WO2017086320A1 - 有機半導体組成物、有機半導体膜、有機薄膜トランジスタおよび有機薄膜トランジスタの製造方法 - Google Patents

有機半導体組成物、有機半導体膜、有機薄膜トランジスタおよび有機薄膜トランジスタの製造方法 Download PDF

Info

Publication number
WO2017086320A1
WO2017086320A1 PCT/JP2016/083856 JP2016083856W WO2017086320A1 WO 2017086320 A1 WO2017086320 A1 WO 2017086320A1 JP 2016083856 W JP2016083856 W JP 2016083856W WO 2017086320 A1 WO2017086320 A1 WO 2017086320A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
formula
independently represents
represented
Prior art date
Application number
PCT/JP2016/083856
Other languages
English (en)
French (fr)
Inventor
陽介 山本
史子 玉國
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP16866321.9A priority Critical patent/EP3379590A4/en
Priority to JP2017551891A priority patent/JP6484724B2/ja
Publication of WO2017086320A1 publication Critical patent/WO2017086320A1/ja
Priority to US15/978,639 priority patent/US10902969B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/228Polymers, i.e. more than 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3225Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more Se atoms as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3244Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing only one kind of heteroatoms other than N, O, S
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating

Definitions

  • the present invention relates to an organic semiconductor composition, an organic semiconductor film, an organic thin film transistor, and a method for producing an organic thin film transistor.
  • Patent Documents 1 and 2 disclose an organic semiconductor composition containing a high molecular compound having a carrier transport property and a low molecular compound. .
  • an object of the present invention is to provide an organic semiconductor composition capable of forming an organic thin film transistor having excellent hysteresis characteristics while maintaining high carrier mobility. Moreover, an object of this invention is to provide the manufacturing method of an organic-semiconductor film, an organic thin-film transistor, and an organic thin-film transistor.
  • the present inventor has found that a desired effect can be obtained by using an organic semiconductor composition in which a compound X having a predetermined structure and a compound Y having a predetermined structure are used in combination.
  • the present invention has been reached. That is, the present inventor has found that the above problem can be solved by the following configuration.
  • Compound X having a molecular weight of 2000 or more and having a repeating unit represented by the formula (1) described below;
  • Compound Y represented by Formula (2) described below
  • An organic semiconductor composition containing A in formula (1) described later is a group having as a partial structure at least one structure selected from the group consisting of structures represented by formulas (A-1) to (A-9) described below, D is a divalent aromatic heterocyclic group having at least one N atom, O atom, S atom, or Se atom in the ring structure, or a divalent aromatic carbon group having a condensed structure of two or more rings.
  • An electron donor unit containing a hydrogen group as a partial structure is represented.
  • X each independently represents an O atom, an S atom, a Se atom, or NR A1 .
  • Y each independently represents an O atom or an S atom.
  • Z a each independently represents CR A2 or an N atom.
  • Each W independently represents C (R A2 ) 2 , NR A1 , N atom, CR A2 , O atom, S atom, or Se atom.
  • R A1 each independently represents an alkyl group that may contain at least one of —O—, —S—, and —NR A3 —, a monovalent group represented by the formula (1-1) described later It represents a binding site with a group or other structure.
  • Each R A2 independently represents an alkyl group which may contain at least one of a hydrogen atom, a halogen atom, —O—, —S—, and —NR A3 —, or a bonding site with another structure; Represents.
  • R A3 each independently represents a hydrogen atom or a substituent. * Each independently represents a binding site with another structure.
  • Ar represents an aromatic heterocyclic group or an aromatic hydrocarbon group having 5 to 18 carbon atoms.
  • L a represents an alkylene group having 1 to 20 carbon atoms which may contain at least one of —O—, —S—, and —NR 1S —.
  • L b represents an alkyl group having 1 to 100 carbon atoms which may contain at least one of —O—, —S—, and —NR 2S —.
  • R 1S and R 2S each independently represent a hydrogen atom or a substituent.
  • l represents an integer of 1 to 5. When l is 2 or more, the plurality of L b may be the same as or different from each other.
  • * represents a binding site with another structure.
  • A, B and C each independently represent a ring structure selected from a benzene ring, a 6-membered heterocycle, a 5-membered heterocycle and a cyclopentadiene ring. Adjacent rings are condensed with each other.
  • n represents an integer of 2 to 8.
  • a plurality of A may be the same as or different from each other, but at least one of the plurality of A represents a 5-membered heterocyclic ring.
  • R 1 and R 2 each independently represents a saturated hydrocarbon group that may contain at least one of —O—, —S—, and —NR B —, —O—, —S—, and , —NR C — which may contain at least one of —NR C —, an aryl group, a heteroaryl group, an alkoxy group, an amino group, a carbonyl group, an ester group, a nitro group, a hydroxy group, a cyano group, A monovalent group selected from the group consisting of an arylalkyl group, a heteroarylalkyl group, an aryloxy group, a heteroaryloxy group, an alkylsilyl group and a halogen atom.
  • R B each independently represents a hydrogen atom or a substituent.
  • Each R C independently represents a hydrogen atom or a substituent.
  • s and t each independently represent an integer of 0 to 4.
  • X ′ independently represents an O atom, an S atom, an Se atom, or NR D1 .
  • R D1 independently represents a monovalent organic group which may be a monovalent group represented by the formula (1-1) described later.
  • Z d each independently represents an N atom or CR D2 .
  • R D2 each independently represents a hydrogen atom or a monovalent organic group which may be a monovalent group represented by the formula (1-1) described later.
  • M represents a single bond, a divalent aromatic heterocyclic group, a divalent aromatic hydrocarbon group, an alkenylene group, an alkynylene group, or a divalent group formed by combining these.
  • M is an alkyl group that may include at least one of —O—, —S—, and —NR D3 —, or a monovalent group represented by the formula (1-1) described later. May be substituted.
  • R D3 each independently represents a hydrogen atom or a substituent.
  • p and q each independently represents an integer of 0 to 4. * Each independently represents a binding site with another structure.
  • each X independently represents an O atom, an S atom, a Se atom, or NR A1 .
  • R A1 each independently represents an alkyl group that may contain at least one of —O—, —S—, and —NR A3 —, a monovalent group represented by the formula (1-1) described later It represents a binding site with a group or other structure.
  • Y each independently represents an O atom or an S atom.
  • Z a each independently represents CR A2 or an N atom.
  • Each R A2 independently represents an alkyl group which may contain at least one of a hydrogen atom, a halogen atom, —O—, —S—, and —NR A3 —, or a bonding site with another structure; Represents.
  • R A3 each independently represents a hydrogen atom or a substituent.
  • X ′ each independently represents O, S, Se, or NR D1 .
  • R D1 independently represents a monovalent organic group which may be a monovalent group represented by the formula (1-1) described later.
  • Z d each independently represents N or CR D2 .
  • R D2 independently represents a hydrogen atom or a monovalent organic group which may be a monovalent group represented by the formula (1-1) described later.
  • M represents a single bond, a divalent aromatic heterocyclic group, a divalent aromatic hydrocarbon group, an alkenylene group, an alkynylene group, or a divalent group formed by combining these.
  • M is an alkyl group that may include at least one of —O—, —S—, and —NR D3 —, or a monovalent group represented by the formula (1-1) described later. May be substituted.
  • R D3 each independently represents a hydrogen atom or a substituent.
  • p and q each independently represents an integer of 0 to 4.
  • R A1 each independently represents an alkyl group that may contain at least one of —O—, —S—, and —NR A3 —, and formula (1-1) described later.
  • R A3 each independently represents a hydrogen atom or a substituent.
  • X ′ each independently represents O, S, Se, or NR D1 .
  • R D1 independently represents a monovalent organic group which may be a monovalent group represented by the formula (1-1) described later.
  • M represents a single bond, a divalent aromatic heterocyclic group, a divalent aromatic hydrocarbon group, an alkenylene group, an alkynylene group, or a divalent group formed by combining these.
  • M is an alkyl group that may include at least one of —O—, —S—, and —NR D3 —, or a monovalent group represented by the formula (1-1) described later. May be substituted.
  • R D3 each independently represents a hydrogen atom or a substituent.
  • p and q each independently represents an integer of 0 to 4.
  • R 21 to R 26 each independently represents a hydrogen atom or a substituent. Adjacent groups in R 21 to R 26 may be bonded to each other to form an aromatic hydrocarbon ring or an aromatic heterocyclic ring. In this case, the aromatic hydrocarbon ring or aromatic heterocyclic ring may be further condensed with an aromatic hydrocarbon ring or aromatic heterocyclic ring. However, at least one pair of adjacent groups in R 21 to R 24 is bonded to each other to form an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • the organic semiconductor composition according to any one of [1] to [4], wherein the compound Y is a compound represented by the formula (2B) described below.
  • A1, A2, A3, B1, and C1 each independently represent a benzene ring or a thiophene ring, and adjacent rings are condensed with each other.
  • A1, A2, A3, B1 and C1 2 to 4 rings are thiophene rings and rings other than thiophene rings are benzene rings.
  • at least one of A1, A2, and A3 is a thiophene ring.
  • R 1 and R 2 each independently represents a saturated hydrocarbon group that may contain at least one of —O—, —S—, and —NR B —, —O—, —S—, and , —NR C — which may contain at least one of —NR C —, an aryl group, a heteroaryl group, an alkoxy group, an amino group, a carbonyl group, an ester group, a nitro group, a hydroxy group, a cyano group, A monovalent group selected from the group consisting of an arylalkyl group, a heteroarylalkyl group, an aryloxy group, a heteroaryloxy group, an alkylsilyl group and a halogen atom.
  • R B each independently represents a hydrogen atom or a substituent.
  • Each R C independently represents a hydrogen atom or a substituent.
  • s and t each independently represent an integer of 0 to 4.
  • an organic semiconductor composition capable of forming an organic thin film transistor having excellent hysteresis characteristics while maintaining high carrier mobility.
  • the manufacturing method of an organic-semiconductor film, an organic thin-film transistor, and an organic thin-film transistor can be provided.
  • the term “compound” is used to mean not only the compound itself but also its salt and its ion.
  • substituents, etc. when there are a plurality of substituents, linking groups, etc. (hereinafter referred to as substituents, etc.) indicated by specific symbols, or when a plurality of substituents etc. are defined simultaneously, each substituent etc. It means that they may be the same or different from each other. The same applies to the definition of the number of substituents and the like.
  • substituents and the like when a plurality of substituents and the like are close (particularly adjacent), it means that they may be connected to each other or condensed to form a ring.
  • a substituent or the like that does not clearly indicate substitution / unsubstitution means that the group may further have a substituent as long as the intended effect is not impaired. This is also synonymous for compounds that do not specify substitution / non-substitution.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the organic semiconductor composition of the present invention contains a compound X having a molecular weight of 2000 or more and having a repeating unit represented by the formula (1) described later, and a compound Y represented by the formula (2) described later. To do.
  • the compound X having a molecular weight of 2000 or more and having a repeating unit represented by the formula (1) described later (hereinafter also referred to as “specific polymer compound”) and the formula (2) described later are used.
  • the compound Y hereinafter also referred to as “specific low molecular weight compound”
  • an organic thin film transistor having excellent hysteresis characteristics can be produced while maintaining high carrier mobility.
  • the specific polymer compound is a kind of so-called DA type polymer having a main chain skeleton formed from an electron donor unit and an electron acceptor unit.
  • DA type polymer shows good orientation when crystallized, but it is considered that the orientation can be further improved by using it together with a specific low molecular weight compound. That is, it is considered that the use of the specific high molecular compound and the specific low molecular compound makes it easier for the specific low molecular compound to enter the gap between the specific high molecular compounds, and the crystallinity and alignment of the specific high molecular compound are improved. .
  • the charge injection at the interface between the organic semiconductor film (organic semiconductor layer) and the source and drain electrodes can be performed smoothly, and the hysteresis (voltage controllability) is excellent while maintaining high mobility. It is estimated that
  • the organic thin-film transistor containing the organic-semiconductor layer formed using the organic-semiconductor composition of this invention showed the characteristic excellent also about the threshold voltage for the said reason. Furthermore, when only a low molecular weight compound is used, the crystal structure of the organic semiconductor layer tends to collapse, but by using a specific polymer compound in combination, it is less susceptible to defects caused by heating. Therefore, it is estimated that the organic thin-film transistor containing the organic-semiconductor layer formed using the organic-semiconductor composition of this invention can suppress the fall of the carrier mobility before and behind a heating, and showed favorable heat resistance.
  • the organic semiconductor composition of the present invention contains a specific polymer compound.
  • the specific polymer compound is a compound X having a molecular weight of 2000 or more and having a repeating unit represented by the following formula (1).
  • the specific polymer compound is a kind of organic semiconductor compound and has a carrier transport property.
  • A represents an electron acceptor unit, and at least one structure selected from the group consisting of structures represented by formulas (A-1) to (A-9) described later is used as a partial structure. It is group which has.
  • D is a divalent aromatic heterocyclic group having at least one N atom, O atom, S atom, or Se atom in the ring structure, or a divalent aromatic carbon group having a condensed structure of two or more rings.
  • An electron donor unit containing a hydrogen group as a partial structure is represented.
  • A preferably has, as a partial structure, at least one structure selected from the group consisting of structures represented by the following formulas (A-1) to (A-9). Is more preferably a structure represented by at least one selected from the group consisting of the following formulas (A-1) to (A-9).
  • each X independently represents an O atom, an S atom, a Se atom, or NR A1 .
  • Y each independently represents an O atom or an S atom.
  • Z a each independently represents CR A2 or an N atom.
  • Each W independently represents C (R A2 ) 2 , NR A1 , N atom, CR A2 , O atom, S atom, or Se atom.
  • R A1 is independently, -O -, - S-, and, -NR A3 - at least one contain an even alkyl group of monovalent group represented by the following formula (1-1) Or a binding site with another structure.
  • R A2 each independently represents an alkyl group which may contain at least one of a hydrogen atom, a halogen atom, —O—, —S—, and —NR A3 —, and is represented by the following formula (1-1): Represents a binding site with a monovalent group or other structure.
  • R A3 each independently represents a hydrogen atom or a substituent. * Each independently represents a binding site with another structure.
  • formulas (A-3) and (A-7) in each of two ring structures containing Za, one Za is CR A2 and R A2 is a bond to another structure. Represents a site. The binding site with other structures corresponds to * in the formula.
  • the bond that is located at the tip of * representing the bonding position with another structure extends from any Za in each formula, Za in which the bond extends is CR A2 , and R A2 corresponds to an embodiment representing a binding site with another structure.
  • Za in which the bond extends is CR A2
  • R A2 corresponds to an embodiment representing a binding site with another structure.
  • two Zas are CR A2 and R A2 represents a binding site with another structure.
  • the binding site with other structures corresponds to * in the formula.
  • one W represents any one of the following three embodiments.
  • Aspect 1 W is CR A2 and R A2 represents a binding site with another structure.
  • Aspect 2 W is NR A1 and R A1 represents a binding site to another structure.
  • Aspect 3 W is C (R A2 ) 2 and one of R A2 represents a binding site with another structure.
  • Ar represents an aromatic heterocyclic group or an aromatic hydrocarbon group having 5 to 18 carbon atoms.
  • L a represents an alkylene group having 1 to 20 carbon atoms which may contain at least one of —O—, —S—, and —NR 1S —.
  • L b represents an alkyl group having 1 to 100 carbon atoms which may contain at least one of —O—, —S—, and —NR 2S —.
  • R 1S and R 2S each independently represent a hydrogen atom or a substituent.
  • l represents an integer of 1 to 5. When l is 2 or more, the plurality of L b may be the same as or different from each other. * Represents a binding site with another structure.
  • each X independently represents an O atom, an S atom, a Se atom, or NR A1, and preferably an S atom or NR A1 .
  • Y independently represents an O atom or an S atom, and an O atom is preferred.
  • Z a each independently represents CR A2 or an N atom, preferably CR A2 .
  • W represents each independently C (R A2 ) 2 , NR A1 , N atom, CR A2 , O atom, S atom, or Se atom, and C (R A2 ) 2 , CR A2 , or S atom is preferable.
  • R A1 independently represents an alkyl group that may contain at least one of —O—, —S—, and —NR A3 —, and a monovalent group represented by the above formula (1-1). Or an alkyl group which represents a binding site to another structure and may contain at least one of —O—, —S—, and —NR A3 —, or the above formula (1-1) The monovalent group represented by these is preferable.
  • R A1 represents an alkyl group that may contain at least one of —O—, —S—, and —NR A3 —, an alkyl group having 2 to 30 carbon atoms is preferable, and 8 to 25 carbon atoms are preferred. The alkyl group is more preferable.
  • the alkyl group may be linear or branched.
  • the binding site with other structure in R A1 is a binding site with other structure represented by * in the above formulas (A-1) to (A-9).
  • R A2 each independently represents an alkyl group which may contain at least one of a hydrogen atom, a halogen atom, —O—, —S—, and —NR A3 —, and is represented by the above formula (1-1). Represents a binding site with a monovalent group or other structure, and a binding site with a hydrogen atom or another structure is preferable.
  • R A2 represents an alkyl group that may contain at least one of —O—, —S—, and —NR A3 —
  • an alkyl group having 2 to 30 carbon atoms is preferable, and 8 to 25 carbon atoms are preferred.
  • the alkyl group is more preferable.
  • the alkyl group may be linear or branched.
  • R A2 represents a halogen atom, an F atom, a Cl atom, a Br atom, or an I atom is preferable, and an F atom is more preferable.
  • the binding site with other structure in R A2 is a binding site with another structure represented by * in the above formulas (A-1) to (A-9).
  • R A3 each independently represents a hydrogen atom or a substituent.
  • the substituent in R A3 has the same meaning as the substituent in R 1S and R 2S described later.
  • Ar represents an aromatic heterocyclic group or an aromatic hydrocarbon group having 5 to 18 carbon atoms.
  • the aromatic hydrocarbon group having 5 to 18 carbon atoms in Ar include, for example, a benzene ring group, a biphenyl group, a naphthalene ring group, or an aromatic hydrocarbon in which three rings are condensed (for example, a fluorene ring).
  • examples include a group in which a hydrogen atom has been removed.
  • a benzene ring group, a biphenyl group, or a naphthalene ring group is preferable, and a benzene ring group is preferable from the viewpoint that carrier mobility is further improved.
  • the aromatic heterocyclic group in Ar may be monocyclic or may have a condensed structure of two or more rings, but is monocyclic from the viewpoint of better carrier mobility. Is preferred.
  • the aromatic heterocyclic group in Ar is preferably a 5- to 7-membered ring.
  • the hetero atom contained in the aromatic heterocyclic group is preferably an N atom, an O atom, an S atom or an Se atom, and more preferably an S atom.
  • L a represents an alkylene group having 1 to 20 carbon atoms which may contain at least one of —O—, —S—, and —NR 1S —.
  • the alkylene group contains —O— means that —O— is introduced in the middle of the carbon-carbon bond of the alkylene group, or —O— is introduced to one or both ends of the alkylene group. Means the case.
  • Alkylene group representing L a is straight-chain, branched-chain, may be any of circular, and is preferably linear or branched alkylene group.
  • the alkylene group representing L a is from 1 to 20, from the viewpoint of carrier mobility becomes more excellent, it is preferably 1 to 15, even more preferably from 1 to 10 .
  • L a is a branched chain, for the carbon number of the branch portion, is intended to include the number of carbon atoms of the alkylene group representing the L a.
  • L a is -NR 1S - include, and if the R 1S contains a carbon atom, the carbon number of R 1S shall not be included in the carbon number of the alkylene group representing L a.
  • L b represents an alkyl group having 1 to 100 carbon atoms which may contain at least one of —O—, —S—, and —NR 2S —.
  • the alkyl group contains —O— means that —O— is introduced in the middle of the carbon-carbon bond of the alkyl group, or one end of the alkyl group (that is, the connecting portion to the above “Ar”). ) -O- is introduced.
  • the alkyl group contains —S— or —NR 2S — Alkyl group representing L b is a straight-chain, branched-chain, it may be any of circular, from the viewpoint of temporal stability under humidity carrier mobility and high temperature and high becomes better ones, straight A chain or branched alkyl group is preferable, and a branched alkyl group is more preferable.
  • the alkyl group representing L b may be a halogenated alkyl group having a halogen atom (preferably, an F atom, a Cl atom, a Br atom, an I atom, more preferably an F atom) as a substituent.
  • the alkyl group representing L b has 1 to 100 carbon atoms, preferably 9 to 100 carbon atoms. Further, from the viewpoint that carrier mobility is further improved, in-(L b ) 1 in the above formula (1-1), at least one L b may have 9 to 100 carbon atoms. It is preferably 20 to 100, more preferably 20 to 40.
  • the carbon number of the branched portion is included in the carbon number of the alkyl group representing L b .
  • L b contains —NR 2S — and this R 2S contains a carbon atom
  • the carbon number of R 2S is not included in the carbon number of the alkylene group representing L b .
  • R 1S and R 2S each independently represent a hydrogen atom or a substituent.
  • substituents examples include an alkyl group (preferably a linear or branched alkyl group having 1 to 10 carbon atoms), a halogen atom (preferably F atom, Cl atom, Br atom, I atom), aryl group ( Preferably, it represents an aryl group having 6 to 20 carbon atoms.
  • R 1S and R 2S are each independently preferably a hydrogen atom or an alkyl group, and more preferably an alkyl group.
  • l represents an integer of 1 to 5, and is preferably 1 or 2.
  • the plurality of L b may be the same as or different from each other. * Represents a binding site with another structure.
  • the specific polymer compound has, as a partial structure, at least one structure selected from the group consisting of structures represented by formulas (A-1) to (A-9) below: At least one selected from the group consisting of structures represented by formula (A-1), formula (A-2), formula (A-3), formula (A-4) and formula (A-9)
  • the structure preferably has a partial structure, and at least one structure selected from the group consisting of structures represented by formula (A-1), formula (A-3) and formula (A-4) is used as the partial structure. More preferably, it has a structure represented by the formula (A-1) as a partial structure.
  • the specific polymer compound has a formula in which A in formula (1) is represented by each formula, rather than a mode in which A in formula (1) has a structure represented by each formula as a partial structure
  • An embodiment having a structure is preferred.
  • R A1 has the same meaning as R A1 in the formula (A1) ⁇ formula (A-9), preferable embodiments thereof are also the same.
  • * Represents a binding site with another structure.
  • D is a divalent aromatic heterocyclic group having at least one N atom, O atom, S atom, or Se atom in the ring structure, or a divalent aromatic hydrocarbon having a condensed structure of two or more rings.
  • the divalent aromatic heterocyclic group having at least one N atom, O atom, S atom or Se atom in the ring structure is a divalent aromatic heterocyclic group having at least one S atom in the ring structure.
  • the divalent aromatic heterocyclic group may be monocyclic or may have a condensed structure of two or more rings, and a combination of two or more monocyclic divalent aromatic heterocyclic groups. Or a combination of two or more monocyclic divalent aromatic heterocyclic groups and one or more divalent aromatic heterocyclic groups having a condensed ring structure of two or more rings. preferable.
  • the divalent aromatic heterocyclic group may further have a substituent, and preferred substituents include at least one of —O—, —S—, and —NR D3 —.
  • An alkyl group for example, an alkyl group having 1 to 30 carbon atoms or an alkoxy group having 1 to 30 carbon atoms is preferable, and an alkyl group having 1 to 20 carbon atoms is more preferable), an alkenyl group (preferably having 2 to 30 carbon atoms). ), An alkynyl group (preferably having 2 to 30 carbon atoms), an aromatic hydrocarbon group (preferably having 6 to 30 carbon atoms), an aromatic heterocyclic group (preferably a 5- to 7-membered ring.
  • R D3 has the same meaning as R D3 in formula (D-1) described later, and the preferred embodiments are also the same.
  • a hydrogen atom may contain at least one of —O—, —S—, and —NR D3 —, an alkyl group, an alkenyl group, an alkynyl group, an aromatic hydrocarbon group, an aromatic group It may be substituted with a heterocyclic group, a halogen atom, or a group represented by the above formula (1-1), and R D1 has the same meaning as R D1 in formula (D-1) to be described later, which is preferable.
  • the embodiment is the same, and * represents a binding site with another structure.
  • alkyl group which may contain at least one of the above -O-, -S-, and -NR D3- , an alkyl group having 1 to 30 carbon atoms is preferable, and an alkyl group having 1 to 20 carbon atoms is preferred. Is more preferable.
  • R D3 has the same meaning as R D3 in formula (D-1) described later, and the preferred embodiments are also the same.
  • the aromatic hydrocarbon group having a condensed structure of two or more rings is preferably an aromatic hydrocarbon group having 10 to 20 carbon atoms, and a fluorene group, a naphthylene group, or an aromatic carbon group in which three or four rings are condensed.
  • a group obtained by removing two hydrogen atoms from hydrogen is more preferred, and a group obtained by removing two hydrogen atoms from a fluorene group, naphthylene group, anthracene ring, phenanthrene ring, chrysene ring, or pyrene ring is more preferred.
  • the aromatic hydrocarbon group may further have a substituent, and preferred substituents include an alkyl that may contain at least one of —O—, —S—, and —NR D3 —.
  • Preferred examples of the alkyl group and halogen atom that may contain at least one of —O—, —S—, and —NR D3 — include those described above for the divalent aromatic heterocyclic group. It is the same.
  • R D3 has the same meaning as R D3 in formula (D-1) described later, and the preferred embodiments are also the same.
  • D is preferably a structure represented by Formula (D-1).
  • X ′ each independently represents an O atom, an S atom, an Se atom, or NR D1 .
  • R D1 independently represents a monovalent organic group which may be a monovalent group represented by the above formula (1-1).
  • Z d each independently represents an N atom or CR D2 .
  • R D2 each independently represents a hydrogen atom or a monovalent organic group which may be a monovalent group represented by the above formula (1-1).
  • M represents a single bond, a divalent aromatic heterocyclic group, a divalent aromatic hydrocarbon group, an alkenylene group, an alkynylene group, or a divalent group formed by combining these.
  • M is substituted with an alkyl group which may contain at least one of —O—, —S—, and —NR D3 —, or a monovalent group represented by the above formula (1-1). May be.
  • R D3 each independently represents a hydrogen atom or a substituent.
  • p and q each independently represents an integer of 0 to 4. * Each independently represents a binding site with another structure. Note that in the above formula (D-1), each repeating unit and the above M are coupled so as to be rotatable on the coupling axis.
  • each X ′ independently represents an O atom, an S atom, a Se atom, or NR D1, and is preferably an O atom, an S atom, or an Se atom, More preferably.
  • Z d each independently represents an N atom or CR D2, and is more preferably CR D2 .
  • R D1 each independently represents a monovalent organic group, and may be an alkyl group (for example, having 1 to 30 carbon atoms) which may contain at least one of —O—, —S—, and —NR D3 —.
  • an alkyl group having 1 to 30 carbon atoms more preferably an alkyl group having 1 to 20 carbon atoms), an alkynyl group (preferably having 2 to 30 carbon atoms), an alkenyl group (having 2 to 30 carbon atoms).
  • an aromatic hydrocarbon group preferably having 6 to 30 carbon atoms
  • an aromatic heterocyclic group preferably a 5- to 7-membered ring. Examples of the hetero atom include an O atom, an N atom, an S atom, and Se.
  • R D2 independently represents a hydrogen atom or a monovalent organic group, and may be an alkyl group that may contain at least one of a hydrogen atom, —O—, —S—, and —NR D3 — (for example, An alkyl group having 1 to 30 carbon atoms or an alkoxy group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 20 carbon atoms), an alkynyl group (preferably having 2 to 30 carbon atoms), an alkenyl group. (Preferably having 2 to 30 carbon atoms), an aromatic hydrocarbon group (preferably having 6 to 30 carbon atoms), an aromatic heterocyclic group (preferably a 5- to 7-membered ring.
  • hetero atom examples include an O atom, N Atom, S atom and Se atom are preferred), halogen atom (F atom, Cl atom, Br atom and I atom are preferred, F atom or Cl atom is more preferred, F atom is particularly preferred), or the above formula (1 Is preferably a monovalent group represented by 1) a hydrogen atom, an alkyl group, more preferably a halogen atom, or a monovalent group represented by the above formula (1-1).
  • M represents a single bond, a divalent aromatic heterocyclic group, a divalent aromatic hydrocarbon group, an alkenylene group, an alkynylene group, or a divalent group formed by combining these.
  • M is substituted with an alkyl group which may contain at least one of —O—, —S—, and —NR D3 —, or a monovalent group represented by formula (1-1). It may be.
  • the divalent aromatic heterocyclic group in M may be monocyclic or have a condensed structure of two or more rings. Examples of the divalent aromatic heterocyclic group preferably used in the present invention are the same as the examples of the divalent aromatic heterocyclic group having a condensed structure of two or more rings described above.
  • an aromatic hydrocarbon group having 6 to 20 carbon atoms is preferable, and a phenylene group, a biphenylene group, a fluorene group, a naphthylene group, or an aromatic group in which three or four rings are condensed.
  • a group obtained by removing two hydrogen atoms from a group hydrocarbon is more preferred, and a group obtained by removing two hydrogen atoms from a fluorene group, naphthylene group, anthracene ring, phenanthrene ring, chrysene ring or pyrene ring is more preferred.
  • the divalent aromatic heterocyclic group or the divalent aromatic hydrocarbon group in M may further have a substituent.
  • Preferred substituents include —O—, —S—, and , —NR D3 — which may contain at least one of alkyl groups (for example, an alkyl group having 1 to 30 carbon atoms or an alkoxy group having 1 to 30 carbon atoms is preferable, and an alkyl group having 1 to 20 carbon atoms is More preferred), a halogen atom (F atom, Cl atom, Br atom, I atom is preferred, F atom or Cl atom is more preferred, F atom is particularly preferred), and represented by the above formula (1-1). A monovalent group is mentioned.
  • the alkenylene group in M is preferably an alkenylene group having 2 to 10 carbon atoms, more preferably an alkenylene group having 2 to 4 carbon atoms, and further preferably an ethenylene group.
  • the alkynylene group in M is preferably an alkynylene group having 2 to 10 carbon atoms, more preferably an alkynylene group having 2 to 4 carbon atoms, and further preferably an ethynylene group.
  • R D3 each independently represents a hydrogen atom or a substituent. The substituent in R D3 has the same meaning as the substituent in R 1S and R 2S described above.
  • p and q are each independently an integer of 0 to 4, preferably an integer of 1 to 3, and more preferably an integer of 1 to 2.
  • p and q are preferably the same value.
  • M represents a divalent aromatic heterocyclic group having at least one N atom, O atom, S atom, or Se atom in the ring structure, or two or more condensed rings. It is preferable that a divalent aromatic hydrocarbon group having a ring structure is included as a partial structure.
  • the hydrogen atom is an alkyl group that may contain at least one of —O—, —S—, and —NR D3 —, or a group represented by the above formula (1-1) may be substituted by
  • R D1 has the same meaning as R D1 in the formula (D1), and also the same preferred embodiment, * represents a binding site with another structure.
