WO2016084730A1 - 有機半導体素子及びその製造方法、有機半導体組成物、有機半導体膜、化合物、並びに、オリゴマー又はポリマー - Google Patents

有機半導体素子及びその製造方法、有機半導体組成物、有機半導体膜、化合物、並びに、オリゴマー又はポリマー Download PDF

Info

Publication number
WO2016084730A1
WO2016084730A1 PCT/JP2015/082667 JP2015082667W WO2016084730A1 WO 2016084730 A1 WO2016084730 A1 WO 2016084730A1 JP 2015082667 W JP2015082667 W JP 2015082667W WO 2016084730 A1 WO2016084730 A1 WO 2016084730A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
organic semiconductor
represented
divalent linking
Prior art date
Application number
PCT/JP2015/082667
Other languages
English (en)
French (fr)
Inventor
友樹 平井
健介 益居
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP15862559.0A priority Critical patent/EP3208273B1/en
Priority to JP2016561552A priority patent/JP6337141B2/ja
Publication of WO2016084730A1 publication Critical patent/WO2016084730A1/ja
Priority to US15/593,337 priority patent/US9954172B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/226Oligomers, i.e. up to 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/53Physical properties liquid-crystalline
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/64Solubility
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • the present invention relates to an organic semiconductor element and a method for producing the same, an organic semiconductor composition, an organic semiconductor film, a compound, and an oligomer or polymer.
  • organic semiconductors Lightweight, low cost, and flexible, so organic semiconductors can be used for field effect transistors (FETs) and RFID (radio frequency identifiers, RF tags) used in liquid crystal displays and organic electroluminescence (EL) displays.
  • FETs field effect transistors
  • RFID radio frequency identifiers, RF tags
  • EL organic electroluminescence
  • An organic transistor having a film semiconductor active layer is used.
  • conventional organic transistor materials those described in Patent Documents 1 and 2 are known.
  • the problem to be solved by the present invention is to provide an organic semiconductor element excellent in carrier mobility and heat resistance of a semiconductor active layer.
  • Another problem to be solved by the present invention is that an organic semiconductor composition that can form an organic semiconductor excellent in carrier mobility and heat resistance and excellent in solution process suitability, and the composition described above. It is providing the manufacturing method of the organic-semiconductor film and organic-semiconductor element using this.
  • this invention is providing the compound, oligomer, or polymer suitably used for said organic-semiconductor element, an organic-semiconductor composition, an organic-semiconductor film, and the manufacturing method of an organic-semiconductor element.
  • each X independently represents a chalcogen atom
  • p and q each independently represent an integer of 0 to 2
  • R 1 and R 2 each independently represent a halogen atom or a group represented by the following formula W
  • W Represents. -SLT (W)
  • S represents a single bond or — (C (R S ) 2 ) n —
  • each R S independently represents a hydrogen atom or a halogen atom
  • n represents an integer of 1 to 17
  • L represents A single bond
  • a divalent linking group represented by any of the following formulas L-1 to L-15, or a divalent linking group represented by any of the following formulas L-1 to L-15 is 2
  • T represents an alkyl group, a haloalkyl group, a cyano group, a vinyl group, an ethynyl group, an aryl group, a heteroaryl group, an oxyethylene group, or a repeating number of oxyethylene units of 2 or more
  • the wavy line represents the bonding position with S or another divalent linking group represented by any of formula L-1 to formula L-15
  • * represents T or Represents a bonding position to a divalent linking group represented by any of the other formulas L-1 to L-15
  • m in the formula L-13 represents an integer of 0 to 4
  • the formula L-14 and M in the formula L-15 represents an integer of 0 to 2
  • R ′ in the formula L-1 and the formula L-2 each independently represents a hydrogen atom or a substituent
  • R ′′ each independently represents a substituent.
  • X independently represents a chalcogen atom
  • R 1 ′ and R 2 ′ each independently represent a group represented by formula W.
  • p and q are synonymous with those in the above-mentioned formula 1, and represent an integer of 0 to 2, R 1 and R 2 are also synonymous, and represent a halogen atom or a group represented by the formula W.
  • ⁇ 8> The organic semiconductor element according to any one of ⁇ 1> to ⁇ 7>, wherein the total number of carbon atoms of the group represented by formula W is 2 to 40, ⁇ 9>
  • L is a divalent linking group represented by any one of the formulas L-1 to L-4 and L-13 to L-15, or the formula L-1 to the formula L-15
  • the oligomer or polymer having a constitutional repeating unit including the structure represented by Formula 3 is an oligomer or polymer in which the structure represented by Formula 3 and the structure represented by Formula Z are alternately linked.
  • an organic semiconductor element according to ⁇ 24> In the formula Z, V is a divalent linking group represented by any of the following formulas V D -1 to V D -16 and formula V A -1 to V A -11. , ⁇ 22> or ⁇ 23> an organic semiconductor element according to
  • each Y is independently a hydrogen atom, an alkyl group, Y represents an alkoxy group, CN, or a halogen atom, and Ys adjacent to each other may be bonded to form a ring, and * represents a bonding position.
  • R 1 and R 2 each independently represent a halogen atom or a group represented by the following formula W, and as described above, a group represented by the following formula W is preferable. It is excellent in the carrier mobility of the organic-semiconductor film obtained as it is the said aspect.
  • -SLT (W) S represents a single bond or — (C (R S ) 2 ) n —, and is preferably a single bond or an unsubstituted methylene group, and more preferably a single bond.
  • R S each independently represents a hydrogen atom or a halogen atom, preferably a hydrogen atom.
  • n represents an integer of 1 to 17, preferably an integer of 1 to 8, and more preferably an integer of 1 to 4.
  • the wavy line represents the bonding position with S or another divalent linking group represented by any of formula L-1 to formula L-15
  • * represents T or Represents a bonding position to a divalent linking group represented by any of the other formulas L-1 to L-15
  • m in the formula L-13 represents an integer of 0 to 4
  • the formula L-14 and M in the formula L-15 represents an integer of 0 to 2
  • R ′ in the formula L-1 and the formula L-2 each independently represents a hydrogen atom or a substituent
  • R ′′ each independently represents a substituent.
  • T is an alkyl group, a haloalkyl group, a cyano group, a vinyl group, an ethynyl group, an aryl group, a heteroaryl group, an oxyethylene group, an oligooxyethylene group having a repeating number of oxyethylene units of 2 or more, a siloxane group, and a silicon atom number. It represents two or more oligosiloxane groups or a trialkylsilyl group, preferably an alkyl group, a vinyl group or an ethynyl group, more preferably an alkyl group, and an alkyl group having 5 to 19 carbon atoms. Is more preferable, and an alkyl group having 7 to 13 carbon atoms is particularly preferable. Moreover, it is preferable that the alkyl group in T is a linear alkyl group.
  • the total number of carbon atoms is preferably 2 or more, more preferably 4 or more, still more preferably 5 or more, and particularly preferably 8 or more. It is preferably 40 or less, more preferably 30 or less, and still more preferably 20 or less. In the above embodiment, the suitability for solution process is superior, and the carrier mobility of the obtained organic semiconductor film is superior.
  • L is preferably a methylene group and T is preferably an alkyl group. That is, the group represented by the formula W is preferably an alkyl group, more preferably an alkyl group having 2 or more carbon atoms, still more preferably an alkyl group having 4 or more, and an alkyl group having 5 or more.
  • the compound represented by Formula 1 may be used individually by 1 type, and may use 2 or more types together.
  • the content of the compound represented by Formula 1 is preferably 30 to 100% by mass, and 50 to 100% by mass. More preferably, it is more preferably 70 to 100% by mass. Further, when the binder polymer described later is not contained, the total content is preferably 90 to 100% by mass, and more preferably 95 to 100% by mass.
  • the 2nd organic-semiconductor element of this invention contains the oligomer or polymer (specific polymer compound) which has a structural repeating unit containing the structure represented by the said Formula 3 in a semiconductor active layer.
  • the specific polymer compound is an organic semiconductor compound.
  • the specific polymer compound may have a constitutional repeating unit consisting only of the structure represented by Formula 3, and may have a constitutional repeating unit containing another structure in addition to the structure represented by Formula 3. There is no particular limitation.
  • X 3 represents a chalcogen atom (O atom, S atom, Se atom, Te atom), preferably an S atom or Se atom, and more preferably an S atom. It is excellent in the carrier mobility of the organic-semiconductor film obtained as it is the said aspect.
  • R 31 and R 32 each independently represent a halogen atom or a group represented by the following formula W, and is preferably a group represented by the following formula W. It is excellent in the carrier mobility of the organic-semiconductor film obtained as it is the said aspect.
  • -SLT (W) S represents a single bond or — (C (R S ) 2 ) n —, and is preferably a single bond.
  • R S each independently represents a hydrogen atom or a halogen atom, preferably a hydrogen atom.
  • n represents an integer of 1 to 17, preferably an integer of 1 to 8, and more preferably an integer of 1 to 4.
  • R 1 and R 2 are preferably the same group from the viewpoint of coating film formability and heat resistance of the organic semiconductor film to be obtained.
  • R 1 preferably has 5 to 40 carbon atoms, more preferably 8 to 20 carbon atoms.
  • R 2 preferably has 5 to 40 carbon atoms, and more preferably 8 to 20 carbon atoms.
  • L is a single bond, a divalent linking group represented by any of the following formulas L-1 to L-15, or a divalent represented by any of the following formulas L-1 to L-15 Represents a divalent linking group in which two or more linking groups are bonded.
  • the wavy line represents the bonding position with S or another divalent linking group represented by any of formula L-1 to formula L-15
  • * represents T or Represents a bonding position to a divalent linking group represented by any of the other formulas L-1 to L-15
  • m in the formula L-13 represents an integer of 0 to 4
  • the formula L-14 and M in the formula L-15 represents an integer of 0 to 2
  • R ′ in the formula L-1 and the formula L-2 each independently represents a hydrogen atom or a substituent
  • R ′′ each independently represents a substituent.
  • L represents a divalent linking group in which two or more divalent linking groups represented by any one of formulas L-1 to L-15 are bonded
  • * of one linking group is the other Combines with the wavy portion of the linking group.
  • R ′ in formula L-1 and formula L-2 is preferably a hydrogen atom, a halogen atom or an alkyl group, more preferably a hydrogen atom.
  • M in the formulas L-13 to L-15 is preferably 0 or 1, and is preferably 0.
  • R ′′ in formulas L-13 to L-15 is preferably a halogen atom, an alkyl group, an alkynyl group, an alkenyl group, an alkoxy group, an alkylthio group or an aryl group.
  • L represents a divalent linking group represented by any one of Formulas L-1 to L-4 and L-13 to L-15, or Formula L-1 to Formula L-4 and Formula L- It is preferably a divalent linking group in which two or more divalent linking groups represented by any of formulas 13 to L-15 are bonded, and is represented by formula L-1 to formula L-4 and formula L-13 to More preferably, it is a divalent linking group represented by any one of formula L-15.
  • T is an alkyl group, a haloalkyl group, a cyano group, a vinyl group, an ethynyl group, an aryl group, a heteroaryl group, an oxyethylene group, an oligooxyethylene group having a repeating number of oxyethylene units of 2 or more, a siloxane group, and a silicon atom number. It represents two or more oligosiloxane groups or a trialkylsilyl group, preferably an alkyl group, a vinyl group or an ethynyl group, more preferably an alkyl group, and an alkyl group having 5 to 19 carbon atoms. Is more preferable, and an alkyl group having 7 to 13 carbon atoms is particularly preferable. Moreover, it is preferable that the alkyl group in T is a linear alkyl group.
  • the structure represented by Formula 3 is preferably a point-symmetric structure, and more preferably point-symmetric with respect to the following point A.
  • the structure represented by Formula 3 is point-symmetric with respect to the above point A because the carrier mobility of the obtained organic semiconductor film is superior.
  • the specific polymer compound preferably further has a structure represented by the following formula Z in addition to the structure represented by the formula 3 in the structural repeating unit.
  • Ar 1 and Ar 2 each independently represent a single bond, or a vinylene group, an ethynylene group, an arylene group, a heteroarylene group, or a divalent group in which two or more of these are bonded
  • V is a single bond or Represents a divalent conjugated group having 2 to 40 carbon atoms
  • p represents 1 to 6, and when p is 2 or more, two or more Vs may be the same or different, provided that Ar 1 , All of Ar 2 and V are not single bonds at the same time.
  • R 31, R 32 and,, X 3 is, R 31, R 32 in the formula 3, and X 3 and have the same meanings and preferred ranges are also the same.
  • the Ar 1, Ar 2, V and p have the same meanings as Ar 1, Ar 2, V and p in Formula Z above, and preferred ranges are also the same.
  • the arylene group represented by Ar 1 and Ar 2 is preferably an arylene group having 6 to 20 carbon atoms, and more preferably an arylene group having 6 to 14 carbon atoms. Specifically, it is preferably a group obtained by removing two hydrogen atoms from benzene, naphthalene, anthracene, phenanthrene, triphenylene, pyrene, chrysene, tetracene, pentaphen, pentacene, etc., and two hydrogens from benzene, naphthalene, anthracene. A group excluding atoms is more preferred.
  • the hetero atom having a heteroarylene group represented by Ar 1 and Ar 2 includes a sulfur atom (S), an oxygen atom (O), a nitrogen atom (N), a selenium atom (Se), and a silicon atom (Si).
  • S sulfur atom
  • O oxygen atom
  • N nitrogen atom
  • Se selenium atom
  • Si silicon atom
  • a sulfur atom, a nitrogen atom and an oxygen atom are more preferred, a sulfur atom and a nitrogen atom are further preferred, and a sulfur atom is particularly preferred.
  • heteroarylene group examples include a group obtained by removing two hydrogen atoms from thiophene, furan, pyran, pyrrole, pyridine, pyrazine, pyrimidine, pyridazine, selenophene, imidazole, etc., and thiophene, selenophene, or It is preferably a group obtained by removing two hydrogen atoms from pyrrole, more preferably a group obtained by removing two hydrogen atoms from thiophene or furan, and further a group obtained by removing two hydrogen atoms from thiophene. preferable.
  • the arylene group and heteroarylene group represented by Ar 1 and Ar 2 may have a substituent.
  • substituents include a halogen atom and an alkyl group (preferably having 1 to 40 carbon atoms, more preferably C4-20), alkenyl groups (preferably C2-40, more preferably C4-20) and alkynyl groups (preferably C2-40, more preferably C4-20) are preferred.
  • the alkyl group, alkenyl group and alkynyl group may be further substituted with a halogen atom, an alkoxy group or the like.
  • Ar 1 and Ar 2 represent a divalent group in which two or more groups selected from the group consisting of a vinylene group, an ethynylene group, an arylene group, and a heteroarylene group are bonded, two or more of the same groups It may be a linked divalent group or a divalent group in which two or more different groups are bonded, and is not particularly limited, but is a divalent group in which two or more of the same groups are linked.
  • the divalent group is preferably a divalent group in which two or more arylene groups or heteroarylene groups are linked.
  • Ar 1 and Ar 2 are each independently a single bond, preferably a divalent linking group represented by the following formula Ar-1 or the following formula Ar-2, and represented by a single bond or the following formula Ar-1. And more preferably a divalent linking group.
  • each R ′ independently represents an alkyl group
  • p ′ represents an integer of 0 to 2
  • R ′ adjacent to each other may form a ring
  • W represents a chalcogen atom
  • l represents an integer of 1 to 4.
  • R ′′ each independently represents an alkyl group or an alkoxy group
  • q ′ represents an integer of 0 to 4
  • R ′′ adjacent to each other may form a ring
  • m is 1 to Represents an integer of 4.
  • the alkyl group represented by R ′ is preferably an alkyl group having 1 to 40 carbon atoms, and more preferably an alkyl group having 4 to 20 carbon atoms.
  • p ′ represents an integer of 0 to 2, preferably 0 or 1, and more preferably 1.
  • W represents a chalcogen atom (O atom, S atom, Se atom, Te atom), preferably an S atom or Se atom, and more preferably an S atom.
  • the alkyl group represented by R ′′ is preferably an alkyl group having 1 to 40 carbon atoms, more preferably an alkyl group having 4 to 20 carbon atoms, represented by R ′′.
  • the alkoxy group is preferably an alkoxy group having 1 to 40 carbon atoms, and more preferably an alkoxy group having 1 to 20 carbon atoms.
  • q ′ represents an integer of 0 to 4, more preferably an integer of 0 to 3, more preferably an integer of 0 to 2, and particularly preferably 0 or 1.
  • l and m represent an integer of 1 to 4, preferably an integer of 1 to 3, more preferably 1 or 2, and still more preferably 1. .
  • V represents a single bond or a divalent conjugated group having 2 to 40 carbon atoms.
  • V is preferably a divalent linking group selected from the group consisting of the following formulas V D -1 to V D -16 and formulas V A -1 to V A -11. These are all divalent conjugated groups.
  • Formula V D -1 to Formula V D -3, Formula V D -5, Formula V D -6, Formula V D -8, Formula V D -9, and Formula V D -11 to Formula V D -16 Each independently represents a hydrogen atom, a halogen atom, or an alkyl group, and Rs adjacent to each other may combine to form a ring, In formula V D -4, formula V D -7, formula V D -8, formula V D -10, formula V D -12, formula V D -13, formula V D -15, and formula V D -16 Each independently represents a hydrogen atom, a halogen atom, an alkyl group or an alkoxy group, and Zs adjacent to each other may combine to form a ring, R N in formula V D -10, formula V D -11, formula V A -3, formula V A -4, formula V A -5, and formula V A -7 to formula V A -11 are independent of each other.
  • each Y is independently a hydrogen atom, an alkyl group, Y represents an alkoxy group, CN, or a halogen atom, and Ys adjacent to each other may combine to form a ring.
  • the alkyl group represented by R an alkyl group having 1 to 40 carbon atoms is preferable, and an alkyl group having 4 to 20 carbon atoms is more preferable.
  • the alkyl group represented by Z is preferably an alkyl group having 1 to 40 carbon atoms, and more preferably an alkyl group having 1 to 20 carbon atoms.
  • the alkoxy group represented by Z is preferably an alkoxy group having 1 to 40 carbon atoms, and more preferably an alkoxy group having 1 to 20 carbon atoms.
  • Formula V D -10, wherein V D -11, wherein V A -3, Formula V A -4, wherein V A -5 and alkyl represented by formula V A -7 ⁇ formula V A -11 solution of R N As the group, an alkyl group having 1 to 40 carbon atoms is preferable, and an alkyl group having 1 to 20 carbon atoms is more preferable.
  • R N is preferably an alkyl group.
  • the alkyl group represented by Y has 1 to It is preferably an alkyl group having 40, more preferably an alkyl group having 1 to 20 carbon atoms.
  • the alkoxy group is preferably an alkoxy group having 1 to 40 carbon atoms, and more preferably an alkoxy group having 1 to 20 carbon atoms.
  • Y is preferably a hydrogen atom, a fluorine atom, or a cyano group.
  • Examples of the halogen atom represented by R, Z, R N , and Y include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a fluorine atom or a chlorine atom is preferable, and a fluorine atom is more preferable.
  • the content of the constitutional repeating unit including the structure represented by Formula 3 is preferably 60 to 100% by mass, and 80 to 100% by mass with respect to the total mass of the specific polymer compound. More preferably, it is more preferably 90 to 100% by mass, and it is particularly preferably formed only from structural repeating units substantially including the structure represented by Formula 3. In addition, that it is formed only from the structural repeating unit including the structure represented by Formula 3 means that the content of the structural repeating unit including the structure represented by Formula 3 is 95% by mass or more. It is preferably 97% by mass or more, and more preferably 99% by mass or more. When the content of the structural repeating unit including the structure represented by Formula 3 is within the above range, an organic semiconductor having excellent mobility can be obtained. As described above, the structural repeating unit including the structure represented by Formula 3 is preferably a structural repeating unit represented by Formula 3-1, and is a structural repeating unit represented by Formula 3-2. More preferably it is.
  • the number average molecular weight is preferably 2.5 million or less, more preferably 2 million or less, further preferably 1.5 million or less, particularly preferably 1 million or less, and 500,000 or less. Most preferably it is.
  • the weight average molecular weight and the number average molecular weight are measured by a gel permeation chromatography method (GPC) method and are calculated by standard polystyrene.
