WO2017092217A1 - 常温萃取法生产高纯五氧化二钒的方法 - Google Patents

常温萃取法生产高纯五氧化二钒的方法 Download PDF

Info

Publication number
WO2017092217A1
WO2017092217A1 PCT/CN2016/079544 CN2016079544W WO2017092217A1 WO 2017092217 A1 WO2017092217 A1 WO 2017092217A1 CN 2016079544 W CN2016079544 W CN 2016079544W WO 2017092217 A1 WO2017092217 A1 WO 2017092217A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium pentoxide
solid
purity
room temperature
producing high
Prior art date
Application number
PCT/CN2016/079544
Other languages
English (en)
French (fr)
Inventor
喻中甫
喻思皓
Original Assignee
四川行之智汇知识产权运营有限公司
雅安市中甫新能源开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川行之智汇知识产权运营有限公司, 雅安市中甫新能源开发有限公司 filed Critical 四川行之智汇知识产权运营有限公司
Publication of WO2017092217A1 publication Critical patent/WO2017092217A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention relates to a method for preparing high-purity vanadium pentoxide, in particular to a method for producing high-purity vanadium pentoxide at room temperature.
  • the vanadium pentoxide product in the analytical solution obtained after calcination ion exchange contains Fe +2 , Pb +4 , Cu +2 , Cr +3 , Cd +2 , S 1-2 , As -2 , K +1 , Na +1 and other impurities, need to be purified to obtain high-purity vanadium pentoxide products.
  • High-purity vanadium pentoxide is widely used in aerospace, vanadium batteries and other fields, and has broad market prospects.
  • the purification methods of the high-purity vanadium pentoxide in the prior art are mostly carried out under neutral or weakly alkaline conditions, and the preparation process under such conditions is too long, although the purity is only only 99.0% after two crystallizations.
  • the method can effectively obtain high-purity vanadium pentoxide under normal temperature conditions, the purity can reach more than 99.9%, the purity is extremely high, and the method of acid extraction and crystallization at normal temperature is adopted, the operation is simpler, and the external substances consumed in the process are more convenient. Less, the cost is lower.
  • Patent Publication No. CN 101456587A provides "a method of producing high purity vanadium pentoxide", wherein with NaOH, Na 2 CO 3 as the precipitating agent, a large amount of cation to form a precipitate, then KClO 3 as an oxidizing agent, The low-valent vanadium in the solution is oxidized to vanadium pentoxide at a temperature of about 90 ° C. Finally, the pH value of the solution is adjusted with dilute sulfuric acid, and after filtration, it is calcined in an oxidizing environment to obtain a vanadium pentoxide product having a higher purity.
  • the rotary calcination step of this method requires high equipment and large investment, and the energy consumption in the heating oxidation process is high.
  • the cations added with the precipitant and the oxidant are difficult to remove at a later stage, the purification effect is general, and the product quality is difficult to control.
  • the object of the present invention is to overcome the problems of increased intermediate consumption of intermediate raw materials, long process flow, and low product quality in the preparation method of the prior art; and a method for producing high-purity vanadium pentoxide at room temperature by solving the above problems.
  • a method for producing high-purity vanadium pentoxide at room temperature comprising:
  • the filtered solid is baked at a temperature of 400-600 ° C, and then cooled and cooled to form a finished product.
  • the filtered solid is baked at a temperature of 400-600 ° C for 2-12 hours.
  • the high-purity vanadium pentoxide produced by the invention has a production cost of only 6000-8000 yuan/ton, and the cost is low, and the effect is remarkable.
  • the extracting agent is composed of one or more of A1-A5;
  • A1 consisting of high purity water having a mass percentage concentration of 0.5-3.0% peroxyacetic acid, 1.0-6.0% ammonia, and 91.0-98.5%;
  • A2 consisting of a mass percentage concentration of 0.6-6.0% hydrogen peroxide, 1.0-9.0% ammonia, and 85.0-98.4% high purity water;
  • A3 consisting of ethylamine having a mass percentage concentration of 0.2-6.0% and high purity water of 94.0-99.8%;
  • A4 consisting of methylamine having a mass percentage concentration of 0.2-8.0% and high purity water of 92.0-99.8%;
  • A5 consists of ethylene diamine having a mass percentage concentration of 0.2-5.0% and high purity water of 95.0-99.8%.
  • the precipitant is composed of one or more of Na 2 CO 3 , (NH 4 ) 2 CO 3 and (NH 4 ) 2 S; the Na 2 CO 3 and (NH 4 ) in the vanadium-containing solution per liter 2 CO 3 is added in an amount of 0.2 to 6.0 g, and (NH 4 ) 2 S is added in an amount of 0.6 to 6.0 g.
