the flow in the reducing gas supply path L1 is directed to the through hole 1a.
  • a large number of obstacles Eb that disturb the flow of the reducing gas supply path L1 may be arranged.
  • the obstacle Eb can have any shape such as a spherical shape, a triangular pyramid shape, or a columnar shape.
  • FIG. 20 shows an example in which the obstacle Eb is spherical.
  • the internal reforming catalyst layer D and the turbulent flow promoting body E have been described as independent. However, for example, at least a part of the surface of the mesh body Ea described above or a failure
  • the internal reforming catalyst layer D may be provided on at least a part of the body Eb.
  • FIG. 21 shows an example of this. That is, by providing the internal reforming catalyst layer D on at least a part (surface in the illustrated example) of the turbulent flow promoting body E, the turbulent flow promoting body E is arranged, Both functions can be demonstrated.
  • FIG. 8 A configuration example in the case of the second embodiment of the present invention is shown in FIG.
  • a mesh Ea (E) serving as a turbulent flow promoting body is disposed inside a fuel gas supply path L1 formed in the cylinder, and an internal reforming catalyst layer D is also formed on the outer surface thereof.
  • hydrocarbon-based gas such as city gas (gas containing methane as a main component and containing ethane, propane, butane, etc.) is used as the raw fuel gas.
  • city gas gas containing methane as a main component and containing ethane, propane, butane, etc.
  • hydrocarbons such as natural gas, naphtha and kerosene, alcohols such as methanol and ethanol, ethers such as DME, and the like as raw fuel gas.
  • the metal oxide layer x as the diffusion suppression layer is installed on the surface of the metal support 1 .
  • the metal oxide layer x is not installed.
  • the metal oxide layer x can be formed into a plurality of layers.
  • the diffusion suppression layer different from a metal oxide layer can also be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Composite Materials (AREA)

Abstract

燃料電池セルに備えられるアノード電極層を数十ミクロンオーダーとしても、内部改質反応を合理的且つ効率的に利用した高効率の燃料電池を得ることにある。 電解質層を挟んでアノード電極層とカソード電極層が形成された燃料電池セルと、アノード電極層に水素を含有するガスを供給する還元性ガス供給路と、カソード電極層に酸素を含有するガスを供給する酸化性ガス供給路とを備えて構成され、還元性ガス供給路の少なくとも一部に、燃料ガスを水蒸気改質する改質触媒を備えた内部改質触媒層を有する燃料電池単セルユニットUを設け、燃料ガスを水蒸気改質する改質触媒を備えた外部改質器34を、還元性ガス供給路の上流に設け、外部改質器34により一部が改質された燃料ガスを還元性ガス供給路に供給する。