  • GPC uses HLC-8220GPC (manufactured by Tosoh Corporation), and TSKgeL SuperHZM-H, TSKgeL SuperHZ4000, TSKgeL SuperHZ2000 (4.6 mm ID ⁇ 15 cm, manufactured by Tosoh Corporation) are used as columns. Three are used and THF (tetrahydrofuran) is used as an eluent. As conditions, the sample concentration is 0.35% by mass, the flow rate is 0.35 ml / min, the sample injection amount is 10 ⁇ l, the measurement temperature is 40 ° C., and an IR detector is used.
  • the calibration curve is “Standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: “F-40”, “F-20”, “F-4”, “F-1”, “A-5000” It is prepared from 8 samples of “A-2500”, “A-1000” and “n-propylbenzene”.
  • * represents a bonding position
  • the method for synthesizing the specific polymer compound is not particularly limited, and can be synthesized with reference to a known method.
  • Examples of the synthesis method include a method of polymerizing a dihalide of a condensed polycyclic aromatic ring compound and a bistrialkylstannyl compound by a Stille coupling reaction.
  • the semiconductor active layer of the first organic semiconductor element and the semiconductor active layer of the second organic semiconductor of the present invention preferably contain a binder polymer.
  • the first and second organic semiconductor elements of the present invention may be organic semiconductor elements having a layer containing the semiconductor active layer and a binder polymer.
  • the kind in particular of a binder polymer is not restrict
  • the binder polymer include polystyrene resin, acrylic resin, rubber, and thermoplastic elastomer.
  • a polymer compound having a benzene ring (a polymer having a monomer unit having a benzene ring group) is preferable.
  • the content of the monomer unit having a benzene ring group is not particularly limited, but is preferably 50 mol% or more, more preferably 70 mol% or more, and still more preferably 90 mol% or more in all monomer units.
  • the upper limit is not particularly limited, but 100 mol% can be mentioned.
  • the binder polymer include polystyrene, poly ( ⁇ -methylstyrene), polyvinyl cinnamate, poly (4-vinylphenyl), poly (4-methylstyrene) and the like.
  • the method for forming the semiconductor active layer in the organic semiconductor element of the present invention is not particularly limited, and the organic semiconductor composition of the present invention described later is applied on the source electrode, the drain electrode, and the gate insulating film, and if necessary. By applying the drying process, a desired semiconductor active layer can be formed.
  • the organic semiconductor element of the present invention is preferably manufactured using the organic semiconductor composition of the present invention described later.
  • a method for producing an organic semiconductor film or an organic semiconductor element using the organic semiconductor composition of the present invention is not particularly limited, and a known method can be adopted.
  • the organic semiconductor film is preferably produced by a solution coating method.
  • a method of producing an organic semiconductor film by applying the composition onto a predetermined substrate and subjecting it to a drying treatment as necessary may be mentioned.
  • the method for applying the composition on the substrate is not particularly limited, and a known method can be adopted, for example, an ink jet printing method, a screen printing method, a flexographic printing method, a bar coating method, a spin coating method, a knife coating method, a doctor.
  • the manufacturing method of the organic-semiconductor element of this invention includes the application
  • the organic semiconductor composition of the present invention described later preferably contains a solvent, and more preferably contains a solvent having a boiling point of 100 ° C. or higher.
  • a known solvent can be used as the solvent.
  • hydrocarbon solvents such as hexane, octane, decane, toluene, xylene, mesitylene, ethylbenzene, decalin, 1-methylnaphthalene, and ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Halogenated hydrocarbon solvents such as dichloromethane, chloroform, tetrachloromethane, dichloroethane, trichloroethane, tetrachloroethane, chlorobenzene, dichlorobenzene, chlorotoluene, ester solvents such as ethyl acetate, butyl acetate, amyl acetate, methanol, propanol, Alcohol solvents such as butanol, pentanol, hexanol, cyclohexanol, methyl cellosolve, ethyl cellosolve, ethylene glycol, dibutyl ether Ether solvents such as tetrahydrofuran, dioxane and anisole, amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide, imides such as 1-methyl-2-pyrrolidone and 1-methyl-2-imidazolidinone And nit
  • the solvent preferably has a boiling point at normal pressure of 100 ° C. or higher, more preferably 150 ° C. or higher, and more preferably 175 ° C. from the viewpoint of the stability of the organic semiconductor composition described later and the formation of a uniform film. More preferably, it is more preferably 200 ° C. or higher.
  • the boiling point of the solvent at normal pressure is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and 220 ° C. or lower. Is more preferable.
  • the boiling point is a boiling point at normal pressure unless otherwise specified.
  • a solvent may be used individually by 1 type and may be used in combination of multiple.
  • hydrocarbon solvents, halogenated hydrocarbon solvents and / or ether solvents are preferable, and toluene, xylene, mesitylene, tetralin, dichlorobenzene or anisole are more preferable.
  • the content of the compound represented by Formula 1 in the organic semiconductor composition of the present invention is preferably 20% by mass or less, more preferably 0.01 to 20% by mass, The amount is more preferably 0.05 to 10% by mass, and particularly preferably 0.1 to 5% by mass.
  • the content of the binder polymer in the organic semiconductor composition of the present invention is preferably 0.01 to 80% by mass, and preferably 0.05 to 10% by mass. More preferred is 0.1 to 5% by mass. Within the above range, the coating property is excellent and the organic semiconductor film can be easily formed.
  • the drying treatment in the removing step is a treatment performed as necessary, and optimal conditions are appropriately selected depending on the type of the specific compound and the solvent used.
  • the heating temperature is preferably 30 ° C. to 100 ° C., more preferably 40 ° C. to 80 ° C.
  • the heating time is 10 ° C. in terms of excellent mobility and heat resistance of the obtained organic semiconductor and excellent productivity. ⁇ 300 minutes is preferable, and 30 to 180 minutes is more preferable.
  • the thickness of the formed semiconductor active layer is not particularly limited, but is preferably 10 to 500 nm, and more preferably 30 to 200 nm, from the viewpoint of the mobility and heat resistance of the resulting organic semiconductor.
  • the organic semiconductor element is not particularly limited, but is preferably an organic semiconductor element having 2 to 5 terminals, and more preferably an organic semiconductor element having 2 or 3 terminals.
  • the organic semiconductor element is preferably not a photoelectric conversion element.
  • the organic semiconductor element of the present invention is preferably a non-light emitting organic semiconductor element. Examples of the two-terminal element include a rectifying diode, a constant voltage diode, a PIN diode, a Schottky barrier diode, a surge protection diode, a diac, a varistor, and a tunnel diode.
  • Examples of the three-terminal element include a bipolar transistor, a Darlington transistor, a field effect transistor, an insulated gate bipolar transistor, a unijunction transistor, a static induction transistor, a gate turn thyristor, a triac, and a static induction thyristor.
  • a rectifying diode and transistors are preferably exemplified, and a field effect transistor is more preferably exemplified.
  • As the field effect transistor an organic thin film transistor is preferably exemplified.
  • FIG. 1 is a schematic cross-sectional view of one embodiment of the organic semiconductor element (organic thin film transistor (organic TFT)) of the present invention.
  • an organic thin film transistor 100 includes a substrate 10, a gate electrode 20 disposed on the substrate 10, a gate insulating film 30 covering the gate electrode 20, and a side of the gate insulating film 30 opposite to the gate electrode 20 side.
  • a source electrode 40 and a drain electrode 42 in contact with the surface, an organic semiconductor film 50 covering the surface of the gate insulating film 30 between the source electrode 40 and the drain electrode 42, and a sealing layer 60 covering each member are provided.
  • the organic thin film transistor 100 is a bottom gate-bottom contact type organic thin film transistor.
  • the organic semiconductor film 50 corresponds to a film formed from the above-described composition.
  • the substrate, the gate electrode, the gate insulating film, the source electrode, the drain electrode, the sealing layer, and the formation methods thereof will be described in detail.
  • the substrate plays a role of supporting a gate electrode, a source electrode, a drain electrode and the like which will be described later.
  • substrate is not restrict
  • the material of the plastic substrate may be a thermosetting resin (for example, epoxy resin, phenol resin, polyimide resin, polyester resin (for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN)) or thermoplastic resin (for example, phenoxy).
  • Resin polyether sulfone, polysulfone, polyphenylene sulfone, etc.
  • the material for the ceramic substrate include alumina, aluminum nitride, zirconia, silicon, silicon nitride, silicon carbide, and the like.
  • the glass substrate material include soda glass, potash glass, borosilicate glass, quartz glass, aluminum silicate glass, and lead glass.
  • Metal conductive oxide such as InO 2 , SnO 2 , indium tin oxide (ITO); conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene, polydiacetylene; semiconductor such as silicon, germanium, gallium arsenide; fullerene And carbon materials such as carbon nanotubes and graphite.
  • a metal is preferable, and silver or aluminum is more preferable.
  • the thicknesses of the gate electrode, source electrode, and drain electrode are not particularly limited, but are preferably 20 to 200 nm.
  • the method for forming the gate electrode, the source electrode, and the drain electrode is not particularly limited, and examples thereof include a method of vacuum-depositing or sputtering an electrode material on a substrate, and a method of applying or printing an electrode-forming composition.
  • examples of the patterning method include a photolithography method; a printing method such as ink jet printing, screen printing, offset printing, letterpress printing; and a mask vapor deposition method.
  • ⁇ Gate insulation film Materials for the gate insulating film include polymethyl methacrylate, polystyrene, polyvinyl phenol, polyimide, polycarbonate, polyester, polyvinyl alcohol, polyvinyl acetate, polyurethane, polysulfone, polybenzoxazole, polysilsesquioxane, epoxy resin, phenol resin And the like; oxides such as silicon dioxide, aluminum oxide, and titanium oxide; and nitrides such as silicon nitride. Of these materials, a polymer is preferable in view of compatibility with the organic semiconductor film. When a polymer is used as the material for the gate insulating film, it is preferable to use a crosslinking agent (for example, melamine) in combination. By using a crosslinking agent in combination, the polymer is crosslinked and the durability of the formed gate insulating film is improved.
  • the thickness of the gate insulating film is not particularly limited, but is preferably 100 to 1,000 nm.
  • the method for forming the gate insulating film is not particularly limited, and examples thereof include a method of applying a composition for forming a gate insulating film on a substrate on which a gate electrode is formed, and a method of depositing or sputtering a gate insulating film material. It is done.
  • the method for applying the gate insulating film forming composition is not particularly limited, and known methods (bar coating method, spin coating method, knife coating method, doctor blade method) can be used.
  • a gate insulating film forming composition When a gate insulating film forming composition is applied to form a gate insulating film, it may be heated (baked) after application for the purpose of solvent removal, crosslinking, and the like.
  • the organic semiconductor element of the present invention preferably has a binder polymer layer between the semiconductor active layer and the insulating film, and more preferably has a binder polymer layer between the semiconductor active layer and the gate insulating film.
  • the thickness of the binder polymer layer is not particularly limited, but is preferably 20 to 500 nm.
  • the said binder polymer layer should just be a layer containing the said polymer, it is preferable that it is a layer which consists of the said binder polymer.
  • the method for forming the binder polymer layer is not particularly limited, and a known method (bar coating method, spin coating method, knife coating method, doctor blade method, ink jet method) can be used.
  • a binder polymer layer forming composition When a binder polymer layer forming composition is applied to form a binder polymer layer, it may be heated (baked) after application for the purpose of solvent removal, crosslinking and the like.
  • the said binder polymer layer is a binder polymer layer formed with the semiconductor active layer with the organic-semiconductor composition of this invention.
  • the organic semiconductor element of the present invention preferably includes a sealing layer as the outermost layer from the viewpoint of durability.
  • a well-known sealing agent can be used for a sealing layer.
  • the thickness of the sealing layer is not particularly limited, but is preferably 0.2 to 10 ⁇ m.
  • the method for forming the sealing layer is not particularly limited.
  • the composition for forming the sealing layer is applied onto the substrate on which the gate electrode, the gate insulating film, the source electrode, the drain electrode, and the organic semiconductor film are formed.
  • the method etc. are mentioned.
  • a specific example of the method of applying the sealing layer forming composition is the same as the method of applying the gate insulating film forming composition.
  • an organic semiconductor film is formed by applying the sealing layer forming composition, it may be heated (baked) after application for the purpose of solvent removal, crosslinking and the like.
  • Solvents such as tetrachloroethane, chlorobenzene, dichlorobenzene, chlorotoluene, 1-fluoronaphthalene and 1-chloronaphthalene, ester solvents such as butyl acetate and amyl acetate, butanol, pentanol, hexanol, cyclo Alcohol solvents such as hexanol, methyl cellosolve, ethyl cellosolve, ethylene glycol, dibutyl ether, dioxane, anisole, 4-tert-butylanisole, m-dimethoxy Ether solvents such as benzene, amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide, imide solvents such as 1-methyl-2-pyrrolidone and 1-methyl-2-imidazolidinone, dimethyl Examples thereof include sulfoxide solvents such as sulfoxide solvents such as sul
  • the solvent having a boiling point of 100 ° C. or higher preferably has a boiling point of 150 ° C. or higher, more preferably 175 ° C. or higher, from the viewpoint of stability of the organic semiconductor composition and formation of a uniform film. It is preferably 200 ° C. or higher.
  • the boiling point of the specific solvent is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 220 ° C. or lower. .
  • the organic semiconductor composition of the present invention may contain other components in addition to the specific compound or specific polymer compound, binder polymer and solvent. As other components, known additives and the like can be used.
  • the content of the component other than the specific compound or the specific polymer compound, the binder polymer and the solvent in the organic semiconductor composition of the present invention is preferably 10% by mass or less, and preferably 5% by mass or less with respect to the total solid content. It is preferably 1% by mass or less, more preferably 0.1% by mass or less. Within the above range, the film forming property is excellent and the mobility and heat resistance of the resulting organic semiconductor are excellent.
  • solid content is the quantity of the component except volatile components, such as a solvent.
  • the content of the specific compound in the first organic semiconductor composition of the present invention is preferably 20% by mass or less, more preferably 0.001 to 20% by mass with respect to the total amount of the organic semiconductor composition. 0.001 to 15% by mass is more preferable, and 0.01 to 10% by mass is particularly preferable.
  • the total content of a specific compound exists in the said range.
  • the content of the specific compound is within the above range, the carrier mobility is excellent and the storage stability is also excellent.
  • the content of the specific compound is preferably 30 to 99% by mass, more preferably 50 to 95% by mass, and 70 to 90% by mass of the total solid content of the first organic semiconductor composition. More preferably it is.
  • the content of the specific polymer compound in the second organic semiconductor composition of the present invention is preferably 20% by mass or less, and preferably 0.001 to 20% by mass with respect to the total amount of the organic semiconductor composition. More preferably, the content is 0.001 to 15% by mass, still more preferably 0.01 to 10% by mass. In addition, when using 2 or more types of specific polymer compounds together, it is preferable that the total content of a specific polymer compound exists in the said range. When the content of the specific polymer compound is within the above range, the carrier mobility is excellent and the storage stability is also excellent.
  • the content of the specific polymer compound is preferably 30 to 99% by mass, more preferably 50 to 95% by mass, and more preferably 70 to 90% by mass of the total solid content of the second organic semiconductor composition. % Is more preferable.
  • the 1st organic-semiconductor film of this invention contains the said specific compound, It is characterized by the above-mentioned.
  • the second organic semiconductor film of the present invention is characterized by containing the specific polymer compound.
  • the 1st and 2nd organic-semiconductor film of this invention is an organic-semiconductor film formed from the 1st and 2nd organic-semiconductor composition of this invention, respectively.
  • Each of the first and second organic semiconductor films of the present invention preferably contains a binder polymer.
  • the specific compound and binder polymer in the first organic semiconductor film of the present invention are synonymous with the specific compound and binder polymer described above in the first organic semiconductor element of the present invention, and preferred embodiments thereof are also the same.
  • the specific polymer compound and the binder polymer in the second organic semiconductor film of the present invention are synonymous with the specific polymer compound and the binder polymer described above in the second organic semiconductor element of the present invention, and preferred embodiments are also the same. is there.
  • butylmagnesium bromide is 1-bromobutane (manufactured by Tokyo Chemical Industry Co., Ltd.) and magnesium (manufactured by Wako Pure Chemical Industries, Ltd.) in THF (tetrahydrofuran, manufactured by Wako Pure Chemical Industries, Ltd.). It was prepared by reacting with
  • the butyl magnesium bromide used in the above scheme 8 was prepared in the same manner as the butyl magnesium bromide used in the scheme 7.
  • Hexyl magnesium bromide was prepared in the same manner as butyl magnesium bromide except that 1-bromohexane (Tokyo Chemical Industry Co., Ltd.) was used instead of 1-bromobutane.
  • Comparative compound 1 was synthesized according to the method described in International Publication No. 2012/060460.
  • Comparative compound 2 was synthesized according to the method described in Chinese Patent Application No. 201202012.
  • Comparative compound 3 was synthesized according to the method described in Japanese Patent No. 4581062.
  • Non-luminescent organic semiconductor solutions prepared by mixing the compounds, polymer compounds, comparative compounds or comparative polymer compounds (1 mg each) and toluene (1 mL) listed in Tables 1 to 3 and heating to 100 ° C. (Organic semiconductor composition).
  • An organic semiconductor thin film (thickness: 200 nm) was formed by casting the composition on a substrate for FET characteristic measurement heated to 90 ° C. in a nitrogen atmosphere to obtain an organic thin film transistor element for measuring FET characteristics.
  • a silicon substrate having a gate / bottom contact structure was used.
  • I d (w / 2L) ⁇ C i (V g ⁇ V th ) 2
  • L is the gate length
  • W is the gate width
  • C i is the capacitance per unit area of the insulating layer
  • V g is the gate voltage
  • V th is the threshold voltage.
  • Atmospheric stability was evaluated by changes in threshold voltage after repeated driving.
  • a voltage of ⁇ 80 V is applied between the source electrode and the drain electrode of each organic thin film transistor element (FET element), the gate voltage is repeated 100 times in the range of +20 V to ⁇ 100 V, the same measurement as in (a) is performed, and the driving is repeated
  • after V and before ⁇ V) was evaluated in the following three stages. The smaller this value, the higher the repeated driving stability of the element, which is preferable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 半導体活性層のキャリア移動度、及び、耐熱性に優れる有機半導体素子、この素子を与える有機半導体組成物、並びに、上記組成物を用いた有機半導体膜及び有機半導体素子の製造方法を提供することを目的とし、上記の有機半導体素子、有機半導体組成物、有機半導体膜、及び、有機半導体素子の製造方法に好適に使用される化合物及びオリゴマー又はポリマーを提供することをも目的とする。 本発明の有機半導体素子は、下記式1で表される化合物を半導体活性層に含むことを特徴とする。式1中、Xはカルコゲン原子を表し、p及びqはそれぞれ独立に0~2の整数を表し、R1及びR2はそれぞれ独立に、ハロゲン原子又は下記式Wで表される基を表す。 -S-L-T (W)