  • Fe+2+S-2 FeS ⁇ ;
  • Cu+2+S-2 CuS ⁇ ;
  • the cleaning agent is composed of one or more of Na2CO3, NH4NO3, acetone and ethanol; wherein the concentration of Na 2 CO 3 is 10g-80g/L, the concentration of NH 4 NO 3 is 10-70g/L, and the concentration of acetone is 10g-80g / L, ethanol concentration of 40g-120g / L.
  • step (1) The specific process of the step (1) is as follows:
  • the industrial ammonium metavanadate or / and industrial vanadium pentoxide are slowly added to the extractant under stirring to selectively dissolve ammonium metavanadate or / and vanadium pentoxide to form a vanadium-containing solution;
  • the precipitating agent is added and stirred for 10-30 minutes, and then allowed to stand for 30-60 minutes, and then subjected to vacuum filtration to achieve solid-liquid separation, and the vacuum filtered filter is 800-5000 mesh.
  • the evaporation amount of the filtrate in the step (3) is 10-40% of the total volume of the filtrate, and after evaporation, the pH is adjusted by the acid to 1-5, then crystallize by cooling until the knot The solid-liquid mixture was obtained until the crystals were completely precipitated.
  • the pH-adjusting acid is nitric acid having a mass percentage concentration of 10-70%.
  • the specific process of the step (4) is as follows: the solid-liquid mixture is subjected to solid-liquid separation by vacuum filtration, and the solid is washed 3-8 times with a cleaning agent, and vacuum is performed during the cleaning process. Filtered, vacuum filtered filter is 800-5000 mesh.
  • the finished product is subjected to grinding and packaging.
  • the present invention has the following advantages and beneficial effects:
  • the invention has the characteristics of simple process, low cost, etc., and the cost per ton of finished product in the invention is about 6000-8000 yuan; at the same time, part of the extract can be recycled by the method of the invention;
  • the product of the invention has good quality, and the purity of the finished product of the invention can reach above 99.9%, which is far higher than other methods for purification in the prior art.
  • a method for extracting high-purity vanadium pentoxide at room temperature is as follows:
  • the extract contains 2.0% by volume of hydrogen peroxide, 1.6% of ammonia and 97.4% of high purity water;
  • the industrial ammonium metavanadate is slowly added to 30 liters of the extract, and stirred and dissolved under normal temperature conditions. After the industrial ammonium metavanadate is completely dissolved, the solution is allowed to stand for 1-6 hours to obtain a vanadium-containing solution;
  • the normal temperature condition is 5 to 35 ° C, and in the present embodiment, the normal temperature condition is 25 ° C.
  • the filtrate is placed in an evaporation recovery device for evaporation.
  • the mixture is neutralized with 20% by mass of nitric acid to bring the filtrate pH to 2, and the neutralized solution is obtained.
  • the liquid was cooled to room temperature with water in a cooler until all ammonium metavanadate was precipitated to obtain a solid-liquid mixture.
  • the evaporated liquid is condensed and becomes ammonia water, which is recycled for recycling.
  • the high-purity ammonium metavanadate is placed in a muffle furnace, and the calcination reaction is carried out at 550 ° C for 4 hours. After the calcination reaction, it is rapidly cooled to room temperature and used in a dry and dust-free environment.
  • the 100 mesh sample sieve can be packaged by sieving.
  • the filtrate is sent to an evaporation recovery unit for evaporation recovery.
  • the evaporator evaporates 20% of the total volume of the liquid, the evaporation is stopped, and the evaporator lid is opened to add a certain amount of nitric acid having a concentration of 50% under stirring, and the liquid PH value is obtained.
  • Adjust the price to 6 transfer the coolant to the room temperature, cool the liquid to room temperature, and let stand for 24 hours until the ammonium metavanadate crystals are completely precipitated to obtain a solid-liquid mixture (by analysis, the V 2 O 5 concentration in the liquid is less than 1 g/ml. For the crystallization of success).
  • the evaporated liquid is condensed and becomes ammonia water, which is recycled for recycling.
  • the high-purity ammonium metavanadate crystal is sent to the square quartz crucible, and the quartz crucible is placed in a muffle furnace and baked at 450 ° C for 8 hours. After that, the mixture was rapidly cooled to room temperature, and the reddish brown high-purity vanadium pentoxide powder was sieved through a 100-mesh sieve to be packaged, and the purity of vanadium pentoxide was analyzed to be 99.92%.