  • R D3 has the same meaning as R D3 in formula (D-1), and the preferred embodiment is also the same.
  • the repeating unit represented by the above formula (1) is preferably a repeating unit represented by any of the following formulas (3) to (5), and is a repeating unit represented by the following formula (3). It is more preferable.
  • each X independently represents an O atom, an S atom, an Se atom, or NR A1 .
  • R A1 independently represents an alkyl group that may contain at least one of —O—, —S—, and —NR A3 —, and a monovalent group represented by the above formula (1-1). Or a binding site with another structure.
  • Y each independently represents an O atom or an S atom.
  • Z a each independently represents CR A2 or an N atom.
  • Each R A2 independently represents an alkyl group which may contain at least one of a hydrogen atom, a halogen atom, —O—, —S—, and —NR A3 —, or a bonding site with another structure; Represents.
  • R A3 each independently represents a hydrogen atom or a substituent.
  • X ′ each independently represents an O atom, an S atom, a Se atom, or NR D1 .
  • R D1 independently represents a monovalent organic group which may be a monovalent group represented by the above formula (1-1).
  • Z d each independently represents an N atom or CR D2 .
  • R D2 independently represents a hydrogen atom or a monovalent organic group which may be a monovalent group represented by the above formula (1-1).
  • M represents a single bond, a divalent aromatic heterocyclic group, a divalent aromatic hydrocarbon group, an alkenylene group, an alkynylene group, or a divalent group formed by combining these.
  • M is substituted with an alkyl group which may contain at least one of —O—, —S—, and —NR D3 —, or a monovalent group represented by the above formula (1-1). May be.
  • R D3 each independently represents a hydrogen atom or a substituent.
  • p and q each independently represents an integer of 0 to 4.
  • X, Y, Z a , R A1 , R A2 and R A3 are X, Y, Z in the above formulas (A-1) to (A-9). Each of a 1 , R A1 , R A2 and R A3 has the same meaning, and preferred embodiments are also the same.
  • X ′, Z d , R D1 , R D2 , R D3 , M, p, and q are X ′, Z d , R D1 , R D2 , R D3 , M, p, and q have the same meanings, and preferred embodiments are also the same.
  • the repeating unit represented by the above formula (1) is preferably a repeating unit represented by the formula (6).
  • R A1 each independently represents an alkyl group that may contain at least one of —O—, —S—, and —NR A3 —, and is represented by the above formula (1-1). Represents a binding site with a monovalent group or other structure.
  • R A3 each independently represents a hydrogen atom or a substituent.
  • X ′ each independently represents O, S, Se, or NR D1 .
  • R D1 independently represents a monovalent organic group which may be a monovalent group represented by the above formula (1-1).
  • M represents a single bond, a divalent aromatic heterocyclic group, a divalent aromatic hydrocarbon group, an alkenylene group, an alkynylene group, or a divalent group formed by combining these.
  • M is substituted with an alkyl group which may contain at least one of —O—, —S—, and —NR D3 —, or a monovalent group represented by the above formula (1-1). May be.
  • R D3 each independently represents a hydrogen atom or a substituent.
  • p and q each independently represents an integer of 0 to 4.
  • R A1 and R A3 are respectively synonymous with R A1 and R A3 in the formula (A1) ⁇ formula (A-9), preferable embodiments thereof are also the same.
  • X ', R D1, M, R D3, p, and, q is, X in the above formula (D1)', R D1, M, R D3, p, and, q
  • the preferred embodiments are also the same.
  • the specific polymer compound may contain one type of repeating unit represented by the formula (1), or two or more types.
  • the specific polymer compound is a compound having two or more repeating units represented by the formula (1), and may be an oligomer having 2 to 9 repeating units, or a polymer having 10 or more repeating units n. (Polymer) may be used. Among these, a polymer having a repeating unit number n of 10 or more is preferable from the viewpoints of carrier mobility and physical properties of the obtained organic semiconductor layer.
  • the molecular weight of the compound having a repeating unit represented by formula (1) is 2,000 or more, preferably 5,000 or more, and more preferably 10,000 or more. Preferably, it is more preferably 20,000 or more, and particularly preferably 30,000 or more. Further, from the viewpoint of solubility, it is preferably 1,000,000 or less, more preferably 300,000 or less, still more preferably 150,000 or less, and particularly preferably 100,000 or less. preferable.
  • the molecular weight of the compound when a specific polymer compound has a molecular weight distribution, the molecular weight of the compound means a weight average molecular weight.
  • the weight average molecular weight and the number average molecular weight of the specific polymer compound are measured by a gel permeation chromatography method (GPC (Gel Permeation Chromatography)) method and obtained by conversion with standard polystyrene.
  • GPC Gel Permeation Chromatography
  • HLC-8121 GPC manufactured by Tosoh Corporation
  • TSKgel GMH HR -H (20) HT manufactured by Tosoh Corporation, 7.8 mm ID ⁇ 30 cm
  • 1,2,4-trichlorobenzene is used as an eluent.
  • the sample concentration is 0.02% by mass
  • the flow rate is 1.0 ml / min
  • the sample injection amount is 300 ⁇ l
  • the measurement temperature is 160 ° C.
  • an IR (infrared) detector is used.
  • the calibration curve is “Standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: “F-128”, “F-80”, “F-40”, “F-20”, “F-10” It is prepared from 12 samples of “F-4”, “F-2”, “F-1”, “A-5000”, “A-2500”, “A-1000”, “A-500”.
  • the structure of the terminal of the specific polymer compound is not particularly limited, and depends on the presence or absence of other structural units, the type of substrate used during the synthesis, and the type of quenching agent (reaction terminator) used during the synthesis.
  • examples thereof include a hydrogen atom, a hydroxy group, a halogen atom, an ethylenically unsaturated group, an alkyl group, an aromatic heterocyclic group (thiophene ring is preferred), and an aromatic hydrocarbon group (preferably a benzene ring).
  • the method for synthesizing the specific polymer compound is not particularly limited, and may be synthesized with reference to a known method.
  • the electron acceptor unit precursor and the electron donor unit precursor were synthesized, and the respective precursors were combined with Suzuki coupling or Stille coupling. It can synthesize
  • the organic semiconductor composition of the present invention contains a specific low molecular weight compound.
  • a specific low molecular weight compound is the compound Y represented by following formula (2) as above-mentioned.
  • the specific low molecular weight compound is a kind of organic semiconductor compound and has a carrier transport property.
  • A, B and C each independently represent a ring structure selected from a benzene ring, a 6-membered heterocycle, a 5-membered heterocycle and a cyclopentadiene ring.
  • Adjacent rings are condensed with each other.
  • the adjacent rings are condensed to each other means that some of the bonds forming the ring structure form a part of the other adjacent ring structure. means.
  • adjacent A and B are mutually condensed
  • adjacent A is mutually condensed
  • adjacent A and C are mutually condensed.
  • hetero atom contained in the 5-membered heterocycle and the 6-membered heterocycle examples include O atom, S atom Se atom, N atom, P atom, B atom, and Si atom.
  • the number of heteroatoms contained in the ring is not particularly limited as long as it is 1 or more.
  • n represents an integer of 2 to 8, preferably an integer of 2 to 6, more preferably an integer of 2 to 4, more preferably an integer of 2 to 3, and 3. It is particularly preferred. In particular, when n is 3, the heat resistance of the organic thin film transistor tends to be further improved.
  • the plurality of A may be the same or different, but at least one of the plurality of A is a 5-membered heterocyclic ring.
  • the rings constituting A are each independently a ring structure selected from a benzene ring, a 6-membered heterocycle, a 5-membered heterocycle, and a cyclopentadiene ring.
  • a cyclopentadiene ring more preferably a benzene ring, a thiophene ring, or a selenophene ring, and even more preferably a benzene ring or a thiophene ring.
  • Each of these rings may have a substituent.
  • the condensed ring composed of a plurality of A preferably includes at least one benzene ring and at least one 5-membered ring (preferably a thiophene ring).
  • the ring structures representing a plurality of A may each independently have a substituent. This substituent is the same as R 1 and R 2 described later.
  • the ring constituting B is a ring structure selected from a benzene ring, a 6-membered heterocycle, a 5-membered heterocycle, and a cyclopentadiene ring.
  • the benzene ring, thiophene ring, selenophene ring, or cyclopentadiene ring It is preferably a benzene ring, a thiophene ring or a selenophene ring, more preferably a benzene ring or a thiophene ring, and particularly preferably a thiophene ring.
  • the threshold voltage and hysteresis characteristics of the organic thin film transistor tend to be more excellent.
  • the ring constituting C is a ring structure selected from a benzene ring, a 6-membered heterocycle, a 5-membered heterocycle and a cyclopentadiene ring, but a benzene ring, a thiophene ring, a selenophene ring, or a cyclopentadiene ring It is preferably a benzene ring, a thiophene ring or a selenophene ring, more preferably a benzene ring or a thiophene ring, and particularly preferably a thiophene ring.
  • the threshold voltage and hysteresis characteristics of the organic thin film transistor tend to be more excellent.
  • R 1 and R 2 each independently represents a saturated hydrocarbon group that may contain at least one of —O—, —S—, and —NR B —, —O—, —S—, and , —NR C — which may contain at least one of —NR C —, an aryl group, a heteroaryl group, an alkoxy group, an amino group, a carbonyl group, an ester group, a nitro group, a hydroxy group, a cyano group, A monovalent group selected from the group consisting of an arylalkyl group, a heteroarylalkyl group, an aryloxy group, a heteroaryloxy group, an alkylsilyl group and a halogen atom.
  • R B each independently represents a hydrogen atom or a substituent.
  • R C independently represents a hydrogen atom or a substituent.
  • the substituent in R B and R C has the same meaning as the substituent in R 1S and R 2S described above. These monovalent groups may be further substituted with a substituent, and examples of the substituent include groups represented by R 1 and R 2 .
  • the saturated hydrocarbon group for R 1 and R 2 preferably has 1 to 20 carbon atoms, and more preferably has 1 to 16 carbon atoms.
  • the saturated hydrocarbon group may be linear or branched. Examples of such saturated hydrocarbon groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n -Hexyl group, n-heptyl group, n-octyl group, n-nonanyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n -Hexadecyl group, n-heptadecyl group, n-octadecyl group,
  • unsaturated hydrocarbon group for R 1 and R 2 those having 1 to 20 carbon atoms are preferred, and those having 1 to 16 carbon atoms are more preferred.
  • This unsaturated hydrocarbon group may be linear or branched. Examples of such unsaturated hydrocarbon groups include vinyl group, 1-propenyl group, allyl group, propargyl group, isopropenyl group, 1-butenyl group, and 2-butenyl group. From the viewpoint of chemical stability, an unsaturated hydrocarbon group having one double bond or triple bond unit in its chain is preferred.
  • an alkoxy group having 1 to 20 carbon atoms is preferable, and an alkoxy group having 1 to 16 carbon atoms is more preferable.
  • the alkoxy group may be linear or branched.
  • an aromatic hydrocarbon group having 6 to 60 carbon atoms is preferable, and an aromatic hydrocarbon group having 6 to 20 carbon atoms is more preferable.
  • the aromatic hydrocarbon group include a benzene ring, a fluorene ring, a naphthalene ring, and an anthracene ring.
  • the heteroaryl group for R 1 and R 2 is preferably an aromatic heterocyclic group having 4 to 60 carbon atoms, and more preferably an aromatic heterocyclic group having 4 to 20 carbon atoms.
  • the heterocyclic ring constituting the aromatic heterocyclic group is an oxygen atom, a sulfur atom, a selenium atom, a nitrogen atom, a phosphorus atom, a boron atom, or at least one carbon atom in a cyclic structure composed of carbon.
  • the ring structure is substituted with a heteroatom such as a silicon atom, and the cyclic structure has a structure having aromaticity. Examples of this heterocyclic ring include a thiophene ring, a selenophene ring, and a furan ring.
  • arylalkyl group or aryloxy group in R 1 and R 2 those in which the aryl portion is constituted by an aromatic hydrocarbon group, and this portion has 6 to 60 carbon atoms, preferably those having 6 to 20 carbon atoms. More preferred.
  • the alkyl moiety in the arylalkyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • heteroarylalkyl group or heteroaryloxy group for R 1 and R 2 those in which the heteroaryl moiety is constituted by an aromatic heterocyclic group and the number of carbon atoms in the moiety is 4 to 60 are preferable. Is more preferable.
  • the alkyl moiety in the heteroarylalkyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • halogen atom in R 1 and R 2 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the amino group in R 1 and R 2 include —NH 2 , an alkylamino group (monoalkylamino group, dialkylamino group) and the like.
  • an alkylamino group the carbon number is preferably 2 to 20, and more preferably 2 to 16.
  • alkylsilyl group in R 1 and R 2 examples include a monoalkylsilyl group, a dialkylsilyl group, and a trialkylsilyl group.
  • the carbon number is preferably 3 to 20, and more preferably 3 to 16.
  • a saturated hydrocarbon group is preferable from the viewpoint of further improving carrier mobility.
  • s and t each independently represent an integer of 0 to 4, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
  • the plurality of R 1 or the plurality of R 2 may be the same or different from each other.
  • the specific low molecular weight compound preferably has a structure represented by the formula (2A) as a partial structure. Thereby, the threshold voltage and hysteresis characteristic of the organic thin film transistor obtained are more excellent.
  • R 21 to R 26 each independently represents a hydrogen atom or a substituent. Adjacent groups in R 21 to R 26 may be bonded to each other to form an aromatic hydrocarbon ring or an aromatic heterocyclic ring. In this case, the aromatic hydrocarbon ring or aromatic heterocyclic ring may be further condensed with an aromatic hydrocarbon ring or aromatic heterocyclic ring. However, at least one pair of adjacent groups in R 21 to R 24 is bonded to each other to form an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • R 21 to R 26 are the same as the monovalent groups representing R 1 and R 2 in Formula (2) described above, and the preferred embodiments are also the same, so the description thereof is omitted.
  • Examples of the aromatic hydrocarbon ring formed by bonding adjacent groups in R 21 to R 26 include a benzene ring.
  • Examples of the aromatic heterocycle formed by bonding adjacent groups in R 21 to R 26 include a thiophene ring and a selenophene ring.
  • Adjacent groups in R 21 to R 26 are bonded to each other to form an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • R 21 and R 22 , R 22 and R 23 , R 23 and It means a state in which at least one of R 24 , R 24 and R 25 , and R 25 and R 26 forms an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • R 21 to R 24 R 22 and R 23 are preferably bonded to each other to form an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • R 25 and R 26 are preferably bonded to each other to form an aromatic hydrocarbon ring or an aromatic heterocyclic ring. More preferably, R 22 and R 23 are bonded to each other to form an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and R 25 and R 26 are bonded to each other to form an aromatic hydrocarbon ring or an aromatic heterocyclic ring. It is the aspect which forms. At this time, it is preferable that R 21 and R 24 each independently represent a hydrogen atom or a substituent. Thereby, the threshold voltage and hysteresis characteristic of the organic thin film transistor obtained are more excellent.
  • the aromatic hydrocarbon ring or the aromatic heterocyclic ring is further an aromatic hydrocarbon ring.
  • it may be condensed with an aromatic heterocycle (preferably an aromatic heterocycle).
  • the ring condensed with the ring formed in R 21 to R 26 may have a substituent.
  • the substituent is R This is the same as the monovalent group representing 1 and R 2 , and the preferred embodiment is also the same.
  • the specific low molecular weight compound is preferably a compound represented by the formula (2B). Thereby, the threshold voltage and hysteresis characteristic of the organic thin film transistor obtained are more excellent.
  • A1, A2, A3, B1 and C1 each independently represent a benzene ring or a thiophene ring, and adjacent rings are mutually condensed. However, among A1, A2, A3, B1 and C1, 2 to 4 rings are thiophene rings, and rings other than the thiophene ring are benzene rings. However, at least one of A1, A2, and A3 is a thiophene ring.
  • the adjacent groups in A1, A2, A3, B1 and C1 are condensed with each other, B1 and A1, A1 and A2, A2 and A3, and A3 and C1 are condensed. Refers to that.
  • the number of thiophene rings is 2 to 4, but preferably 3 to 4. Thereby, the threshold voltage and hysteresis characteristic of the organic thin film transistor obtained are more excellent.
  • the number of thiophene rings connected to each other is preferably 2 or less. Thereby, the threshold voltage and hysteresis characteristic of the organic thin film transistor obtained are more excellent.
  • the number of connections between thiophene rings refers to the number of thiophene rings connected by condensation.
  • the compound represented by the following formula (2B-1) has two linked thiophene rings (in circles in the formula (2B-1)), and the following formula (2B-2)
  • the compound represented has three thiophene rings connected to each other (in the circles in the formula (2B-2)).
  • 3 to 4 rings are thiophene rings, and Is less than or equal to two.
  • R 1 and R 2 in the formula (2B) has the same meaning as R 1 and R 2 in the formula (2) described above, preferable embodiments thereof are also the same.
  • S and t in Formula (2B) are synonymous with s and t in Formula (2) described above, and preferred embodiments are also the same.
  • X 4a and X 4b each independently represent an O atom, S atom, Se atom or NR 4n , 4p and 4q each independently represent an integer of 0 to 2, R 4a to R 4k , R 4m and R 4n each independently represents a hydrogen atom or a substituent.
  • substituent include the substituent X described later.
  • X 4a and X 4b are each independently preferably an O atom or an S atom, and at least one of X 4a and X 4b is more preferably an S atom from the viewpoint of increasing mobility.
  • X 4a and X 4b are preferably the same linking group. It is particularly preferable that both X 4a and X 4b are S atoms.
  • 4p and 4q each independently represent an integer of 0 to 2.
  • R 4a to R 4k and R 4m 1 to 4 groups represented by the formula W described later can increase the mobility and to the organic solvent. From the viewpoint of increasing the solubility of the resin, 1 or 2 is more preferable, and 2 is particularly preferable.
  • R 4a to R 4k and R 4m the position of the group represented by the formula W is not particularly limited.
  • R 4a , R 4d to R 4g , R 4j , R 4k and R 4m are each independently a hydrogen atom or a halogen atom
  • R 4b , R 4c , R 4 4h and R 4i are each independently a hydrogen atom, a halogen atom or a group represented by the formula W
  • at least one of R 4b , R 4c , R 4h and R 4i is represented by the formula W
  • a group is preferable from the viewpoint of increasing mobility and increasing solubility in an organic solvent.
  • R 4a , R 4c to R 4h and R 4j each independently represent a hydrogen atom or a halogen atom
  • R 4b and R 4i each independently represent a hydrogen atom, a halogen atom or formula W. More preferably, at least one group is a group represented by the formula W.
  • R 4b and R 4i are both groups represented by the formula W
  • R 4c and R 4h are both hydrogen atoms or halogen atoms
  • R 4c and R 4h are both represented by the formula W. More preferably, R 4b and R 4i are both a hydrogen atom or a halogen atom.
  • R 4b and R 4i are both groups represented by the formula W, and R 4c and R 4h are both hydrogen atoms or halogen atoms, or R 4c and R 4h are both represented by the formula W. It is particularly preferred that R 4b and R 4i are both hydrogen atoms or halogen atoms.
  • R 4a to R 4k and R 4m may be bonded to each other to form a ring, or may not be bonded to each other to form a ring, but may be bonded to each other to form a ring. It is preferable not to form them.
  • the type of the substituent is not particularly limited, and examples thereof include the substituent X described below.
  • substituent X include a group represented by the following formula W, a halogen atom, an alkyl group (including a cycloalkyl group, a bicycloalkyl group, and a tricycloalkyl group), an alkenyl group (a cycloalkenyl group and a bicycloalkenyl group).
  • Alkynyl group, aryl group, heterocyclic group may be referred to as heterocyclic group
  • cyano group hydroxy group, nitro group, carboxy group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy Group
  • acyloxy group carbamoyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, amino group (including anilino group), ammonio group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino Group, sulfamoylamino group, al And arylsulfonylamino groups, mercapto groups, alkylthio groups, arylthio groups, heterocyclic thio groups, sulfamoyl groups, sulfo groups, alkyl and arylsulfinyl groups, alkyl and arylsulfonyl
  • L W is a divalent linking group represented by any one of the following formulas L-1 to L-25 or two or more represented by any one of the following formulas L-1 to L-25.
  • R w represents an alkyl group, a cyano group, a vinyl group, an ethynyl group, an oxyethylene group, an oligooxyethylene group having an oxyethylene unit repeating number v of 2 or more, It represents a siloxane group, an oligosiloxane group having 2 or more silicon atoms, or a trialkylsilyl group.
  • X 6a to X 6d each independently represents an S atom, an O atom, a Se atom or NR 6g
  • R 6a to R 6g each independently represents a hydrogen atom or a substituent.
  • substituents include the above-described substituent X.
  • X 6a to X 6d are each independently preferably an O atom or an S atom from the viewpoint of ease of synthesis.
  • at least one of X 6a to X 6d is preferably an S atom from the viewpoint of increasing mobility.
  • X 6a to X 6d are preferably the same linking group.
  • X 6a to X 6d are more preferably S atoms.
  • R 6g is preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an acyl group, an aryl group or a heteroaryl group, more preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group or an acyl group, Or an alkyl group, more preferably an alkyl group having 1 to 14 carbon atoms, and most preferably an alkyl group having 1 to 4 carbon atoms.
  • R 6g represents an alkyl group, it may be a linear alkyl group, a branched alkyl group, or a cyclic alkyl group. However, the linear alkyl group increases the linearity of the molecule and increases the mobility. From the viewpoint of being able to.
  • R 6a to R 6f each independently represents an alkyl group, aryl group, alkenyl group, alkynyl group, heterocyclic group, alkoxy group, or alkylthio group, represented by formula W
  • a heterocyclic group having 5 to 12 carbon atoms, an alkylthio group having 1 to 12 carbon atoms, or a group represented by the formula W is more preferable, a group having a linking group chain length of 3.7 ⁇ or less or a formula W A group represented by Formula W is more preferred, and a group represented by Formula W is particularly preferred.
  • the linking group chain length refers to the length from the C atom in the C (carbon atom) -R bond to the terminal of the substituent R.
  • Structural optimization calculation, density functional theory (Gaussian03 (US Gaussian Inc.) / basis function: 6-31G *, exchange-correlation functional: B3LYP / LANL2DZ) can be carried out using.
  • the propyl group is 4.6 ⁇
  • the pyrrole group is 4.6 ⁇
  • the propynyl group is 4.5 ⁇
  • the propenyl group is 4.6 ⁇
  • the ethoxy group is 4.5 ⁇
  • the methylthio group Is 3.7 ⁇
  • the ethenyl group is 3.4 ⁇
  • the ethyl group is 3.5 ⁇
  • the ethynyl group is 3.6 ⁇
  • the methoxy group is 3.3 ⁇
  • the methyl group is 2.1 ⁇
  • the hydrogen atom is 1.0 ⁇ .
  • R 6a to R 6f 1 to 4 groups represented by the formula W increase the mobility and the solubility in an organic solvent. From the viewpoint, it is preferably 1 or 2, more preferably 2.
  • the position of the group represented by the formula W is not particularly limited, but is preferably R 6c to R 6f , and R 6e or R 6f increases mobility, It is more preferable from the viewpoint of increasing the solubility in an organic solvent.
  • the number of substituents other than the group represented by Formula W is preferably 0 to 4, more preferably 0 to 2, and preferably 0 or 1. More preferably, it is particularly preferably 0.
  • the substituent in the case where R 6a to R 6f are substituents other than the group represented by formula W is preferably a group having a linking group chain length of 3.7 mm or less, and a linking group chain length of 1.0 It is more preferably a group with a length of ⁇ 3.7 3, and even more preferably a group with a linking group chain length of 1.0 to 2.1 ⁇ .
  • the definition of the linking group chain length is as described above.
  • R 6a to R 6f are substituents other than the group represented by Formula W
  • the substituents are each independently a substituted or unsubstituted alkyl group having 2 or less carbon atoms
  • a substituted or unsubstituted group having 2 or less carbon atoms are preferably substituted or unsubstituted alkenyl groups having 2 or less carbon atoms, or substituted or unsubstituted acyl groups having 2 or less carbon atoms, and are substituted or unsubstituted alkyl groups having 2 or less carbon atoms. More preferably.
  • R 6a to R 6f are substituents other than the group represented by formula W
  • each of the substituents independently represents a substituted alkyl group having 2 or less carbon atoms
  • the substituent that the alkyl group can take is cyano Group, fluorine atom, deuterium atom and the like, and a cyano group is preferable.
  • the substituted or unsubstituted alkyl group having 2 or less carbon atoms represented by the substituent is preferably a methyl group, an ethyl group, or a cyano group-substituted methyl group.
  • R 6a to R 6f are substituents other than the group represented by the formula W, each of the substituents independently represents a substituted alkynyl group having 2 or less carbon atoms, the substituents that the alkynyl group can take are heavy A hydrogen atom etc. can be mentioned.
  • Examples of the substituted or unsubstituted alkynyl group having 2 or less carbon atoms represented by the substituent in the case of a substituent other than the group represented by Formula W include an ethynyl group and a deuterium atom-substituted acetylene group, An ethynyl group is preferred.
  • R 6a to R 6f are substituents other than the group represented by the formula W, each of the substituents independently represents a substituted alkenyl group having 2 or less carbon atoms.
  • a hydrogen atom etc. can be mentioned.
  • Examples of the substituted or unsubstituted alkenyl group having 2 or less carbon atoms represented by the substituent in the case of a substituent other than the group represented by Formula W include an ethenyl group and a deuterium-substituted ethenyl group, An ethenyl group is preferred.
  • R 6a to R 6f are substituents other than the group represented by the formula W, each of the substituents independently represents a substituted acyl group having 2 or less carbon atoms, the substituent that the acyl group can take is fluorine An atom etc. can be mentioned.
  • Examples of the substituted or unsubstituted acyl group having 2 or less carbon atoms represented by the substituent in the case of a substituent other than the group represented by Formula W include a formyl group, an acetyl group, and a fluorine-substituted acetyl group.
  • a formyl group is preferred.
  • the compound represented by the formula O-6 is preferably a compound represented by the following formula O-6A or the formula O-6B. From the viewpoint of high mobility, the compound represented by the formula O-6A is It is particularly preferred.
  • O-6A respectively the X 6a ⁇ X 6d independently represents O or S atoms
  • R 6a ⁇ R 6c each independently R 6A and R 6e represents a hydrogen atom or a substituent
  • R 6a R 6c , R 6A and R 6e are not groups represented by the formula W
  • R W represents an alkyl group having 5 to 19 carbon atoms
  • L W represents any one of the above formulas L-1 to L-25.
  • each independently X 6a ⁇ X 6d represents O or S atoms
  • R 6a, R 6b, are each R 6B and R 6C independently represent a hydrogen atom or a substituent
  • R W Each independently represents an alkyl group having 5 to 19 carbon atoms
  • L W each independently represents a divalent linking group represented by any one of the above formulas L-1 to L-25 or two or more of the above.
  • the substituent mentioned above is mentioned.
  • X 7a to X 7d each independently represents an S atom, O atom, Se atom or NR 7i
  • R 7a to R 7i each independently represents a hydrogen atom or a substituent.
  • substituents include the above-described substituent X.
  • X 7a to X 7d are each independently preferably an O atom or an S atom from the viewpoint of ease of synthesis. On the other hand, it is preferable from the viewpoint of increasing mobility that at least one of X 7a to X 7d is an S atom.
  • X 7a to X 7d are preferably the same linking group.
  • X 7a to X 7d are all preferably S atoms.
  • R 7i is preferably a hydrogen atom or an alkyl group, more preferably an alkyl group having 5 to 12 carbon atoms, and particularly preferably an alkyl group having 8 to 10 carbon atoms.
  • R 7i represents an alkyl group, it may be a linear alkyl group, a branched alkyl group, or a cyclic alkyl group, but a linear alkyl group is preferred from the viewpoint of overlapping HOMO orbitals.
  • the number of substituents represented by the formula W is 1 to 4 to increase mobility and solubility in an organic solvent. From the viewpoint of increasing the number, it is preferably 1 or 2, more preferably 2.
  • the position of the group represented by the formula W is not particularly limited, but R 7d or R 7h is preferable from the viewpoint of increasing mobility and increasing solubility in an organic solvent. , R 7d and R 7h are more preferred.
  • the number of substituents other than the group represented by Formula W is preferably 0 to 4, more preferably 0 to 2, and 0 or 1 More preferably, it is particularly preferably 0.
  • R 7a to R 7i are substituents other than the group represented by formula W
  • the substituent is preferably a group having a linking group chain length of 3.7 mm or less, and the linking group chain length is 1.0 It is more preferably a group with a length of ⁇ 3.7 3, and even more preferably a group with a linking group chain length of 1.0 to 2.1 ⁇ .
  • the definition of the linking group chain length is as described above.
  • R 7a to R 7i are substituents other than the group represented by Formula W
  • the substituents are each independently a substituted or unsubstituted alkyl group having 2 or less carbon atoms
  • a substituted or unsubstituted group having 2 or less carbon atoms are preferably substituted or unsubstituted alkenyl groups having 2 or less carbon atoms, or substituted or unsubstituted acyl groups having 2 or less carbon atoms, and are substituted or unsubstituted alkyl groups having 2 or less carbon atoms. More preferably.
  • R 7a to R 7i are substituents other than the group represented by formula W
  • each of the substituents independently represents a substituted alkyl group having 2 or less carbon atoms
  • the substituent that the alkyl group can take is cyano Group, fluorine atom, deuterium atom and the like, and a cyano group is preferable.
  • the substituted or unsubstituted alkyl group having 2 or less carbon atoms represented by the substituent is preferably a methyl group, an ethyl group, or a cyano group-substituted methyl group.
  • R 7a to R 7i are substituents other than the group represented by Formula W, each of the substituents independently represents a substituted alkynyl group having 2 or less carbon atoms, the substituents that the alkynyl group can take are heavy A hydrogen atom etc. can be mentioned.
  • Examples of the substituted or unsubstituted alkynyl group having 2 or less carbon atoms represented by the substituent in the case of a substituent other than the substituent represented by Formula W include an ethynyl group and a deuterium atom-substituted acetylene group. An ethynyl group is preferred.
  • R 7a to R 7i are substituents other than the group represented by formula W, each of the substituents independently represents a substituted alkenyl group having 2 or less carbon atoms, the substituents that the alkenyl group can take are A hydrogen atom etc. can be mentioned.
  • Examples of the substituted or unsubstituted alkenyl group having 2 or less carbon atoms represented by the substituent in the case of a substituent other than the substituent represented by Formula W include an ethenyl group and a deuterium-substituted ethenyl group. An ethenyl group is preferred.
  • R 7a to R 7i are substituents other than the group represented by the formula W, each of the substituents independently represents a substituted acyl group having 2 or less carbon atoms. An atom etc. can be mentioned.
  • Examples of the substituted or unsubstituted acyl group having 2 or less carbon atoms represented by the substituent in the case of a substituent other than the substituent represented by Formula W include a formyl group, an acetyl group, and a fluorine-substituted acetyl group.
  • a formyl group is preferred.
  • the compound represented by the formula O-7 is preferably a compound represented by the following formula O-7A or the formula O-7B. From the viewpoint of high mobility, the compound represented by the formula O-7B It is particularly preferred.
  • X 7a and X 7c each independently represents an S atom, O atom, Se atom or NR 9
  • X 7b and X 7d each independently represent an S atom, O atom or Se atom
  • R 7a to R 7g and R 7i each independently represents a hydrogen atom or a substituent, provided that R 7d is not a group represented by the formula W.
  • L W and R W in formula O-7A are respectively the L W and and R W in the formula W synonymous.
  • X 7a and X 7c each independently represent an S atom, O atom, Se atom or NR 7i
  • X 7b and X 7d each independently represent an S atom, O atom or Se atom
  • 7a ⁇ R 7c are each R 7e ⁇ R 7 g and R 7i independently represent a hydrogen atom or a substituent, the definition of L W and R W in formula O-7B, said L W and and wherein R W Each is synonymous with W.