Description

有機半導体素子及びその製造方法、有機半導体組成物、有機半導体膜、化合物、並びに、オリゴマー又はポリマー
 本発明は、有機半導体素子及びその製造方法、有機半導体組成物、有機半導体膜、化合物、並びに、オリゴマー又はポリマーに関する。
 軽量化、低コスト化、柔軟化が可能であることから、液晶ディスプレイや有機エレクトロルミネッセンス(EL)ディスプレイに用いられるFET(電界効果トランジスタ)、RFID(Radio Frequency Identifier、RFタグ)等に、有機半導体膜(半導体活性層)を有する有機トランジスタが利用されている。
 従来の有機トランジスタ材料としては、特許文献1及び2に記載されたものが知られている。
中国特許出願公開第102659810号明細書 国際公開第2012/060460号
 本発明が解決しようとする課題は、半導体活性層のキャリア移動度、及び、耐熱性に優れる有機半導体素子を提供することである。
 また、本発明が解決しようとする他の課題は、キャリア移動度、及び、耐熱性に優れた有機半導体を形成することができ、溶液プロセス適性に優れた有機半導体組成物、並びに、上記組成物を用いた有機半導体膜及び有機半導体素子の製造方法を提供することである。
 更に、本発明は、上記の有機半導体素子、有機半導体組成物、有機半導体膜、及び、有機半導体素子の製造方法に好適に使用される化合物及びオリゴマー又はポリマーを提供することである。
 本発明の上記課題は、以下の<1>、<16>、<18>~<20>、<31>、及び<33>~<36>に記載の手段により解決された。好ましい実施態様である<2>~<15>、<17>、<21>~<30>、及び<32>と共に以下に記載する。
 <1> 下記式1で表される化合物を半導体活性層に含むことを特徴とする、有機半導体素子、
Figure JPOXMLDOC01-appb-C000018
 式1中、Xはそれぞれ独立にカルコゲン原子を表し、p及びqはそれぞれ独立に0~2の整数を表し、R1及びR2はそれぞれ独立に、ハロゲン原子又は下記式Wで表される基を表す。
  -S-L-T   (W)
 式W中、Sは単結合又は-(C(RS2n-を表し、RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、nは1~17の整数を表し、Lは単結合、下記式L-1~式L-15のいずれかで表される2価の連結基又は下記式L-1~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基を表し、Tはアルキル基、ハロアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、又は、トリアルキルシリル基を表す。
Figure JPOXMLDOC01-appb-C000019
 式L-1~式L-15中、波線部分はS又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、*はT又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、式L-13におけるmは0~4の整数を表し、式L-14及び式L-15におけるmは0~2の整数を表し、式L-1及び式L-2におけるR’はそれぞれ独立に、水素原子又は置換基を表し、式L-13、式L-14及び式L-15におけるR”はそれぞれ独立に、置換基を表す。
 <2> 式1中、p及び/又はqが、1又は2である、<1>に記載の有機半導体素子、
 <3> 式1中、p及び/又はqが、1又は2であり、かつ、R1及び/又はR2が式Wで表される基である、<1>又は<2>に記載の有機半導体素子、
 <4> 式1中、p及びqが1である、<1>~<3>のいずれか1つに記載の有機半導体素子、
 <5> 式1で表される化合物が、下記式2-1又は式2-2で表される化合物である、<1>~<4>のいずれか1つに記載の有機半導体素子、
Figure JPOXMLDOC01-appb-C000020
 式2-1及び2-2中、Xはそれぞれ独立に、カルコゲン原子を表し、R1’及びR2’はそれぞれ独立に、式Wで表される基を表す。
 <6> すべてのXが、S原子である、<1>~<5>のいずれか1つに記載の有機半導体素子、
 <7> 式1で表される化合物が、下記の点Aを中心として点対称である、<1>~<6>のいずれか1つに記載の有機半導体素子、
Figure JPOXMLDOC01-appb-C000021
 式中、p及びqは前記式1中と同義であり、0~2の整数を表し、R1及びR2も同義であり、ハロゲン原子又は前記式Wで表される基を表す。
 <8> 式Wで表される基の炭素数の合計が、2~40である、<1>~<7>のいずれか1つに記載の有機半導体素子、
 <9> 式W中、Lが、式L-1~式L-4及び式L-13~式L-15のいずれかで表される2価の連結基、又は、式L-1~式L-4及び式L-13~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基である、<1>~<8>のいずれか1つに記載の有機半導体素子、
 <10> 式W中、Lが、式L-1~式L-4及び式L-13~式L-15のいずれか単独で表される2価の連結基である、<1>~<9>のいずれか1つに記載の有機半導体素子、
 <11> 式W中、Sが単結合である、<1>~<10>のいずれか1つに記載の有機半導体素子、
 <12> 式W中、Lが、式L-13~式L-15のいずれか単独で表される2価の連結基である、<1>~<11>のいずれか1つに記載の有機半導体素子、
 <13> Tが、アルキル基である、<1>~<12>のいずれか1つに記載の有機半導体素子、
 <14> 式Wで表される基が、アルキル基である、<1>~<13>のいずれか1つに記載の有機半導体素子、
 <15> 有機薄膜トランジスタである、<1>~<14>のいずれか1つに記載の有機半導体素子、
 <16> 上記式1で表される化合物と、溶媒と、を含有することを特徴とする、有機半導体組成物、
 <17> バインダーポリマーを更に含有する、<16>に記載の有機半導体組成物、
 <18> <16>又は<17>に記載の有機半導体組成物を、インクジェット法又はフレキソ印刷法により基板上に付与する付与工程、及び、上記付与した有機半導体組成物から上記溶媒を少なくとも一部除去する除去工程を含む有機半導体素子の製造方法、
 <19> <16>又は<17>に記載の有機半導体組成物より形成された有機半導体膜、
 <20> 下記式3で表される構造を含む構成繰り返し単位を有するオリゴマー又はポリマーを半導体活性層に含有することを特徴とする、有機半導体素子、
Figure JPOXMLDOC01-appb-C000022
 式3中、X3はそれぞれ独立に、カルコゲン原子を表し、R31及びR32はそれぞれ独立に水素原子、ハロゲン原子、又は、下記式Wで表される置換基を表し、*は結合位置を表す。
  -S-L-T   (W)
 式W中、Sは単結合又は-(C(RS2n-を表し、RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、nは1~17の整数を表し、Lは単結合、下記式L-1~式L-15のいずれかで表される2価の連結基又は下記式L-1~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基を表し、Tはアルキル基、ハロアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、又は、トリアルキルシリル基を表す。
Figure JPOXMLDOC01-appb-C000023
 式L-1~式L-15中、波線部分はS又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、*はT又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、式L-13におけるmは0~4の整数を表し、式L-14及び式L-15におけるmは0~2の整数を表し、式L-1及び式L-2におけるR’はそれぞれ独立に、水素原子又は置換基を表し、式L-13、式L-14及び式L-15におけるR”はそれぞれ独立に、置換基を表す。
 <21> 式3で表される構造を含む構成繰り返し単位を有するオリゴマー又はポリマーが、主鎖方向に共役している、<20>に記載の有機半導体素子、
 <22> 式3で表される構造を含む構成繰り返し単位が、下記式Zで表される構造を更に有する、<20>又は<21>に記載の有機半導体素子、
  -Ar1-(V)p-Ar2-       (Z)
 式Z中、Ar1及びAr2はそれぞれ独立に単結合、又は、ビニレン基、エチニレン基、アリーレン基、ヘテロアリーレン基若しくはこれらが2つ以上結合した2価の基を表し、Vは単結合又は炭素数2~40の2価の共役基を表し、pは1~6を表し、pが2以上のとき2つ以上のVは同一であっても異なっていてもよく、ただし、Ar1、Ar2及びVのすべてが同時に単結合ではない。
 <23> 式3で表される構造を含む構成繰り返し単位を有するオリゴマー又はポリマーが、式3で表される構造と、式Zで表される構造が交互に連結したオリゴマー又はポリマーである、<22>に記載の有機半導体素子、
 <24> 式Zにおいて、Vが下記の式VD-1~式VD-16、及び、式VA-1~式VA-11のいずれかで表される2価の連結基である、<22>又は<23>に記載の有機半導体素子、
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 式VD-1~式VD-3、式VD-5、式VD-6、式VD-8、式VD-9、及び、式VD-11~式VD-16中のRはそれぞれ独立に水素原子、ハロゲン原子、又はアルキル基を表し、互いに隣り合うRは結合して環を形成してもよく、
 式VD-4、式VD-7、式VD-8、式VD-10、式VD-12、式VD-13、式VD-15、及び、式VD-16中のZはそれぞれ独立に水素原子、ハロゲン原子、アルキル基又はアルコキシ基を表し、互いに隣り合うZは結合して環を形成してもよく、
 式VD-10、式VD-11、式V-3、式VA-4、式VA-5、及び、式VA-7~式VA-11中のRNはそれぞれ独立にアルキル基を表し、互いに隣り合うRNは結合して環を形成してもよく、
 式VA-1、式VA-2、式VA-4、式VA-7~式VA-9、及び、式VA-11中、Yはそれぞれ独立に水素原子、アルキル基、アルコキシ基、CN、又は、ハロゲン原子を表し、互いに隣り合うYは結合して環を形成してもよく、*は結合位置を表す。
 <25> 式Z中、pが1である、<22>~<24>のいずれか1つに記載の有機半導体素子、
 <26> 式Z中、Ar1及びAr2がそれぞれ独立に、単結合、下記式Ar-1又は式Ar-2で表される2価の連結基を表す、<22>~<25>のいずれか1つに記載の有機半導体素子、
Figure JPOXMLDOC01-appb-C000026
 式Ar-1中、R’はそれぞれ独立に、アルキル基を表し、p’は0~2の整数を表し、互いに隣接するR’は環を形成してもよく、Wはカルコゲン原子を表し、lは1~4の整数を表し、
 式Ar-2中、R”はそれぞれ独立に、アルキル基又はアルコキシ基を表し、q’は0~4の整数を表し、互いに隣接するR”は環を形成してもよく、mは1~4の整数を表す。
 <27> 式Z中、VがVA-1~VA-11のいずれかで表される2価の連結基である、<22>~<26>のいずれか1つに記載の有機半導体素子、
 <28> 式3で表される構造を含む構成繰り返し単位を有するオリゴマー又はポリマーの数平均分子量が30,000以上である、<20>~<27>のいずれか1つに記載の有機半導体素子、
 <29> 式3で表される構造を含む構成繰り返し単位を有するオリゴマー又はポリマーの数平均分子量が150,000以下である、<20>~<28>のいずれか1つに記載の有機半導体素子、
 <30> 有機薄膜トランジスタである、<20>~<29>のいずれか1つに記載の有機半導体素子、
 <31> 上記式3で表される構造を含む繰り返し単位を有するオリゴマー又はポリマーと、溶媒と、を含有することを特徴とする有機半導体組成物、
 <32> バインダーポリマーを更に含有する、<31>に記載の有機半導体組成物、
 <33> <31>又は<32>に記載の有機半導体組成物を、インクジェット法又はフレキソ印刷法により基板上に付与する付与工程、及び、上記付与した有機半導体組成物から上記溶媒を少なくとも一部除去する除去工程を含む有機半導体素子の製造方法、
 <34> <31>又は<32>に記載の有機半導体組成物より形成された有機半導体膜、
 <35> 上記式1で表されることを特徴とする、化合物、
 <36> 上記式3で表される構造を含む構成繰り返し単位を有することを特徴とする、オリゴマー又はポリマー。
 本発明によれば、半導体活性層のキャリア移動度、及び、耐熱性に優れる有機半導体素子を提供することができる。
 また、本発明によれば、キャリア移動度、及び、耐熱性に優れた有機半導体を形成することができ、溶液プロセス適性に優れた有機半導体組成物、並びに、上記組成物を用いた有機半導体膜及び有機半導体素子の製造方法を提供することができる。
 更に、本発明は、上記の有機半導体素子、有機半導体組成物、有機半導体膜、及び、有機半導体素子の製造方法に好適に使用される化合物及びオリゴマー又はポリマーを提供することができる。
本発明の有機半導体素子の一態様の断面模式図である。 本発明の有機半導体素子の別の一態様の断面模式図である。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 また、本明細書における化学構造式は、水素原子を省略した簡略構造式で記載する場合もある。
 本発明において、「移動度」との記載は、キャリア移動度を意味し、電子移動度及びホール移動度のいずれか、又は、双方を意味する。
 また、本発明において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 また、本発明において、好ましい態様の組み合わせは、より好ましい態様である。
(有機半導体素子)
 本発明の第一の有機半導体素子は、下記式1で表される化合物(以下、特定化合物ともいう。)を半導体活性層に含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000027
 式1中、Xはカルコゲン原子を表し、p及びqはそれぞれ独立に0~2の整数を表し、R1及びR2はそれぞれ独立に、ハロゲン原子又は下記式Wで表される基を表す。
  -S-L-T   (W)
 式W中、Sは単結合又は-(C(RS2n-を表し、RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、nは1~17の整数を表し、Lは単結合、下記式L-1~式L-15のいずれかで表される2価の連結基又は下記式L-1~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基を表し、Tはアルキル基、ハロアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、又は、トリアルキルシリル基を表す。
Figure JPOXMLDOC01-appb-C000028
 式L-1~式L-15中、波線部分はS又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、*はT又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、式L-13におけるmは0~4の整数を表し、式L-14及び式L-15におけるmは0~2の整数を表し、式L-1及び式L-2におけるR’はそれぞれ独立に、水素原子又は置換基を表し、式L-13、式L-14及び式L-15におけるR”はそれぞれ独立に、置換基を表す。ここで、上記「置換基」は、半導体特性に影響を及ぼさない不活性な原子(団)であることが好ましく、アルキル基が例示でき、以下同様であり、mは0であることが好ましい。
 また、本発明の第2の有機半導体素子は、下記式3で表される構造を含む構成繰り返し単位を有するオリゴマー又はポリマー(以下、特定高分子化合物ともいう。)を半導体活性層に含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000029
 式3中、X3はそれぞれ独立に、カルコゲン原子を表し、R31及びR32はそれぞれ独立に水素原子、ハロゲン原子、又は、下記式Wで表される置換基を表し、*は結合位置を表す。
  -S-L-T   (W)
 式W中、Sは単結合又は-(C(RS2n-を表し、RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、nは1~17の整数を表し、Lは単結合、下記式L-1~式L-15のいずれかで表される2価の連結基又は下記式L-1~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基を表し、Tはアルキル基、ハロアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、又は、トリアルキルシリル基を表す。
Figure JPOXMLDOC01-appb-C000030
 式L-1~式L-15中、波線部分はS又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、*はT又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、式L-13におけるmは0~4の整数を表し、式L-14及び式L-15におけるmは0~2の整数を表し、式L-1及び式L-2におけるR’はそれぞれ独立に、水素原子又は置換基を表し、式L-13、式L-14及び式L-15におけるR”はそれぞれ独立に、置換基を表す。
 本発明者らは鋭意検討を重ねた結果、半導体活性層に特定化合物、又は、特定高分子化合物を含有することにより、半導体活性層のキャリア移動度及び耐熱性に優れる有機半導体素子が得られることを見出し、本発明を完成するに至ったものである。また、特定化合物又は特定高分子化合物を含む有機半導体組成物は、溶液プロセスに優れることを見出した。
 詳細な効果の発現機構については不明であるが、特定化合物及び特定高分子化合物が特定の縮合多環芳香環構造を有することにより、本発明の効果が発現しているものと推定される。
 以下、本発明の有機半導体素子について説明する。
<式1で表される化合物>
 本発明の第1の有機半導体素子は、上記式1で表される化合物(特定化合物)を半導体活性層に含む。
 式1で表される化合物は、有機半導体化合物である。
 Xは、カルコゲン原子(O原子、S原子、Se原子、Te原子)を表し、S原子又はSe原子であることが好ましく、S原子であることがより好ましい。上記態様であると、得られる有機半導体膜のキャリア移動度により優れる。
 p及びqそれぞれ独立に、0~2の整数を表す。p及びqが同時に0ではないこと、すなわち、p+qが1以上であることが好ましい。p及び/又はqが1又は2であることがより好ましく、p及びqが1又は2であることが更に好ましく、p及びqが1であること特に好ましい。p及びqが共に1である場合、R1及びR2の置換位置が、外側の環の第2位であることが好ましい。また、R1及びR2の少なくとも1つが下記式Wで表される基であることが好ましく、R1及びR2が共に下記式Wで表される基であることがより好ましく、p及びqが1であり、かつ、R1及びR2が共に下記式Wで表される基であることが更に好ましくい。
 特定化合物は、下記式2-1で表される化合物、又は、下記式2-2で表される化合物であることが好ましく、式2-1で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000031
 式2-1及び2-2中、Xはそれぞれ独立に、カルコゲン原子を表し、R1’及びR2’はそれぞれ独立に、下記式Wで表される基を表す。
 式2-1及び式2-2中、Xは、カルコゲン原子(O原子、S原子、Se原子、Te原子)を表し、S原子又はSe原子であることが好ましく、S原子であることがより好ましい。上記態様であると、得られる有機半導体膜のキャリア移動度により優れる。
 R1’及びR2’はそれぞれ独立に、下記式Wで表される基を表す。
 上記態様であると、得られる半導体活性層の耐熱性及び移動度により優れ、また、溶液プロセス適性に優れる。
 R1及びR2はそれぞれ独立に、ハロゲン原子又は下記式Wで表される基を表し、上述のように、下記式Wで表される基であることが好ましい。上記態様であると、得られる有機半導体膜のキャリア移動度により優れる。
  -S-L-T   (W)
 Sは、単結合又は-(C(RS2n-を表し、単結合又は無置換のメチレン基であることが好ましく、単結合であることがより好ましい。
 RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、水素原子であることが好ましい。
 nは、1~17の整数を表し、1~8の整数であることが好ましく、1~4の整数であることがより好ましい。
 R1及びR2は、塗布成膜性、及び、得られる有機半導体膜の耐熱性の観点から、同一の基であることが好ましい。
 R1の炭素数は、5~40であることが好ましく、8~20であることがより好ましい。
 また、R2の炭素数は、5~40であることが好ましく、8~20であることがより好ましい。
 Lは、単結合、下記式L-1~式L-15のいずれかで表される2価の連結基、又は、下記式L-1~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基を表す。