  • Vacuum filtration was performed using a 1000 ML G4 sand core filter.
  • the filtrate is sent to an evaporation recovery unit for evaporation recovery.
  • the liquid evaporates 15% of the total volume evaporation is stopped, and the recovered cold liquid can be recycled as an extract.
  • Adjust the pH of the evaporate to 2 with 25% HNO 3 under stirring then send it to the room temperature with water to the room temperature. After the ammonium metavanadate crystals are completely precipitated, the concentration of vanadium pentoxide in the remaining liquid is less than 1 g/L. qualified.
  • the solid-liquid mixture was sent to a 2000 ML G4 sand core filter for vacuum filtration. After filtration, the solid-liquid mixture was washed 6 times with 10 liters of a 30 g/L ethanol high-purity aqueous solution, and then the solid-liquid mixture was washed with 5 L of high-purity water. 3 times.
  • the cleaned high-purity ammonium metavanadate is sent to a rectangular quartz crucible, baked at 500 ° C for 5 hours, and then rapidly lowered to room temperature to obtain reddish brown high-purity vanadium pentoxide, with a 100-mesh sample. Sift through the sieve and package.
  • the above finished product was analyzed and found to have a purity content of vanadium pentoxide of 99.95%, wherein the impurity Si content was 1 ppm and the Fe content was 8 ppm.
  • Vacuum filtration was performed using a 1000 ML G4 sand core filter.
  • the filtrate is sent to an evaporation recovery device for evaporation recovery.
  • the liquid evaporates 35% of the total volume, evaporation is stopped, and the recovered cold liquid is evaporated and used as an extract.
  • the pH of the evaporate was adjusted to 5 with 68% HNO 3 under stirring, and then sent to a room temperature with water to be cooled to room temperature.
  • the ammonium vanadate crystals were all precipitated, and the concentration of vanadium pentoxide in the remaining liquid was less than 1 g/L. qualified.
  • the solid-liquid mixture was sent to a 2000 ML G4 sand core filter for vacuum filtration. After filtration, the solid-liquid mixture was washed 6 times with 10 liters of a 70 g/L NH 4 NO 3 high-purity aqueous solution, and then the solid solution was washed with 5 L of high-purity water. Mix 3 times.
  • the cleaned high-purity ammonium metavanadate is sent to a rectangular quartz crucible, baked at 600 ° C for 6 hours, and then rapidly lowered to room temperature to obtain reddish brown high-purity vanadium pentoxide, with a 100-mesh sample. Sift through the sieve and package.
  • the above finished product was analyzed and found to have a purity content of vanadium pentoxide of 99.2%, wherein the impurity Si content was 20 ppm and the Fe content was 50 ppm.
  • Vacuum filtration was performed using a 1000 ML G4 sand core filter.
  • the filtrate is sent to an evaporation recovery unit for evaporation recovery.
  • the liquid evaporates 10% of the total volume evaporation is stopped, and the recovered cold liquid can be recycled as an extract.
  • the pH of the evaporate was adjusted to 5 with 12% HNO 3 under stirring, and then cooled to room temperature with a cooler, until the ammonium metavanadate crystals were completely precipitated, and the concentration of vanadium pentoxide in the remaining liquid was less than 1 g/L. qualified.
  • the solid-liquid mixture was sent to a 2000 ML G4 sand core filter for vacuum filtration. After filtration, the solid-liquid mixture was washed 6 times with 10 liters of a 10 g/L acetone high-purity aqueous solution, and then the solid-liquid mixture was washed with 5 L of high-purity water. 3 times.
  • the above finished product was analyzed and found to have a purity content of vanadium pentoxide of 99.70%, wherein the impurity Si content was 5 ppm and the Fe content was 15 ppm.
  • the material consumption in this example was large and there was no economic benefit.
  • the difference between this embodiment and the embodiment 1 is that the ratio of the extract in the embodiment is different.
  • the composition of the extract in the embodiment is as follows:
  • A1 0.6% peracetic acid, 3.2% ammonia, 97.1% high purity water;
  • the purity of the vanadium pentoxide is 99.92%, wherein the impurity Si content is 6 ppm, and the Fe content is 16 ppm;
  • the purity of the vanadium pentoxide is 99.91%, wherein the impurity Si content is 8 ppm, and the Fe content is 15 ppm;
  • the vanadium pentoxide had a purity content of 99.89%, wherein the impurity Si content was 9 ppm and the Fe content was 18 ppm.