  • two L W and two R W may be the same or different.
  • X 8a to X 8d each independently represents an S atom, an O atom, a Se atom or NR 8i
  • R 8a to R 8i each independently represents a hydrogen atom or a substituent.
  • substituents include the above-described substituent X.
  • X 8a to X 8d are each independently preferably an O atom or an S atom from the viewpoint of ease of synthesis.
  • at least one of X 8a to X 8d is preferably an S atom from the viewpoint of increasing the mobility.
  • X 8a to X 8d are preferably the same linking group. It is more preferable that all of X 8a to X 8d are S atoms.
  • R 8i is preferably a hydrogen atom or an alkyl group, more preferably an alkyl group having 5 to 12 carbon atoms, and particularly preferably an alkyl group having 8 to 10 carbon atoms.
  • R 8i represents an alkyl group, it may be a linear alkyl group, a branched alkyl group, or a cyclic alkyl group, but a linear alkyl group is preferred from the viewpoint of overlapping HOMO orbitals.
  • the number of substituents represented by the formula W is 1 to 4 to increase mobility and solubility in an organic solvent. From the viewpoint of increasing the number, it is preferably 1 or 2, more preferably 2.
  • the position of the group represented by the formula W is not particularly limited, but R 8c or R 8g is preferable from the viewpoint of increasing mobility and solubility in an organic solvent. , R 8c and R 8g are more preferred.
  • the number of substituents other than the group represented by the formula W is preferably 0 to 4, more preferably 0 to 2, Or it is more preferable that it is 1 piece, and it is especially preferable that it is 0 piece.
  • R 8a to R 8i are substituents other than the group represented by formula W
  • the substituent is preferably a group having a linking group chain length of 3.7 mm or less, and the linking group chain length is 1.0 It is more preferably a group with a length of ⁇ 3.7 ⁇ , and further preferably a group with a linking group chain length of 1.0 to 2.1 ⁇ .
  • the definition of the linking group chain length is as described above.
  • R 8a to R 8i are substituents other than the group represented by formula W
  • the substituents are each independently a substituted or unsubstituted alkyl group having 2 or less carbon atoms
  • a substituted or unsubstituted group having 2 or less carbon atoms are preferably substituted or unsubstituted alkenyl groups having 2 or less carbon atoms, or substituted or unsubstituted acyl groups having 2 or less carbon atoms, and are substituted or unsubstituted alkyl groups having 2 or less carbon atoms. More preferably.
  • R 8a to R 8i are substituents other than the group represented by Formula W
  • each of the substituents independently represents a substituted alkyl group having 2 or less carbon atoms
  • the substituent that the alkyl group can take is cyano Group, fluorine atom, deuterium atom and the like, and a cyano group is preferable.
  • the substituted or unsubstituted alkyl group having 2 or less carbon atoms represented by the substituent is preferably a methyl group, an ethyl group, or a cyano group-substituted methyl group.
  • R 8a to R 8i are substituents other than the group represented by formula W, each of the substituents independently represents a substituted alkynyl group having 2 or less carbon atoms, the substituents that the alkynyl group can take are A hydrogen atom etc. can be mentioned.
  • Examples of the substituted or unsubstituted alkynyl group having 2 or less carbon atoms represented by the substituent in the case of a substituent other than the group represented by Formula W include an ethynyl group and a deuterium atom-substituted acetylene group, An ethynyl group is preferred.
  • R 8a to R 8i are substituents other than the group represented by formula W, each of the substituents independently represents a substituted alkenyl group having 2 or less carbon atoms, the substituents that the alkenyl group can take are A hydrogen atom etc. can be mentioned.
  • Examples of the substituted or unsubstituted alkenyl group having 2 or less carbon atoms represented by the substituent in the case of a substituent other than the group represented by Formula W include an ethenyl group and a deuterium-substituted ethenyl group, An ethenyl group is preferred.
  • R 8a to R 8i are substituents other than the group represented by the formula W, each of the substituents independently represents a substituted acyl group having 2 or less carbon atoms. An atom etc. can be mentioned.
  • Examples of the substituted or unsubstituted acyl group having 2 or less carbon atoms represented by the substituent in the case of a substituent other than the group represented by Formula W include a formyl group, an acetyl group, and a fluorine-substituted acetyl group.
  • a formyl group is preferred.
  • the compound represented by the formula O-8 is preferably a compound represented by the following formula O-8A or the formula O-8B. From the viewpoint of high mobility, the compound represented by the formula O-8B It is particularly preferred.
  • X 8a and X 8c each independently represent an S atom, O atom, Se atom or NR 8i
  • X 8b and X 8d each independently represent an S atom, O atom or Se atom
  • R 8a to R 8f and R 8h each independently represents a hydrogen atom or a substituent, provided that R 8c is not a group represented by the formula W. Defining L W and R W in formula O-8A are respectively the L W and and R W in the formula W synonymous.
  • X 8a and X 8c each independently represent an S atom, O atom, Se atom or NR 8i
  • X 8b and X 8d each independently represent an S atom, O atom or Se atom
  • 8a, R 8b, R 8d ⁇ R 8f and R 8h are each independently a hydrogen atom or a substituent
  • the definition of L W and R W in formula O-8B is the L W and and R W in the formula W Are synonymous with each other.
  • the two L W and the two R W may be the same or different.
  • X 9a and X 9b each independently represent an S atom, an O atom, a Se atom or NR 9k
  • R 9c to R 9k each independently represents a hydrogen atom or a substituent.
  • substituent include the above-described substituent X.
  • X 9a and X 9b are preferably S atoms from the viewpoint of mobility.
  • R 9c , R 9d and R 9g to R 9j each independently preferably represent a hydrogen atom, a halogen atom or a group represented by formula W. Among these, R 9c , R 9d and R 9g to R 9j are more preferably hydrogen atoms.
  • L W is preferably formula L-3, formula L-5, formula L-7 to formula L-9, and formula L-12 to formula L-24, and formula L-3, formula L-5, formula L-24 It is more preferably a group represented by any one of L-13, Formula L-17 and Formula L-18. At least one of R 9a to R 9i preferably represents a group represented by the formula W.
  • the number of substituents represented by the formula W is 1 to 4 to increase mobility and solubility in an organic solvent. From the viewpoint of increasing the number, it is preferably 1 or 2, more preferably 2.
  • the position of the group represented by the formula W is not particularly limited, but R 9b or R 9f is preferable from the viewpoint of increasing mobility and solubility in an organic solvent. , R 9b and R 9f are more preferred.
  • the number of substituents other than the group represented by the formula W is preferably 0 to 4, more preferably 0 to 2, Alternatively, it is particularly preferably 1 and more preferably 0.
  • X 10a and X 10b each independently represent an S atom, an O atom, a Se atom or NR 10i , and R 10a to R 10i each independently represents a hydrogen atom or a substituent.
  • substituent include the above-described substituent X.
  • X 10a and X 10b are preferably S atoms from the viewpoint of mobility.
  • R 10a to R 10h is a substituted or unsubstituted alkyl group, a substituted or unsubstituted arylthio group, a substituted or unsubstituted heteroarylthio group, a substituted or unsubstituted alkyl It is preferably an oxycarbonyl group, a substituted or unsubstituted aryloxycarbonyl group, or a substituted or unsubstituted alkylamino group.
  • R 10a to R 10h in formula O-10 are such that at least one of R 10b and R 10f is a substituted or unsubstituted alkyl group, a substituted or unsubstituted arylthio group, a substituted or unsubstituted heteroarylthio group, Or an unsubstituted alkyloxycarbonyl group, a substituted or unsubstituted aryloxycarbonyl group or a substituted or unsubstituted alkylamino group, preferably a substituted or unsubstituted alkyl group, a substituted or unsubstituted arylthio group, or More preferably, it is a substituted or unsubstituted heteroarylthio group, and both of R 10b and R 10f are a substituted or unsubstituted alkyl group, a substituted or unsubstituted arylthio group, or a substituted or unsubstituted group. More
  • the alkyl group is more preferably an alkyl group having 5 to 20 carbon atoms, and particularly preferably an alkyl group having 8 to 12 carbon atoms.
  • the arylthio group is preferably a group having a sulfur atom linked to an aryl group having 6 to 20 carbon atoms, more preferably a naphthylthio group or a phenylthio group, and particularly preferably a phenylthio group.
  • the heteroarylthio group is preferably a group in which a sulfur atom is linked to a 3- to 10-membered heteroaryl group, more preferably a group in which a sulfur atom is linked to a 5- or 6-membered heteroaryl group. Particularly preferred.
  • R ′′ and R ′′ N each independently represent a hydrogen atom or a substituent.
  • each R ′ preferably independently represents a hydrogen atom or a group represented by the formula W.
  • R ′′ N preferably represents a substituent, more preferably an alkyl group, an aryl group, or a heteroaryl group, and is substituted with an alkyl group, an aryl group substituted with an alkyl group, or an alkyl group.
  • the heteroaryl group is more preferably a 5-membered alkyl group substituted with an alkyl group having 1 to 4 carbon atoms, a phenyl group substituted with an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms.
  • a heteroaryl group is particularly preferred.
  • the alkyloxycarbonyl group is preferably a group in which a carbonyl group is linked to an alkyl group having 1 to 20 carbon atoms.
  • the number of carbon atoms of the alkyl group is more preferably 2-15, and particularly preferably 5-10.
  • the aryloxycarbonyl group is preferably a group in which a carbonyl group is linked to an aryl group having 6 to 20 carbon atoms.
  • the number of carbon atoms of the aryl group is more preferably 6-15, and particularly preferably 8-12.
  • the alkylamino group is preferably a group in which an amino group is linked to an alkyl group having 1 to 20 carbon atoms.
  • the number of carbon atoms of the alkyl group is more preferably 2-15, and particularly preferably 5-10.
  • R 10a to R 10h a substituted or unsubstituted arylthio group, a substituted or unsubstituted heteroarylthio group, a substituted or unsubstituted alkyloxycarbonyl group, a substituted or unsubstituted aryloxycarbonyl group, or a substituted or unsubstituted group
  • the number of substituents other than the alkylamino group (hereinafter also referred to as other substituents) is preferably 0 to 4, more preferably 0 to 2, and preferably 0 or 1. Particularly preferred, 0 is more preferred.
  • X 11a and X 11b each independently represent an S atom, O atom, Se atom or NR 11n
  • R 11a to R 11k , R 11m and R 11n each independently represent a hydrogen atom or a substituent Represents a group.
  • substituents include the above-described substituent X.
  • X 11a and X 11b are preferably the same linking group. It is more preferable that both X 11a and X 11b are S atoms.
  • R 11a ⁇ R 11k and R 11m of formula O-11 is at least one of R 11c and R 11i, a substituted or unsubstituted alkyl group, a substituted or unsubstituted arylthio group, a substituted or unsubstituted heteroarylthio A group, a substituted or unsubstituted alkyloxycarbonyl group, a substituted or unsubstituted aryloxycarbonyl group or a substituted or unsubstituted alkylamino group, more preferably a substituted or unsubstituted alkyl group, More preferably, both R 11c and R 11i are substituted or unsubstituted alkyl groups.
  • X 12a and X 12b each independently represent an S atom, O atom, Se atom or NR 12n
  • R 12a to R 12k , R 12m and R 12n each independently represent a hydrogen atom or a substituent Represents a group.
  • substituent include the above-described substituent X.
  • X 12a and X 12b are an S atom.
  • X 12a and X 12b are preferably the same linking group. More preferably, X 12a and X 12b are both S atoms.
  • R 12a to R 12k and R 12m in the formula O- 12 are such that at least one of R 12c and R 12i is a substituted or unsubstituted alkyl group, a substituted or unsubstituted arylthio group, a substituted or unsubstituted heteroarylthio group.
  • X 13a and X 13b each independently represent an S atom, O atom, Se atom or NR 13n
  • R 13a to R 13k , R 13m and R 13n each independently represent a hydrogen atom or a substituent Represents a group.
  • substituents include the above-described substituent X.
  • X 13a and X 13b are preferably the same linking group. It is more preferable that both X 13a and X 13b are S atoms.
  • R 13a to R 13k and R 13m in formula O-13 are such that at least one of R 13c and R 13i is a substituted or unsubstituted alkyl group, a substituted or unsubstituted arylthio group, a substituted or unsubstituted heteroarylthio group.
  • X 14a to X 14c each independently represents an S atom, O atom, Se atom or NR 14i
  • R 14a to R 14i each independently represents a hydrogen atom or a substituent.
  • substituent include the above-described substituent X.
  • X 14a to X 14c are an S atom.
  • X 14a to X 14c are preferably the same linking group.
  • X 14a to X 14c are all preferably S atoms.
  • R 14a ⁇ R 14h of formula O-14 is at least one of R 14b and R 14 g, is preferably a group of the formula W, none of R 14b and R 14 g is, Table formula W It is more preferred that
  • X 15a to X 15d each independently represents an S atom, O atom, Se atom or NR 15g
  • R 15a to R 15g each independently represents a hydrogen atom or a substituent.
  • substituent include the substituent X described above.
  • At least one of X 15a to X 15d is preferably an S atom from the viewpoint of increasing mobility.
  • X 15a to X 15d are preferably the same linking group.
  • X 15a to X 15d are more preferably S atoms.
  • R 15a to R 15f in formula O-15 are preferably groups in which at least one of R 15b and R 15e is represented by formula W, and both of R 15b and R 15e are represented by formula W. It is more preferred that
  • X 16a to X 16d each independently represents an S atom, O atom, Se atom or NR 16g
  • R 16a to R 16g each independently represents a hydrogen atom or a substituent.
  • substituent include the substituent X described above.
  • At least one of X 16a to X 16d is preferably an S atom from the viewpoint of increasing mobility.
  • X 16a to X 16d are preferably the same linking group.
  • X 16a to X 16d are all preferably S atoms.
  • R 16a ⁇ R 16f of formula O-16 is at least one of R 16a and R 16d, is preferably a group of the formula W, none of R 16a and R 16d are tables by the formula W It is more preferred that R 16c and R 16f are preferably hydrogen atoms.
  • Formulas O-4 and O-6 to O-16 preferably have an alkyl group on the condensed polycyclic aromatic ring in the condensed polycyclic aromatic group, and have an alkyl group having 3 to 20 carbon atoms. It is more preferable to have an alkyl group having 7 to 14 carbon atoms. It is excellent in the mobility and thermal stability of the organic semiconductor obtained as it is the said aspect.
  • the formula O-4 and the formula O-6 to the formula O-16 preferably have one or more alkyl groups on the condensed polycyclic aromatic ring in the condensed polycyclic aromatic group. It is more preferable to have an alkyl group, and it is more preferable to have two alkyl groups. It is excellent in the mobility and thermal stability of the organic semiconductor obtained as it is the said aspect.
  • the method for synthesizing Formula O-4 and Formula O-6 to Formula O-16 is not particularly limited, and can be synthesized with reference to known methods.
  • Examples of a method for synthesizing the compounds represented by Formula O-4 and Formula O-6 to Formula O-16 include, for example, Journal of American Chemical Society, 116, 925 (1994), Journal of Chemical Society, 221 (1951), Org. Lett. , 2001, 3, 3471, Macromolecules, 2010, 43, 6264, Tetrahedron, 2002, 58, 10197, Japanese translations of PCT publication No. 2012-513659, JP 2011-46687A, Journal of Chemical Research. miniprint, 3, 601-635 (1991), Bull. Chem. Soc.
  • the above specific low molecular weight compounds may be used alone or in combination of two or more.
  • the content of the specific low molecular compound is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and 25 parts by mass or less with respect to 100 parts by mass of the specific polymer compound. More preferred is 10 parts by mass or less.
  • the lower limit is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and further preferably 3 parts by mass or more.
  • the mobility of the organic thin-film transistor obtained improves more because content of a specific low molecular weight compound is 50 mass parts or less. Moreover, the effect by a specific low molecular weight compound is exhibited favorably because content of a specific low molecular weight compound is 1 mass part or more.
  • the molecular weight of the specific low molecular weight compound is preferably less than 2,000, more preferably 150 to 1500, and even more preferably 200 to 600.
  • the organic semiconductor composition of the present invention may contain an organic solvent.
  • the organic solvent is not particularly limited, and is a hydrocarbon solvent such as hexane, octane, decane, or aromatic carbon such as toluene, xylene, mesitylene, ethylbenzene, decalin, 1-methylnaphthalene, tetralin, and anisole.
  • Hydrogen solvents such as cyclohexanone, halogenated hydrocarbons such as dichloromethane, chloroform, tetrachloromethane, dichloroethane, trichloroethane, tetrachloroethane, chlorobenzene, dichlorobenzene, and chlorotoluene Solvent, ester solvents such as ethyl acetate, butyl acetate, amyl acetate, ethyl lactate, methanol, propanol, butanol, pentanol, hexanol, cyclohexanol Alcohol solvents such as methyl cellosolve, ethyl cellosolve, and ethylene glycol, ether solvents such as butoxybenzene, dibutyl ether, tetrahydrofuran,
  • the said organic solvent may be used individually by 1 type, and may use 2 or more types together.
  • the content is preferably 90 to 99.99% by mass, more preferably 95 to 99.99% by mass, based on the total mass of the organic semiconductor composition. More preferably, it is -99.95 mass%.
  • the organic semiconductor composition of the present invention may contain a binder polymer.
  • the kind in particular of a binder polymer is not restrict
  • the binder polymer include polystyrene, poly ( ⁇ -methylstyrene), polyvinyl cinnamate, poly (4-vinylphenyl), poly (4-methylstyrene), rubber, thermoplastic elastomer, and the like.
  • the weight average molecular weight of the binder polymer is not particularly limited, but is preferably 1,000 to 10 million, more preferably 3,000 to 5 million, and further preferably 5,000 to 3 million.
  • the content is preferably 1 to 200 parts by mass and preferably 10 to 150 parts by mass with respect to 100 parts by mass as the total content of the specific high molecular compound and the specific low molecular compound. Is more preferably 20 to 120 parts by mass. Within the above range, the carrier mobility and heat resistance of the obtained organic thin film transistor tend to be further improved.
  • ⁇ Other ingredients> Other components other than the above may be contained in the organic semiconductor composition of the present invention. As other components, known additives and the like can be used. The content of the other components is preferably 10% by mass or less, preferably 5% by mass or less, and more preferably 1% by mass or less with respect to the total mass of the organic semiconductor composition. Within the above range, the film forming property is excellent, and the carrier mobility and heat resistance of the obtained organic thin film transistor tend to be further improved.
  • the method for preparing the organic semiconductor composition is not particularly limited, and a known method can be adopted.
  • the organic semiconductor composition of the present invention can be obtained by adding a predetermined amount of a specific high molecular compound, a specific low molecular compound and the like to an organic solvent and appropriately performing a stirring treatment.
  • the organic semiconductor film of this invention is comprised from the organic-semiconductor composition mentioned above. That is, the organic semiconductor film of the present invention is a film (layer) containing the above-described specific high molecular compound and specific low molecular compound.
  • the organic semiconductor film of the present invention is preferably used for an organic thin film transistor, but can also be used for other applications. Other applications include, for example, non-luminescent organic semiconductor devices.
  • a non-emissive organic semiconductor device means a device that is not intended to emit light.
  • organic photoelectric conversion element an individual imaging element for photosensor use, a solar cell for energy conversion use, etc.
  • gas sensor an organic rectification element
  • organic inverter an information recording element, etc.
  • the organic semiconductor film is preferably functioned as an electronic element.
  • the organic thin film transistor of the present invention includes the organic semiconductor film (organic semiconductor layer) described above, and can further include a source electrode, a drain electrode, and a gate electrode.
  • the structure of the organic thin film transistor of the present invention is not particularly limited.
  • the bottom contact type bottom contact-bottom gate type and bottom contact-top gate type
  • the top contact type top contact-bottom gate type
  • any structure such as a top contact-top gate type
  • FIG. 1 is a schematic cross-sectional view of a bottom contact organic thin film transistor 100 according to an embodiment of the present invention.
  • the organic thin film transistor 100 includes a substrate (base material) 10, a gate electrode 20, a gate insulating film 30, a source electrode 40, a drain electrode 42, and an organic semiconductor film (organic semiconductor layer) 50. And a sealing layer 60.
  • the organic semiconductor film 50 is produced using the organic semiconductor composition described above.
  • the substrate (base material), the gate electrode, the gate insulating film, the source electrode, the drain electrode, the organic semiconductor film (organic semiconductor layer), the sealing layer, and the respective production methods will be described in detail.
  • the substrate plays a role of supporting a gate electrode, a source electrode, a drain electrode and the like which will be described later.
  • substrate is not restrict
  • Gate electrode examples of the material of the gate electrode include gold (Au), silver, aluminum, copper, chromium, nickel, cobalt, titanium, platinum, magnesium, calcium, barium, sodium, and other metals; InO 2 , SnO 2 , ITO (Indium Conductive oxides such as Tin Oxide; conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polydiacetylene; semiconductors such as silicon, germanium, and gallium arsenide; carbon materials such as fullerene, carbon nanotube, and graphite Can be mentioned. Especially, it is preferable that it is a metal, and it is more preferable that they are silver and aluminum.
  • the thickness of the gate electrode is not particularly limited, but is preferably 20 to 200 nm. Note that the gate electrode may function as a substrate. In that case, the substrate may not be provided.
  • the method for forming the gate electrode is not particularly limited, and examples thereof include a method of vacuum depositing or sputtering an electrode material on a substrate, and a method of applying or printing an electrode forming composition.
  • Examples of the patterning method for patterning the electrode include a photolithography method; a printing method such as inkjet printing, screen printing, offset printing, relief printing (flexographic printing); a mask vapor deposition method, and the like.
  • Gate insulation film Materials for the gate insulating film include polymethyl methacrylate, polystyrene, polyvinylphenol, polyimide, polycarbonate, polyester, polyvinyl alcohol, polyvinyl acetate, polyurethane, polysulfone, polybenzoxazole, polysilsesquioxane, epoxy resin, phenol Examples thereof include polymers such as resins; oxides such as silicon dioxide, aluminum oxide, and titanium oxide; and nitrides such as silicon nitride. Of these materials, a polymer is preferable in view of compatibility with the organic semiconductor film.
  • the thickness of the gate insulating film is not particularly limited, but is preferably 100 to 1000 nm.
  • the method for forming the gate insulating film is not particularly limited, and examples thereof include a method for applying a gate insulating film forming composition on a substrate on which a gate electrode is formed, and a method for depositing or sputtering a gate insulating film material. It is done.
  • Source electrode, drain electrode Specific examples of the material of the source electrode and the drain electrode are the same as those of the gate electrode described above. Especially, it is preferable that it is a metal and it is more preferable that it is silver.
  • the method for forming the source electrode and the drain electrode is not particularly limited. For example, a method of vacuum-depositing or sputtering an electrode material on a substrate on which a gate electrode and a gate insulating film are formed, or applying or forming an electrode-forming composition Examples include a printing method. A specific example of the patterning method is the same as that of the gate electrode described above.
  • the organic semiconductor film is obtained by a process of forming the organic semiconductor film by applying the organic semiconductor composition described above. More specifically, the organic semiconductor film can be formed by applying the organic semiconductor composition described above onto a substrate and drying it.
  • the application of the organic semiconductor composition on the substrate means not only an embodiment in which the organic semiconductor composition is directly applied to the substrate, but also the organic semiconductor composition above the substrate via another layer provided on the substrate.
  • the aspect to provide is also included.
  • a coating method of the organic semiconductor composition a known method can be used, for example, a bar coating method, a spin coating method, a knife coating method, a doctor blade method, an ink jet printing method, a flexographic printing method, a gravure printing method, and And a screen printing method.
  • an organic semiconductor film forming method described in JP2013-207085A (so-called gap cast method), an organic semiconductor thin film described in International Publication No. 2014/175351 is disclosed.
  • a production method (a so-called edge casting method or continuous edge casting method) is preferably used.
  • the drying (drying process) is appropriately selected depending on the type of each component contained in the organic semiconductor composition, and may be natural drying. However, it is preferable to perform the heat treatment from the viewpoint of improving productivity. .
  • the heating temperature is preferably 30 to 250 ° C., more preferably 40 to 200 ° C., further preferably 50 to 150 ° C.
  • the heating time is preferably 10 to 300 minutes, more preferably 20 to 180 minutes.
  • the thickness of the organic semiconductor film to be produced is not particularly limited, but is preferably 10 to 500 nm, more preferably 20 to 200 nm, from the viewpoint that the effect of the present invention is more excellent.
  • the organic thin film transistor of the present invention preferably includes a sealing layer as the outermost layer from the viewpoint of durability.
  • a well-known sealing agent composition for sealing layer formation
  • the thickness of the sealing layer is not particularly limited, but is preferably 0.2 to 10 ⁇ m.
  • FIG. 2 is a schematic cross-sectional view showing a top contact type organic thin film transistor 200 according to an embodiment of the present invention.
  • the organic thin film transistor 200 includes a substrate 10, a gate electrode 20, a gate insulating film 30, a source electrode 40, a drain electrode 42, an organic semiconductor film (organic semiconductor layer) 50, and a sealing layer. 60.
  • the organic semiconductor film 50 is formed using the organic semiconductor composition of the present invention. Since the substrate, gate electrode, gate insulating film, source electrode, drain electrode, organic semiconductor film, and sealing layer are as described above, description thereof is omitted.
  • the organic thin-film transistor mentioned above is applicable to the display part which displays the image of electronic paper and a display device, for example. Since the electronic paper and the display device can have a known structure, description thereof is omitted.
  • Organic semiconductor compound contained in the organic semiconductor composition
  • the specific polymer compound and the comparative polymer compound may be abbreviated as “polymer compound”
  • the specific low-molecular compound and the comparative low-molecular compound may be abbreviated as “low-molecular compound”.
  • the specific polymer compounds (1) to (4) and (7) to (8) were synthesized according to a known method for synthesizing a DA type ⁇ -conjugated polymer.
  • the specific polymer compounds (5) and (6) were synthesized according to the following synthesis method.
  • the comparative polymer compound (1) was purchased from Sigma Aldrich Japan.
  • Comparative polymer compounds (2) and (3) are compounds described in JP 2012-39103 A, and comparative polymer compound (4) is a compound described in Macromolecules, 2013, 46, 3887. Moreover, it measured according to the method mentioned above about the molecular weight of the high molecular compound.
  • the specific low molecular compound (1) is a compound described in JP2009-267372A
  • the specific low molecular compound (3) is a compound described in JP2012-39103A
  • the comparative low molecular compound (1) is a compound described in JP-A-2015-507840. is there.
  • the specific low molecular weight compound (2) was synthesized with reference to the method described in JP-T-2011-526588.
  • TIPS-PEN is a comparative low-molecular compound and represents TIPS pentacene (6,13-bis (triisopropylsilylethynyl) pentacene) manufactured by Sigma
  • the reaction solution was cooled to room temperature, poured into a mixed solution of methanol (240 mL) and concentrated hydrochloric acid (10 mL), and stirred for 2 hours.
  • the precipitate was filtered and washed with methanol, and then Soxhlet extracted with methanol, acetone and ethyl acetate in order to remove soluble impurities.
  • the resulting solution was concentrated under reduced pressure, methanol was added, the precipitated solid was filtered, washed with methanol, and vacuum-dried at 80 ° C. for 12 hours to give a specific polymer compound (5 ) Was obtained (yield 82%).
  • the number average molecular weight in terms of polystyrene was 2.4 ⁇ 10 4 , and the weight average molecular weight was 7.5 ⁇ 10 4 .
  • the reaction solution was cooled to room temperature, poured into a methanol (40 mL) / concentrated hydrochloric acid (2 mL) mixture, stirred for 2 hours, and the precipitate was filtered and washed with methanol.
  • the bottom gate / bottom contact type organic thin film transistor shown in FIG. 1 was produced.
  • a doped silicon substrate having a thickness of 1 mm (also serving as the gate electrode 20) was used as the substrate 10, and a gate insulating film 30 was formed thereon.
  • the gate insulating film 30 was formed as follows.
  • each organic semiconductor composition in which 4 mg of a high molecular compound and 4 mg of a low molecular compound are dissolved in 2 mL of chlorobenzene so as to have the combination shown in Table 1 below is spin-coated so as to cover the source electrode and the drain electrode.
  • an annealing process was performed at 175 ° C. for 1 hour in a nitrogen atmosphere to produce an organic thin film transistor having the structure shown in FIG.
  • the sealing layer in FIG. 1 was not provided.
  • the thickness of the organic semiconductor layer was 20 nm to 50 nm.
  • Id (w / 2L) ⁇ Ci (Vg ⁇ Vth) 2 (Where L is the gate length, w is the gate width, Ci is the capacitance per unit area of the insulating layer, Vg is the gate voltage, and Vth is the threshold voltage)
  • S 0.4 cm 2 / Vs or more
  • AA 0.3 cm 2 / Vs or more and less than 0.4 cm 2 / Vs
  • A 0.2 cm 2 / Vs or more and less than 0.3 cm 2 / Vs
  • B Less than 0.2 cm 2 / Vs
  • the OTFTs of the examples had excellent hysteresis characteristics while maintaining high carrier mobility. Moreover, it was shown that the OTFT of an Example is excellent also in threshold voltage and heat resistance. From the comparison of Examples 1 to 8, the OTFTs (Examples 3 to 8) produced using the specific polymer compounds corresponding to the above formulas (3) to (5) have better carrier mobility. It was shown to be. In particular, the OTFTs (Examples 3 to 6) produced using the specific polymer compound corresponding to the above formula (3) (more specifically, the above formula (6)) have much higher carrier mobility. Was shown to be. Further, the same tendency as the comparison of Examples 1 to 8 was observed for the comparison of Examples 9 to 16 and the comparison of Examples 17 to 24.
  • Examples 9 to 16, and Examples 17 to 24 were prepared using a specific low molecular weight compound having a partial structure represented by the above formula (2A).
  • OTFT Examples 9 to 16: specific low molecular weight compound (2) was shown to have better threshold voltage and hysteresis.
  • Examples 25 to 27 An OTFT was prepared in the same manner as in Example 13 except that an organic semiconductor composition in which the high molecular compound (5) and the low molecular compound (2) in the amounts shown in Table 2 were dissolved in 2 mL of chlorobenzene was used. (Examples 25 to 27) The carrier mobility was calculated by the method described above. The ratio of each carrier mobility in Examples 25 to 27 to the carrier mobility of the OTFT in Example 13 ((carrier mobility in Examples 25 to 27) / (carrier mobility in Example 13)) Asked. The evaluation results are shown in Table 2.
  • Example 25 As shown in Table 2, when the content of the specific low molecular compound is 50 parts by mass or less with respect to 100 parts by mass of the specific high molecular compound (Examples 25 to 28), the mobility is more excellent. It was shown to be. When the OTFTs of Examples 25 to 28 were evaluated for the threshold voltage, hysteresis, and heat resistance described above, the results were the same as those of Example 13.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thin Film Transistor (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の課題は、高いキャリア移動度を維持しつつ、優れたヒステリシス特性をもつ有機薄膜トランジスタを形成できる有機半導体組成物を提供することである。また、本発明の課題は、有機半導体膜、有機薄膜トランジスタおよび有機薄膜トランジスタの製造方法を提供することである。本発明の有機半導体組成物は、分子量2000以上で、かつ、式(1)で表される繰り返し単位を有する化合物Xと、式(2)で表される低分子化合物Yと、を含有する。