Figure JPOXMLDOC01-appb-C000032
 式L-1~式L-15中、波線部分はS又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、*はT又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、式L-13におけるmは0~4の整数を表し、式L-14及び式L-15におけるmは0~2の整数を表し、式L-1及び式L-2におけるR’はそれぞれ独立に、水素原子又は置換基を表し、式L-13、式L-14及び式L-15におけるR”はそれぞれ独立に、置換基を表す。
 なお、Lが式L-1~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基を表す場合、一方の連結基の*が、他方の連結基の波線部分と結合する。
 式L-13~式L-15におけるR’の結合位置及びT側の結合位置*は、芳香環又は複素芳香環上の任意の位置をとることができる。
 また、式L-13におけるT側の結合位置*は、芳香環上の任意の位置をとることができる。
 式L-1及び式L-2におけるR’は、水素原子、ハロゲン原子又はアルキル基であることが好ましく、水素原子であることがより好ましい。
 式L-13~式L-15におけるmは、0又は1であることが好ましく、0であることが好ましい。
 式L-13~式L-15中のR”としては、ハロゲン原子、アルキル基、アルキニル基、アルケニル基、アルコキシ基、アルキルチオ基又はアリール基であることが好ましい。
 Lは、式L-1~式L-4及び式L-13~式L-15のいずれかで表される2価の連結基、又は、式L-1~式L-4及び式L-13~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基であることが好ましく、式L-1~式L-4及び式L-13~式L-15のいずれか単独で表される2価の連結基であることがより好ましく、式L-1、式L-3、及び、式L-15のいずれか単独で表される2価の連結基であることが更に好ましい。
 Tはアルキル基、ハロアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、又は、トリアルキルシリル基を表し、アルキル基、ビニル基又はエチニル基であることが好ましく、アルキル基であることがより好ましく、炭素数5~19のアルキル基であることが更に好ましく、炭素数7~13のアルキル基であることが特に好ましい。
 また、Tにおけるアルキル基は、直鎖アルキル基であることが好ましい。
 上記式Wで表される基は、炭素数の合計が2以上であることが好ましく、4以上であることがより好ましく、5以上であることが更に好ましく、8以上であることが特に好ましい。40以下であることが好ましく、30以下であることがより好ましく、20以下であることが更に好ましい。上記態様であると、溶液プロセス適性により優れ、得られる有機半導体膜のキャリア移動度により優れる。
 また、上記式Wで表される基は、Lがメチレン基であり、Tがアルキル基であることが好ましい。すなわち、上記式Wで表される基は、アルキル基であることが好ましく、炭素数2以上のアルキル基であることがより好ましく、4以上のアルキル基であることが更に好ましく、5以上のアルキル基であることが特に好ましく、8以上のアルキル基であることが最も好ましい。また、炭素数40以下のアルキル基であることがより好ましく、30以下のアルキル基であることが更に好ましく、20以下のアルキル基であることが特に好ましい。上記態様であると、溶液プロセス適性により優れ、得られる有機半導体膜のキャリア移動度により優れる。
 特定化合物は、点対称の化合物であることが好ましく、下記の点Aを中心として点対称であることがより好ましい。
Figure JPOXMLDOC01-appb-C000033
 式中、p及びqは上記式1と同義であり、0~2の整数を表し、R1及びR2も同義であり、ハロゲン原子又は前記式Wで表される基を表す。
 R1及びR2は、好ましくは炭素数4~18のアルキル基又は前記式Wで表される基を表し、かつ、p=1でありq=0であり、より好ましくは、炭素数4~18のアルキル基又は前記式Wで表される基(Sが単結合であり、Lが(L-2)、(L-3)、(L-14)又は(L-15)であり、Tが炭素数4~18のアルキル基)を表し、かつ、p=q=1である。
 特定化合物が上記の点Aを中心として点対称であると、得られる有機半導体膜のキャリア移動度により優れるので好ましい。
 式1で表される化合物の具体例としては、以下に示す化合物が例示できるが、これらに限定されないことはいうまでもない。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 式1で表される化合物の合成方法は、特に制限されず、公知の方法(例えば、Kazuo Takimiya, Adv. Mater., 2011, 23, 4347-4370に記載の方法)を参照して合成できる。合成方法としては、例えば、下記化合物Zに対して硫化ナトリウム、ヨウ素、ヨウ化銅を作用せる、又は、ターシャリーブチルリチウムと硫黄をこの順に作用させることにより得られるチオフェン4環の縮環化合物の2位をハロゲン化した後、遷移金属触媒を用いてアリールボロン酸、有機亜鉛試薬又はグリニャール化合物などとカップリング反応を行うことにより置換基(R1及びR2)を導入する方法等が挙げられる。
Figure JPOXMLDOC01-appb-C000040
 式1で表される化合物は1種単独で使用してもよく、2種以上を併用してもよい。
 本発明の有機半導体素子の半導体活性層又は後述する本発明の有機半導体膜における、式1で表される化合物の含有量は、30~100質量%であることが好ましく、50~100質量%であることがより好ましく、70~100質量%であることが更に好ましい。また、後述するバインダーポリマーを含有しない場合は、上記総含有量が、90~100質量%であることが好ましく、95~100質量%であることがより好ましい。
<式3で表される構造を含む構成繰り返し単位を有するオリゴマー又はポリマー>
 本発明の第2の有機半導体素子は、上記式3で表される構造を含む構成繰り返し単位を有するオリゴマー又はポリマー(特定高分子化合物)を半導体活性層に含む。
 特定高分子化合物は、有機半導体化合物である。
 なお、特定高分子化合物は、式3で表される構造のみからなる構成繰り返し単位を有していてもよく、式3で表される構造に加えて、他の構造を含む構成繰り返し単位を有していてもよく、特に限定されない。
 式3中、X3は、カルコゲン原子(O原子、S原子、Se原子、Te原子)を表し、S原子又はSe原子であることが好ましく、S原子であることがより好ましい。上記態様であると、得られる有機半導体膜のキャリア移動度により優れる。
 R31及びR32はそれぞれ独立に、ハロゲン原子又は下記式Wで表される基を表し、下記式Wで表される基であることが好ましい。上記態様であると、得られる有機半導体膜のキャリア移動度により優れる。
  -S-L-T   (W)
 Sは、単結合又は-(C(RS2n-を表し、単結合であることが好ましい。
 RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、水素原子であることが好ましい。
 nは、1~17の整数を表し、1~8の整数であることが好ましく、1~4の整数であることがより好ましい。
 R1及びR2は、塗布成膜性、及び、得られる有機半導体膜の耐熱性の観点から、同一の基であることが好ましい。
 R1の炭素数は、5~40であることが好ましく、8~20であることがより好ましい。
 また、R2の炭素数は、5~40であることが好ましく、8~20であることがより好ましい。
 Lは、単結合、下記式L-1~式L-15のいずれかで表される2価の連結基、又は、下記式L-1~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基を表す。
Figure JPOXMLDOC01-appb-C000041
 式L-1~式L-15中、波線部分はS又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、*はT又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、式L-13におけるmは0~4の整数を表し、式L-14及び式L-15におけるmは0~2の整数を表し、式L-1及び式L-2におけるR’はそれぞれ独立に、水素原子又は置換基を表し、式L-13、式L-14及び式L-15におけるR”はそれぞれ独立に、置換基を表す。
 なお、Lが式L-1~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基を表す場合、一方の連結基の*が、他方の連結基の波線部分と結合する。
 式L-13~式L-15におけるR’の結合位置及びT側の結合位置*は、芳香環又は複素芳香環上の任意の位置をとることができ、チオフェン環の場合には4-位又は5-位、フラン環の場合には4位又は5-位であることが好ましく、また、m=0であることが好ましい。
 また、式L-13におけるT側の結合位置*は、芳香環上の任意の位置をとることができる。
 式L-1及び式L-2におけるR’は、水素原子、ハロゲン原子又はアルキル基であることが好ましく、水素原子であることがより好ましい。
 式L-13~式L-15におけるmは、0又は1であることが好ましく、0であることが好ましい。
 式L-13~式L-15中のR”としては、ハロゲン原子、アルキル基、アルキニル基、アルケニル基、アルコキシ基、アルキルチオ基又はアリール基であることが好ましい。
 Lは、式L-1~式L-4及び式L-13~式L-15のいずれかで表される2価の連結基、又は、式L-1~式L-4及び式L-13~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基であることが好ましく、式L-1~式L-4及び式L-13~式L-15のいずれか単独で表される2価の連結基であることがより好ましい。
 Tはアルキル基、ハロアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、又は、トリアルキルシリル基を表し、アルキル基、ビニル基又はエチニル基であることが好ましく、アルキル基であることがより好ましく、炭素数5~19のアルキル基であることが更に好ましく、炭素数7~13のアルキル基であることが特に好ましい。
 また、Tにおけるアルキル基は、直鎖アルキル基であることが好ましい。
 上記式Wで表される基は、炭素数の合計が2以上であることが好ましく、4以上であることがより好ましく、5以上であることが更に好ましく、8以上であることが特に好ましい。また、炭素数の合計が40以下であることが好ましく、30以下であることがより好ましく、20以下であることが更に好ましい。上記態様であると、溶液プロセス適性により優れ、得られる有機半導体膜のキャリア移動度により優れる。
 また、上記式Wで表される基は、Lがメチレン基であり、Tがアルキル基であることが好ましい。すなわち、上記式Wで表される基は、アルキル基であることが好ましく、炭素数2以上のアルキル基であることが好ましく、炭素数4以上のアルキル基であることがより好ましく、炭素数5以上のアルキル基であることが更に好ましく、炭素数8以上のアルキル基であることが特に好ましい。また、炭素数40以下のアルキル基であることが好ましく、炭素数30以下のアルキル基であることがより好ましく、炭素数20以下のアルキル基であることが更に好ましい。上記態様であると、溶液プロセス適性により優れ、得られる有機半導体膜のキャリア移動度により優れる。
 式3で表される構造は、点対称の構造であることが好ましく、下記の点Aを中心として点対称であることがより好ましい。
Figure JPOXMLDOC01-appb-C000042
 式3中、X3はそれぞれ独立に、カルコゲン原子を表し、R31及びR32はそれぞれ独立に水素原子、ハロゲン原子、又は、下記式Wで表される置換基を表し、*は結合位置を表す。
  -S-L-T   (W)
 式W中、Sは単結合又は-(C(RS2n-を表し、RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、nは1~17の整数を表し、Lは単結合、上記式L-1~式L-15のいずれかで表される2価の連結基又は上記式L-1~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基を表し、Tはアルキル基、ハロアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、又は、トリアルキルシリル基を表す。
 式3で表される構造が上記の点Aを中心として点対称であると、得られる有機半導体膜のキャリア移動度により優れるので好ましい。
 特定高分子化合物は、主鎖方向に共役していることが好ましい。ここで、主鎖方向とは、構成繰り返し単位の結合方向である。主鎖方向に共役していると、主鎖を通じての電荷輸送性に優れ、高い移動度が得られる。
 特定高分子化合物は、構成繰り返し単位中に、式3で表される構造に加え、下記式Zで表される構造を更に有することが好ましい。
  -Ar1-(V)p-Ar2-       (Z)
 式Z中、Ar1及びAr2はそれぞれ独立に単結合、又は、ビニレン基、エチニレン基、アリーレン基、ヘテロアリーレン基若しくはこれらが2つ以上結合した2価の基を表し、Vは単結合又は炭素数2~40の2価の共役基を表し、pは1~6を表し、pが2以上のとき2つ以上のVは同一であっても異なっていてもよく、ただし、Ar1、Ar2及びVのすべてが同時に単結合ではない。
 すなわち、特定高分子化合物は、下記式3-1で表される構成繰り返し単位を有することが好ましく、式3-2で表される構成繰り返し単位を有することがより好ましい。
Figure JPOXMLDOC01-appb-C000043
 上記式3-1及び3-2中、R31、R32、及び、X3は、上記式3におけるR31、R32、及びX3とそれぞれ同義であり、好ましい範囲も同様である。また、Ar1、Ar2、V及びpについては、上記の式ZにおけるAr1、Ar2、V及びpとそれぞれ同義であり、好ましい範囲も同様である。
 式Z中、Ar1及びAr2が表すアリーレン基としては、炭素数6~20のアリーレン基が好ましく、炭素数6~14のアリーレン基がより好ましい。具体的には、ベンゼン、ナフタレン、アントラセン、フェナントレン、トリフェニレン、ピレン、クリセン、テトラセン、ペンタフェン、ペンタセン等から、2つの水素原子を除いた基であることが好ましく、ベンゼン、ナフタレン、アントラセンから2つの水素原子を除いた基であることがより好ましい。
 式Z中、Ar1及びAr2が表すヘテロアリーレン基が有するヘテロ原子としては、硫黄原子(S)、酸素原子(O)、窒素原子(N)、セレン原子(Se)、ケイ素原子(Si)が好ましく、硫黄原子、窒素原子、酸素原子がより好ましく、硫黄原子、窒素原子が更に好ましく、硫黄原子が特に好ましい。
 ヘテロアリーレン基としては、具体的には、チオフェン、フラン、ピラン、ピロール、ピリジン、ピラジン、ピリミジン、ピリダジン、セレノフェン、イミダゾール等から水素原子を2つ除いた基が挙げられ、チオフェン、セレノフェン、又は、ピロールから水素原子を2つ除いた基であることが好ましく、チオフェン又はフランから水素原子を2つ除いた基であることがより好ましく、チオフェンから水素原子を2つ除いた基であることが更に好ましい。
 なお、Ar1及びAr2が表すアリーレン基及びヘテロアリーレン基は、置換基を有していてもよく、上記置換基としては、ハロゲン原子、アルキル基(好ましくは炭素数1~40、より好ましくは炭素数4~20)、アルケニル基(好ましくは炭素数2~40、より好ましくは炭素数4~20)、アルキニル基(好ましくは炭素数2~40、より好ましくは炭素数4~20)が好ましく例示され、上記アルキル基、アルケニル基、アルキニル基は、更にハロゲン原子、アルコキシ基等により置換されていてもよい。
 Ar1及びAr2が、ビニレン基、エチニレン基、アリーレン基、及び、ヘテロアリーレン基よりなる群から選択された2つ以上の基が結合した2価の基を表す場合、同じ基が2つ以上連結した2価の基であってもよく、異なる2種以上の基が結合した2価の基であってもよく、特に限定されないが、同じ基が2つ以上連結した2価の基であることが好ましく、アリーレン基又はヘテロアリーレン基が2つ以上連結した2価の基であることがより好ましい。
 Ar1及びAr2はそれぞれ独立に、単結合、下記式Ar-1又は下記式Ar-2で表される2価の連結基であることが好ましく、単結合又は下記式Ar-1で表される2価の連結基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000044
 式Ar-1中、R’はそれぞれ独立に、アルキル基を表し、p’は0~2の整数を表し、互いに隣接するR’は環を形成してもよく、Wはカルコゲン原子を表し、lは1~4の整数を表す。
 式Ar-2中、R”はそれぞれ独立に、アルキル基又はアルコキシ基を表し、q’は0~4の整数を表し、互いに隣接するR”は環を形成してもよく、mは1~4の整数を表す。
 式Ar-1中、R’で表されるアルキル基は、炭素数1~40のアルキル基であることが好ましく、炭素数4~20のアルキル基であることがより好ましい。式Ar-1中、p’は0~2の整数を表し、0又は1であることが好ましく、1であることがより好ましい。p’が2であるとき、2つのR’は互いに同一でも異なっていてもよく、また、互いに結合して環を形成していてもよい。式Ar-1中、Wは、カルコゲン原子(O原子、S原子、Se原子、Te原子)を表し、S原子又はSe原子であることが好ましく、S原子であることがより好ましい。上記態様であると、得られる有機半導体膜のキャリア移動度により優れる。
 式Ar-2中、R”で表されるアルキル基は、炭素数1~40のアルキル基であることが好ましく、炭素数4~20のアルキル基であることがより好ましい、R”で表されるアルコキシ基は、炭素数1~40のアルコキシ基であることが好ましく、炭素数1~20のアルコキシ基であることがより好ましい。
 式Ar-2中、q’は0~4の整数を表し、0~3の整数であることがより好ましく、0~2の整数であることが更に好ましく、0又は1であることが特に好ましい。
 式Ar-1及びAr-2中、l及びmは1~4の整数を表し、1~3の整数であることが好ましく、1又は2であることがより好ましく、1であることが更に好ましい。
 式Z中、Vは単結合又は炭素数2~40の2価の共役基を表す。
 Vとしては、下記式VD-1~式VD-16、及び、式VA-1~式VA-11よりなる群から選択される2価の連結基であることが好ましい。これらはいずれも、2価の共役基である。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 式VD-1~式VD-3、式VD-5、式VD-6、式VD-8、式VD-9、及び、式VD-11~式VD-16中のRはそれぞれ独立に水素原子、ハロゲン原子、又はアルキル基を表し、互いに隣り合うRは結合して環を形成してもよく、
 式VD-4、式VD-7、式VD-8、式VD-10、式VD-12、式VD-13、式VD-15、及び、式VD-16中のZはそれぞれ独立に水素原子、ハロゲン原子、アルキル基又はアルコキシ基を表し、互いに隣り合うZは結合して環を形成してもよく、
 式VD-10、式VD-11、式V-3、式VA-4、式VA-5、及び、式VA-7~式VA-11中のRNはそれぞれ独立にアルキル基を表し、互いに隣り合うRNは結合して環を形成してもよく、
 式VA-1、式VA-2、式VA-4、式VA-7~式VA-9、及び、式VA-11中、Yはそれぞれ独立に水素原子、アルキル基、アルコキシ基、CN、又は、ハロゲン原子を表し、互いに隣り合うYは結合して環を形成してもよい。
 式VD-1~式VD-3、式VD-5、式VD-6、式VD-8、式VD-9、及び、式VD-11~式VD-16中のRが表すアルキル基としては、炭素数1~40のアルキル基が好ましく、炭素数4~20のアルキル基がより好ましい。
 式VD-4、式VD-7、式VD-8、式VD-10、式VD-12、式VD-13、式VD-15、及び、式VD-16中のZが表すアルキル基は、炭素数1~40のアルキル基であることが好ましく、炭素数1~20のアルキル基であることがより好ましい。また、Zが表すアルコキシ基は、炭素数1~40のアルコキシ基であることが好ましく、炭素数1~20のアルコキシ基であることがより好ましい。
 式VD-10、式VD-11、式V-3、式VA-4、式VA-5、及び、式VA-7~式VA-11中のRNが表すアルキル基としては、炭素数1~40のアルキル基が好ましく、炭素数1~20のアルキル基がより好ましい。RNはアルキル基であることが好ましい。
 式VA-1、式VA-2、式VA-4、式VA-7~式VA-9、及び、式VA-11中、Yが表すアルキル基は、炭素数1~40のアルキル基であることが好ましく、炭素数1~20のアルキル基であることがより好ましい。また、アルコキシ基は、炭素数1~40のアルコキシ基であることが好ましく、炭素数1~20のアルコキシ基であることがより好ましい。Yとしては、水素原子、フッ素原子、シアノ基が好ましい。
 また、上記R、Z、RN、Yが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示され、これらの中でもフッ素原子又は塩素原子が好ましく、フッ素原子がより好ましい。