Abstract

一种常温萃取生产高纯五氧化二钒的方法,包括:(1)将工业偏钒酸铵或/和工业五氧化二钒缓慢加入萃取剂中,选择性溶解偏钒酸铵或/和五氧化二钒,形成含钒溶液;在含钒溶液中加入沉淀剂使杂质沉淀;(2)过滤后获得滤液;(3)滤液加热蒸发后,将液体的pH值调节至1-6,然后冷却结晶获得固液混合液;(4)将固液混合液进行固液分离,固体用清洗剂清洗过滤;(5)过滤后的固体在400-600℃下烘烤,然后冷却降温后制成成品。该方法具有工艺简单、成本低、质量好等优点。

Description

[根据细则37.2由ISA制定的发明名称] 常温萃取法生产高纯五氧化二钒的方法 技术领域
本发明涉及高纯五氧化二钒的制备方法,具体涉及的是常温萃取生产高纯五氧化二钒的方法。
背景技术
从钒矿石中提取五氧化二钒的工艺中,经过焙烧离子交换后所得的解析液中的五氧化二钒产品中含有Fe+2、Pb+4、Cu+2、Cr+3、Cd+2、S1-2、As-2、K+1、Na+1等多种杂质,需提纯才能得到高纯度的五氧化二钒产品。高纯五氧化二钒广泛应用于航空航天、钒电池等领域,具有广阔的市场前景。
现有技术中高纯五氧化二钒的提纯方法大多在中性或弱碱性条件下进行,在该条件下的制备工艺过程太冗长,尽管经过两次结晶,其纯度仅仅只达到99.0%。本方法在常温条件下即可有效获得高纯五氧化二钒,其纯度可达到99.9%以上,纯度极高,并且采用常温酸性萃取结晶的方法,其操作更加简便,工艺过程中消耗的外加物质更少,成本更加低廉。
公开号CN 101456587A的专利提供了“一种高纯五氧化二钒的生产方法”,其特征在于用NaOH、Na2CO3作为沉淀剂,使大量的阳离子生成沉淀,再用KClO3作为氧化剂,在90℃左右温度下将溶液中的低价钒氧化为五氧化二钒,最后用稀硫酸调整溶液PH值,过滤后在氧化环境下煅烧得到纯度较高的五氧化二钒产品。这种方法旋转煅烧环节对设备要求高、投资大,加温氧化工序能耗较高,加入沉淀剂和氧化剂的阳离子难以在后期除去,提纯效果一般,产品质量难以控制。
发明内容
本发明的目的在于克服现有技术中制备方法的中间原料单耗增加、工艺流程冗长,且产品质量不高的问题;提供一种解决上述问题的常温萃取生产高纯五氧化二钒的方法。
为达到上述目的,本发明的技术方案如下:
常温萃取生产高纯五氧化二钒的方法,包括:
(1)将工业偏钒酸铵或/和工业五氧化二钒在搅拌条件下缓慢的加入萃取剂中,选择性的溶解偏钒酸铵或/和五氧化二钒,形成含钒溶液;在含钒溶液中加入沉淀剂使杂质沉淀;
(2)经过过滤操作后获得滤液;
(3)滤液加热蒸发,蒸发后将液体的pH调节至1-6,然后通过冷却结晶获得固液混合液;
(4)将固液混合液进行固液分离,固体用清洗剂清洗过滤;
(5)过滤后的固体在400-600℃温度下烘烤,然后经过冷却降温后制成成品。过滤后的固体在400-600℃温度下烘烤时间为2-12小时。
通过本发明生产出的高纯五氧化二钒,其生产成本仅仅只有6000-8000元/吨,成本低廉,效果显著。
所述萃取剂由A1-A5中的一种或多种配方构成;
A1:由质量百分比浓度为0.5-3.0%过氧乙酸、1.0-6.0%氨、91.0-98.5%的高纯水组成;
A2:由质量百分比浓度为0.6-6.0%过氧化氢、1.0-9.0%氨、85.0-98.4%高纯水组成;
A3:由质量百分比浓度为0.2-6.0%的乙胺和94.0-99.8%的高纯水组成;
A4:由质量百分比浓度为0.2-8.0%的甲胺和92.0-99.8%的高纯水组成;
A5:由质量百分比浓度为0.2-5.0%的乙二胺和95.0-99.8%的高纯水组成。
所述沉淀剂由Na2CO3、(NH4)2CO3和(NH4)2S中的一种或多种构成;所述每升含钒溶液中Na2CO3和(NH4)2CO3的加入量均为0.2-6.0g,(NH4)2S的加入量为0.6-6.0g。
经过萃取液萃取后,可去除大部分的杂质金属离子,再通过沉淀剂的处理后,可将剩余微量的金属离子变成沉淀析出。主要反应如下:
(1)Fe+2+S-2=FeS↓;(2)Cu+2+S-2=CuS↓;
(3)Pb+2+S-2=PbS↓;(4)Cr+2+S-2=CrS↓;
(5)Cd+2+S-2=CdS↓;(6)Ca+2+CO3-2=CaCO3↓。
所述清洗剂由Na2CO3、NH4NO3、丙酮和乙醇中的一种或多种构成;其中,Na2CO3浓度为10g-80g/L,NH4NO3浓度为10-70g/L、丙酮浓度为10g-80g/L,乙醇浓度为40g-120g/L。
所述步骤(1)的具体过程如下:
将工业偏钒酸铵或/和工业五氧化二钒在搅拌条件下缓慢的加入萃取剂中,选择性的溶解偏钒酸铵或/和五氧化二钒,形成含钒溶液;在含钒溶液中加入沉淀剂搅拌10-30分钟,再静置30-60分钟之后进行真空过滤实现固液分离,真空过滤的过滤网为800-5000目。