Description

有機半導体組成物、有機半導体膜、有機薄膜トランジスタおよび有機薄膜トランジスタの製造方法
 本発明は、有機半導体組成物、有機半導体膜、有機薄膜トランジスタおよび有機薄膜トランジスタの製造方法に関する。
 軽量化、低コスト化、柔軟化が可能であることから、液晶ディスプレイおよび有機EL(electro luminescence)ディスプレイに用いられるFET(電界効果トランジスタ)、RFID(radio frequency identifier:RFタグ)およびメモリなどの論理回路を用いる装置等に、有機半導体膜(有機半導体層)を有する有機薄膜トランジスタ(有機TFT(thin film transistor))が利用されている。
 このような有機半導体膜を形成するための化合物として、例えば特許文献1および2には、キャリア輸送性を有する高分子化合物と、低分子化合物と、を含有する有機半導体組成物が開示されている。
特開2009-267372号公報 特開2012-39103号公報
 近年、有機薄膜トランジスタのさらなる性能の向上が求められていることから、キャリア移動度の低下を抑制しつつ、優れたヒステリシス特性(電圧制御性)をもつ有機薄膜トランジスタが求められている。
 このような中、本発明者らが上記特許文献1および2に記載の有機半導体組成物を用いて有機薄膜トランジスタを作製したところ、特にヒステリシス特性が低下することを見出した。
 そこで、本発明は、高いキャリア移動度を維持しつつ、優れたヒステリシス特性をもつ有機薄膜トランジスタを形成できる有機半導体組成物を提供することを目的とする。また、本発明は、有機半導体膜、有機薄膜トランジスタおよび有機薄膜トランジスタの製造方法を提供することを目的とする。
 本発明者は、上記課題について鋭意検討した結果、所定の構造の化合物Xと、所定の構造の化合物Yと、を併用する有機半導体組成物を用いることで、所望の効果が得られることを見出し、本発明に至った。
 すなわち、本発明者は、以下の構成により上記課題が解決できることを見出した。
 [1]
 分子量2000以上で、かつ、後述する式(1)で表される繰り返し単位を有する化合物Xと、
 後述する式(2)で表される化合物Yと、
を含有する、有機半導体組成物。
 後述する式(1)中のAは、後述する式(A-1)~(A-9)で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有する基であり、
 Dは、少なくとも1つのN原子、O原子、S原子、もしくはSe原子を環構造内に有する2価の芳香族複素環基、または、2環以上の縮環構造からなる2価の芳香族炭化水素基を部分構造として含む電子ドナーユニットを表す。
 後述する式(A-1)~(A-9)中、Xはそれぞれ独立に、O原子、S原子、Se原子、または、NRA1を表す。
 Yはそれぞれ独立に、O原子またはS原子を表す。
 Zはそれぞれ独立に、CRA2またはN原子を表す。
 Wはそれぞれ独立に、C(RA2、NRA1、N原子、CRA2、O原子、S原子、または、Se原子を表す。
 RA1はそれぞれ独立に、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、後述する式(1-1)で表される1価の基、または、他の構造との結合部位を表す。
 RA2はそれぞれ独立に、水素原子、ハロゲン原子、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、または、他の構造との結合部位を表す。
 RA3はそれぞれ独立に、水素原子または置換基を表す。
 *はそれぞれ独立に、他の構造との結合部位を表す。
 後述する式(1-1)中、Arは、芳香族複素環基または炭素数5~18の芳香族炭化水素基を表す。
 Lは、-O-、-S-、および、-NR1S-のうち少なくとも1つを含んでいてもよい炭素数1~20のアルキレン基を表す。
 Lは、-O-、-S-、および、-NR2S-のうち少なくとも1つを含んでいてもよい炭素数1~100のアルキル基を表す。
 R1SおよびR2Sはそれぞれ独立に、水素原子または置換基を表す。
 lは、1~5の整数を表す。lが2以上のとき、複数のLは、互いに同一でも異なっていてもよい。
 *は、他の構造との結合部位を表す。
 後述する式(2)中、A、BおよびCは、それぞれ独立に、ベンゼン環、6員の複素環、5員の複素環及びシクロペンタジエン環から選択される環構造を示す。隣接する環同士は、互いに縮環している。
 nは、2~8の整数を示す。複数のAは、それぞれ同一でも異なっていてもよいが、複数のAのうち少なくとも1つは、5員の複素環を示す。
 RおよびRは、それぞれ独立に、-O-、-S-、および、-NR-のうち少なくとも1つを含んでいてもよい飽和炭化水素基、-O-、-S-、および、-NR-のうち少なくとも1つを含んでいてもよい不飽和炭化水素基、アリール基、ヘテロアリール基、アルコキシ基、アミノ基、カルボニル基、エステル基、ニトロ基、ヒドロキシ基、シアノ基、アリールアルキル基、ヘテロアリールアルキル基、アリールオキシ基、ヘテロアリールオキシ基、アルキルシリル基およびハロゲン原子からなる群より選択される1価の基を示す。Rはそれぞれ独立に、水素原子または置換基を表す。Rはそれぞれ独立に、水素原子または置換基を表す。
 sおよびtは、それぞれ独立に、0~4の整数を示す。
 [2]
 後述する式(1)中のDが、後述する式(D-1)で表される構造である、上記[1]に記載の有機半導体組成物。
 後述する式(D-1)中、X’はそれぞれ独立に、O原子、S原子、Se原子、または、NRD1を表す。RD1はそれぞれ独立に、後述する式(1-1)で表される1価の基であってもよい1価の有機基を表す。
 Zはそれぞれ独立に、N原子またはCRD2を表す。RD2はそれぞれ独立に、水素原子、または、後述する式(1-1)で表される1価の基であってもよい1価の有機基を表す。
 Mは、単結合、2価の芳香族複素環基、2価の芳香族炭化水素基、アルケニレン基、アルキニレン基、または、これらを組み合わせてなる2価の基を表す。Mは、-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、または、後述する式(1-1)で表される1価の基で置換されていてもよい。RD3はそれぞれ独立に、水素原子または置換基を表す。
 pおよびqはそれぞれ独立に、0~4の整数を表す。
 *はそれぞれ独立に、他の構造との結合部位を表す。
 [3]
 後述する式(1)で表される繰り返し単位が、後述する式(3)~(5)のいずれかで表される繰り返し単位である、上記[1]または[2]に記載の有機半導体組成物。
 後述する式(3)~(5)中、Xはそれぞれ独立に、O原子、S原子、Se原子、または、NRA1を表す。
 RA1はそれぞれ独立に、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、後述する式(1-1)で表される1価の基、または、他の構造との結合部位を表す。
 Yはそれぞれ独立に、O原子またはS原子を表す。
 Zはそれぞれ独立に、CRA2またはN原子を表す。RA2はそれぞれ独立に、水素原子、ハロゲン原子、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、または、他の構造との結合部位を表す。
 RA3はそれぞれ独立に、水素原子または置換基を表す。
 X’はそれぞれ独立に、O、S、Se、または、NRD1を表す。RD1はそれぞれ独立に、後述する式(1-1)で表される1価の基であってもよい1価の有機基を表す。
 Zはそれぞれ独立に、NまたはCRD2を表す。RD2はそれぞれ独立に、水素原子または後述する式(1-1)で表される1価の基であってもよい1価の有機基を表す。
 Mは、単結合、2価の芳香族複素環基、2価の芳香族炭化水素基、アルケニレン基、アルキニレン基、または、これらを組み合わせてなる2価の基を表す。Mは、-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、または、後述する式(1-1)で表される1価の基で置換されていてもよい。RD3はそれぞれ独立に、水素原子または置換基を表す。
 pおよびqはそれぞれ独立に、0~4の整数を表す。
 [4]
 後述する式(1)で表される繰り返し単位が、式(6)で表される繰り返し単位である、上記[1]~[3]のいずれか1つに記載の有機半導体組成物。
 後述する式(6)中、RA1はそれぞれ独立に、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、後述する式(1-1)で表される1価の基、または、他の構造との結合部位を表す。RA3はそれぞれ独立に、水素原子または置換基を表す。
 X’はそれぞれ独立に、O、S、Se、または、NRD1を表す。RD1はそれぞれ独立に、後述する式(1-1)で表される1価の基であってもよい1価の有機基を表す。
 Mは、単結合、2価の芳香族複素環基、2価の芳香族炭化水素基、アルケニレン基、アルキニレン基、または、これらを組み合わせてなる2価の基を表す。Mは、-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、または、後述する式(1-1)で表される1価の基で置換されていてもよい。RD3はそれぞれ独立に、水素原子または置換基を表す。
 pおよびqはそれぞれ独立に、0~4の整数を表す。
 [5]
 上記化合物Yが、後述する式(2A)で表される構造を部分構造として有する、上記[1]~[4]のいずれか1つに記載の有機半導体組成物。
 後述する式(2A)中、R21~R26は、それぞれ独立に、水素原子または置換基を表す。R21~R26における隣接する基同士は、互いに結合して芳香族炭化水素環または芳香族複素環を形成していてもよい。この場合、芳香族炭化水素環または芳香族複素環は、さらに芳香族炭化水素環または芳香族複素環で縮環されていてもよい。
 ただし、R21~R24における隣接する基同士のうち少なくとも1組は、互いに結合して芳香族炭化水素環または芳香族複素環を形成する。
 [6]
 上記化合物Yが、後述する式(2B)で表される化合物である、上記[1]~[4]のいずれか1つに記載の有機半導体組成物。
 後述する式(2B)中、A1、A2、A3、B1およびC1は、それぞれ独立に、ベンゼン環またはチオフェン環を示し、隣接する環同士は、互いに縮環している。なお、A1、A2、A3、B1およびC1のうち、2~4つの環がチオフェン環であり、かつ、チオフェン環以外の環がベンゼン環である。ただし、A1、A2およびA3のうち少なくとも1つは、チオフェン環である。
 RおよびRは、それぞれ独立に、-O-、-S-、および、-NR-のうち少なくとも1つを含んでいてもよい飽和炭化水素基、-O-、-S-、および、-NR-のうち少なくとも1つを含んでいてもよい不飽和炭化水素基、アリール基、ヘテロアリール基、アルコキシ基、アミノ基、カルボニル基、エステル基、ニトロ基、ヒドロキシ基、シアノ基、アリールアルキル基、ヘテロアリールアルキル基、アリールオキシ基、ヘテロアリールオキシ基、アルキルシリル基およびハロゲン原子からなる群より選択される1価の基を示す。Rはそれぞれ独立に、水素原子または置換基を表す。Rはそれぞれ独立に、水素原子または置換基を表す。
 sおよびtは、それぞれ独立に、0~4の整数を示す。
 [7]
 後述する式(2B)中のA1、A2、A3、B1およびC1において、3~4つの環がチオフェン環であり、かつ、チオフェン環同士の連結数が2つ以下である、上記[6]に記載の有機半導体組成物。
 [8]
 上記化合物Yの含有量が、上記化合物X100質量部に対して、100質量部以下である、上記[1]~[7]のいずれか1つに記載の有機半導体組成物。
 [9]
 上記[1]~[8]のいずれか1つに記載の有機半導体組成物を用いて作製された、有機半導体膜。
 [10]
 上記[9]に記載の有機半導体膜を有する、有機薄膜トランジスタ。
 [11]
 上記[1]~[8]のいずれか1つに記載の有機半導体組成物を塗布して有機半導体膜を形成する工程を含む、有機薄膜トランジスタの製造方法。
 本発明によれば、高いキャリア移動度を維持しつつ、優れたヒステリシス特性をもつ有機薄膜トランジスタを形成できる有機半導体組成物を提供することができる。また、本発明によれば、有機半導体膜、有機薄膜トランジスタおよび有機薄膜トランジスタの製造方法を提供することができる。
本発明の一実施形態に係るボトムコンタクト型の有機薄膜トランジスタの断面模式図である。 本発明の一実施形態に係るトップコンタクト型の有機薄膜トランジスタの断面模式図である。
 以下に、本発明について詳述する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 本明細書において、化合物の表示については、その化合物そのものの他、その塩、そのイオンを含む意味に用いる。
 本明細書において、特定の符号で表示された置換基や連結基等(以下、置換基等という)が複数あるとき、または、複数の置換基等を同時に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。
 また、特に断らない限り、複数の置換基等が近接(特に隣接)するときには、それらが互いに連結したり縮環したりして環を形成していてもよい意味である。
 さらに、本明細書において置換・無置換を明記していない置換基等については、目的とする効果を損なわない範囲で、その基にさらに置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。
 本明細書において「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
[有機半導体組成物]
 本発明の有機半導体組成物は、分子量2000以上で、かつ、後述する式(1)で表される繰り返し単位を有する化合物Xと、後述する式(2)で表される化合物Yと、を含有する。
 このように、分子量2000以上で、かつ、後述する式(1)で表される繰り返し単位を有する化合物X(以下、「特定高分子化合物」ともいう。)と、後述する式(2)で表される化合物Y(以下、「特定低分子化合物」ともいう。)と、を用いることで、高いキャリア移動度を維持しつつ、優れたヒステリシス特性をもつ有機薄膜トランジスタを作製できる。
 この理由の詳細は未だ明らかになっていない部分もあるが、およそ以下の理由によるものと推測される。
 特定高分子化合物は、電子ドナーユニットと電子アクセプターユニットとから形成される主鎖骨格を有する、いわゆるD-A型ポリマーの一種である。このようなD-A型ポリマーは結晶化させた際に良好な配向性を示すが、特定低分子化合物と併用することで、配向性を一層向上できたものと考えられる。すなわち、特定高分子化合物と特定低分子化合物とを用いることで、特定高分子化合物の隙間に特定低分子化合物が入り込みやすくなり、特定高分子化合物の結晶性や配列性が向上したものと考えられる。
 これにより、有機半導体膜(有機半導体層)と、ソース電極およびドレイン電極との界面での電荷注入がスムーズに行われるようになり、高い移動度を維持しつつ、ヒステリシス(電圧制御性)に優れたものとなったと推測される。
 また、本発明の有機半導体組成物を用いて形成された有機半導体層を含む有機薄膜トランジスタは、上記理由により、閾値電圧に関しても優れた特性を示すものになったと推測される。
 さらに、低分子化合物のみを用いた場合には、有機半導体層の結晶構造が崩れやすい傾向にあるが、特定高分子化合物を併用することで、加熱することで生じる欠陥による影響を受けにくくなる。そのため、本発明の有機半導体組成物を用いて形成された有機半導体層を含む有機薄膜トランジスタは、加熱前後におけるキャリア移動度の低下を抑制でき、良好な耐熱性を示すものとなったと推測される。
 以下、本発明の有機半導体組成物に含まれる成分および含まれ得る成分について説明する。
<特定高分子化合物(化合物X)>
 本発明の有機半導体組成物は、特定高分子化合物を含有する。特定高分子化合物は、上述した通り、分子量2000以上で、かつ、下記式(1)で表される繰り返し単位を有する化合物Xである。
 特定高分子化合物は、有機半導体化合物の一種であり、キャリア輸送性を有する。
Figure JPOXMLDOC01-appb-C000010
 式(1)中、Aは、電子アクセプターユニットを表し、後述する式(A-1)~(A-9)で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有する基である。
 Dは、少なくとも1つのN原子、O原子、S原子、もしくはSe原子を環構造内に有する2価の芳香族複素環基、または、2環以上の縮環構造からなる2価の芳香族炭化水素基を部分構造として含む電子ドナーユニットを表す。
(電子アクセプターユニット(式(1)の「A」))
 上記式(1)中、Aは、下記式(A-1)~式(A-9)で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有することが好ましく、Aが下記式(A-1)~式(A-9)よりなる群から選ばれた少なくとも1つにより表される構造であることがより好ましい。
Figure JPOXMLDOC01-appb-C000011
 式(A-1)~式(A-9)中、Xはそれぞれ独立に、O原子、S原子、Se原子、または、NRA1を表す。Yはそれぞれ独立に、O原子またはS原子を表す。Zaはそれぞれ独立に、CRA2またはN原子を表す。Wはそれぞれ独立に、C(RA2、NRA1、N原子、CRA2、O原子、S原子、または、Se原子を表す。RA1はそれぞれ独立に、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、下記式(1-1)で表される1価の基、または、他の構造との結合部位を表す。RA2はそれぞれ独立に、水素原子、ハロゲン原子、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、下記式(1-1)で表される1価の基、または、他の構造との結合部位を表す。RA3はそれぞれ独立に、水素原子、または、置換基を表す。*はそれぞれ独立に、他の構造との結合部位を表す。
 なお、式(A-3)および式(A-7)においては、Zaを含む2つの環構造中のそれぞれにおいて、1つのZaがCRA2であり、かつ、RA2が他の構造との結合部位を表す。この他の構造との結合部位が、式中の*に該当する。より具体的には、他の構造との結合位置を表す*が先端に位置する結合手(以後、単に「結合手」と称する)は、各式中のいずれかのZaから伸びるものであり、この結合手が伸びるZaは、CRA2であり、かつ、RA2が他の構造との結合部位を表す態様に該当する。
 また、式(A-8)においては、2つのZaがCRA2であり、かつ、RA2が他の構造との結合部位を表す。この他の構造との結合部位が、式中の*に該当する。
 また、式(A-4)において、Wを含む2つの環構造中のそれぞれにおいて、1つのWが以下の3つの態様のうちいずれか一つを表す。
態様1:WがCRA2であり、かつ、RA2が他の構造との結合部位を表す。
態様2:WがNRA1であり、かつ、RA1が他の構造との結合部位を表す。
態様3:WがC(RA2であり、かつ、RA2のうち一方が他の構造との結合部位を表す。
Figure JPOXMLDOC01-appb-C000012
 式(1-1)中、Arは、芳香族複素環基または炭素数5~18の芳香族炭化水素基を表す。Lは、-O-、-S-、および、-NR1S-のうち少なくとも1つを含んでいてもよい炭素数1~20のアルキレン基を表す。Lは、-O-、-S-、および、-NR2S-のうち少なくとも1つを含んでいてもよい炭素数1~100のアルキル基を表す。R1SおよびR2Sはそれぞれ独立に、水素原子または置換基を表す。lは、1~5の整数を表す。lが2以上のとき、複数のLは、互いに同一でも異なっていてもよい。*は、他の構造との結合部位を表す。
 式(A-1)~式(A-9)中、Xはそれぞれ独立に、O原子、S原子、Se原子、または、NRA1を表し、S原子またはNRA1が好ましい。
 Yはそれぞれ独立に、O原子又はS原子を表し、O原子が好ましい。
 Zaはそれぞれ独立に、CRA2またはN原子を表し、CRA2が好ましい。
 Wはそれぞれ独立に、C(RA2、NRA1、N原子、CRA2、O原子、S原子、または、Se原子を表し、C(RA2、CRA2、または、S原子が好ましい。
 RA1はそれぞれ独立に、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、上記式(1-1)で表される1価の基、または、他の構造との結合部位を表し、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、または、上記式(1-1)で表される1価の基が好ましい。
 RA1が-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基を表す場合、炭素数2~30のアルキル基が好ましく、炭素数8~25のアルキル基がより好ましい。また、上記アルキル基は直鎖状でも分岐鎖状でもよい。
 なお、RA1における他の構造との結合部位とは、上記式(A-1)~式(A-9)中の*で表される他の構造との結合部位である。
 RA2はそれぞれ独立に、水素原子、ハロゲン原子、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、上記式(1-1)で表される1価の基、または、他の構造との結合部位を表し、水素原子または他の構造との結合部位が好ましい。
 RA2が-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基を表す場合、炭素数2~30のアルキル基が好ましく、炭素数8~25のアルキル基がより好ましい。また、上記アルキル基は直鎖状でも分岐鎖状でもよい。
 RA2がハロゲン原子を表す場合、F原子、Cl原子、Br原子、または、I原子が好ましく、F原子がより好ましい。
 なお、RA2における他の構造との結合部位とは、上記式(A-1)~式(A-9)中の*で表される他の構造との結合部位である。
 RA3はそれぞれ独立に、水素原子、または、置換基を表す。RA3における置換基は、後述するR1SおよびR2Sにおける置換基と同義である。
 式(1-1)中、Arは、芳香族複素環基または炭素数5~18の芳香族炭化水素基を表す。
 Arにおける炭素数5~18の芳香族炭化水素基としては、例えば、ベンゼン環基、ビフェニル基、ナフタレン環基、または、3環が縮合した芳香族炭化水素(例えば、フルオレン環)から2以上の水素原子を取り除いた基が挙げられる。これらの中でも、キャリア移動度がより優れたものになるという観点から、ベンゼン環基、ビフェニル基、または、ナフタレン環基であることが好ましく、ベンゼン環基であることが好ましい。
 Arにおける芳香族複素環基は、単環であっても、2環以上の縮環構造を有していてもよいが、キャリア移動度がより優れたものになるという観点から単環であることが好ましい。Arにおける芳香族複素環基は、5~7員環であることが好ましい。また、芳香族複素環基に含まれるヘテロ原子としては、N原子、O原子、S原子またはSe原子であることが好ましく、S原子であることがより好ましい。
 Lは、-O-、-S-、および、-NR1S-のうち少なくとも1つを含んでいてもよい炭素数1~20のアルキレン基を表す。ここで、アルキレン基が-O-を含むとは、アルキレン基の炭素-炭素結合の途中に-O-が導入されている場合や、アルキレン基の一端または両端に-O-が導入されている場合を意味する。アルキレン基に-S-や-NR1S-を含む場合も同様の意味である。
 Lを表すアルキレン基は、直鎖状、分岐鎖、環状のいずれであってもよいが、直鎖状または分岐鎖状のアルキレン基であることが好ましい。
 Lを表すアルキレン基の炭素数は、1~20であるが、キャリア移動度がより優れたものとなるという観点から、1~15であることが好ましく、1~10であることがさらに好ましい。
 なお、Lを表すアルキレン基が分岐鎖状である場合には、分岐部分の炭素数については、Lを表すアルキレン基の炭素数に含むものとする。ただし、Lが-NR1S-を含み、かつ、このR1Sが炭素原子を含む場合には、R1Sの炭素数は、Lを表すアルキレン基の炭素数に含めないものとする。
 Lは、-O-、-S-、および、-NR2S-のうち少なくとも1つを含んでいてもよい炭素数1~100のアルキル基を表す。ここで、アルキル基が-O-を含むとは、アルキル基の炭素-炭素結合の途中に-O-が導入されている場合や、アルキル基の一端(すなわち、上記「Ar」との接続部分)に-O-が導入されている場合を意味する。アルキル基に-S-や-NR2S-を含む場合も同様の意味である。
 Lを表すアルキル基は、直鎖状、分岐鎖、環状のいずれであってもよいが、キャリア移動度および高温高湿下での経時安定性がより優れたものになるという観点から、直鎖状または分岐鎖状のアルキル基であることが好ましく、分岐鎖状のアルキル基がより好ましい。また、Lを表すアルキル基は、置換基としてハロゲン原子(好ましくは、F原子、Cl原子、Br原子、I原子、より好ましくは、F原子)を有するハロゲン化アルキル基であってもよい。
 Lを表すアルキル基の炭素数は、1~100であり、9~100であることが好ましい。
 また、キャリア移動度がより優れたものになるという観点から、上記式(1-1)中の-(L)において、少なくとも1つのLの炭素数が、9~100であることが好ましく、20~100であることがより好ましく、20~40であることがさらに好ましい。
 なお、Lを表すアルキル基が分岐鎖状である場合には、分岐部分の炭素数については、Lを表すアルキル基の炭素数に含むものとする。ただし、Lが-NR2S-を含み、かつ、このR2Sが炭素原子を含む場合には、R2Sの炭素数は、Lを表すアルキレン基の炭素数に含めないものとする。
 R1SおよびR2Sはそれぞれ独立に、水素原子または置換基を表す。置換基としては、アルキル基(好ましくは、炭素数1~10の直鎖または分岐鎖状のアルキル基)、ハロゲン原子(好ましくは、F原子、Cl原子、Br原子、I原子)、アリール基(好ましくは炭素数6~20のアリール基)を表す。これらの中でも、R1SおよびR2Sはそれぞれ独立に、水素原子またはアルキル基であることが好ましく、アルキル基であることがより好ましい。
 lは、1~5の整数を表すが、1または2であることが好ましい。lが2以上のとき、複数のLは、互いに同一でも異なっていてもよい。
 *は、他の構造との結合部位を表す。
 特定高分子化合物は、式(1)中のAが下記式(A-1)~式(A-9)で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有し、式(A-1)、式(A-2)、式(A-3)、式(A-4)および式(A-9)で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有することが好ましく、式(A-1)、式(A-3)および式(A-4)で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有することがより好ましく、式(A-1)で表される構造を部分構造として有することが特に好ましい。
 また、特定高分子化合物は、上記それぞれの態様において、式(1)中のAが各式により表される構造を部分構造として有する態様よりも、式(1)中のAが各式により表される構造である態様の方が好ましい。
 式(A-1)~式(A-9)で表される構造の例を以下に示すが、本発明は以下の例示により限定されるものではない。下記構造式中、RA1は式(A-1)~式(A-9)中のRA1と同義であり、好ましい態様も同様である。
 また、*は他の構造との結合部位を表す。
Figure JPOXMLDOC01-appb-C000013
(電子ドナーユニット(式(1)の「D」))
 Dは少なくとも1つのN原子、O原子、S原子、もしくはSe原子を環構造内に有する2価の芳香族複素環基、または、2環以上の縮環構造からなる2価の芳香族炭化水素基を部分構造として含む電子ドナーユニットである。
 少なくとも1つのN原子、O原子、S原子またはSe原子を環構造内に有する2価の芳香族複素環基としては、少なくとも1つのS原子を環構造内に有する2価の芳香族複素環基が好ましい。
 また、上記2価の芳香族複素環基は、単環であっても、2環以上の縮環構造を有していてもよく、単環の2価の芳香族複素環基を2以上組み合わせた構造であるか、2以上の単環の2価の芳香族複素環基と、1以上の2環以上の縮環構造を有する2価の芳香族複素環基を組み合わせた構造であることが好ましい。
 上記2価の芳香族複素環基は更に置換基を有していてもよく、好ましい置換基としては、-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基(例えば、炭素数1~30のアルキル基または炭素数1~30のアルコキシ基が好ましく、炭素数1~20のアルキル基がより好ましい)、アルケニル基(炭素数2~30が好ましい。)、アルキニル基(炭素数2~30が好ましい。)、芳香族炭化水素基(炭素数6~30が好ましい。)、芳香族複素環基(5~7員環が好ましい。ヘテロ原子としては、O原子、N原子、S原子、Se原子が好ましい。)、ハロゲン原子(F原子、Cl原子、Br原子、I原子が好ましく、F原子またはCl原子がより好ましく、F原子が特に好ましい。)、上記式(1-1)で表される1価の基が挙げられる。
 RD3は後述する式(D-1)におけるRD3と同義であり、好ましい態様も同様である。
 上記2価の芳香族複素環基の例を以下に示すが、本発明は以下の例示により限定されるものではない。下記構造式中、水素原子は-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、アルケニル基、アルキニル基、芳香族炭化水素基、芳香族複素環基、ハロゲン原子、又は、上記式(1-1)により表される基により置換されていてもよく、RD1は後述する式(D-1)中のRD1と同義であり、好ましい態様も同様であり、*は他の構造との結合部位を表す。上記-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基としては、炭素数1~30のアルキル基が好ましく、炭素数1~20のアルキル基がより好ましい。RD3は後述する式(D-1)におけるRD3と同義であり、好ましい態様も同様である。
Figure JPOXMLDOC01-appb-C000014
 2環以上の縮環構造からなる芳香族炭化水素基としては、炭素数10~20の芳香族炭化水素基が好ましく、フルオレン基、ナフチレン基、若しくは、3環又は4環が縮合した芳香族炭化水素から水素原子を2つ除いた基がより好ましく、フルオレン基、ナフチレン基、若しくは、アントラセン環、フェナントレン環、クリセン環、又はピレン環から水素原子を2つ除いた基が更に好ましい。
 上記芳香族炭化水素基はさらに置換基を有していてもよく、好ましい置換基としては、-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、ハロゲン原子、上記式(1-1)で表される1価の基が挙げられる。-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基及びハロゲン原子の好ましい例は、上記の2価の芳香族複素環基で説明したものと同様である。RD3は後述する式(D-1)におけるRD3と同義であり、好ましい態様も同様である。