 これらの中でも、Vが式VA-1~式VA-11よりなる群から選択される2価の基であることが好ましく、式VA-1、式VA-5、及び式VA-7よりなる群から選択される2価の連結基であることが更に好ましい。
 pは、1~6の整数を表す。pが2~6の整数である場合、複数存在するVはそれぞれ同一でも異なっていてもよく、特に限定されない。
 pは、1~4の整数であることが好ましく、1~3の整数であることがより好ましく、1又は2であることが更に好ましく、1であることが特に好ましい。
 特定高分子化合物中、式3で表される構造を含む構成繰り返し単位の含有量は、特定高分子化合物の全質量に対し、60~100質量%であることが好ましく、80~100質量%であることがより好ましく、90~100質量%であることが更に好ましく、実質的に式3で表される構造を含む構成繰り返し単位のみから形成されていることが特に好ましい。なお、実質的に式3表される構造を含む構成繰り返し単位のみから形成されているとは、式3で表される構造を含む構成繰り返し単位の含有量が95質量%以上であることを意味し、97質量%以上であることが好ましく、99質量%以上であることがより好ましい。
 式3で表される構造を含む構成繰り返し単位の含有量が上記範囲内であると、移動度に優れる有機半導体が得られる。
 なお、上述したように、式3で表される構造を含む構成繰り返し単位は、式3-1で表される構成繰り返し単位であることが好ましく、式3-2で表される構成繰り返し単位であることが更に好ましい。
 特定高分子化合物は、式3で表される構造を含む構成繰り返し単位を2以上有する化合物であり、構成繰り返し単位数nが2~9のオリゴマーであってもよく、構成繰り返し単位数nが10以上の高分子(ポリマー)であってもよい。これらの中でも、構成繰り返し単位数nが10以上の高分子であることが、移動度及び得られる有機半導体膜の物性の観点から好ましい。
 特定高分子化合物の数平均分子量は、特に制限されないが、1,000以上であることが好ましく、10,000以上であることがより好ましく、20,000以上であることが更に好ましく、30,000以上であることが特に好ましく、50,000以上であることが最も好ましい。また、数平均分子量は、250万以下であることが好ましく、200万以下であることがより好ましく、150万以下であることが更に好ましく、100万以下であることが特に好ましく、50万以下であることが最も好ましい。
 数平均分子量を上記範囲内とすることにより、溶媒への溶解性と薄膜の膜質安定性とが両立される。
 本発明において、重量平均分子量及び数平均分子量は、ゲル浸透クロマトグラフィ法(GPC)法にて測定され、標準ポリスチレンで換算して求められる。具体的には、例えば、GPCは、HLC-8220GPC(東ソー(株)製)を用い、カラムとして、TSKgeL SuperHZM-H、TSKgeL SuperHZ4000、TSKgeL SuperHZ2000(東ソー(株)製、4.6mmID×15cm)を3本用い、溶離液としてTHF(テトラヒドロフラン)を用いる。また、条件としては、試料濃度を0.35質量%、流速を0.35ml/min、サンプル注入量を10μl、測定温度を40℃とし、IR検出器を用いて行う。また、検量線は、東ソー(株)製「標準試料TSK standard,polystyrene」:「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」、「A-1000」、「n-プロピルベンゼン」の8サンプルから作製する。
 後述する有機半導体層、後述する有機半導体膜又は有機半導体膜形成用組成物中には、1種のみの特定高分子化合物が含まれていても、2種以上の特定高分子化合物が含まれていてもよいが、配向性の観点から、1種のみであることが好ましい。
 なお、本発明において、有機半導体層に特定化合物と、特定高分子化合物とを併用する態様を除外するものではないことはいうまでもない。
 特定高分子化合物の具体例としては、以下に示す化合物が例示できるが、これらに限定されないことはいうまでもない。
Figure JPOXMLDOC01-appb-C000047
 式中、*は結合位置を表す。
 特定高分子化合物の合成方法は、特に制限されず、公知の方法を参照して合成できる。合成方法としては、例えば、縮合多環芳香環化合物のジハロゲン化物とビストリアルキルスタニル化合物とをStilleカップリング反応により重合する方法等が挙げられる。
 特定高分子化合物は1種単独で使用してもよく、2種以上を併用してもよい。
 本発明の有機半導体素子の半導体活性層又は後述する本発明の有機半導体膜における、特定高分子化合物の含有量は、30~100質量%であることが好ましく、50~100質量%であることがより好ましく、70~100質量%であることが更に好ましい。また、後述するパンダ-ポリマーを含有しない場合は、上記総含有量が、90~100質量%であることが好ましく、95~100質量%であることがより好ましい。
<バインダーポリマー>
 本発明の第1の有機半導体素子の半導体活性層及び第2の有機半導体の半導体活性層は、バインダーポリマーを含有することが好ましい。
 また、本発明の第1及び第2の有機半導体素子は、上記半導体活性層とバインダーポリマーを含む層を有する有機半導体素子であってもよい。
 バインダーポリマーの種類は特に制限されず、公知のバインダーポリマーを用いることができる。
 バインダーポリマーとしては、ポリスチレン樹脂、アクリル樹脂、ゴム、熱可塑性エラストマー等が挙げられる。
 中でも、バインダーポリマーとしては、ベンゼン環を有する高分子化合物(ベンゼン環基を有する単量体単位を有する高分子)が好ましい。ベンゼン環基を有する単量体単位の含有量は特に制限されないが、全単量体単位中、50モル%以上が好ましく、70モル%以上がより好ましく、90モル%以上が更に好ましい。上限は特に制限されないが、100モル%が挙げられる。
 上記バインダーポリマーとしては、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルシンナメート、ポリ(4-ビニルフェニル)、ポリ(4-メチルスチレン)などが挙げられる。
 バインダーポリマーの重量平均分子量は、特に制限されないが、1,000~200万が好ましく、3,000~100万がより好ましく、5,000~60万が更に好ましい。
 また、後述する溶媒を用いる場合、バインダーポリマーは、使用する溶媒への溶解度が、式1で表される化合物よりも高いことが好ましい。上記態様であると、得られる有機半導体の移動度及び耐熱性により優れる。
 本発明の有機半導体素子の半導体活性層におけるバインダーポリマーの含有量は、式1で表される化合物の含有量100質量部に対し、1~200質量部であることが好ましく、10~150質量部であることがより好ましく、20~120質量部であることが更に好ましい。上記範囲であると、得られる有機半導体の移動度及び耐熱性により優れる。
<その他の成分>
 本発明の第1及び第2の有機半導体素子における半導体活性層には、特定化合物又は特定高分子化合物、及び、バインダーポリマー以外に他の成分が含まれていてもよい。
 その他の成分としては、公知の添加剤等を用いることができる。
 上記半導体活性層における特定化合物又は特定高分子化合物、及び、バインダーポリマー以外の成分の含有量は、10質量%以下であることが好ましく、5質量%以下であることが好ましく、1質量%以下であることが更に好ましく、0.1質量%以下であることが特に好ましい。上記範囲であると、膜形成性に優れ、得られる有機半導体の移動度及び耐熱性により優れる。
 本発明の有機半導体素子における半導体活性層の形成方法は特に制限されず、後述する本発明の有機半導体組成物を、ソース電極、ドレイン電極、及び、ゲート絶縁膜上に付与して、必要に応じて乾燥処理を施すことにより、所望の半導体活性層を形成することができる。
 本発明の有機半導体素子は、後述する本発明の有機半導体組成物を用いて製造されたものであることが好ましい。
 本発明の有機半導体組成物を用いて有機半導体膜や有機半導体素子を製造する方法は、特に制限されず、公知の方法を採用できる。有機半導体膜は、溶液塗布法により作製することが好ましく、例えば、組成物を所定の基材上に付与して、必要に応じて乾燥処理を施して、有機半導体膜を製造する方法が挙げられる。
 基材上に組成物を付与する方法は特に制限されず、公知の方法を採用でき、例えば、インクジェット印刷法、スクリーン印刷法、フレキソ印刷法、バーコート法、スピンコート法、ナイフコート法、ドクターブレード法などが挙げられ、インクジェット印刷法、スクリーン印刷法、フレキソ印刷法が好ましい。
 なお、フレキソ印刷法としては、フレキソ印刷版として感光性樹脂版を用いる態様が好適に挙げられる。態様によって、組成物を基板上に印刷して、パターンを容易に形成することができる。
 中でも、本発明の有機半導体素子の製造方法は、後述する本発明の有機半導体組成物を基板上に塗布する塗布工程、を含むことが好ましく、本発明の有機半導体組成物を基板上に塗布する塗布工程、及び、塗布された有機半導体組成物から溶媒を少なくとも一部除去する除去工程を含むことがより好ましい。
 後述する本発明の有機半導体組成物は、溶媒を含むことが好ましく、沸点100℃以上の溶媒を含むことがより好ましい。
 溶媒としては、公知の溶媒を用いることができる。
 具体的には、例えば、ヘキサン、オクタン、デカン、トルエン、キシレン、メシチレン、エチルベンゼン、デカリン、1-メチルナフタレンなどの炭化水素系溶媒、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒、ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエンなどのハロゲン化炭化水素系溶媒、酢酸エチル、酢酸ブチル、酢酸アミルなどのエステル系溶媒、メタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコールなどのアルコール系溶媒、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソールなどのエーテル系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒、1-メチル-2-ピロリドン、1-メチル-2-イミダゾリジノン等のイミド系溶媒、ジメチルスルフォキサイドなどのスルホキシド系溶媒、アセトニトリルなどのニトリル系溶媒が挙げられる。
 溶媒は、後述する有機半導体組成物の安定性、及び、均一な膜を形成する観点から、常圧における沸点が100℃以上であることが好ましく、150℃以上であることがより好ましく、175℃以上であることが更に好ましく、200℃以上であることが特に好ましい。
 また、有機半導体組成物を付与後、溶媒を乾燥させる観点から、溶媒の常圧における沸点は、300℃以下であることが好ましく、250℃以下であることがより好ましく、220℃以下であることが更に好ましい。
 なお、本発明において、特に断りのない限り、沸点は常圧における沸点である。
 溶媒は、1種単独で用いてもよく、複数組み合わせて用いてもよい。
 これらの中でも、炭化水素系溶媒、ハロゲン化炭化水素系溶媒及び/又はエーテル系溶媒が好ましく、トルエン、キシレン、メシチレン、テトラリン、ジクロロベンゼン又はアニソールがより好ましい。
 溶媒を含有する場合、本発明の有機半導体組成物における式1で表される化合物の含有量は、20質量%以下であることが好ましく、0.01~20質量%であることがより好ましく、0.05~10質量%であることが更に好ましく、0.1~5質量%であることが特に好ましい。また、バインダーポリマー及び溶媒を含有する場合、本発明の有機半導体組成物におけるバインダーポリマーの含有量は、0.01~80質量%であることが好ましく、0.05~10質量%であることがより好ましく、0.1~5質量%であることが更に好ましい。上記範囲であると、塗布性に優れ、容易に有機半導体膜を形成することができる。
 上記除去工程における乾燥処理は、必要に応じて実施される処理であり、使用される特定化合物及び溶媒の種類により適宜最適な条件が選択される。中でも、得られる有機半導体の移動度及び耐熱性により優れ、また、生産性に優れる点で、加熱温度としては30℃~100℃が好ましく、40℃~80℃がより好ましく、加熱時間としては10~300分が好ましく、30~180分がより好ましい。
 形成される半導体活性層の厚さは、特に制限されないが、得られる有機半導体の移動度及び耐熱性の観点から、10~500nmが好ましく、30~200nmがより好ましい。
 有機半導体素子としては、特に制限はないが、2~5端子の有機半導体素子であることが好ましく、2又は3端子の有機半導体素子であることがより好ましい。
 また、有機半導体素子としては、光電変換素子でないことが好ましい。
 更に、本発明の有機半導体素子は、非発光性有機半導体素子であることが好ましい。
 2端子素子としては、整流用ダイオード、定電圧ダイオード、PINダイオード、ショットキーバリアダイオード、サージ保護用ダイオード、ダイアック、バリスタ、トンネルダイオード等が挙げられる。
 3端子素子としては、バイポーラトランジスタ、ダーリントントランジスタ、電界効果トランジスタ、絶縁ゲートバイポーラトランジスタ、ユニジャンクショントランジスタ、静電誘導トランジスタ、ゲートターンサイリスタ、トライアック、静電誘導サイリスタ等が挙げられる。
 これらの中でも、整流用ダイオード、及び、トランジスタ類が好ましく挙げられ、電界効果トランジスタがより好ましく挙げられる。
 電界効果トランジスタとしては、有機薄膜トランジスタが好ましく挙げられる。
 本発明の有機薄膜トランジスタの一態様について図面を参照して説明する。
 図1は、本発明の有機半導体素子(有機薄膜トランジスタ(有機TFT))の一態様の断面模式図である。
 図1において、有機薄膜トランジスタ100は、基板10と、基板10上に配置されたゲート電極20と、ゲート電極20を覆うゲート絶縁膜30と、ゲート絶縁膜30のゲート電極20側とは反対側の表面に接するソース電極40及びドレイン電極42と、ソース電極40とドレイン電極42との間のゲート絶縁膜30の表面を覆う有機半導体膜50と、各部材を覆う封止層60とを備える。有機薄膜トランジスタ100は、ボトムゲート-ボトムコンタクト型の有機薄膜トランジスタである。
 なお、図1においては、有機半導体膜50が、上述した組成物より形成される膜に該当する。
 以下、基板、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、及び封止層並びにそれぞれの形成方法について詳述する。
<基板>
 基板は、後述するゲート電極、ソース電極、ドレイン電極などを支持する役割を果たす。
 基板の種類は特に制限されず、例えば、プラスチック基板、ガラス基板、セラミック基板などが挙げられる。中でも、各デバイスへの適用性及びコストの観点から、ガラス基板又はプラスチック基板であることが好ましい。
 プラスチック基板の材料としては、熱硬化性樹脂(例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)など)又は熱可塑性樹脂(例えば、フェノキシ樹脂、ポリエーテルスルフォン、ポリスルフォン、ポリフェニレンスルフォンなど)が挙げられる。
 セラミック基板の材料としては、例えば、アルミナ、窒化アルミニウム、ジルコニア、シリコン、窒化シリコン、シリコンカーバイドなどが挙げられる。
 ガラス基板の材料としては、例えば、ソーダガラス、カリガラス、ホウケイ酸ガラス、石英ガラス、アルミケイ酸ガラス、鉛ガラスなどが挙げられる。
<ゲート電極、ソース電極、ドレイン電極>
 ゲート電極、ソース電極、ドレイン電極の材料としては、例えば、金(Au)、銀、アルミニウム(Al)、銅、クロム、ニッケル、コバルト、チタン、白金、タンタル、マグネシウム、カルシウム、バリウム、ナトリウム等の金属;InO2、SnO2、酸化インジウムスズ(ITO)等の導電性の酸化物;ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリジアセチレン等の導電性高分子;シリコン、ゲルマニウム、ガリウム砒素等の半導体;フラーレン、カーボンナノチューブ、グラファイト等の炭素材料などが挙げられる。中でも、金属であることが好ましく、銀又はアルミニウムであることがより好ましい。
 ゲート電極、ソース電極、ドレイン電極の厚みは特に制限されないが、20~200nmであることが好ましい。
 ゲート電極、ソース電極、ドレイン電極を形成する方法は特に制限されないが、例えば、基板上に、電極材料を真空蒸着又はスパッタする方法、電極形成用組成物を塗布又は印刷する方法などが挙げられる。また、電極をパターニングする場合、パターニングする方法としては、例えば、フォトリソグラフィー法;インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法;マスク蒸着法などが挙げられる。
<ゲート絶縁膜>
 ゲート絶縁膜の材料としては、ポリメチルメタクリレート、ポリスチレン、ポリビニルフェノール、ポリイミド、ポリカーボネート、ポリエステル、ポリビニルアルコール、ポリ酢酸ビニル、ポリウレタン、ポリスルホン、ポリベンゾキサゾール、ポリシルセスキオキサン、エポキシ樹脂、フェノール樹脂等のポリマー;二酸化珪素、酸化アルミニウム、酸化チタン等の酸化物;窒化珪素等の窒化物などが挙げられる。これらの材料のうち、有機半導体膜との相性から、ポリマーであることが好ましい。
 ゲート絶縁膜の材料としてポリマーを用いる場合、架橋剤(例えば、メラミン)を併用することが好ましい。架橋剤を併用することで、ポリマーが架橋されて、形成されるゲート絶縁膜の耐久性が向上する。
 ゲート絶縁膜の膜厚は特に制限されないが、100~1,000nmであることが好ましい。
 ゲート絶縁膜を形成する方法は特に制限されないが、例えば、ゲート電極が形成された基板上に、ゲート絶縁膜形成用組成物を塗布する方法、ゲート絶縁膜材料を蒸着又はスパッタする方法などが挙げられる。ゲート絶縁膜形成用組成物を塗布する方法は特に制限されず、公知の方法(バーコート法、スピンコート法、ナイフコート法、ドクターブレード法)を使用することができる。
 ゲート絶縁膜形成用組成物を塗布してゲート絶縁膜を形成する場合、溶媒除去、架橋などを目的として、塗布後に加熱(ベーク)してもよい。
<バインダーポリマー層>
 本発明の有機半導体素子は、上記半導体活性層と絶縁膜との間にバインダーポリマー層を有することが好ましく、上記半導体活性層とゲート絶縁膜との間にバインダーポリマー層を有することがより好ましい。上記バインダーポリマー層の膜厚は特に制限されないが、20~500nmであることが好ましい。上記バインダーポリマー層は、上記ポリマーを含む層であればよいが、上記バインダーポリマーからなる層であることが好ましい。
 バインダーポリマー層を形成する方法は特に制限されないが、公知の方法(バーコート法、スピンコート法、ナイフコート法、ドクターブレード法、インクジェット法)を使用することができる。
 バインダーポリマー層形成用組成物を塗布してバインダーポリマー層を形成する場合、溶媒除去、架橋などを目的として、塗布後に加熱(ベーク)してもよい。
 また、上記バインダーポリマー層は、本発明の有機半導体組成物により半導体活性層と共に形成されたバインダーポリマー層であることが好ましい。
<封止層>
 本発明の有機半導体素子は、耐久性の観点から、最外層に封止層を備えることが好ましい。封止層には公知の封止剤を用いることができる。
 封止層の厚さは特に制限されないが、0.2~10μmであることが好ましい。
 封止層を形成する方法は特に制限されないが、例えば、ゲート電極とゲート絶縁膜とソース電極とドレイン電極と有機半導体膜とが形成された基板上に、封止層形成用組成物を塗布する方法などが挙げられる。封止層形成用組成物を塗布する方法の具体例は、ゲート絶縁膜形成用組成物を塗布する方法と同じである。封止層形成用組成物を塗布して有機半導体膜を形成する場合、溶媒除去、架橋などを目的として、塗布後に加熱(ベーク)してもよい。
 また、図2は、本発明の有機半導体素子(有機薄膜トランジスタ)の別の一態様の断面模式図である。
 図2において、有機薄膜トランジスタ200は、基板10と、基板10上に配置されたゲート電極20と、ゲート電極20を覆うゲート絶縁膜30と、ゲート絶縁膜30上に配置された有機半導体膜50と、有機半導体膜50上に配置されたソース電極40及びドレイン電極42と、各部材を覆う封止層60とを備える。ここで、ソース電極40及びドレイン電極42は、上述した本発明の組成物を用いて形成されたものである。有機薄膜トランジスタ200は、ボトムゲート-トップコンタクト型の有機薄膜トランジスタである。
 基板、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、有機半導体膜及び封止層については、上述のとおりである。
 上記では図1及び図2において、ボトムゲート-ボトムコンタクト型の有機薄膜トランジスタ、及び、ボトムゲート-トップコンタクト型の有機薄膜トランジスタの態様について詳述したが、本発明の有機半導体素子は、トップゲート-ボトムコンタクト型の有機薄膜トランジスタ、及び、トップゲート-トップコンタクト型の有機薄膜トランジスタにも好適に使用できる。
 なお、上述した有機薄膜トランジスタは、電子ペーパー、ディスプレイデバイスなどに好適に使用できる。
(有機半導体組成物)