为了更好地节约成本,减少加入的外加剂损耗,并有效减少排出的废液,所述步骤(3)中将真空过滤的滤液进行蒸发时,该滤液蒸发的气体冷凝后成为氨水,然后再回收循环使用。
为了能更好地使滤液中的偏钒酸铵和五氧化二钒析出,所述步骤(3)中滤液的蒸发量为滤液总体积的10-40%,蒸发后通过酸调节其pH值到1-5,然后再通过冷却结晶,直至结 晶体析出完全为止,获得固液混合液。
作为一种优选,所述调节pH值的酸为质量百分比浓度为10-70%的硝酸。
为了更好地提高产品的纯度,所述步骤(4)的具体过程如下:通过真空过滤将固液混合液进行固液分离,用清洗剂清洗固体3-8次,在清洗的过程中进行真空过滤,真空过滤的过滤网为800-5000目。
进一步,所述步骤(5)中成品经过磨细后包装即可。
本发明与现有技术相比,具有以下优点及有益效果:
1、本发明具有工艺简单、成本低等特点,本发明中每吨成品的成本在6000-8000元左右;同时采用本发明的方法,部份萃取液还可循环使用;
2、本发明的产品质量好,本发明成品的纯度可达到99.9%以上,远远高于现有技术中其他进行提纯的方法。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
常温萃取生产高纯五氧化二钒的方法,具体过程如下:
(1)首先称取1000g工业偏钒酸铵,配置萃取液;
萃取液含有体积百比2.0%的过氧化氢、1.6%的氨和97.4%的高纯水;
将工业偏钒酸铵缓慢的加入30升萃取液中,在常温条件下搅拌溶解,待工业偏钒酸铵全部溶解完后,静置1-6小时获得含钒溶液;
本发明中该常温条件为5~35℃,本实施例中该常温条件为25℃。
(2)首先用1000毫升的G4砂芯过滤器对含钒溶液进行真空过滤,过滤完后用200-800ml的高纯水洗涤2-8次;
然后在搅拌条件下,加入20g的固体Na2CO3和20ml质量百分比为30%的Na2S,继续搅拌30分钟,静置24小时,之后用G4砂芯过滤器进行真空过滤获得滤液。
(3)过滤完毕后将滤液置于蒸发回收器中进行蒸发,当蒸发量为总体积30%后,用质量百分比为20%的硝酸进行中和,使滤液pH达到2,将中和后的液体于冷却器中用水冷却到室温,直至偏钒酸铵全部析出,获得固液混合液。蒸发后的液体冷凝后成为氨水,回收循环使用。
(4)冷却后的固液混合液进行真空过滤,过滤完后用30升质量百分比为0.1%的NH4NO3的清洗液在真空过滤的条件下进行清洗。
(5)清洗完后将高纯偏钒酸铵置于马弗炉中,在550℃温度条件下进行焙烧反应4小时,焙烧反应完后,迅速冷却至室温,在干燥无尘的环境中用100目分样筛过筛即可包装。
取出1.0g样品进行杂质分析,经检测产品质量达到99.91%。
实施例2
本实施例与实施例1的区别在于,本实施例中该萃取液、沉淀剂和清洗剂的成份不同,且沉淀剂的具体加入步骤不同,以及反应的条件不同,具体设置如下:
(1)首先称取1000g工业偏钒酸铵,配置萃取液:萃取液含有质量百分比浓度为2.5%的过氧化氢、2.0%的氨和95.5%的高纯水。然后将工业偏钒酸铵缓慢的加入25升萃取液中,在加入萃取液的同时加入沉淀剂并搅拌,该沉淀剂包括1.5g/L的Na2CO3和0.6g/L(NH4)2S,待偏钒酸铵完全溶解后,静置6小时后获得含钒的溶液。
(2)用1000毫升的G4沙芯过滤器进行真空过滤获得滤液。
(3)滤液送入蒸发回收器进行蒸发回收,当蒸发器蒸发出液体总体积20%后,停止蒸发,打开蒸发器盖子在搅拌条件下加入一定量浓度为50%的硝酸,将液体PH值调价至6,移入冷却液用水将液体冷却至室温,静置24小时,直至偏钒酸铵结晶全部析出为止,获得固液混合液(通过分析,液体中V2O5浓度小于1g/ml视为成功结晶)。蒸发后的液体冷凝后成为氨水,回收循环使用。
(4)将偏钒酸铵晶体和液体混合物送2000ML G4沙芯过滤器中用真空过滤法进行过滤,过滤完毕后,用约20升的质量百分比浓度为5%丙酮高纯水清洗液清洗10次。
(5)清洗完后将高纯偏钒酸铵晶体送方形石英坩埚中,将石英坩埚放置于马弗炉中,在450℃温度下烘8小时。之后快速冷却至室温,再将红棕色的高纯五氧化二钒粉末用100目的分样筛过筛,即可进行包装,分析检测五氧化二钒纯度为99.92%。
实施例3
本实施例与实施例2的区别在于,本实施例中该萃取液、沉淀剂和清洗剂的成份不同,以及反应的条件不同,具体操作过程如下:
(1)首先称取1000g工业五氧化二钒,配置萃取液:萃取液含有质量百分比浓度为0.6%的过氧乙酸、3.6%的氨和95.8%的高纯水。然后在室温下慢慢搅拌将工业五氧化二钒加入25升萃取液中,之后继续搅拌液体并加入沉淀剂,该沉淀剂包括0.3g/L(NH4)2CO3、0.2g/L(NH4)2S,待五氧化二钒全部溶解完后,停止搅拌,静置3小时。
(2)用1000ML G4沙芯过滤器进行真空过滤。