 また、式(1)において、Dは式(D-1)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 上記式(D-1)中、X’はそれぞれ独立に、O原子、S原子、Se原子、または、NRD1を表す。RD1はそれぞれ独立に、上記式(1-1)で表される1価の基であってもよい1価の有機基を表す。Zはそれぞれ独立に、N原子またはCRD2を表す。RD2はそれぞれ独立に、水素原子、または、上記式(1-1)で表される1価の基であってもよい1価の有機基を表す。Mは、単結合、2価の芳香族複素環基、2価の芳香族炭化水素基、アルケニレン基、アルキニレン基、または、これらを組み合わせてなる2価の基を表す。Mは、-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、または、上記式(1-1)で表される1価の基で置換されていてもよい。RD3はそれぞれ独立に、水素原子または置換基を表す。pおよびqはそれぞれ独立に、0~4の整数を表す。*はそれぞれ独立に、他の構造との結合部位を表す。
 なお、上記式(D-1)において、各繰り返し単位および上記Mは、結合軸において回転可能に結合している。
 式(D-1)中、X’はそれぞれ独立に、O原子、S原子、Se原子、または、NRD1を表し、O原子、S原子、または、Se原子であることが好ましく、S原子であることがより好ましい。
 Zはそれぞれ独立に、N原子またはCRD2を表し、CRD2であることがより好ましい。
 RD1はそれぞれ独立に、1価の有機基を表し、-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基(例えば、炭素数1~30のアルキル基または炭素数1~30のアルコキシ基が好ましく、炭素数1~20のアルキル基がより好ましい。)、アルキニル基(炭素数2~30が好ましい。)、アルケニル基(炭素数2~30が好ましい。)、芳香族炭化水素基(炭素数6~30が好ましい。)、芳香族複素環基(5~7員環が好ましい。ヘテロ原子としては、O原子、N原子、S原子、Se原子が好ましい。)、ハロゲン原子(F原子、Cl原子、Br原子、I原子が好ましく、F原子又はCl原子がより好ましく、F原子が特に好ましい。)、または、上記式(1-1)で表される1価の基であることが好ましく、アルキル基、ハロゲン原子、または上記式(1-1)で表される1価の基であることがより好ましい。
 RD2はそれぞれ独立に、水素原子または1価の有機基を表し、水素原子、-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基(例えば、炭素数1~30のアルキル基または炭素数1~30のアルコキシ基が好ましく、炭素数1~20のアルキル基がより好ましい。)、アルキニル基(炭素数2~30が好ましい。)、アルケニル基(炭素数2~30が好ましい。)、芳香族炭化水素基(炭素数6~30が好ましい。)、芳香族複素環基(5~7員環が好ましい。ヘテロ原子としては、O原子、N原子、S原子、Se原子が好ましい。)、ハロゲン原子(F原子、Cl原子、Br原子、I原子が好ましく、F原子またはCl原子がさらに好ましく、F原子が特に好ましい。)、または、上記式(1-1)で表される1価の基であることが好ましく、水素原子、アルキル基、ハロゲン原子、又は上記式(1-1)で表される1価の基であることがより好ましい。
 Mは、単結合、2価の芳香族複素環基、2価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又はこれらを組み合わせてなる2価の基を表す。Mは、-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、または、式(1-1)で表される1価の基で置換されていてもよい。
 上記Mにおける2価の芳香族複素環基は、単環であっても、2環以上の縮環構造を有していてもよい。本発明に好ましく用いられる2価の芳香族複素環基の例は、上述した2環以上の縮環構造を有する2価の芳香族複素環基の例と同様である。
 Mにおける2価の芳香族炭化水素基としては、炭素数6~20の芳香族炭化水素基が好ましく、フェニレン基、ビフェニレン基、フルオレン基、ナフチレン基、または、3環若しくは4環が縮合した芳香族炭化水素から水素原子を2つ除いた基がより好ましく、フルオレン基、ナフチレン基、アントラセン環、フェナントレン環、クリセン環、若しくはピレン環から水素原子を2つ除いた基が更に好ましい。
 Mにおける2価の芳香族複素環基、または、2価の芳香族炭化水素基、は、さらに置換基を有していてもよく、好ましい置換基としては、-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基(例えば、炭素数1~30のアルキル基または炭素数1~30のアルコキシ基が好ましく、炭素数1~20のアルキル基がより好ましい。)、ハロゲン原子(F原子、Cl原子、Br原子、I原子が好ましく、F原子またはCl原子がさらに好ましく、F原子が特に好ましい。)、上記式(1-1)で表される1価の基が挙げられる。
 Mにおけるアルケニレン基としては、炭素数2~10のアルケニレン基が好ましく、炭素数2~4のアルケニレン基がより好ましく、エテニレン基がさらに好ましい。
 Mにおけるアルキニレン基としては、炭素数2~10のアルキニレン基が好ましく、炭素数2~4のアルキニレン基がより好ましく、エチニレン基がさらに好ましい。
 RD3はそれぞれ独立に、水素原子、または、置換基を表す。RD3における置換基は、上記R1SおよびR2Sにおける置換基と同義である。
 pおよびqはそれぞれ独立に、0~4の整数であり、1~3の整数であることが好ましく、1~2の整数であることがより好ましい。pとqは同じ値であることが好ましい。また、p+qが2~4であることが好ましい。
 ただし、p+qが0の場合には、Mは、少なくとも1つのN原子、O原子、S原子、もしくはSe原子を環構造内に有する2価の芳香族複素環基、または、2環以上の縮環構造からなる2価の芳香族炭化水素基を部分構造として含むことが好ましい。
 Dの構造の例を以下に示すが、本発明は以下の例示により限定されるものではない。下記構造式中、水素原子は-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、または、上記式(1-1)により表される基により置換されていてもよく、RD1は上記式(D-1)中のRD1と同義であり、好ましい態様も同様であり、*は他の構造との結合部位を表す。上記-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基としては、炭素数1~30のアルキル基または炭素数1~30のアルコキシ基が好ましく、炭素数8~30のアルキル基がより好ましい。RD3は上記式(D-1)におけるRD3と同義であり、好ましい態様も同様である。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
(式(3)~式(5)で表される繰り返し単位)
 上記式(1)で表される繰り返し単位が、下記式(3)~(5)のいずれかで表される繰り返し単位であることが好ましく、下記式(3)で表される繰り返し単位であることがより好ましい。
Figure JPOXMLDOC01-appb-C000019
 上記式(3)~(5)中、Xはそれぞれ独立に、O原子、S原子、Se原子、または、NRA1を表す。
 RA1はそれぞれ独立に、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、上記式(1-1)で表される1価の基、または、他の構造との結合部位を表す。
 Yはそれぞれ独立に、O原子またはS原子を表す。
 Zはそれぞれ独立に、CRA2またはN原子を表す。RA2はそれぞれ独立に、水素原子、ハロゲン原子、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、または、他の構造との結合部位を表す。RA3はそれぞれ独立に、水素原子または置換基を表す。X’はそれぞれ独立に、O原子、S原子、Se原子、または、NRD1を表す。RD1はそれぞれ独立に、上記式(1-1)で表される1価の基であってもよい1価の有機基を表す。Zはそれぞれ独立に、N原子またはCRD2を表す。RD2はそれぞれ独立に、水素原子または上記式(1-1)で表される1価の基であってもよい1価の有機基を表す。Mは、単結合、2価の芳香族複素環基、2価の芳香族炭化水素基、アルケニレン基、アルキニレン基、または、これらを組み合わせてなる2価の基を表す。Mは、-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、または、上記式(1-1)で表される1価の基で置換されていてもよい。RD3はそれぞれ独立に、水素原子または置換基を表す。pおよびqはそれぞれ独立に、0~4の整数を表す。
 式(3)~式(5)中、X、Y、Z、RA1、RA2、および、RA3は、上記式(A-1)~式(A-9)におけるX、Y、Z、RA1、RA2、および、RA3とそれぞれ同義であり、好ましい態様も同様である。
 また、式(3)~式(5)中、X’、Z、RD1、RD2、RD3、M、p、および、qは上記式(D-1)におけるX’、Z、RD1、RD2、RD3、M、p、および、qとそれぞれ同義であり、好ましい態様も同様である。
 上記式(1)で表される繰り返し単位は、式(6)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(6)中、RA1はそれぞれ独立に、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、上記式(1-1)で表される1価の基、または、他の構造との結合部位を表す。RA3はそれぞれ独立に、水素原子または置換基を表す。
 X’はそれぞれ独立に、O、S、Se、または、NRD1を表す。RD1はそれぞれ独立に、上記式(1-1)で表される1価の基であってもよい1価の有機基を表す。
 Mは、単結合、2価の芳香族複素環基、2価の芳香族炭化水素基、アルケニレン基、アルキニレン基、または、これらを組み合わせてなる2価の基を表す。Mは、-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、または、上記式(1-1)で表される1価の基で置換されていてもよい。RD3はそれぞれ独立に、水素原子または置換基を表す。
 pおよびqはそれぞれ独立に、0~4の整数を表す。
 式(6)中、RA1およびRA3は、上記式(A-1)~式(A-9)におけるRA1およびRA3とそれぞれ同義であり、好ましい態様も同様である。
 また、式(6)中、X’、RD1、M、RD3、p、および、qは、上記式(D-1)におけるX’、RD1、M、RD3、p、および、qとそれぞれ同義であり、好ましい態様も同様である。
 特定高分子化合物は、式(1)で表される繰り返し単位を1種単独で含んでもよいし、2種以上含んでもよい。
 特定高分子化合物は、式(1)で表される繰り返し単位を2以上有する化合物であり、繰り返し単位数nが2~9のオリゴマーであってもよく、繰り返し単位数nが10以上の高分子(ポリマー)であってもよい。これらの中でも、繰り返し単位数nが10以上の高分子であることが、キャリア移動度および得られる有機半導体層の物性の観点から好ましい。
 式(1)で表される繰り返し単位を有する化合物の分子量は、キャリア移動度の観点から、2,000以上であり、5,000以上であることが好ましく、10,000以上であることがより好ましく、20,000以上であることが更に好ましく、30,000以上であることが特に好ましい。また、溶解度の観点から、1,000,000以下であることが好ましく、300,000以下であることがより好ましく、150,000以下であることが更に好ましく、100,000以下であることが特に好ましい。
 本発明において、特定高分子化合物が分子量分布を有する場合、その化合物の分子量とは重量平均分子量を意味する。
 本発明において、特定高分子化合物の重量平均分子量及び数平均分子量は、ゲル浸透クロマトグラフィ法(GPC(Gel Permeation Chromatography))法にて測定され、標準ポリスチレンで換算して求められる。具体的には、例えば、GPCは、HLC-8121GPC(東ソー(株)製)を用い、カラムとして、TSKgel GMHHR-H(20) HT(東ソー(株)製、7.8mmID×30cm)を2本用い、溶離液として1,2,4-トリクロロベンゼンを用いる。また、条件としては、試料濃度を0.02質量%、流速を1.0ml/min、サンプル注入量を300μl、測定温度を160℃とし、IR(infrared)検出器を用いて行う。また、検量線は、東ソー(株)製「標準試料TSK standard,polystyrene」:「F-128」、「F-80」、「F-40」、「F-20」、「F-10」、「F-4」、「F-2」、「F-1」、「A-5000」、「A-2500」、「A-1000」、「A-500」の12サンプルから作製する。
 特定高分子化合物の末端の構造は、特に制限はなく、他の構成単位の有無や、合成時に使用した基質の種類、合成時のクエンチ剤(反応停止剤)の種類にもよるが、例えば、水素原子、ヒドロキシ基、ハロゲン原子、エチレン性不飽和基、アルキル基等、芳香族複素環基(チオフェン環が好ましい。)、および、芳香族炭化水素基(ベンゼン環が好ましい。)が挙げられる。
 特定高分子化合物の合成方法は、特に限定されず、公知の方法を参照して合成すればよい。例えば、特表2010-527327号、特表2007-516315号、特表2014-515043号、特表2014-507488号、特表2011-501451号、特開2010-18790号、WO2012/174561号、特表2011-514399号、特表2011-514913号等の文献を参考に、電子アクセプターユニットの前駆体と電子ドナーユニットの前駆体を合成して、それぞれの前駆体を鈴木カップリングやStilleカップリング等のクロスカップリング反応させることにより合成することができる。
 以下に、式(1)で表される繰り返し単位の好ましい具体例を示すが、本発明は以下の例示により限定されるものではない。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
<特定低分子化合物(化合物Y)>
 本発明の有機半導体組成物は、特定低分子化合物を含有する。特定低分子化合物は、上述した通り、下記式(2)で表される化合物Yである。
 特定低分子化合物は、有機半導体化合物の一種であり、キャリア輸送性を有する。
Figure JPOXMLDOC01-appb-C000025
 式(2)中、A、BおよびCは、それぞれ独立に、ベンゼン環、6員の複素環、5員の複素環及びシクロペンタジエン環から選択される環構造を示す。隣接する環同士は、互いに縮環している。
 ここで、隣接する環同士が互いに縮環しているとは、環構造を形成している一部の結合が、隣にある他方の環構造の一部を形成している状態にあることを意味する。上記式(2)においては、隣接するAとBとが互いに縮環しており、隣接するA同士が互いに縮環しており、隣接するAとCとが互いに縮環している。
 上記5員の複素環および6員の複素環に含まれるヘテロ原子としては、O原子、S原子Se原子、N原子、P原子、B原子、および、Si原子などが挙げられる。環内に含まれるヘテロ原子数としては、1以上であれば特に限定されるものではない。
 nは、2~8の整数を示すが、2~6の整数であることが好ましく、2~4の整数であることがより好ましく、2~3の整数であることがさらに好ましく、3であることが特に好ましい。特に、nが3であることで、有機薄膜トランジスタの耐熱性がより向上する傾向にある。
 複数のAは、それぞれ同一でも異なっていてもよいが、複数のAのうち少なくとも1つは、5員の複素環である。
 Aを構成する環としては、それぞれ独立に、ベンゼン環、6員の複素環、5員の複素環及びシクロペンタジエン環から選択される環構造であるが、ベンゼン環、チオフェン環、セレノフェン環、または、シクロペンタジエン環であることが好ましく、ベンゼン環、チオフェン環、または、セレノフェン環であることがより好ましく、ベンゼン環、または、チオフェン環であることがさらに好ましい。これらの各環は置換基を有していてもよい。
 複数のAから構成される縮合環は、少なくとも1つのベンゼン環と、少なくとも1つの5員環(好ましくは、チオフェン環)と、を含むことが好ましい。これにより、有機薄膜トランジスタの閾値電圧およびヒステリシス特性がより優れたものとなる傾向にある。
 複数のAを表す環構造は、それぞれ独立に、置換基を有していてもよい。この置換基としては、後述するRおよびRと同様である。
 Bを構成する環としては、ベンゼン環、6員の複素環、5員の複素環及びシクロペンタジエン環から選択される環構造であるが、ベンゼン環、チオフェン環、セレノフェン環、または、シクロペンタジエン環であることが好ましく、ベンゼン環、チオフェン環、または、セレノフェン環であることがより好ましく、ベンゼン環、または、チオフェン環であることがさらに好ましく、チオフェン環であることが特に好ましい。Bを構成する環がチオフェン環であることで、有機薄膜トランジスタの閾値電圧およびヒステリシス特性がより優れたものとなる傾向にある。
 Cを構成する環としては、ベンゼン環、6員の複素環、5員の複素環及びシクロペンタジエン環から選択される環構造であるが、ベンゼン環、チオフェン環、セレノフェン環、または、シクロペンタジエン環であることが好ましく、ベンゼン環、チオフェン環、または、セレノフェン環であることがより好ましく、ベンゼン環、または、チオフェン環であることがさらに好ましく、チオフェン環であることが特に好ましい。Cを構成する環がチオフェン環であることで、有機薄膜トランジスタの閾値電圧およびヒステリシス特性がより優れたものとなる傾向にある。
 RおよびRは、それぞれ独立に、-O-、-S-、および、-NR-のうち少なくとも1つを含んでいてもよい飽和炭化水素基、-O-、-S-、および、-NR-のうち少なくとも1つを含んでいてもよい不飽和炭化水素基、アリール基、ヘテロアリール基、アルコキシ基、アミノ基、カルボニル基、エステル基、ニトロ基、ヒドロキシ基、シアノ基、アリールアルキル基、ヘテロアリールアルキル基、アリールオキシ基、ヘテロアリールオキシ基、アルキルシリル基およびハロゲン原子からなる群より選択される1価の基を示す。
 Rはそれぞれ独立に、水素原子または置換基を表す。Rはそれぞれ独立に、水素原子または置換基を表す。RおよびRにおける置換基は、上述のR1SおよびR2Sにおける置換基と同義である。
 これらの1価の基は、さらに置換基によって置換されていてもよく、この置換基としては、RおよびRで表される基が挙げられる。
 RおよびRにおける飽和炭化水素基としては、炭素数が1~20であるものが好ましく、1~16であるものがより好ましい。また、この飽和炭化水素基は、直鎖状でもよく、分岐鎖状でもよい。このような飽和炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノナニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、および、n-エイコサニル基等が挙げられる。
 RおよびRにおける不飽和炭化水素基としては、炭素数が1~20であるものが好ましく、1~16であるものがより好ましい。この不飽和炭化水素基は、直鎖状であっても分岐鎖状であってもよい。このような不飽和炭化水素基としては、例えば、ビニル基、1-プロペニル基、アリル基、プロパルギル基、イソプロペニル基、1-ブテニル基、および、2-ブテニル基等が挙げられる。化学的安定性の観点からは、不飽和炭化水素基として、その鎖中に、2重結合または3重結合のユニット数が1つであるものが好ましい。
 RおよびRにおけるアルコキシ基としては、アルコキシ基の炭素数が1~20であるものが好ましく、1~16であるものがより好ましい。アルコキシ基は、直鎖状、または、分岐鎖状のいずれであってもよい。
 RおよびRにおけるアリール基としては、炭素数が6~60である芳香族炭化水素基が好ましく、炭素数が6~20である芳香族炭化水素基がより好ましい。芳香族炭化水素基としては、例えば、ベンゼン環、フルオレン環、ナフタレン環、および、アントラセン環等が挙げられる。
 RおよびRにおけるヘテロアリール基としては、炭素数4~60の芳香族複素環基が好ましく、炭素数4~20の芳香族複素環基がより好ましい。ここで、芳香族複素環基を構成する複素環とは、炭素からなる環状構造のうちの少なくとも1つの炭素原子が、酸素原子、硫黄原子、セレン原子、窒素原子、リン原子、ホウ素原子、または、ケイ素原子等のヘテロ原子によって置換されており、かつこの環状構造が芳香族性を有している構造を有するものである。この複素環としては、例えば、チオフェン環、セレノフェン環、フラン環等が挙げられる。
 RおよびRにおけるアリールアルキル基またはアリールオキシ基としては、アリール部分が芳香族炭化水素基によって構成され、この部分の炭素数が6~60であるものが好ましく、6~20であるものがより好ましい。また、アリールアルキル基におけるアルキル部分は、その部分の炭素数が1~20であると好ましく、1~10であるとより好ましい。
 RおよびRにおけるヘテロアリールアルキル基またはヘテロアリールオキシ基としては、そのヘテロアリール部分が芳香族複素環基によって構成され、その部分の炭素数が4~60であるものが好ましく、4~20であるものがより好ましい。また、ヘテロアリールアルキル基におけるアルキル部分は、その部分の炭素数が1~20であると好ましく、1~10であるとより好ましい。
 RおよびRにおけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 RおよびRにおけるアミノ基としては、-NH、アルキルアミノ基(モノアルキルアミノ基、ジアルキルアミノ基)などが挙げられる。アルキルアミノ基である場合の炭素数としては、2~20であることが好ましく、2~16であることがより好ましい。
 RおよびRにおけるアルキルシリル基としては、例えば、モノアルキルシリル基、ジアルキルシリル基、および、トリアルキルシリル基が挙げられる。アルキルシリル基である場合の炭素数としては、3~20であることが好ましく、3~16であることがより好ましい。
 RおよびRを表す1価の基の中でも、キャリア移動度がより向上するという観点から、飽和炭化水素基であることが好ましい。
 sおよびtは、それぞれ独立に、0~4の整数を示すが、1~3であることが好ましく、1~2であることがより好ましく、1であることがさらに好ましい。
 sまたはtが2以上である場合には、複数のRまたは複数のRは、それぞれ同一でも異なっていてもよい。
(特定低分子化合物の好適態様A)
 特定低分子化合物は、式(2A)で表される構造を部分構造として有することが好ましい。これにより、得られる有機薄膜トランジスタの閾値電圧およびヒステリシス特性がより優れたものとなる。
Figure JPOXMLDOC01-appb-C000026
 R21~R26は、それぞれ独立に、水素原子または置換基を表す。R21~R26における隣接する基同士は、互いに結合して芳香族炭化水素環または芳香族複素環を形成していてもよい。この場合、芳香族炭化水素環または芳香族複素環は、さらに芳香族炭化水素環または芳香族複素環で縮環されていてもよい。
 ただし、R21~R24における隣接する基同士のうち少なくとも1組は、互いに結合して芳香族炭化水素環または芳香族複素環を形成する。
 R21~R26における置換基としては、上述した式(2)のRおよびRを表す1価の基と同様であり、好ましい態様も同様であるので、その説明を省略する。
 R21~R26における隣接する基同士が互いに結合して形成する芳香族炭化水素環としては、ベンゼン環などが挙げられる。
 R21~R26における隣接する基同士が互いに結合して形成する芳香族複素環としては、チオフェン環、セレノフェン環などが挙げられる。
 R21~R26における隣接する基同士が互いに結合して芳香族炭化水素環または芳香族複素環を形成するとは、具体的には、R21とR22、R22とR23、R23とR24、R24とR25、R25とR26のうち、少なくとも1組が芳香族炭化水素環または芳香族複素環を形成している状態のことをいう。
 また、R21~R24における隣接する基同士のうち少なくとも1組が互いに結合して芳香族炭化水素環または芳香族複素環を形成するとは、R21とR22、R22とR23、R23とR24のうち、少なくとも1組が芳香族炭化水素環または芳香族複素環を形成している状態のことをいう。
 R21~R24のうち、R22とR23が互いに結合して芳香族炭化水素環または芳香族複素環を形成することが好ましい。
 R24~R26においては、R25とR26が互いに結合して芳香族炭化水素環または芳香族複素環を形成することが好ましい。
 より好ましくは、R22とR23が互いに結合して芳香族炭化水素環または芳香族複素環を形成し、かつ、R25とR26が互いに結合して芳香族炭化水素環または芳香族複素環を形成する態様である。このとき、R21およびR24は、それぞれ独立に、水素原子または置換基であることが好ましい。これにより、得られる有機薄膜トランジスタの閾値電圧およびヒステリシス特性がより優れたものとなる。
 R21~R26における隣接する基同士が互いに結合して芳香族炭化水素環または芳香族複素環を形成する場合には、芳香族炭化水素環または芳香族複素環は、さらに芳香族炭化水素環または芳香族複素環(好ましくは芳香族複素環)で縮環されていてもよい。
 R21~R26において形成された環と縮環する環(すなわち、芳香族炭化水素環または芳香族複素環)は、置換基を有していてもよく、この場合の置換基としては、RおよびRを表す1価の基と同様であり、好ましい態様も同様である。
(特定低分子化合物の好適態様B)
 特定低分子化合物は、式(2B)で表される化合物であることが好ましい。これにより、得られる有機薄膜トランジスタの閾値電圧およびヒステリシス特性がより優れたものとなる。
Figure JPOXMLDOC01-appb-C000027
 式(2B)中、A1、A2、A3、B1およびC1は、それぞれ独立に、ベンゼン環またはチオフェン環を示し、隣接する環同士は、互いに縮環している。ただし、A1、A2、A3、B1およびC1のうち、2~4つの環がチオフェン環であり、かつ、チオフェン環以外の環がベンゼン環である。ただし、A1、A2およびA3のうち少なくとも1つは、チオフェン環である。
 ここで、A1、A2、A3、B1およびC1において隣接する基同士が互いに縮環しているとは、B1とA1、A1とA2、A2とA3、A3とC1のそれぞれが縮環していることを指す。
 A1、A2、A3、B1およびC1のうち、チオフェン環の数は2~4つであるが、3~4つであることが好ましい。これにより、得られる有機薄膜トランジスタの閾値電圧およびヒステリシス特性がより優れたものとなる。
 A1、A2、A3、B1およびC1のうち、チオフェン環同士の連結数が2つ以下であることが好ましい。これにより、得られる有機薄膜トランジスタの閾値電圧およびヒステリシス特性がより優れたものとなる。
 ここで、チオフェン環同士の連結数とは、縮合して連結しているチオフェン環の環数のことをいう。具体的には、下記式(2B-1)で表される化合物はチオフェン環同士の連結数が2つであり(式(2B-1)における丸印内)、下記式(2B-2)で表される化合物はチオフェン環同士の連結数が3つである(式(2B-2)における丸印内)。
 式(2B)で表される化合物のより好適な態様としては、式(2B)中のA1、A2、A3、B1およびC1において、3~4つの環がチオフェン環であり、かつ、チオフェン環同士の連結数が2つ以下である。これにより、得られる有機薄膜トランジスタの閾値電圧およびヒステリシス特性がより一層優れたものとなる。
Figure JPOXMLDOC01-appb-C000028
 式(2B)中のRおよびRは、上述した式(2)中のRおよびRと同義であり、好ましい態様も同様である。
 式(2B)中のsおよびtは、上述した式(2)中のsおよびtと同義であり、好ましい態様も同様である。
 上述した特定低分子化合物の具体例を以下に示す。
-式O-4で表される化合物-
Figure JPOXMLDOC01-appb-C000029
 式O-4中、X4a及びX4bはそれぞれ独立に、O原子、S原子、Se原子またはNR4nを表し、4p及び4qはそれぞれ独立に、0~2の整数を表し、R4a~R4k、R4m及びR4nはそれぞれ独立に、水素原子または置換基を表す。置換基としては、後述の置換基Xが挙げられる。
 X4a及びX4bはそれぞれ独立に、O原子又はS原子であることが好ましく、X4a及びX4bのうち少なくとも1つがS原子であることが、移動度を高める観点からより好ましい。X4a及びX4bは、同じ連結基であることが好ましい。X4a及びX4bはいずれもS原子であることが特に好ましい。
 式O-4中、4p及び4qはそれぞれ独立に、0~2の整数を表す。4p及び4qがそれぞれ独立に、0又は1であることが移動度と溶解性を両立する観点から好ましく、4p=4q=0又は4p=4q=1であることがより好ましい。
 式O-4で表される化合物中、R4a~R4k及びR4mのうち、後述の式Wで表される基は、1~4個であることが、移動度を高め、有機溶媒への溶解性を高める観点から好ましく、1又は2個であることがより好ましく、2個であることが特に好ましい。
 R4a~R4k及びR4mのうち、式Wで表される基の位置に特に制限はない。その中でも、本発明では、式O-4中、R4a、R4d~R4g、R4j、R4k及びR4mがそれぞれ独立に、水素原子又はハロゲン原子であり、R4b、R4c、R4h及びR4iがそれぞれ独立に、水素原子、ハロゲン原子又は式Wで表される基であり、かつ、R4b、R4c、R4h及びR4iのうち少なくとも1つは式Wで表される基であることが、移動度を高め、有機溶媒への溶解性を高める観点から好ましい。
 本発明では、R4a、R4c~R4h及びR4jがそれぞれ独立に、水素原子又はハロゲン原子を表し、R4b及びR4iがそれぞれ独立に、水素原子、ハロゲン原子又は式Wで表される基であり、かつ、少なくとも1つは式Wで表される基であることがより好ましい。
 本発明では、R4b及びR4iがともに式Wで表される基であり、かつR4c及びR4hがともに水素原子又はハロゲン原子であるか、R4c及びR4hがともに式Wで表される基であり、かつR4b及びR4iがともに水素原子又はハロゲン原子であることが更に好ましい。
 本発明では、R4b及びR4iがともに式Wで表される基であり、かつR4c及びR4hがともに水素原子又はハロゲン原子であるか、R4c及びR4hがともに式Wで表される基であり、かつR4b及びR4iがともに水素原子又はハロゲン原子であることが特に好ましい。
 式O-4において、2以上のR4a~R4k及びR4mは互いに結合して環を形成してもよく、互いに結合して環を形成しなくてもよいが、互いに結合して環を形成しない方が好ましい。
 置換基の種類は特に制限されないが、以下に説明する置換基Xが挙げられる。置換基Xとしては、後述の式Wで表される基、ハロゲン原子、アルキル基(シクロアルキル基、ビシクロアルキル基、トリシクロアルキル基を含む。)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む。)、アルキニル基、アリール基、複素環基(ヘテロ環基といってもよい。)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む。)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル及びアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル及びアリールスルフィニル基、アルキル及びアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール及びヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH)2)、ホスファト基(-OPO(OH)2)、ならびに、スルファト基(-OSO3H)が挙げられる。上記置換基Xはさらに置換基を有してもよい。