 本発明の第1の有機半導体組成物は、特定化合物と、溶媒と、を含有する有機半導体組成物であり、特定化合物と、沸点100℃以上の溶媒と、を含有することが好ましい。
 本発明の第2の有機半導体組成物は、特定高分子化合物と、溶媒と、を含有する有機半導体組成物であり、特定高分子化合物と、沸点100℃以上の溶媒と、を含有することが好ましい。
<沸点100℃以上の溶媒>
 本発明の第1の有機半導体組成物及び第2の有機半導体組成物は、沸点100℃以上の溶媒を含有することが好ましい。
 沸点100℃以上の溶媒としては、例えば、オクタン、デカン、トルエン、キシレン、メシチレン、エチルベンゼン、デカリン、1-メチルナフタレン、テトラリン、ジメチルテトラリンなどの炭化水素系溶媒、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒、テトラクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエン、1-フルオロナフタレン、1-クロロナフタレンなどのハロゲン化炭化水素系溶媒、酢酸ブチル、酢酸アミルなどのエステル系溶媒、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコールなどのアルコール系溶媒、ジブチルエーテル、ジオキサン、アニソール、4-ターシャリブチルアニソール、m-ジメトキシベンゼンなどのエーテル系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒、1-メチル-2-ピロリドン、1-メチル-2-イミダゾリジノン等のイミド系溶媒、ジメチルスルフォキサイドなどのスルホキシド系溶媒、ブチロニトリル、ベンゾニトリルなどのニトリル系溶媒が挙げられる。
 沸点100℃以上の溶媒は、1種単独で用いてもよく、複数組み合わせて用いてもよい。
 これらの中でも、炭化水素系溶媒、ハロゲン化炭化水素系溶媒及び/又はエーテル系溶媒が好ましく、トルエン、キシレン、メシチレン、テトラリン、ジクロロベンゼン又はアニソールがより好ましい。上記の溶媒であると、塗布性に優れ、容易に有機半導体膜を形成することができる。
 また、本発明の有機半導体組成物は、沸点100℃未満の溶媒を含有していてもよいが、その含有量は、沸点100℃以上の溶媒の含有量未満であることが好ましく、沸点100℃以上の溶媒の含有量の1/10以下であることがより好ましく、沸点100℃未満の溶媒を含有しないことが更に好ましい。
 沸点100℃以上の溶媒は、有機半導体組成物の安定性、及び、均一な膜を形成する観点から、常圧における沸点が、150℃以上であることが好ましく、175℃以上であることがより好ましく、200℃以上であることが特に好ましい。また、有機半導体インクを付与後、特定溶媒を乾燥させる観点から、特定溶媒の沸点は300℃以下であることが好ましく、250℃以下であることがより好ましく、220℃以下であることが更に好ましい。
 本発明の有機半導体組成物における沸点100℃以上の溶媒の含有量は、有機半導体組成物の全質量に対して、50~99.9質量%であることが好ましく、80~99.5質量%であることがより好ましく、90~99.0質量%であることが更に好ましい。
 本発明の有機半導体組成物は、特定化合物又は特定高分子化合物、バインダーポリマー及び溶媒以外に他の成分を含んでいてもよい。
 その他の成分としては、公知の添加剤等を用いることができる。
 本発明の有機半導体組成物における特定化合物又は特定高分子化合物、バインダーポリマー及び溶媒以外の成分の含有量は、全固形分に対し、10質量%以下であることが好ましく、5質量%以下であることが好ましく、1質量%以下であることが更に好ましく、0.1質量%以下であることが特に好ましい。上記範囲であると、膜形成性に優れ、得られる有機半導体の移動度及び耐熱性により優れる。なお、固形分とは、溶媒等の揮発性成分を除いた成分の量である。
 本発明の有機半導体組成物の粘度は、特に制限されないが、塗布性がより優れる点で、3~100mPa・sが好ましく、5~50mPa・sがより好ましく、9~40mPa・sが更に好ましい。なお、本発明における粘度は、25℃での粘度である。
 粘度の測定方法としては、JIS Z8803に準拠した測定方法であることが好ましい。
 本発明の第1の有機半導体組成物中、特定化合物は少なくともその一部が溶解していることが好ましく、その全部が溶解していることがより好ましいが、一部が溶解せず分散していてもよい。
 また、本発明の第2の有機半導体組成物中、特定高分子化合物は少なくともその一部が溶解していることが好ましく、その全部が溶解していることがより好ましいが、一部が溶解せず分散していてもよい。
 本発明の第1の有機半導体組成物における特定化合物の含有量は、有機半導体組成物の総量に対し、20質量%以下であることが好ましく、0.001~20質量%であることがより好ましく、0.001~15質量%であることが更に好ましく、0.01~10質量%であることが特に好ましい。なお、特定化合物を2種以上併用する場合、特定化合物の総含有量が上記範囲にあることが好ましい。特定化合物の含有量が上記範囲内であると、キャリア移動度により優れ、保存安定性も優れる。
 また、特定化合物の含有量は、第1の有機半導体組成物の固形分総量の30~99質量%であることが好ましく、50~95質量%であることがより好ましく、70~90質量%であることが更に好ましい。
 本発明の第2の有機半導体組成物における特定高分子化合物の含有量は、有機半導体組成物の総量に対し、20質量%以下であることが好ましく、0.001~20質量%であることがより好ましく、0.001~15質量%であることが更に好ましく、0.01~10質量%であることが特に好ましい。なお、特定高分子化合物を2種以上併用する場合、特定高分子化合物の総含有量が上記範囲にあることが好ましい。特定高分子化合物の含有量が上記範囲内であると、キャリア移動度により優れ、保存安定性も優れる。
 また、特定高分子化合物の含有量は、第2の有機半導体組成物の固形分総量の30~99質量%であることが好ましく、50~95質量%であることがより好ましく、70~90質量%であることが更に好ましい。
 本発明の第1及び第2の有機半導体組成物の製造方法は、特に制限されず、公知の方法を採用できる。例えば、沸点100℃以上の溶媒中に所定量の特定化合物又は特定高分子化合物を添加して、適宜撹拌処理を施すことにより、所望の組成物を得ることができる。また、バインダーポリマーを用いる場合は、特定化合物又は特定高分子化合物、及び、バインダーポリマーを同時又は逐次に添加して好適に組成物を作製することができる。
(有機半導体膜)
 本発明の第1の有機半導体膜は、上記特定化合物を含有することを特徴とする。
 また、本発明の第2の有機半導体膜は、上記特定高分子化合物を含有することを特徴とする。
 また、本発明の第1及び第2の有機半導体膜は、それぞれ、本発明の第1及び第2の有機半導体組成物より形成された有機半導体膜であることが好ましい。
 本発明の第1及び第2の有機半導体膜は、それぞれ、バインダーポリマーを含有することが好ましい。
 本発明の第1の有機半導体膜における特定化合物及びバインダーポリマーは、本発明の第1の有機半導体素子において上述した特定化合物及びバインダーポリマーと同義であり、好ましい態様も同様である。また、本発明の第2の有機半導体膜における特定高分子化合物及びバインダーポリマーは、本発明の第2の有機半導体素子において上述した特定高分子化合物及びバインダーポリマーと同義であり、好ましい態様も同様である。
 本発明の有機半導体膜は、特定化合物又は特定高分子化合物、及び、バインダーポリマー以外に他の成分を含んでいてもよい。
 その他の成分としては、公知の添加剤等を用いることができる。
 本発明の第1及び第2の有機半導体膜における特定化合物又は特定高分子化合物、及び、バインダーポリマー以外の成分の含有量は、10質量%以下であることが好ましく、5質量%以下であることが好ましく、1質量%以下であることが更に好ましく、0.1質量%以下であることが特に好ましい。上記範囲であると、膜形成性に優れ、得られる有機半導体の移動度及び耐熱性により優れる。なお、固形分とは、溶媒等の揮発性成分を除いた成分の量である。
 本発明の有機半導体膜の膜厚は、特に制限されないが、得られる有機半導体の移動度及び耐熱性の観点から、10~500nmが好ましく、30~200nmがより好ましい。
 本発明の有機半導体膜は、有機半導体素子に好適に使用することができ、有機トランジスタ(有機薄膜トランジスタ)に特に好適に使用することができる。
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。なお、特に断りのない限り、「部」、「%」は質量基準である。
 実施例及び比較例で使用した化合物1~9、比較化合物1~3、高分子化合物1~2、及び、比較高分子化合物1を以下に示す。
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
(合成例)
<中間体M1の合成>
 中間体M1を以下のスキーム1に従って合成した。
Figure JPOXMLDOC01-appb-C000051
 スキーム1で使用した化合物は以下の通りである。なお、以下の説明において、同一の化合物は、同一の製造社のものを使用したものとする。
 NBS:N-ブロモスクシンイミド(和光純薬工業(株)製)
 DMF:ジメチルホルムアミド(和光純薬工業(株)製)
 トリイソプロピルシリルアセチレン(和光純薬工業(株)製)
 PdCl2(PPh32:ジクロロビス(トリフェニルホスフィン)パラジウム(東京化成工業(株)製)
 CuI:ヨウ化銅(和光純薬工業(株)製)
 iPrNH:ジイソプロピルアミン(和光純薬工業(株)製)
 THF:テトラヒドロフラン(和光純薬工業(株)製)
 TBAF:フッ化テトラn-ブチルアンモニウム(和光純薬工業(株)製)
 Na2S:硫化ナトリウム(和光純薬工業(株)製)
 I2:ヨウ素(和光純薬工業(株)製)
 NMP:N-メチルピロリドン(関東化学(株)製)
 nBuLi:n-ブチルリチウム(関東化学(株)製)
 CCl2BrCCl2Br:1,2-ジブロモ-1,1,2,2-テトラクロロエタン(和光純薬工業(株)製)
<化合物1の合成>
 上記スキーム1に従って合成した中間体M1と、ドデシルマグネシウムブロマイドから、以下のスキーム2に従って合成を行った。
Figure JPOXMLDOC01-appb-C000052
 上記スキーム2で使用した化合物は以下の通りである。
 C1225MgBr:ドデシルマグネシウムブロマイド(アルドリッチ社製)
 ZnCl2:塩化亜鉛(アルドリッチ社製)
 PdCl2(dppf):1,1’-ビス(ジフェニルホスフィノ)フェロセン-パラジウム(II)ジクロリド-ジクロロメタン錯体(和光純薬工業(株)製)
<化合物2の合成>
 上記スキーム1に従って合成した中間体M1と、p-デシルフェニルボロン酸から、以下のスキーム3に従って合成を行った。
Figure JPOXMLDOC01-appb-C000053
 上記スキーム3で使用した化合物は、以下の通りである。
 p-デシルフェニルボロン:Tetrahedron, 2003, vol.59, No.24, p.4377-4381に記載の方法で合成した。
 Pd(PPh34:テトラキストリフェニルホスフィンパラジウム(東京化成工業(株)製)
 K2CO3:炭酸カリウム(関東化学(株)製)
<化合物3の合成>
 上記スキーム1に従って合成した中間体M1と、2-デシル-5-トリメチルスタニルチオフェンから、以下のスキーム4に従って合成を行った。
Figure JPOXMLDOC01-appb-C000054
 スキーム4で使用した化合物は以下の通りである。
 2-デシル-5-トリメチルスタニルチオフェン:米国特許出願公開第2013/168659号明細書に記載の方法に準じて合成した。
 LiCl:塩化リチウム(アルドリッチ社製)
 DMF:ジメチルホルムアミド(和光純薬工業(株)製)
<化合物4の合成>
 以下のスキーム5に従って合成を行った。
Figure JPOXMLDOC01-appb-C000055
 スキーム5で使用した化合物は以下の通りである。
 1-デシン:東京化成工業(株)製
<化合物5の合成>
 化合物2の合成において、p-デシルフェニルボロン酸の代わりに、p-ブトキシブチルフェニルボロン酸を使用した以外、同様の方法で合成を行った。p-ブトキシブチルフェニルボロンは、以下のスキーム6に従って合成した。
Figure JPOXMLDOC01-appb-C000056
 スキーム6で使用した化合物は以下の通りである。
 1-ブロモブタン(東京化成工業(株)製)
 NaH(東京化成工業(株)製)
 DMF:ジメチルホルムアミド(和光純薬工業(株)製)
 4-(4-ブロモフェニル)ブタン-1-オールは、Journal of Organometallic Chemistry, 2002, vol.65, No.1-2, p.129-135に記載の方法に従って合成した。
<化合物6の合成>
 化合物1の合成において、ドデシルマグネシウムブロマイドの代わりに、ブチルマグネシウムブロマイドを使用した以外は化合物1と同様の方法により、下記のスキーム7に従って化合物6を合成した。
Figure JPOXMLDOC01-appb-C000057
 スキーム7中、ブチルマグネシウムブロマイドは、1-ブロモブタン(東京化成工業(株)製)と、マグネシウム(和光純薬工業(株)製)を、THF(テトラヒドロフラン、和光純薬工業(株)製)中で反応させることによって調製した。
<化合物7の合成>
 化合物7は、下記のスキーム8に従って、合成した。
Figure JPOXMLDOC01-appb-C000058
 上記スキーム8で使用したブチルマグネシウムブロマイドは、スキーム7で使用したブチルマグネシウムブロマイドと同様に調製した。また、ヘキシルマグネシウムブロマイドは、1-ブロモブタンの代わりに、1-ブロモヘキサン(東京化成工業(株)を使用した以外はブチルマグネシウムブロマイドと同様に調製した。
<化合物8の合成>
 化合物8は、下記のスキーム9に従って合成した。
Figure JPOXMLDOC01-appb-C000059
 スキーム9で使用した化合物は、以下の通りである。
 PhB(OH)2:フェニルボロン酸(東京化成工業(株)製)
 C1021MgBr:1-ブロモブタンの代わりに、1-ブロモデカン(東京化成工業(株)を使用した以外は上記スキーム7で使用したブチルマグネシウムブロマイドと同様に調製した。
<化合物9の合成>
 化合物9は、以下のスキーム10に従って合成した。
Figure JPOXMLDOC01-appb-C000060
 スキーム10で使用した化合物は、以下の通りである。
 C1327MgBr:1-ブロモブタンの代わりに、1-ブロモトリデカン(東京化成工業(株)を使用した以外は上記スキーム7で使用したブチルマグネシウムブロマイドと同様に調製した。
<比較化合物1の合成>
 比較化合物1は、国際公開第2012/060460号に記載の方法に従って合成した。
<比較化合物2の合成>
 比較化合物2は、中国特許出願公開第20120912号明細書に記載の方法に従って合成した。
<比較化合物3の合成>
 比較化合物3は、特許第4581062号公報に記載の方法に従って合成した。
<高分子化合物1の合成>
 高分子化合物1は、下記スキーム11に従って合成した。
Figure JPOXMLDOC01-appb-C000061
 スキーム11で使用した化合物は、以下の通りである。
 トリメチルスズクロライド:東京化成工業(株)製
 PdCl2(P(o-tol)32:ジクロロビス(トリ-o-トリルホスフィン)パラジウム(東京化成工業(株)製)
 なお、第二段階で使用したブロモ体は、Lumtec社製の製品番号1265637-81-7を使用した。
<高分子化合物2の合成>
 高分子化合物2は、以下のスキーム12に従って合成した。
Figure JPOXMLDOC01-appb-C000062
 スキーム12で使用した化合物は以下の通りである。
 PdCl2(PhCN)2:ジクロロビス(シアノフェニル)パラジウム(和光純薬工業(株)製)
 AgNO3:硝酸銀(和光純薬工業(株)製)
 KF:フッ化カリウム(和光純薬工業(株)製)
 DMSO:ジメチルスルホキシド(和光純薬工業(株)製)
 比較高分子化合物1として、Aldrich社製の製品番号510823を使用した。
(実施例1~14、及び、比較例1~5)
<FET素子の作製>
 表1~表3に記載の化合物、高分子化合物、比較化合物、又は、比較高分子化合物(各1mg)とトルエン(1mL)を混合し、100℃に加熱したものを、非発光性有機半導体溶液(有機半導体組成物)とした。この組成物を窒素雰囲気下、90℃に加熱したFET特性測定用基板上にキャストすることで有機半導体薄膜(厚み200nm)を形成し、FET特性測定用の有機薄膜トランジスタ素子を得た。FET特性測定用基板としては、ソース及びドレイン電極としてくし型に配置されたクロム/金(ゲート幅W=100mm、ゲート長L=100μm)、絶縁膜としてSiO2(膜厚200nm)を備えたボトムゲート・ボトムコンタクト構造のシリコン基板を用いた。
<キャリア移動度評価>
 各実施例及び比較例の有機薄膜トランジスタ素子のFET特性は、セミオートプローバー(ベクターセミコン(株)製、AX-2000)を接続した半導体パラメーターアナライザー(Agilent社製、4156C)を用いて常圧・窒素雰囲気下で、キャリア移動度を評価した。
 各有機薄膜トランジスタ素子(FET素子)のソース電極-ドレイン電極間に-80Vの電圧を印加し、ゲート電圧を20V~-100Vの範囲で変化させ、ドレイン電流Idを表わす下記式を用いてキャリア移動度μを算出した。
  Id=(w/2L)μCi(Vg-Vth2
 式中、Lはゲート長、Wはゲート幅、Ciは絶縁層の単位面積当たりの容量、Vgはゲート電圧、Vthは閾値電圧を表す。
<溶解性評価>
 表1~表3に記載の本発明の化合物又は比較化合物(各2質量%、各1質量%、各0.5質量%、又は、各0.1質量%)と、トルエン(1mL)とを混合し、100℃に加熱後、室温にて30分放置し、析出なしとなる濃度を求め、トルエンに対する溶解性を以下の4段階で評価した。実用上、A、B、C、又はD評価であることが必要であり、A、B、又はC評価であることが好ましく、A又はB評価であることがより好ましく、A評価であることが更に好ましい。
-評価基準-
  A:2質量%で析出なし
  B:1質量%で析出なし、かつ、2質量%で析出あり
  C:0.5質量%で析出なし、かつ、1質量%で析出あり
  D:0.1質量%で析出なし、かつ、0.5質量%で析出あり
  E:0.1質量%で析出あり
<塗布成膜性評価>
 表1~表3に記載の化合物、又は、比較化合物(各1mg)とトルエン(1mL)とを混合し、100℃に加熱したものを、非発光性有機半導体溶液(有機半導体組成物)とした。この組成物を窒素雰囲気下、90℃に加熱した50素子分のチャネルを形成した基板上全面にキャストすることで有機半導体薄膜を形成し、50素子FET特性測定用の有機薄膜トランジスタ素子を得た。
-評価基準-
  塗布成膜性A:得られた50素子のうち、TFT素子として駆動した素子が45個以上(90%以上)。
  塗布成膜性B:得られた50素子のうち、TFT素子として駆動した素子が45個未満(90%未満)。
<耐熱性評価>
 作製した各有機薄膜トランジスタ素子を、窒素グローブボックス中130℃にて1時間加熱した後に、キャリア移動度μを測定し、下記式より加熱後のキャリア移動度維持率を算出した。
  加熱後のキャリア移動度維持率(%)=移動度(加熱後)/移動度(初期値)
 得られた結果を以下の評価基準に従って評価した。
-評価基準-
  A:90%以上。
  B:70%以上、90%未満。
  C:40%以上、70%未満。
  D:20%以上、40%未満。
  E:20%未満。
 なお、表1及び表2中、N/Aは、TFT特性を示さず、移動度の測定ができなかったため、評価できなかったことを表す。
(実施例15~17、及び、比較例6:インクジェット塗布)
 上記塗布成膜性評価で作製した有機半導体組成物をインクジェット印刷によってFET特性測定用基板上に付与した。具体的には、インクジェット装置としてDPP2831(富士フイルムグラフィックシステムズ(株)製)、10pLヘッドを用い、吐出周波数2Hz、ドット間ピッチ20μmでベタ膜を形成した。その後70℃で1時間乾燥することにより有機半導体膜を形成し、FET特性測定用の有機TFT素子を得た。
 各実施例又は比較例において、インクジェット印刷により得られた有機TFT素子の、キャリア移動度及び耐熱性を評価した。
<大気安定性評価>
 大気安定性は、繰り返し駆動後の閾値電圧の変化によって評価した。
 各有機薄膜トランジスタ素子(FET素子)のソース電極-ドレイン電極間に-80Vの電圧を印加し、ゲート電圧を+20V~-100Vの範囲で100回繰り返して(a)と同様の測定を行い、繰り返し駆動前の閾値電圧Vと繰り返し駆動後の閾値電圧Vの差(|V-V|)を以下の3段階で評価した。この値は小さいほど素子の繰り返し駆動安定性が高く、好ましい。
-評価基準-
  A:|V-V|≦1V
  B:1V<|V-V|≦5V
  C:5V<|V-V|≦10V
  D:10V<|V-V|≦15V
  E:|V-V|>15V
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
 10:基板、20:ゲート電極、30:ゲート絶縁膜、40:ソース電極、42:ドレイン電極、50:有機半導体膜、60:封止層、100,200:有機薄膜トランジスタ