(3)过滤完后将滤液送入蒸发回收器进行蒸发回收,当液体蒸发掉总体积的15%后停止 蒸发,蒸发回收的冷液后可作为萃取液循环使用。在搅拌条件下用25%的HNO3将蒸发液PH调至2,然后送冷却器用水冷却至室温,待偏钒酸铵晶体全部析出,检测剩余液体中五氧化二钒浓度小于1g/L为合格。
(4)将固液混合物送2000ML G4沙芯过滤器进行真空过滤,过滤完后,用含有30g/L乙醇高纯水溶液10升清洗固液混合物6次,之后再用5L高纯水清洗固液混合体3次。
(5)将清洗好的高纯偏钒酸铵送入长方形石英坩埚中,在500℃温度下烘5小时,之后迅速降至室温得到红棕色的高纯五氧化二钒,用100目的分样筛过筛包装即可。
上述成品经分析检测得到五氧化二钒的纯度含量为99.95%,其中,杂质Si含量为1ppm,Fe含量为8ppm。
实施例4
本实施例与实施例1-3的区别在于本实施例中该萃取液、沉淀剂和清洗剂的成份接近或超过权利要求书中的配比范围的上限,具体操作过程如下:
(1)首先称取1000g工业五氧化二钒,配置萃取液:萃取液含有质量百分比浓度为6.6%的过氧化氢、9%的氨和84.4%的高纯水。然后在室温下慢慢搅拌将工业五氧化二钒加入15升萃取液中,之后继续搅拌液体并加入沉淀剂,该沉淀剂包括9.0/L(NH4)2CO3、6.6g/L(NH4)2S,待五氧化二钒全部溶解完后,停止搅拌,静置2小时。
(2)用1000ML G4沙芯过滤器进行真空过滤。
(3)过滤完后将滤液送入蒸发回收器进行蒸发回收,当液体蒸发掉总体积的35%后停止蒸发,蒸发回收的冷液后可作为萃取液循环使用。在搅拌条件下用68%的HNO3将蒸发液PH调至5,然后送冷却器用水冷却至室温,待偏钒酸铵晶体全部析出,检测剩余液体中五氧化二钒浓度小于1g/L为合格。
(4)将固液混合物送2000ML G4沙芯过滤器进行真空过滤,过滤完后,用含有70g/LNH4NO3高纯水溶液10升清洗固液混合物6次,之后再用5L高纯水清洗固液混合体3次。
(5)将清洗好的高纯偏钒酸铵送入长方形石英坩埚中,在600℃温度下烘6小时,之后迅速降至室温得到红棕色的高纯五氧化二钒,用100目的分样筛过筛包装即可。
上述成品经分析检测得到五氧化二钒的纯度含量为99.2%,其中,杂质Si含量为20ppm,Fe含量为50ppm。
实施例5
本实施例与实施例1-4的区别在于本实施例中该萃取液、沉淀剂和清洗剂的成份接近或低于权利要求书中的配比范围的下限,具体操作过程如下:
(1)首先称取1000g工业五氧化二钒,配置萃取液:萃取液含有质量百分比浓度为0.3%的乙胺和99.7%的高纯水。然后在室温下慢慢搅拌加入60升萃取液溶解工业五氧化二钒,之后继续搅拌液体并加入沉淀剂,该沉淀剂包括0.1/L(NH4)2CO3、0.1g/L(NH4)2S,待五氧化二钒全部溶解完后,停止搅拌,静置2小时。
(2)用1000ML G4沙芯过滤器进行真空过滤。
(3)过滤完后将滤液送入蒸发回收器进行蒸发回收,当液体蒸发掉总体积的10%后停止蒸发,蒸发回收的冷液后可作为萃取液循环使用。在搅拌条件下用12%的HNO3将蒸发液PH调至5,然后送冷却器用水冷却至室温,待偏钒酸铵晶体全部析出,检测剩余液体中五氧化二钒浓度小于1g/L为合格。
(4)将固液混合物送2000ML G4沙芯过滤器进行真空过滤,过滤完后,用含有10g/L丙酮高纯水溶液10升清洗固液混合物6次,之后再用5L高纯水清洗固液混合体3次。
(5)将清洗好的高纯偏钒酸铵送入长方形石英坩埚中,在400℃温度下烘6小时,之后迅速降至室温得到红棕色的高纯五氧化二钒,用100目的分样筛过筛包装即可。
上述成品经分析检测得到五氧化二钒的纯度含量为99.70%,其中,杂质Si含量为5ppm,Fe含量为15ppm,此实施例物料消耗较大,无经济效益。
实施例6
本实施例与实施例1的区别在于本实施例中该萃取液的配比不同,本实施例中该萃取液的组成如下:
A1:0.6%过氧乙酸、3.2%氨、97.1%的高纯水;
或A3:3%的甲胺和97%的高纯水;
或A5:1.5%的乙二胺和98.5%的高纯水。
对采用上述不同组分和配比的萃取液获得的成品进行分析检测,得到五氧化二钒的纯度含量情况如下:
采用上述A1组成成分的萃取液时,该五氧化二钒的纯度含量为99.92%,其中,杂质Si含量为6ppm,Fe含量为16ppm;
采用上述A3组成成分的萃取液时,该五氧化二钒的纯度含量为99.91%,其中,杂质Si含量为8ppm,Fe含量为15ppm;
采用上述A5组成成分的萃取液时,该五氧化二钒的纯度含量为99.89%,其中,杂质Si含量为9ppm,Fe含量为18ppm。
上述实施例仅为本发明的优选实施例,并非对本发明保护范围的限制,但凡采用本发明 的设计原理,以及在此基础上进行非创造性劳动而作出的变化,均应属于本发明的保护范围之内。

Claims (10)

  1. 常温萃取生产高纯五氧化二钒的方法,其特征在于,包括:
    (1)将工业偏钒酸铵或/和工业五氧化二钒缓慢的加入萃取剂中,选择性的溶解偏钒酸铵或/和五氧化二钒,形成含钒溶液;在含钒溶液中加入沉淀剂使杂质沉淀;
    (2)经过过滤操作后获得滤液;
    (3)滤液加热蒸发,蒸发后将液体的pH调节至1-6,然后通过冷却结晶获得固液混合液;
    (4)将固液混合液进行固液分离,固体用清洗剂清洗过滤;
    (5)过滤后的固体在400-600℃温度下烘烤,然后经过冷却降温后制成成品。
  2. 根据权利要求1所述的常温萃取生产高纯五氧化二钒的方法,其特征在于,所述萃取剂由A1-A5中的一种或多种配方构成;
    A1:由质量百分比浓度为0.5-3.0%过氧乙酸、1.0-6.0%氨、91.0-98.5%的高纯水组成;
    A2:由质量百分比浓度为0.6-6.0%过氧化氢、1.0-9.0%氨、85.0-98.4%高纯水组成;
    A3:由质量百分比浓度为0.2-6.0%的乙胺和94.0-99.8%的高纯水组成;
    A4:由质量百分比浓度为0.2-8.0%的甲胺和92.0-99.8%的高纯水组成;
    A5:由质量百分比浓度为0.2-5.0%的乙二胺和95.0-99.8%的高纯水组成。
  3. 根据权利要求1所述的常温萃取生产高纯五氧化二钒的方法,其特征在于,所述沉淀剂由Na2CO3、(NH4)2CO3和(NH4)2S中的一种或多种构成;所述每升含钒溶液中Na2CO3和(NH4)2CO3的加入量均为0.2-6g,(NH4)2S的加入量为0.6-6g。
  4. 根据权利要求1所述的常温萃取生产高纯五氧化二钒的方法,其特征在于,所述清洗剂由Na2CO3、NH4NO3、丙酮和乙醇中的一种或多种构成;其中,Na2CO3浓度为10g-80g/L,NH4NO3浓度为10g-70g/L、丙酮浓度为10g-80g/L,乙醇浓度为40g-120g/L。
  5. 根据权利要求1所述的常温萃取生产高纯五氧化二钒的方法,其特征在于,所述步骤(1)的具体过程如下:
    将工业偏钒酸铵或/和工业五氧化二钒在搅拌条件下缓慢的加入萃取剂中,选择性的溶解偏钒酸铵或/和五氧化二钒,形成含钒溶液;在含钒溶液中加入沉淀剂 搅拌10-30分钟,再静置30-60分钟之后进行真空过滤实现固液分离,真空过滤的过滤网为800-5000目。
  6. 根据权利要求1所述的常温萃取生产高纯五氧化二钒的方法,其特征在于,所述步骤(3)中将过滤的滤液进行蒸发时,该滤液蒸发的气体冷凝后成为氨水,然后再回收循环使用。
  7. 根据权利要求1所述的常温萃取生产高纯五氧化二钒的方法,其特征在于,所述步骤(3)中滤液的蒸发量为滤液总体积的10-40%,蒸发后通过酸调节其pH值到1-5,然后再通过冷却结晶,直至结晶体析出完全为止,获得固液混合液。
  8. 根据权利要求7所述的常温萃取生产高纯五氧化二钒的方法,其特征在于,所述调节pH值的酸为质量百分比浓度为10-70%的硝酸。
  9. 根据权利要求1所述的常温萃取生产高纯五氧化二钒的方法,其特征在于,所述步骤(4)的具体过程如下:通过真空过滤将固液混合液进行固液分离,用清洗剂清洗固体3-8次,在清洗的过程中进行真空过滤,真空过滤的过滤网为800-5000目。
  10. 根据权利要求1所述的常温萃取生产高纯五氧化二钒的方法,其特征在于,所述步骤(5)中成品经过磨细后包装即可。
PCT/CN2016/079544 2015-12-02 2016-04-18 常温萃取法生产高纯五氧化二钒的方法 WO2017092217A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510871635.3A CN105366722B (zh) 2015-12-02 2015-12-02 常温萃取生产高纯五氧化二钒的方法
CN201510871635.3 2015-12-02

Publications (1)

Publication Number Publication Date
WO2017092217A1 true WO2017092217A1 (zh) 2017-06-08

Family

ID=55369436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079544 WO2017092217A1 (zh) 2015-12-02 2016-04-18 常温萃取法生产高纯五氧化二钒的方法

Country Status (2)

Country Link
CN (1) CN105366722B (zh)
WO (1) WO2017092217A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111484076A (zh) * 2020-04-22 2020-08-04 承德新新钒钛储能科技有限公司 一种从失效钒电解液中回收高纯钒的方法
CN111778390A (zh) * 2020-07-08 2020-10-16 辽宁石化职业技术学院 一种钠化焙烧生产五氧化二钒的提纯方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105366722B (zh) * 2015-12-02 2017-08-25 雅安市中甫新能源开发有限公司 常温萃取生产高纯五氧化二钒的方法
CN106966431B (zh) * 2017-05-15 2018-10-16 天津市风船化学试剂科技有限公司 一种4n指定级高纯偏钒酸铵的制备方法
CN107500357A (zh) * 2017-10-10 2017-12-22 攀钢集团研究院有限公司 五氧化二钒的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298238A (ja) * 2004-04-08 2005-10-27 Nikko Materials Co Ltd 高純度v2o5及びその製造方法
CN102849795A (zh) * 2011-07-02 2013-01-02 全喆 高纯度五氧化二钒的制备
CN103112897A (zh) * 2013-03-08 2013-05-22 贵州遵义汇兴铁合金有限责任公司 一种从石煤中同时提取钒、铝、钾的方法
CN104692461A (zh) * 2015-02-16 2015-06-10 河北钢铁股份有限公司承德分公司 一种高纯粉状氧化钒的制备方法
CN105060344A (zh) * 2015-07-20 2015-11-18 常州市好利莱光电科技有限公司 一种从废钒催化剂中提取五氧化二钒的方法
CN105366722A (zh) * 2015-12-02 2016-03-02 雅安市中甫新能源开发有限公司 常温萃取法生产高纯五氧化二钒

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298238A (ja) * 2004-04-08 2005-10-27 Nikko Materials Co Ltd 高純度v2o5及びその製造方法
CN102849795A (zh) * 2011-07-02 2013-01-02 全喆 高纯度五氧化二钒的制备
CN103112897A (zh) * 2013-03-08 2013-05-22 贵州遵义汇兴铁合金有限责任公司 一种从石煤中同时提取钒、铝、钾的方法
CN104692461A (zh) * 2015-02-16 2015-06-10 河北钢铁股份有限公司承德分公司 一种高纯粉状氧化钒的制备方法
CN105060344A (zh) * 2015-07-20 2015-11-18 常州市好利莱光电科技有限公司 一种从废钒催化剂中提取五氧化二钒的方法
CN105366722A (zh) * 2015-12-02 2016-03-02 雅安市中甫新能源开发有限公司 常温萃取法生产高纯五氧化二钒

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111484076A (zh) * 2020-04-22 2020-08-04 承德新新钒钛储能科技有限公司 一种从失效钒电解液中回收高纯钒的方法
CN111778390A (zh) * 2020-07-08 2020-10-16 辽宁石化职业技术学院 一种钠化焙烧生产五氧化二钒的提纯方法

Also Published As

Publication number Publication date
CN105366722B (zh) 2017-08-25
CN105366722A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
WO2017092217A1 (zh) 常温萃取法生产高纯五氧化二钒的方法
CN103145187B (zh) 一种无害化高纯五氧化二钒的生产工艺
RU2736539C1 (ru) Способ получения оксида ванадия батарейного сорта
CN109704408A (zh) 一种电池级高纯硫酸锰的生产方法
CN109055724B (zh) 从铬钒矿/渣中提取钒和铬的方法
CN106241873B (zh) 高纯度五氧化二钒的制备方法
CN106745248B (zh) 高纯硫酸氧钒溶液制备方法
CN102337409A (zh) 一种从除磷底流渣中回收钒的方法
EP2557067B1 (en) Method for preparing manganese sulfate monohydrate
CN109928420B (zh) 电子级硝酸铈铵的生产工艺
CN107541599A (zh) 使用酸性高锰含钒浸出液制取高纯钒的制备方法
CN112875753B (zh) 一种低钠低铵高纯度钼酸制备方法
WO2004022486A1 (ja) 高純度硫酸銅及びその製造方法
CN106315655A (zh) 一种高纯度碳酸镧的生产方法
CN102126756B (zh) 一种生产工业级仲钼酸铵的方法
JP3299291B2 (ja) 弗化物含量の少ない金属水酸化物を得る方法
CN109881010B (zh) 钴粉前驱体碳酸钴制备过程中的碳酸钴母液的处理方法
JPS62247802A (ja) 晶析方法
CN110550646A (zh) 一种硫酸铯和硫酸铷的制备方法
CN113957273B (zh) 一种盐酸高效分解硫酸钙的方法
US3087786A (en) Preparation of high purity vanadium pentoxide from oxidic vanadium materials
CN104032144A (zh) 从含钯k金中分离与提纯贵金属的方法
CN112126784A (zh) 一种钒铬污泥回收钒铬资源的方法
CN108796234B (zh) 一种锑砷物料中锑和砷的分离方法
CN105110380B (zh) 一种利用含钙镁氯化亚铁溶液制备颜料级Fe2O3的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16869531

Country of ref document: EP

Kind code of ref document: A1