 置換基は、後述の式Wで表される置換基であることが好ましい。
  -LW-RW   (W)
 式W中、LWは下記式L-1~式L-25のいずれかで表される二価の連結基又は2以上の下記式L-1~L-25のいずれかで表される二価の連結基が結合した二価の連結基を表し、RWはアルキル基、シアノ基、ビニル基、エチニル基、オキシエチレン基、オキシエチレン単位の繰り返し数vが2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、又は、トリアルキルシリル基を表す。
Figure JPOXMLDOC01-appb-C000030
 式L-1~式L-25中、*はRWとの結合位置を表し、波線部分はもう一方の結合位置を表し、式L-1、式L-2、式L-6及び式L-13~式L-24におけるR’およびはそれぞれ独立に、水素原子又は置換基を表し、RNは水素原子又は置換基を表し、Rsiはそれぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基又はアリール基を表す。
-式O-6で表される化合物-
Figure JPOXMLDOC01-appb-C000031
 式O-6中、X6a~X6dはそれぞれ独立に、S原子、O原子、Se原子又はNR6gを表し、R6a~R6gはそれぞれ独立に、水素原子又は置換基を表す。置換基としては、前述の置換基Xが挙げられる。
 X6a~X6dはそれぞれ独立に、O原子又はS原子であることが合成容易性の観点から好ましい。一方、X6a~X6dのうち少なくとも1つがS原子であることが、移動度を高める観点から好ましい。X6a~X6dは、同じ連結基であることが好ましい。X6a~X6dはいずれもS原子であることがより好ましい。
 R6gは水素原子、アルキル基、アルケニル基、アルキニル基、アシル基、アリール基又はヘテロアリール基が好ましく、水素原子、アルキル基、アルケニル基、アルキニル基又はアシル基であることがより好ましく、水素原子又はアルキル基であることが更に好ましく、炭素数1~14のアルキル基であることが特に好ましく、炭素数1~4のアルキル基であることが最も好ましい。
 R6gがアルキル基を表す場合、直鎖アルキル基でも、分枝アルキル基でも、環状アルキル基でもよいが、直鎖アルキル基であることが、分子の直線性が高まり、移動度を高めることができる観点から好ましい。
 式O-6中、R6a~R6fがそれぞれ独立にとりうる置換基として、アルキル基、アリール基、アルケニル基、アルキニル基、複素環基、アルコキシ基、又は、アルキルチオ基、式Wで表される基が好ましく、炭素数1~12のアルキル基、炭素数6~20のアリール基、炭素数2~12のアルケニル基、炭素数2~12のアルキニル基、炭素数1~11のアルコキシ基、炭素数5~12の複素環基、炭素数1~12のアルキルチオ基、又は、式Wで表される基がより好ましく、後述の連結基鎖長が3.7Å以下の基、又は、式Wで表される基が更に好ましく、式Wで表される基が特に好ましい。
 本発明において、連結基鎖長とは、C(炭素原子)-R結合におけるC原子から置換基Rの末端までの長さのことを指す。構造最適化計算は、密度汎関数法(Gaussian03(米ガウシアン社)/基底関数:6-31G*、交換相関汎関数:B3LYP/LANL2DZ)を用いて行うことができる。なお、代表的な置換基の分子長としては、プロピル基は4.6Å、ピロール基は4.6Å、プロピニル基は4.5Å、プロペニル基は4.6Å、エトキシ基は4.5Å、メチルチオ基は3.7Å、エテニル基は3.4Å、エチル基は3.5Å、エチニル基は3.6Å、メトキシ基は3.3Å、メチル基は2.1Å、水素原子は1.0Åである。
 式O-6で表される化合物中、R6a~R6fのうち、式Wで表される基は、1~4個であることが、移動度を高め、有機溶媒への溶解性を高める観点から好ましく、1又は2個であることがより好ましく、2個であることが特に好ましい。
 R6a~R6fのうち、式Wで表される基の位置に特に制限はないが、R6c~R6fであることが好ましく、R6e又はR6fであることが、移動度を高め、有機溶媒への溶解性を高める観点からより好ましい。
 R6a~R6fのうち、式Wで表される基以外の置換基は、0~4個であることが好ましく、0~2個であることがより好ましく、0又は1個であることが更に好ましく、0個であることが特に好ましい。
 R6a~R6fが式Wで表される基以外の置換基である場合の置換基は、連結基鎖長が3.7Å以下の基であることが好ましく、連結基鎖長が1.0~3.7Åの基であることがより好ましく、連結基鎖長が1.0~2.1Åの基であることが更に好ましい。連結基鎖長の定義は、上述の通りである。
 R6a~R6fが式Wで表される基以外の置換基である場合の置換基はそれぞれ独立に、炭素数2以下の置換若しくは無置換のアルキル基、炭素数2以下の置換若しくは無置換のアルキニル基、炭素数2以下の置換若しくは無置換のアルケニル基、又は、炭素数2以下の置換若しくは無置換のアシル基であることが好ましく、炭素数2以下の置換又は無置換のアルキル基であることがより好ましい。
 R6a~R6fが式Wで表される基以外の置換基である場合の置換基がそれぞれ独立に炭素数2以下の置換アルキル基を表す場合、アルキル基がとりうる置換基としては、シアノ基、フッ素原子、重水素原子などを挙げることができ、シアノ基が好ましい。式Wで表される基以外の置換基である場合の置換基が表す炭素数2以下の置換又は無置換のアルキル基としては、メチル基、エチル基、又は、シアノ基置換のメチル基が好ましく、メチル基又はシアノ基置換のメチル基がより好ましく、シアノ基置換のメチル基が特に好ましい。
 R6a~R6fが式Wで表される基以外の置換基である場合の置換基がそれぞれ独立に炭素数2以下の置換アルキニル基を表す場合、アルキニル基がとりうる置換基としては、重水素原子などを挙げることができる。式Wで表される基以外の置換基である場合の置換基が表す炭素数2以下の置換又は無置換のアルキニル基としては、エチニル基、重水素原子置換のアセチレン基を挙げることができ、エチニル基が好ましい。
 R6a~R6fが式Wで表される基以外の置換基である場合の置換基がそれぞれ独立に炭素数2以下の置換アルケニル基を表す場合、アルケニル基がとりうる置換基としては、重水素原子などを挙げることができる。式Wで表される基以外の置換基である場合の置換基が表す炭素数2以下の置換又は無置換のアルケニル基としては、エテニル基、重水素原子置換のエテニル基を挙げることができ、エテニル基が好ましい。
 R6a~R6fが式Wで表される基以外の置換基である場合の置換基がそれぞれ独立に炭素数2以下の置換アシル基を表す場合、アシル基がとりうる置換基としては、フッ素原子などを挙げることができる。式Wで表される基以外の置換基である場合の置換基が表す炭素数2以下の置換又は無置換のアシル基としては、ホルミル基、アセチル基、フッ素置換のアセチル基を挙げることができ、ホルミル基が好ましい。
 式O-6で表される化合物は、下記式O-6A又は式O-6Bで表される化合物であることが好ましく、高移動度の観点からは、式O-6Aで表される化合物であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000032
 式O-6A中、X6a~X6dはそれぞれ独立に、O原子又はS原子を表し、R6a~R6c、R6A及びR6eはそれぞれ独立に、水素原子又は置換基を表し、R6a~R6c、R6A及びR6eは、式Wで表される基ではなく、RWは炭素数5~19のアルキル基を表し、LWは上記式L-1~式L-25のいずれかで表される二価の連結基又は2以上の上記式L-1~式L-25のいずれかで表される二価の連結基が結合した二価の連結基を表す。
 式O-6B中、X6a~X6dはそれぞれ独立に、O原子又はS原子を表し、R6a、R6b、R6B及びR6Cはそれぞれ独立に、水素原子又は置換基を表し、RWはそれぞれ独立に、炭素数5~19のアルキル基を表し、LWはそれぞれ独立に、上記式L-1~式L-25のいずれかで表される二価の連結基又は2以上の上記式L-1~式L-25のいずれかで表される二価の連結基が結合した二価の連結基を表す。
 なお、上記置換基としては、上述した置換基が挙げられる。
-式O-7で表される化合物-
Figure JPOXMLDOC01-appb-C000033
 式O-7中、X7a~X7dはそれぞれ独立に、S原子、O原子、Se原子又はNR7iを表し、R7a~R7iはそれぞれ独立に、水素原子又は置換基を表す。置換基としては、前述の置換基Xが挙げられる。
 X7a~X7dはそれぞれ独立に、O原子又はS原子であることが合成容易性の観点から好ましい。一方、X7a~X7dのうち少なくとも1つがS原子であることが、移動度を高める観点から好ましい。X7a~X7dは、同じ連結基であることが好ましい。X7a~X7dはいずれもS原子であることがより好ましい。
 式O-7中、R7a~R7iで表される置換基としては、上述した置換基Xが挙げられる。また、式Wで表される基の定義は、上述の通りである。
 なお、R7iは、水素原子又はアルキル基であることが好ましく、炭素数5~12のアルキル基であることがより好ましく、炭素数8~10のアルキル基であることが特に好ましい。
 R7iがアルキル基を表す場合、直鎖のアルキル基でも、分枝アルキル基でも、環状アルキル基でもよいが、直鎖のアルキル基であることが、HOMO軌道の重なりの観点から好ましい。
 式O-7で表される化合物中、R7a~R7iのうち、式Wで表される置換基は、1~4個であることが、移動度を高め、有機溶媒への溶解性を高める観点から好ましく、1又は2個であることがより好ましく、2個であることが特に好ましい。
 R7a~R7iのうち、式Wで表される基の位置に特に制限はないが、R7d又はR7hであることが、移動度を高め、有機溶媒への溶解性を高める観点から好ましく、R7d及びR7hがより好ましい。
 式O-7のR7a~R7iのうち、式Wで表される基以外の置換基は、0~4個であることが好ましく、0~2個であることがより好ましく、0又は1個であることが更に好ましく、0個であることが特に好ましい。
 R7a~R7iが式Wで表される基以外の置換基である場合の置換基は、連結基鎖長が3.7Å以下の基であることが好ましく、連結基鎖長が1.0~3.7Åの基であることがより好ましく、連結基鎖長が1.0~2.1Åの基であることが更に好ましい。連結基鎖長の定義は、上述の通りである。
 R7a~R7iが式Wで表される基以外の置換基である場合の置換基はそれぞれ独立に、炭素数2以下の置換若しくは無置換のアルキル基、炭素数2以下の置換若しくは無置換のアルキニル基、炭素数2以下の置換若しくは無置換のアルケニル基、又は、炭素数2以下の置換若しくは無置換のアシル基であることが好ましく、炭素数2以下の置換又は無置換のアルキル基であることがより好ましい。
 R7a~R7iが式Wで表される基以外の置換基である場合の置換基がそれぞれ独立に炭素数2以下の置換アルキル基を表す場合、アルキル基がとりうる置換基としては、シアノ基、フッ素原子、重水素原子などを挙げることができ、シアノ基が好ましい。式Wで表される基以外の置換基である場合の置換基が表す炭素数2以下の置換又は無置換のアルキル基としては、メチル基、エチル基、又は、シアノ基置換のメチル基が好ましく、メチル基又はシアノ基置換のメチル基がより好ましく、シアノ基置換のメチル基が特に好ましい。
 R7a~R7iが式Wで表される基以外の置換基である場合の置換基がそれぞれ独立に炭素数2以下の置換アルキニル基を表す場合、アルキニル基がとりうる置換基としては、重水素原子などを挙げることができる。式Wで表される置換基以外の置換基である場合の置換基が表す炭素数2以下の置換又は無置換のアルキニル基としては、エチニル基、重水素原子置換のアセチレン基を挙げることができ、エチニル基が好ましい。
 R7a~R7iが式Wで表される基以外の置換基である場合の置換基がそれぞれ独立に炭素数2以下の置換アルケニル基を表す場合、アルケニル基がとりうる置換基としては、重水素原子などを挙げることができる。式Wで表される置換基以外の置換基である場合の置換基が表す炭素数2以下の置換又は無置換のアルケニル基としては、エテニル基、重水素原子置換のエテニル基を挙げることができ、エテニル基が好ましい。
 R7a~R7iが式Wで表される基以外の置換基である場合の置換基がそれぞれ独立に炭素数2以下の置換アシル基を表す場合、アシル基がとりうる置換基としては、フッ素原子などを挙げることができる。式Wで表される置換基以外の置換基である場合の置換基が表す炭素数2以下の置換又は無置換のアシル基としては、ホルミル基、アセチル基、フッ素置換のアセチル基を挙げることができ、ホルミル基が好ましい。
 式O-7で表される化合物は、下記式O-7A又は式O-7Bで表される化合物であることが好ましく、高移動度の観点からは、式O-7Bで表される化合物であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000034
 式O-7A中、X7a及びX7cはそれぞれ独立に、S原子、O原子、Se原子又はNR9を表し、X7b及びX7dはそれぞれ独立に、S原子、O原子又はSe原子を表し、R7a~R7g及びR7iはそれぞれ独立に、水素原子又は置換基を表し、ただし、R7dは式Wで表される基ではない。式O-7AにおけるLW及びRWの定義は、式W中の上記LWと及びRWとそれぞれ同義である。
 式O-7B中、X7a及びX7cはそれぞれ独立にS原子、O原子、Se原子又はNR7iを表し、X7b及びX7dはそれぞれ独立にS原子、O原子又はSe原子を表し、R7a~R7c、R7e~R7g及びR7iはそれぞれ独立に、水素原子又は置換基を表し、式O-7BにおけるLW及びRWの定義は、式W中の上記LWと及びRWとそれぞれ同義である。また、式O-7Bにおいて2つのLW及び2つのRWはそれぞれ同じであっても、異なっていてもよい。
-式O-8で表される化合物-
Figure JPOXMLDOC01-appb-C000035
 式O-8中、X8a~X8dはそれぞれ独立に、S原子、O原子、Se原子又はNR8iを表し、R8a~R8iはそれぞれ独立に、水素原子又は置換基を表す。置換基としては、前述の置換基Xが挙げられる。
 X8a~X8dはそれぞれ独立に、O原子又はS原子であることが合成容易性の観点から好ましい。一方、X8a~X8dのうち少なくとも1つがS原子であることが、移動度を高める観点から好ましい。X8a~X8dは、同じ連結基であることが好ましい。X8a~X8dはいずれもS原子であることがより好ましい。
 式O-8中、R8a~R8iで表される置換基としては、上述した置換基Xが挙げられる。また、式Wで表される基の定義は、上述の通りである。
 なお、R8iは、水素原子又はアルキル基であることが好ましく、炭素数5~12のアルキル基であることがより好ましく、炭素数8~10のアルキル基であることが特に好ましい。
 R8iがアルキル基を表す場合、直鎖のアルキル基でも、分枝アルキル基でも、環状アルキル基でもよいが、直鎖のアルキル基であることが、HOMO軌道の重なりの観点から好ましい。
 式O-8で表される化合物中、R8a~R8iのうち、式Wで表される置換基は、1~4個であることが、移動度を高め、有機溶媒への溶解性を高める観点から好ましく、1又は2個であることがより好ましく、2個であることが特に好ましい。
 R8a~R8iのうち、式Wで表される基の位置に特に制限はないが、R8c又はR8gであることが、移動度を高め、有機溶媒への溶解性を高める観点から好ましく、R8c及びR8gがより好ましい。
 また、式O-8のR8a~R8iのうち、式Wで表される基以外の置換基は、0~4個であることが好ましく、0~2個であることがより好ましく、0又は1個であることが更に好ましく、0個であることが特に好ましい。
 R8a~R8iが式Wで表される基以外の置換基である場合の置換基は、連結基鎖長が3.7Å以下の基であることが好ましく、連結基鎖長が1.0~3.7Åの基であることがより好ましく、連結基鎖長が1.0~2.1Åの基であることが更に好ましい。連結基鎖長の定義は、上述の通りである。
 R8a~R8iが式Wで表される基以外の置換基である場合の置換基はそれぞれ独立に、炭素数2以下の置換若しくは無置換のアルキル基、炭素数2以下の置換若しくは無置換のアルキニル基、炭素数2以下の置換若しくは無置換のアルケニル基、又は、炭素数2以下の置換若しくは無置換のアシル基であることが好ましく、炭素数2以下の置換又は無置換のアルキル基であることがより好ましい。
 R8a~R8iが式Wで表される基以外の置換基である場合の置換基がそれぞれ独立に炭素数2以下の置換アルキル基を表す場合、アルキル基がとりうる置換基としては、シアノ基、フッ素原子、重水素原子などを挙げることができ、シアノ基が好ましい。式Wで表される基以外の置換基である場合の置換基が表す炭素数2以下の置換又は無置換のアルキル基としては、メチル基、エチル基、又は、シアノ基置換のメチル基が好ましく、メチル基又はシアノ基置換のメチル基がより好ましく、シアノ基置換のメチル基が特に好ましい。
 R8a~R8iが式Wで表される基以外の置換基である場合の置換基がそれぞれ独立に炭素数2以下の置換アルキニル基を表す場合、アルキニル基がとりうる置換基としては、重水素原子などを挙げることができる。式Wで表される基以外の置換基である場合の置換基が表す炭素数2以下の置換又は無置換のアルキニル基としては、エチニル基、重水素原子置換のアセチレン基を挙げることができ、エチニル基が好ましい。
 R8a~R8iが式Wで表される基以外の置換基である場合の置換基がそれぞれ独立に炭素数2以下の置換アルケニル基を表す場合、アルケニル基がとりうる置換基としては、重水素原子などを挙げることができる。式Wで表される基以外の置換基である場合の置換基が表す炭素数2以下の置換又は無置換のアルケニル基としては、エテニル基、重水素原子置換のエテニル基を挙げることができ、エテニル基が好ましい。
 R8a~R8iが式Wで表される基以外の置換基である場合の置換基がそれぞれ独立に炭素数2以下の置換アシル基を表す場合、アシル基がとりうる置換基としては、フッ素原子などを挙げることができる。式Wで表される基以外の置換基である場合の置換基が表す炭素数2以下の置換又は無置換のアシル基としては、ホルミル基、アセチル基、フッ素置換のアセチル基を挙げることができ、ホルミル基が好ましい。
 式O-8で表される化合物は、下記式O-8A又は式O-8Bで表される化合物であることが好ましく、高移動度の観点からは、式O-8Bで表される化合物であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000036
 式O-8A中、X8a及びX8cはそれぞれ独立に、S原子、O原子、Se原子又はNR8iを表し、X8b及びX8dはそれぞれ独立に、S原子、O原子又はSe原子を表し、R8a~R8f及びR8hはそれぞれ独立に、水素原子又は置換基を表し、ただし、R8cは式Wで表される基ではない。式O-8AにおけるLW及びRWの定義は、式W中の上記LWと及びRWとそれぞれ同義である。
 式O-8B中、X8a及びX8cはそれぞれ独立にS原子、O原子、Se原子又はNR8iを表し、X8b及びX8dはそれぞれ独立にS原子、O原子又はSe原子を表し、R8a、R8b、R8d~R8f及びR8hはそれぞれ独立に水素原子又は置換基を表し、式O-8BにおけるLW及びRWの定義は、式W中の上記LWと及びRWとそれぞれ同義である。また、式O-8Bにおいて2つのLW及び2つのRWはそれぞれ同じであっても、異なっていてもよい。
-式O-9で表される化合物-
Figure JPOXMLDOC01-appb-C000037
 式O-9中、X9a及びX9bはそれぞれ独立に、S原子、O原子、Se原子又はNR9kを表し、R9c~R9kはそれぞれ独立に、水素原子又は置換基を表す。置換基としては、前述の置換基Xが挙げられる。
 X9a及びX9bは移動度の観点からS原子が好ましい。
 式O-9中、R9c、R9d及びR9g~R9jはそれぞれ独立に、水素原子、ハロゲン原子又は式Wで表される基を表すことが好ましい。中でも、R9c、R9d及びR9g~R9jは、水素原子がより好ましい。
 なお、LWとしては、式L-3、式L-5、式L-7~式L-9及び式L-12~式L-24が好ましく、式L-3、式L-5、式L-13、式L-17及び式L-18のいずれかで表される基であることがより好ましい。
 R9a~R9iのうち少なくとも1つは、式Wで表される基を表すことが好ましい。
 式O-9で表される化合物中、R9a~R9iのうち、式Wで表される置換基は、1~4個であることが、移動度を高め、有機溶媒への溶解性を高める観点から好ましく、1又は2個であることがより好ましく、2個であることが特に好ましい。
 R9a~R9iのうち、式Wで表される基の位置に特に制限はないが、R9b又はR9fであることが、移動度を高め、有機溶媒への溶解性を高める観点から好ましく、R9b及びR9fがより好ましい。
 また、式O-9のR9a~R9iのうち、式Wで表される基以外の置換基は、0~4個であることが好ましく、0~2個であることがより好ましく、0又は1個であることが特に好ましく、0個であることがより特に好ましい。
-式O-10で表される化合物-
Figure JPOXMLDOC01-appb-C000038
 式O-10中、X10a及びX10bはそれぞれ独立に、S原子、O原子、Se原子又はNR10iを表し、R10a~R10iはそれぞれ独立に、水素原子又は置換基を表す。置換基としては、前述の置換基Xが挙げられる。
 X10a及びX10bは移動度の観点からS原子であることが好ましい。
 式O-10中、R10a~R10hのうち少なくとも1つは、置換若しくは無置換のアルキル基、置換若しくは無置換のアリールチオ基、置換若しくは無置換のヘテロアリールチオ基、置換若しくは無置換のアルキルオキシカルボニル基、置換若しくは無置換のアリールオキシカルボニル基又は置換若しくは無置換のアルキルアミノ基であることが好ましい。
 式O-10のR10a~R10hは、R10b及びR10fのうち少なくとも1つが、置換若しくは無置換のアルキル基、置換若しくは無置換のアリールチオ基、置換若しくは無置換のヘテロアリールチオ基、置換若しくは無置換のアルキルオキシカルボニル基、置換若しくは無置換のアリールオキシカルボニル基又は置換若しくは無置換のアルキルアミノ基であることが好ましく、置換若しくは無置換のアルキル基、置換若しくは無置換のアリールチオ基、又は、置換若しくは無置換のヘテロアリールチオ基であることがより好ましく、R10b及びR10fのいずれもが、置換若しくは無置換のアルキル基、置換若しくは無置換のアリールチオ基、又は、置換若しくは無置換のヘテロアリールチオ基であることが更に好ましく、置換若しくは無置換のアルキル基、置換若しくは無置換のフェニルチオ基又はヘテロアリールチオ基であることが特に好ましい。
 アルキル基としては、炭素数5~20のアルキル基であることがより好ましく、炭素数8~12のアルキル基であることが特に好ましい。
 アリールチオ基としては、炭素数6~20のアリール基に硫黄原子が連結した基が好ましく、ナフチルチオ基又はフェニルチオ基がより好ましく、フェニルチオ基が特に好ましい。
 ヘテロアリールチオ基としては、3~10員環のヘテロアリール基に硫黄原子が連結した基が好ましく、5又は6員環のヘテロアリール基に硫黄原子が連結した基がより好ましく、下記群Aが特に好ましい。
Figure JPOXMLDOC01-appb-C000039
 群A中、R”及びR”Nはそれぞれ独立に、水素原子又は置換基を表す。
 群A中、R’はそれぞれ独立に、水素原子又は式Wで表される基を表すことが好ましい。
 群A中、R”Nは、置換基を表すことが好ましく、アルキル基、アリール基、又は、ヘテロアリール基がより好ましく、アルキル基、アルキル基で置換されたアリール基、又は、アルキル基で置換されたヘテロアリール基が更に好ましく、炭素数1~4のアルキル基、炭素数1~4のアルキル基で置換されたフェニル基、又は、炭素数1~4のアルキル基で置換された5員のヘテロアリール基が特に好ましい。
 アルキルオキシカルボニル基としては、炭素数1~20のアルキル基にカルボニル基が連結した基が好ましい。アルキル基の炭素数は、2~15がより好ましく、5~10が特に好ましい。
 アリールオキシカルボニル基としては、炭素数6~20のアリール基にカルボニル基が連結した基が好ましい。アリール基の炭素数は、6~15がより好ましく、8~12が特に好ましい。
 アルキルアミノ基としては、炭素数1~20のアルキル基にアミノ基が連結した基が好ましい。アルキル基の炭素数は、2~15がより好ましく、5~10が特に好ましい。
 R10a~R10hのうち、置換若しくは無置換のアリールチオ基、置換若しくは無置換のヘテロアリールチオ基、置換若しくは無置換のアルキルオキシカルボニル基、置換若しくは無置換のアリールオキシカルボニル基又は置換若しくは無置換のアルキルアミノ基以外の置換基(以下、他の置換基ともいう。)は、0~4個であることが好ましく、0~2個であることがより好ましく、0又は1個であることが特に好ましく、0個であることがより特に好ましい。
-式O-11で表される化合物-
Figure JPOXMLDOC01-appb-C000040
 式O-11中、X11a及びX11bはそれぞれ独立に、S原子、O原子、Se原子又はNR11nを表し、R11a~R11k、R11m及びR11nはそれぞれ独立に、水素原子又は置換基を表す。置換基としては、前述の置換基Xが挙げられる。
 式O-11中、X11a及びX11bのうち少なくとも1つがS原子であることが、移動度を高める観点から好ましい。X11a及びX11bは、同じ連結基であることが好ましい。X11a及びX11bはいずれもS原子であることがより好ましい。
 式O-11のR11a~R11k及びR11mは、R11c及びR11iのうち少なくとも1つが、置換若しくは無置換のアルキル基、置換若しくは無置換のアリールチオ基、置換若しくは無置換のヘテロアリールチオ基、置換若しくは無置換のアルキルオキシカルボニル基、置換若しくは無置換のアリールオキシカルボニル基又は置換若しくは無置換のアルキルアミノ基であることが好ましく、置換若しくは無置換のアルキル基であることがより好ましく、R11c及びR11iのいずれもが、置換若しくは無置換のアルキル基であることが更に好ましい。
-式O-12で表される化合物-
Figure JPOXMLDOC01-appb-C000041
 式O-12中、X12a及びX12bはそれぞれ独立に、S原子、O原子、Se原子又はNR12nを表し、R12a~R12k、R12m及びR12nはそれぞれ独立に、水素原子又は置換基を表す。置換基としては、前述の置換基Xが挙げられる。
 式O-12中、X12a及びX12bのうち少なくとも1つがS原子であることが、移動度を高める観点から好ましい。X12a及びX12bは、同じ連結基であることが好ましい。X12a及びX12bはいずれもS原子であることがより好ましい。
 式O-12のR12a~R12k及びR12mは、R12c及びR12iのうち少なくとも1つが、置換若しくは無置換のアルキル基、置換若しくは無置換のアリールチオ基、置換若しくは無置換のヘテロアリールチオ基、置換若しくは無置換のアルキルオキシカルボニル基、置換若しくは無置換のアリールオキシカルボニル基又は置換若しくは無置換のアルキルアミノ基であることが好ましく、置換若しくは無置換のアルキル基であることがより好ましく、R12c及びR12iのいずれもが、置換又は無置換のアルキル基であることが更に好ましい。
-式O-13で表される化合物-
Figure JPOXMLDOC01-appb-C000042
 式O-13中、X13a及びX13bはそれぞれ独立に、S原子、O原子、Se原子又はNR13nを表し、R13a~R13k、R13m及びR13nはそれぞれ独立に、水素原子又は置換基を表す。置換基としては、前述の置換基Xが挙げられる。
 式O-13中、X13a及びX13bのうち少なくとも1つがS原子であることが、移動度を高める観点から好ましい。X13a及びX13bは、同じ連結基であることが好ましい。X13a及びX13bはいずれもS原子であることがより好ましい。
 式O-13のR13a~R13k及びR13mは、R13c及びR13iのうち少なくとも1つが、置換若しくは無置換のアルキル基、置換若しくは無置換のアリールチオ基、置換若しくは無置換のヘテロアリールチオ基、置換若しくは無置換のアルキルオキシカルボニル基、置換若しくは無置換のアリールオキシカルボニル基又は置換若しくは無置換のアルキルアミノ基であることが好ましく、置換若しくは無置換のアルキル基であることがより好ましく、R13c及びR13iのいずれもが、置換若しくは無置換のアルキル基であることが更に好ましい。
-式O-14で表される化合物-
Figure JPOXMLDOC01-appb-C000043
 式O-14中、X14a~X14cはそれぞれ独立に、S原子、O原子、Se原子又はNR14iを表し、R14a~R14iはそれぞれ独立に、水素原子又は置換基を表す。置換基としては、前述の置換基Xが挙げられる。
 式O-14中、X14a~X14cのうち少なくとも1つがS原子であることが、移動度を高める観点から好ましい。X14a~X14cは、同じ連結基であることが好ましい。X14a~X14cはいずれもS原子であることがより好ましい。
 式O-14のR14a~R14hは、R14b及びR14gのうち少なくとも1つが、式Wで表される基であることが好ましく、R14b及びR14gのいずれもが、式Wで表される基であることがより好ましい。
-式O-15で表される化合物-
Figure JPOXMLDOC01-appb-C000044
 式O-15中、X15a~X15dはそれぞれ独立に、S原子、O原子、Se原子又はNR15gを表し、R15a~R15gはそれぞれ独立に、水素原子又は置換基を表す。置換基としては、上述した置換基Xが挙げられる。
 式O-15中、X15a~X15dのうち少なくとも1つがS原子であることが、移動度を高める観点から好ましい。X15a~X15dは、同じ連結基であることが好ましい。X15a~X15dはいずれもS原子であることがより好ましい。
 式O-15のR15a~R15fは、R15b及びR15eのうち少なくとも1つが、式Wで表される基であることが好ましく、R15b及びR15eのいずれもが、式Wで表される基であることがより好ましい。
-式O-16で表される化合物-
Figure JPOXMLDOC01-appb-C000045
 式O-16中、X16a~X16dはそれぞれ独立に、S原子、O原子、Se原子又はNR16gを表し、R16a~R16gはそれぞれ独立に、水素原子又は置換基を表す。置換基としては、上述した置換基Xが挙げられる。
 式O-16中、X16a~X16dのうち少なくとも1つがS原子であることが、移動度を高める観点から好ましい。X16a~X16dは、同じ連結基であることが好ましい。X16a~X16dはいずれもS原子であることがより好ましい。
 式O-16のR16a~R16fは、R16a及びR16dのうち少なくとも1つが、式Wで表される基であることが好ましく、R16a及びR16dのいずれもが、式Wで表される基であることがより好ましい。
 また、R16c及びR16fは、水素原子であることが好ましい。
 式O-4および式O-6~式O-16は、上記縮合多環芳香族基における縮合多環芳香環上に、アルキル基を有することが好ましく、炭素数3~20のアルキル基を有することがより好ましく、炭素数7~14のアルキル基を有することが更に好ましい。上記態様であると、得られる有機半導体の移動度及び熱安定性により優れる。
 また、式O-4および式O-6~式O-16は、上記縮合多環芳香族基における縮合多環芳香環上に、1つ以上のアルキル基を有することが好ましく、2~4つのアルキル基を有することがより好ましく、2つのアルキル基を有することが更に好ましい。上記態様であると、得られる有機半導体の移動度及び熱安定性により優れる。
 式O-4および式O-6~式O-16の合成方法は、特に制限されず、公知の方法を参照して合成できる。式O-4および式O-6~式O-16で表される化合物の合成方法としては、例えば、Journal of American Chemical Society,116, 925(1994)、Journal of Chemical Society, 221(1951)、Org.Lett.,2001,3,3471、Macromolecules,2010,43,6264、Tetrahedron,2002,58,10197、特表2012-513459号公報、特開2011-46687号公報、Journal of Chemical Research.miniprint,3,601-635(1991)、Bull.Chem.Soc.Japan,64,3682-3686(1991)、Tetrahedron Letters,45,2801-2803(2004)、欧州特許公開第2251342号明細書、欧州特許公開第2301926号明細書、欧州特許公開第2301921号明細書、韓国特許公開第10-2012-0120886号公報、J.Org.Chem.,2011,696、Org.Lett.,2001,3,3471、Macromolecules,2010,43,6264、J.Org.Chem.,2013,78,7741、Chem.Eur.J.,2013,19,3721、Bull.Chem.Soc.Jpn.,1987,60,4187、J.Am.Chem.Soc.,2011,133,5024、Chem.Eur.J.2013,19,3721、Macromolecules,2010,43,6264-6267、および、J.Am.Chem.Soc.,2012,134,16548-16550などが挙げられる。
 なお、有機半導体における移動度、閾値電圧、ヒステリシス、および、耐熱性の観点から、式O-10、式O-14および式O-16のいずれかで表される化合物が好ましく、式O-14および式O-16で表される化合物がより好ましく、式O-16で表される化合物がより好ましい。
 以下に式(2)の好ましい具体例を示すが、これらに限定されないことは言うまでもない。
Figure JPOXMLDOC01-appb-C000046
 上記特定低分子化合物は、1種単独で用いてもよいし、2種以上併用してもよい。
 特定低分子化合物の含有量は、上記特定高分子化合物100質量部に対して、100質量部以下であることが好ましく、50質量部以下であることがより好ましく、25質量部以下であることがさらに好ましく、10質量部以下であることが特に好ましい。また、下限値は、1質量部以上であることが好ましく、2量部以上であることがより好ましく、3質量部以上であることがさらに好ましい。
 特定低分子化合物の含有量が50質量部以下であることで、得られる有機薄膜トランジスタの移動度がより向上する。また、特定低分子化合物の含有量が1質量部以上であることで、特定低分子化合物による効果が良好に発揮される。
 特定低分子化合物の分子量は、2,000未満であることが好ましく、150~1500であることがより好ましく、200~600であることがさらに好ましい。
<有機溶媒>
 本発明の有機半導体組成物は、有機溶媒を含有してもよい。
 有機溶媒としては、特に限定されるものではなく、ヘキサン、オクタン、デカンなどの炭化水素系溶媒、トルエン、キシレン、メシチレン、エチルベンゼン、デカリン、1-メチルナフタレン、テトラリン、および、アニソールなどの芳香族炭化水素系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、および、シクロヘキサノンなどのケトン系溶媒、ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエンなどのハロゲン化炭化水素系溶媒、酢酸エチル、酢酸ブチル、酢酸アミル、乳酸エチルなどのエステル系溶媒、メタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、および、エチレングリコールなどのアルコール系溶媒、ブトキシベンゼン、ジブチルエーテル、テトラヒドロフラン、および、ジオキサンなどのエーテル系溶媒、N,N-ジメチルホルムアミド、および、N,N-ジメチルアセトアミド等のアミド系溶媒、1-メチル-2-ピロリドン、および、1-メチル-2-イミダゾリジノン等のイミド系溶媒、ジメチルスルホキサイドなどのスルホキシド系溶媒、ならびに、アセトニトリルなどのニトリル系溶媒などが挙げられる。
 上記有機溶媒は、1種単独で使用してもよいし、2種以上を併用してもよい。
 有機溶媒を含有する場合の含有量は、有機半導体組成物の全質量に対して、90~99.99質量%であることが好ましく、95~99.99質量%であることがより好ましく、96~99.95質量%であることがさらに好ましい。
<バインダーポリマー>
 本発明の有機半導体組成物は、バインダーポリマーを含有してもよい。バインダーポリマーの種類は特に制限されず、公知のバインダーポリマーを用いることができる。
 上記バインダーポリマーとしては、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルシンナメート、ポリ(4-ビニルフェニル)、ポリ(4-メチルスチレン)、ゴム、熱可塑性エラストマーなどが挙げられる。
 バインダーポリマーの重量平均分子量は、特に制限されないが、1,000~1,000万が好ましく、3,000~500万がより好ましく、5,000~300万がさらに好ましい。
 バインダーポリマーを含有する場合の含有量は、特定高分子化合物および特定低分子化合物の含有量の合計100質量部に対し、1~200質量部であることが好ましく、10~150質量部であることがより好ましく、20~120質量部であることがさらに好ましい。上記範囲であると、得られる有機薄膜トランジスタのキャリア移動度および耐熱性がより向上する傾向にある。
<その他の成分>
 本発明の有機半導体組成物には、上記以外のその他の成分が含まれていてもよい。
 その他の成分としては、公知の添加剤等を用いることができる。
 その他の成分の含有量は、有機半導体組成物の全質量に対して、10質量%以下であることが好ましく、5質量%以下であることが好ましく、1質量%以下であることがより好ましい。上記範囲であると、膜形成性に優れ、得られる有機薄膜トランジスタのキャリア移動度および耐熱性がより向上する傾向にある。
<調製方法>
 有機半導体組成物の調製方法は、特に制限されず、公知の方法を採用できる。例えば、有機溶媒中に所定量の特定高分子化合物および特定低分子化合物などを添加して、適宜攪拌処理を施すことにより、本発明の有機半導体組成物を得ることができる。
[有機半導体膜、有機薄膜トランジスタ、有機薄膜トランジスタの製造方法]
 本発明の有機半導体膜は、上述した有機半導体組成物から構成される。すなわち、本発明の有機半導体膜は、上述した特定高分子化合物および特定低分子化合物を含有する膜(層)である。
 本発明の有機半導体膜は、有機薄膜トランジスタに好適に使用されるが、その他の用途にも用いることができる。その他の用途としては、例えば、非発光性有機半導体デバイスが挙げられる。非発光性有機半導体デバイスとは、発光することを目的としないデバイスを意味する。このような非発光性有機半導体デバイスとしては、上述した有機薄膜トランジスタの他に、有機光電変換素子(光センサ用途の個体撮像素子、および、エネルギー変換用途の太陽電池など)、ガスセンサ、有機整流素子、有機インバータ、ならびに、情報記録素子などが挙げられる。非発光性有機半導体デバイスは、有機半導体膜をエレクトロニクス要素として機能させることが好ましい。
 以下、本発明の有機半導体膜の好適態様の一つとして、有機薄膜トランジスタに適用された場合について説明する。
 本発明の有機薄膜トランジスタは、上述した有機半導体膜(有機半導体層)を有し、さらに、ソース電極と、ドレイン電極と、ゲート電極と、を有することができる。
 本発明の有機薄膜トランジスタは、その構造は特に限定されるものでなく、例えばボトムコンタクト型(ボトムコンタクト-ボトムゲート型およびボトムコンタクト-トップゲート型)、および、トップコンタクト型(トップコンタクト-ボトムゲート型およびトップコンタクト-トップゲート型)など、いずれの構造であってもよい。
 以下、本発明の有機薄膜トランジスタの一例について、図面を参照しながら説明する。
 図1は、本発明の一実施形態に係るボトムコンタクト型の有機薄膜トランジスタ100の断面模式図である。
 図1の例では、有機薄膜トランジスタ100は、基板(基材)10と、ゲート電極20と、ゲート絶縁膜30と、ソース電極40と、ドレイン電極42と、有機半導体膜(有機半導体層)50と、封止層60と、を有する。ここで、有機半導体膜50は、上述した有機半導体組成物を使用して作製されたものである。
 以下、基板(基材)、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、有機半導体膜(有機半導体層)および封止層ならびにそれぞれの作製方法について詳述する。
(基板)
 基板は、後述するゲート電極、ソース電極、ドレイン電極などを支持する役割を果たす。
 基板の種類は特に制限されず、例えば、プラスチック基板、ガラス基板、セラミック基板などが挙げられる。なかでも、各デバイスへの適用性およびコストの観点から、ガラス基板またはプラスチック基板であることが好ましい。
(ゲート電極)
 ゲート電極の材料としては、例えば、金(Au)、銀、アルミニウム、銅、クロム、ニッケル、コバルト、チタン、白金、マグネシウム、カルシウム、バリウム、ナトリウム等の金属;InO2、SnO2、ITO(Indium Tin Oxide)等の導電性の酸化物;ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリジアセチレン等の導電性高分子;シリコン、ゲルマニウム、ガリウム砒素等の半導体;フラーレン、カーボンナノチューブ、グラファイト等の炭素材料などが挙げられる。なかでも、金属であることが好ましく、銀、アルミニウムであることがより好ましい。
 ゲート電極の厚みは特に制限されないが、20~200nmであることが好ましい。
 なお、ゲート電極は基板としても機能してもよく、その場合、上記基板はなくてもよい。
 ゲート電極を形成する方法は特に制限されないが、例えば、基板上に、電極材料を真空蒸着またはスパッタする方法、電極形成用組成物を塗布または印刷する方法などが挙げられる。また、電極をパターニングする場合のパターニング方法としては、例えば、フォトリソグラフィー法;インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷(フレキソ印刷)等の印刷法;マスク蒸着法などが挙げられる。
(ゲート絶縁膜)
 ゲート絶縁膜の材料としては、ポリメチルメタクリレート、ポリスチレン、ポリビニルフェノール、ポリイミド、ポリカーボネート、ポリエステル、ポリビニルアルコール、ポリ酢酸ビニル、ポリウレタン、ポリスルフォン、ポリベンゾキサゾール、ポリシルセスキオキサン、エポキシ樹脂、フェノール樹脂等のポリマー;二酸化珪素、酸化アルミニウム、酸化チタン等の酸化物;窒化珪素等の窒化物などが挙げられる。これらの材料のうち、有機半導体膜との相性から、ポリマーであることが好ましい。
 ゲート絶縁膜の膜厚は特に制限されないが、100~1000nmであることが好ましい。
 ゲート絶縁膜を形成する方法は特に制限されないが、例えば、ゲート電極が形成された基板上に、ゲート絶縁膜形成用組成物を塗布する方法、ゲート絶縁膜材料を蒸着またはスパッタする方法などが挙げられる。
(ソース電極、ドレイン電極)
 ソース電極およびドレイン電極の材料の具体例は、上述したゲート電極と同じである。なかでも、金属であることが好ましく、銀であることがより好ましい。
 ソース電極およびドレイン電極を形成する方法は特に制限されないが、例えば、ゲート電極とゲート絶縁膜とが形成された基板上に、電極材料を真空蒸着またはスパッタする方法、電極形成用組成物を塗布または印刷する方法などが挙げられる。パターニング方法の具体例は、上述したゲート電極と同じである。
(有機半導体膜)
 有機半導体膜は、上述した有機半導体組成物を塗布して有機半導体膜を形成する工程により得られる。より具体的には、上述した有機半導体組成物を基板上に塗布して、乾燥させることにより有機半導体膜を形成することができる。
 なお、有機半導体組成物を基板上に塗布するとは、有機半導体組成物を基板に直接付与する態様のみならず、基板上に設けられた別の層を介して基板の上方に有機半導体組成物を付与する態様も含むものとする。
 有機半導体組成物の塗布方法としては、公知の方法を用いることができ、例えば、バーコート法、スピンコート法、ナイフコート法、ドクターブレード法、インクジェット印刷法、フレキソ印刷法、グラビア印刷法、および、スクリーン印刷法が挙げられる。さらに、有機半導体組成物の塗布方法としては、特開2013-207085号公報に記載の有機半導体膜の形成方法(いわゆるギャップキャスト法)、国際公開第2014/175351号公報に記載の有機半導体薄膜の製造方法(いわゆるエッジキャスト法や連続エッジキャスト法)などが好適に用いられる。
 乾燥(乾燥処理)は、有機半導体組成物に含まれる各成分の種類により適宜最適な条件が選択され、自然乾燥であってもよいが、生産性を向上させる観点から加熱処理を行うことが好ましい。例えば、加熱温度としては30~250℃が好ましく、40~200℃がより好ましく、50~150℃がさらに好ましく、加熱時間としては10~300分が好ましく、20~180分がより好ましい。
 作製される有機半導体膜の膜厚は特に制限されないが、本発明の効果がより優れる点で、10~500nmが好ましく、20~200nmがより好ましい。
(封止層)
 本発明の有機薄膜トランジスタは、耐久性の観点から、最外層に封止層を備えるのが好ましい。封止層には公知の封止剤(封止層形成用組成物)を用いることができる。
 封止層の厚みは特に制限されないが、0.2~10μmであることが好ましい。
(その他の有機薄膜トランジスタ)
 図2は、本発明の一実施形態に係るトップコンタクト型の有機薄膜トランジスタ200を表す断面模式図である。
 図2の例では、有機薄膜トランジスタ200は、基板10と、ゲート電極20と、ゲート絶縁膜30と、ソース電極40と、ドレイン電極42と、有機半導体膜(有機半導体層)50と、封止層60を有する。ここで、有機半導体膜50は、本発明の有機半導体組成物を用いて形成されたものである。
 基板、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、有機半導体膜および封止層については上述の通りであるので、その説明を省略する。
(有機薄膜トランジスタの用途)
 上述した有機薄膜トランジスタは、例えば、電子ペーパーおよびディスプレイデバイスの画像を表示する表示部に適用することができる。電子ペーパーおよびディプレイデバイスは、公知の構造を有することができるので、その説明を省略する。
 以下、実施例を用いて、本発明について詳細に説明する。ただし、本発明はこれに限定されるものではない。
<有機半導体化合物>
 有機半導体組成物に含まれる有機半導体化合物(特定高分子化合物、特定低分子化合物、比較高分子化合物、比較低分子化合物)を以下に示す。なお、以下において、特定高分子化合物および比較高分子化合物を「高分子化合物」、特定低分子化合物および比較低分子化合物を「低分子化合物」、として略記する場合がある。
 特定高分子化合物(1)~(4)、および、(7)~(8)は、公知のD-A型π共役ポリマーの合成方法に準じて合成した。また、特定高分子化合物(5)および(6)は、以下の合成法にしたがって合成した。
 比較高分子化合物(1)はシグマアルドリッチジャパン社から購入した。比較高分子化合物(2)および(3)は特開2012-39103号公報、比較高分子化合物(4)はMacromolecules,2013,46,3887に記載の化合物である。
 また、高分子化合物の分子量について、上述した方法にしたがって測定した。
 特定低分子化合物(1)は特開2009-267372号公報、特定低分子化合物(3)は特開2012-39103号公報、比較低分子化合物(1)は特表2015-507840に記載の化合物である。また、特定低分子化合物(2)は、特表2011-526588に記載の方法を参考に合成した。TIPS-PENは、比較低分子化合物であり、シグマアルドリッチジャパン社製のTIPSペンタセン(6,13-ビス(トリイソプロピルシリルエチニル)ペンタセン)を表す。
<特定高分子化合物(5)の合成>
 特定高分子化合物(5)について以下のスキームで合成した。
Figure JPOXMLDOC01-appb-C000047
 モノマーである中間体Xは、Tetrahedron,2010,66,3173.及びOrganic Electronics,2011,12,993.を参考に合成した。
 中間体X(244mg、200mmol)、5,5’-ビス(トリメチルスタンニル)-2,2’-ビチオフェン(98.4mg、200mmol)、トリ(o-トリル)ホスフィン(9.8mg、32mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(3.7mg、4mmol)、および、脱水クロロベンゼン(17mL)を混合し、窒素雰囲気下、130℃で24時間撹拌した。反応液を室温まで冷却した後、メタノール(240mL)と濃塩酸(10mL)との混合液に注ぎ、2時間撹拌した。析出物をろ過、メタノール洗浄した後、メタノール、アセトン、酢酸エチルで順次ソックスレー抽出し、可溶性の不純物を取り除いた。続いて、クロロホルムでソックスレー抽出し、得られた溶液を減圧濃縮した後、メタノールを添加し、析出した固形分をろ過、メタノール洗浄し80℃で12時間真空乾燥することで特定高分子化合物(5)を201mg得た(収率82%)。
 ポリスチレン換算の数平均分子量は2.4×10であり、重量平均分子量は7.5×10であった。
<特定高分子化合物(6)の合成>
 特定高分子化合物(6)について以下のスキームで合成した。
Figure JPOXMLDOC01-appb-C000048
(中間体1の合成)
 4-ブロモフェノール(41.6g、240mmol)、2-オクチル-1-ドデシルブロミド(174g、480mmol)、炭酸カリウム(100g、720mmol)、および、メチルエチルケトン(480mL)を混合し、窒素雰囲気下、100℃で72時間攪拌した。反応溶液を室温まで冷却し、セライトろ過し、ヘキサンでセライトを洗浄した。ろ液を減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン)に供することで精製し、中間体1(80g)を得た。
(中間体2の合成)
 中間体1(30g、66mmol)、4-ペンチン-1-オール(18.3mL、198mmol)、ヨウ化銅(630mg、3.3mmol)、ジエチルアミン(90mL)、および、テトラキストリフェニルホスフィンパラジウム(1.9g、1.7mmol)を混合し、窒素雰囲気下、70℃で4時間攪拌した。反応溶液に酢酸エチル(200mL)を加え、セライトろ過し、不溶物を除去した。ろ液を減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=4:1~1:1)に供することで精製し、中間体2(17.5g)を得た。
(中間体3の合成)
 オートクレーブ容器中に、中間体2(5.0g、11mmol)、10wt%Pd/C(3.6g)、および、エタノール(25mL)を混合した。水素を0.9MPa充填し、30℃で4時間攪拌した。反応容器を大気下に戻し、反応溶液をセライト濾過し、テトラヒドロフランでセライトを洗浄した。ろ液を減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=4:1~2:1)に供することで精製し、中間体3(4.2g)を得た。
(中間体4の合成)
 中間体3(8.5g、18mmmol)、イミダゾール(1.5g、22mol)、トリフェニルホスフィン(5.8g、22mol)、および、ジクロロメタン(54mL)を混合し、窒素雰囲気下、0℃に冷却した。次いで、ヨウ素(5.6g、22mol)を少量ずつ加えた。反応溶液を室温まで上昇させ、1時間攪拌した。亜硫酸水素ナトリウム水溶液を加えて反応を停止させた後、分液し、水層を除去した。有機層を硫酸マグネシウム上で乾燥させ、ろ過し、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン)に供することで精製し、中間体4(8.7g)を得た。
(中間体5の合成)
 3,6-ジ(2-チエニル)-2,5-ジヒドロピロロ[3,4-c]ピロール-1,4-ジオン(1.53g,5.1mmol)、炭酸カリウム(2.1g、15.3mmol)、および、N,N-ジメチルホルムアミド(75mL)を混合し、窒素雰囲気下、100℃で1時間攪拌した。その後、中間体4(8.7g,15mmol)を加え、100℃でさらに6時間攪拌した。反応溶液を室温まで冷却し、セライトろ過し、酢酸エチルでセライトを洗浄した。ろ液を減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=19:1~9:1)に供することで精製し、中間体5(3.2g)を得た。
(中間体6の合成)
1)リチオ化剤(TMPLi)の調製
 窒素雰囲気下、2,2,6,6-テトラメチルピペリジン(2.4mL、14mmol)、および、脱水テトラヒドロフラン(13mL)を混合し、-78℃に冷却した。2.6Mのノルマルブチルリチウム ヘキサン溶液(5.2mL、13mmol)を滴下し、0℃まで昇温し、リチオ化剤(TMPLi)を調製した。
2)中間体6の調製
 窒素雰囲気下、中間体5(800mg、0.67mmol)、および、脱水テトラヒドロフラン(3.6mL)を混合し、-78℃に冷却した。上記で調製したリチオ化剤(4.1mL,4.2mmol相当)を滴下した。-78℃で1時間攪拌した後、1,2-ジブロモ-1,1,2,2-テトラクロロエタン(439mg、1.3mmol)を加えた。その後、反応溶液を室温まで昇温し、1時間攪拌した後、水を加えて、反応を停止させた。反応溶液をヘキサンで抽出した後、有機層を1Mの塩酸、ついで飽和食塩水で洗浄した。有機層を硫酸マグネシウム上で乾燥させ、ろ過し、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=19:1~9:1)に供することで精製し、中間体6(390mg)を得た。
(特定高分子化合物(6)の合成)
 中間体6(130mg、97μmol)、5,5’-ビス(トリメチルスタンニル)-2,2’-ビチオフェン(48mg、97μmol)、トリ(o-トリル)ホスフィン(2.4mg、7.7μmol)、トリス(ジベンジリデンアセトン)ジパラジウム(1.8mg、1.9μmol)、および、脱水クロロベンゼン(3mL)を混合し、窒素雰囲気下、130℃で24時間撹拌した。反応液を室温まで冷却した後、メタノール(40mL)/濃塩酸(2mL)混合液に注ぎ、2時間撹拌し、析出物をろ過、メタノール洗浄した。得られた粗生成物をメタノール、アセトン、および、ヘキサンで順次ソックスレー抽出し、可溶性の不純物を取り除いた。続いて、クロロベンゼンでソックスレー抽出し、得られた溶液を減圧濃縮した後、メタノールを添加し、析出した固形分をろ過、メタノール洗浄し80℃で12時間真空乾燥することで特定高分子化合物(6)(130mg)を得た(重量平均分子量 Mw=50000)。
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
<有機薄膜トランジスタ(OTFT)の作製>
 図1に示すボトムゲート・ボトムコンタクト型の有機薄膜トランジスタを作製した。基板10として厚さ1mmのドープシリコン基板(ゲート電極20を兼ねる)を用い、その上にゲート絶縁膜30を形成した。
 ゲート絶縁膜30は以下のように形成した。
 ポリ(4-ビニルフェノール)(日本曹達社製、商品名:VP-8000、Mn11000、分散度1.1)を6.3gと、架橋剤として2,2-ビス(3,5-ジヒドロキシメチル-4-ヒドロキシ)プロパン2.7gとを、91gの1-ブタノール/エタノール=1/1の混合溶媒に室温で完全に溶解した。この溶解液をφ0.2μmのポリテトラフルオロエチレン(PTFE)製メンブランフィルタでろ過した。得られたろ液に酸触媒としてジフェニルヨードニウムヘキサフルオロホスフェート塩0.18gを加え、基板10上に塗布し、乾燥して成膜した。その後、100℃に加熱して架橋構造を形成させ、厚さ0.7μmのゲート絶縁膜30を形成した。
 次いで、図1に示すようにソース電極40及びドレイン電極42として、くし型に配置されたクロム/金からなる電極(ゲート幅W=1mm、ゲート長L=100μm)を、マスクを用いて真空蒸着により形成した。
 続いて、下記第1表の組み合わせになるように高分子化合物4mgと低分子化合物4mgとをクロロベンゼン2mLに溶解した各有機半導体組成物を、ソース電極及びドレイン電極を覆うようにスピンコートして成膜し、窒素雰囲気下で175℃1時間アニール処理を行い、図1に示される構造の有機薄膜トランジスタを作製した。なお、図1における封止層は設けなかった。
 有機半導体層の厚さは20nm~50nmであった。
<OTFTの性能評価>
 得られた各OTFTについて、キャリア移動度、閾値電圧の絶対値、ヒステリシスの絶対値、耐熱性を下記方法により評価することで、OTFTの性能を調べた。
(キャリア移動度の評価)
 ソース電極-ドレイン電極間に-40Vの電圧を印加し、ゲート電圧を40V~-40Vの範囲で変化させ、ドレイン電流Idを表わす下記式を用いてキャリア移動度μを算出した。評価基準は以下の通りである。
  Id=(w/2L)μCi(Vg-Vth)
(式中、Lはゲート長、wはゲート幅、Ciは絶縁層の単位面積当たりの容量、Vgはゲート電圧、Vthは閾値電圧)
 「S」:0.4cm/Vs以上
 「AA」:0.3cm/Vs以上0.4cm/Vs未満
 「A」:0.2cm/Vs以上0.3cm/Vs未満
 「B」:0.2cm/Vs未満
(閾値電圧の評価)
 ソース電極-ドレイン電極間にかかる電圧を-40Vに固定し、Vgを40Vから-40Vの範囲で変化させ、閾値電圧Vth+を求め、閾値電圧の絶対値を求めた。この値の絶対値が0に近いほど、閾値電圧に優れる。
 「S」:0V以上7.5V未満
 「A」:7.5V以上15V未満
 「B」:15V以上
(ヒステリシス)
 上記と同様にソース電極-ドレイン電極間にかかる電圧を-40Vに固定し、Vgを-40Vから40Vへ変化させたときの閾値電圧Vth-を求め、上記の閾値電圧の評価で求めたVth+と、Vth-と、の差分の絶対値をヒステリシスの指標に用いた。絶対値が0に近いほど、ヒステリシスに優れる。
 「S」:0V以上3V未満
 「A」:3V以上7V未満
 「B」:7V以上
(耐熱性試験)
 製造例1で得られたOTFTについて、窒素雰囲気下、220℃1時間加熱した後、上記と同様の方法で、キャリア移動度を評価した。
 耐熱性試験におけるキャリア移動度の評価は、耐熱試験前のキャリア移動度の値に対する耐熱試験後のキャリア移動度の値[100×(耐熱試験後のキャリア移動度)/(耐熱試験前のキャリア移動度)](%)を求め、この値に基づいて以下の基準により評価した。以下の評価基準において、SまたはAであることが好ましく、Sであることがより好ましい。
 「S」:75%以上
 「A」:25%以上75%未満
 「B」:25%未満
<評価結果>
 上記評価試験の結果を第1表に示す。
Figure JPOXMLDOC01-appb-T000053
 第1表に示すように、実施例のOTFTは、高いキャリア移動度を維持しつつ、優れたヒステリシス特性をもつことが示された。また、実施例のOTFTは、閾値電圧および耐熱性にも優れていることが示された。
 実施例1~8の対比から、上記式(3)~(5)に該当する特定高分子化合物を用いて作製されたOTFT(実施例3~8)は、キャリア移動度がより優れたものになることが示された。特に、上記式(3)(より詳細には上記式(6))に該当する特定高分子化合物を用いて作製されたOTFT(実施例3~6)は、キャリア移動度がより一層優れたものになることが示された。
 また、実施例9~16の対比、実施例17~24の対比についても、実施例1~8の対比と同様の傾向がみられた。
 実施例1~8と、実施例9~16と、実施例17~24と、の対比から、上記式(2B)に該当する特定低分子化合物を用いて作製されたOTFT(実施例9~16:特定低分子化合物(2)、実施例17~24:特定低分子化合物(3))は、耐熱性がより優れたものになることが示された。さらに、上記式(2B)のA1、A2、A3、B1およびC1において、3~4つの環がチオフェン環であり、かつ、チオフェン環同士の連結数が2つである特定低分子化合物(実施例9-16:特定低分子化合物(2))を用いることで、閾値電圧およびヒステリシスがより一層優れたものになることが示された。
 また、実施例1~8と、実施例9~16と、実施例17~24と、の対比から、上記式(2A)で表される部分構造を有する特定低分子化合物を用いて作製されたOTFT(実施例9~16:特定低分子化合物(2))は、閾値電圧およびヒステリシスがより優れたものになることが示された。
 一方、比較例のOTFTは、特定低分子化合物または特定高分子化合物を用いて作製されなかったため、所望の性能が得られないことが示された。
<実施例25~27>
 第2表に示した量の高分子化合物(5)と低分子化合物(2)とを、クロロベンゼン2mLに溶解した有機半導体組成物を用いた以外は、実施例13と同様にしてOTFTを作製し(実施例25~27)、上述した方法でキャリア移動度を算出した。
 そして、実施例13のOTFTのキャリア移動度に対する、実施例25~実施例27の各キャリア移動度の比率((実施例25~27におけるキャリア移動度)/(実施例13のキャリア移動度))を求めた。
 評価結果を第2表に示す。
Figure JPOXMLDOC01-appb-T000054
 第2表に示すように、特定低分子化合物の含有量が特定高分子化合物100質量部に対して50質量部以下であることで(実施例25~28)、移動度がより優れたものになることが示された。
 なお、実施例25~28のOTFTについて、上述した閾値電圧、ヒステリシスおよび耐熱性に関する評価を行ったところ、実施例13と同様の結果であった。
 10 基板
 20 ゲート電極
 30 ゲート絶縁膜
 40 ソース電極
 42 ドレイン電極
 50有機半導体膜
 60 封止層
 100、200 有機薄膜トランジスタ