Claims (36)

  1.  下記式1で表される化合物を半導体活性層に含むことを特徴とする、
     有機半導体素子。
    Figure JPOXMLDOC01-appb-C000001
     式1中、Xはそれぞれ独立にカルコゲン原子を表し、p及びqはそれぞれ独立に0~2の整数を表し、R1及びR2はそれぞれ独立に、ハロゲン原子又は下記式Wで表される基を表す。
      -S-L-T   (W)
     式W中、Sは単結合又は-(C(RS2n-を表し、RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、nは1~17の整数を表し、Lは単結合、下記式L-1~式L-15のいずれかで表される2価の連結基又は下記式L-1~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基を表し、Tはアルキル基、ハロアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、又は、トリアルキルシリル基を表す。
    Figure JPOXMLDOC01-appb-C000002
     式L-1~式L-15中、波線部分はS又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、*はT又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、式L-13におけるmは0~4の整数を表し、式L-14及び式L-15におけるmは0~2の整数を表し、式L-1及び式L-2におけるR’はそれぞれ独立に、水素原子又は置換基を表し、式L-13、式L-14及び式L-15におけるR”はそれぞれ独立に、置換基を表す。
  2.  式1中、p及び/又はqが、1又は2である、請求項1に記載の有機半導体素子。
  3.  式1中、p及び/又はqが、1又は2であり、かつ、R1及び/又はR2が式Wで表される基である、請求項1又は2に記載の有機半導体素子。
  4.  式1中、p及びqが1である、請求項1~3のいずれか1項に記載の有機半導体素子。
  5.  式1で表される化合物が、下記式2-1又は式2-2で表される化合物である、請求項1~4のいずれか1項に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000003
     式2-1及び2-2中、Xはそれぞれ独立に、カルコゲン原子を表し、R1’及びR2’はそれぞれ独立に、式Wで表される基を表す。
  6.  すべてのXが、S原子である、請求項1~5のいずれか1項に記載の有機半導体素子。
  7.  式1で表される化合物が、下記の点Aを中心として点対称である、請求項1~6のいずれか1項に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000004
     式中、p及びqは前記式1中と同義であり、0~2の整数を表し、R1及びR2も同義であり、ハロゲン原子又は前記式Wで表される基を表す。
  8.  式Wで表される基の炭素数の合計が、2~40である、請求項1~7のいずれか1項に記載の有機半導体素子。
  9.  式W中、Lが、式L-1~式L-4及び式L-13~式L-15のいずれかで表される2価の連結基、又は、式L-1~式L-4及び式L-13~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基である、請求項1~8のいずれか1項に記載の有機半導体素子。
  10.  式W中、Lが、式L-1~式L-4及び式L-13~式L-15のいずれか単独で表される2価の連結基である、請求項1~9のいずれか1項に記載の有機半導体素子。
  11.  式W中、Sが単結合である、請求項1~10のいずれか1項に記載の有機半導体素子。
  12.  式W中、Lが、式L-13~式L-15のいずれか単独で表される2価の連結基である、請求項1~11のいずれか1項に記載の有機半導体素子。
  13.  Tが、アルキル基である、請求項1~12のいずれか1項に記載の有機半導体素子。
  14.  式Wで表される基が、アルキル基である、請求項1~13のいずれか1項に記載の有機半導体素子。
  15.  有機薄膜トランジスタである、請求項1~14のいずれか1項に記載の有機半導体素子。
  16.  下記式1で表される化合物と、
     溶媒と、を含有することを特徴とする
     有機半導体組成物。
    Figure JPOXMLDOC01-appb-C000005
     式1中、Xはそれぞれ独立にカルコゲン原子を表し、p及びqはそれぞれ独立に0~2の整数を表し、R1及びR2はそれぞれ独立に、ハロゲン原子又は下記式Wで表される基を表す。
      -S-L-T   (W)
     式W中、Sは単結合又は-(C(RS2n-を表し、RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、nは1~17の整数を表し、Lは単結合、下記式L-1~式L-15のいずれかで表される2価の連結基又は下記式L-1~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基を表し、Tはアルキル基、ハロアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、又は、トリアルキルシリル基を表す。
    Figure JPOXMLDOC01-appb-C000006
     式L-1~式L-15中、波線部分はS又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、*はT又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、式L-13におけるmは0~4の整数を表し、式L-14及び式L-15におけるmは0~2の整数を表し、式L-1及び式L-2におけるR’はそれぞれ独立に、水素原子又は置換基を表し、式L-13、式L-14及び式L-15におけるR”はそれぞれ独立に、置換基を表す。
  17.  バインダーポリマーを更に含有する、請求項16に記載の有機半導体組成物。
  18.  請求項16又は17に記載の有機半導体組成物を、インクジェット法又はフレキソ印刷法により基板上に付与する付与工程、及び、前記付与した有機半導体組成物から前記溶媒を少なくとも一部除去する除去工程を含む有機半導体素子の製造方法。
  19.  請求項16又は17に記載の有機半導体組成物より形成された有機半導体膜。
  20.  下記式3で表される構造を含む構成繰り返し単位を有するオリゴマー又はポリマーを半導体活性層に含有することを特徴とする、有機半導体素子。
    Figure JPOXMLDOC01-appb-C000007
     式3中、X3はそれぞれ独立に、カルコゲン原子を表し、R31及びR32はそれぞれ独立に水素原子、ハロゲン原子、又は、下記式Wで表される置換基を表し、*は結合位置を表す。
      -S-L-T   (W)
     式W中、Sは単結合又は-(C(RS2n-を表し、RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、nは1~17の整数を表し、Lは単結合、下記式L-1~式L-15のいずれかで表される2価の連結基又は下記式L-1~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基を表し、Tはアルキル基、ハロアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、又は、トリアルキルシリル基を表す。
    Figure JPOXMLDOC01-appb-C000008
     式L-1~式L-15中、波線部分はS又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、*はT又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、式L-13におけるmは0~4の整数を表し、式L-14及び式L-15におけるmは0~2の整数を表し、式L-1及び式L-2におけるR’はそれぞれ独立に、水素原子又は置換基を表し、式L-13、式L-14及び式L-15におけるR”はそれぞれ独立に、置換基を表す。
  21.  式3で表される構造を含む構成繰り返し単位を有するオリゴマー又はポリマーが、主鎖方向に共役している、請求項20に記載の有機半導体素子。
  22.  式3で表される構造を含む構成繰り返し単位が、下記式Zで表される構造を更に有する、請求項20又は21に記載の有機半導体素子。
      -Ar1-(V)p-Ar2-       (Z)
     式Z中、Ar1及びAr2はそれぞれ独立に単結合、又は、ビニレン基、エチニレン基、アリーレン基、ヘテロアリーレン基若しくはこれらが2つ以上結合した2価の基を表し、
     Vは単結合又は炭素数2~40の2価の共役基を表し、pは1~6を表し、pが2以上のとき2つ以上のVは同一であっても異なっていてもよく、ただし、Ar1、Ar2及びVのすべてが同時に単結合ではない。
  23.  式3で表される構造を含む構成繰り返し単位を有するオリゴマー又はポリマーが、式3で表される構造と、式Zで表される構造が交互に連結したオリゴマー又はポリマーである、請求項22に記載の有機半導体素子。
  24.  式Zにおいて、Vが下記の式VD-1~式VD-16、及び、式VA-1~式VA-11のいずれかで表される2価の連結基である、請求項22又は23に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
     式VD-1~式VD-3、式VD-5、式VD-6、式VD-8、式VD-9、及び、式VD-11~式VD-16中のRはそれぞれ独立に水素原子、ハロゲン原子、又はアルキル基を表し、互いに隣り合うRは結合して環を形成してもよく、式VD-4、式VD-7、式VD-8、式VD-10、式VD-12、式VD-13、式VD-15、及び、式VD-16中のZはそれぞれ独立に水素原子、ハロゲン原子、アルキル基又はアルコキシ基を表し、互いに隣り合うZは結合して環を形成してもよく、式VD-10、式VD-11、式VA-4、式VA-5、及び、式VA-7~式VA-11中のRNはそれぞれ独立にアルキル基を表し、互いに隣り合うRNは結合して環を形成してもよく、式VA-1、式VA-2、式VA-3、式VA-4、式VA-7~式VA-9、及び、式VA-11中、Yはそれぞれ独立に水素原子、アルキル基、アルコキシ基、CN、又は、ハロゲン原子を表し、互いに隣り合うYは結合して環を形成してもよく、*は結合位置を表す。
  25.  式Z中、pが1である、請求項22~24のいずれか1項に記載の有機半導体素子。
  26.  式Z中、Ar1及びAr2がそれぞれ独立に、単結合、下記式Ar-1又は式Ar-2で表される2価の連結基を表す、請求項22~25のいずれか1項に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000011
     式Ar-1中、R’はそれぞれ独立に、アルキル基を表し、p’は0~2の整数を表し、互いに隣接するR’は環を形成してもよく、Wはカルコゲン原子を表し、lは1~4の整数を表し、
     式Ar-2中、R”はそれぞれ独立に、アルキル基又はアルコキシ基を表し、q’は0~4の整数を表し、互いに隣接するR”は環を形成してもよく、mは1~4の整数を表し、*は結合位置を表す。
  27.  式Z中、VがVA-1~VA-11のいずれかで表される2価の連結基である、請求項22~26のいずれか1項に記載の有機半導体素子。
  28.  式3で表される構造を含む構成繰り返し単位を有するオリゴマー又はポリマーの数平均分子量が30,000以上である、請求項20~27のいずれか1項に記載の有機半導体素子。
  29.  式3で表される構造を含む構成繰り返し単位を有するオリゴマー又はポリマーの数平均分子量が150,000以下である、請求項20~28のいずれか1項に記載の有機半導体素子。
  30.  有機薄膜トランジスタである、請求項20~29のいずれか1項に記載の有機半導体素子。
  31.  下記式3で表される構造を含む繰り返し単位を有するオリゴマー又はポリマーと、
     溶媒と、を含有することを特徴とする
     有機半導体組成物。
    Figure JPOXMLDOC01-appb-C000012
     式3中、X3はそれぞれ独立に、カルコゲン原子を表し、R31及びR32はそれぞれ独立に水素原子、ハロゲン原子、又は、下記式Wで表される置換基を表し、*は結合位置を表す。
      -S-L-T   (W)
     式W中、Sは単結合又は-(C(RS2n-を表し、RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、nは1~17の整数を表し、Lは単結合、下記式L-1~式L-15のいずれかで表される2価の連結基又は下記式L-1~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基を表し、Tはアルキル基、ハロアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、又は、トリアルキルシリル基を表す。
    Figure JPOXMLDOC01-appb-C000013
     式L-1~式L-15中、波線部分はS又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、*はT又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、式L-13におけるmは0~4の整数を表し、式L-14及び式L-15におけるmは0~2の整数を表し、式L-1及び式L-2におけるR’はそれぞれ独立に、水素原子又は置換基を表し、式L-13、式L-14及び式L-15におけるR”はそれぞれ独立に、置換基を表す。
  32.  バインダーポリマーを更に含有する、請求項31に記載の有機半導体組成物。
  33.  請求項31又は32に記載の有機半導体組成物を、インクジェット法又はフレキソ印刷法により基板上に付与する付与工程、及び、前記付与した有機半導体組成物から前記溶媒を少なくとも一部除去する除去工程を含む有機半導体素子の製造方法。
  34.  請求項31又は32に記載の有機半導体組成物より形成された有機半導体膜。
  35.  下記式1で表されることを特徴とする、化合物。
    Figure JPOXMLDOC01-appb-C000014
     式1中、Xはカルコゲン原子を表し、p及びqはそれぞれ独立に0~2の整数を表し、R1及びR2はそれぞれ独立に、ハロゲン原子又は下記式Wで表される基を表す。
      -S-L-T   (W)
     式W中、Sは単結合又は-(C(RS2n-を表し、RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、nは1~17の整数を表し、Lは単結合、下記式L-1~式L-15のいずれかで表される2価の連結基又は下記式L-1~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基を表し、Tはアルキル基、ハロアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、又は、トリアルキルシリル基を表す。
    Figure JPOXMLDOC01-appb-C000015
     式L-1~式L-15中、波線部分はS又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、*はT又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、式L-13におけるmは0~4の整数を表し、式L-14及び式L-15におけるmは0~2の整数を表し、式L-1及び式L-2におけるR’はそれぞれ独立に、水素原子又は置換基を表し、式L-13、式L-14及び式L-15におけるR”はそれぞれ独立に、置換基を表す。
  36.  式3で表される構造を含む構成繰り返し単位を有することを特徴とする、オリゴマー又はポリマー。
    Figure JPOXMLDOC01-appb-C000016
     式3中、X3はそれぞれ独立に、カルコゲン原子を表し、R31及びR32はそれぞれ独立に水素原子、ハロゲン原子、又は、下記式Wで表される置換基を表し、*は結合位置を表す。
      -S-L-T   (W)
     式W中、Sは単結合又は-(C(RS2n-を表し、RSはそれぞれ独立に、水素原子又はハロゲン原子を表し、nは1~17の整数を表し、Lは単結合、下記式L-1~式L-15のいずれかで表される2価の連結基又は下記式L-1~式L-15のいずれかで表される2価の連結基が2つ以上結合した2価の連結基を表し、Tはアルキル基、ハロアルキル基、シアノ基、ビニル基、エチニル基、アリール基、ヘテロアリール基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、又は、トリアルキルシリル基を表す。
    Figure JPOXMLDOC01-appb-C000017
     式L-1~式L-15中、波線部分はS又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、*はT又は他の式L-1~式L-15のいずれかで表される2価の連結基との結合位置を表し、式L-13におけるmは0~4の整数を表し、式L-14及び式L-15におけるmは0~2の整数を表し、式L-1及び式L-2におけるR’はそれぞれ独立に、水素原子又は置換基を表し、式L-13、式L-14及び式L-15におけるR”はそれぞれ独立に、置換基を表す。
PCT/JP2015/082667 2014-11-25 2015-11-20 有機半導体素子及びその製造方法、有機半導体組成物、有機半導体膜、化合物、並びに、オリゴマー又はポリマー WO2016084730A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15862559.0A EP3208273B1 (en) 2014-11-25 2015-11-20 Organic semiconductor element and production method for same, organic semiconductor composition, organic semiconductor film, compound, and oligomer or polymer
JP2016561552A JP6337141B2 (ja) 2014-11-25 2015-11-20 有機半導体素子及びその製造方法、有機半導体組成物、有機半導体膜、化合物、並びに、オリゴマー又はポリマー
US15/593,337 US9954172B2 (en) 2014-11-25 2017-05-12 Organic semiconductor element, manufacturing method thereof, organic semiconductor composition, organic semiconductor film, compound, and oligomer or polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-237886 2014-11-25
JP2014237886 2014-11-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/593,337 Continuation US9954172B2 (en) 2014-11-25 2017-05-12 Organic semiconductor element, manufacturing method thereof, organic semiconductor composition, organic semiconductor film, compound, and oligomer or polymer