Description

燃料電池装置及び燃料電池装置の運転方法
 本発明は、電解質層を挟んでアノード電極層とカソード電極層が形成された燃料電池セルと、アノード電極層に水素を含有するガスを供給する還元性ガス供給路と、カソード電極層に酸素を含有するガスを供給する酸化性ガス供給路とを備えた燃料電池に関する。
 燃料電池セルは、両電極層に所要のガス(還元性ガス、酸化性ガス)が供給されることで、それ単体で発電する。本明細書では、この燃料電池セル、還元性ガス供給路及び酸化性ガス供給路を備えて構成されるユニットを「燃料電池単セルユニット」と呼ぶ。そして、これら燃料電池単セルユニットが所定の方向に複数積層されて、本発明に係る燃料電池モジュールが構築される。この燃料電池モジュールは、本発明にいう燃料電池装置の中核をなす。
 この種の燃料電池に関する背景技術として、特許文献1、2、3に記載の技術を挙げることができる。
 特許文献1に開示の技術は、発電性能を犠牲にすることなく、発電中において高温となり過ぎてしまうこと、及び温度むらが発生してしまうこと、のいずれをも防止することのできる燃料電池を提供することを目的とし、燃料極(本発明の「アノード電極層」に相当)112に燃料ガス(本発明の「水素を含有するガス」に相当)を供給するための流路である燃料供給流路(本発明の「還元性ガス供給路」に相当)(210,125)を備えている。そして、この燃料供給流路に、水蒸気改質反応を生じさせるための改質触媒部PR1を、燃料極112から離間して且つ燃料極112に対向する面に設ける。
 この文献1に開示の技術では、改質触媒部PR1で改質された改質ガスが燃料極に導入される。そして、改質ガスは燃料極で消費され、燃料供給流路の出口から排出される。この技術では、水蒸気改質反応が吸熱反応であること(熱供給が必要)を利用して、燃料電池セルの高温化を防止する。ここで、改質触媒部PR1が設けられる部位は、燃料極に対して燃料ガス供給の上流側となる部位であり、電池反応を終えた排気は改質触媒部PB1が設けられた流路とは別の排気流路から排出される(図19(c)参照)。
 さらに、図面等から判断して、文献1に開示の燃料電池は、その構造から見て、所謂アノード電極支持型燃料電池となっている。
 一方、発明者らは、特許文献2、3において、金属支持体の一方の面に薄層状に燃料電池セルを設けることを提案している。
 特許文献2に開示の技術は電気化学素子を平板状とするものであり、特許文献3に開示の技術は、電気化学素子を円盤状とする。
 これら特許文献に開示の技術は、電気化学素子、電気化学モジュール、電気化学装置に関するが、電気化学素子が水素を含有するガス及び酸素を含有するガスの供給を受けて発電を行う場合、電気化学素子は燃料電池セルとなり、電気化学モジュールが燃料電池モジュールとなり、電気化学装置が燃料電池装置となる。
 特許文献2、3に開示の技術は、燃料電池セルの支持を金属支持体により行うことにより、金属支持体の一方の面に形成する燃料電池セルを成す各層(少なくと、アノード電極層、電解質層及びカソード電極層)をミクロンオーダーから数十ミクロンオーダーの非常に薄い薄層ともできる。無論、数ミリ程度の厚みを備えてもよい。
特開2017-208232号公報 特開2016-195029号公報 特開2017-183177号公報
 特許文献1に開示の従来型のアノード支持型燃料電池では、アノード電極層が厚く(一般的に数ミリオーダー)、燃料ガスが導入される入口部分で一気に内部改質反応も進行してしまう。このため、燃料電池の入口温度が低くなり、排気側は逆に燃料電池セルの本来の温度に維持されるため、改質触媒部を設けた側が低温となりやすく、入口側と出口側との温度差が出やすい。
 さらに、燃料電池反応では水蒸気が生成されるが、電池反応を終えた排気は改質触媒部を通らずに排気流路から排出されるので、この水蒸気が内部改質反応に有用に利用されることはない。
 特許文献2、3に開示の技術においては、金属支持型燃料電池では、金属支持体上に形成されるアノード電極層が数十ミクロンオーダーと薄いため、特許文献1に記載のアノード支持型燃料電池よりも内部改質反応の効果が得られにくく、アノード支持型燃料電池のような高い発電効率を実現することが難しい。
 何れにしても、燃料電池単セルユニット内に内部改質触媒層を備えて構成される燃料電池を好適に使用する技術は、いまだ確立されていない。
 この実情に鑑み、本発明の主たる課題は、内部改質反応を合理的且つ効率的に利用できる高効率の燃料電池を得ることにある。
 本発明の第1特徴構成は、
 電解質層を挟んでアノード電極層とカソード電極層が形成された燃料電池セルと、前記アノード電極層に水素を含有するガスを供給する還元性ガス供給路と、前記カソード電極層に酸素を含有するガスを供給する酸化性ガス供給路とを備えて構成され、前記還元性ガス供給路の少なくとも一部に、原燃料ガスを改質する改質触媒を備えた内部改質触媒層を有する燃料電池単セルユニットを設け、
 前記原燃料ガスを改質する改質触媒を備えた外部改質器を、前記還元性ガス供給路の上流に設け、当該外部改質器により少なくとも一部が改質された前記原燃料ガスが前記還元性ガス供給路に供給される点にある。
 本特徴構成によれば、燃料電池セルを成すアノード電極層に還元性ガス供給路を介して少なくとも水素が供給される。一方、カソード電極層には酸化性ガス供給路を介して少なくとも酸素が供給される。結果、これらのガス供給により、発電反応を良好に発生させることができる。
 さて、このようにして構成される燃料電池の運転には、その燃料電池セルの組成に従って、電池反応に必要とされる温度域(例えば、後に示すように燃料電池をSOFCとする場合、その作動温度は700℃程度となる)に維持することが必要となる。電池反応自体は発熱反応であるため、所定の温度域に到達した状態で、適切な抜熱により電池は運転を継続できる。
 そして、本発明に係る燃料電池単セルユニットには、内部改質触媒層が設けられる。
 結果、この内部改質触媒層に水蒸気改質対象とできるガス(例えば、本発明における原燃料ガス)を供給するようにしておくことで、このガスの内部改質を起こさせることができる。そして、このようにして生成される水素を、燃料電池セルのアノード電極層に導くことで、発電の用に供することができる。このとき、発熱反応である電池により発生される熱を良好に利用できる。
 換言すると、この構成の燃料電池装置では、外部改質器での改質率が比較的低い程度に抑えられたとしても、燃料電池単セルユニット内での内部改質で補うことが可能となり、結果的に安定した発電を行うことができる。
 後にも示すように、この構成の燃料電池装置では、内部改質触媒層を備えることなく、外部改質器のみを備える燃料電池装置に対して、発電効率を向上させることができる。特に、低S/C比(低水蒸気/カーボン比)の領域における改善が著しい。さらに、アノード電極層に対して水素を含有するガスを供給する還元性ガス供給路の入口・出口間の水素分圧差を小さくできるため、低水素分圧下で起こり易い燃料電池セルの劣化を抑制できる効果も得られる。
 また、内部改質を実行する場合は、燃料電池セル(還元性ガス供給路)出入口の水素分圧差(濃度差)が小さくなることにより、発電量のセル内の偏在が小さくなり、温度差も縮小されるため、燃料電池セルの熱応力が緩和されることによって耐久性や信頼性が向上する。
 ここでは、理解を容易とするために水素分圧で説明を進めたが、水蒸気改質では後述するように水素とともに一酸化炭素も発生することがあり、これらが共に発電の用を果たす。以下、燃料電池セル内をアノード電極層に移動してくる酸素イオンと反応するガス(水素及び一酸化炭素)を、「発電用燃料ガス」と称する。
 本発明の構成を取ることで、外部改質とともに、燃料電池単セルユニット内で起こす内部改質の両方を行うことで、エネルギー効率の高い燃料電池装置が実現できる。
 本発明の第2特徴構成は、
 前記燃料電池セルの前記アノード電極層が薄層状に形成されている点にある。
 本特徴構成を採用することにより、アノード電極層を薄層状に形成するだけで、発電という燃料電池セルの機能を果たすことが可能となるとともに、解決課題の項で説明した、燃料電池セルを比較的薄く形成する場合に、効率が上がらないという課題を、外部改質、内部改質の両方を行うことにより解消できる。しかも、高価なアノード電極層材料の使用量を低減し、燃料電池装置のコストダウンを実現できる。
 本発明の第3特徴構成は、
 前記燃料電池セルで発生した水蒸気が還元性ガス供給路に供給される水蒸気供給路を有する点にある。
 本特徴構成を備えることにより、水蒸気供給路を介して発電により発生する水蒸気を還元性ガス供給路(その少なくとも一部に備えられる内部改質触媒層)に供給することができる。そして、この部位に水蒸気改質の対象となるガス(本発明の原燃料ガス)を供給しておくと、この部位で内部改質を発生させ、この改質により得られる少なくとも水素及び一酸化炭素をアノード電極層に供給して、発電を行うことができる。
 内部改質触媒層の近傍における反応及びその効果を簡単に説明すると、例えば、図6にも内部改質反応式で示すように、原燃料ガス(CH)と水蒸気(HO)で左辺が構成され、右辺には水素(H)と一酸化炭素(CO)に含む反応式となるが、これらの反応は所謂「相平衡状態」にあることから、この反応領域への水蒸気の供給が進めば進む程、且つ、この反応領域から水素や一酸化炭素が奪われれば奪われる程、水蒸気改質反応が進む。そして、本発明では、水蒸気供給路を備えることで、内部改質触媒層への水蒸気の供給を促し、還元性ガス供給路を介するアノード電極層への水素の供給により、水蒸気改質を燃料電池単セルユニット内で良好に起こさせ、効率のよい発電を行うことができる。
 本発明の第4特徴構成は、
 金属支持体上に薄層状に形成された一つの前記燃料電池セルと、前記還元性ガス供給路と、前記酸化性ガス供給路とを備えて前記燃料電池単セルユニットが構成され、
 原燃料ガスから水蒸気改質反応により少なくとも水素を生成する内部改質触媒層を前記燃料電池単セルユニット内に備え、
 発電反応により発生する水蒸気を前記アノード電極層から排出して、前記内部改質触媒層に導くとともに、当該内部改質触媒層で生成される少なくとも水素を前記アノード電極層に導く、内部改質燃料供給路を設けた点にある。
 本特徴構成によれば、燃料電池セルは、このセルとは別体の強靭な金属支持体に支持されるため、例えば、燃料電池セルの強度を保つためにアノード電極層を厚くする等の必要はなく、例えば、数十~数百ミクロンの厚みまで燃料電池セルを薄く構成することも可能となる。これにより、燃料電池に用いる高価なセラミックス材料の使用量を減らし、低コストでコンパクト、高性能な燃料電池装置を実現できる。
 これまでも示したように、原燃料ガスの水蒸気改質反応では、水素の他、一酸化炭素も生成されるが、これらのガスは、発電用燃料ガスとしてアノード電極層において発電の用に供される。
 本発明の第5特徴構成は、
 前記金属支持体における、前記燃料電池セルが形成された面とは異なる面に、前記内部改質触媒層が設けられる点にある。
 本特徴構成によれば、燃料電池セルを設ける面とは異なる、金属支持体上の特定面を利用して、内部改質の用に供給することができる。また、金属支持体上の特定面に、内部改質触媒層を形成して内部改質の用に供することができるので、低コストでコンパクト、高性能な燃料電池装置を得ることができる。
 本発明の第6特徴構成は、
 前記金属支持体を貫通する貫通孔が複数設けられるとともに、
 前記金属支持体の一方の面に前記アノード電極層が、他方の面に沿って前記還元性ガス供給路が設けられ、
 前記他方の面の少なくとも一部に前記内部改質触媒層が設けられ、
 前記還元性ガス供給路に於ける流れ方向に関し、前記貫通孔が働いて前記内部改質燃料供給路となる点にある。
 本特徴構成によれば、内部改質触媒層に水蒸気改質対象とできるガス(例えば、本発明における原燃料ガス)を供給するようにしておくことで、発電反応により生成される水蒸気を利用して、このガスの内部改質を起こさせることができる。そして、このようにして生成される発電用燃料ガスを、燃料電池セルのアノード電極層に導くことで、発電の用に供することができる。
 即ち、本発明における内部改質燃料供給路は、アノード電極層から放出される水蒸気の排出部としての役割と、水蒸気改質により生成される発電用燃料ガスをアノード電極層へ再度導く供給部との両方を兼ねる構造となる。
 なお、金属支持体のアノード電極層が設けられる側の面の貫通孔の開口部の面積よりも他方の面の貫通孔の開口部の面積の方が大きいと好ましい。このようにすることで、アノード電極層へ発電用燃料ガスを供給し易くなるからである。
 本発明の第7特徴構成は、
 前記貫通孔の内部に前記内部改質触媒層を設けることにある。
 本特徴構成によれば、金属支持体に設ける貫通孔を利用して、内部改質の用に供給することができる。また、この貫通孔に、内部改質触媒層を形成して内部改質の用に供することができるので、低コストでコンパクト、高性能な燃料電池装置を得ることができる。
 本発明の第8特徴構成は、
 前記燃料電池単セルユニットに、前記還元性ガス供給路と前記酸化性ガス供給路とを仕切る少なくとも一つの金属セパレータを備え、
 前記金属セパレータの前記還元性ガス供給路側の少なくとも一部に前記内部改質触媒層が設けられる点にある。
 本特徴構成によれば、金属セパレータの還元性ガス供給路を形成する特定面を利用して、内部改質の用に供することができる。また、金属セパレータの還元性ガス供給路側の少なくとも一部に、内部改質触媒層を形成して内部改質の用に供することができるので、低コストでコンパクト、高性能な燃料電池装置を得ることができる。
 本発明の第9特徴構成は、
 前記内部改質触媒層に含有される改質触媒が、少なくとも担体に金属が担持された触媒である点にある。
 本特徴構成によれば、担体に金属を担持させた触媒を用いることで、触媒に使用する金属の使用量を低減しても高性能な内部改質触媒層とすることができるので、低コストで高性能な燃料電池装置を得ることができる。
 本発明の第10特徴構成は、
 前記内部改質触媒層に含有される改質触媒がNiを含む触媒である点にある。
 本特徴構成によれば、比較的入手容易で安価な金属であるNiを使用して水蒸気改質を内部改質触媒層で起こすことができる。
 本発明の第11特徴構成は、
 前記還元性ガス供給路に、当該還元性ガス供給路内の流れを乱す乱流促進体を設けた点にある。
 還元性ガス供給路内を流れるガス流は、その流路構成により層流となりやすいが、この流路に乱流促進体を挿入しておくことにより、流れを乱し、還元性ガス供給路内に形成される主流に対して、主流方向とは異なった方向(例えば主流に対して直交する流れ)を形成することができる。結果、アノード電極層への水素を含有するガスの供給を効率的に行える。さらに、これまで説明してきた内部改質触媒層への所定のガス(改質前の原燃料ガスや水蒸気)の混合・放出を促して、内部改質触媒層による内部改質をより促進できる。
 本発明の第12特徴構成は、
前記燃料電池セルが固体酸化物形燃料電池である点にある。
 本特徴構成によれば、外部改質器により改質された改質済ガスを改質済ガス中の一酸化炭素除去などの追加改質工程を経ずに、直接固体酸化物形燃料電池に供給して発電を行うことができるので、シンプルな構成の燃料電池装置とすることができる。
 さらに、この固体酸化物形燃料電池は、その発電作動温度が650℃以上の高温域で使用することができるが、この温度域の熱を内部改質反応に有効利用しながら、高効率な発電を実現できる。
 本発明の第13特徴構成は、これまで説明してきた燃料電池装置の運転方法であって、
 前記外部改質器の入口における水蒸気/カーボン比(S/C比)を、1.5以上3.0以下の範囲に制御する点にある。
 後に詳述するが、水蒸気改質を外部改質器での外部改質と燃料電池単セルユニット内における内部改質との両方で行うことにより、外部改質器へ供給する水蒸気量を低下させることが可能となり、これまでより広いS/C比範囲で高い発電効率を得ることができるので、上記の範囲が好ましい。また、前記外部改質器の入口におけるS/C比を1.5以上、2.5以下の範囲に制御するものであると、本構成による発電効率の向上効果をより享受できるので、より好ましい。なお、例えば、発明者の具体的な検討例では、外部改質器に必要となる熱量は60%低減することが可能となり、水蒸気発生で必要とされる伝熱量は20%低減することができ、結果的に、直流発電効率は3.6%向上できる。
 換言すると、同一の電力負荷下で、前記内部改質触媒層を備えることなく、前記燃料ガスの改質を前記外部改質器単独で行う場合に設定する水蒸気/カーボン比(S/C比)に対して、前記外部改質器の入口における水蒸気/カーボン比(S/C比)を、低く制御し、発電効率を向上することが可能となる。
 本発明の第14特徴構成は、これまで説明してきた燃料電池装置の運転方法であって、
 前記外部改質器における改質温度を、前記還元性ガス供給路に設けられた内部改質触媒層における温度より低く制御する点にある。
 本構成にあっては、原燃料ガスの内部改質が可能であり、それにより生成される水素や一酸化炭素(発電用燃料ガス)を発電用に供することができるため、電力負荷に対応した発電を支障なく実現できる。このように外部改質器の温度を低下させることにより、従来、外部改質器で水蒸気改質を行っていた場合に必要とされてきた熱(エネルギー)を大幅に低減できる。
 内部改質を実行する場合は、外部改質器の低温化によって燃料電池セル(還元性ガス供給路)の入口部付近での発電用燃料ガス分圧は低くなるが、燃料電池セル内では発生する水蒸気によって速やかに内部改質反応が進行するため、燃料電池セル内で順次、発電用燃料ガスを発生させて、極端な発電用燃料ガス分圧の低下を抑制し、燃料電池セルの劣化を防ぐことができる。また、出口部付近での発電用燃料ガス分圧の極端な低下を抑制できる。燃料電池セル出口の発電用燃料ガス分圧が高くなることは、後述する第2実施形態のようにオフガス燃焼を行う場合は、その安定化に有利となる。
 本発明の第15特徴構成は、これまで説明してきた燃料電池装置の運転方法であって、
 前記還元性ガス供給路の入口における発電用燃料ガス分圧を全ガス圧の50%以下として運転する点にある。
 本構成にあっては、燃料ガスの内部改質が可能であり、それにより燃料電池単セルユニット内部で生成される発電用燃料ガスを発電用に供することができるようになるため、燃料電池セル(還元性ガス供給路)の入口部付近での発電用燃料ガスの分圧を低くしても、電力負荷に対応した発電を支障なく実現できる。
 換言すると、同一の電力負荷下で、外部改質器での改質率を従来よりも下げて、前記還元性ガス供給路の入口における発電用燃料ガス分圧を50%以下としても、前記内部改質触媒層での内部改質反応によって、燃料電池セル内部での水素分圧の極端な低下を抑制し、燃料電池セルの劣化を防ぐことができる。なお、前記還元性ガス供給路の入口における発電用燃料ガス分圧を43%以下とすると、上記の効果に加えて、外部改質器での改質負荷を抑制し、燃料電池装置の発電効率の向上効果をより高められるので、より好ましい。
 本発明の第16特徴構成は、これまで説明してきた燃料電池装置の運転方法であって、
 当該還元性ガス供給路の入口における発電用燃料ガス分圧の当該入口における全ガスに対する割合を入口割合、還元性ガス供給路の出口における発電用燃料ガス分圧の当該出口における割合を出口割合として、パーセント表示での前記入口割合と前記出口割合の差を、40%以内に維持して運転される点にある。
 本構成にあっては、原燃料ガスの内部改質が可能であり、それにより燃料電池単セルユニット内部で生成される発電用燃料ガスを発電用に供することができるようになるため、燃料電池セル(還元性ガス供給路)の入口部付近での発電用燃料ガスの分圧を低くしても、還元性ガス供給路の入口と出口での発電用燃料ガス分圧の差を従来よりも小さくすることが可能となる。これにより、燃料電池セル内部での水素分圧の極端な低下を抑制し、燃料電池セルの劣化を抑制することができる。
 本発明の第17特徴構成は、これまで説明してきた燃料電池装置の運転方法であって、
 前記外部改質器により改質される前記原燃料ガスの改質率を、30%以上60%以下とする点にある。
 設備の構成にもよるが、前記外部改質器により改質される原燃料ガスの改質率を30%以上60%以下とすることにより、外部改質器による外部改質と内部改質のバランスが良く、燃料電池装置の発電効率を従来よりも向上することができる。なお、外部改質と内部改質のバランスがより良くなるので、35%以上だとより好ましく、40%以上だと更に好ましい。また、燃料電池装置の発電効率の向上効果をより得やすくなるので、55%以下だとより好ましく、50%以下だと更に好ましい。なお、30%より低いと、内部改質負荷が大きくなりすぎる。一方、60%より高くすると、燃料電池装置の発電効率の向上効果が得難い。
 本発明の第18特徴構成は、これまで説明してきた燃料電池装置の運転方法であって、
前記原燃料ガスの含有される硫黄濃度を1vol.ppb以下(更に好ましくは、0.1vol.ppb以下)まで脱硫して前記外部改質器に供給する点にある。
 本構成を採用することにより、原燃料ガスに含まれる硫黄分によって改質触媒などが被毒される等の悪影響を大きく低減し、安定した運転を長期に渡って確保できる。硫黄濃度を0.1vol.ppb以下とするとさらに燃料電池装置の信頼性・耐久性を高めることができる。
第1実施形態の燃料電池装置の概略構成を示す図 第1実施形態の燃料電池単セルユニットの構造を示す上面図 第1実施形態の燃料電池単セルユニットの構造を示す断面図 有突起集電板の構造を示す斜視断面図 第1実施形態の燃料電池モジュールの構造を示す断面図 第1実施形態における電池反応と改質反応との説明図 第2実施形態の燃料電池装置の構成を示す図 第2実施形態の燃料電池モジュールの構造を示す正面図及び平断面図 第2実施形態の燃料電池単セルユニットの構造を示す斜視図 第2実施形態の燃料電池単セルユニットの形成過程の説明図 第2実施形態における電池反応と改質反応との説明図 第3実施形態の燃料電池装置の概略構成を示す図 第3実施形態における一対の燃料電池単セルユニットを備えた燃料電池モジュールの要部断面斜視図 第3実施形態における一対の燃料電池単セルユニットを備えた燃料電池モジュールの要部断面斜視図 燃料電池単セルユニット内での内部改質を行う場合と行わない場合の燃料電池の発電効率比較を示す図 燃料電池単セルユニット内での内部改質を行う場合と行わない場合の燃料電池セル入口における発電用燃料ガス分圧を示す図 燃料電池単セルユニット内での内部改質を行う場合と行わない場合の燃料電池セル出口における発電用燃料ガス分圧を示す図 燃料電池単セルユニット内での内部改質を行う場合と行わない場合の燃料電池セル入口・出口間における発電用燃料ガス分圧差を示す図 燃料電池単セルユニットにおける内部改質触媒層の配置構成を示す比較説明図 乱流促進体の別実施形態を示す図 乱流促進体の表面に内部改質触媒層を設けた別実施形態を示す図 乱流促進体を備えた第2実施形態の燃料電池単セルユニットの断面図
 本発明の実施形態について図面に基づいて説明する。
 以下、本発明の実施の形態として、第1実施形態、第2実施形態及び第3実施形態を紹介する。説明に際しては、各実施形態について、当該実施形態を採用する燃料電池装置Y全体の説明をした後、燃料電池装置Yに備えられる燃料電池モジュールM、この燃料電池モジュールMを積層状態で構築する燃料電池単セルユニットUについて説明する。
 第1実施形態の特徴は、燃料電池モジュールMが円盤形とされ、それ自体が還元性ガス及び酸化性ガスの供給を受けて電池動作するのに対して、第2実施形態では、燃料電池モジュールMは概略直方形とされ、この燃料電池モジュールMが、外部改質器34、気化器33を収納する筐体10内に収納されて電池動作する点にある。第3実施形態は、基本的には第1実施形態の構造を踏襲し、第1実施形態において円盤形としている燃料電池モジュールMを方形とする。第1実施形態及び第3実施形態の燃料電池セルRは非常に薄く作製することができる。一方、第2実施形態の燃料電池セルRは第1実施形態の燃料電池セルRに対して厚みを持たせることも可能である。当然、比較的薄く構成してもよい。
 本発明の特徴である、燃料電池単セルユニットUに内部改質触媒層Dを備える点及び外部改質器34を備える点に関しては、全実施形態で共通である。
<第1実施形態>
 この実施形態の燃料電池装置Yの構成を図1に示した。
<燃料電池装置>
 燃料電池装置Yは、電力と熱の両方を発生・供給可能な、所謂「コジェネレーションシステム」となっている。電力はインバータ38を介して出力され、熱は排ガスの保有する熱を熱交換器36により温水として回収し利用することができる。インバータ38は、例えば、燃料電池モジュールMの直流を変換して、商用系統(図示省略)から受電する電力と同じ電圧および同じ周波数に変換して出力する。制御部39は、このインバータ38を適宜制御する他、燃料電池装置Yを構成している各機器の作動を制御する。
 燃料電池装置Yには、発電の用を担う燃料電池モジュールMに対して、還元性ガス供給用の主な機器として、昇圧ポンプ30、脱硫器31、改質水タンク32、気化器33及び外部改質器34を備えている。酸化性ガス供給用の主要機器はブロア35であり、このブロア35により空気を吸引して酸素を含有する酸化性ガスが供給可能となっている。
 還元性ガスの供給系統(この系統は燃料電池装置における燃料供給部となる)に関してさらに説明すると、都市ガス(メタンを主成分としてエタンやプロパン、ブタンなどを含むガス)等の炭化水素系の原燃料ガスが昇圧ポンプ30により吸引されるとともに昇圧されて燃料電池モジュールMに送られる。都市ガスには硫黄化合物成分が含有されているため、脱硫器31においてこの硫黄化合物成分を除去(脱硫)する必要がある。脱硫器31には銅-亜鉛系脱硫剤が収納され、原燃料ガスに含まれる硫黄成分は硫黄含有量を1vol.ppb以下(更に好ましくは、0.1vol.ppb以下)まで低減する。この種の銅-亜鉛系脱硫剤としては、銅化合物(例えば、硝酸銅、酢酸銅等)及び亜鉛化合物(例えば、硝酸亜鉛、酢酸亜鉛等)を用いる共沈法により調製した酸化銅-酸化亜鉛混合物を水素還元して得られた脱硫剤、又は銅化合物、亜鉛化合物及びアルミニウム化合物(例えば、硝酸アルミニウム、アルミン酸ナトリウム等)を用いる共沈法により調製した酸化銅-酸化亜鉛-酸化アルミニウム混合物を水素還元して得られた脱硫剤を代表的に使用できる。
 脱硫後の原燃料ガスは、気化器33の後段側で改質水タンク32から供給される改質水と混合され、気化器33において水は水蒸気とされる。この原燃料ガスと水蒸気とは外部改質器34に送られ、原燃料ガスは水蒸気改質される。この水蒸気改質反応は、改質器内に収納される改質触媒による反応であり、後述する内部改質反応と同様に、炭化水素系の原燃料ガス(例えばメタン)が一部改質され、少なくとも水素を含有するガス(改質済ガス)が生成され、発電の用に供される。
 外部改質器34による改質は、原燃料ガスの全てを改質するものではなく、適宜割合で改質する。従って、本発明において、燃料電池モジュールM内に備えられる燃料電池セルRを構成するアノード電極層Aに送られるガスは、原燃料ガス(改質前ガス)と改質済ガスとの混合ガスとなる。この改質済ガスには、これまで説明してきた発電用燃料ガスである水素や一酸化炭素が含まれる。混合ガスは燃料電池単セルユニットUに備えられる還元性ガス供給路L1に供給される。
 さらに具体的に説明を進めると、図3、図4に示すように、アノード電極層Aに対して発電用の水素を含有するガスを供給する還元性ガス供給路L1が設けられ、この還元性ガス供給路L1に混合ガス(原燃料ガス(改質前ガス)と改質済ガスを含む)が供給され、この混合ガスに含まれる少なくとも水素が燃料電池セルRにて燃料電池反応に使用される。反応に用いられなかった残余の水素を含む排ガスは、燃料電池単セルユニットUから排出される。
 先に説明したように、熱交換器36は、燃料電池モジュールMからの排ガスと、供給される冷水とを熱交換させ、温水を生成する。この熱交換器36は燃料電池装置Yの排熱利用部となる。この排熱利用形態の代わりに、燃料電池モジュールMから排出される排ガスを熱発生に利用する形態としてもよい。即ち、排ガスには、燃料電池単セルユニットUにて反応に用いられなかった残余の水素、一酸化炭素、さらには原燃料ガスが含まれるため、それら燃焼性のガスの燃焼により発生する熱を利用することもできる。後述する第2実施形態は、残余の燃焼成分を燃料として、外部改質器34、気化器33の加熱に利用する。
<燃料電池単セルユニット>
 図2、図3に、本実施形態の燃料電池単セルユニットUの上面図及び断面図を示した。
 燃料電池単セルユニットUは、金属支持体1の上に形成される燃料電池セルRと、この燃料電池セルRとは反対側に接合される金属セパレータ(有突起集電板3)を有して構成される。本実施形態における金属支持体1は円盤形状であり、燃料電池セルRは、アノード電極層A、電解質層B、カソード電極層Cを少なくとも備えて構成され、金属支持体1の表側1eに形成・配置され、電解質層Bは、アノード電極層Aとカソード電極層Cとに挟まれた構造とされる。燃料電池セルRを金属支持体1の表側1eに形成する場合は、金属セパレータ3は金属支持体1の裏側1fに位置される。即ち、金属支持体1を挟む形態で、燃料電池セルR及び金属セパレータ3が位置される。
 このように燃料電池単セルユニットUは、金属支持体1上に形成された燃料電池セルRと金属セパレータ3とを備えることにより、還元性ガス供給路L1を介してアノード電極層Aに少なくとも水素を含有するガスを、酸化性ガス供給路L2を介してカソード電極層Cに酸素を含有するガスを供給して発電することができる。また、燃料電池単セルユニットUの構造的特徴として、金属支持体1の表側1eには金属酸化物層xが、アノード電極層Aの表面(アノード電極層Aとこれを覆う電解質層Bとの界面を含む)には中間層yが、さらに、電解質層Bの表面(電解質層Bとこれを覆うカソード電極層Cとの界面を含む)に反応防止層zを備えている。これら金属酸化物層x、中間層y、反応防止層zは、これら層x、y、zを挟む材料層間における構成材料の拡散を抑制する等のために設けられる層であり、理解を容易とするため、図6に示した。
<金属支持体>
 金属支持体1は、金属製の円盤形状を有する平板である。
 図2、図3からも判明するように、金属支持体1の中央に、金属支持体1と同心の開口部1bが形成されている。金属支持体1には、表側1eと裏側1fとを貫通して複数の貫通孔1aが形成されている。この貫通孔1aを通じて金属支持体1の表側1eと裏側1fとの間でガスの通流が可能となっている。この貫通孔1aを流れるガスは、具体的に、先に説明した改質済ガス(水素Hを含有する)と、燃料電池セルRにおける発電反応により生成される水蒸気HOである(図6参照)。
 金属支持体1の材料としては、電子伝導性、耐熱性、耐酸化性および耐腐食性に優れた材料が用いられる。例えば、フェライト系ステンレス、オーステナイト系ステンレス、ニッケル基合金などが用いられる。特に、クロムを含む合金が好適に用いられる。本実施形態では、金属支持体1は、Crを18質量%以上25質量%以下含有するFe-Cr系合金を用いているが、Mnを0.05質量%以上含有するFe-Cr系合金、Tiを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、Zrを0.15質量%以上1.0質量%以下含有するFe-Cr系合金、TiおよびZrを含有しTiとZrとの合計の含有量が0.15質量%以上1.0質量%以下であるFe-Cr系合金、Cuを0.10質量%以上1.0質量%以下含有するFe-Cr系合金であると特に好適である。
 金属支持体1は全体として板状である。そして金属支持体1は、アノード電極層Aが設けられる面を表側1eとして、表側1eから裏側1fへ貫通する複数の貫通孔1aを有する。貫通孔1aは、金属支持体1の裏側1fから表側1eへガスを透過させる機能を有する。なお、板状の金属支持体1を曲げたりして、例えば箱状、円筒状などの形状に変形させて使用することも可能である。
 金属支持体1の表面には、拡散抑制層としての金属酸化物層xが設けられている(図6参照)。すなわち、金属支持体1と後述するアノード電極層Aとの間に、拡散抑制層を形成している。金属酸化物層xは、金属支持体1の外部に露出した面だけでなく、アノード電極層Aとの接触面(界面)にも設けられる。また、貫通孔1aの内側の面に設けることもできる。この金属酸化物層xにより、金属支持体1とアノード電極層Aとの間の元素相互拡散を抑制することができる。例えば、金属支持体1としてクロムを含有するフェライト系ステンレスを用いた場合は、金属酸化物層xが主にクロム酸化物となる。そして、金属支持体1のクロム原子等がアノード電極層Aや電解質層Bへ拡散することを、クロム酸化物を主成分とする金属酸化物層xが抑制する。金属酸化物層xの厚さは、拡散防止性能の高さと電気抵抗の低さを両立させることのできる厚みであれば良い。
 金属酸化物層xは種々の手法により形成されうるが、金属支持体1の表面を酸化させて金属酸化物とする手法が好適に利用される。また、金属支持体1の表面に、金属酸化物層xをスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、スパッタリング法やPLD法等のPVD法、CVD法などにより形成しても良いし、メッキと酸化処理によって形成しても良い。更に、金属酸化物層xは導電性の高いスピネル相などを含んでも良い。
 金属支持体1としてフェライト系ステンレス材を用いた場合、アノード電極層Aや電解質層Bの材料として用いられるYSZ(イットリア安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア、CGOとも呼ぶ)等と熱膨張係数が近い。従って、低温と高温の温度サイクルが繰り返された場合も燃料電池セルRがダメージを受けにくい。よって、長期耐久性に優れた燃料電池セルRを実現できるので好ましい。
 先にも示したように、金属支持体1は、表側1eと裏側1fとを貫通して設けられる複数の貫通孔1aを有する。なお、例えば、貫通孔1aは、機械的、化学的あるいは光学的穿孔加工などにより、金属支持体1に設けることができる。この貫通孔1aは、図3(b)にも示すように、実質的に金属支持体1の表側1eが狭いテーパー形状となっている。この貫通孔1aは、金属支持体1の表裏両側からガスを透過させる機能を有する。金属支持体1にガス透過性を持たせるために、多孔質金属を用いることも可能である。例えば、金属支持体1は、焼結金属や発泡金属等を用いることもできる。
<燃料電池セル>
 先にも示したように、燃料電池セルRは、アノード電極層A、電解質層B、カソード電極層Cと、これらの層の間に適宜、中間層y、反応防止層zを有して構成される。この燃料電池セルRは、固体酸化物形燃料電池SOFCである。このように、実施形態として示す燃料電池セルRは中間層y、反応防止層zを備えることにより、電解質層Bは、アノード電極層Aとカソード電極層Cとで間接的に挟まれた構造となる。電池発電のみを発生させるという意味からは、電解質層Bの一方の面にアノード電極層Aを、他方の面にカソード電極層Cを形成することで、発電することは可能である。
<アノード電極層>
 アノード電極層Aは、図3、図6等に示すように、金属支持体1の表側1eであって貫通孔1aが設けられた領域より大きな領域に、薄層の状態で設けることができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは、5μm~50μmとすることができる。このような厚さにすると、高価な電極層材料の使用量を低減してコストダウンを図りつつ、十分な電極性能を確保することが可能となる。貫通孔1aが設けられた領域の全体が、アノード電極層Aに覆われている。つまり、貫通孔1aは金属支持体1におけるアノード電極層Aが形成された領域の内側に形成されている。換言すれば、全ての貫通孔1aがアノード電極層Aに面して設けられている。
 アノード電極層Aの材料としては、例えばNiO-GDC、Ni-GDC、NiO-YSZ、Ni-YSZ、CuO-CeO、Cu-CeOなどの複合材を用いることができる。これらの例では、GDC、YSZ、CeOを複合材の骨材と呼ぶことができる。
なお、アノード電極層Aは、低温焼成法(例えば1100℃より高い高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法やパルスレーザーデポジション法など)、CVD法などにより形成することが好ましい。これらの、低温域で使用可能なプロセスにより、例えば1100℃より高い高温域での焼成を用いずに、良好なアノード電極層Aが得られる。そのため、金属支持体1を傷めることなく、また、金属支持体1とアノード電極層Aとの元素相互拡散を抑制することができ、耐久性に優れた電気化学素子を実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
 なお、このアノード電極層Aに含有するNiの量は、35質量%以上85質量%以下の範囲とできる。また、アノード電極層Aに含むNiの量は、発電性能をより高められるので、40質量%より多いとより好ましく、45質量%より多いと更に好ましい。一方、コストダウンし易くなるので、80質量%以下であるとより好ましい。
 アノード電極層Aは、ガス透過性を持たせるため、その内部および表面に複数の細孔(図示省略)を有する。すなわちアノード電極層Aは、多孔質な層として形成する。アノード電極層Aは、例えば、その緻密度が30%以上80%未満となるように形成される。細孔のサイズは、電気化学反応を行う際に円滑な反応が進行するのに適したサイズを適宜選ぶことができる。なお緻密度とは、層を構成する材料の空間に占める割合であって、(1-空孔率)と表すことができ、また、相対密度と同等である。
(中間層)
 中間層yは、図6に示すように、アノード電極層Aを覆った状態で、アノード電極層Aの上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは2μm~50μm程度、より好ましくは4μm~25μm程度とすることができる。このような厚さにすると、高価な中間層材料の使用量を低減してコストダウンを図りつつ、十分な性能を確保することが可能となる。中間層yの材料としては、例えば、YSZ(イットリア安定化ジルコニア)、SSZ(スカンジウム安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア)、YDC(イットリウム・ドープ・セリア)、SDC(サマリウム・ドープ・セリア)等を用いることができる。特にセリア系のセラミックスが好適に用いられる。
 中間層yは、低温焼成法(例えば1100℃より高い高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などにより形成することが好ましい。これらの、低温域で使用可能な成膜プロセスにより、例えば1100℃より高い高温域での焼成を用いずに中間層yが得られる。そのため、金属支持体1を傷めることなく、金属支持体1とアノード電極層Aとの元素相互拡散を抑制することができ、耐久性に優れた燃料電池セルRを実現できる。また、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
 中間層yは、酸素イオン(酸化物イオン)伝導性を有する。また、酸素イオン(酸化物イオン)と電子との混合伝導性を有すると更に好ましい。これらの性質を有する中間層yは、燃料電池セルRへの適用に適している。
(電解質層)
 電解質層Bは、アノード電極層Aおよび中間層yを覆った状態で、中間層yの上に薄層の状態で形成される。また、厚さが10μm以下の薄膜の状態で形成することもできる。詳しくは電解質層Bは、図3、図6等に示すように、中間層yの上と金属支持体1の上とにわたって(跨って)設けられる。このように構成し、電解質層Bを金属支持体1に接合することで、電気化学素子全体として堅牢性に優れたものとすることができる。
 また電解質層Bは、金属支持体1の表側1eであって貫通孔1aが設けられた領域より大きな領域に設けられる。つまり、貫通孔1aは金属支持体1における電解質層Bが形成された領域の内側に形成されている。
 また電解質層Bの周囲においては、アノード電極層Aおよび中間層yからのガスのリークを抑制することができる。説明すると、発電時には、金属支持体1の裏側から貫通孔1aを通じてアノード電極層Aへガスが供給される。電解質層Bが金属支持体1に接している部位においては、ガスケット等の別部材を設けることなく、ガスのリークを抑制することができる。なお、本実施形態では電解質層Bによってアノード電極層Aの周囲をすべて覆っているが、アノード電極層Aおよび中間層yの上部に電解質層Bを設け、周囲にガスケット等を設ける構成としてもよい。
 電解質層Bの材料としては、YSZ(イットリア安定化ジルコニア)、SSZ(スカンジウム安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア)、YDC(イットリウム・ドープ・セリア)、SDC(サマリウム・ドープ・セリア)、LSGM(ストロンチウム・マグネシウム添加ランタンガレート)等を用いることができる。特にジルコニア系のセラミックスが好適に用いられる。電解質層Bをジルコニア系セラミックスとすると、燃料電池セルRを用いたSOFCの稼働温度をセリア系セラミックスに比べて高くすることができる。SOFCとする場合、電解質層Bの材料としてYSZのような650℃程度以上の高温域でも高い電解質性能を発揮できる材料を用い、システムの原燃料に都市ガスやLPG等の炭化水素系の原燃料を用い、原燃料を水蒸気改質等によってSOFCの還元性ガスとするシステム構成とすると、SOFCのセルスタックで生じる熱を原燃料ガスの改質に用いる高効率なSOFCシステムを構築することができる。
 電解質層Bは、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などにより形成することが好ましい。これらの、低温域で使用可能な成膜プロセスにより、例えば1100℃を越える高温域での焼成を用いずに、緻密で気密性およびガスバリア性の高い電解質層Bが得られる。そのため、金属支持体1の損傷を抑制し、また、金属支持体1とアノード電極層Aとの元素相互拡散を抑制することができ、性能・耐久性に優れた燃料電池セルRを実現できる。特に、低温焼成法やスプレーコーティング法などを用いると低コストな素子が実現できるので好ましい。更に、スプレーコーティング法を用いると、緻密で気密性およびガスバリア性の高い電解質層が低温域で容易に得られやすいので更に好ましい。
 電解質層Bは、還元性ガスや酸化性ガスのガスリークを遮蔽し、かつ、高いイオン伝導性を発現するために、緻密に構成される。電解質層Bの緻密度は90%以上が好ましく、95%以上であるとより好ましく、98%以上であると更に好ましい。電解質層Bは、均一な層である場合は、その緻密度が95%以上であると好ましく、98%以上であるとより好ましい。また、電解質層Bが、複数の層状に構成されているような場合は、そのうちの少なくとも一部が、緻密度が98%以上である層(緻密電解質層)を含んでいると好ましく、99%以上である層(緻密電解質層)を含んでいるとより好ましい。このような緻密電解質層が電解質層の一部に含まれていると、電解質層が複数の層状に構成されている場合であっても、緻密で気密性およびガスバリア性の高い電解質層を形成しやすくできるからである。
(反応防止層)
 反応防止層zは、電解質層Bの上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは2μm~50μm程度、より好ましくは3μm~15μm程度とすることができる。このような厚さにすると、高価な反応防止層材料の使用量を低減してコストダウンを図りつつ、十分な性能を確保することが可能となる。反応防止層zの材料としては、電解質層Bの成分とカソード電極層Cの成分との間の反応を防止できる材料であれば良いが、例えばセリア系材料等が用いられる。また反応防止層zの材料として、Sm、GdおよびYからなる群から選ばれる元素のうち少なくとも1つを含有する材料が好適に用いられる。なお、Sm、GdおよびYからなる群から選ばれる元素のうち少なくとも1つを含有し、これら元素の含有率の合計が1.0質量%以上10質量%以下であるとよい。反応防止層zを電解質層Bとカソード電極層Cとの間に導入することにより、カソード電極層Cの構成材料と電解質層Bの構成材料との反応が効果的に抑制され(拡散抑制)、燃料電池セルRの性能の長期安定性を向上できる。反応防止層zの形成は、1100℃以下の処理温度で形成できる方法を適宜用いて行うと、金属支持体1の損傷を抑制し、また、金属支持体1とアノード電極層Aとの元素相互拡散を抑制でき、性能・耐久性に優れた燃料電池セルRを実現できるので好ましい。例えば、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などを適宜用いて行うことができる。特に、低温焼成法やスプレーコーティング法などを用いると低コストな素子が実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
(カソード電極層)
 カソード電極層Cは、電解質層Bもしくは反応防止層zの上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm~100μm程度、好ましくは、5μm~50μmとすることができる。このような厚さにすると、高価なカソード電極層材料の使用量を低減してコストダウンを図りつつ、十分な電極性能を確保することが可能となる。カソード電極層Cの材料としては、例えば、LSCF、LSM等の複合酸化物、セリア系酸化物およびこれらの混合物を用いることができる。特にカソード電極層Cが、La、Sr、Sm、Mn、CoおよびFeからなる群から選ばれる2種類以上の元素を含有するペロブスカイト型酸化物を含むことが好ましい。以上の材料を用いて構成されるカソード電極層Cは、カソードとして機能する。
 なお、カソード電極層Cの形成は、1100℃以下の処理温度で形成できる方法を適宜用いて行うと、金属支持体1の損傷を抑制し、また、金属支持体1とアノード電極層Aとの元素相互拡散を抑制でき、性能・耐久性に優れた燃料電池セルRを実現できるので好ましい。例えば、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PDV法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などを適宜用いて行うことができる。特に、低温焼成法やスプレーコーティング法などを用いると低コストな素子が実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
 燃料電池単セルユニットUでは、金属支持体1とアノード電極層Aとの間の電気伝導性を確保している。また、必要に応じて、金属支持体1の表面の必要な部分に、絶縁被膜を形成してもよい。
<燃料電池セルでの発電>
 燃料電池セルRは、水素を含有する還元性ガス及び酸素を含有する酸化性ガスの両方の供給を受けて発電する。このように両ガスが燃料電池セルRの各電極層(アノード電極層A及びカソード電極層C)供給されることで、図6に示す様に、カソード電極層Cにおいて酸素分子Oが電子e-と反応して酸素イオンO2-が生成される。その酸素イオンO2-が電解質層Bを通ってアノード電極層Aへ移動する。アノード電極層Aにおいては、発電用燃料ガスである(水素Hおよび一酸化炭素CO)がそれぞれ酸素イオンO2-と反応し、水蒸気HO、二酸化炭素COと電子e-が生成される。以上の反応により、アノード電極層Aとカソード電極層Cとの間に起電力が発生し、発電が行われる。この発電原理は、第2実施形態でも同様である(図11参照)。
 以下、還元性ガス及び酸化性ガスの供給構造に関して説明するとともに、本発明独特の内部改質に関する構成について説明する。
 図3に示すように、燃料電池単セルユニットUは、金属セパレータとしての有突起集電板3を備えて構成される。この有突起集電板3は、図4(a)に示すように、金属製の円盤形状の板であって、凹部または凸部が1つ以上含まれる凹凸構造部位3aを有し、金属支持体1の裏側1fに面して配置され、金属支持体1に対して接合部位Wを介して接合される。凹凸構造部位3aは、複数の燃料電池単セルユニットUが積層される際に、他の燃料電池単セルユニットUのカソード電極層Cに接続される。従って、この有突起集電板3は、金属支持体1、さらにはアノード電極層Aに電気的に接続されている。この有突起集電板3において、その表裏間でガスが流通することはない。後述するように、有突起集電板3の金属支持体1側(換言するとアノード電極層A側)は、これまで説明してきた還元性ガス供給路L1とされ、その裏側(金属支持体1から離間した側)は、これまで説明してきた酸化性ガス供給路L2とできるのである。
 以下、これらガスの供給・排出に関して説明する。
 燃料電池単セルユニットUには、ガス供給管2が備えられている。
 ガス供給管2は、還元性ガス及び酸化性ガスを別個に、有突起集電板3の上下に形成された空間(それぞれ、径方向外方に流れる供給路となる)に供給する。ガス供給管2は、金属製の円筒形状の部材とされ、その中心軸Zが金属支持体1の中心軸Zと一致した状態で、金属支持体1の開口部1bに挿入され、溶接により固定される。また、金属支持体1がガス供給管2に対してシール材を挟んで付勢されてもよい。ガス供給管2の材料としては、上述の金属支持体1と同様のものを用いることができる。またガス供給管2の表面に、金属支持体1と同様の拡散防止膜を形成すると、Cr飛散を抑制することができ好適である。
 なお、ガス供給管2は、燃料電池単セルユニットUおよび後述する燃料電池モジュールMを構成するのに充分な強度を有すれば良い。また、ガス供給管2には、焼結金属や発泡金属等を用いることもできるが、この場合はガスが透過しないように表面コーティングなどの処理を施せばよい。
 ガス供給管2は、その内側に中心軸Zと平行に仕切壁2aが配置されて、第1流路2bと第2流路2cとに仕切られる。第1流路2bと第2流路2cとは、それぞれに異なるガスが通流できるよう、互いにガスが通流しない形態とされる。
 ガス供給管2には、内側と外側とを貫通する第1通流孔2dと第2通流孔2eとが形成されている。第1通流孔2dは、金属支持体1と有突起集電板3との間の空間(本発明の還元性ガス供給路L1となる)と第1流路2bとをつなぎ、両者の間でのガスの通流が可能となっている。第2通流孔2eは、有突起集電板3に対して金属支持体1と反対側の空間(本発明の酸化性ガス供給路L2となる)と第2流路2cとをつなぎ、両者の間でのガスの通流が可能となっている。第1通流孔2dと第2通流孔2eとは、ガス供給管2の中心軸Zに沿う方向に関して、異なる位置に形成されており、有突起集電板3を挟んで両側に形成されている。
 従って、本実施形態では、第1流路2bが有突起集電板3の上側に形成される還元性ガス供給路L1に接続され、第2流路2cが有突起集電板3の下側に形成される酸化性ガス供給路L2に接続される。
 有突起集電板3は、図4に示す様に、複数の凹凸構造部位3aが、有突起集電板3の円盤の面から上下方向に突出して形成されている。凹凸構造部位3aは、頂点がなだらかな円錐形状である。
 有突起集電板3は、図3に示される様に、金属支持体1の裏側1fに面して配置され、金属支持体1に対して接合部位Wを介して接合される。例えば、有突起集電板3を金属支持体1に直接付勢して接合することができるが、この場合は、凹凸構造部位3aの頂点と金属支持体1の接触する部分が接合部位Wとなる。また、凹凸構造部位3aの頂点に、導電性に優れたセラミックスペースト等を塗布して接合部位Wを形成して、有突起集電板3を金属支持体1に付勢して接合することもできるし、金属フェルト等を有突起集電板3と金属支持体1の間に挟んで有突起集電板3を金属支持体1に付勢して接合することもできる。もしくは、有突起集電板3と金属支持体1とが凹凸構造部位3aの頂点の一部または全部にて、ろう付けにて接合部位Wを形成しつつ接合することもできる。そして有突起集電板3は、ガス供給管2が開口部3bを通る形態にて配置される。有突起集電板3とガス供給管2とは、開口部3bの周囲において溶接にて接合される。また、有突起集電板3がガス供給管2に対してシール材を挟んで付勢されてもよい。
 有突起集電板3の材料としては、上述の金属支持体1と同様のものを用いることができる。また有突起集電板3の表面に、金属支持体1と同様の拡散防止膜を形成すると、Cr飛散を抑制することができ好適である。以上の様に構成される有突起集電板3は、プレス成形などにより低コストで製造することが可能である。なお有突起集電板3は、表側1eと裏側1fとの間でガスが通流できないよう、ガスを透過しない材料で構成される。
 この構造より、金属セパレータとしての有突起集電板3は、金属支持体1を介して燃料電池セルRを構成するアノード電極層Aに電気的に接続される。後述するように、燃料電池単セルユニットUが積層され、燃料電池モジュールMを成す状態では、有突起集電板3はカソード電極層Cにも電気的に接続される。
 有突起集電板3は、燃料電池単セルユニットUおよび後述する燃料電池モジュールMを構成するのに充分な強度を有すれば良く、例えば、0.1mm~2mm程度、好ましくは0.1mm~1mm程度、より好ましくは0.1mm~0.5mm程度の厚みのものを用いることができる。また、有突起集電板3には、金属板の他に焼結金属や発泡金属等を用いることもできるが、この場合はガスが透過しないように表面コーティングなどの処理を施せばよい。
<ガス供給>
 これまで説明してきた通り、有突起集電板3は凹凸構造部位3aを有しており、凹凸構造部位3aの頂点が金属支持体1の裏側1fに接合される。この構造において、金属支持体1と有突起集電板3との間には、中心軸Zに対して軸対称である、円盤状(ドーナツ型)の空間(還元性ガス供給路L1)が形成される。この供給路L1には、ガス供給管2の第1通流孔2dを通って第1流路2bから還元性ガスが供給される。結果、その還元性ガスは、金属支持体1の貫通孔1aに供給されて、アノード電極層Aに供給される。
 また、同様に、有突起集電板3の凹凸構造部位3aの頂点が、下側に位置する燃料電池単セルユニットUのカソード電極層Cに対して接合されることで、ガス供給管2の第2通流孔2eを通ってカソード電極層Cに対してガスの供給が可能となる空間(酸化性ガス供給路L2)が形成される。
 以上が、本発明に係る燃料電池の基本構成に関する説明であるが、以下、本発明の特徴構成に関して、主に図5、図6を使用して説明する。
 これまでも説明してきたように、本実施形態では、有突起集電板3と金属支持体1との間に、アノード電極層Aに水素を含有するガスを供給する還元性ガス供給路L1が形成されている。そして、図5に矢印でも示すようにこの供給路L1を流れるガスは、円板中心側に位置されるガス供給管2側から径方向外方側への一方向とされる。そして、金属支持体1の表裏を貫通して設けられた貫通孔1aを介して、アノード電極層Aに発電反応用の水素を供給できるのである。
 ここで、燃料電池セルR内に於ける発電反応は、先に説明した通りであるが、この反応に伴って、アノード電極層Aから貫通孔1a、還元性ガス供給路L1には、水蒸気HOが放出される。結果、本発明の還元性ガス供給路L1は、水素Hを含有するガスをアノード電極層Aに供給する供給部となっていると同時に、水蒸気HOの排出先ともなっている。
 そこで、本発明では、図5、図6に示すように、有突起集電板3の還元性ガス供給路L1側の面(金属支持体1側の面)に、内部改質触媒層Dを設けている。
 これまでも説明してきたように、還元性ガス供給路L1には、外部改質により得られる水素Hの他、改質対象となる原燃料ガス(改質前ガス:図示する例ではメタンCH)が流れるが、アノード電極層Aにおいて生成する水蒸気HOを還元性ガス供給路L1に戻すことにより、この供給路L1に流入して燃料ガスCHを改質することができる。当然、生成される水素Hや一酸化炭素COは、下流側において貫通孔1aを介してアノード電極層Aに供給して、発電の用に供することができる。
 内部改質触媒層Dの材料としては、例えば、ニッケル、ルテニウム、白金などの改質触媒を保持したセラミック製の多孔質粒状体の多数が通気可能な状態で形成できる。
なお、この内部改質触媒層DがNiを含有する場合、Niの含有量は、0.1質量%以上50質量%以下の範囲とできる。なお、内部改質触媒層DがNiを含有する場合のNiの含有量は、1質量%以上であるとより好ましく、5質量%以上であると更に好ましい。このようにすることで、より高い内部改質性能が得られるからである。一方、内部改質触媒層DがNiを含有する場合のNiの含有量は、45質量%以下であるとより好ましく、40質量%以下であると更に好ましい。このようにすることで、燃料電池装置のコストをより低減できるようになるからである。また、Niを担体に担持することも好ましい。
 なおこの内部改質触媒層Dは、低温焼成法(例えば1100℃より高い高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)やスプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法やパルスレーザーデポジション法など)、CVD法などにより形成することが好ましい。これらの、低温域で使用可能なプロセスにより、内部改質触媒層Dを設ける還元性ガス供給路L1(例えば、金属支持体1、有突起集電板3)の高温加熱によるダメージを抑制しつつ、良好な内部改質触媒層Dを形成し、耐久性に優れた燃料電池単セルユニットUを実現できるからである。また、金属支持体1や有突起集電板3の表面に拡散抑制層xを形成した後、内部改質触媒層Dを形成すると、金属支持体1や有突起集電板3からのCrの飛散を抑制できるので好ましい。
 このような内部改質触媒層Dは、その厚さを、例えば、1μm以上にすると好ましく、2μm以上にするとより好ましく、5μm以上にすると更に好ましい。このような厚さにすることで、燃料ガスや水蒸気との接触面積を増やして、内部改質率を高められるからである。また、その厚さを、例えば、500μm以下にすると好ましく、300μm以下にするとより好ましく、100μm以下にすると更に好ましい。このような厚さにすることで、高価な内部改質触媒材料の使用量を低減してコストダウンを図ることができるからである。
 再度、図6に戻って、この内部改質触媒層Dでの水蒸気改質反応に関して簡単に説明しておく。同図に示すように、燃料電池単セルユニットUに内部改質触媒層Dを設けることで、還元性ガス供給路L1に供給される原燃料ガスCHを以下のように改質して、発電用燃料ガスとなる水素H、一酸化炭素COを生成することができる。図11に示す実施形態においても、この改質反応は同様である。
〔化1〕
 CH+HO→CO+3H
〔化2〕
 CO+HO→CO+H
〔化3〕
 CH+2HO→CO+4H
 この還元性ガス供給路L1(内部改質触媒層D)の温度は、事実上、燃料電池セルRの作動温度である600℃~900℃となっている。これまで説明してきた第1実施形態の燃料電池単セルユニットUの燃料電池としての機能構成を模式的に示すと、図19(a)に示す構造となる。
 以上の説明において、第1実施形態における燃料電池モジュールMに関して、その概略を示した。この実施形態における燃料電池モジュールMの構造を具体的に説明しておく。
 図5に示すように、第1実施形態の燃料電池モジュールMは、燃料電池単セルユニットUが複数積層した状態で構成される。即ち、燃料電池単セルユニットUを、ガスケット6を挟んで複数積層して構成する。ガスケット6は、一方の燃料電池単セルユニットUのガス供給管2と、他方の燃料電池単セルユニットUのガス供給管2との間に配置される。そしてガスケット6は、一方の燃料電池単セルユニットUの金属支持体1、ガス供給管2および有突起集電板3と、他方の燃料電池単セルユニットUの金属支持体1、ガス供給管2および有突起集電板3との間を、電気的に絶縁する。ガスケット6は、併せて、ガス供給管2の第1流路2bおよび第2流路2cを通流するガスが漏出したり混合したりしないよう、燃料電池単セルユニットUの接続部位(ガス供給管2の接続部位)を気密に保つ。ガスケット6は、以上の電気的絶縁および気密保持が可能なように、例えばバーミキュライトや雲母、アルミナ等を材料として形成される。
 そして上述の通り、有突起集電板3が、一方の燃料電池単セルユニットUの金属支持体1と、カソード電極層Cとを電気的に接続している。したがって本実施形態に係る燃料電池単セルユニットUでは、各燃料電池単セルユニットUの燃料電池セルRが、電気的に直列に接続される。
 燃料電池モジュールMにおけるガスの通流については、これまでも説明してきたところである。
 還元性ガス供給路L1の構成形態に関しては、図4(a)に示す形状の有突起集電板3としてもよいし、図4(b)、図4(c)のようにしてもよい。これら構成において、共通となる技術的要素は、水素を含有する還元性ガス(具体的には、改質前ガスと改質済ガスとの混合ガス)及び酸素を含有するガスである酸化性ガス(具体的には、空気)が、外径側に移動して排ガスとして排気される構成とできればよい。
 本発明においては、還元性ガス供給路L1が、混合ガスの供給側から排出側へ流れ、その間に設けられた複数(多数)の貫通孔1aに対して、水素Hを含有するガスのアノード電極層Aへの流通が行われる。そして、アノード電極層Aで生成される水蒸気HOを内部改質触媒層Dに戻すことで水蒸気改質を行い、発電用燃料ガスである水素および一酸化炭素を生成させて、下流側に位置する貫通孔1aから水素Hを含む発電用燃料ガスをアノード電極層Aへ供給して発電を行うことが可能となる。そこで、このようなガスの経路を内部改質燃料供給路L3と呼び、生成される水蒸気HOの排出側を排出部L3aと呼び、内部改質された水素Hの供給側を供給部L3bと呼ぶ。この排出部L3aは、本発明の水蒸気供給路でもある。なお、排出部L3aは供給部L3bとしての機能を同時に担うこともできるし、供給部L3bが排出部L3aとしての機能を同時に担うこともできる。
<第2実施形態>
 以下、第2実施形態に係る、この燃料電池装置Y、燃料電池モジュールMおよび燃料電池単セルユニットUについて図面に基づいて説明する。
<燃料電池装置>
 図7には、燃料電池装置Yの概要が示されている。
 燃料電池装置Yも、燃料電池モジュールMを備えて構成され、この燃料電池モジュールMに供給される水素を含有する還元性ガスと酸素を含有する酸化性ガスとにより発電動作する。
 図7、図8に示すように、燃料電池モジュールMは概略直方型に構成され、一の筐体10内にこの燃料電池モジュールM、外部改質器34、気化器33等を備えて構成されている。還元性ガスの供給系統に備えられる各機器(昇圧ポンプ30、脱硫器31、改質水タンク32、気化器33、外部改質器34)の働きは先に説明した第1実施形態のものと同様である。ただし、外部改質器34及び気化器33が燃料電池モジュールMが収納される筐体10内に位置されるため、燃料電池モジュールMの熱が有効に利用される。
 この第2実施形態の燃料電池モジュールMは、その上部に水素を含有する排ガスの燃焼部101が設けられており、この部位101で燃料電池の排ガスに含まれる残余の燃焼成分(具体的には水素、一酸化炭素及びメタン)を燃焼して、その熱を水蒸気改質及び気化に利用することができる。
 インバータ38、制御部39及び熱交換器36の働きに関しては、先の実施形態と同様である。
 従って、第2実施形態も、燃料電池装置Yは、電力と熱の両方を発生・供給可能な、所謂「コジェネレーションシステム」となっている。
 さて、燃料電池単セルユニットU或いは燃料電池セルRに備えられる各電極層(アノード電極層A及びカソード電極層C)への水素を含有する還元性ガスの供給、酸素を含有する酸化性ガスの供給に関しては、この実施形態独特の構成となっている。
 図7、図11に基づいて、その概略を説明しておくと、外部改質器34の下流側にはガスマニホールド102が設けられ、改質前ガス(原燃料ガス)および改質済ガスが、燃料電池単セルユニットUの備えられる還元性ガス供給路L1に分配供給され、この供給路L1からアノード電極層Aに水素を含有する還元性ガスが供給されるように構成されている。
 一方、酸素の酸化性ガス供給路L2への供給は、ブロア35により空気を筐体10内に吸引し、吸引された酸素を含む酸化性ガスを、燃料電池単セルユニットU、集電板CPそれぞれに設けられた酸化性ガス供給路L2を介してカソード電極層Cに供給するように構成されている。この実施形態は、燃料電池モジュールMと外部改質器34との間が燃焼部101とされているが、ブロア35により吸引された空気は、燃焼部101における残余の燃料の燃焼にも利用される。
 このようにして所定の電池反応、燃焼反応により発生する排ガスは熱交換器36に送られ、所定の熱利用の用に供される。ここで、筐体10の排気口103に設けられている機器103aは、排ガス処理用の機器である。
<燃料電池モジュールM>
 次に、図8を用いて燃料電池モジュールMについて説明する。
 図8(a)に燃料電池モジュールMの側面図を示し、(b)に、その断面図((a)のVIII-VIII断面)を示した。
この実施形態では、燃料電池モジュールMは、燃料電池単セルユニットUの複数を横方向(図8の左右方向)に積層して構成されている。この燃料電池単セルユニットUは、それぞれ、具体的には、先に説明したガスマニホールド102に立設置した構造とできる。即ち、燃料電池セルRを支持する金属支持体1をガスマニホールド102に立設することで、燃料電池モジュールMを構築してある。
 この第2実施形態では、金属支持体1は、その立設状態で上下方向に伸びる還元性ガス供給路L1を備えて構成される筒状の形成されている。一方、この金属支持体1に電気的に接続される形態で、凹凸形状の集電板CPが備えられ、集電板CPが通気性を有することで、燃料電池モジュールMの周部に吸引された酸化性ガス(具体的には空気)を燃料電池セルRのカソード電極層Cまで到達させる(図11参照)。
 図8(a)および(b)に示されるように、燃料電池モジュールMは、複数の燃料電池単セルユニットU、ガスマニホールド102、集電板CP、終端部材104および電流引出し部105を備えて構成される。
 燃料電池単セルユニットUは、中空の筒である金属支持体1の一方の面に燃料電池セルRを備えて構成され、全体として長尺な平板あるいは平棒の形状とされる。そして燃料電池単セルユニットUの長手方向の一方の端部が、ガスマニホールド102に対してガラスシール材等の接着部材により固定される。金属支持体1とガスマニホールド102との間は電気的に絶縁されている。
 燃料電池セルRは、全体として薄膜状或いは層状(本発明では、両者を含む形態を「薄層状」と称する)に構成される。この実施形態にあっても、燃料電池セルRが、アノード電極層A,電解質層B及びカソード電極層Cを備えて構成される点に関して変わりはない。先に説明した金属酸化物層x、中間層y、反応防止層zを設ける点に関しても同様である。これらの金属酸化物層x、中間層y、反応防止層zに関しては、図11に示した。
 第2実施形態では、複数の燃料電池単セルユニットUを、一の燃料電池単セルユニットの金属支持体1の背面に他の燃料電池単セルユニットUの集電板CPとが接触する状態で積層することで、所定の電気的出力を取り出すことができる。
 集電板CPには、導電性、ガス透過性及び燃料電池単セルユニットUの積層並列配置の方向に弾性を有する部材が用いられる。例えば集電板CPには、金属箔を用いたエキスパンドメタルや金属メッシュ、フェルト様部材が用いられる。これによりブロア35から供給される空気が集電板CPを透過または通流して燃料電池セルRのカソード電極層Cに供給することができる。本発明では、燃料電池単セルユニットUを構成して、この集電板CPを通過して酸素を含有するガスが流れる流路を酸化性ガス供給路L2と呼ぶ(図11参照)。
 また集電板CPが燃料電池単セルユニットUの並列配置の方向に弾性を有するので、ガスマニホールド102に片持ち支持された金属支持体1は並列配置の方向にも変位することができ、振動や温度変化等の外乱に対する燃料電池モジュールMのロバスト性が高められる。
 並列配置された複数の燃料電池単セルユニットUは、一対の終端部材104に挟持されている。終端部材104は、導電性を有し弾性変形可能な部材であり、その下端がガスマニホールド102に固定されている。終端部材104には、燃料電池単セルユニットUの並列配置の方向に沿って外側に向けて延びる電流引出し部105が接続されている。電流引出し部105はインバータ38に接続され、燃料電池セルRの発電により生じる電流をインバータ38へ送る。
<燃料電池単セルユニットU>
 図9、10に、第2実施形態の燃料電池単セルユニットUの概略構成が示されている。
 図9は、この燃料電池単セルユニットUの斜視図であり、図10は、ユニットUの形成手順を示したものである。
 これまでも説明したように、燃料電池単セルユニットUは、導電性を有する金属支持体1と、燃料電池セルRとを備えて構成されており、燃料電池セルRは、電解質層Bを挟んだ状態で、アノード電極層Aと、カソード電極層Cとを有して構成されている。
<金属支持体1>
 金属支持体1は、長方形の平板部材72と、長手方向に直交する断面がU字状のU字部材73と、蓋部74とを備えて構成されている。平板部材72の長辺とU字部材73の長辺(U字の2つの頂点に対応する辺)とが接合され、一方の端部(図示するものでは上端側)が蓋部74で塞がれている。これにより、内部に空間を有し全体として平板あるいは平棒状の金属支持体1が構成される。平板部材72は、金属支持体1の中心軸に対して平行に配置される。
 金属支持体1の内部空間が、これまで説明してきた還元性ガス供給路L1とされる。蓋部74には、還元性ガス供給路L1を流れたガスが金属支持体1の外部に排出する排ガス排出口77が設けられる。この排ガス排出口77の排出側(上側)が、先に説明した燃焼部101となるのである。蓋部74が設けられる端部とは逆側(下側であって、先に説明したガスマニホールド102に接続される部位)の端部は開口しており、還元性ガス供給路L1の入口とされる。
 平板部材72、U字部材73および蓋部74の材料としては、導電性、耐熱性、耐酸化性および耐腐食性に優れた材料が用いられる。例えば、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、ニッケル基合金などが用いられる。すなわち金属支持体1は堅牢に構成される。特にフェライト系ステンレス鋼が好適に用いられる。
 金属支持体1の材料にフェライト系ステンレス鋼を用いた場合、燃料電池セルRにて材料に用いられるYSZ(イットリウム安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア、CGOとも呼ぶ)等と熱膨張係数が近くなる。従って、低温と高温の温度サイクルが繰り返された場合も燃料電池単セルユニットUがダメージを受けにくい。よって、長期耐久性に優れた燃料電池セルRを実現できるので好ましい。
 なお金属支持体1の材料としては、熱伝導率が3Wm-1-1を上回る材料を用いることが好ましく、10Wm-1-1を上回る材料であればさらに好ましい。例えばステ
ンレス鋼であれば熱伝導率が15~30Wm-1-1程度であるため、金属支持体1の材料として好適である。
 また、金属支持体1の材料としては、脆性破壊を起こさない高靱性材料である事がさらに望ましい。セラミックス材料などと比較して金属材料は高靱性であり、金属支持体1として好適である。
 図10からも判明するように、平板部材72には、平板部材72の表面と裏面とを貫通して複数の貫通孔78を設ける。この貫通孔78を通して金属支持体1の内側と外側との間でガスの通流が可能となっている。他方、平板部材72やU字部材73における貫通孔78が設けられない領域は、金属支持体1の内側と外側との間でガスが通流できない。
 以上が、本発明に係る燃料電池の基本構成に関する説明であるが、以下、本発明の特徴構成に関して、主に図10、図11を使用して説明する。
 これまでも説明してきたように、本実施形態では、金属支持体1内に、アノード電極層Aの水素を含有するガスを供給する還元性ガス供給路L1が形成されている。そして、図9に一点鎖線矢印でも示すようにこの供給路L1におけるガスは、金属支持体1の軸方向開口側(下側)から軸方向蓋体部側(上側)への一方向とされる。平板部材72の表裏を貫通して設けられた貫通孔78を介して、アノード電極層Aに発電反応用の水素Hを供給できる。ここで、燃料電池セルR中に於ける発電反応は、先に説明した通りであるが、この反応に伴って、アノード電極層Aから貫通孔78には、水蒸気HOが放出される。結果、本実施形態の貫通路78及び還元性ガス供給路L1の一部は、水素Hを含有するガスを供給する供給部L3bとなっていると同時に、水蒸気HOの排出部L3aともなっているのである。
 そこで、図10、図11に示すように、平板部材72の裏面72b、金属支持体1の内面73bに、内部改質触媒層Dを設けている。
 これまでも説明してきたように、還元性ガス供給路L1には、外部改質により得られる水素の他、改質対象となる改質前ガス(原燃料ガスであり、図示する例ではメタンCH)を流通するが、アノード電極層Aで生成される水蒸気HOを内部改質触媒層Dに戻すことで水蒸気改質を行い、下流側(図11の場合は紙面裏側)に位置する貫通孔78から水素Hをアノード電極層Aへ供給して発電を行うことが可能となる。そこで、本発明に係る内部改質燃料供給路L3を、生成される水蒸気HOの排出部L3aと、内部改質された水素Hの供給部L3bから構成する点は、第1実施形態と同様である。なお、排出部L3aは供給部L3bとしての機能を同時に担うこともできるし、供給部L3bが排出部L3aとしての機能を同時に担うこともできる。この排出部L3aが水蒸気供給路となっている。
 内部改質触媒層Dの材料、その厚み等は、先に説明したと同様である。
 このような構造を採用することにより、金属支持体1内で、アノード電極層Aから排出される水蒸気HOを利用して、水蒸気改質を起こさせ、改質により得られる水素Hおよび一酸化炭素COを発電用燃料ガスとしてアノード電極層Aに供給・利用することができる。
 第2実施形態の燃料電池単セルユニットは、事実上、図19(a)に示す構造となる。
<第3実施形態>
 以下、第3実施形態に係る、この燃料電池装置Y、燃料電池モジュールMおよび燃料電池単セルユニットUについて図面に基づいて説明する。
<燃料電池装置>
 図12は、燃料電池装置Yの全体構成を示す概略図であり、燃料電池本体である燃料電池モジュールMに繋がる燃料ガス供給系統FL、酸化性ガス供給系統AL及びアノードオフガス循環系統RLをそれぞれ示している。
 燃料電池モジュールM内には、複数積層して、この燃料電池モジュールMを構成する燃料電池単セルユニットUを一つ模式的に示している。これまでも説明してきたように燃料電池単セルユニットUには、燃料電池セルRが備えられている。これら燃料電池単セルユニットU、燃料電池セルR等に関しては、先に説明した第1実施形態との関係で説明すると、第1実施形態では、金属支持体1が円盤状に形成されていたのに対して、第3実施形態では、基本方形とされ、その長手方向に沿って、燃料電池セルR,還元性ガス供給路L1、酸化性ガス供給路L2が形成されている。
 この第3実施形態の特徴は、以下の2点である。
 1.燃料電池が起動を完了し、電力負荷に応じてその発電を行う定常運転状態にあっては、アノードオフガス循環系統RLを介して循環される水蒸気を改質に使用する。
 2.燃料電池単セルユニットU内に設けられた還元性ガス供給路L1に内部改質触媒層Dが設けられるとともに、乱流促進体Eが設けられる。
 燃料電池装置Yは、この実施形態でも、所謂、コジェネレーションシステム(熱電並供給システム)として構成され、燃料電池装置Yから排出される熱を利用する排熱利用部としての熱交換器36を有するとともに、燃料電池装置Yで発電される電力を出力するための出力変換部としてのインバータ38を備えている。
 制御部39は、燃料電池装置Yに要求される電力負荷に従って燃料電池装置Y全体の運転を制御する。制御対象となる各機器に関しては、当該機器の説明において行う。この制御部39への入力情報は、燃料電池装置Yの起動開始・起動停止情報及び装置Yに要求される電力負荷である。
 燃料電池装置Yは、燃料電池モジュールMと、燃料ガス供給系統FL、酸化性ガス供給系統AL及びアノードオフガス循環系統RLとを備えて構成されている。燃料ガス供給系統FLが、本発明の燃料供給路に該当する。
 燃料ガス供給系統FLには昇圧ポンプ30、脱硫器31を備えた原燃料ガス供給系統FLaと、改質水タンク32、改質水ポンプ32p及び気化器33が水蒸気供給系統FLbとを備えている。
 これら原燃料ガス供給系統FLa及び水蒸気供給系統FLbは、アノードオフガス循環系統RLに合流される形態が採用されており、下手側に備えられる外部改質器34に、原燃料ガス及び水蒸気を供給する。外部改質器34は、その下手側で、燃料電池モジュールMを構成する燃料電池単セルユニットUに形成された還元性ガス供給路L1に接続されている。
 昇圧ポンプ30は、原燃料ガスの一例である都市ガス等の炭化水素系ガスを昇圧して、燃料電池装置Yに供給する。この供給形態は、燃料電池装置Yに要求される電力負荷に見合った量の原燃料ガスを、制御部39からの指令に従って供給するものである。
 脱硫器31は、都市ガス等に含まれる硫黄化合物成分を除去(脱硫)する。
 改質水タンク32は、外部改質器34での水蒸気改質に必要となる水蒸気を供給するために、改質水(基本的には純水)を貯留する。供給形態は、燃料電池装置Yに要求される電力負荷に見合った燃料ガスを得るための、制御部39からの指令に従った量だけ供給するものである。ただし、後にも説明するように、この実施形態の燃料電池装置Yでは、通常の定常運転状態では、アノードオフガスに含まれる水蒸気で、水蒸気改質において必要となる水蒸気を賄えるため、改質水タンク32からの改質水の供給、及び気化器33での気化は、燃料電池装置Yの起動時において主にその役を果たす。
 気化器33は、改質水タンク32から供給される改質水を水蒸気とする。外部改質器34は、気化器33にて生成された水蒸気を用いて脱硫器31にて脱硫された原燃料ガスを水蒸気改質して、水素を含むガスである改質ガスとする。ただし、本発明の燃料電池単セルユニットU内には内部改質触媒層Dが備えられるため、このユニットU内においても原燃料ガスの改質を行う。結果、外部改質器34においては、原燃料ガスの一部が改質され、残部は燃料電池単セルユニットUの還元性ガス供給路L1にそのまま供給する。
 外部改質器34には水蒸気改質触媒が収納されるが、この種の触媒としてはルテニウム系触媒、ニッケル系触媒を挙げることができる。さらに、具体的には、ルテニウム成分をアルミナ担体に担持させて得られるRu/Al触媒やニッケル成分をアルミナ担体に担持させて得られるNi/Al触媒等を使用できる。
 さて、この燃料電池装置Yが電力負荷に応じて、継続的に発電作動する定常運転状態での運転動作に関して、以下に説明する。
 燃料電池は酸化物イオン伝導型とすることから、燃料電池単セルユニットUに設けられている還元性ガス供給路L1から排出される排ガス(アノードオフガス)には水蒸気が含まれる。そこで、このガスを冷却するとともに、過分な水分を凝縮除去して、水蒸気分圧を調整したアノードオフガスを外部改質器34に戻し、水蒸気改質の用に供する運転形態を採用している。
 即ち、燃料電池装置Yはアノードオフガス循環系統RLを備え、アノードオフガス循環系統RLに、内部を流れるアノードオフガスを冷却する冷却器32a、更に冷却するとともにその凝縮水を取出して内部を流れるアノードオフガスの水蒸気分圧を調整する凝縮器32b、外部改質器34に戻すアノードオフガスの温度を上昇する加熱器32cを備えている。
 この構造を採ることにより、循環ポンプ32dを働かせて、外部改質器34に投入する水蒸気量を、アノードオフガス循環系統RLを介して循環されるガスによるものとできる。最終段の凝縮器32bにおける凝縮温度を調整することで、アノードオフガス循環系統RLを介して循環する水蒸気分圧を調整することが可能となり、外部改質器34に投入されるガスに関して、その水蒸気/カーボン比(S/C比)を制御することができる。
 この循環形態は、燃料電池装置Yに要求される電力負荷に見合って原燃料ガスの少なくとも一部を外部改質器34で改質する場合に必要となる水蒸気量を、外部改質器34において適切なS/C比とするものであり、制御部39からの指令に従った作動となる。
 ここでの制御対象は、循環ポンプ32dによる循環量、圧力設定及び冷却最終段となる凝縮器32bでの凝縮温度(結果的に、出口水蒸気分圧をとなる)の設定、制御となる。
 酸化性ガス供給系統ALにはブロア35が設けられ、その下手側で、燃料電池モジュールMを構成する燃料電池単セルユニットUに形成された酸化性ガス供給路L2に接続されている。ブロア35の空気吸引量も、電力負荷に見合って燃料電池で発電反応を起こさせるに充分な空気量を確保するものであり、制御部39からの指令に従った作動となる。
 以上が、この第3実施形態における、主に還元性ガスの供給側の工夫であるが、本発明のように、燃料電池単セルユニットU内に内部改質触媒層Dを備え、内部改質により得られる水素や一酸化炭素を電池燃料とする構成では、発電により生成される水蒸気が水蒸気改質で消費されるため、先に説明したアノードオフガスに含まれる水蒸気凝縮用に備えるべき凝縮器32bの負荷が低減される。結果、本発明に係る燃料電池装置Yは、この点からも有利となる。
 内部改質触媒層を設ける位置の工夫
 第3実施形態の燃料電池単セルユニットUは、図13、図14に示される様に、上面視、実質方形の箱型に形成され、還元性ガス及び酸化性ガスの流れ方向が特定一方向とされる。図13、図14における、この方向は図上右上がりとしている。
 さて、上記の内部改質触媒層Dを設ける位置であるが、この実施形態では、図14に示す様に、還元性ガスをアノード電極層Aに供給するため、及びアノード電極層Aで発生する水蒸気を還元性ガス供給路L1に排出するために設けられる貫通孔1aであって、還元性ガスの流れ方向において、最も上流側にある貫通孔1aと同じ位置、及びその位置より下流側となる位置に、内部改質触媒層Dを限定している。
 このような位置から内部改質触媒層Dを設けることで、アノード電極層Aで発生する水蒸気を、有効に本発明の目的に従って使用することができる。
 この第3実施形態の燃料電池単セルユニットUは、事実上、図19(b)に示す構造となる。
 乱流促進体を設ける工夫
 図12、13、14に示すように、アノード電極層Aに燃料ガスを供給する還元性ガス供給路L1には、この路内の流れを乱す乱流促進体E(Ea)が設けられている。
さらに詳細には、金属支持体1を貫通して形成されている貫通孔1aに対して、その水素を含有するガスである還元性ガスの流入側となる、燃料電池セルRの形成面とは反対側の面に、網状体Eaが設けられている。この網状体Eaは具体的にはラスメタルや金属金網を金属支持体1上に張り付けて形成する。結果、還元性ガス供給路L1を流れる水素を含有するガスは、この網状体Eaにより乱され、貫通孔1aへ向かう流れ方向成分、及び貫通孔1aから流出する流れを誘起し、燃料ガスのアノード電極層Aへの供給、アノード電極層Aからの水蒸気の導出を良好に起こすことができる。
 以上が、本発明に係る燃料電池単セルユニットU内で、燃料電池セルRのアノード電極層Aで生成される水蒸気HOを利用して内部改質(燃料電池セルR内での水蒸気改質)を行う燃料電池の構造に関する説明である。
 以下、本発明の内部改質を伴って燃料電池を運転する場合の利点に関して説明する。
 図15に、内部改質を実行する場合と実行しない場合との両者間における燃料電池の発電効率の比較を、図16、図17に、両者間における燃料電池セルR入口・出口(具体的には還元性ガス供給路L1の入口・出口)における水素及び一酸化炭素を含む発電用燃料ガス分圧を示した。図18は、同入口・出口間における発電用燃料ガス分圧の差を示す図である。
 発電用燃料ガス分圧の記載に関しては、全ガス圧に対する割合(%)で示している。
 さらに、発電用燃料ガス分圧の差は、以下の通りである。
 還元性ガス供給路入口での発電用燃料ガス分圧割合:Rin
  Rin=〔発電用燃料ガスの分圧〕/〔全ガス圧〕×100%
 還元性ガス供給路出口での発電用燃料ガス分圧割合:Rout
  Rout=〔発電用燃料ガスの分圧〕/〔全ガス圧〕×100%
 発電用燃料ガス分圧の差=Rin-Rout〔%〕
 これらの図面において、黒四角印が、本発明に係る内部改質を実行する場合を示し、白抜き菱形印が、内部改質を実行しない場合に対応する。
 全図面において、横軸は、燃料電池に導入される水蒸気(S)とカーボン(C)とのモル比(S/C比)である。このS/C比は、図1、図7、図12に示す燃料電池装置Yの構成において、外部改質器34に導入されるガス(原燃料ガスと水蒸気との混合ガス)のS/C比であり、燃料電池の電力負荷等の運転条件に応じて変化することがある運転パラメータである。S/C比は、1.5から3.0まで、0.5刻みで変化させた。この範囲は、燃料電池装置Yの運転において通常変わることがある範囲である。
 その他、検討に際して設定した条件を示す。
  燃料電池単セルユニット発電電圧     0.8V
  燃料電池セル温度(=内部改質温度)   700℃
  燃料電池総合燃料利用率         80%
 この燃料電池総合燃料利用効率は燃料電池装置Yにおける発電反応によって消費した発電用燃料ガス(H+CO)の割合であり、下記式で表記される。
[発電反応により消費した発電用燃料ガスモル数]/[燃料電池に供給および内部改質にて生成した発電用燃料ガスの合計]×100(%)
  還元性ガス               水素・一酸化炭素
  電解質                 酸素イオン伝導型電解質
  外部改質器平衡温度  内部改質実行時  700℃
             内部改質非実行時 500℃
  プロセス圧力              120kPa
 このプロセス圧力は、具体的には外部改質器34及び各ガス供給路L1,L2におけるガス圧である。
 検討結果
<発電効率等>
 図15からも判明するように、内部改質がある場合は、燃料電池内部で発生する水蒸気による燃料改質によって発電用燃料ガスが増え、燃料利用率一定条件での発電量が増加するため高効率となる。
 内部改質がある場合における外部改質器34の平衡温度は、500℃と低く抑制できるため、S/C比が低い場合でも炭化水素の熱分解(コーキング)が発生し難くプロセスやシステムの信頼が高まる利点が生じる。
 結果、燃料電池装置Yの設計上、外部改質器34の低温化とS/C比の低減は、水蒸気改質反応熱や蒸発熱の供給や、水自立(電力負荷に応じて発電する運転状態において、発電により生成される水蒸気(水)のみを使用して水蒸気改質を実行し燃料ガスを得る運転形態)のための凝縮器(第3実施形態に記載のアノードオフガス循環路RLに備えられる凝縮器32b)の伝熱面積の削減ができ、コスト的にも有利となる。今回の検討では、内部改質を実行しない場合S/C比=2.5、内部改質を実行する場合S/C比=2.0とすると、燃料電池装置Yの設計上、外部改質器34に必要となる熱量は60%の低減、水蒸気発生に必要な気化器33の伝熱量は20%低減する一方、直流発電効率は3.6%向上する。
<発電用燃料ガス分圧>
 図16からも判明するように、内部改質の有無による燃料電池セルR入口の発電用燃料ガスの分圧には約1.5~2倍の差があり、内部改質ありの方が低い値となる。内部改質が無い場合は、S/C比が高くなれば分圧は低くなる。水素や一酸化炭素の生成量が増える以上に、水蒸気の増加の影響を大きく受けるためである。
 内部改質ありの場合は、S/C比が変化しても発電用燃料ガス分圧は殆ど変らない。外部改質器34の温度が低いため、高S/C化による燃料の増加と水蒸気の増加が、ほぼバランスしている。
 そして、内部改質を実行する場合は、外部改質器34の低温化(500℃)によって燃料電池入口の発電用燃料ガス分圧は低くできるが、燃料電池内(700℃)では発生水蒸気によって速やかに水蒸気改質反応が発生するため、燃料電池出口の発電用燃料ガス分圧は高くなる。電池出口の分圧が高くなることは、オフガス燃焼の安定化に有利となる。
 さらに内部改質を実行する場合は、燃料電池出入口の発電用燃料ガス分圧差(濃度差)が小さくなることにより、発電量の燃料電池セルR内の偏在が小さくなり、温度差も縮小されるため、燃料電池の熱応力が緩和されることによって耐久性や信頼性が向上する。
 <燃料電池装置Yの運転>
 以上、発明者らが行った検討により、これまで説明してきた燃料電池装置は以下の条件で運転することが好ましい。
(1)外部改質器34の入口における水蒸気/カーボン比(S/C比)を、1.5以上3.0以下の範囲に制御する。より好ましくは、1.5以上、2.5以下の範囲に制御する。とりわけ、このように外部改質器34を比核的低S/C比(1.5以上2.5以下)で運転する場合は、原燃料ガスに含有される硫黄濃度を1vol.ppb以下(更に好ましくは、0.1vol.ppb以下)とすることで、長期に渡って安定した運転を確保できる。
(2)外部改質器34における改質温度を、還元性ガス供給路L1に設けられた内部改質触媒層Dにおける温度より低く制御する。
(3)還元性ガス供給路L1の入口における発電用燃料ガス分圧を全ガス圧の50%以下として運転する。
 即ち、同一の電力負荷下で、還元性ガス供給路L1の入口における発電用燃料ガス分圧を、燃料ガスの改質を主に外部改質器34で行う場合(例えば、燃料電池装置Yの始動時)に設定する還元性ガス供給路L1の入口における発電用燃料ガス分圧に対して、低く制御する。
(4)還元性ガス供給路L1の入口と出口における発電用燃料ガス分圧割合(全ガス圧に対する発電用燃料ガスの分圧割合でパーセント表示の割合)の差を40%以内に維持して運転する。
(5)外部改質器34により改質される燃料ガスの改質率を、30%以上60%以下とする。
(6)同一の電力負荷下で、燃料ガスの改質を主に外部改質器34で行う場合(例えば、燃料電池装置Yの始動時)に設定する水蒸気/カーボン比(S/C比)に対して、外部改質器34の入口における水蒸気/カーボン比(S/C比)を、低く制御する。
<他の実施形態>
(1)上述の第1実施形態では、金属支持体1と電解質層Bとの間にアノード電極層Aを配置し、電解質層Bからみて金属支持体1と反対側にカソード電極層Cを配置した。アノード電極層Aとカソード電極層Cとを逆に配置する構成も可能である。つまり、金属支持体1と電解質層Bとの間にカソード電極層Cを配置し、電解質層Bからみて金属支持体1と反対側にアノード電極層Aを配置する構成も可能である。この場合、還元性ガス供給路L1と酸化性ガス供給路L2の位置関係は逆転させ、これまでも説明してきたように、還元性ガス供給路L1側(この場合は金属セパレータ7の下側)に内部改質触媒層Dを設けることで、本発明の目的を達成できる。
(2)上述の各実施形態にあっては金属支持体1の上に、単一の燃料電池セルRを形成したが、金属支持体1の表側に複数の燃料電池セルRを区画分けして複数配置しても良い。
(3)これまで説明してきた実施形態においては、内部改質触媒層Dの形成部位に関して、金属支持体1の裏側1f、金属セパレータ3,7の還元性ガス供給路L1側の内面に形成する場合について説明したが、内部改質触媒層Dは、アノード電極層Aで生成される水蒸気が流通する部位に形成すれば内部改質の用を果たすため、金属支持体1に設ける貫通孔1aの内面に設けてもよい。
(4)上記の外部改質器34での改質に関しては、この改質器34が水蒸気改質を行うものとしたが、本発明においては、外部改質器34の負荷は低下できるため、水蒸気改質以外の改質、例えば、部分燃焼改質やオートサーマル改質を行う改質器も採用できる。
 本発明で使用する原燃料ガスは、所謂炭化水素系燃料であり、この原燃料ガスを改質して、少なくとも水素を生成できれば良い。
(6)上記の実施形態では乱流促進体Eを網状体Eaで形成するとともに、金属支持体1の面に張り付ける構成としたが、還元性ガス供給路L1内の流れを貫通孔1a方向に方向づける機能を有すればよく、還元性ガス供給路L1の流れを乱す障害体Ebを多数配置することとしてもよい。この障害体Ebとしては、球状、三角錘状、柱状体等、任意の形状とすることができる。図20に、障害体Ebを球状とする場合の例を示した。
(7)上記の実施形態では、内部改質触媒層Dと乱流促進体Eとを独立のものとして説明したが、例えば、先に説明した網状体Eaの表面の少なくとも一部に、或いは障害体Ebの少なくとも一部に内部改質触媒層Dを設けてもよい。図21に、この例を示した。
即ち、乱流促進体Eの少なくとも一部(図示する例では表面)に内部改質触媒層Dを設けることで、この乱流促進体Eを配置して、乱流促進と内部改質との両方の機能を発揮させることができる。
(8)上記の第1実施形態、第2実施形態においては、還元性ガス供給路L1に内部改質触媒層Dを設ける例を示した。これらの実施形態にあっても、還元性ガス供給路L1に乱流促進体Eを設けてもよい。本発明の第2実施形態の場合の構成例を図22に示した。この例では筒内に形成する燃料ガス供給路L1の内部に乱流促進体となるメッシュEa(E)を配置し、その外表面にも内部改質触媒層Dを形成している。
(9)上記の実施形態では、都市ガス(メタンを主成分としてエタンやプロパン、ブタンなどを含むガス)等の炭化水素系ガスを原燃料ガスとして使用する例を示したが、原燃料ガスとしては、天然ガス、ナフサ、灯油等の炭化水素類や、メタノールやエタノール等のアルコール類、DME等のエーテル類などを原燃料ガスとして使用することもできる。
(10)上記の実施形態では、アノード電極層Aと電解質層Bの間に中間層yを設置し、また、電解質層Bとカソード電極層Cの間に反応防止層zを設置する場合に関して説明したが、中間層yや反応防止層zのような電極層と電解質層の間に介在させる介在層を設置しない構成とすることもできるし、どちらか一方の介在層だけ設置することもできる。また必要に応じて、介在層の数を増やすこともできる。
(11)上記の実施形態では、金属支持体1の表面に拡散抑制層としての金属酸化物層xを設置した場合に関して説明したが、必要に応じて、金属酸化物層xを設置しない構成とすることもできるし、金属酸化物層xを複数の層にすることもできる。また、金属酸化物層と異なる拡散抑制層を備えることもできる。
 なお上述の実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
1    :金属支持体
1a   :貫通孔
1e   :表側
1f   :裏側
1x   :流路部位
1y   :貫通孔
1z   :貫通孔
3    :有突起集電板(金属セパレータ)
3a   :凹凸構造部位
34   :外部改質器
38   :インバータ
72   :平板部材
73   :U字部材
78   :貫通孔
A    :アノード電極層
B    :電解質層
C    :カソード電極層
CP   :集電板
D    :内部改質触媒層
E    :乱流促進体
L1   :還元性ガス供給路
L2   :酸化性ガス供給路
L3   :内部改質燃料供給路
L3a  :排出部(水蒸気供給路・内部改質燃料供給路)
L3b  :供給部(内部改質燃料供給路)
M    :燃料電池モジュール
R    :燃料電池セル
U    :燃料電池単セルユニット
Y    :燃料電池装置

 

Claims (18)

  1.  電解質層を挟んでアノード電極層とカソード電極層が形成された燃料電池セルと、前記アノード電極層に水素を含有するガスを供給する還元性ガス供給路と、前記カソード電極層に酸素を含有するガスを供給する酸化性ガス供給路とを備えて構成され、前記還元性ガス供給路の少なくとも一部に、原燃料ガスを水蒸気改質する改質触媒を備えた内部改質触媒層を有する燃料電池単セルユニットを設け、
     前記原燃料ガスを改質する改質触媒を備えた外部改質器を、前記還元性ガス供給路の上流に設け、当該外部改質器により一部が改質された前記原燃料ガスが前記還元性ガス供給路に供給される燃料電池装置。
  2.  前記燃料電池セルの前記アノード電極層が薄層状に形成されている請求項1記載の燃料電池装置。
  3.  前記燃料電池セルで発生した水蒸気が前記還元性ガス供給路に供給される水蒸気供給路を有する請求項1または2記載の燃料電池装置。
  4.  金属支持体上に薄層状に形成された一つの前記燃料電池セルと、前記還元性ガス供給路と、前記酸化性ガス供給路とを備えて前記燃料電池単セルユニットが構成され、
     原燃料ガスから水蒸気改質反応により少なくとも水素を生成する内部改質触媒層を前記燃料電池単セルユニット内に備え、
     発電反応により発生する水蒸気を前記アノード電極層から排出して、前記内部改質触媒層に導くとともに、当該内部改質触媒層で生成される少なくとも水素を前記アノード電極層に導く、内部改質燃料供給路を設けた請求項1から3の何れか一項記載の燃料電池装置。
  5.  前記金属支持体における、前記燃料電池セルが形成された面とは異なる面に、前記内部改質触媒層が設けられる請求項4記載の燃料電池装置。
  6.  前記金属支持体を貫通する貫通孔が複数設けられるとともに、
     前記金属支持体の一方の面に前記アノード電極層が、他方の面に沿って前記還元性ガス供給路が設けられ、
     前記還元性ガス供給路の内面における少なくとも一部に前記内部改質触媒層が設けられ、
     前記還元性ガス供給路に於ける流れ方向に関し、前記貫通孔が働いて前記内部改質燃料供給路となる請求項4又は5記載の燃料電池装置。
  7.  前記貫通孔の内部に前記内部改質触媒層を設ける請求項6記載の燃料電池装置。
  8.  前記燃料電池単セルユニットに、前記還元性ガス供給路と前記酸化性ガス供給路とを仕切る少なくとも一つの金属セパレータを備え、
     前記金属セパレータの前記還元性ガス供給路側の少なくとも一部に前記内部改質触媒層が設けられる請求項1~7の何れか一項記載の燃料電池装置。
  9.  前記内部改質触媒層に含有される改質触媒が担体に金属が担持された触媒である請求項1~8の何れか一項記載の燃料電池装置。
  10.  前記内部改質触媒層に含有される改質触媒がNiを含む触媒である請求項1~9の何れか一項記載の燃料電池装置。
  11.  前記還元性ガス供給路に、当該還元性ガス供給路内の流れを乱す乱流促進体を設けた請求項1~10の何れか一項記載の燃料電池装置。
  12.  前記燃料電池セルが固体酸化物形燃料電池である請求項1~11の何れか一項記載の燃料電池装置。
  13.  請求項1~12のいずれか一項に記載の燃料電池装置の運転方法であって、
     前記外部改質器の入口における水蒸気/カーボン比(S/C比)を、1.5以上3.0以下の範囲に制御する燃料電池装置の運転方法。
  14.  請求項1~12のいずれか一項に記載の燃料電池装置の運転方法であって、
     前記外部改質器における改質温度を、前記還元性ガス供給路に設けられた内部改質触媒層における温度より低く制御する燃料電池装置の運転方法。
  15.  請求項1~12のいずれか一項に記載の燃料電池装置の運転方法であって、
     前記還元性ガス供給路の入口における発電用燃料ガス分圧を全ガス圧の50%以下として運転する燃料電池装置の運転方法。
  16.  請求項1~12のいずれか一項に記載の燃料電池装置の運転方法であって、
     当該還元性ガス供給路の入口における発電用燃料ガス分圧の当該入口における全ガス圧に対する割合を入口割合、還元性ガス供給路の出口における発電用燃料ガス分圧の当該出口における割合を出口割合として、パーセント表示での前記入口割合と前記出口割合の差を40%以内に維持して運転する燃料電池装置の運転方法。
  17.  請求項1~12のいずれか一項に記載の燃料電池装置の運転方法であって、
     前記外部改質器により改質される前記原燃料ガスの改質率を、30%以上60%以下とする燃料電池装置の運転方法。
  18.  請求項1~12のいずれか一項に記載の燃料電池装置の運転方法であって、
     前記原燃料ガスの含有される硫黄濃度を1vol.ppb以下まで脱硫して前記外部改質器に供給する燃料電池装置の運転方法。

     
PCT/JP2019/014223 2018-03-30 2019-03-29 燃料電池装置及び燃料電池装置の運転方法 WO2019189844A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3094943A CA3094943A1 (en) 2018-03-30 2019-03-29 Fuel cell device and method for operating fuel cell device
EP19778068.7A EP3780202A4 (en) 2018-03-30 2019-03-29 Fuel cell device, and method for operating fuel cell device
KR1020207019767A KR20200135764A (ko) 2018-03-30 2019-03-29 연료 전지 장치 및 연료 전지 장치의 운전 방법
CN201980022359.XA CN111868985B (zh) 2018-03-30 2019-03-29 燃料电池装置和燃料电池装置的运转方法
JP2020511139A JP7321999B2 (ja) 2018-03-30 2019-03-29 燃料電池装置及び燃料電池装置の運転方法
US17/040,450 US11749821B2 (en) 2018-03-30 2019-03-29 Fuel cell device and method for operating fuel cell device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-070211 2018-03-30
JP2018070211 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189844A1 true WO2019189844A1 (ja) 2019-10-03

Family

ID=68058516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014223 WO2019189844A1 (ja) 2018-03-30 2019-03-29 燃料電池装置及び燃料電池装置の運転方法

Country Status (8)

Country Link
US (1) US11749821B2 (ja)
EP (1) EP3780202A4 (ja)
JP (1) JP7321999B2 (ja)
KR (1) KR20200135764A (ja)
CN (1) CN111868985B (ja)
CA (1) CA3094943A1 (ja)
TW (1) TWI787491B (ja)
WO (1) WO2019189844A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068136A (ja) * 1999-08-25 2001-03-16 Osaka Gas Co Ltd 固体高分子型燃料電池システム及びその運転方法
JP2004127818A (ja) * 2002-10-04 2004-04-22 Nissan Motor Co Ltd 固体電解質型燃料電池
JP2005158611A (ja) * 2003-11-27 2005-06-16 Denso Corp 燃料電池
JP2013533585A (ja) * 2010-06-14 2013-08-22 ポステック アカデミー−インダストリー ファンデーション 内部改質型管形固体酸化物燃料電池スタック及びその製作方法
JP2016195029A (ja) 2015-03-31 2016-11-17 大阪瓦斯株式会社 電気化学素子、それを備えた電気化学モジュール、電気化学装置およびエネルギーシステム
JP2017183177A (ja) 2016-03-31 2017-10-05 大阪瓦斯株式会社 電気化学素子、セルユニット、電気化学モジュール、電気化学装置およびエネルギーシステム
JP2017208232A (ja) 2016-05-18 2017-11-24 株式会社デンソー 燃料電池
JP2018037329A (ja) * 2016-09-01 2018-03-08 日産自動車株式会社 固体酸化物型燃料電池単セル

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976724A (en) * 1997-07-15 1999-11-02 Niagara Mohawk Power Corporation Fuel cell power plant with electrochemical autothermal reformer
AUPQ223499A0 (en) 1999-08-16 1999-09-09 Ceramic Fuel Cells Limited Fuel cell system
JP2001185196A (ja) * 1999-12-28 2001-07-06 Daikin Ind Ltd 燃料電池システム
JP2004012781A (ja) * 2002-06-06 2004-01-15 Seiko Epson Corp 発光装置、光通信用装置および光通信システム
JP4543612B2 (ja) 2003-03-11 2010-09-15 トヨタ自動車株式会社 燃料電池システム
US7732084B2 (en) * 2004-02-04 2010-06-08 General Electric Company Solid oxide fuel cell with internal reforming, catalyzed interconnect for use therewith, and methods
KR100551060B1 (ko) * 2004-06-29 2006-02-09 삼성에스디아이 주식회사 연료 전지 시스템, 이에 사용되는 개질기 및 그 제조 방법
JP4809113B2 (ja) * 2006-04-24 2011-11-09 株式会社豊田中央研究所 熱交換型改質器
US8123826B2 (en) 2006-11-08 2012-02-28 Saudi Arabian Oil Company Process for the conversion of oil-based liquid fuels to a fuel mixture suitable for use in solid oxide fuel cell applications
JP2008282599A (ja) 2007-05-09 2008-11-20 Tsutomu Toida メタノール/ジメチルエーテルを原料とする燃料電池発電システム
US8435683B2 (en) * 2007-07-19 2013-05-07 Cp Sofc Ip, Llc Internal reforming solid oxide fuel cells
FR2945378B1 (fr) * 2009-05-11 2011-10-14 Commissariat Energie Atomique Cellule de pile a combustible haute temperature a reformage interne d'hydrocarbures.
JP5500504B2 (ja) * 2009-05-28 2014-05-21 Toto株式会社 固体電解質型燃料電池
US8795912B2 (en) * 2009-06-16 2014-08-05 Shell Oil Company Systems and processes for operating fuel cell systems
EP2565970A1 (en) * 2011-09-02 2013-03-06 Belenos Clean Power Holding AG Fuel cell system comprising an ejector for recirculating off-gas from a stack
CN103999277B (zh) 2011-11-21 2016-08-17 沙特阿拉伯石油公司 利用石油燃料联合生产氢气和电的方法和系统
US20150263366A1 (en) 2012-08-01 2015-09-17 Kyushu University, National University Corporation Paper-structured catalyst, paper-structured catalyst array body, and solid oxide fuel cell provided with paper-structured catalyst or paper-structured catalyst array body
JP6024373B2 (ja) 2012-10-12 2016-11-16 住友電気工業株式会社 燃料電池およびその操業方法
KR102170019B1 (ko) * 2013-03-15 2020-10-26 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 연료 전지를 사용한 통합된 발전 및 탄소 포획
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
TWI521782B (zh) 2014-04-11 2016-02-11 行政院原子能委員會核能研究所 燃料電池用平板型重組器
JP6541339B2 (ja) * 2014-12-01 2019-07-10 クラリアント・プロドゥクテ・(ドイチュラント)・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 炭化水素含有ガスの水蒸気改質触媒、水素製造装置、及び水素製造方法
EP3227230B1 (en) * 2014-12-01 2020-01-01 SOLIDpower SA Sofc system and method of operating a sofc system
WO2018141822A1 (en) 2017-01-31 2018-08-09 Htceramix S.A. Method and system for producing hydrogen, electricity and co-production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068136A (ja) * 1999-08-25 2001-03-16 Osaka Gas Co Ltd 固体高分子型燃料電池システム及びその運転方法
JP2004127818A (ja) * 2002-10-04 2004-04-22 Nissan Motor Co Ltd 固体電解質型燃料電池
JP2005158611A (ja) * 2003-11-27 2005-06-16 Denso Corp 燃料電池
JP2013533585A (ja) * 2010-06-14 2013-08-22 ポステック アカデミー−インダストリー ファンデーション 内部改質型管形固体酸化物燃料電池スタック及びその製作方法
JP2016195029A (ja) 2015-03-31 2016-11-17 大阪瓦斯株式会社 電気化学素子、それを備えた電気化学モジュール、電気化学装置およびエネルギーシステム
JP2017183177A (ja) 2016-03-31 2017-10-05 大阪瓦斯株式会社 電気化学素子、セルユニット、電気化学モジュール、電気化学装置およびエネルギーシステム
JP2017208232A (ja) 2016-05-18 2017-11-24 株式会社デンソー 燃料電池
JP2018037329A (ja) * 2016-09-01 2018-03-08 日産自動車株式会社 固体酸化物型燃料電池単セル

Also Published As

Publication number Publication date
CA3094943A1 (en) 2019-10-03
JP7321999B2 (ja) 2023-08-07
CN111868985A (zh) 2020-10-30
EP3780202A1 (en) 2021-02-17
KR20200135764A (ko) 2020-12-03
CN111868985B (zh) 2024-01-16
US20210028475A1 (en) 2021-01-28
JPWO2019189844A1 (ja) 2021-05-13
TW201943136A (zh) 2019-11-01
TWI787491B (zh) 2022-12-21
EP3780202A4 (en) 2021-12-29
US11749821B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2019189845A1 (ja) 燃料電池単セルユニット、燃料電池モジュールおよび燃料電池装置
US11233262B2 (en) Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell and manufacturing method for electrochemical element
WO2019189843A1 (ja) 金属支持型燃料電池及び燃料電池モジュール
JP7444683B2 (ja) 金属支持体、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、固体酸化物形電解セル、および金属支持体の製造方法
JP7202061B2 (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、および固体酸化物形燃料電池
WO2019189844A1 (ja) 燃料電池装置及び燃料電池装置の運転方法
JP2021163764A (ja) 電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、固体酸化物形電解セル
JP7317547B2 (ja) 燃料電池構造体、それを備えた燃料電池モジュール及び燃料電池装置
US20210119235A1 (en) Electrochemical Element, Electrochemical Module, Electrochemical Device, and Energy System
JP2023135375A (ja) 電気化学素子、電気化学モジュール、固体酸化物形燃料電池、固体酸化物形電解セル、電気化学装置及びエネルギーシステム
JP2023148149A (ja) 電極層形成方法、電極層、電気化学素子、電気化学モジュール、固体酸化物形燃料電池、固体酸化物形電解セル、電気化学装置及びエネルギーシステム
JP2023148146A (ja) 金属支持型電気化学素子の製造方法、金属支持型電気化学素子、固体酸化物形燃料電池、固体酸化物形電解セル、電気化学モジュール、電気化学装置及びエネルギーシステム
JP2019179757A (ja) 金属板、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および金属板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511139

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3094943

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2019778068

Country of ref document: EP