Claims (11)

  1.  分子量2000以上で、かつ、式(1)で表される繰り返し単位を有する化合物Xと、
     式(2)で表される化合物Yと、
    を含有する、有機半導体組成物。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中のAは、式(A-1)~(A-9)で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有する基であり、
     Dは、少なくとも1つのN原子、O原子、S原子、もしくはSe原子を環構造内に有する2価の芳香族複素環基、または、2環以上の縮環構造からなる2価の芳香族炭化水素基を部分構造として含む電子ドナーユニットを表す。
    Figure JPOXMLDOC01-appb-C000002
     式(A-1)~(A-9)中、Xはそれぞれ独立に、O原子、S原子、Se原子、または、NRA1を表す。
     Yはそれぞれ独立に、O原子またはS原子を表す。
     Zはそれぞれ独立に、CRA2またはN原子を表す。
     Wはそれぞれ独立に、C(RA2、NRA1、N原子、CRA2、O原子、S原子、または、Se原子を表す。
     RA1はそれぞれ独立に、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、下記式(1-1)で表される1価の基、または、他の構造との結合部位を表す。
     RA2はそれぞれ独立に、水素原子、ハロゲン原子、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、または、他の構造との結合部位を表す。
     RA3はそれぞれ独立に、水素原子または置換基を表す。
     *はそれぞれ独立に、他の構造との結合部位を表す。
    Figure JPOXMLDOC01-appb-C000003
     式(1-1)中、Arは、芳香族複素環基または炭素数5~18の芳香族炭化水素基を表す。
     Lは、-O-、-S-、および、-NR1S-のうち少なくとも1つを含んでいてもよい炭素数1~20のアルキレン基を表す。
     Lは、-O-、-S-、および、-NR2S-のうち少なくとも1つを含んでいてもよい炭素数1~100のアルキル基を表す。
     R1SおよびR2Sはそれぞれ独立に、水素原子または置換基を表す。
     lは、1~5の整数を表す。lが2以上のとき、複数のLは、互いに同一でも異なっていてもよい。
     *は、他の構造との結合部位を表す。
    Figure JPOXMLDOC01-appb-C000004
     式(2)中、A、BおよびCは、それぞれ独立に、ベンゼン環、6員の複素環、5員の複素環及びシクロペンタジエン環から選択される環構造を示す。隣接する環同士は、互いに縮環している。
     nは、2~8の整数を示す。複数のAは、それぞれ同一でも異なっていてもよいが、複数のAのうち少なくとも1つは、5員の複素環を示す。
     RおよびRは、それぞれ独立に、-O-、-S-、および、-NR-のうち少なくとも1つを含んでいてもよい飽和炭化水素基、-O-、-S-、および、-NR-のうち少なくとも1つを含んでいてもよい不飽和炭化水素基、アリール基、ヘテロアリール基、アルコキシ基、アミノ基、カルボニル基、エステル基、ニトロ基、ヒドロキシ基、シアノ基、アリールアルキル基、ヘテロアリールアルキル基、アリールオキシ基、ヘテロアリールオキシ基、アルキルシリル基およびハロゲン原子からなる群より選択される1価の基を示す。Rはそれぞれ独立に、水素原子または置換基を表す。Rはそれぞれ独立に、水素原子または置換基を表す。
     sおよびtは、それぞれ独立に、0~4の整数を示す。
  2.  前記式(1)中のDが、式(D-1)で表される構造である、請求項1に記載の有機半導体組成物。
    Figure JPOXMLDOC01-appb-C000005
     式(D-1)中、X’はそれぞれ独立に、O原子、S原子、Se原子、または、NRD1を表す。RD1はそれぞれ独立に、前記式(1-1)で表される1価の基であってもよい1価の有機基を表す。
     Zはそれぞれ独立に、N原子またはCRD2を表す。RD2はそれぞれ独立に、水素原子、または、前記式(1-1)で表される1価の基であってもよい1価の有機基を表す。
     Mは、単結合、2価の芳香族複素環基、2価の芳香族炭化水素基、アルケニレン基、アルキニレン基、または、これらを組み合わせてなる2価の基を表す。Mは、-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、または、前記式(1-1)で表される1価の基で置換されていてもよい。RD3はそれぞれ独立に、水素原子または置換基を表す。
     pおよびqはそれぞれ独立に、0~4の整数を表す。
     *はそれぞれ独立に、他の構造との結合部位を表す。
  3.  前記式(1)で表される繰り返し単位が、下記式(3)~(5)のいずれかで表される繰り返し単位である、請求項1または2に記載の有機半導体組成物。
    Figure JPOXMLDOC01-appb-C000006

     式(3)~(5)中、Xはそれぞれ独立に、O原子、S原子、Se原子、または、NRA1を表す。
     RA1はそれぞれ独立に、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、前記式(1-1)で表される1価の基、または、他の構造との結合部位を表す。
     Yはそれぞれ独立に、O原子またはS原子を表す。
     Zはそれぞれ独立に、CRA2またはN原子を表す。RA2はそれぞれ独立に、水素原子、ハロゲン原子、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、または、他の構造との結合部位を表す。
     RA3はそれぞれ独立に、水素原子または置換基を表す。
     X’はそれぞれ独立に、O、S、Se、または、NRD1を表す。RD1はそれぞれ独立に、前記式(1-1)で表される1価の基であってもよい1価の有機基を表す。
     Zはそれぞれ独立に、NまたはCRD2を表す。RD2はそれぞれ独立に、水素原子または前記式(1-1)で表される1価の基であってもよい1価の有機基を表す。
     Mは、単結合、2価の芳香族複素環基、2価の芳香族炭化水素基、アルケニレン基、アルキニレン基、または、これらを組み合わせてなる2価の基を表す。Mは、-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、または、前記式(1-1)で表される1価の基で置換されていてもよい。RD3はそれぞれ独立に、水素原子または置換基を表す。
     pおよびqはそれぞれ独立に、0~4の整数を表す。
  4.  前記式(1)で表される繰り返し単位が、式(6)で表される繰り返し単位である、請求項1~3のいずれか1項に記載の有機半導体組成物。
    Figure JPOXMLDOC01-appb-C000007
     式(6)中、RA1はそれぞれ独立に、-O-、-S-、および、-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、前記式(1-1)で表される1価の基、または、他の構造との結合部位を表す。RA3はそれぞれ独立に、水素原子または置換基を表す。
     X’はそれぞれ独立に、O、S、Se、または、NRD1を表す。RD1はそれぞれ独立に、前記式(1-1)で表される1価の基であってもよい1価の有機基を表す。
     Mは、単結合、2価の芳香族複素環基、2価の芳香族炭化水素基、アルケニレン基、アルキニレン基、または、これらを組み合わせてなる2価の基を表す。Mは、-O-、-S-、および、-NRD3-のうち少なくとも1つを含んでいてもよいアルキル基、または、前記式(1-1)で表される1価の基で置換されていてもよい。RD3はそれぞれ独立に、水素原子または置換基を表す。
     pおよびqはそれぞれ独立に、0~4の整数を表す。
  5.  前記化合物Yが、式(2A)で表される構造を部分構造として有する、請求項1~4のいずれか1項に記載の有機半導体組成物。
    Figure JPOXMLDOC01-appb-C000008
     式(2A)中、R21~R26は、それぞれ独立に、水素原子または置換基を表す。R21~R26における隣接する基同士は、互いに結合して芳香族炭化水素環または芳香族複素環を形成していてもよい。この場合、芳香族炭化水素環または芳香族複素環は、さらに芳香族炭化水素環または芳香族複素環で縮環されていてもよい。
     ただし、R21~R24における隣接する基同士のうち少なくとも1組は、互いに結合して芳香族炭化水素環または芳香族複素環を形成する。
  6.  前記化合物Yが、式(2B)で表される化合物である、請求項1~4のいずれか1項に記載の有機半導体組成物。
    Figure JPOXMLDOC01-appb-C000009
     式(2B)中、A1、A2、A3、B1およびC1は、それぞれ独立に、ベンゼン環またはチオフェン環を示し、隣接する環同士は、互いに縮環している。なお、A1、A2、A3、B1およびC1のうち、2~4つの環がチオフェン環であり、かつ、チオフェン環以外の環がベンゼン環である。ただし、A1、A2およびA3のうち少なくとも1つは、チオフェン環である。
     RおよびRは、それぞれ独立に、-O-、-S-、および、-NR-のうち少なくとも1つを含んでいてもよい飽和炭化水素基、-O-、-S-、および、-NR-のうち少なくとも1つを含んでいてもよい不飽和炭化水素基、アリール基、ヘテロアリール基、アルコキシ基、アミノ基、カルボニル基、エステル基、ニトロ基、ヒドロキシ基、シアノ基、アリールアルキル基、ヘテロアリールアルキル基、アリールオキシ基、ヘテロアリールオキシ基、アルキルシリル基およびハロゲン原子からなる群より選択される1価の基を示す。Rはそれぞれ独立に、水素原子または置換基を表す。Rはそれぞれ独立に、水素原子または置換基を表す。
     sおよびtは、それぞれ独立に、0~4の整数を示す。
  7.  前記式(2B)中のA1、A2、A3、B1およびC1において、3~4つの環がチオフェン環であり、かつ、チオフェン環同士の連結数が2つ以下である、請求項6に記載の有機半導体組成物。
  8.  前記化合物Yの含有量が、前記化合物X100質量部に対して、100質量部以下である、請求項1~7のいずれか1項に記載の有機半導体組成物。
  9.  請求項1~8のいずれか1項に記載の有機半導体組成物を用いて作製された、有機半導体膜。
  10.  請求項9に記載の有機半導体膜を有する、有機薄膜トランジスタ。
  11.  請求項1~8のいずれか1項に記載の有機半導体組成物を塗布して有機半導体膜を形成する工程を含む、有機薄膜トランジスタの製造方法。
PCT/JP2016/083856 2015-11-20 2016-11-15 有機半導体組成物、有機半導体膜、有機薄膜トランジスタおよび有機薄膜トランジスタの製造方法 WO2017086320A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16866321.9A EP3379590A4 (en) 2015-11-20 2016-11-15 Organic semiconductor composition, organic semiconductor film, organic thin film transistor and method for manufacturing organic thin film transistor
JP2017551891A JP6484724B2 (ja) 2015-11-20 2016-11-15 有機半導体組成物、有機半導体膜、有機薄膜トランジスタおよび有機薄膜トランジスタの製造方法
US15/978,639 US10902969B2 (en) 2015-11-20 2018-05-14 Organic semiconductor composition, organic semiconductor film, organic thin film transistor, and method of manufacturing organic thin film transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015227900 2015-11-20
JP2015-227900 2015-11-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/978,639 Continuation US10902969B2 (en) 2015-11-20 2018-05-14 Organic semiconductor composition, organic semiconductor film, organic thin film transistor, and method of manufacturing organic thin film transistor

Publications (1)

Publication Number Publication Date
WO2017086320A1 true WO2017086320A1 (ja) 2017-05-26

Family

ID=58718930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083856 WO2017086320A1 (ja) 2015-11-20 2016-11-15 有機半導体組成物、有機半導体膜、有機薄膜トランジスタおよび有機薄膜トランジスタの製造方法

Country Status (4)

Country Link
US (1) US10902969B2 (ja)
EP (1) EP3379590A4 (ja)
JP (1) JP6484724B2 (ja)
WO (1) WO2017086320A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3476845A4 (en) * 2016-06-27 2019-05-01 FUJIFILM Corporation ORGANIC THIN-LAYER TRANSISTOR, ORGANIC SEMICONDUCTOR LAYER, COMPOUND, ORGANIC THIN-LAYER TRANSISTOR COMPOSITION AND MANUFACTURING METHOD FOR ORGANIC THIN-LAYER TRANSISTOR
WO2019146368A1 (ja) * 2018-01-23 2019-08-01 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜、有機半導体膜の製造方法、及び、これらに用いるポリマー

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6651606B2 (ja) * 2016-03-16 2020-02-19 富士フイルム株式会社 有機半導体組成物、有機薄膜トランジスタの製造方法、及び有機薄膜トランジスタ

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007516315A (ja) 2003-10-28 2007-06-21 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 新規ジケトピロロピロールポリマー
JP2009267372A (ja) 2008-03-31 2009-11-12 Sumitomo Chemical Co Ltd 有機半導体組成物、並びに有機薄膜及びこれを備える有機薄膜素子
JP2010018790A (ja) 2008-06-13 2010-01-28 Sumitomo Chemical Co Ltd 共重合体及びそれを用いた高分子発光素子
JP2010527327A (ja) 2007-04-13 2010-08-12 エルジー・ケム・リミテッド ジオキソピロール環を含む複素環化合物およびそれを用いた有機電子素子
EP2251342A1 (en) 2008-02-13 2010-11-17 Osaka University Fused ring compound, method for producing the same, polymer, organic thin film containing the compound and/or the polymer, and organic thin film device and organic thin film transistor each comprising the organic thin film
JP2011501451A (ja) 2007-10-25 2011-01-06 ビーエーエスエフ ソシエタス・ヨーロピア 有機半導体としてのケトピロール類
JP2011046687A (ja) 2009-08-28 2011-03-10 Samsung Mobile Display Co Ltd 有機発光素子
EP2301926A1 (en) 2008-06-05 2011-03-30 Idemitsu Kosan Co., Ltd. Halogen compound, polycyclic compound, and organic electroluminescence element comprising the polycyclic compound
EP2301921A1 (en) 2008-06-05 2011-03-30 Idemitsu Kosan Co., Ltd. Polycyclic compound and organic electroluminescent device using the same
JP2011514399A (ja) 2008-02-05 2011-05-06 ビーエーエスエフ ソシエタス・ヨーロピア ナフタレン−イミド半導体ポリマー
JP2011526588A (ja) 2008-07-02 2011-10-13 ビーエーエスエフ ソシエタス・ヨーロピア ジチエノ[2,3−d:2’,3’−d]ベンゾ[1,2−b:4,5−b’]ジチオフェン系の高性能で溶液加工可能な半導体
JP2012039103A (ja) 2010-07-13 2012-02-23 Sumitomo Chemical Co Ltd 有機半導体組成物、有機薄膜及びこれを備える有機薄膜トランジスタ
JP2012513459A (ja) 2008-12-23 2012-06-14 ルミナノ カンパニー リミテッド 新規有機半導体化合物、その製造方法、及びこれを含む有機半導体組成物、有機半導体薄膜及び素子
KR20120120886A (ko) 2011-04-25 2012-11-02 (주)씨에스엘쏠라 유기발광 화합물 및 이를 이용한 유기 광소자
WO2012174561A2 (en) 2011-06-17 2012-12-20 The Regents Of The University Of California REGIOREGULAR PYRIDAL[2,1,3]THIADIAZOLE π-CONJUGATED COPOLYMERS FOR ORGANIC SEMICONDUCTORS
JP2013207085A (ja) 2012-03-28 2013-10-07 Teijin Ltd 有機半導体組成物、有機半導体膜の形成方法、有機半導体積層体、及び半導体デバイス
JP2014507488A (ja) 2010-12-17 2014-03-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 共役ポリマー
JP2014515043A (ja) 2011-03-11 2014-06-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 共役ポリマー
WO2014175351A1 (ja) 2013-04-25 2014-10-30 国立大学法人大阪大学 有機半導体薄膜の製造方法
JP2015507840A (ja) 2011-12-07 2015-03-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 有機電界効果トランジスタ
JP2015050231A (ja) * 2013-08-30 2015-03-16 富士フイルム株式会社 有機半導体デバイス、これに用いる化合物、組成物及び塗布膜
WO2015163207A1 (ja) * 2014-04-21 2015-10-29 住友化学株式会社 膜および該膜を含有する有機半導体素子
WO2015163206A1 (ja) * 2014-04-21 2015-10-29 住友化学株式会社 組成物および高分子化合物、並びに、該組成物または該高分子化合物を含有する有機半導体素子
WO2016076198A1 (ja) * 2014-11-14 2016-05-19 富士フイルム株式会社 有機半導体素子及び化合物
WO2016148169A1 (ja) * 2015-03-16 2016-09-22 富士フイルム株式会社 有機半導体素子及びその製造方法、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932344B2 (en) * 2007-09-06 2011-04-26 Xerox Corporation Diketopyrrolopyrrole-based polymers
BRPI1011853A2 (pt) * 2009-05-27 2019-09-24 Basf Se polímero, material, camada ou componente semicondutores orgânicos, dispositivo semicondutor, processos para a preparação de um dispositivo semicondutor orgânico, e de um polímero, e, uso do polímero e/ou do material, camada ou componente semicondutores orgãnicos.
RU2012134704A (ru) * 2010-09-07 2014-10-20 Ниппон Каяку Кабушики Каиша Органический полупроводниковый материал, органический полупроводниковый состав, органическая тонкая пленка, полевой транзистор и способ их получения
GB201021277D0 (en) * 2010-12-15 2011-01-26 Cambridge Display Tech Ltd Semiconductor blend
JP5990870B2 (ja) * 2011-03-29 2016-09-14 東ソー株式会社 ジチエノベンゾジチオフェン誘導体溶液及び有機半導体層
JP5845937B2 (ja) * 2012-02-01 2016-01-20 コニカミノルタ株式会社 有機光電変換素子
WO2016084730A1 (ja) * 2014-11-25 2016-06-02 富士フイルム株式会社 有機半導体素子及びその製造方法、有機半導体組成物、有機半導体膜、化合物、並びに、オリゴマー又はポリマー

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007516315A (ja) 2003-10-28 2007-06-21 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 新規ジケトピロロピロールポリマー
JP2010527327A (ja) 2007-04-13 2010-08-12 エルジー・ケム・リミテッド ジオキソピロール環を含む複素環化合物およびそれを用いた有機電子素子
JP2011501451A (ja) 2007-10-25 2011-01-06 ビーエーエスエフ ソシエタス・ヨーロピア 有機半導体としてのケトピロール類
JP2011514399A (ja) 2008-02-05 2011-05-06 ビーエーエスエフ ソシエタス・ヨーロピア ナフタレン−イミド半導体ポリマー
JP2011514913A (ja) 2008-02-05 2011-05-12 ビーエーエスエフ ソシエタス・ヨーロピア リレン−(π−受容体)コポリマーから製造される半導体材料
EP2251342A1 (en) 2008-02-13 2010-11-17 Osaka University Fused ring compound, method for producing the same, polymer, organic thin film containing the compound and/or the polymer, and organic thin film device and organic thin film transistor each comprising the organic thin film
JP2009267372A (ja) 2008-03-31 2009-11-12 Sumitomo Chemical Co Ltd 有機半導体組成物、並びに有機薄膜及びこれを備える有機薄膜素子
EP2301926A1 (en) 2008-06-05 2011-03-30 Idemitsu Kosan Co., Ltd. Halogen compound, polycyclic compound, and organic electroluminescence element comprising the polycyclic compound
EP2301921A1 (en) 2008-06-05 2011-03-30 Idemitsu Kosan Co., Ltd. Polycyclic compound and organic electroluminescent device using the same
JP2010018790A (ja) 2008-06-13 2010-01-28 Sumitomo Chemical Co Ltd 共重合体及びそれを用いた高分子発光素子
JP2011526588A (ja) 2008-07-02 2011-10-13 ビーエーエスエフ ソシエタス・ヨーロピア ジチエノ[2,3−d:2’,3’−d]ベンゾ[1,2−b:4,5−b’]ジチオフェン系の高性能で溶液加工可能な半導体
JP2012513459A (ja) 2008-12-23 2012-06-14 ルミナノ カンパニー リミテッド 新規有機半導体化合物、その製造方法、及びこれを含む有機半導体組成物、有機半導体薄膜及び素子
JP2011046687A (ja) 2009-08-28 2011-03-10 Samsung Mobile Display Co Ltd 有機発光素子
JP2012039103A (ja) 2010-07-13 2012-02-23 Sumitomo Chemical Co Ltd 有機半導体組成物、有機薄膜及びこれを備える有機薄膜トランジスタ
JP2014507488A (ja) 2010-12-17 2014-03-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 共役ポリマー
JP2014515043A (ja) 2011-03-11 2014-06-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 共役ポリマー
KR20120120886A (ko) 2011-04-25 2012-11-02 (주)씨에스엘쏠라 유기발광 화합물 및 이를 이용한 유기 광소자
WO2012174561A2 (en) 2011-06-17 2012-12-20 The Regents Of The University Of California REGIOREGULAR PYRIDAL[2,1,3]THIADIAZOLE π-CONJUGATED COPOLYMERS FOR ORGANIC SEMICONDUCTORS
JP2015507840A (ja) 2011-12-07 2015-03-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 有機電界効果トランジスタ
JP2013207085A (ja) 2012-03-28 2013-10-07 Teijin Ltd 有機半導体組成物、有機半導体膜の形成方法、有機半導体積層体、及び半導体デバイス
WO2014175351A1 (ja) 2013-04-25 2014-10-30 国立大学法人大阪大学 有機半導体薄膜の製造方法
JP2015050231A (ja) * 2013-08-30 2015-03-16 富士フイルム株式会社 有機半導体デバイス、これに用いる化合物、組成物及び塗布膜
WO2015163207A1 (ja) * 2014-04-21 2015-10-29 住友化学株式会社 膜および該膜を含有する有機半導体素子
WO2015163206A1 (ja) * 2014-04-21 2015-10-29 住友化学株式会社 組成物および高分子化合物、並びに、該組成物または該高分子化合物を含有する有機半導体素子
WO2016076198A1 (ja) * 2014-11-14 2016-05-19 富士フイルム株式会社 有機半導体素子及び化合物
WO2016148169A1 (ja) * 2015-03-16 2016-09-22 富士フイルム株式会社 有機半導体素子及びその製造方法、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
BULL. CHEM. SOC. JAPAN, vol. 64, 1991, pages 3682 - 3686
BULL. CHEM. SOC. JPN., vol. 60, 1987, pages 4187
CHEM. EUR. J., vol. 19, 2013, pages 3721
J. AM. CHEM. SOC., vol. 133, 2011, pages 5024
J. AM. CHEM. SOC., vol. 134, 2012, pages 16548 - 16550
J. ORG. CHEM., vol. 696, 2011
J. ORG. CHEM., vol. 78, 2013, pages 7741
JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 116, 1994, pages 925
JOURNAL OF CHEMICAL RESEARCH, MINIPRINT, vol. 3, 1991, pages 601 - 635
JOURNAL OF CHEMICAL SOCIETY, vol. 221, 1951
MACROMOLECULES, vol. 43, 2010, pages 6264
MACROMOLECULES, vol. 43, 2010, pages 6264 - 6267
MACROMOLECULES, vol. 46, 2013, pages 3887
ORG. LETT., vol. 3, 2001, pages 3471
ORGANIC ELECTRONICS, vol. 12, 2011, pages 993
TETRAHEDRON LETTERS, vol. 45, 2004, pages 2801 - 2803
TETRAHEDRON, vol. 58, 2002, pages 10197
TETRAHEDRON, vol. 66, 2010, pages 3173

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3476845A4 (en) * 2016-06-27 2019-05-01 FUJIFILM Corporation ORGANIC THIN-LAYER TRANSISTOR, ORGANIC SEMICONDUCTOR LAYER, COMPOUND, ORGANIC THIN-LAYER TRANSISTOR COMPOSITION AND MANUFACTURING METHOD FOR ORGANIC THIN-LAYER TRANSISTOR
US11107996B2 (en) 2016-06-27 2021-08-31 Fujifilm Corporation Organic thin film transistor, organic semiconductor film, compound, organic thin film transistor-forming composition, and method of manufacturing organic thin film transistor
WO2019146368A1 (ja) * 2018-01-23 2019-08-01 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜、有機半導体膜の製造方法、及び、これらに用いるポリマー
CN111542939A (zh) * 2018-01-23 2020-08-14 富士胶片株式会社 有机半导体元件、有机半导体组合物、有机半导体膜、有机半导体膜的制造方法及用于这些的聚合物
JPWO2019146368A1 (ja) * 2018-01-23 2020-11-26 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜、有機半導体膜の製造方法、及び、これらに用いるポリマー
US11011706B2 (en) 2018-01-23 2021-05-18 Fujifilm Corporation Organic semiconductor element, organic semiconductor composition, organic semiconductor film, method of manufacturing organic semiconductor film, and polymer using the same

Also Published As

Publication number Publication date
JP6484724B2 (ja) 2019-03-13
US10902969B2 (en) 2021-01-26
EP3379590A4 (en) 2018-12-05
JPWO2017086320A1 (ja) 2018-08-02
US20180261770A1 (en) 2018-09-13
EP3379590A1 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
WO2016148170A1 (ja) 有機半導体組成物、及び、有機半導体素子の製造方法
US10971686B2 (en) Organic semiconductor element, polymer, organic semiconductor composition, and organic semiconductor film
JP6484724B2 (ja) 有機半導体組成物、有機半導体膜、有機薄膜トランジスタおよび有機薄膜トランジスタの製造方法
JPWO2017175665A1 (ja) 有機薄膜トランジスタ素子、有機半導体膜形成用組成物、有機半導体膜の製造方法及び有機半導体膜
US10636975B2 (en) Organic semiconductor element, compound, organic semiconductor composition, and method of manufacturing organic semiconductor film
JP6709275B2 (ja) 有機半導体膜、有機半導体素子、重合体及び有機半導体組成物
JP6442057B2 (ja) 有機半導体素子、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法
JP6328535B2 (ja) 有機半導体膜形成用組成物、有機半導体膜、及び、有機半導体素子
JP6235143B2 (ja) 有機半導体膜形成用組成物、及び、有機半導体素子の製造方法
JP6573983B2 (ja) 有機半導体膜形成用組成物、化合物、有機半導体膜、有機半導体素子
JP2018164030A (ja) 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、及びこれらに用いるポリマー
JP2017054876A (ja) 有機半導体膜形成用組成物、有機半導体膜およびその製造方法、並びに有機半導体素子
JP6328790B2 (ja) 有機半導体素子及び化合物
WO2018181056A1 (ja) 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー
JP6328791B2 (ja) 有機半導体素子及び化合物
JP6328792B2 (ja) 有機半導体素子及び化合物
TWI623582B (zh) 有機膜電晶體、有機膜電晶體用化合物及其應用
JP6573840B2 (ja) 有機半導体素子、並びに、これに用いる有機半導体膜、化合物及び有機半導体組成物
JP6574052B2 (ja) 有機半導体素子、重合体、有機半導体組成物及び有機半導体膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551891

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016866321

Country of ref document: EP