Publications (1)

Publication Number Publication Date
WO2016084730A1 true WO2016084730A1 (ja) 2016-06-02

Family

ID=56074293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082667 WO2016084730A1 (ja) 2014-11-25 2015-11-20 有機半導体素子及びその製造方法、有機半導体組成物、有機半導体膜、化合物、並びに、オリゴマー又はポリマー

Country Status (4)

Country Link
US (1) US9954172B2 (ja)
EP (1) EP3208273B1 (ja)
JP (1) JP6337141B2 (ja)
WO (1) WO2016084730A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3379590A4 (en) * 2015-11-20 2018-12-05 Fujifilm Corporation Organic semiconductor composition, organic semiconductor film, organic thin film transistor and method for manufacturing organic thin film transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206077A (ja) * 2009-03-05 2010-09-16 Mitsui Chemicals Inc 有機トランジスタ
JP2013533216A (ja) * 2010-05-18 2013-08-22 コーニング インコーポレイテッド 縮合チオフェンを製造する方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060460A1 (ja) 2010-11-05 2012-05-10 住友化学株式会社 置換カルコゲノアセン化合物
CN102659810B (zh) 2012-04-17 2014-03-12 中国科学院化学研究所 一种并四噻吩衍生物及其制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206077A (ja) * 2009-03-05 2010-09-16 Mitsui Chemicals Inc 有機トランジスタ
JP2013533216A (ja) * 2010-05-18 2013-08-22 コーニング インコーポレイテッド 縮合チオフェンを製造する方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUILIANG SUN: "Synthesis and Structure of Bull's Horn-Shaped Oligothienoacenewith Seven Fused Thiophene Rings", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 78, 20 May 2013 (2013-05-20), pages 6271 - 6275, XP055379901 *
JIANYAO HUANG: "Dibenzoannelated Tetrathienoacene:Synthesis, Characterization, andApplications in Organic Field- EffectTransistors", ORGANIC LETTERS, vol. 14, no. 13, pages 3300 - 3303, XP055379900 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3379590A4 (en) * 2015-11-20 2018-12-05 Fujifilm Corporation Organic semiconductor composition, organic semiconductor film, organic thin film transistor and method for manufacturing organic thin film transistor
US10902969B2 (en) 2015-11-20 2021-01-26 Fujifilm Corporation Organic semiconductor composition, organic semiconductor film, organic thin film transistor, and method of manufacturing organic thin film transistor

Also Published As

Publication number Publication date
US20170250345A1 (en) 2017-08-31
EP3208273B1 (en) 2019-07-10
EP3208273A4 (en) 2017-08-23
JPWO2016084730A1 (ja) 2017-07-06
JP6337141B2 (ja) 2018-06-06
EP3208273A1 (en) 2017-08-23
US9954172B2 (en) 2018-04-24

Similar Documents

Publication Publication Date Title
JP6275874B2 (ja) 有機半導体素子及びその製造方法、有機半導体組成物、並びに、有機半導体膜
US20170098786A1 (en) Composition for forming organic semiconductor film, organic semiconductor film and method for manufacturing same, organic semiconductor element and method for manufacturing same, and organic semiconductor compound
JP6448652B2 (ja) 有機半導体素子及びその製造方法、並びにトポケミカル重合性有機半導体化合物
JP2007116115A (ja) 有機半導体材料及び有機電界効果トランジスタ
JP6274529B2 (ja) 有機半導体素子及びその製造方法、有機半導体膜形成用組成物、並びに、有機半導体膜の製造方法
JP6243049B2 (ja) 有機半導体インク、有機半導体素子及びその製造方法、並びに、化合物
JP6337141B2 (ja) 有機半導体素子及びその製造方法、有機半導体組成物、有機半導体膜、化合物、並びに、オリゴマー又はポリマー
US20170125694A1 (en) Organic semiconductor composition and organic semiconductor element
JP6363496B2 (ja) 有機半導体インク、有機半導体膜、並びに、有機半導体素子及びその製造方法
JP6205074B2 (ja) 有機半導体素子及びその製造方法、化合物、有機半導体膜形成用組成物、並びに、有機半導体膜
US10497881B2 (en) Organic semiconductor element, manufacturing method thereof, composition for forming organic semiconductor film, compound, and organic semiconductor film
JP6442057B2 (ja) 有機半導体素子、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法
JP6328791B2 (ja) 有機半導体素子及び化合物
JP6328792B2 (ja) 有機半導体素子及び化合物
JP6573983B2 (ja) 有機半導体膜形成用組成物、化合物、有機半導体膜、有機半導体素子
JP6297709B2 (ja) 有機半導体膜形成用組成物、及び有機半導体膜の製造方法
JP6328790B2 (ja) 有機半導体素子及び化合物
JP6325128B2 (ja) 有機半導体素子及び化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561552

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015862559

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE