WO2016148169A1 - 有機半導体素子及びその製造方法、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法 - Google Patents

有機半導体素子及びその製造方法、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法 Download PDF

Info

Publication number
WO2016148169A1
WO2016148169A1 PCT/JP2016/058256 JP2016058256W WO2016148169A1 WO 2016148169 A1 WO2016148169 A1 WO 2016148169A1 JP 2016058256 W JP2016058256 W JP 2016058256W WO 2016148169 A1 WO2016148169 A1 WO 2016148169A1
Authority
WO
WIPO (PCT)
Prior art keywords
atom
group
formula
organic semiconductor
independently
Prior art date
Application number
PCT/JP2016/058256
Other languages
English (en)
French (fr)
Inventor
北村 哲
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP16764998.7A priority Critical patent/EP3258513B1/en
Priority to KR1020177026146A priority patent/KR20170113671A/ko
Priority to JP2017506576A priority patent/JP6285075B2/ja
Priority to CN201680014948.XA priority patent/CN107431125B/zh
Publication of WO2016148169A1 publication Critical patent/WO2016148169A1/ja
Priority to US15/696,194 priority patent/US10312447B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3222Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more oxygen atoms as the only heteroatom, e.g. furan
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3225Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more Se atoms as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3245Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and oxygen as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/514Electron transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/592Stability against heat
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating

Definitions

  • the present invention relates to an organic semiconductor device and a method of manufacturing the same, a compound, an organic semiconductor composition, and an organic semiconductor film and a method of manufacturing the same.
  • Organic semiconductors such as FETs (field effect transistors) and RFIDs (Radio Frequency Identifiers (RF tags)) used for liquid crystal displays and organic electroluminescence (EL) displays because they can be reduced in weight, cost and flexibility.
  • An organic transistor having a film is used.
  • As a conventional organic semiconductor what was described in patent document 1 or 2 is known.
  • the problem to be solved by the present invention is that the carrier mobility (hereinafter, also simply referred to as “mobility” and high carrier mobility is also referred to as “high mobility”) is high, and variations in mobility are suppressed.
  • Another object of the present invention is to provide a novel compound suitable as an organic semiconductor.
  • another problem to be solved by the present invention is high mobility, an organic semiconductor film excellent in temporal stability under high temperature and high humidity with suppressed variation in mobility, and a method of manufacturing the same, and It is providing the organic-semiconductor composition which can form the said organic-semiconductor film
  • A is an electron acceptor unit including a partial structure having at least one of an sp 2 nitrogen atom, a carbonyl group, and a thiocarbonyl group in a ring structure
  • D is at least one N atom, O atom
  • S An electron donor unit containing, as a partial structure, a divalent aromatic heterocyclic group having an atom or a Se atom in a ring structure, or a divalent aromatic hydrocarbon group consisting of a condensed ring structure of two or more rings,
  • / or A has at least one monovalent group represented by formula 1-1,
  • L is a linear or branched alkylene group having carbon number m
  • R is an alkyl group having carbon number n having no substituent
  • * Represents a binding site to another structure
  • m is an integer of 1 or more
  • R is an alkyl group having n carbon atoms having no substituent
  • Ra is a carbon number having no substituent
  • R a is an alkyl group of a
  • R b is an alkyl group of carbon number b having no substituent
  • * is a bonding site to another structure
  • X each independently represents an O atom, an S atom, a Se atom or NRA 1
  • Y each independently represents an O atom or an S atom
  • each Z a is independently to represent CR A2 or N atom
  • W each independently, C (R A2) 2, NR A1, N atom, CR A2, O atom, a S atom, or Se atom
  • R A1 is independently ,
  • R A2 independently represents a hydrogen atom, a halogen atom, an alkyl group, or another structure Represents a binding site to and each * independently represents a binding site to another structure
  • ⁇ 4> The organic semiconductor device according to any one of ⁇ 1> to ⁇ 3>, wherein D is a structure represented by Formula D-1 in Formula 1.
  • X ' are each independently, O atom, S atom, Se atom, or represents NR D1, are each Z d independently represent an N atom or a CR D2, R D1 are each independently And R D2 each independently represents a hydrogen atom or a monovalent organic group, M represents a single bond, a divalent aromatic heterocyclic group, or a divalent aromatic hydrocarbon group, Represents an alkenylene group, an alkynylene group, or a divalent group formed by combining them, p and q each independently represent an integer of 0 to 4, and * each independently represents a binding site to another structure Represent ⁇ 5>
  • X each independently represents an O atom, an S atom, a Se atom, or NRA 1
  • each Y independently represents an O atom or an S atom
  • each Z a independently represents CRA 2 Or an N atom
  • each R A1 independently represents an alkyl group, a monovalent group represented by Formula 1-1, or a binding site to another structure
  • each R A2 is independently a hydrogen atom
  • each Z d independently represents an N atom, a halogen atom, an alkyl group, or a binding site to another structure.
  • R 21 represents an atom or CR D 2 , each R D 1 independently represents a monovalent organic group, R D 2 each independently represents a hydrogen atom or a monovalent organic group, and M represents a single bond or a divalent aromatic group
  • the organic semiconductor device according to any one of ⁇ 1> to ⁇ 5>, wherein the organic semiconductor layer further contains an insulating polymer containing a constitutional unit represented by the following formula I-1:
  • R 22 to R 26 each independently represent a hydrogen atom, a hydroxy group, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group or a halogen atom, and R 22 Adjacent two of R 26 may be linked to each other to form a ring, and R 21 represents a hydrogen atom or an alkyl group, ⁇ 7>
  • ⁇ 8> The organic semiconductor device according to any one of ⁇ 1> to ⁇ 7>, which is an organic thin film transistor, ⁇ 9>
  • A is an electron acceptor unit having, as a partial structure, at least one structure selected from the group consisting of structures represented by the following Formulas A-1 to A-12, and D is at least one N atom, Electron donor unit containing, as a partial structure, a divalent aromatic heterocyclic group having an O atom, an S atom, or a Se atom in a ring structure, or a divalent aromatic hydrocarbon group consisting of a condensed ring structure of two or more rings And D and / or A have at least one monovalent group represented by formula 1-1,
  • X each independently represents an O atom, an S atom, a Se atom or NRA 1
  • Y each independently represents an O atom or an S atom
  • each Z a is independently to represent CR A2 or N atom
  • W each independently, C (R A2) 2, NR A1, N atom, CR A2, O atom, a S atom, or Se atom
  • R A1 is independently And an alkyl group, a monovalent group represented by the following formula 1-1, or a bonding site to another structure
  • R A2 independently represents a hydrogen atom, a halogen atom, an alkyl group, or Represents a binding site to a structure
  • each * independently represents a binding site to another structure
  • L is a linear or branched alkylene group having carbon number m
  • R is an alkyl group having carbon number n having no substituent
  • * Represents a binding site to another structure, ⁇ 10>
  • D is a structure represented by Formula D-1 in Formula 1.
  • X ' are each independently, O atom, S atom, Se atom, or represents NR D1, are each Z d independently represent an N atom or a CR D2, R D1 are each independently And R D2 each independently represents a hydrogen atom or a monovalent organic group, M represents a single bond, a divalent aromatic heterocyclic group, or a divalent aromatic hydrocarbon group, Represents an alkenylene group, an alkynylene group, or a divalent group formed by combining them, p and q each independently represent an integer of 0 to 4, and * each independently represents a binding site to another structure Represent ⁇ 11> The compound according to ⁇ 9> or ⁇ 10>, wherein the constituent repeating unit represented by the above formula 1 is a constituent repeating unit represented by any one of the formulas 2 to 5,
  • X each independently represents an O atom, an S atom, a Se atom, or NRA 1
  • each Y independently represents an O atom or an S atom
  • each Z a independently represents CRA 2 Or an N atom
  • each R A1 independently represents an alkyl group, a monovalent group represented by Formula 1-1, or a binding site to another structure
  • each R A2 is independently a hydrogen atom
  • each Z d independently represents an N atom, a halogen atom, an alkyl group, or a binding site to another structure.
  • R 21 represents an atom or CR D 2 , each R D 1 independently represents a monovalent organic group, R D 2 each independently represents a hydrogen atom or a monovalent organic group, and M represents a single bond or a divalent aromatic group
  • An organic semiconductor composition comprising a compound having a molecular weight of 2,000 or more and a solvent, which has a constituent repeating unit represented by Formula 1;
  • A is an electron acceptor unit including a partial structure having at least one of an sp 2 nitrogen atom, a carbonyl group, and a thiocarbonyl group in a ring structure
  • D is at least one N atom, O atom
  • S An electron donor unit containing, as a partial structure, a divalent aromatic heterocyclic group having an atom or a Se atom in a ring structure, or a divalent aromatic hydrocarbon group consisting of a condensed ring structure of two or more rings,
  • / or A has at least one monovalent group represented by formula 1-1,
  • L is a linear or branched alkylene group having carbon number m
  • R is an alkyl group having carbon number n having no substituent
  • * Represents a binding site to another structure
  • R 22 to R 26 each independently represent a hydrogen atom, a hydroxy group, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group or a halogen atom, and R 22 Adjacent two of R 26 may be linked to each other to form a ring, and R 21 represents a hydrogen atom or an alkyl group, ⁇ 15>
  • An organic semiconductor film comprising a compound having a molecular weight of 2,000 or more, having a constitutional repeating unit represented by the formula 1
  • A is an electron acceptor unit including a partial structure having at least one of an sp 2 nitrogen atom, a carbonyl group, and a thiocarbonyl group in a ring structure
  • D is at least one N atom, O atom
  • S An electron donor unit containing, as a partial structure, a divalent aromatic heterocyclic group having an atom or a Se atom in a ring structure, or a divalent aromatic hydrocarbon group consisting of a condensed ring structure of two or more rings,
  • / or A has at least one monovalent group represented by formula 1-1,
  • L is a linear or branched alkylene group having carbon number m
  • R is an alkyl group having carbon number n having no substituent
  • * Represents a binding site to another structure
  • R 22 to R 26 each independently represent a hydrogen atom, a hydroxy group, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group or a halogen atom, and R 22 Adjacent two of R 26 may be linked to each other to form a ring, and R 21 represents a hydrogen atom or an alkyl group, ⁇ 17> A method for producing an organic semiconductor film, comprising a coating step of applying the organic semiconductor composition according to ⁇ 13> or ⁇ 14> onto a substrate, ⁇ 18> A method for producing an organic semiconductor film, comprising a coating step of applying the organic semiconductor composition according to ⁇ 14> on a gate insulating film having a surface energy of 50 to 75 mNm ⁇ 1 or less.
  • a method for producing an organic semiconductor device comprising a coating step of applying the organic semiconductor composition according to ⁇ 13> or ⁇ 14> onto a substrate
  • a method for producing an organic semiconductor device comprising a coating step of applying the organic semiconductor composition according to ⁇ 14> on a gate insulating film having a surface energy of 50 to 75 mNm ⁇ 1 or less.
  • ADVANTAGE OF THE INVENTION it is a high mobility, the dispersion
  • a novel compound suitable as an organic semiconductor can be provided.
  • an organic semiconductor film having high mobility, suppressing variation in mobility, and excellent in temporal stability under high temperature and high humidity, a method for producing the same, and the above organic semiconductor film are preferable.
  • the present invention can provide an organic semiconductor composition that can be formed into
  • is the numerical values described before and after thereof in the sense of including as a lower limit and an upper limit.
  • groups atomic groups
  • notations not describing substitution and non-substitution include those having no substituent as well as those having a substituent.
  • the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • Organic semiconductor device The organic semiconductor device of the present invention is characterized by having an organic semiconductor layer containing a compound having a molecular weight of 2,000 or more (hereinafter, also referred to as “specific compound”) having a constitutional repeating unit represented by the following formula 1 I assume.
  • the inventors of the present invention have found that the organic semiconductor device of the present invention has high carrier mobility, suppresses variation in mobility, and is excellent in temporal stability under high temperature and high humidity.
  • the details of the mechanism by which the above effects are obtained are unknown, but are presumed to be due to the following reasons.
  • the polymer compound represented by the formula 1 is a so-called donor-acceptor type (also referred to as “DA type”) polymer having a main chain skeleton formed of an electron donor unit and an acceptor unit.
  • DA type polymer has a structure which is easily polarized between a donor unit and an acceptor unit in the molecule, and is considered to be advantageous for carrier conduction in the molecule.
  • the specific compound is preferably an organic semiconductor compound.
  • the organic-semiconductor element of this invention is an organic thin-film transistor.
  • A is an electron acceptor unit including a partial structure having at least one of an sp 2 nitrogen atom, a carbonyl group, and a thiocarbonyl group in a ring structure
  • D is at least one N atom, O atom
  • S An electron donor unit containing, as a partial structure, a divalent aromatic heterocyclic group having an atom or a Se atom in a ring structure, or a divalent aromatic hydrocarbon group consisting of a condensed ring structure of two or more rings, And / or A has at least one monovalent group represented by formula 1-1.
  • the electron acceptor unit refers to a structural unit having an electron accepting property, and examples thereof include a ⁇ electron deficient heterocyclic unit such as phthalimide.
  • the electron donor unit is a constitutional unit having an electron donating property, and examples thereof include a ⁇ electron excess type heterocyclic ring unit such as thiophene.
  • L is a linear or branched alkylene group having carbon number m
  • R is an alkyl group having carbon number n having no substituent
  • the organic semiconductor device of the present invention has an organic semiconductor layer containing a specific compound.
  • A represents an electron acceptor unit including a partial structure having at least one of an sp 2 nitrogen atom, a carbonyl group and a thiocarbonyl group in a ring structure.
  • A preferably has at least one structure selected from the group consisting of the structures represented by the following formulas A-1 to A-12 as a partial structure, and A has a structure represented by the following formulas A-1 to A-12 More preferably, it is a structure represented by at least one selected from the group consisting of
  • X each independently represents an O atom, an S atom, a Se atom or NRA 1
  • Y each independently represents an O atom or an S atom
  • each Z a is independently to represent CR A2 or N atom
  • W each independently, C (R A2) 2, NR A1, N atom, CR A2, O atom, a S atom, or Se atom
  • R A1 is independently , An alkyl group, a monovalent group represented by Formula 1-1, or a bonding site to another structure
  • R A2 independently represents a hydrogen atom, a halogen atom, an alkyl group, or another structure
  • each * independently represents a binding site to another structure.
  • one W represents any one of the following three aspects.
  • Aspect 1 W is a CR A2 and R A2 represents a binding site to another structure.
  • Aspect 2 W is NR A1 and R A1 represents a binding site to another structure.
  • Aspect 3 W is C (R A2 ) 2 , and one of R A2 represents a binding site to another structure.
  • X are each independently, O atom, a S atom, Se atom or NR A1, NR A1 are preferred.
  • Each Y independently represents an O atom or an S atom, and an O atom is preferable.
  • Z a each independently represent a CR A2 or N atom, CR A2 are preferred.
  • Each W independently represents C (RA 2 ) 2 , NR A1 , N atom, CRA 2 , O atom, S atom or Se atom, and C (RA 2 ) 2 , CRA 2 or S atom is preferable.
  • Each R RA1 independently represents an alkyl group, a monovalent group represented by Formula 1-1, or a binding site to another structure, and is preferably a monovalent group represented by Formula 1-1.
  • R A1 represents an alkyl group
  • an alkyl group having 2 to 30 carbon atoms is preferable, and an alkyl group having 8 to 25 carbon atoms is more preferable.
  • the alkyl group may be linear or branched.
  • the binding site to another structure in R A1 is a binding site to another structure represented by * in the above formulas A-1 to A-12.
  • Each R A2 independently represents an alkyl group, a hydrogen atom, a halogen atom, or a bonding site to another structure, and a hydrogen atom or a bonding site to another structure is preferable.
  • R A2 represents an alkyl group
  • an alkyl group having 2 to 30 carbon atoms is preferable, and an alkyl group having 8 to 25 carbon atoms is more preferable.
  • the alkyl group may be linear or branched.
  • R A2 represents a halogen atom, an F atom, a Cl atom, a Br atom, or an I atom is preferable, and an F atom is more preferable.
  • the binding site to another structure in R A2 is a binding site to another structure represented by * in the above formulas A-1 to A-12.
  • the specific compound preferably has at least one structure selected from the group consisting of the structures represented by the following formulas A-1 to A-12 in the formula 1 as a partial structure, and the formula A-1 to It is more preferable to have at least one structure selected from the group consisting of the structures represented by Formula A-6, Formula A-8 to Formula A-10, and Formula A-12 as a partial structure, Formula A-1, It is further preferable to have at least one structure selected from the group consisting of the structures represented by Formula A-3, Formula A-5, and Formula A-8 as a partial structure, Formula A-1, Formula A-3, and It is particularly preferable to have at least one structure selected from the group consisting of structures represented by formula A-5 as a partial structure, and selected from the group consisting of structures represented by formula A-1 and formula A-3 Having at least one structure as a partial structure It is also preferred.
  • the specific compound is a structure in which A in formula 1 is represented by each formula rather than an embodiment in which A in formula 1 has a structure represented by each formula as a partial structure, and the formula
  • R A1 has the same meaning as R A1 in the formula A1 ⁇ formula A-12, preferable embodiments thereof are also the same.
  • * represents a binding site to another structure.
  • [Electron donor unit] D is a divalent aromatic heterocyclic group having at least one N atom, O atom, S atom, or Se atom in the ring structure, or a divalent aromatic hydrocarbon group consisting of a condensed ring structure of two or more rings These are electron donor units containing as a partial structure.
  • a bivalent aromatic heterocyclic group having at least one N atom, O atom, S atom or Se atom in a ring structure a bivalent aromatic heterocyclic group having at least one S atom in a ring structure Is preferred.
  • the above divalent aromatic heterocyclic group may be a single ring or may have a condensed ring structure of two or more rings, and a combination of two or more single ring divalent aromatic heterocyclic groups Or have a structure in which two or more single-ring divalent aromatic heterocyclic groups and a divalent aromatic heterocyclic group having one or more condensed rings of two or more rings are combined. preferable.
  • the divalent aromatic heterocyclic group may further have a substituent, and preferred examples of the substituent include an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aromatic hydrocarbon group and an aromatic heterocyclic group. And halogen atoms, and monovalent groups represented by the formula 1-1.
  • a hydrogen atom is substituted by an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aromatic hydrocarbon group, an aromatic heterocyclic group, a halogen atom, or a group represented by formula 1-1
  • R D1 has the same meaning as R D1 in Formula D-1 described later, and a preferred embodiment is also the same, and * represents a binding site to another structure.
  • the alkyl group is preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 8 to 30 carbon atoms.
  • the aromatic hydrocarbon group having a condensed ring structure of two or more rings is preferably an aromatic hydrocarbon group having a carbon number of 10 to 20, and is a fluorene group, a naphthylene group, or an aromatic carbon having three or four rings fused.
  • a group obtained by removing two hydrogen atoms from hydrogen is more preferable, and a group obtained by removing two hydrogen atoms from an anthracene ring, a phenanthrene ring, a chrysene ring, or a pyrene ring is more preferable.
  • the aromatic hydrocarbon group may further have a substituent, and preferred examples of the substituent include an alkyl group, a halogen atom, and a monovalent group represented by Formula 1-1.
  • D is preferably a structure represented by Formula D-1.
  • X ' are each independently, O atom, S atom, Se atom, or represents NR D1, are each Z d independently represent an N atom or a CR D2, R D1 are each independently And R D2 each independently represents a hydrogen atom or a monovalent organic group, and M represents a single bond, a divalent aromatic heterocyclic group, or a divalent aromatic hydrocarbon.
  • Group, an alkenylene group, an alkynylene group, or a divalent group formed by combining them, p and q each independently represent an integer of 0 to 4, and * represents each independently a bond to another structure Represents a site.
  • Z d independently represents N atom or CR D2 , more preferably CR D2 .
  • Each R D1 independently represents a monovalent organic group, and is preferably an alkyl group (preferably having 1 to 30 carbon atoms), an alkynyl group (preferably having 2 to 30 carbon atoms), and an alkenyl group (having 2 to 30 carbon atoms).
  • an alkoxy group preferably having a carbon number of 1 to 30
  • an aromatic hydrocarbon group preferably having a carbon number of 6 to 30
  • an aromatic heterocyclic group having a 5- to 7-membered ring.
  • Is preferably O atom, N atom, S atom, Se atom
  • halogen atom F atom, Cl atom, Br atom, I atom is preferable, F atom or Cl atom is more preferable, and F atom is particularly preferable.
  • a monovalent group represented by the formula 1-1 and more preferably an alkyl group, a halogen atom or a monovalent group represented by the formula 1-1.
  • R D2 each independently represents a hydrogen atom or a monovalent organic group, and a hydrogen atom, an alkyl group (preferably having 1 to 30 carbon atoms), an alkynyl group (preferably having 2 to 30 carbon atoms), and an alkenyl group (preferably having 2 to 30 carbon atoms).
  • an alkoxy group preferably 1 to 30 carbon atoms
  • an aromatic hydrocarbon group preferably 6 to 30 carbon atoms
  • an aromatic heterocyclic group 5 to 7-membered ring
  • a halogen atom F atom, Cl atom, Br atom and I atom are preferable, and F atom or Cl atom is more preferable, F atom is particularly preferred.
  • M represents a single bond, a divalent aromatic heterocyclic group, a divalent aromatic hydrocarbon group, an alkenylene group, an alkynylene group, or a divalent group formed by combining these.
  • the divalent aromatic heterocyclic group for M may be a single ring or may have a condensed ring structure of two or more rings.
  • Examples of the divalent aromatic heterocyclic group preferably used in the present invention are the same as the examples of the divalent aromatic heterocyclic group having a condensed ring structure of two or more rings.
  • the divalent aromatic hydrocarbon group for M is preferably an aromatic hydrocarbon group having 6 to 20 carbon atoms, and is a phenylene group, a biphenylene group, a fluorene group, a naphthylene group, or an aromatic ring formed by condensation of three or four rings.
  • a group obtained by removing two hydrogen atoms from a group hydrocarbon is more preferable, and a group obtained by removing two hydrogen atoms from a fluorene group, a naphthylene group, an anthracene ring, a phenanthrene ring, a chrysene ring or a pyrene ring is more preferable.
  • the divalent aromatic heterocyclic group or the divalent aromatic hydrocarbon group for M may further have a substituent, and preferred examples of the substituent include an alkyl group, an alkoxy group, a halogen atom, a formula The monovalent group represented by 1-1 is mentioned.
  • the alkenylene group as M is preferably an alkenylene group having 2 to 10 carbon atoms, more preferably an alkenylene group having 2 to 4 carbon atoms, and still more preferably an ethenylene group.
  • the alkynylene group for M is preferably an alkynylene group having 2 to 10 carbon atoms, more preferably an alkynylene group having 2 to 4 carbon atoms, and still more preferably an ethynylene group.
  • p and q are each independently an integer of 0 to 4, preferably an integer of 1 to 3, and more preferably an integer of 1 to 2.
  • p and q have the same value.
  • p + q is preferably 2 to 4.
  • a hydrogen atom is an alkyl group, or, may be substituted by a group represented by the formula 1-1
  • R D1 has the same meaning as R D1 in the above formula D1, also preferred embodiments
  • * represents a binding site to another structure.
  • the alkyl group is preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 8 to 30 carbon atoms.
  • D and / or A have at least one monovalent group represented by Formula 1-1 above.
  • the number of monovalent groups represented by Formula 1-1 in the constituent repeating unit represented by Formula 1 is preferably 1 to 4, and more preferably 1 or 2.
  • L is a linear or branched alkylene group having m carbon atoms
  • m is an integer of 1 or more, preferably 2 or more, and 3 or more Is more preferred.
  • m is preferably 30 or less, and more preferably 20 or less.
  • R is a C n alkyl group having no substituent, and 6 ⁇ m + n ⁇ 50.
  • n is preferably an integer of 2 or more.
  • the integer is preferably 4 or more, and more preferably 6 or more.
  • n is preferably 30 or less, and more preferably 25 or less.
  • m + n is 6 ⁇ m + n ⁇ 50, preferably 6 ⁇ m + n ⁇ 40, more preferably 8 ⁇ m + n ⁇ 35, and still more preferably 14 ⁇ m + n ⁇ 30. preferable.
  • the alkyl group represented by R may be linear, branched or cyclic, but is preferably a linear or branched alkyl group.
  • R is more preferably a branched alkyl group
  • R is a linear alkyl group Is more preferred.
  • the monovalent group represented by the above formula 1-1 is preferably possessed by A in the formula 1, and more preferably bonded to the nitrogen atom present in A in the formula 1.
  • the monovalent group represented by Formula 1-1 above is preferably a monovalent group represented by Formula 1-2 or Formula 1-3 below.
  • m is an integer of 1 or more
  • R is an alkyl group having n carbon atoms having no substituent
  • Ra is a carbon number having no substituent
  • R a is an alkyl group of a
  • R b is an alkyl group of carbon number b having no substituent, 6 ⁇ m + n ⁇ 50, or 6 ⁇ m + a + b ⁇ 50
  • * represents a binding site to another structure Represent.
  • m is an integer of 1 or more, preferably 2 or more, and more preferably 3 or more. In addition, m is preferably 30 or less, and more preferably 20 or less. In Formula 1-2, n is preferably an integer of 2 or more. The integer is preferably 4 or more, and more preferably 6 or more. In addition, n is preferably 30 or less, and more preferably 25 or less. In Formula 1-2, m + n is 6 ⁇ m + n ⁇ 50, preferably 6 ⁇ m + n ⁇ 40, more preferably 8 ⁇ m + n ⁇ 35, and still more preferably 14 ⁇ m + n ⁇ 30. preferable. In Formula 1-2, the alkyl group represented by R may be linear, branched or cyclic, but is preferably a linear or branched alkyl group, branched Is more preferably an alkyl group in the form of
  • m is an integer of 1 or more, preferably 2 or more, and more preferably 3 or more. In addition, m is preferably 30 or less, and more preferably 20 or less.
  • a is preferably an integer of 1 or more. The integer is preferably 2 or more, and more preferably 4 or more. Further, a is preferably 30 or less, more preferably 20 or less.
  • b is preferably an integer of 2 or more. The integer is preferably 4 or more, and more preferably 6 or more. Further, b is preferably 30 or less, more preferably 20 or less.
  • m + a + b is 6 ⁇ m + a + b ⁇ 50, preferably 6 ⁇ m + a + b ⁇ 40, more preferably 8 ⁇ m + a + b ⁇ 35, and still more preferably 14 ⁇ m + a + b ⁇ 30. preferable.
  • the alkyl group represented by R a or R b may be linear, branched or cyclic, but is a linear or branched alkyl group Is preferable, and a linear alkyl group is more preferable.
  • A preferably has a symmetry of C 2 , C 2 v or C 2 h .
  • D has a symmetry of C 2 , C 2 v or C 2 h .
  • the symmetry of A is C 2 , C 2 v or C 2 h
  • the symmetry of D is C 2 , C 2 v Or C 2 h is more preferable.
  • the description of “Molecule Symmetry and Group Theory” (Nakazaki Masao, Tokyo Kagaku Dojin) is referred to.
  • the constitutional repeating unit represented by the above formula 1 is preferably a constitutional repeating unit represented by any one of the formulas 2 to 5, and it is more preferable that the constitutional repeating unit is represented by the formula 2 or the formula 3
  • the constituent repeating unit represented by formula 3 is more preferable.
  • X each independently represents an O atom, an S atom, a Se atom, or NRA 1
  • each Y independently represents an O atom or an S atom
  • each Z a independently represents CRA 2 Or an N atom
  • each R A1 independently represents an alkyl group, a monovalent group represented by Formula 1-1, or a binding site to another structure
  • each R A2 is independently a hydrogen atom
  • each Z d independently represents an N atom, a halogen atom, an alkyl group, or a binding site to another structure.
  • R 21 represents an atom or CR D 2 , each R D 1 independently represents a monovalent organic group, R D 2 each independently represents a hydrogen atom or a monovalent organic group, and M represents a single bond or a divalent aromatic group
  • X, Y, Z a , R A1 and, R A2 is, X in the above formula A1-type A-12, Y, Z a , R A1, and the R A2, respectively It is synonymous and a preferable aspect is also the same. Further, in the formulas 2 to 5, X ', Z d , R D1 , R D2 , M, p and q are X', Z d , R D1 , R D2 , M, p in the above formula D-1 , And q, respectively, and preferred embodiments are also the same.
  • the content of the constituent repeating unit represented by the formula 1 in the specific compound is preferably 60 to 100% by mass, more preferably 80 to 100% by mass, with respect to the total mass of the specific compound. It is further preferable that the content be up to 100% by mass, and it is particularly preferable that the composition is formed only of the constitutional repeating unit substantially represented by the formula 1.
  • being formed only from the structural repeating unit substantially represented by Formula 1 means that content of the structural repeating unit represented by Formula 1 is 95 mass% or more, and 97 mass% It is preferable that it is the above, and it is more preferable that it is 99 mass% or more.
  • the specific compound may contain the constitutional repeating unit represented by the formula 1 singly or in combination of two or more.
  • the specific compound is a compound having two or more constituent repeating units represented by the formula 1, may be an oligomer having a constituent repeating unit number n of 2 to 9, and a polymer having a constituent repeating unit number n of 10 or more ((1) It may be a polymer).
  • the number n of structural repeating units is 10 or more.
  • the molecular weight of the compound having a constituent repeating unit represented by the formula 1 is 2,000 or more, preferably 10,000 or more, and more preferably 20,000 or more. It is more preferably 30,000 or more, and particularly preferably 45,000 or more. Further, from the viewpoint of solubility, it is preferably 1,000,000 or less, more preferably 300,000 or less, still more preferably 200,000 or less, particularly preferably 150,000 or less preferable.
  • the molecular weight of the compound when a compound has a molecular weight distribution, the molecular weight of the compound means a weight average molecular weight.
  • the molecular weight of the compound when the specific polymer compound has a molecular weight distribution, the molecular weight of the compound means a weight average molecular weight.
  • the weight average molecular weight and the number average molecular weight of the specific polymer compound are measured by gel permeation chromatography (GPC (Gel Permeation Chromatography)) method, and determined by converting them into standard polystyrene.
  • HLC-8121GPC manufactured by Tosoh Corp.
  • TSKgel GMH HR- H (20) HT manufactured by Tosoh Corp., 7.8 mm ID ⁇ 30 cm
  • eluent 1,2,4-trichlorobenzene is used.
  • the conditions are a sample concentration of 0.02% by mass, a flow rate of 1.0 ml / min, a sample injection amount of 300 ⁇ l, a measurement temperature of 160 ° C., and an IR (infrared) detector.
  • the standard curve is a Tosoh Co., Ltd.
  • the structure of the end of the specific compound is not particularly limited, and may be, for example, depending on the presence or absence of other constituent units, the type of substrate used at the time of synthesis, and the type of quenching agent (reaction terminator) at the time of synthesis.
  • examples thereof include a hydrogen atom, a hydroxy group, a halogen atom, an ethylenically unsaturated group, an alkyl group, an aromatic heterocyclic group (preferably a thiophene ring), and an aromatic hydrocarbon group (preferably a benzene ring).
  • the synthesis method of the specific compound is not particularly limited, and may be synthesized with reference to known methods.
  • JP-A-2010-527327, JP-A-2007-516315, JP-A-2014-515043, JP-A-2014-507488, JP-A-2011-501451, JP-A-2010-18790 The precursor of the electron acceptor unit and the precursor of the electron donor unit are synthesized with reference to documents such as WO 2012/174561, JP 2011-514399, and JP 2011-514913, and the like.
  • the precursor can be synthesized by cross coupling reaction such as Suzuki coupling or Stille coupling.
  • the organic semiconductor layer of the organic semiconductor device of the present invention may contain a binder polymer.
  • the organic semiconductor device of the present invention may be an organic semiconductor device having a layer containing the organic semiconductor layer and a binder polymer (hereinafter, also referred to as a “binder polymer layer”).
  • the type of binder polymer is not particularly limited, and known binder polymers can be used.
  • binder polymer examples include polystyrene, poly ( ⁇ -methylstyrene), polyvinylcinnamate, poly (4-vinylphenyl), poly (4-methylstyrene), polycarbonate, polyarylate, polyester, polyamide, polyimide, polyurethane, poly Insulating polymers such as siloxane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose, polyethylene, polypropylene, and copolymers thereof, polysilane, polycarbazole, polyarylamine, polyfluorene, polythiophene, polythiophene, polypyrrole, polyaniline, Semiconductive polymers such as polyparaphenylene vinylene, polyacene and polyheteroacene, and copolymers, rubbers and thermoplastic elastomers thereof can be mentioned.
  • a polymer compound having a benzene ring (polymer having a monomer unit having a benzene ring) are preferred.
  • the content of the monomer unit having a benzene ring group is not particularly limited, but is preferably 50 mol% or more, more preferably 70 mol% or more, and still more preferably 90 mol% or more, based on all the monomer units.
  • the upper limit in particular is not restrict
  • the binder polymer preferably contains an insulating polymer.
  • the insulating polymer can be used without particular limitation as long as it exhibits insulating properties.
  • the “insulating polymer” means a polymer having a volume resistivity of 10 6 ⁇ cm or more. The volume resistance value is measured by the following method.
  • the polymer is applied to a clean 50 mm square glass substrate to obtain a polymer film having a thickness of 1 ⁇ m.
  • the volume resistance of the obtained film is measured using a Loresta GP MCP-T610 (trade name, manufactured by Mitsubishi Materials).
  • the organic semiconductor layer contains an insulating polymer by measuring element mapping of the organic semiconductor layer by time-of-flight secondary ion analysis (TOF-SIMS) using an etching ion beam in combination. It is possible to confirm.
  • TOF-SIMS time-of-flight secondary ion analysis
  • a polymer containing a constitutional unit represented by the following formula I-1 is preferable.
  • R 22 to R 26 each independently represent a hydrogen atom, a hydroxy group, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group or a halogen atom, and R 22 Two adjacent R 26 's may be linked to each other to form a ring, and R 21 represents a hydrogen atom or an alkyl group.
  • R 22 to R 26 each independently represent preferably a hydrogen atom, a hydroxy group, an alkyl group, an alkoxy group, an aryl group or a halogen atom, more preferably a hydrogen atom, a hydroxy group, an alkyl group or an alkoxy group, a hydrogen atom or an alkyl group Is more preferred, and a hydrogen atom is most preferred.
  • the alkyl group may be linear, branched or cyclic, and is preferably linear or branched.
  • the carbon number of the alkyl group is preferably 1 to 15, more preferably 1 to 8, and still more preferably 1 to 4.
  • the carbon number of the alkoxy group is preferably 1 to 15, more preferably 1 to 8, and still more preferably 1 to 4.
  • the carbon number of the alkenyl group is preferably 1 to 15, more preferably 1 to 8, and still more preferably 1 to 4.
  • the carbon number of the above alkynyl group is preferably 1 to 15, more preferably 1 to 8, and still more preferably 1 to 4.
  • the carbon number of the aryl group is preferably 6 to 20, and more preferably 6 to 12.
  • the number of carbon atoms in the aralkyl group is preferably 7 to 21, and more preferably 7 to 15.
  • Two adjacent ones of R 22 to R 26 may be linked to each other to form a ring.
  • An aromatic ring is mentioned as a ring formed, A benzene ring is preferable.
  • R 21 represents a hydrogen atom or an alkyl group (such as a methyl group or an ethyl group), preferably a hydrogen atom.
  • halogen atom a fluorine atom is preferable.
  • the polymer containing the constituent unit represented by the above formula I-1 is 50 mass% of the constituent unit represented by the above formula I-1 with respect to the total mass of the polymer containing the constituent unit represented by the formula I-1.
  • % Is preferably contained, more preferably 80% by mass or more, and still more preferably 90% by mass or more.
  • the insulating polymer containing the constitutional unit represented by the formula I-1 is an insulating polymer containing the constitutional unit represented by the formula I-1, the repeating unit of the polymer is only from the constitutional unit represented by the formula I-1 Or a homopolymer comprising only the constituent unit represented by the formula I-1, and a copolymer wherein the repeating unit of the polymer comprises only the constituent unit represented by the formula I-1, or More preferred is a homopolymer consisting only of the constituent unit represented by I-1, and more preferred is a homopolymer consisting only of the constituent unit represented by formula I-1.
  • the weight average molecular weight of the binder polymer is not particularly limited, but is preferably 1,000 to 2,000,000, more preferably 1,500 to 1,000,000, still more preferably 3,000 to 1,000,000, and particularly preferably 2,500 to 200,000. Preferably, 20,000 to 150,000 are the most preferable.
  • the degree of polydispersity (weight-average molecular weight / number-average molecular weight) of the binder polymer is preferably 2.5 or less, more preferably 1.5 or less, and still more preferably 1.1 or less.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the binder polymer described above are in terms of standard polystyrene, and gel permeation chromatography (GPC, manufactured by Tosoh Corp .; HLC-8120; Tskgel Multipore HXL-M) It can be measured using THF (tetrahydrofuran) as a solvent.
  • GPC gel permeation chromatography
  • HLC-8120 gel permeation chromatography
  • Tskgel Multipore HXL-M THF (tetrahydrofuran)
  • it is preferable that a binder polymer has the solubility to the solvent to be used higher than a specific compound. It is excellent by the mobility of the organic semiconductor obtained as it is the said aspect, and the time-lapse stability under high temperature and high humidity.
  • the content of the binder polymer in the organic semiconductor layer of the organic semiconductor element of the present invention is preferably 1 to 200 parts by mass, and more preferably 10 to 150 parts by mass with respect to 100 parts by mass of the specific compound. Preferably, it is more preferably 20 to 120 parts by mass. It is excellent by the mobility of the organic semiconductor obtained as it is the said range, and the temporal stability under high temperature and high humidity.
  • the organic semiconductor layer in the organic semiconductor device of the present invention may contain other components in addition to the specific compound and the binder polymer. As other components, known additives and the like can be used.
  • the content of components other than the specific compound and the binder polymer in the organic semiconductor layer is preferably 10% by mass or less, preferably 5% by mass or less, and more preferably 1% by mass or less. It is particularly preferable that the content is not more than 1% by mass. It is excellent in film formation property as it is the said range, and it is excellent by the mobility of the organic semiconductor obtained, and the time-lapse stability under high temperature, high humidity.
  • the method for forming the organic semiconductor layer in the organic semiconductor device of the present invention is not particularly limited, and the organic semiconductor composition of the present invention described later is applied onto the source electrode, drain electrode, and gate insulating film, A desired organic semiconductor layer can be formed by dry treatment.
  • the organic semiconductor device of the present invention is preferably manufactured using the organic semiconductor composition of the present invention described later.
  • the method for producing an organic semiconductor film or an organic semiconductor element using the organic semiconductor composition of the present invention is not particularly limited, and a known method can be adopted.
  • prescribed base material, performing a drying process as needed, and manufacturing an organic-semiconductor film is mentioned.
  • the method for applying the composition onto the substrate is not particularly limited, and any known method can be employed, such as inkjet printing, screen printing, flexo printing, bar coating, spin coating, knife coating, doctor The blade method etc. may be mentioned, and the ink jet printing method, the screen printing method and the flexographic printing method are preferable.
  • the composition can be printed on a substrate to easily form a pattern.
  • the method for producing an organic semiconductor device of the present invention preferably includes a coating step of coating an organic semiconductor composition of the present invention described later on a substrate, and coating of coating the organic semiconductor composition of the present invention on a substrate It is more preferable to include the step of removing the solvent from the applied composition.
  • the organic semiconductor composition of the present invention further containing an insulating polymer containing a structural unit represented by formula I-1 is applied onto a gate insulating film having a surface energy of 50 to 75 mNm -1 or less It is more preferable that it is a coating process.
  • the organic semiconductor layer further includes the insulating polymer including the structural unit represented by the above formula I-1, and further includes the gate insulating film having a surface energy of 50 to 75 mNm -1.
  • a device is obtained.
  • the organic semiconductor device is a high mobility organic semiconductor device.
  • the organic semiconductor composition of the present invention described later contains a solvent, and preferably contains an organic solvent.
  • a well-known solvent can be used as a solvent.
  • hydrocarbon solvents such as hexane, octane, decane, toluene, xylene, mesitylene, ethylbenzene, amylbenzene, decalin, 1-methylnaphthalene, 1-ethylnaphthalene, 1,6-dimethylnaphthalene and tetralin
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetophenone, propiophenone, butyrophenone, ⁇ -tetralone, ⁇ -tetralone, etc., for example, dichloromethane, chloroform, tetrachloromethane, dichloroethane, trichloroethan
  • Heterocyclic solvents such as benzene, picoline, quinoline, thiophene, 3-butylthiophene, thieno [2,3-b] thiophene, 2-chlorothiophene, 3-chlorothiophene, 2,5-dichlorothiophene, 3,4- Dichlorothiophene, 2-bromothiophene, 3-bromothiophene, 2,3-dibromothiophene, 2,4-dibromothiophene, 2,5-dibromothiophene, 3,4-dibromothiophene, 3,4-dichloro-1,2 Halogenated heterocyclic solvents such as 1,5-thiadiazole, for example, ethyl acetate, butyl acetate, amyl acetate, 2-ethylhexyl acetate, ⁇ -butyrolactone, ester solvents such as phenyl acetate, for
  • the solvents may be used alone or in combination of two or more.
  • hydrocarbon solvents, ketone solvents, halogenated hydrocarbon solvents, heterocyclic solvents, halogenated heterocyclic solvents or ether solvents are preferable, and toluene, xylene, mesitylene, amylbenzene, tetralin, acetophenone Propiophenone, butyrophenone, ⁇ -tetralone, dichlorobenzene, anisole, ethoxybenzene, propoxybenzene, isopropoxybenzene, butoxybenzene, 2-methylanisole, 3-methylanisole, 4-methylanisole, 2,3-dihydrobenzofuran , Phthalane, chroman, isochroman, 1-fluoronaphthalene, 3-chlorothiophene, 2,5-dibromothiophene, more preferably toluene, xylene, tetralin, acetophenone,
  • the boiling point of the solvent is 100 ° C. or higher.
  • the boiling point of the solvent is more preferably 100 to 300 ° C., further preferably 125 to 250 ° C., and particularly preferably 150 to 225 ° C.
  • the boiling point of the solvent with most content is 100 degreeC or more, and it is more preferable that the boiling point of all the solvents is 100 degreeC or more.
  • the content of the specific compound in the organic semiconductor composition of the present invention is preferably 0.01 to 50% by mass, more preferably 0.02 to 25% by mass, and 0.
  • the content is more preferably 05 to 15% by mass, particularly preferably 0.1 to 10% by mass, and when the binder polymer is contained, the content of the binder polymer is 0.01 to 50% by mass.
  • the content is preferably 0.05 to 25% by mass, more preferably 0.1 to 10% by mass. It is excellent in applicability
  • the drying process in the removal step is a process carried out as necessary, and the optimum conditions are appropriately selected depending on the type of the specific compound and the solvent used.
  • the heating temperature is preferably 30 ° C. to 100 ° C., and more preferably 40 ° C. to 80 ° C., from the viewpoint of the mobility of the obtained organic semiconductor and the temporal stability under high temperature and high humidity.
  • the heating time is preferably 10 to 300 minutes, and more preferably 30 to 180 minutes.
  • the organic semiconductor device composition of the present invention may contain an additive other than the polymer binder, such as a surfactant, an antioxidant, a crystallization control agent, a crystal orientation control agent, and the like.
  • an additive other than the polymer binder such as a surfactant, an antioxidant, a crystallization control agent, a crystal orientation control agent, and the like.
  • surfactant examples include, but are not limited to, polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, polyoxyethylene polyoxypropylene block copolymers, sorbitan fatty acid esters, polyoxyethylene Nonionic surfactants such as sorbitan fatty acid ester, Megafac F171, F176 (manufactured by DIC Corporation), Florard FC 430 (manufactured by Sumitomo 3M Ltd.), Surfynol E 1004 (manufactured by Asahi Glass Co., Ltd.), manufactured by OMNOVA Fluorinated surfactants such as PF656 and PF6320, polysiloxane polymer KP-341 (Shin-Etsu Chemical Co., Ltd.), KF-410 (Shin-Etsu Chemical Co., Ltd.), KF-412 (Shin-Etsu Chemical Co., Ltd.
  • KF-96-100cs Yue Chemical Co., Ltd.
  • BYK-322 BYK Co.
  • the content of the surfactant is preferably about 0.001 to about 1% by mass in the coating solution.
  • phenol type antioxidant examples include 2,6-di-t-butyl-4-methylphenol, n-octadecyl-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl ) Propionate, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane, tris (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate, 4 , 4'-Butylidenebis- (3-methyl-6-t-butylphenol), triethylene glycol-bis [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate], 3,9-bis ⁇ 2- [3- (3-t-Butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,
  • phenolic antioxidants include Irganox 1010, Irganox 1035, Irganox 1076, Irganox 1135, Irganox 245, Irganox 259, Irganox 295, and Irganox 3114 (all by BASF AG)
  • phosphorus-based antioxidants include trisnonylphenyl phosphite, tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, bis (2,4-di-t) -Butylphenyl) pentaerythritol phosphite, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol phosphite, 2,2-methylenebis (4,6-di-t-butylphenyl) octylphos Phyto, tetrakis (2,4-di-t-butylphenyl) -4,4-biphenylene-di-phosphonite and the like can be mentioned.
  • phosphorus antioxidants include Adekastab 1178 (Asahi Denka Co., Ltd.), Sumilyzer TNP (Sumitomo Chemical Co., Ltd.), JP-135 (Johoku Chemical Co., Ltd.), Adekastab 2112 (Asahi Denka) Ltd., JPP-2000 (Johoku Chemical Co., Ltd.), Weston 618 (GE), Adekastab PEP-24G (Asahi Denka Co., Ltd.), Adekastab PEP-36 (Asahi Denka Co., Ltd.) Adekastab HP-10 (manufactured by Asahi Denka Co., Ltd.), Sandstab P-EPQ (manufactured by Sand Co., Ltd.), Phosphite 168 (manufactured by Ciba Specialty Chemicals Inc.), and the like.
  • sulfur-based antioxidants include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate, pentaerythritol Tetrakis (3-lauryl thiopropionate) and the like can be mentioned.
  • sulfur-based antioxidants include Sumylizer TPL (Sumitomo Chemical Co., Ltd.), Yoshinox DLTP (Yoshitomi Pharmaceutical Co., Ltd.), Anthiox L (Nippon Yushi Co., Ltd.), Sumylizer TPM (Sumitomo Chemical Co., Ltd.) Ltd., Yoshinox DMTP (Yoshitomi Pharmaceutical Co., Ltd.), Anthiox M (Nippon Yushi Co., Ltd.), Sumilyzer TPS (Sumitomo Chemical Co., Ltd.), Yoshinox DSTP (Yoshitomi Pharmaceutical Co., Ltd.) , Anthiox S (manufactured by Nippon Oil and Fats Co., Ltd.), Adekastab AO-412S (manufactured by Asahi Denka Co., Ltd.), SEENOX 412 S (manufactured by Shipro Kasei Co., Ltd.), Sumilyzer TDP (manufactured by
  • the thickness of the organic semiconductor layer to be formed is not particularly limited, but is preferably 10 to 500 nm, more preferably 30 to 200 nm, from the viewpoint of mobility of the obtained organic semiconductor and temporal stability under high temperature and high humidity.
  • the annealing temperature is suitably optimized depending on the substrate used, but is preferably 80 ° C. to 300 ° C., preferably 120 ° C. to 250 ° C., and more preferably 150 ° C. to 200 ° C. It is thought that the substituent represented by Formula 1-1, which is a flexible substituent, causes rearrangement due to the above-described heat annealing, and a more excellent film quality (morphology) is formed. As a result, the mobility is high, the variation in mobility is suppressed, and an organic semiconductor film excellent in temporal stability under high temperature and high humidity can be obtained.
  • the organic semiconductor device is not particularly limited, but is preferably an organic semiconductor device of 2 to 5 terminals, and more preferably an organic semiconductor device of 2 or 3 terminals.
  • the organic semiconductor element is preferably not a photoelectric conversion element.
  • the organic-semiconductor element of this invention is a nonluminous organic-semiconductor element.
  • the two-terminal element include a rectifying diode, a constant voltage diode, a PIN diode, a Schottky barrier diode, a diode for surge protection, a diac, a varistor, a tunnel diode and the like.
  • three-terminal devices include bipolar transistors, Darlington transistors, field effect transistors, insulated gate bipolar transistors, unijunction transistors, electrostatic induction transistors, gate turn thyristors, triacs, electrostatic induction thyristors, and the like.
  • rectifying diodes and transistors are preferably mentioned, and field effect transistors are more preferably mentioned.
  • field effect transistor an organic thin film transistor is preferably mentioned.
  • FIG. 1 is a schematic cross-sectional view of one embodiment of the organic semiconductor device (organic thin film transistor (organic TFT)) of the present invention.
  • the organic thin film transistor 100 includes a substrate 10, a gate electrode 20 disposed on the substrate 10, a gate insulating film 30 covering the gate electrode 20, and the gate insulating film 30 on the opposite side to the gate electrode 20 side.
  • the organic thin film transistor 100 is a bottom gate-bottom contact type organic thin film transistor.
  • the organic semiconductor film 50 corresponds to the film
  • the substrate, the gate electrode, the gate insulating film, the source electrode, the drain electrode, the organic semiconductor film, the sealing layer, and the formation method of each will be described in detail.
  • the substrate plays a role of supporting a gate electrode, a source electrode, a drain electrode and the like described later.
  • the type of substrate is not particularly limited, and examples thereof include plastic substrates, glass substrates, ceramic substrates, and the like. Among them, a glass substrate or a plastic substrate is preferable from the viewpoint of the applicability to each device and the cost.
  • thermosetting resin for example, epoxy resin, phenol resin, polyimide resin, polyester resin (for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.) or thermoplastic resin (for example, phenoxy) Resin, polyether sulfone, polysulfone, polyphenylene sulfone and the like).
  • thermoplastic resin for example, phenoxy
  • the material of the ceramic substrate include alumina, aluminum nitride, zirconia, silicon, silicon nitride, silicon carbide and the like.
  • the material of the glass substrate include soda glass, potash glass, borosilicate glass, quartz glass, aluminum silicate glass, lead glass and the like.
  • the material of the gate electrode, the source electrode, and the drain electrode include, for example, gold (Au), silver, aluminum (Al), copper, chromium, nickel, cobalt, titanium, platinum, tantalum, magnesium, calcium, barium, sodium, etc.
  • metal is preferable, and silver or aluminum is more preferable.
  • the thickness of the gate electrode, the source electrode, and the drain electrode is not particularly limited, but is preferably 20 to 200 nm.
  • the method for forming the gate electrode, the source electrode, and the drain electrode is not particularly limited, and examples thereof include a method of vacuum depositing or sputtering an electrode material on a substrate, and a method of applying or printing a composition for electrode formation.
  • a method of patterning printing methods, such as a photolithographic method; inkjet printing, screen printing, offset printing, letterpress printing, mask vapor deposition etc. are mentioned, for example.
  • the gate insulating film is not particularly limited as long as it is provided between the gate electrode and the organic semiconductor layer and has insulating properties, and may be a single layer film or a multilayer film.
  • the gate insulating film is preferably formed of an insulating material, and as the insulating material, for example, an organic material such as an organic polymer, an inorganic material such as an inorganic oxide, and the like are preferably mentioned. From the point of view, it is preferable to use an organic material.
  • the organic polymer, the inorganic oxide and the like are not particularly limited as long as they have insulating properties, and a thin film, for example, one capable of forming a thin film having a thickness of 1 ⁇ m or less is preferable.
  • the organic polymer and the inorganic oxide may be used alone or in combination of two or more.
  • the gate insulating film may be a hybrid layer in which an organic polymer and an inorganic oxide described later are mixed.
  • the organic polymer is not particularly limited.
  • polyvinylphenol, polystyrene (PS), poly (meth) acrylate typified by polymethyl methacrylate
  • polyvinyl alcohol polyvinyl chloride (PVC), polyfluoride Vinylidene (PVDF), polytetrafluoroethylene (PTFE)
  • cyclic fluoroalkyl polymers represented by CYTOP, polycycloolefin, polyester, polyether sulfone, polyether ketone, polyimide, poly (meth) acrylic acid, polybenzoxazole, Epoxy resins, polyorganosiloxanes represented by polydimethylsiloxane (PDMS), polysilsesquioxane, butadiene rubber and the like can be mentioned.
  • PDMS polydimethylsiloxane
  • PDMS polysilsesquioxane
  • butadiene rubber and the like can be mentioned.
  • thermosetting resins such as phenol resins, novolak resins, cinnamate resins, acrylic resins and polyparaxylylene resins can also be mentioned.
  • the organic polymer can also be used in combination with a compound having a reactive substituent such as an alkoxysilyl group, a vinyl group, an acryloyloxy group, an epoxy group or a methylol group.
  • the gate insulating film is formed of an organic polymer
  • Crosslinking is preferably carried out by generating an acid or a radical using light, heat or both.
  • radical generator which generates radicals by light or heat
  • Photoradical generators described in paragraphs 0046 to 0051 of JP-A-2011-186069, and radical photopolymerization initiators described in paragraphs 0042-0056 of JP-A-2010-285518, and the like can be suitably used.
  • their contents are incorporated herein.
  • thermal acid generator that generates an acid by heat
  • thermal cationic polymerization initiators described in paragraphs 0035 to 0038 of JP 2010-285518 A, particularly onium salts, etc., JP 2005-354012 A
  • the catalysts described in paragraphs 0034 to 0035 of the publication, in particular sulfonic acids and sulfonic acid amine salts, can preferably be used, and their contents are preferably incorporated herein.
  • crosslinking agents described in paragraphs 0032 to 0033 in JP-A-2005-354012 particularly epoxy compounds having a functionality of two or more, oxetane compounds
  • the crosslinking agents described in paragraphs 0046 to 0062 in JP-A-2006-303465 in particular A compound having two or more crosslinking groups, wherein at least one of the crosslinking groups is a methylol group or an NH group, and a hydroxy described in paragraph 0137 to 0145 of JP 2012-163946 A
  • the method of coating and hardening organic polymer is mentioned, for example.
  • the coating method is not particularly limited, and the respective printing methods described above may be mentioned. Among them, wet coating methods such as microgravure coating method, dip coating method, screen coat printing, die coating method or spin coating method are preferable.
  • the inorganic oxide is not particularly limited, but, for example, silicon oxide, silicon nitride (SiN Y ), hafnium oxide, titanium oxide, tantalum oxide, aluminum oxide, niobium oxide, zirconium oxide, copper oxide, oxide oxides such as nickel, also, SrTiO 3, CaTiO 3, BaTiO 3, MgTiO 3, SrNb perovskite such as 2 O 6 or a composite oxide thereof, or a mixture thereof.
  • silicon oxide in addition to silicon oxide (SiO x ), BPSG (Boron Phosphorus Silicon Glass), PSG (Phosphorus Silicon Glass), BSG (borosilicate glass), AsSG (arsenic silicate glass), PbSG (lead silicate) Glass), silicon oxynitride (SiON), SOG (spin-on glass), low dielectric constant SiO 2 -based materials (eg, polyarylethers, cycloperfluorocarbon polymers and benzocyclobutenes, cyclic fluorocarbon resins, polytetrafluoroethylene, fluorocarbons) Arylethers, fluorinated polyimides, amorphous carbon, organic SOG).
  • SiO 2 -based materials eg, polyarylethers, cycloperfluorocarbon polymers and benzocyclobutenes, cyclic fluorocarbon resins, polytetrafluoroethylene, fluorocarbons
  • Arylethers fluorinated
  • a vacuum deposition method such as a vacuum deposition method, a sputtering method, an ion plating, or a CVD (chemical vapor deposition) method can be used.
  • Assisting may be performed by plasma, ion gun, radical gun or the like using any gas.
  • precursors corresponding to the respective metal oxides specifically, metal halides such as chlorides and bromides, metal alkoxides, metal hydroxides, etc., alcohols, such as hydrochloric acid, sulfuric acid, nitric acid, etc. You may form by making it react with bases, such as sodium hydroxide and potassium hydroxide, and hydrolyzing.
  • bases such as sodium hydroxide and potassium hydroxide, and hydrolyzing.
  • the gate insulating film can also be provided by a method in which any of lift-off method, sol-gel method, electrodeposition method and shadow mask method is combined with the patterning method according to need, in addition to the above method.
  • the gate insulating film may be subjected to surface treatment such as corona treatment, plasma treatment, UV (ultraviolet ray) / ozone treatment, but in this case, it is preferable not to make the surface roughness due to the treatment rough.
  • arithmetic mean roughness Ra or root mean square roughness R MS of the gate insulating film surface is 0.5 nm or less.
  • UV (ultraviolet light) / ozone treatment is effective, and the surface of the gate insulating film can be made hydrophilic by appropriately selecting the treatment time.
  • the organic semiconductor device of the present invention further includes a gate insulating film having a surface energy of 50 to 75 mNm ⁇ 1 when the organic semiconductor layer includes an insulating polymer including the structural unit represented by Formula I-1 above.
  • the surface energy is measured by using a contact angle of a film made of a resin (C) in both water and an organic solvent (glycerin and diiodomethane are mainly used), and substituting the Owens equation below for a known method. (The following is a case where glycerin (gly) is used as an organic solvent).
  • the organic semiconductor device of the present invention further includes a gate insulating film including an insulating polymer including the structural unit represented by the above formula I-1 and having a surface energy of 50 to 75 mNm -1. It has been found that the carrier mobility of the obtained organic thin film transistor can be effectively increased. Although the detailed mechanism is not clear, the coexistence of the organic semiconductor compound and the specific insulating polymer in the organic semiconductor layer enhances the alignment regularity of the organic semiconductor compound as compared with the case of the organic semiconductor compound alone. I think that it is a cause.
  • the speed at the time of forming these domains and the degree of phase separation are considered to be related to the control of the sequence regularity, and a compound having a molecular weight of 2,000 or more and the structural repeat unit represented by the formula 1 of the present application It is considered that the mobility is improved because a combination of insulating polymers including the structural unit represented by I-1 is suitable.
  • the organic semiconductor device of the present invention may have the binder polymer layer between the organic semiconductor layer and the insulating film, and when it has a binder polymer layer, the above-described binder may be formed between the organic semiconductor layer and the gate insulating film. It is preferred to have a binder polymer layer.
  • the thickness of the binder polymer layer is not particularly limited, but is preferably 20 to 500 nm.
  • the said binder polymer layer should just be a layer containing the said polymer, it is preferable that it is a layer which consists of the said binder polymer.
  • the method for forming the binder polymer layer is not particularly limited, but known methods (bar coating method, spin coating method, knife coating method, doctor blade method, ink jet method) can be used.
  • heating may be performed after application for the purpose of solvent removal, crosslinking, and the like.
  • the organic semiconductor element of this invention equips an outermost layer with a sealing layer from a durable viewpoint.
  • a well-known sealing agent can be used for a sealing layer.
  • the thickness of the sealing layer is not particularly limited, but is preferably 0.2 to 10 ⁇ m.
  • the method for forming the sealing layer is not particularly limited, for example, the composition for forming a sealing layer is applied on a substrate on which the gate electrode, the gate insulating film, the source electrode, the drain electrode, and the organic semiconductor film are formed. Methods etc.
  • coating the composition for sealing layer formation is the same as the method of apply
  • heating may be performed after application for the purpose of solvent removal, crosslinking, and the like.
  • FIG. 2 is a cross-sectional schematic diagram of another one aspect
  • the organic thin film transistor 200 includes a substrate 10, a gate electrode 20 disposed on the substrate 10, a gate insulating film 30 covering the gate electrode 20, and an organic semiconductor film 50 disposed on the gate insulating film 30. And a source electrode 40 and a drain electrode 42 disposed on the organic semiconductor film 50, and a sealing layer 60 covering each member.
  • the source electrode 40 and the drain electrode 42 are formed using the composition of the present invention described above.
  • the organic thin film transistor 200 is a bottom gate-top contact type organic thin film transistor.
  • the substrate, the gate electrode, the gate insulating film, the source electrode, the drain electrode, the organic semiconductor film, and the sealing layer are as described above.
  • the organic semiconductor device of the present invention is a top gate bottom
  • the present invention can also be suitably used for a contact type organic thin film transistor and a top gate-top contact type organic thin film transistor.
  • the organic thin film transistor described above can be suitably used for electronic paper, a display device, and the like.
  • the compound of the present invention is characterized by having a constituent repeating unit represented by any one of the above formulas 2 to 5, and having a molecular weight of 2,000 or more. Moreover, it is preferable that the compound of this invention is an organic-semiconductor compound.
  • the compound having a constituent repeating unit represented by any one of the above formulas 2 to 5 and having a molecular weight of 2,000 or more in the compound of the present invention is represented by any one of the above formulas 2 to 5 It is synonymous with the compound which has a structural repeating unit, and its preferable aspect is also the same.
  • Organic semiconductor composition of the present invention is characterized by containing the compound of the present invention (the specific compound described above) and a solvent.
  • the organic semiconductor composition of the present invention may also contain a binder polymer.
  • the specific compound, the binder polymer and the solvent in the organic semiconductor composition of the present invention have the same meaning as the specific compound, the binder polymer and the solvent described above, and preferred embodiments are also the same.
  • the content of the specific compound in the organic semiconductor composition of the present invention is not particularly limited, but is preferably 0.005 to 10% by mass, and more preferably 0.01 to 5% by mass with respect to the total mass of the organic semiconductor composition. %, More preferably 0.05 to 3% by mass.
  • the organic semiconductor composition of the present invention may contain other components in addition to the specific compound, the binder polymer and the solvent. As other components, known additives and the like can be used.
  • the content of components other than the specific compound, the binder polymer and the solvent in the organic semiconductor composition of the present invention is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total solid content. More preferably, it is 1% by mass or less and particularly preferably 0.1% by mass or less. It is excellent in film formation property as it is the said range, and it is excellent by the mobility of the organic semiconductor obtained, and the time-lapse stability under high temperature, high humidity.
  • solid content is the quantity of the component except volatile components, such as a solvent.
  • the viscosity of the organic semiconductor composition of the present invention is not particularly limited, but is preferably 3 to 100 mPa ⁇ s, more preferably 5 to 50 mPa ⁇ s, and still more preferably 9 to 40 mPa ⁇ s, from the viewpoint of superior coating properties.
  • the viscosity in this invention is a viscosity in 25 degreeC. It is preferable that it is a measuring method based on JISZ8803 as a measuring method of a viscosity.
  • the method for producing the organic semiconductor composition of the present invention is not particularly limited, and a known method can be adopted.
  • a desired composition can be obtained by adding a predetermined amount of a specific compound to a solvent and appropriately performing a stirring process.
  • a specific compound and a binder polymer can be added simultaneously or sequentially, and a composition can be suitably produced.
  • the organic semiconductor film of the present invention is characterized by containing a specific compound.
  • the organic semiconductor film of the present invention may contain a binder polymer.
  • the specific compound and the binder polymer in the organic semiconductor film of the present invention are the same as the specific compound and the binder polymer described above in the organic semiconductor device of the present invention, and preferred embodiments are also the same.
  • the organic semiconductor composition of the present invention may contain other components in addition to the specific compound and the binder polymer.
  • known additives and the like can be used.
  • the content of components other than the specific compound and the binder polymer in the organic semiconductor film of the present invention is preferably 10% by mass or less, preferably 5% by mass or less, and 1% by mass or less More preferably, it is 0.1% by mass or less. It is excellent in film formation property as it is the said range, and it is excellent by the mobility of the organic semiconductor obtained, and the time-lapse stability under high temperature, high humidity.
  • solid content is the quantity of the component except volatile components, such as a solvent.
  • the thickness of the organic semiconductor film of the present invention is not particularly limited, but is preferably 10 to 500 nm, more preferably 30 to 200 nm, from the viewpoint of mobility of the obtained organic semiconductor and temporal stability under high temperature and high humidity.
  • the organic semiconductor film of the present invention can be suitably used for an organic semiconductor element, and can be particularly suitably used for an organic transistor (organic thin film transistor).
  • the organic semiconductor film of the present invention can be suitably produced using the organic semiconductor composition of the present invention.
  • the method for producing the organic semiconductor film of the present invention is not particularly limited, and a known method can be adopted.
  • a method of producing an organic semiconductor film by applying the organic semiconductor composition of the present invention on a predetermined base material and subjecting the composition to a drying treatment as required may be mentioned.
  • the method for applying the composition onto the substrate is not particularly limited, and any known method can be employed, such as inkjet printing, screen printing, flexo printing, bar coating, spin coating, knife coating, doctor The blade method etc. may be mentioned, and the ink jet printing method, the screen printing method and the flexographic printing method are preferable.
  • the method for producing an organic semiconductor film of the present invention preferably includes the step of applying the organic semiconductor composition of the present invention on a substrate, and the step of applying the organic semiconductor composition of the present invention on a substrate And, it is more preferable to include a removal step of removing the solvent from the applied composition.
  • the organic semiconductor composition of the present invention further containing an insulating polymer containing a structural unit represented by formula I-1 is applied onto a gate insulating film having a surface energy of 50 to 75 mNm -1 or less It is more preferable that it is a coating process. According to the above aspect, an organic semiconductor film with high mobility can be obtained.
  • composition example> The synthetic method followed the general synthetic method of DA type ⁇ conjugated polymer. The synthesis method of compound 1 and compound 7 is shown as a representative example.
  • Synthetic intermediate 2 (244 mg, 200 ⁇ mol), 5,5′-bis (trimethylstannyl) -2,2′-bithiophene (98.4 mg, 200 ⁇ mol), tri (o-tolyl) phosphine (4.9 mg, 16 ⁇ mol)
  • tris (dibenzylideneacetone) dipalladium (3.7 mg, 4 ⁇ mol)
  • dehydrated chlorobenzene (17 mL) were mixed and stirred at 130 ° C. for 24 hours under a nitrogen atmosphere.
  • the reaction solution was cooled to room temperature, poured into a mixture of methanol (240 mL) / conc. Hydrochloric acid (10 mL), and stirred for 2 hours.
  • the precipitate was filtered and washed with methanol, and then soxhlet extracted sequentially with methanol, acetone and ethyl acetate to remove soluble impurities. Subsequently, the solution obtained was subjected to Soxhlet extraction with chloroform, and the obtained solution was concentrated under reduced pressure, then methanol was added, and the precipitated solid was filtered, washed with methanol and vacuum dried at 80 ° C. for 12 hours to obtain 201 mg of compound 7. (Yield 82%).
  • the polystyrene reduced number average molecular weight was 4.4 ⁇ 10 4 and the weight average molecular weight was 1.1 ⁇ 10 5 .
  • Synthetic intermediate 9 (255 mg, 200 ⁇ mol), 5,5′-bis (trimethylstannyl) -2,2′-bithiophene (98.4 mg, 200 ⁇ mol), tri (o-tolyl) phosphine (4.9 mg, 16 ⁇ mol)
  • tris (dibenzylideneacetone) dipalladium (3.7 mg, 4 ⁇ mol)
  • dehydrated chlorobenzene (17 mL) were mixed and stirred at 130 ° C. for 24 hours under a nitrogen atmosphere.
  • the reaction solution was cooled to room temperature, poured into a mixture of methanol (240 mL) / conc. Hydrochloric acid (10 mL), and stirred for 2 hours.
  • the precipitate was filtered and washed with methanol, and then soxhlet extracted sequentially with methanol, acetone and ethyl acetate to remove soluble impurities. Subsequently, Soxhlet extraction was performed with chloroform, and the obtained solution was concentrated under reduced pressure, then methanol was added, the precipitated solid content was filtered, washed with methanol, and vacuum dried at 80 ° C. for 12 hours to obtain 201 mg of compound 19 (Yield 82%).
  • the polystyrene reduced number average molecular weight was 2.7 ⁇ 10 4 , and the weight average molecular weight was 7.5 ⁇ 10 4 .
  • Comparative compound 1 is disclosed in JP-A-2010-527327
  • comparative compound 2 is disclosed in JP-A-2007-516315
  • comparative compound 3 is disclosed in WO 2013/047858
  • comparative compound 4 is disclosed in JP-A-2009-158921
  • compared compound 5 is Macromolecules, 2013, 46, 6408.
  • Comparative compound 6 is described in Journal of Physical Chemistry C, 2014, 118, 11536.
  • Comparative Compound 7 is a compound described in JP-A-2008-153667
  • Comparative Compound 8 is a compound described in JP-A-2012-251129
  • Comparative Compound 9 is a compound described in JP-A-2012-506928.
  • Comparative compound 10 was synthesized with reference to the synthesis method described in Advanced Materials, 2014, 24, 3734-3744.
  • silver ink (H-1, manufactured by Mitsubishi Materials Corporation) is formed into a source electrode and a drain electrode (channel length 40 ⁇ m, channel width 200 ⁇ m) using an inkjet device DMP-2831 (manufactured by Fujifilm Dimatics Co., Ltd.) I drew it. After that, baking was performed at 180 ° C. for 30 minutes in an oven and sintering was performed to form a source electrode and a drain electrode, whereby an element substrate for TFT characteristic evaluation was obtained. Each organic semiconductor coating solution is spin coated (1,000 rpm for 30 seconds after 500 rpm for 10 seconds) on the element substrate for TFT characteristic evaluation in a nitrogen glove box, and then dried on a hot plate at 180 ° C. for 10 minutes. Layers were formed to obtain a bottom gate bottom contact type organic TFT element.
  • L represents a gate length
  • w represents a gate width
  • C i represents a capacity per unit area of an insulating film
  • V g represents a gate voltage
  • V th represents a threshold voltage.
  • the carrier mobility values shown in Table 1 are average values of 10 elements.
  • the carrier mobility ⁇ is preferably as high as possible, and is preferably 1.0 ⁇ 10 ⁇ 2 cm 2 / V ⁇ s or more in practical use, and 1.0 ⁇ 10 ⁇ 1 cm 2 / V ⁇ s or more More preferable.
  • the characteristic is too low for the mobility less than 1.0 ⁇ 10 ⁇ 5 cm 2 / V ⁇ s, the following evaluation is not performed, and “ ⁇ 1.0 in the column of carrier mobility in the table. It is described as " 10-5 ".
  • the variation coefficient calculated by the following formula with respect to the carrier mobility of 10 elements was evaluated in the following four steps, and was used as an index of mobility variation. The smaller this value is, the smaller the variation in mobility between elements is.
  • (C) Temporal stability under high temperature and high humidity After storing each manufactured organic thin film transistor element at 60 ° C. and 80% humidity for 24 hours, carrier transfer is performed by the same method as the above “(a) Carrier mobility”.
  • the carrier mobility maintenance factor (following formula) at the time of having measured the degree was evaluated by the following five steps, and it was set as the parameter
  • the organic TFT element of the example has high mobility, variation in mobility is suppressed, and the temporal stability under high temperature and high humidity is excellent.
  • the polymer having no group represented by Formula 1-1 can not satisfy all the items of high mobility, suppression of variation of mobility, and stability with time under high temperature and high humidity, which are problems. .
  • Example 24 to 41 Organic semiconductor compound 7 (0.20 mass%) and insulating polymer (0.10 mass%) / 1,2-dichlorobenzene described in Table 2 were weighed to glass vial, and mixed rotor (manufactured by As One Co., Ltd.) The mixture was stirred and mixed at 80 ° C. for 24 hours and then filtered through a 0.5 ⁇ m membrane filter to obtain an organic semiconductor coating solution.
  • An organic TFT element was obtained in the same manner as in Example 1.
  • the carrier mobility and the temporal stability under high temperature and humidity were evaluated by the same method as in Example 1 below.
  • the relative mobility shown in Table 2 is a relative value obtained by dividing the carrier mobility of each obtained organic TFT element by the carrier mobility of Example 7, and is a value calculated by the following equation.
  • the temporal stability under high temperature and humidity in each example was the same as in Example 7.
  • In-1-1 polystyrene, manufactured by Tosoh Corp. (catalog No. A-1000), Mw: 1,000, Mw / Mn: 1.13 In-1-2: polystyrene, manufactured by Tosoh Corp. (catalog No. A-2500), Mw: 2,500, Mw / Mn: 1.05 In-1-3: polystyrene, manufactured by Tosoh Corp. (catalog No. F-2), Mw: 18,100, Mw / Mn: 1.01 In-1-4: polystyrene, manufactured by Tosoh Corp. (catalog No.
  • Mw 37, 200, Mw / Mn: 1.01 In-1-5: polystyrene, manufactured by Tosoh Corp. (catalog No. F-10), Mw: 98, 900, Mw / Mn: 1.01 In-1-6: Polystyrene, Tosoh Corp. (Catalog No. F-20), Mw: 189,000, Mw / Mn: 1.04 In-1-7: polystyrene, manufactured by Tosoh Corp. (catalog No. F-40), Mw: 397,000, Mw / Mn: 1.02 In-1-8: polystyrene, manufactured by Tosoh Corp. (Catalog No.
  • the combination with polystyrene was good among the polystyrene derivatives. Furthermore, the molecular weight was particularly good at 1,000 to 200,000. Moreover, less than 1.5 was especially favorable about dispersion degree.
  • Example 27 The carrier mobility, the mobility variation, and the temporal stability under high temperature and high humidity were evaluated by the same method as in Example 1 below.
  • the relative mobility shown in Table 3 is a relative value obtained by dividing the carrier mobility of each obtained organic TFT element by the carrier mobility of Example 27, and is a value calculated by the following equation.
  • Relative mobility in Examples 42 to 45 Average mobility in each Example / Average mobility in Example 27
  • the mobility variation in each Example, the temporal stability under high temperature and high humidity are the same as in Example 7. It was the result.
  • a composition for forming a gate insulating film (poly (styrene-co-methyl methacrylate) / pentaerythritol tetraacrylate / 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyl oxime) ) 1 part by weight / 1 part by weight / 0.01 part by weight (w / w) of PGMEA (propylene glycol monomethyl ether acetate) solution (solid content concentration: 2% by mass)) is spin coated, and After pre-baking for a minute, exposure (365 nm, 100 mJ / cm 2 ) and post-baking at 200 ° C.
  • Example 27 The carrier mobility, the mobility variation, and the temporal stability under high temperature and high humidity were evaluated by the same method as in Example 1 below.
  • the relative mobility shown in Table 4 is a relative value obtained by dividing the carrier mobility of each obtained organic TFT element by the carrier mobility of Example 27, and is a value calculated by the following equation.
  • Relative mobility of Examples 46 to 49 average mobility of each Example / average mobility of Example 27
  • the mobility variation in each Example, and the temporal stability under high temperature and humidity are the same as Example 7. It was the result.

Abstract

 本発明の目的は、キャリア移動度が高く、移動度のバラツキが抑制され、高温高湿下での経時安定性に優れた有機半導体素子及びその製造方法を提供すること、有機半導体として好適な新規な化合物を提供すること、並びに、高移動度であり、移動度のバラツキが抑制され、高温高湿下での経時安定性に優れた有機半導体膜及びその製造方法、並びに、上記有機半導体膜を好適に形成することができる有機半導体組成物を提供することがである。 本発明の有機半導体素子は、式1で表される構成繰り返し単位を有する、分子量2,000以上の化合物を含有する有機半導体層を有することを特徴とする。

Description

有機半導体素子及びその製造方法、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法
 本発明は、有機半導体素子及びその製造方法、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法に関する。
 軽量化、低コスト化、柔軟化が可能であることから、液晶ディスプレイや有機エレクトロルミネッセンス(EL)ディスプレイに用いられるFET(電界効果トランジスタ)、RFID(Radio Frequency Identifier、RFタグ)等に、有機半導体膜(有機半導体層)を有する有機トランジスタが利用されている。
 従来の有機半導体としては、特許文献1又は2に記載されたものが知られている。
特表2010-527327号公報 特開2008-153667号公報
 本発明が解決しようとする課題は、キャリア移動度(以下、単に「移動度」ともいい、キャリア移動度が高いことを「高移動度」ともいう。)が高く、移動度のバラツキが抑制され、高温高湿下での経時安定性に優れた有機半導体素子及びその製造方法を提供することである。
 また、本発明が解決しようとする他の課題は、有機半導体として好適な新規な化合物を提供することである。
 更に、本発明が解決しようとする他の課題は、高移動度であり、移動度のバラツキが抑制され、高温高湿下での経時安定性に優れた有機半導体膜及びその製造方法、並びに、上記有機半導体膜を好適に形成することができる有機半導体組成物を提供することである。
 本発明の上記課題は、以下の<1>、<9>、<13>、<15>又は<17>~<20>に記載の手段により解決された。好ましい実施態様である<2>~<8>、<10>~<12>、<14>及び<16>と共に以下に記載する。
<1> 式1で表される構成繰り返し単位を有する、分子量2,000以上の化合物を含有する有機半導体層を有することを特徴とする有機半導体素子、
Figure JPOXMLDOC01-appb-C000019
 式1中、Aはsp2窒素原子、カルボニル基、及び、チオカルボニル基のうち少なくとも1つを環構造内に有する部分構造を含む電子アクセプターユニット、Dは少なくとも1つのN原子、O原子、S原子、若しくはSe原子を環構造内に有する二価の芳香族複素環基、又は2環以上の縮環構造からなる二価の芳香族炭化水素基を部分構造として含む電子ドナーユニットであり、D及び/又はAは式1-1により表される一価の基を少なくとも1つ有する、
Figure JPOXMLDOC01-appb-C000020
 式1-1中、Lは直鎖状又は分岐鎖状の炭素数mのアルキレン基であり、Rは置換基を有さない炭素数nのアルキル基であり、6≦m+n≦50であり、*は他の構造との結合部位を表す、
<2> 上記式1-1により表される一価の基が、下記式1-2又は式1-3により表される一価の基である、<1>に記載の有機半導体素子、
Figure JPOXMLDOC01-appb-C000021
 式1-2、及び、式1-3中、mは1以上の整数であり、Rは置換基を有さない炭素数nのアルキル基であり、Raは置換基を有さない炭素数aのアルキル基であり、Rbは置換基を有さない炭素数bのアルキル基であり、6≦m+n≦50、又は、6≦m+a+b≦50であり、*は他の構造との結合部位を表す、
<3> 式1において、Aが下記式A-1~式A-12で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有する、<1>又は<2>に記載の有機半導体素子、
Figure JPOXMLDOC01-appb-C000022
 式A-1~式A-12中、Xはそれぞれ独立に、O原子、S原子、Se原子又はNRA1を表し、Yはそれぞれ独立に、O原子又はS原子を表し、Zaはそれぞれ独立に、CRA2又はN原子を表し、Wはそれぞれ独立に、C(RA22、NRA1、N原子、CRA2、O原子、S原子、又はSe原子を表し、RA1はそれぞれ独立に、アルキル基、式1-1で表される一価の基、又は、他の構造との結合部位を表し、RA2はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、又は、他の構造との結合部位を表し、*はそれぞれ独立に、他の構造との結合部位を表す、
<4> 式1において、Dが式D-1で表される構造である、<1>~<3>のいずれか1つに記載の有機半導体素子、
Figure JPOXMLDOC01-appb-C000023
 式D-1中、X’はそれぞれ独立に、O原子、S原子、Se原子、又は、NRD1を表し、Zdはそれぞれ独立に、N原子又はCRD2を表し、RD1はそれぞれ独立に、一価の有機基を表し、RD2はそれぞれ独立に、水素原子又は一価の有機基を表し、Mは単結合、二価の芳香族複素環基、二価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又は、これらを組み合わせてなる二価の基を表し、p及びqはそれぞれ独立に、0~4の整数を表し、*はそれぞれ独立に、他の構造との結合部位を表す、
<5> 上記式1で表される構成繰り返し単位が、式2~式5のいずれかで表される構成繰り返し単位である、<1>~<4>のいずれか1つに記載の有機半導体素子、
Figure JPOXMLDOC01-appb-C000024
 式2~式5中、Xはそれぞれ独立に、O原子、S原子、Se原子又はNRA1を表し、Yはそれぞれ独立に、O原子又はS原子を表し、Zaはそれぞれ独立に、CRA2又はN原子を表し、RA1はそれぞれ独立に、アルキル基、式1-1で表される一価の基、又は、他の構造との結合部位を表し、RA2はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、又は、他の構造との結合部位を表し、X’はそれぞれ独立に、O原子、S原子、Se原子、又は、NRD1を表し、Zdはそれぞれ独立に、N原子又はCRD2を表し、RD1はそれぞれ独立に、一価の有機基を表し、RD2はそれぞれ独立に、水素原子又は一価の有機基を表し、Mは単結合、二価の芳香族複素環基、二価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又は、これらを組み合わせてなる二価の基を表し、p及びqはそれぞれ独立に、0~4の整数を表す、
<6> 上記有機半導体層が、下記式I-1で表される構成単位を含む絶縁性ポリマーを更に含有する、<1>~<5>のいずれか1つに記載の有機半導体素子、
Figure JPOXMLDOC01-appb-C000025
 式I-1中、R22~R26はそれぞれ独立に、水素原子、ヒドロキシ基、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アリール基、アラルキル基、又は、ハロゲン原子を表し、R22~R26のうち隣り合う2つは互いに連結して環を形成してもよく、R21は水素原子又はアルキル基を表す、
<7> 表面エネルギーが50~75mNm-1であるゲート絶縁膜を更に含む、<6>に記載の有機半導体素子、
<8> 有機薄膜トランジスタである、<1>~<7>のいずれか1つに記載の有機半導体素子、
<9> 式1で表される構成繰り返し単位を有し、分子量が2,000以上であることを特徴とする化合物、
Figure JPOXMLDOC01-appb-C000026
 式1中、Aは下記式A-1~式A-12で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有する電子アクセプターユニット、Dは少なくとも1つのN原子、O原子、S原子、若しくはSe原子を環構造内に有する二価の芳香族複素環基、又は2環以上の縮環構造からなる二価の芳香族炭化水素基を部分構造として含む電子ドナーユニットであり、D及び/又はAは式1-1により表される一価の基を少なくとも1つ有する、
Figure JPOXMLDOC01-appb-C000027
 式A-1~式A-12中、Xはそれぞれ独立に、O原子、S原子、Se原子又はNRA1を表し、Yはそれぞれ独立に、O原子又はS原子を表し、Zaはそれぞれ独立に、CRA2又はN原子を表し、Wはそれぞれ独立に、C(RA22、NRA1、N原子、CRA2、O原子、S原子、又はSe原子を表し、RA1はそれぞれ独立に、アルキル基、下記式1-1で表される一価の基、又は、他の構造との結合部位を表し、RA2はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、又は、他の構造との結合部位を表し、*はそれぞれ独立に、他の構造との結合部位を表す、
Figure JPOXMLDOC01-appb-C000028
 式1-1中、Lは直鎖状又は分岐鎖状の炭素数mのアルキレン基であり、Rは置換基を有さない炭素数nのアルキル基であり、6≦m+n≦50であり、*は他の構造との結合部位を表す、
<10> 式1において、Dが式D-1で表される構造である、<9>に記載の化合物、
Figure JPOXMLDOC01-appb-C000029
 式D-1中、X’はそれぞれ独立に、O原子、S原子、Se原子、又は、NRD1を表し、Zdはそれぞれ独立に、N原子又はCRD2を表し、RD1はそれぞれ独立に、一価の有機基を表し、RD2はそれぞれ独立に、水素原子又は一価の有機基を表し、Mは単結合、二価の芳香族複素環基、二価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又は、これらを組み合わせてなる二価の基を表し、p及びqはそれぞれ独立に、0~4の整数を表し、*はそれぞれ独立に、他の構造との結合部位を表す、
<11> 上記式1で表される構成繰り返し単位が、式2~式5のいずれかで表される構成繰り返し単位である、<9>又は<10>に記載の化合物、
Figure JPOXMLDOC01-appb-C000030
 式2~式5中、Xはそれぞれ独立に、O原子、S原子、Se原子又はNRA1を表し、Yはそれぞれ独立に、O原子又はS原子を表し、Zaはそれぞれ独立に、CRA2又はN原子を表し、RA1はそれぞれ独立に、アルキル基、式1-1で表される一価の基、又は、他の構造との結合部位を表し、RA2はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、又は、他の構造との結合部位を表し、X’はそれぞれ独立に、O原子、S原子、Se原子、又は、NRD1を表し、Zdはそれぞれ独立に、N原子又はCRD2を表し、RD1はそれぞれ独立に、一価の有機基を表し、RD2はそれぞれ独立に、水素原子又は一価の有機基を表し、Mは単結合、二価の芳香族複素環基、二価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又は、これらを組み合わせてなる二価の基を表し、p及びqはそれぞれ独立に、0~4の整数を表す、
<12> 有機半導体化合物である、<9>~<11>のいずれか1つに記載の化合物、
<13> 式1で表される構成繰り返し単位を有する、分子量2,000以上の化合物と、溶媒と、を含むことを特徴とする有機半導体組成物、
Figure JPOXMLDOC01-appb-C000031
 式1中、Aはsp2窒素原子、カルボニル基、及び、チオカルボニル基のうち少なくとも1つを環構造内に有する部分構造を含む電子アクセプターユニット、Dは少なくとも1つのN原子、O原子、S原子、若しくはSe原子を環構造内に有する二価の芳香族複素環基、又は2環以上の縮環構造からなる二価の芳香族炭化水素基を部分構造として含む電子ドナーユニットであり、D及び/又はAは式1-1で表される一価の基を少なくとも1つ有する、
Figure JPOXMLDOC01-appb-C000032
 式1-1中、Lは直鎖状又は分岐鎖状の炭素数mのアルキレン基であり、Rは置換基を有さない炭素数nのアルキル基であり、6≦m+n≦50であり、*は他の構造との結合部位を表す、
<14> 下記式I-1で表される構成単位を含む絶縁性ポリマーを更に含有する、<13>に記載の有機半導体組成物、
Figure JPOXMLDOC01-appb-C000033
 式I-1中、R22~R26はそれぞれ独立に、水素原子、ヒドロキシ基、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アリール基、アラルキル基、又は、ハロゲン原子を表し、R22~R26のうち隣り合う2つは互いに連結して環を形成してもよく、R21は水素原子又はアルキル基を表す、
<15> 式1で表される構成繰り返し単位を有する、分子量2,000以上の化合物を含むことを特徴とする有機半導体膜、
Figure JPOXMLDOC01-appb-C000034
 式1中、Aはsp2窒素原子、カルボニル基、及び、チオカルボニル基のうち少なくとも1つを環構造内に有する部分構造を含む電子アクセプターユニット、Dは少なくとも1つのN原子、O原子、S原子、若しくはSe原子を環構造内に有する二価の芳香族複素環基、又は2環以上の縮環構造からなる二価の芳香族炭化水素基を部分構造として含む電子ドナーユニットであり、D及び/又はAは式1-1で表される一価の基を少なくとも1つ有する、
Figure JPOXMLDOC01-appb-C000035
 式1-1中、Lは直鎖状又は分岐鎖状の炭素数mのアルキレン基であり、Rは置換基を有さない炭素数nのアルキル基であり、6≦m+n≦50であり、*は他の構造との結合部位を表す、
<16> 下記式I-1で表される構成単位を含む絶縁性ポリマーを更に含有する、<15>に記載の有機半導体膜、
Figure JPOXMLDOC01-appb-C000036
 式I-1中、R22~R26はそれぞれ独立に、水素原子、ヒドロキシ基、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アリール基、アラルキル基、又は、ハロゲン原子を表し、R22~R26のうち隣り合う2つは互いに連結して環を形成してもよく、R21は水素原子又はアルキル基を表す、
<17> <13>又は<14>に記載の有機半導体組成物を基板上に塗布する塗布工程を含む、有機半導体膜の製造方法、
<18> <14>に記載の有機半導体組成物を、表面エネルギーが50~75mNm-1以下であるゲート絶縁膜上に塗布する塗布工程を含む、有機半導体膜の製造方法、
<19> <13>又は<14>に記載の有機半導体組成物を基板上に塗布する塗布工程を含む、有機半導体素子の製造方法、
<20> <14>に記載の有機半導体組成物を、表面エネルギーが50~75mNm-1以下であるゲート絶縁膜上に塗布する塗布工程を含む、有機半導体素子の製造方法。
 本発明によれば、高移動度であり、移動度のバラツキが抑制され、高温高湿下での経時安定性に優れた有機半導体素子及びその製造方法を提供することができる。
 また、本発明によれば、有機半導体として好適な新規な化合物を提供することができる。
 更に、本発明によれば、高移動度であり、移動度のバラツキが抑制され、高温高湿下での経時安定性に優れた有機半導体膜及びその製造方法、並びに、上記有機半導体膜を好適に形成することができる有機半導体組成物を提供することができる。
本発明の有機半導体素子の一態様の断面模式図である。 本発明の有機半導体素子の別の一態様の断面模式図である。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 また、本明細書における化学構造式は、水素原子を省略した簡略構造式で記載する場合もある。
 また、本発明において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 また、本発明において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
(有機半導体素子)
 本発明の有機半導体素子は、下記式1で表される構成繰り返し単位を有する、分子量2,000以上の化合物(以下、「特定化合物」ともいう。)を含有する有機半導体層を有することを特徴とする。
 本発明者は、本発明の有機半導体素子は、キャリア移動度が高く、移動度のバラツキが抑制され、高温高湿下での経時安定性に優れることを見出した。
 上記効果が得られるメカニズムの詳細は不明であるが、以下の理由によるものと推測している。
 式1で表される高分子化合物は電子ドナーユニットとアクセプターユニットから形成された主鎖骨格を有する、いわゆるドナー・アクセプター型(「D-A型」ともいう)ポリマーである。このようなD-A型ポリマーは分子内ではドナーユニットとアクセプターユニットとの間で分極しやすい構造であり、分子内のキャリア伝導に有利であると考えられる。また、分子間ではドナーユニットとアクセプターユニットとの間の相互作用(分子間力)が働きやすく、分子間距離を狭める効果があると考えており、分子間のキャリア伝導にも有利と考えている。結果、D-A型ポリマーはキャリア移動度に有利であると考えられる。また、ポリマーを塗布した後の膜質(「モルフォロジー」ともいう。)も移動度に影響することが知られており、凹凸の多い膜ではなく、凹凸の少ない均一な膜が望ましいと考えている。
 式1のD-A型ポリマーに対し、式1-1で表される一価の基を少なくとも1つ有することで、溶液状態では立体配座の自由度が高くなり、ポリマーの溶解性を向上させることができ、凹凸が少なく緻密で均一な膜を形成することができると推測している。また、固体状態では分子間相互作用又は分子間のパッキングの阻害がおこりにくく、高移動度に必要な膜質を維持することができると推測している。その結果、移動度が高く、移動度のバラツキが抑制され、高温高湿下での経時安定性に優れると考えている。
 上記特定化合物は、有機半導体化合物であることが好ましい。
 また、本発明の有機半導体素子は、有機薄膜トランジスタであることが好ましい。
Figure JPOXMLDOC01-appb-C000037
 式1中、Aはsp2窒素原子、カルボニル基、及び、チオカルボニル基のうち少なくとも1つを環構造内に有する部分構造を含む電子アクセプターユニット、Dは少なくとも1つのN原子、O原子、S原子、若しくはSe原子を環構造内に有する二価の芳香族複素環基、又は2環以上の縮環構造からなる二価の芳香族炭化水素基を部分構造として含む電子ドナーユニットであり、D及び/又はAは式1-1で表される一価の基を少なくとも1つ有する。
 電子アクセプターユニットとは、電子受容性を有する構成単位をいい、例としてはフタルイミドのような、π電子不足系の複素環ユニットが挙げられる。
 電子ドナーユニットとは、電子供与性を有する構成単位をいい、例としてはチオフェンのような、π電子過剰系の複素環ユニットが挙げられる。
Figure JPOXMLDOC01-appb-C000038
 式1-1中、Lは直鎖状又は分岐鎖状の炭素数mのアルキレン基であり、Rは置換基を有さない炭素数nのアルキル基であり、6≦m+n≦50であり、*は他の構造との結合部位を表す。
<式1で表される構成繰り返し単位を有する化合物>
 本発明の有機半導体素子は、特定化合物を含有する有機半導体層を有する。
〔電子アクセプターユニット〕
 式1中、Aはsp2窒素原子、カルボニル基及びチオカルボニル基のうち少なくとも1つを環構造内に有する部分構造を含む電子アクセプターユニットを表す。
 Aは下記式A-1~式A-12で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有することが好ましく、Aが下記式A-1~式A-12よりなる群から選ばれた少なくとも1つにより表される構造であることがより好ましい。
Figure JPOXMLDOC01-appb-C000039
 式A-1~式A-12中、Xはそれぞれ独立に、O原子、S原子、Se原子又はNRA1を表し、Yはそれぞれ独立に、O原子又はS原子を表し、Zaはそれぞれ独立に、CRA2又はN原子を表し、Wはそれぞれ独立に、C(RA22、NRA1、N原子、CRA2、O原子、S原子、又はSe原子を表し、RA1はそれぞれ独立に、アルキル基、式1-1で表される一価の基、又は、他の構造との結合部位を表し、RA2はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、又は、他の構造との結合部位を表し、*はそれぞれ独立に、他の構造との結合部位を表す。
 なお、式A-5及び式A-10においては、Zaを含む2つの環構造中のそれぞれにおいて、1つのZaがCRA2であり、かつ、RA2が他の構造との結合部位を表す。この他の構造との結合部位が、式中の*に該当する。より具体的には、他の構造との結合位置を表す*が先端に位置する結合手(以後、単に「結合手」と称する)は、各式中のいずれかのZaから伸びるものであり、この結合手が伸びるZaは、CRA2であり、かつ、RA2が他の構造との結合部位を表す態様に該当する。
 また、式A-11においては、2つのZaがCRA2であり、かつ、RA2が他の構造との結合部位を表す。この他の構造との結合部位が、式中の*に該当する。
 また、式A-6において、Wを含む2つの環構造中のそれぞれにおいて、1つのWが以下の3つの態様のうちいずれか一つを表す。
 態様1:WがCRA2であり、かつ、RA2が他の構造との結合部位を表す。
 態様2:WがNRA1であり、かつ、RA1が他の構造との結合部位を表す。
 態様3:WがC(RA22であり、かつ、RA2のうち一方が他の構造との結合部位を表す。
 式A-1~式A-12中、Xはそれぞれ独立に、O原子、S原子、Se原子又はNRA1を表し、NRA1が好ましい。
 Yはそれぞれ独立に、O原子又はS原子を表し、O原子が好ましい。
 Zaはそれぞれ独立に、CRA2又はN原子を表し、CRA2が好ましい。
 Wはそれぞれ独立に、C(RA22、NRA1、N原子、CRA2、O原子、S原子、又はSe原子を表し、C(RA22、CRA2、又はS原子が好ましい。
 RA1はそれぞれ独立に、アルキル基、式1-1で表される一価の基、又は、他の構造との結合部位を表し、式1-1で表される一価の基が好ましい。
 RA1がアルキル基を表す場合、炭素数2~30のアルキル基が好ましく、炭素数8~25のアルキル基がより好ましい。また、上記アルキル基は直鎖状でも分岐鎖状でもよい。
 なお、RA1における他の構造との結合部位とは、上記式A-1~式A-12中の*で表される他の構造との結合部位である。
 RA2はそれぞれ独立に、アルキル基、水素原子、ハロゲン原子、又は、他の構造との結合部位を表し、水素原子又は他の構造との結合部位が好ましい。
 RA2がアルキル基を表す場合、炭素数2~30のアルキル基が好ましく、炭素数8~25のアルキル基がより好ましい。また、上記アルキル基は直鎖状でも分岐鎖状でもよい。
 RA2がハロゲン原子を表す場合、F原子、Cl原子、Br原子、I原子が好ましく、F原子がより好ましい。
 なお、RA2における他の構造との結合部位とは、上記式A-1~式A-12中の*で表される他の構造との結合部位である。
 特定化合物は、式1中のAが下記式A-1~式A-12で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有することが好ましく、式A-1~式A~6、式A-8~式A-10及び式A-12で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有することがより好ましく、式A-1、式A-3、式A-5及び式A-8で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有することが更に好ましく、式A-1、式A-3及び式A-5で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有することが特に好ましく、式A-1及び式A-3で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有することが最も好ましい。
 また、特定化合物は、上記それぞれの態様において、式1中のAが各式により表される構造を部分構造として有する態様よりも、式1中のAが各式により表される構造である態様の方が好ましい。
 式A-1~式A-12で表される構造の例を以下に示すが、本発明は以下の例示により限定されるものではない。下記構造式中、RA1は式A-1~式A-12中のRA1と同義であり、好ましい態様も同様である。
 また、*は他の構造との結合部位を表す。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
〔電子ドナーユニット〕
 Dは少なくとも1つのN原子、O原子、S原子、若しくはSe原子を環構造内に有する二価の芳香族複素環基、又は2環以上の縮環構造からなる二価の芳香族炭化水素基を部分構造として含む電子ドナーユニットである。
 少なくとも1つのN原子、O原子、S原子又はSe原子を環構造内に有する二価の芳香族複素環基としては、少なくとも1つのS原子を環構造内に有する二価の芳香族複素環基が好ましい。
 また、上記二価の芳香族複素環基は、単環であっても、2環以上の縮環構造を有していてもよく、単環の二価の芳香族複素環基を2以上組み合わせた構造であるか、2以上の単環の二価の芳香族複素環基と、1以上の2環以上の縮環構造を有する二価の芳香族複素環基を組み合わせた構造であることが好ましい。
 上記二価の芳香族複素環基は更に置換基を有していてもよく、好ましい置換基としては、アルキル基、アルケニル基、アルキニル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基、ハロゲン原子、式1-1で表される一価の基が挙げられる。
 上記二価の芳香族複素環基の例を以下に示すが、本発明は以下の例示により限定されるものではない。下記構造式中、水素原子はアルキル基、アルケニル基、アルキニル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基、ハロゲン原子、又は、式1-1により表される基により置換されていてもよく、RD1は後述する式D-1中のRD1と同義であり、好ましい態様も同様であり、*は他の構造との結合部位を表す。上記アルキル基としては、炭素数1~30のアルキル基が好ましく、炭素数8~30のアルキル基がより好ましい。
Figure JPOXMLDOC01-appb-C000042
 2環以上の縮環構造からなる芳香族炭化水素基としては、炭素数10~20の芳香族炭化水素基が好ましく、フルオレン基、ナフチレン基、若しくは、3環又は4環が縮合した芳香族炭化水素から水素原子を2つ除いた基がより好ましく、フルオレン基、ナフチレン基、若しくは、アントラセン環、フェナントレン環、クリセン環、又はピレン環から水素原子を2つ除いた基が更に好ましい。
 上記芳香族炭化水素基は更に置換基を有していてもよく、好ましい置換基としては、アルキル基、ハロゲン原子、式1-1で表される一価の基が挙げられる。
 また、式1において、Dは式D-1で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000043
 式D-1中、X’はそれぞれ独立に、O原子、S原子、Se原子、又は、NRD1を表し、Zdはそれぞれ独立に、N原子又はCRD2を表し、RD1はそれぞれ独立に、一価の有機基を表し、RD2はそれぞれ独立に、水素原子、又は、一価の有機基を表し、Mは単結合、二価の芳香族複素環基、二価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又は、これらを組み合わせてなる二価の基を表し、p及びqはそれぞれ独立に、0~4の整数を表し、*はそれぞれ独立に、他の構造との結合部位を表す。
 式D-1中、X’はそれぞれ独立に、O原子、S原子、Se原子、又は、NRD1を表し、O原子、S原子又はSe原子であることが好ましく、S原子であることがより好ましい。
 Zdはそれぞれ独立に、N原子又はCRD2を表し、CRD2であることがより好ましい。
 RD1はそれぞれ独立に、一価の有機基を表し、アルキル基(炭素数1~30が好ましい。)、アルキニル基(炭素数2~30が好ましい。)、アルケニル基(炭素数2~30が好ましい。)、アルコキシ基(炭素数1~30が好ましい。)、芳香族炭化水素基(炭素数6~30が好ましい。)、芳香族複素環基(5~7員環が好ましい。ヘテロ原子としては、O原子、N原子、S原子、Se原子が好ましい。)、ハロゲン原子(F原子、Cl原子、Br原子、I原子が好ましく、F原子又はCl原子がより好ましく、F原子が特に好ましい。)、又は、式1-1で表される一価の基であることが好ましく、アルキル基、ハロゲン原子、又は式1-1で表される一価の基であることがより好ましい。
 RD2はそれぞれ独立に、水素原子又は一価の有機基を表し、水素原子、アルキル基(炭素数1~30が好ましい。)、アルキニル基(炭素数2~30が好ましい。)、アルケニル基(炭素数2~30が好ましい。)、アルコキシ基(炭素数1~30が好ましい。)、芳香族炭化水素基(炭素数6~30が好ましい。)、芳香族複素環基(5~7員環が好ましい。ヘテロ原子としては、O原子、N原子、S原子、Se原子が好ましい。)、ハロゲン原子(F原子、Cl原子、Br原子、I原子が好ましく、F原子又はCl原子が更に好ましく、F原子が特に好ましい。)、又は、式1-1で表される一価の基であることが好ましく、水素原子、アルキル基、ハロゲン原子、又は式1-1で表される一価の基であることがより好ましい。
 Mは単結合、二価の芳香族複素環基、二価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又はこれらを組み合わせてなる二価の基を表す。
 上記Mにおける二価の芳香族複素環基は、単環であっても、2環以上の縮環構造を有していてもよい。本発明に好ましく用いられる二価の芳香族複素環基の例は、上記2環以上の縮環構造を有する二価の芳香族複素環基の例と同様である。
 Mにおける二価の芳香族炭化水素基としては、炭素数6~20の芳香族炭化水素基が好ましく、フェニレン基、ビフェニレン基、フルオレン基、ナフチレン基、又は、3環若しくは4環が縮合した芳香族炭化水素から水素原子を2つ除いた基がより好ましく、フルオレン基、ナフチレン基、アントラセン環、フェナントレン環、クリセン環、若しくはピレン環から水素原子を2つ除いた基が更に好ましい。
 Mにおける二価の芳香族複素環基、又は、二価の芳香族炭化水素基は、更に置換基を有していてもよく、好ましい置換基としては、アルキル基、アルコキシ基、ハロゲン原子、式1-1で表される一価の基が挙げられる。
 Mにおけるアルケニレン基としては、炭素数2~10のアルケニレン基が好ましく、炭素数2~4のアルケニレン基がより好ましく、エテニレン基が更に好ましい。
 Mにおけるアルキニレン基としては、炭素数2~10のアルキニレン基が好ましく、炭素数2~4のアルキニレン基がより好ましく、エチニレン基が更に好ましい。
 p及びqはそれぞれ独立に、0~4の整数であり、1~3の整数であることが好ましく、1~2の整数であることがより好ましい。pとqは同じ値であることが好ましい。また、p+qが2~4であることが好ましい。
 式D-1で表される構造の例を以下に示すが、本発明は以下の例示により限定されるものではない。下記構造式中、水素原子はアルキル基、又は、式1-1により表される基により置換されていてもよく、RD1は上記式D-1中のRD1と同義であり、好ましい態様も同様であり、*は他の構造との結合部位を表す。上記アルキル基としては、炭素数1~30のアルキル基が好ましく、炭素数8~30のアルキル基がより好ましい。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 式1中、D及び/又はAは上記式1-1で表される一価の基を少なくとも1つ有する。
 式1で表される構成繰り返し単位中の、式1-1で表される一価の基の数は、1~4であることが好ましく、1又は2であることがより好ましい。
 式1-1中、Lは直鎖状又は分岐鎖状の炭素数mのアルキレン基であり、mは1以上の整数であり、2以上の整数であることが好ましく、3以上の整数であることがより好ましい。また、mは30以下であることが好ましく、20以下であることがより好ましい。
 式1-1中、Rは置換基を有さない炭素数nのアルキル基であり、6≦m+n≦50である。
 式1-1中、nは2以上の整数であることが好ましく。4以上の整数であることがより好ましく、6以上の整数であることがより好ましい。また、nは30以下であることが好ましく、25以下であることがより好ましい。
 式1-1中、m+nは、6≦m+n≦50であり、6≦m+n≦40であることが好ましく、8≦m+n≦35であることがより好ましく、14≦m+n≦30であることが更に好ましい。
 式1-1中、Rで表されるアルキル基は直鎖状、分岐鎖状、環状のいずれであってもよいが、直鎖状又は分岐鎖状のアルキル基であることが好ましい。特に、Lが直鎖状のアルキレン基の場合、Rは分岐鎖状のアルキル基であることがより好ましく、Lが分岐鎖状のアルキレン基の場合、Rは直鎖状のアルキル基であることがより好ましい。
 上記式1-1で表される一価の基は、式1中のAが有することが好ましく、式1中のAに存在する窒素原子に結合していることがより好ましい。
 上記式1-1により表される一価の基は、下記式1-2又は式1-3により表される一価の基であることが好ましい。
Figure JPOXMLDOC01-appb-C000047
 式1-2、及び、式1-3中、mは1以上の整数であり、Rは置換基を有さない炭素数nのアルキル基であり、Raは置換基を有さない炭素数aのアルキル基であり、Rbは置換基を有さない炭素数bのアルキル基であり、6≦m+n≦50、又は6≦m+a+b≦50であり、*は他の構造との結合部位を表す。
 式1-2中、mは1以上の整数であり、2以上の整数であることが好ましく、3以上の整数であることがより好ましい。また、mは30以下であることが好ましく、20以下であることがより好ましい。
 式1-2中、nは2以上の整数であることが好ましく。4以上の整数であることがより好ましく、6以上の整数であることがより好ましい。また、nは30以下であることが好ましく、25以下であることがより好ましい。
 式1-2中、m+nは、6≦m+n≦50であり、6≦m+n≦40であることが好ましく、8≦m+n≦35であることがより好ましく、14≦m+n≦30であることが更に好ましい。
 式1-2中、Rで表されるアルキル基は直鎖状、分岐鎖状、環状のいずれであってもよいが、直鎖状又は分岐鎖状のアルキル基であることが好ましく、分岐鎖状のアルキル基であることがより好ましい。
 式1-3中、mは1以上の整数であり、2以上の整数であることが好ましく、3以上の整数であることがより好ましい。また、mは30以下であることが好ましく、20以下であることがより好ましい。
 式1-3中、aは1以上の整数であることが好ましく。2以上の整数であることがより好ましく、4以上の整数であることがより好ましい。また、aは30以下であることが好ましく、20以下であることがより好ましい。
 式1-3中、bは2以上の整数であることが好ましく。4以上の整数であることがより好ましく、6以上の整数であることがより好ましい。また、bは30以下であることが好ましく、20以下であることがより好ましい。
 式1-3中、m+a+bは、6≦m+a+b≦50であり、6≦m+a+b≦40であることが好ましく、8≦m+a+b≦35であることがより好ましく、14≦m+a+b≦30であることが更に好ましい。
 式1-3中、Ra又は、Rbで表されるアルキル基は直鎖状、分岐鎖状、環状のいずれであってもよいが、直鎖状又は分岐鎖状のアルキル基であることが好ましく、直鎖状のアルキル基であることがより好ましい。
 式1で表される化合物の結晶性の観点から、式1中、Aは、対称性がC2、C2v、又は、C2hであることが好ましい。
 また、式1で表される化合物の結晶性の観点から、式1中、Dは、対称性がC2、C2v、又は、C2hであることが好ましい。
 更に、式1で表される化合物の結晶性の観点から、式1中、Aの対称性がC2、C2v、又は、C2hであり、かつ、Dの対称性がC2、C2v、又は、C2hであることがより好ましい。対称性については、『分子の対称と群論』(中崎昌雄著、東京化学同人)の記載が参酌される。
〔式2~式5で表される構成繰り返し単位〕
 上記式1で表される構成繰り返し単位は、式2~式5のいずれかで表される構成繰り返し単位であることが好ましく、式2又は式3で表される構成繰り返し単位であることがより好ましく、式3で表される構成繰り返し単位であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000048
 式2~式5中、Xはそれぞれ独立に、O原子、S原子、Se原子又はNRA1を表し、Yはそれぞれ独立に、O原子又はS原子を表し、Zaはそれぞれ独立に、CRA2又はN原子を表し、RA1はそれぞれ独立に、アルキル基、式1-1で表される一価の基、又は、他の構造との結合部位を表し、RA2はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、又は、他の構造との結合部位を表し、X’はそれぞれ独立に、O原子、S原子、Se原子、又は、NRD1を表し、Zdはそれぞれ独立に、N原子又はCRD2を表し、RD1はそれぞれ独立に、一価の有機基を表し、RD2はそれぞれ独立に、水素原子又は一価の有機基を表し、Mは単結合、二価の芳香族複素環基、二価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又は、これらを組み合わせてなる二価の基を表し、p及びqはそれぞれ独立に、0~4の整数を表す。
 式2~式5中、X、Y、Za、RA1、及び、RA2は、上記式A-1~式A-12におけるX、Y、Za、RA1、及び、RA2とそれぞれ同義であり、好ましい態様も同様である。
 また、式2~式5中、X’、Zd、RD1、RD2、M、p、及び、qは上記式D-1におけるX’、Zd、RD1、RD2、M、p、及び、qとそれぞれ同義であり、好ましい態様も同様である。
〔特定化合物の好ましい態様〕
 特定化合物中、式1で表される構成繰り返し単位の含有量は、特定化合物の全質量に対し、60~100質量%であることが好ましく、80~100質量%であることがより好ましく、90~100質量%であることが更に好ましく、実質的に式1で表される構成繰り返し単位のみから形成されていることが特に好ましい。なお、実質的に式1で表される構成繰り返し単位のみから形成されているとは、式1で表される構成繰り返し単位の含有量が95質量%以上であることを意味し、97質量%以上であることが好ましく、99質量%以上であることがより好ましい。
 式1で表される構成繰り返し単位の含有量が上記範囲内であると、移動度により優れる有機半導体が得られる。
 また、特定化合物は、式1で表される構成繰り返し単位を1種単独で含んでもよいし、2種以上含んでもよい。
 特定化合物は、式1で表される構成繰り返し単位を2以上有する化合物であり、構成繰り返し単位数nが2~9のオリゴマーであってもよく、構成繰り返し単位数nが10以上の高分子(ポリマー)であってもよい。これらの中でも、構成繰り返し単位数nが10以上の高分子であることが、移動度及び得られる有機半導体膜の物性の観点から好ましい。
 式1で表される構成繰り返し単位を有する化合物の分子量は、移動度の観点から、2,000以上であり、10,000以上であることが好ましく、20,000以上であることがより好ましく、30,000以上であることが更に好ましく、45,000以上であることが特に好ましい。また、溶解度の観点から、1,000,000以下であることが好ましく、300,000以下であることがより好ましく、200,000以下であることが更に好ましく、150,000以下であることが特に好ましい。
 本発明において、化合物が分子量分布を有する場合、その化合物の分子量とは重量平均分子量を意味する。
 本発明において、特定高分子化合物が分子量分布を有する場合、その化合物の分子量とは重量平均分子量を意味する。
 本発明において、特定高分子化合物の重量平均分子量及び数平均分子量は、ゲル浸透クロマトグラフィ(GPC(Gel Permeation Chromatography))法にて測定され、標準ポリスチレンで換算して求められる。具体的には、例えば、GPCは、HLC-8121GPC(東ソー(株)製)を用い、カラムとして、TSKgel GMHHR-H(20) HT(東ソー(株)製、7.8mmID×30cm)を2本用い、溶離液として1,2,4-トリクロロベンゼンを用いる。また、条件としては、試料濃度を0.02質量%、流速を1.0ml/min、サンプル注入量を300μl、測定温度を160℃とし、IR(infrared)検出器を用いて行う。また、検量線は、東ソー(株)製「標準試料TSK standard,polystyrene」:「F-128」、「F-80」、「F-40」、「F-20」、「F-10」、「F-4」、「F-2」、「F-1」、「A-5000」、「A-2500」、「A-1000」、「A-500」の12サンプルから作製する。
 また、特定化合物の末端の構造は、特に制限はなく、他の構成単位に有無や、合成時に使用した基質の種類、合成時のクエンチ剤(反応停止剤)の種類にもよるが、例えば、水素原子、ヒドロキシ基、ハロゲン原子、エチレン性不飽和基、アルキル基、芳香族複素環基(チオフェン環が好ましい)、芳香族炭化水素基(ベンゼン環が好ましい)等が挙げられる。
 特定化合物の合成方法は、特に限定されず、公知の方法を参照して合成すればよい。例えば、特表2010-527327号公報、特表2007-516315号公報、特表2014-515043号公報、特表2014-507488号公報、特表2011-501451号公報、特開2010-18790号公報、国際公開2012/174561号、特表2011-514399号公報、特表2011-514913号公報等の文献を参考に、電子アクセプターユニットの前駆体と電子ドナーユニットの前駆体を合成して、それぞれの前駆体を鈴木カップリングやStilleカップイリング等のクロスカップリング反応させることにより合成することができる。
 以下に、式1で表される構成繰り返し単位の好ましい具体例を示すが、本発明は以下の例示により限定されるものではない。
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
<バインダーポリマー>
 本発明の有機半導体素子の有機半導体層は、バインダーポリマーを含有してもよい。
 また、本発明の有機半導体素子は、上記有機半導体層とバインダーポリマーを含む層(以下、「バインダーポリマー層」ともいう。)を有する有機半導体素子であってもよい。
 バインダーポリマーの種類は特に制限されず、公知のバインダーポリマーを用いることができる。
 上記バインダーポリマーとしては、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルシンナメート、ポリ(4-ビニルフェニル)、ポリ(4-メチルスチレン)、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、ポリシロキサン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース、ポリエチレン、ポリプロピレンなどの絶縁性ポリマー、及び、これらの共重合体、ポリシラン、ポリカルバゾール、ポリアリールアミン、ポリフルオレン、ポリチオフェン、ポリピロール、ポリアニリン、ポリパラフェニレンビニレン、ポリアセン、ポリヘテロアセンなどの半導体ポリマー、及び、これらの共重合体、ゴム、熱可塑性エラストマーを挙げることができる。
 中でも、バインダーポリマーとしては、ベンゼン環を有する高分子化合物(ベンゼン環基を有する単量体単位を有する高分子)が好ましい。ベンゼン環基を有する単量体単位の含有量は特に制限されないが、全単量体単位中、50モル%以上が好ましく、70モル%以上がより好ましく、90モル%以上が更に好ましい。上限は特に制限されないが、100モル%が挙げられる。
 また、バインダーポリマーとしては、絶縁性ポリマーを含むことが好ましい。
 絶縁性ポリマーは、絶縁性を示すものであれば特に制限なく用いることができる。本発明において「絶縁性ポリマー」とは、体積抵抗値が106Ωcm以上のポリマーを意味する。体積抵抗値は下記方法により測定される。
〔体積抵抗値の測定方法〕
 清浄な50mm角のガラス基板に、ポリマーを塗布し、厚さ1μmのポリマー膜を得る。得られた膜について、ロレスタGP MCP-T610型(商品名、三菱マテリアル製)を用いて体積抵抗値を測定する。
 本発明において、有機半導体層が絶縁性ポリマーを含むことは、有機半導体層を、エッチング用イオンビームを併用して、飛行時間型二次イオン分析(TOF-SIMS)により元素マッピング測定することにより、確認することが可能である。
 上記絶縁性ポリマーとしては、下記式I-1で表される構成単位を含むポリマーが好ましい。
Figure JPOXMLDOC01-appb-I000059
 式I-1中、R22~R26はそれぞれ独立に、水素原子、ヒドロキシ基、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アリール基、アラルキル基、又は、ハロゲン原子を表し、R22~R26のうち隣り合う2つは互いに連結して環を形成してもよく、R21は水素原子又はアルキル基を表す。
 R22~R26はそれぞれ独立に、水素原子、ヒドロキシ基、アルキル基、アルコキシ基、アリール基、ハロゲン原子が好ましく、水素原子、ヒドロキシ基、アルキル基、アルコキシ基がより好ましく、水素原子、アルキル基が更に好ましく、水素原子が最も好ましい。
 上記アルキル基は直鎖状、分岐鎖状又は環状のいずれであってもよく、直鎖状又は分岐鎖常であることが好ましい。
 上記アルキル基の炭素数は1~15が好ましく、1~8がより好ましく、1~4が更に好ましい。
 上記アルコキシ基の炭素数は1~15が好ましく、1~8がより好ましく、1~4が更に好ましい。
 上記アルケニル基の炭素数は1~15が好ましく、1~8がより好ましく、1~4が更に好ましい。
 上記アルキニル基の炭素数は1~15が好ましく、1~8がより好ましく、1~4が更に好ましい。
 上記アリール基の炭素数は6~20が好ましく、6~12がより好ましい。
 上記アラルキル基の炭素数は7~21が好ましく、7~15がより好ましい。
 R22~R26のうち隣り合う2つは互いに連結して環を形成してもよい。形成される環としては芳香族環が挙げられ、ベンゼン環が好ましい。
 R21は水素原子又はアルキル基(メチル基、エチル基など)を表し、水素原子が好ましい。
 上記ハロゲン原子としては、フッ素原子が好ましい。
 上記式I-1で表される構成単位を含むポリマーは、上記式I-1で表される構成単位を、式I-1で表される構成単位を含むポリマーの全質量に対し、50質量%以上含むことが好ましく、80質量%以上含むことがより好ましく、90質量%以上含むことが更に好ましい。
 式I-1で表される構成単位を含む絶縁性ポリマーは、式I-1で表される構成単位を含む絶縁性ポリマー、ポリマーの繰り返し単位が式I-1で表される構成単位のみからなる共重合体、又は、式I-1で表される構成単位のみからなるホモポリマーが好ましく、ポリマーの繰り返し単位が式I-1で表される構成単位のみからなる共重合体、又は、式I-1で表される構成単位のみからなるホモポリマーがより好ましく、式I-1で表される構成単位のみからなるホモポリマーが更に好ましい。
 バインダーポリマーの重量平均分子量は、特に制限されないが、1,000~200万が好ましく、1,500~100万がより好ましく、3,000~100万が更に好ましく、2,500~20万が特に好ましく、2万~15万が最も好ましい。
 また、バインダーポリマーの多分散度(重量平均分子量/数平均分子量)は2.5以下であることが好ましく、1.5以下であることがより好ましく、1.1以下であることが更に好ましい。
 上述のバインダーポリマーの重量平均分子量(Mw)及び数平均分子量(Mn)は、標準ポリスチレン換算であり、ゲル浸透クロマトグラフィ(GPC、東ソー(株)製;HLC-8120;Tskgel Multipore HXL-M)を用い、溶媒としてTHF(テトラヒドロフラン)を使用して測定できる。
 また、後述する溶媒を用いる場合、バインダーポリマーは、使用する溶媒への溶解度が、特定化合物よりも高いことが好ましい。上記態様であると、得られる有機半導体の移動度及び高温高湿下での経時安定性により優れる。
 本発明の有機半導体素子の有機半導体層におけるバインダーポリマーの含有量は、特定化合物の含有量100質量部に対し、1~200質量部であることが好ましく、10~150質量部であることがより好ましく、20~120質量部であることが更に好ましい。上記範囲であると、得られる有機半導体の移動度及び高温高湿下での経時安定性により優れる。
<その他の成分>
 本発明の有機半導体素子における有機半導体層には、特定化合物及びバインダーポリマー以外に他の成分が含まれていてもよい。
 その他の成分としては、公知の添加剤等を用いることができる。
 上記有機半導体層における特定化合物及びバインダーポリマー以外の成分の含有量は、10質量%以下であることが好ましく、5質量%以下であることが好ましく、1質量%以下であることが更に好ましく、0.1質量%以下であることが特に好ましい。上記範囲であると、膜形成性に優れ、得られる有機半導体の移動度及び高温高湿下での経時安定性により優れる。
<有機半導体層の形成方法>
 本発明の有機半導体素子における有機半導体層の形成方法は特に制限されず、後述する本発明の有機半導体組成物を、ソース電極、ドレイン電極、及び、ゲート絶縁膜上に付与して、必要に応じて乾燥処理を施すことにより、所望の有機半導体層を形成することができる。
 本発明の有機半導体素子は、後述する本発明の有機半導体組成物を用いて製造されたものであることが好ましい。
 本発明の有機半導体組成物を用いて有機半導体膜や有機半導体素子を製造する方法は、特に制限されず、公知の方法を採用できる。例えば、組成物を所定の基材上に付与して、必要に応じて乾燥処理を施して、有機半導体膜を製造する方法が挙げられる。
 基材上に組成物を付与する方法は特に制限されず、公知の方法を採用でき、例えば、インクジェット印刷法、スクリーン印刷法、フレキソ印刷法、バーコート法、スピンコート法、ナイフコート法、ドクターブレード法などが挙げられ、インクジェット印刷法、スクリーン印刷法、フレキソ印刷法が好ましい。
 なお、フレキソ印刷法としては、フレキソ印刷版として感光性樹脂版を用いる態様が好適に挙げられる。態様によって、組成物を基板上に印刷して、パターンを容易に形成することができる。
 中でも、本発明の有機半導体素子の製造方法は、後述する本発明の有機半導体組成物を基板上に塗布する塗布工程を含むことが好ましく、本発明の有機半導体組成物を基板上に塗布する塗布工程、及び、塗布された組成物から溶媒を除去する除去工程を含むことがより好ましい。
 上記塗布工程は、式I-1で表される構成単位を含む絶縁性ポリマーを更に含有する本発明の有機半導体組成物を、表面エネルギーが50~75mNm-1以下であるゲート絶縁膜上に塗布する塗布工程であることがより好ましい。
 上記態様によれば、有機半導体層に、上記式I-1で表される構成単位を含む絶縁性ポリマーを含み、かつ、表面エネルギーが50~75mNm-1であるゲート絶縁膜を更に含む有機半導体素子が得られる。
 上記有機半導体素子は、高移動度の有機半導体素子である。
 後述する本発明の有機半導体組成物は、溶媒を含み、有機溶媒を含むことが好ましい。
 溶媒としては、公知の溶媒を用いることができる。
 具体的には、例えば、ヘキサン、オクタン、デカン、トルエン、キシレン、メシチレン、エチルベンゼン、アミルベンゼン、デカリン、1-メチルナフタレン、1-エチルナフタレン、1,6-ジメチルナフタレン、テトラリンなどの炭化水素系溶媒、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン、プロピオフェノン、ブチロフェノン、α-テトラロン、β-テトラロンなどのケトン系溶媒、例えば、ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロベンゼン、1,2-ジクロロベンゼン、1,2,4-トリクロロベンゼン、クロロトルエン、1-フルオロナフタレンなどのハロゲン化炭化水素系溶媒、ピリジン、ピコリン、キノリン、チオフェン、3-ブチルチオフェン、チエノ[2,3-b]チオフェン等の複素環系溶媒、2-クロロチオフェン、3-クロロチオフェン、2,5-ジクロロチオフェン、3,4-ジクロロチオフェン、2-ブロモチオフェン、3-ブロモチオフェン、2,3-ジブロモチオフェン、2,4-ジブロモチオフェン、2,5-ジブロモチオフェン、3,4-ジブロモチオフェン、3,4-ジクロロ-1,2,5-チアジアゾール等のハロゲン化複素環系溶媒、例えば、酢酸エチル、酢酸ブチル、酢酸アミル、酢酸-2-エチルヘキシル、γ-ブチロラクトン、酢酸フェニルなどのエステル系溶媒、例えば、メタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコールなどのアルコール系溶媒、例えば、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソール、エトキシベンゼン、プロポキシベンゼン、イソプロポキシベンゼン、ブトキシベンゼン、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール、4-エチルアニソール、ジメチルアニソール(2,3-、2,4-、2,5-、2,6-、3,4-、3,5-、3,6-のいずれか)、1,4-ベンゾジオキサン、2,3-ジヒドロベンゾフラン、フタラン、クロマン、イソクロマンなどのエーテル系溶媒、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドン、1-メチル-2-イミダゾリジノン、1,3-ジメチル-2-イミダゾリジノン等のアミド・イミド系溶媒、ジメチルスルホキシドなどのスルホキシド系溶媒、リン酸トリメチルなどのリン酸エステル系溶媒、アセトニトリル、ベンゾニトリルなどのニトリル系溶媒、ニトロメタン、ニトロベンゼンなどのニトロ系溶媒を挙げることができる。
 溶媒は、1種単独で用いてもよく、複数組み合わせて用いてもよい。
 これらの中でも、炭化水素系溶媒、ケトン系溶媒、ハロゲン化炭化水素系溶媒、複素環系溶媒、ハロゲン化複素環系溶媒又はエーテル系溶媒が好ましく、トルエン、キシレン、メシチレン、アミルベンゼン、テトラリン、アセトフェノン、プロピオフェノン、ブチロフェノン、α-テトラロン、ジクロロベンゼン、アニソール、エトキシベンゼン、プロポキシベンゼン、イソプロポキシベンゼン、ブトキシベンゼン、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール、2,3-ジヒドロベンゾフラン、フタラン、クロマン、イソクロマン、1-フルオロナフタレン、3-クロロチオフェン、2,5-ジブロモチオフェンがより好ましく、トルエン、キシレン、テトラリン、アセトフェノン、プロピオフェノン、ブチロフェノン、α-テトラロン、アニソール、エトキシベンゼン、プロポキシベンゼン、ブトキシベンゼン、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール、2,3-ジヒドロベンゾフラン、フタラン、クロマン、イソクロマン、1-フルオロナフタレン、3-クロロチオフェン、2,5-ジブロモチオフェンが特に好ましい。
 溶媒の沸点が100℃以上であることが、製膜性の観点から好ましい。溶媒の沸点は、100~300℃であることがより好ましく、125~250℃であることが更に好ましく、150~225℃であることが特に好ましい。
 なお、最も含有量の多い溶媒の沸点が100℃以上であることが好ましく、全ての溶媒の沸点が100℃以上であることがより好ましい。
 溶媒を含有する場合、本発明の有機半導体組成物における特定化合物の含有量は、0.01~50質量%であることが好ましく、0.02~25質量%であることがより好ましく、0.05~15質量%であることが更に好ましく、0.1~10質量%であることが特に好ましく、また、バインダーポリマーを含有する場合、バインダーポリマーの含有量は、0.01~50質量%であることが好ましく、0.05~25質量%であることがより好ましく、0.1~10質量%であることが更に好ましい。上記範囲であると、塗布性に優れ、容易に有機半導体膜を形成することができる。
 上記除去工程における乾燥処理は、必要に応じて実施される処理であり、使用される特定化合物及び溶媒の種類により適宜最適な条件が選択される。中でも、得られる有機半導体の移動度及び高温高湿下での経時安定性により優れ、また、生産性に優れる点で、加熱温度としては30℃~100℃が好ましく、40℃~80℃がより好ましく、加熱時間としては10~300分が好ましく、30~180分がより好ましい。
 本発明の有機半導体デバイス組成物は、界面活性剤、酸化防止剤、結晶化制御剤、結晶配向制御剤、等、ポリマーバインダー以外の添加剤を含有してもよい。
 界面活性剤の例としては、特に限定されるものではないが、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレンポリオキシプロピレンブロックコポリマー類、ソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステルなどのノニオン系界面活性剤、メガファックF171、F176(DIC(株)製)やフロラードFC430(住友スリーエム(株)製)やサーフィノールE1004(旭硝子(株)製)、OMNOVA社製のPF656及びPF6320、等のフッ素系界面活性剤、ポリシロキサンポリマーKP-341(信越化学工業(株)製)、KF-410(信越化学工業(株)製)、KF-412(信越化学工業(株)製)、KF-96-100cs(信越化学工業(株)製)、BYK-322(BYK社製)、BYK-323(BYK社製)等のオルガノシロキサンポリマーが挙げられる。
 界面活性剤の含有量は、塗布液中、約0.001~約1質量%であることが好ましい。
 例えば、酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、及びイオウ系酸化防止剤等が挙げられる。
 フェノール系酸化防止剤の具体例としては、2,6-ジ-t-ブチル-4-メチルフェノール、n-オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕メタン、トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、4,4’-ブチリデンビス-(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕、3,9-ビス{2-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン等が挙げられる。
 フェノール系酸化防止剤の市販品としては、イルガノックス1010、イルガノックス1035、イルガノックス1076、イルガノックス1135、イルガノックス245、イルガノックス259、イルガノックス295、及びイルガノックス3114(以上、いずれもBASF社製)、アデカスタブ AO-20、アデカスタブ AO-30、アデカスタブ AO-40、アデカスタブ AO-50、アデカスタブ AO-60、アデカスタブ AO-70、アデカスタブ AO-80、アデカスタブ AO-90、及びアデカスタブ AO-330(以上、いずれも(株)ADEKA社製)、スミライザー BHT、スミライザー BP-101、スミライザー GA-80、スミライザー MDP-S、スミライザー BBM-S、スミライザー GM、スミライザー GS(F)、及びスミライザー GP(以上、いずれも住友化学(株)製)、HOSTANOX O10、HOSTANOX O16、HOSTANOX O14、及びHOSTANOX O3(以上、いずれもクラリアント社製)、アンテージ BHT、アンテージ W-300、アンテージ W-400、及びアンテージ W500(以上、いずれも川口化学工業(株)製)、並びにSEENOX 224M、及びSEENOX 326M(以上、いずれもシプロ化成(株)製)、ヨシノックスBHT、ヨシノックスBB、トミノックスTT、トミノックス917(以上、いずれも吉富製薬(株)製)、TTHP(東レ(株)製)等が挙げられる。
 リン系酸化防止剤の具体例としては、トリスノニルフェニルホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4-ビフェニレン-ジ-ホスホナイト等が挙げられる。リン系酸化防止剤の市販品としては、アデカスタブ1178(旭電化(株)製)、スミライザーTNP(住友化学(株)製)、JP-135(城北化学(株)製)、アデカスタブ2112(旭電化(株)製)、JPP-2000(城北化学(株)製)、Weston 618(GE社製)、アデカスタブPEP-24G(旭電化(株)製)、アデカスタブPEP-36(旭電化(株)製)、アデカスタブHP-10(旭電化(株)製)、SandstabP-EPQ(サンド(株)製)、フォスファイト168(チバ・スペシャルティ・ケミカルズ(株)製)等が挙げられる。
 イオウ系酸化防止剤の具体例としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)等が挙げられる。イオウ系酸化防止剤の市販品としては、スミライザーTPL(住友化学(株)製)、ヨシノックスDLTP(吉富製薬(株)製)、アンチオックスL(日本油脂(株)製)、スミライザーTPM(住友化学(株)製)、ヨシノックスDMTP(吉富製薬(株)製)、アンチオックスM(日本油脂(株)製)、スミライザーTPS(住友化学(株)製)、ヨシノックスDSTP(吉富製薬(株)製)、アンチオックスS(日本油脂(株)製)、アデカスタブAO-412S(旭電化(株)製)、SEENOX 412S(シプロ化成(株)製)、スミライザーTDP(住友化学(株)製)等が挙げられる。
 酸化防止剤の含有量は、塗布液中、約0.01~約5質量%であることが好ましい。
 形成される有機半導体層の厚さは、特に制限されないが、得られる有機半導体の移動度及び高温高湿下での経時安定性の観点から、10~500nmが好ましく、30~200nmがより好ましい。
 本発明の有機半導体組成物を塗布後、形成される有機半導体膜を加熱アニールすることが好ましい。アニール温度は用いる基板により、適宜最適化されるが、80℃~300℃であることが好ましく、120℃~250℃であることが好ましく、150℃~200℃であることが更に好ましい。上記加熱アニールにより、フレキシブルな置換基である式1-1で表される置換基が再配列を起こすと考えられ、より優れた膜質(モルフォロジー)を形成すると推測している。その結果、高移動度であり、移動度のバラツキが抑制され、高温高湿下での経時安定性に優れる有機半導体膜が得られる。
 有機半導体素子としては、特に制限はないが、2~5端子の有機半導体素子であることが好ましく、2又は3端子の有機半導体素子であることがより好ましい。
 また、有機半導体素子としては、光電変換素子でないことが好ましい。
 更に、本発明の有機半導体素子は、非発光性有機半導体素子であることが好ましい。
 2端子素子としては、整流用ダイオード、定電圧ダイオード、PINダイオード、ショットキーバリアダイオード、サージ保護用ダイオード、ダイアック、バリスタ、トンネルダイオード等が挙げられる。
 3端子素子としては、バイポーラトランジスタ、ダーリントントランジスタ、電界効果トランジスタ、絶縁ゲートバイポーラトランジスタ、ユニジャンクショントランジスタ、静電誘導トランジスタ、ゲートターンサイリスタ、トライアック、静電誘導サイリスタ等が挙げられる。
 これらの中でも、整流用ダイオード、及び、トランジスタ類が好ましく挙げられ、電界効果トランジスタがより好ましく挙げられる。
 電界効果トランジスタとしては、有機薄膜トランジスタが好ましく挙げられる。
 本発明における有機薄膜トランジスタの一態様について図面を参照して説明する。
 図1は、本発明の有機半導体素子(有機薄膜トランジスタ(有機TFT))の一態様の断面模式図である。
 図1において、有機薄膜トランジスタ100は、基板10と、基板10上に配置されたゲート電極20と、ゲート電極20を覆うゲート絶縁膜30と、ゲート絶縁膜30のゲート電極20側とは反対側の表面に接するソース電極40及びドレイン電極42と、ソース電極40とドレイン電極42との間のゲート絶縁膜30の表面を覆う有機半導体膜50と、各部材を覆う封止層60とを備える。有機薄膜トランジスタ100は、ボトムゲート-ボトムコンタクト型の有機薄膜トランジスタである。
 なお、図1においては、有機半導体膜50が、上述した組成物より形成される膜に該当する。
 以下、基板、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、有機半導体膜及び封止層並びにそれぞれの形成方法について詳述する。
<基板>
 基板は、後述するゲート電極、ソース電極、ドレイン電極などを支持する役割を果たす。
 基板の種類は特に制限されず、例えば、プラスチック基板、ガラス基板、セラミック基板などが挙げられる。中でも、各デバイスへの適用性及びコストの観点から、ガラス基板又はプラスチック基板であることが好ましい。
 プラスチック基板の材料としては、熱硬化性樹脂(例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)など)又は熱可塑性樹脂(例えば、フェノキシ樹脂、ポリエーテルスルフォン、ポリスルフォン、ポリフェニレンスルフォンなど)が挙げられる。
 セラミック基板の材料としては、例えば、アルミナ、窒化アルミニウム、ジルコニア、シリコン、窒化シリコン、シリコンカーバイドなどが挙げられる。
 ガラス基板の材料としては、例えば、ソーダガラス、カリガラス、ホウケイ酸ガラス、石英ガラス、アルミケイ酸ガラス、鉛ガラスなどが挙げられる。
<ゲート電極、ソース電極、ドレイン電極>
 ゲート電極、ソース電極、ドレイン電極の材料としては、例えば、金(Au)、銀、アルミニウム(Al)、銅、クロム、ニッケル、コバルト、チタン、白金、タンタル、マグネシウム、カルシウム、バリウム、ナトリウム等の金属;InO2、SnO2、酸化インジウムスズ(ITO)等の導電性の酸化物;ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリジアセチレン等の導電性高分子;シリコン、ゲルマニウム、ガリウム砒素等の半導体;フラーレン、カーボンナノチューブ、グラファイト等の炭素材料などが挙げられる。中でも、金属であることが好ましく、銀又はアルミニウムであることがより好ましい。
 ゲート電極、ソース電極、ドレイン電極の厚みは特に制限されないが、20~200nmであることが好ましい。
 ゲート電極、ソース電極、ドレイン電極を形成する方法は特に制限されないが、例えば、基板上に、電極材料を真空蒸着又はスパッタする方法、電極形成用組成物を塗布又は印刷する方法などが挙げられる。また、電極をパターニングする場合、パターニングする方法としては、例えば、フォトリソグラフィー法;インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法;マスク蒸着法などが挙げられる。
<ゲート絶縁膜>
 ゲート絶縁膜は、ゲート電極と有機半導体層との間に設けられ、絶縁性を有する膜であれば特に限定されず、単層の膜であってもよいし、多層の膜であってもよい。
 ゲート絶縁膜は、絶縁性の材料で形成されるのが好ましく、絶縁性の材料として、例えば、有機高分子などの有機材料、無機酸化物などの無機材料等が好ましく挙げられ、取り扱い性などの点から、有機材料を用いることが好ましい。
 有機高分子及び無機酸化物等は、絶縁性を有するものであれば特に限定されず、薄膜、例えば厚み1μm以下の薄膜を形成できるものが好ましい。
 有機高分子及び無機酸化物は、ぞれぞれ、1種を用いても、2種以上を併用してもよい。また、ゲート絶縁膜は、それぞれ後述する有機高分子と無機酸化物とを混合させたハイブリッド層としてもよい。
 有機高分子としては、特に限定されるものではないが、例えば、ポリビニルフェノール、ポリスチレン(PS)、ポリメチルメタクリレートに代表されるポリ(メタ)アクリレート、ポリビニルアルコール、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、CYTOPに代表される環状フルオロアルキルポリマー、ポリシクロオレフィン、ポリエステル、ポリエーテルスルホン、ポリエーテルケトン、ポリイミド、ポリ(メタ)アクリル酸、ポリベンゾオキサゾール、エポキシ樹脂、ポリジメチルシロキサン(PDMS)に代表されるポリオルガノシロキサン、ポリシルセスキオキサン又はブタジエンゴム等が挙げられる。また、上記の他にも、フェノール樹脂、ノボラック樹脂、シンナメート樹脂、アクリル樹脂、ポリパラキシリレン樹脂等の熱硬化性樹脂も挙げられる。
 有機高分子は、アルコキシシリル基やビニル基、アクリロイルオキシ基、エポキシ基、メチロール基等の反応性置換基を有する化合物と併用することもできる。
 有機高分子でゲート絶縁膜を形成する場合、ゲート絶縁膜の耐溶媒性や絶縁耐性を増す目的等で、有機高分子を架橋し、硬化させることも好ましい。架橋は、光、熱又はこれら双方を用いて、酸又はラジカルを発生させることにより、行うのが好ましい。
 ラジカルにより架橋する場合、光又は熱によりラジカルを発生させるラジカル発生剤として、例えば、特開2013-214649号公報の段落0182~0186に記載の熱重合開始剤(H1)及び光重合開始剤(H2)、特開2011-186069号公報の段落0046~0051に記載の光ラジカル発生剤、特開2010-285518号公報の段落0042~0056に記載の光ラジカル重合開始剤等を好適に用いることができ、好ましくはこれらの内容は本願明細書に組み込まれる。
 また、特開2013-214649号公報の段落0167~0177に記載の「数平均分子量(Mn)が140~5,000であり、架橋性官能基を有し、フッ素原子を有さない化合物(G)」を用いるのも好ましく、これらの内容は好ましくは本願明細書に組み込まれる。
 酸により架橋する場合、光により酸を発生させる光酸発生剤として、例えば、特開2010-285518号公報の段落0033~0034に記載の光カチオン重合開始剤、特開2012-163946号公報の段落0120~0136に記載の酸発生剤、特にスルホニウム塩、ヨードニウム塩等を好ましく使用することができ、好ましくはこれらの内容は本願明細書に組み込まれる。
 熱により酸を発生させる熱酸発生剤(触媒)として、例えば、特開2010-285518号公報の段落0035~0038に記載の熱カチオン重合開始剤、特にオニウム塩等や、特開2005-354012号公報の段落0034~0035に記載の触媒、特にスルホン酸類及びスルホン酸アミン塩等を好ましく使用することができ、好ましくはこれらの内容は本願明細書に組み込まれる。
 また、特開2005-354012号公報の段落0032~0033に記載の架橋剤、特に二官能以上のエポキシ化合物、オキセタン化合物、特開2006-303465号公報の段落0046~0062に記載の架橋剤、特に2個以上の架橋基を有し、この架橋基の少なくとも一つがメチロール基若しくはNH基であることを特徴とする化合物、及び、特開2012-163946号公報の段落0137~0145に記載の、ヒドロキシメチル基又はアルコキシメチル基を分子内に2個以上有する化合物を用いるのも好ましく、これらの内容は好ましくは本願明細書に組み込まれる。
 ゲート絶縁膜を有機高分子で形成する方法としては、例えば、有機高分子を塗工、硬化する方法が挙げられる。塗工方法は、特に限定されず、上記の各印刷法が挙げられる。中でも、マイクログラビアコート法、ディップコート法、スクリーンコート印刷、ダイコート法又はスピンコート法等のウエットコーティング法が好ましい。
 上記無機酸化物としては、特に限定されるものではないが、例えば、酸化ケイ素、窒化ケイ素(SiNY)、酸化ハフニウム、酸化チタン、酸化タンタル、酸化アルミニウム、酸化ニオブ、酸化ジルコニウム、酸化銅、酸化ニッケル等の酸化物、また、SrTiO3、CaTiO3、BaTiO3、MgTiO3、SrNb26のようなペロブスカイト、あるいはこれらの複合酸化物又は混合物等が挙げられる。ここで、酸化ケイ素としては、酸化シリコン(SiOX)の他に、BPSG(Boron Phosphorus Silicon Glass)、PSG(Phosphorus Silicon Glass)、BSG(borosilicate glass)、AsSG(砒素シリケートガラス)、PbSG(鉛シリケートガラス)、酸化窒化シリコン(SiON)、SOG(スピンオングラス)、低誘電率SiO2系材料(例えば、ポリアリールエーテル、シクロパーフルオロカーボンポリマー及びベンゾシクロブテン、環状フッ素樹脂、ポリテトラフルオロエチレン、フッ化アリールエーテル、フッ化ポリイミド、アモルファスカーボン、有機SOG)を含む。
 ゲート絶縁膜を無機酸化物で形成する方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング又はCVD(chemical vapor deposition)法等の真空成膜法を用いることができ、また成膜中に任意のガスを用いたプラズマやイオン銃、ラジカル銃等でアシストを行ってもよい。
 また、それぞれの金属酸化物に対応する前駆体、具体的には塩化物、臭化物等の金属ハロゲン化物や金属アルコキシド、金属水酸化物等を、アルコールや水中で塩酸、硫酸、硝酸等の酸や水酸化ナトリウム、水酸化カリウム等の塩基と反応させて加水分解することにより、形成してもよい。このような溶液系のプロセスを用いる場合、上記ウエットコーティング法を用いることができる。
 ゲート絶縁膜は、上記の方法以外にも、リフトオフ法、ゾル-ゲル法、電着法及びシャドウマスク法のいずれかと、必要に応じてパターニング法とを組み合わせた方法により、設けることもできる。
 ゲート絶縁膜は、コロナ処理、プラズマ処理、UV(紫外線)/オゾン処理等の表面処理を施してもよいが、この場合、処理による表面粗さを粗くしないのが好ましい。好ましくは、ゲート絶縁膜表面の算術平均粗さRa又は二乗平均粗さRMSは0.5nm以下である。
 絶縁膜の表面エネルギーの調整方法としては、UV(紫外線)/オゾン処理が有効であり、処理時間を適切に選択することでゲート絶縁膜表面を親水化することができる。
 本発明の有機半導体素子は、有機半導体層に、上記式I-1で表される構成単位を含む絶縁性ポリマーを含む場合に、表面エネルギーが50~75mNm-1であるゲート絶縁膜を更に含むことが好ましい。
 上記表面エネルギーは、樹脂(C)からなる膜の接触角を水及び有機溶媒(グリセリンやジヨードメタンが主に用いられる。)の双方で測定し、下記Owensの式に代入することで、公知の方法により求めることができる(下記は有機溶媒にグリセリン(gly)を用いる場合)。
Owensの式
 1+cosθH2O=2(γS d1/2(γH2O d1/2/γH2O,V+2(γS h1/2(γH2O h1/2/γH2O,V
 1+cosθgly=2(γS d1/2(γgly d1/2/γgly,V+2(γS h1/2(γgly h1/2/γgly,V
 ここで、γH2O d=21.8、γgly d=37.0、γH2O h=51.0、γgly h=26.4、γH2OV=72.8、γgly,V=63.4の文献測定値を代入した上で、θH2Oに水の接触角の測定値、θglyにグリセリンの接触角の測定値を代入すると、表面エネルギーの分散力成分γS d、極性成分γS hがそれぞれ求まり、その和γS Vh=γS d+γS hを表面エネルギー(mNm-1)として求めることができる。
 本発明者は、本発明の有機半導体素子が、上記式I-1で表される構成単位を含む絶縁性ポリマーを含み、かつ、表面エネルギーが50~75mNm-1であるゲート絶縁膜を更に含むことにより、得られる有機薄膜トランジスタのキャリア移動度を効果的に高めることができることを見出した。
 詳細なメカニズムは定かではないが、有機半導体層において有機半導体化合物と特定の絶縁性ポリマーとが共存することにより、有機半導体化合物単独の場合に比べて有機半導体化合物の配列規則性が高められることが一因であると考えている。この配列規則性の向上により、有機半導体化合物の主鎖内における構造のゆらぎに起因して生じるキャリア拡散が抑制され、また有機半導体化合物のポリマー鎖間でのキャリアのホッピングが良化するものと推定される。配列規則性が高められる理由については、有機半導体化合物と特定の絶縁性ポリマーを共存させた組成液の状態では両者が適度に相溶された状態でおり、その状態から溶媒が乾燥し膜状態に変化する際に相分離が促進され、有機半導体化合物のドメインと絶縁性ポリマーのドメインが別々に形成されると考えられる。これらのドメイン形成時の速度や相分離の程度が配列規則性の制御に関係していると考えられ、本願の式1で表される構成繰り返し単位を有する、分子量2,000以上の化合物と式I-1で表される構成単位を含む絶縁性ポリマーの組み合わせが適したため、移動度が向上したと考えられる。
<バインダーポリマー層>
 本発明の有機半導体素子は、上記有機半導体層と絶縁膜との間に上記バインダーポリマー層を有してもよく、バインダーポリマー層を有する場合、上記有機半導体層とゲート絶縁膜との間に上記バインダーポリマー層を有することが好ましい。上記バインダーポリマー層の膜厚は特に制限されないが、20~500nmであることが好ましい。上記バインダーポリマー層は、上記ポリマーを含む層であればよいが、上記バインダーポリマーからなる層であることが好ましい。
 バインダーポリマー層を形成する方法は特に制限されないが、公知の方法(バーコート法、スピンコート法、ナイフコート法、ドクターブレード法、インクジェット法)を使用することができる。
 バインダーポリマー層形成用組成物を塗布してバインダーポリマー層を形成する場合、溶媒除去、架橋などを目的として、塗布後に加熱(ベーク)してもよい。
<封止層>
 本発明の有機半導体素子は、耐久性の観点から、最外層に封止層を備えることが好ましい。封止層には公知の封止剤を用いることができる。
 封止層の厚さは特に制限されないが、0.2~10μmであることが好ましい。
 封止層を形成する方法は特に制限されないが、例えば、ゲート電極とゲート絶縁膜とソース電極とドレイン電極と有機半導体膜とが形成された基板上に、封止層形成用組成物を塗布する方法などが挙げられる。封止層形成用組成物を塗布する方法の具体例は、ゲート絶縁膜形成用組成物を塗布する方法と同じである。封止層形成用組成物を塗布して有機半導体膜を形成する場合、溶媒除去、架橋などを目的として、塗布後に加熱(ベーク)してもよい。
 また、図2は、本発明の有機半導体素子(有機薄膜トランジスタ)の別の一態様の断面模式図である。
 図2において、有機薄膜トランジスタ200は、基板10と、基板10上に配置されたゲート電極20と、ゲート電極20を覆うゲート絶縁膜30と、ゲート絶縁膜30上に配置された有機半導体膜50と、有機半導体膜50上に配置されたソース電極40及びドレイン電極42と、各部材を覆う封止層60とを備える。ここで、ソース電極40及びドレイン電極42は、上述した本発明の組成物を用いて形成されたものである。有機薄膜トランジスタ200は、ボトムゲート-トップコンタクト型の有機薄膜トランジスタである。
 基板、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、有機半導体膜及び封止層については、上述のとおりである。
 上記では図1及び図2において、ボトムゲート-ボトムコンタクト型の有機薄膜トランジスタ、及び、ボトムゲート-トップコンタクト型の有機薄膜トランジスタの態様について詳述したが、本発明の有機半導体素子は、トップゲート-ボトムコンタクト型の有機薄膜トランジスタ、及び、トップゲート-トップコンタクト型の有機薄膜トランジスタにも好適に使用できる。
 なお、上述した有機薄膜トランジスタは、電子ペーパー、ディスプレイデバイスなどに好適に使用できる。
(化合物)
 本発明の化合物は、上記式2~式5のいずれかで表される構成繰り返し単位を有し、分子量が2,000以上であることを特徴とする。
 また、本発明の化合物は有機半導体化合物であることが好ましい。
 本発明の化合物における上記式2~式5のいずれかで表される構成繰り返し単位を有し、分子量が2,000以上である化合物は、上述した式2~式5のいずれかで表される構成繰り返し単位を有する化合物と同義であり、好ましい態様も同様である。
(有機半導体組成物)
 本発明の有機半導体組成物は、本発明の化合物(上記特定化合物)、及び、溶媒を含有することを特徴とする。
 また、本発明の有機半導体組成物は、バインダーポリマーを含有してもよい。
 本発明の有機半導体組成物における特定化合物、バインダーポリマー及び溶媒は、上述した特定化合物、バインダーポリマー及び溶媒と同義であり、好ましい態様も同様である。
 本発明の有機半導体組成物における特定化合物の含有量は、特に制限はないが、有機半導体組成物の全質量に対し、0.005~10質量%であることが好ましく、0.01~5質量%であることがより好ましく、0.05~3質量%であることが更に好ましい。
 本発明の有機半導体組成物は、特定化合物、バインダーポリマー及び溶媒以外に他の成分を含んでいてもよい。
 その他の成分としては、公知の添加剤等を用いることができる。
 本発明の有機半導体組成物における特定化合物、バインダーポリマー及び溶媒以外の成分の含有量は、全固形分に対し、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることが更に好ましく、0.1質量%以下であることが特に好ましい。上記範囲であると、膜形成性に優れ、得られる有機半導体の移動度及び高温高湿下での経時安定性により優れる。なお、固形分とは、溶媒等の揮発性成分を除いた成分の量である。
 本発明の有機半導体組成物の粘度は、特に制限されないが、塗布性により優れる点で、3~100mPa・sが好ましく、5~50mPa・sがより好ましく、9~40mPa・sが更に好ましい。なお、本発明における粘度は、25℃での粘度である。
 粘度の測定方法としては、JIS Z8803に準拠した測定方法であることが好ましい。
 本発明の有機半導体組成物の製造方法は、特に制限されず、公知の方法を採用できる。例えば、溶媒中に所定量の特定化合物を添加して、適宜撹拌処理を施すことにより、所望の組成物を得ることができる。また、バインダーポリマーを用いる場合は、特定化合物及びバインダーポリマーを同時又は逐次に添加して好適に組成物を作製することができる。
(有機半導体膜)
 本発明の有機半導体膜は、特定化合物を含有することを特徴とする。
 また、本発明の有機半導体膜は、バインダーポリマーを含有してもよい。
 本発明の有機半導体膜における特定化合物、及び、バインダーポリマーは、本発明の有機半導体素子において上述した特定化合物、及び、バインダーポリマーと同義であり、好ましい態様も同様である。
 本発明の有機半導体組成物は、特定化合物、及び、バインダーポリマー以外に他の成分を含んでいてもよい。
 その他の成分としては、公知の添加剤等を用いることができる。
 本発明の有機半導体膜における特定化合物、及び、バインダーポリマー以外の成分の含有量は、10質量%以下であることが好ましく、5質量%以下であることが好ましく、1質量%以下であることが更に好ましく、0.1質量%以下であることが特に好ましい。上記範囲であると、膜形成性に優れ、得られる有機半導体の移動度及び高温高湿下での経時安定性により優れる。なお、固形分とは、溶媒等の揮発性成分を除いた成分の量である。
 本発明の有機半導体膜の膜厚は、特に制限されないが、得られる有機半導体の移動度及び高温高湿下での経時安定性の観点から、10~500nmが好ましく、30~200nmがより好ましい。
 本発明の有機半導体膜は、有機半導体素子に好適に使用することができ、有機トランジスタ(有機薄膜トランジスタ)に特に好適に使用することができる。
 本発明の有機半導体膜は、本発明の有機半導体組成物を用いて好適に作製することができる。
 本発明の有機半導体膜の製造方法は、特に制限されず、公知の方法を採用できる。例えば、本発明の有機半導体組成物を所定の基材上に付与して、必要に応じて乾燥処理を施して、有機半導体膜を製造する方法が挙げられる。
 基材上に組成物を付与する方法は特に制限されず、公知の方法を採用でき、例えば、インクジェット印刷法、スクリーン印刷法、フレキソ印刷法、バーコート法、スピンコート法、ナイフコート法、ドクターブレード法などが挙げられ、インクジェット印刷法、スクリーン印刷法、フレキソ印刷法が好ましい。
 中でも、本発明の有機半導体膜の製造方法は、本発明の有機半導体組成物を基板上に塗布する塗布工程、を含むことが好ましく、本発明の有機半導体組成物を基板上に塗布する塗布工程、及び、塗布された組成物から溶媒を除去する除去工程を含むことがより好ましい。
 上記塗布工程は、式I-1で表される構成単位を含む絶縁性ポリマーを更に含有する本発明の有機半導体組成物を、表面エネルギーが50~75mNm-1以下であるゲート絶縁膜上に塗布する塗布工程であることがより好ましい。
 上記態様によれば、高移動度の有機半導体膜が得られる。
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。なお、特に断りのない限り、「部」、「%」は質量基準である。
(実施例1~23及び比較例1~10)
<有機半導体>
 有機半導体層に用いた化合物1~23及び比較化合物1~10の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
<合成例>
 合成法は一般的なD-A型π共役ポリマーの合成法に従った。代表例として化合物1及び化合物7の合成法を示す。
〔化合物1の合成〕
 モノマーである1、3-ジブロモ-5-(2-オクチルドデシル)-4H-チエノ[3,4-c]ピロール-4,6(5H)-ジオンはJ.Mater.Chem.,2012,22,14639.に記載の方法により合成した。もう一方のモノマーである中間体1は特表2008-504379号公報及びJ.Polym.Sci.PartA:Polym.Chem.,2013,51,424.を参考に、下記スキームX1に示す合成ルートにより合成した。
Figure JPOXMLDOC01-appb-C000067
 1,3-ジブロモ-5-(2-オクチルドデシル)-4H-チエノ[3,4-c]ピロール-4,6(5H)-ジオン(296mg、500μmol)、中間体1(485mg、500μmol)、トリ(o-トリル)ホスフィン(30.4mg,100μmol)、トリス(ジベンジリデンアセトン)ジパラジウム(22.9mg,25μmol)、脱水トルエン(25mL)を混合し、窒素雰囲気下、100℃で60時間撹拌した。反応液を室温まで冷却した後、メタノール(480mL)/濃塩酸(20mL)混合液に注ぎ、2時間撹拌した。析出物をろ過、メタノール洗浄した後、メタノール、アセトン、ジクロロメタンで順次ソックスレー抽出し、可溶性の不純物を取り除いた。続いて、ジクロロベンゼンでソックスレー抽出し、得られた溶液を減圧濃縮した後、メタノールを添加し、析出した固形分をろ過、メタノール洗浄し80℃で12時間真空乾燥することで化合物1を344mg得た(収率64%)。
 ポリスチレン換算の数平均分子量は2.5×104であり、重量平均分子量は4.7×104であった。
Figure JPOXMLDOC01-appb-C000068
〔化合物7の合成〕
 モノマーである中間体2は、Tetrahedron,2010,66,3173.及びOrganic Electronics,2011,12,993.を参考に、スキームX2に示す合成ルートにより合成した。
Figure JPOXMLDOC01-appb-C000069
 合成中間体2(244mg、200μmol)、5,5’-ビス(トリメチルスタンニル)-2,2’-ビチオフェン(98.4mg、200μmol)、トリ(o-トリル)ホスフィン(4.9mg、16μmol)、トリス(ジベンジリデンアセトン)ジパラジウム(3.7mg、4μmol)、脱水クロロベンゼン(17mL)を混合し、窒素雰囲気下、130℃で24時間撹拌した。反応液を室温まで冷却した後、メタノール(240mL)/濃塩酸(10mL)混合液に注ぎ、2時間撹拌した。析出物をろ過、メタノール洗浄した後、メタノール、アセトン、酢酸エチルで順次ソックスレー抽出し、可溶性の不純物を取り除いた。続いて、クロロホルムでソックスレー抽出し、得られた溶液を減圧濃縮した後、メタノールを添加し、析出した固形分をろ過、メタノール洗浄し80℃で12時間真空乾燥することで化合物7を201mg得た(収率82%)。
 ポリスチレン換算の数平均分子量は4.4×104であり、重量平均分子量は1.1×105であった。
Figure JPOXMLDOC01-appb-C000070
〔化合物19の合成〕
 モノマーである中間体3はスキームX3に示す合成ルートにより合成した。
-中間体3の合成-
 加熱して活性化したモルキュラーシーブス4Å(10g)、ジクロロメタン(150mL)、N-メチルモルホリン-N-オキシド(15g、131mmol)、過ルテニウム酸テトラプロピルアンモニウム(1.85g、5.3mmol)を窒素雰囲気下で混合した溶液に対し、発熱に注意しながら6-ヘプテン-1-オール(10g、88mmol)/ジクロロメタン(50mL)を滴下し、室温で30分撹拌した。反応溶液をセライトとシリカゲル上をろ過し、減圧濃縮することで中間体3を7g得た(収率71%)。
-中間体4の合成-
 中間体3(5g、45mmol)、テトラヒドロフラン(55mL)を窒素雰囲気下で混合し、0℃まで冷却し、ドデシルマグネシウムブロミドのエーテル溶液(48mL,48mmol)を滴下した。反応溶液を室温まで昇温し、3時間撹拌した。水を加えて、グリニャール試薬を失活させた後、ヘキサンで抽出した。有機層を硫酸ナトリウム上で乾燥させ、ろ過し、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン~ヘキサン:酢酸エチル=9:1)に供することで精製し、中間体4を8.8g得た(収率70%)。
-中間体5の合成-
 中間体4(5g、18mmol)、THF(40mL)を窒素雰囲気下で混合した。反応溶液を0℃まで冷却し、水素化ナトリウム60%(743mg,18mmol)を加えた。室温まで昇温し、1時間撹拌した後、1-ヨードノナン(4.95g、19mmol)を加え、反応溶液を加熱還流させ、更に1時間撹拌した。反応溶液を室温まで冷却し、水を加え、ヘキサンで抽出した。
 有機層を25質量%食塩水で洗浄した後、硫酸ナトリウム上で乾燥させ、ろ過紙、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン~ヘキサン:酢酸エチル=9:1)に供することで精製し、中間体5を2.5g得た(収率35%)。
 中間体6から中間体9までの合成は中間体2と同様の方法により行った。
Figure JPOXMLDOC01-appb-C000071
 合成中間体9(255mg、200μmol)、5,5’-ビス(トリメチルスタンニル)-2,2’-ビチオフェン(98.4mg、200μmol)、トリ(o-トリル)ホスフィン(4.9mg、16μmol)、トリス(ジベンジリデンアセトン)ジパラジウム(3.7mg、4μmol)、脱水クロロベンゼン(17mL)を混合し、窒素雰囲気下、130℃で24時間撹拌した。反応液を室温まで冷却した後、メタノール(240mL)/濃塩酸(10mL)混合液に注ぎ、2時間撹拌した。析出物をろ過、メタノール洗浄した後、メタノール、アセトン、酢酸エチルで順次ソックスレー抽出し、可溶性の不純物を取り除いた。続いて、クロロホルムでソックスレー抽出し、得られた溶液を減圧濃縮した後、メタノールを添加し、析出した固形分をろ過、メタノール洗浄し80℃で12時間真空乾燥することで化合物19を201mg得た(収率82%)。
 ポリスチレン換算の数平均分子量は2.7×104であり、重量平均分子量は7.5×104であった。
Figure JPOXMLDOC01-appb-C000072
 比較化合物1は特表2010-527327号公報、比較化合物2は特表2007-516315号公報、比較化合物3は国際公開第2013/047858号、比較化合物4は特開2009-158921号公報、比較化合物5はMacromolecules,2013,46,6408.、比較化合物6はJournal of Physical Chemistry C,2014,118,11536.、比較化合物7は特開2008-153667号公報、比較化合物8は特開2012-251129号公報、比較化合物9は特表2012-506928号公報に記載の化合物である。比較化合物10はAdvanced Materials、2014、24、3734-3744に記載の合成法を参考に合成した。
<有機半導体組成物の調製>
 表1に記載の有機半導体化合物(0.20質量%)/1,2-ジクロロベンゼンを硝子バイヤルに秤量し、ミックスローター(アズワン(株)製)で80℃24時間撹拌混合した後、0.5μmメンブレンフィルターでろ過することで、有機半導体塗布液を得た。
<TFT素子作製>
 ガラス基板(イーグルXG:コーニング社製)上に、ゲート電極となるAlを蒸着した(厚み:50nm)。その上にゲート絶縁膜形成用組成物(ポリビニルフェノール/2、4、6、-トリス[ビス(メトキシメチル)アミノ]-1、3、5、-トリアジン=1質量部/1質量部(w/w)のPGMEA(プロピレングリコールモノメチルエーテルアセテート)溶液(固形分濃度:2質量%))をスピンコートし、150℃で60分間ベークを行うことで膜厚400nmのゲート絶縁膜を形成した。その上に銀インク(H-1、三菱マテリアル(株)製)をインクジェット装置DMP-2831(富士フイルムダイマティクス社製)を用いてソース電極及びドレイン電極状(チャネル長40μm、チャネル幅200μm)に描画した。その後オーブンにて180℃、30分ベークを行い、焼結して、ソース電極及びドレイン電極を形成することでTFT特性評価用素子基板を得た。
 窒素グローブボックス中で、TFT特性評価用素子基板の上に各有機半導体塗布液をスピンコート(500rpm10秒間の後1,000rpm30秒間)した後、ホットプレート上で180℃10分間乾燥することで有機半導体層を形成し、ボトムゲートボトムコンタクト型の有機TFT素子を得た。
<特性評価>
 半導体特性評価装置B2900A(アジレントテクノロジーズ社製)を用い、大気下で以下の性能評価を行った。
(a)キャリア移動度、(b)移動度バラツキ
 各有機TFT素子のソース電極-ドレイン電極間に-60Vの電圧を印加し、ゲート電圧を+10V~-60Vの範囲で変化させ、ドレイン電流Idを表わす下記式を用いてキャリア移動度μを算出した。
 Id=(w/2L)μCi(Vg-Vth2
 式中、Lはゲート長、wはゲート幅、Ciは絶縁膜の単位面積当たりの容量、Vgはゲート電圧、Vthは閾値電圧を表す。
 表1中に示すキャリア移動度の値は、10素子の平均値である。キャリア移動度μは高いほど好ましく、実用上は1.0×10-2cm2/V・s以上であることが好ましく、1.0×10-1cm2/V・s以上であることが更に好ましい。なお、移動度が1.0×10-5cm2/V・sを下回るものに関しては特性が低すぎるため、以下の評価は行わず、表のキャリア移動度の欄には「<1.0×10-5」と記載した。
 また、10素子のキャリア移動度に対して以下の式で計算した変異係数を、以下の4段階で評価し、移動度バラツキの指標として用いた。この値は小さいほど素子間の移動度バラツキが小さいことを示す。実用上、A又はBであることが好ましく、Aであることがより好ましい。
   変異係数=標準偏差÷平均値×100
<評価基準>
 A:15%未満
 B:15%以上30%未満
 C:30%以上50%未満
 D:50%以上
(c)高温高湿下での経時安定性
 作製した各有機薄膜トランジスタ素子を、60℃、湿度80%下で24時間保管した後、上記「(a)キャリア移動度」と同様の方法によりキャリア移動度を測定した場合のキャリア移動度維持率(下記式)を以下の5段階で評価し、高温高湿下での経時安定性の指標とした。この値が大きいほど高温高湿下での経時安定性が高く、実用上、A又はBであることが好ましい。
 高温高湿下保管後のキャリア移動度維持率(%)=キャリア移動度(高温高湿下保管後)/キャリア移動度(高温高湿下保管前)×100
 A:90%以上
 B:75%以上90%未満
 C:50%以上75%未満
 D:25%以上50%未満
 E:25%未満
Figure JPOXMLDOC01-appb-T000073
 表1の記載から、実施例の有機TFT素子は、高移動度であり、移動度のバラツキが抑制され、高温高湿下での経時安定性に優れることがわかる。
 一方、式1-1で表される基を有さないポリマーは課題である高移動度、移動度のバラツキ抑制、高温高湿下での経時安定性の項目を全て満足することはできなかった。
(実施例24~41)
 有機半導体化合物7(0.20質量%)と表2に記載の絶縁性ポリマー(0.10質量%)/1,2-ジクロロベンゼンを硝子バイヤルに秤量し、ミックスローター(アズワン(株)製)で80℃24時間撹拌混合した後、0.5μmメンブレンフィルターでろ過することで、有機半導体塗布液を得た。実施例1と同様の方法で有機TFT素子を得た。
 以下実施例1と同様の方法により、キャリア移動度及び、高温多湿下での経時安定性を評価した。
 表2に示した相対移動度は、得られた各有機TFT素子のキャリア移動度を実施例7のキャリア移動度で除した相対値であり、下記式により計算した値である。
 実施例24~41の相対移動度=各実施例の平均移動度/実施例7の平均移動度(=1.05)
 なお、各実施例における高温多湿下での経時安定性は実施例7と同様の結果であった。
Figure JPOXMLDOC01-appb-T000074
 表2に記載の略語の詳細は下記の通りである。
 In-1-1:ポリスチレン、東ソー(株)製(カタログNo.A-1000)、Mw:1,000、Mw/Mn:1.13
 In-1-2:ポリスチレン、東ソー(株)製(カタログNo.A-2500)、Mw:2,500、Mw/Mn:1.05
 In-1-3:ポリスチレン、東ソー(株)製(カタログNo.F-2)、Mw:18,100、Mw/Mn:1.01
 In-1-4:ポリスチレン、東ソー(株)製(カタログNo.F-4)、Mw:37,200、Mw/Mn:1.01
 In-1-5:ポリスチレン、東ソー(株)製(カタログNo.F-10)、Mw:98,900、Mw/Mn:1.01
 In-1-6:ポリスチレン、東ソー(株)製(カタログNo.F-20)、Mw:189,000、Mw/Mn:1.04
 In-1-7:ポリスチレン、東ソー(株)製(カタログNo.F-40)、Mw:397,000、Mw/Mn:1.02
 In-1-8:ポリスチレン、東ソー(株)製(カタログNo.F-128)、Mw:1,110,000、Mw/Mn:1.08
 In-1-9:ポリスチレン、ポリマーソース社製(カタログNo.P10453-S)、Mw:93,000、Mw/Mn:1.05
 In-1-10:ポリスチレン、ポリマーソース社製(カタログNo.P8713-S)、Mw:90,000、Mw/Mn:1.45
 In-1-11:ポリスチレン、ポリマーソース社製(カタログNo.P15004-S)、Mw:103,000、Mw/Mn:2.5
 In-2:ポリ-α-メチルスチレン、ポリマーソース社製(カタログNo.P74-MeS)、Mn:32,300、Mw/Mn:1.02
 In-3:ポリ(4-t-ブチルスチレン)、ポリマーソース社製(カタログNo.P1579-4tBuS)、Mn:40,600、Mw/Mn:1.03
 In-4:ポリ(4-メチルスチレン)、ポリマーソース社製(カタログNo.P1346-4MeS)、Mn:40,500、Mw/Mn:1.06
 In-5:ポリ(4-メトキシスチレン)、ポリマーソース社製(カタログNo.P18292-4MeOS)、Mn:39,000、Mw/Mn:1.40
 In-6:ポリ(4-ヒドロキシスチレン)、ポリマーソース社製(カタログNo.P4404-4HOS)、Mn:6,500、Mw/Mn:1.15
 In-7:ポリ(4-アセトキシスチレン)、ポリマーソース社製(カタログNo.P5509-4AcS)、Mn:30,500、Mw/Mn:1.70
 In-8:ポリ(2-ビニルナフタレン)、ポリマーソース社製(カタログNo.P10992A-2VN)、Mn:38,000、Mw/Mn:1.38
 以上の結果から、ポリスチレン誘導体の中でもポリスチレンとの組み合わせが良好であった。更に分子量は1,000~20万が特に良好であった。また、分散度については1.5未満が特に良好であった。
(実施例42~45)
<TFT素子作製>
 ガラス基板(イーグルXG:コーニング社製)上に、ゲート電極となるAlを蒸着した(厚み:50nm)。その上にゲート絶縁膜形成用組成物(ポリビニルフェノール/2、4、6、-トリス[ビス(メトキシメチル)アミノ]-1、3、5、-トリアジン=1質量部/1質量部(w/w)のPGMEA(プロピレングリコールモノメチルエーテルアセテート)溶液(固形分濃度:2質量%))をスピンコートし、150℃で60分間ベークを行うことで膜厚400nmのゲート絶縁膜を形成した。続いて、表3の表面エネルギーになるようにUV(紫外線)/オゾン処理(Jelight社製、UVO-CLEANER Model No.42)を行った。その後の工程は実施例27と同様の方法により有機TFT素子を作製した。
 以下実施例1と同様の方法により、キャリア移動度、移動度バラツキ及び、高温多湿下での経時安定性を評価した。
 表3に示した相対移動度は、得られた各有機TFT素子のキャリア移動度を実施例27のキャリア移動度で除した相対値であり、下記式により計算した値である。
 実施例42~45の相対移動度=各実施例の平均移動度/実施例27の平均移動度
 なお、各実施例における移動度バラツキ、高温多湿下での経時安定性は実施例7と同様の結果であった。
Figure JPOXMLDOC01-appb-T000075
(実施例46~49)
 ガラス基板(イーグルXG:コーニング社製)上に、ゲート電極となるAlを蒸着した(厚み:50nm)。その上にゲート絶縁膜形成用組成物(ポリ(スチレン-co-メチルメタクリラート)/ペンタエリスリトールテトラアクリレート/1、2-オクタンジオン、1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]=1質量部/1質量部/0.01質量部(w/w)のPGMEA(プロピレングリコールモノメチルエーテルアセテート)溶液(固形分濃度:2質量%))をスピンコートし、110℃で5分間プリベークを行った後、露光(365nm、100mJ/cm2)し、200℃で60分ポストベークすることで膜厚400nmのゲート絶縁膜を形成した。続いて、表4の表面エネルギーになるようにUV(紫外線)/オゾン処理(Jelight社製、UVO-CLEANER Model No.42)を行った。その後の工程は実施例27と同様の方法で有機TFT素子を作製した。
 以下実施例1と同様の方法により、キャリア移動度、移動度バラツキ及び、高温多湿下での経時安定性を評価した。
 表4に示した相対移動度は、得られた各有機TFT素子のキャリア移動度を実施例27のキャリア移動度で除した相対値であり、下記式により計算した値である。
 実施例46~49の相対移動度=各実施例の平均移動度/実施例27の平均移動度
 なお、各実施例における移動度バラツキ、高温多湿下での経時安定性は実施例7と同様の結果であった。
Figure JPOXMLDOC01-appb-T000076
 表3と表4の結果から、式I-1で表される構成単位を含む絶縁性ポリマーを更に含有する本発明の有機半導体組成物を塗布する際、表面エネルギーが50~75mNm-1以下であるゲート絶縁膜を使用すると移動度が顕著に向上することがわかる。
 10:基板、20:ゲート電極、30:ゲート絶縁膜、40:ソース電極、42:ドレイン電極、50:有機半導体膜、60:封止層、100、200:有機薄膜トランジスタ

Claims (20)

  1.  式1で表される構成繰り返し単位を有する、分子量2,000以上の化合物を含有する有機半導体層を有することを特徴とする
     有機半導体素子。
    Figure JPOXMLDOC01-appb-C000001
     式1中、Aはsp2窒素原子、カルボニル基、及び、チオカルボニル基のうち少なくとも1つを環構造内に有する部分構造を含む電子アクセプターユニット、Dは少なくとも1つのN原子、O原子、S原子、若しくはSe原子を環構造内に有する二価の芳香族複素環基、又は2環以上の縮環構造からなる二価の芳香族炭化水素基を部分構造として含む電子ドナーユニットであり、D及び/又はAは式1-1により表される一価の基を少なくとも1つ有する。
    Figure JPOXMLDOC01-appb-C000002
     式1-1中、Lは直鎖状又は分岐鎖状の炭素数mのアルキレン基であり、Rは置換基を有さない炭素数nのアルキル基であり、6≦m+n≦50であり、*は他の構造との結合部位を表す。
  2.  前記式1-1により表される一価の基が、下記式1-2又は式1-3により表される一価の基である、請求項1に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000003
     式1-2、及び、式1-3中、mは1以上の整数であり、Rは置換基を有さない炭素数nのアルキル基であり、Raは置換基を有さない炭素数aのアルキル基であり、Rbは置換基を有さない炭素数bのアルキル基であり、6≦m+n≦50、又は、6≦m+a+b≦50であり、*は他の構造との結合部位を表す。
  3.  式1において、Aが下記式A-1~式A-12で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有する、請求項1又は2に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000004
     式A-1~式A-12中、Xはそれぞれ独立に、O原子、S原子、Se原子又はNRA1を表し、Yはそれぞれ独立に、O原子又はS原子を表し、Zaはそれぞれ独立に、CRA2又はN原子を表し、Wはそれぞれ独立に、C(RA22、NRA1、N原子、CRA2、O原子、S原子、又はSe原子を表し、RA1はそれぞれ独立に、アルキル基、式1-1で表される一価の基、又は、他の構造との結合部位を表し、RA2はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、又は、他の構造との結合部位を表し、*はそれぞれ独立に、他の構造との結合部位を表す。
  4.  式1において、Dが式D-1で表される構造である、請求項1~3のいずれか1項に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000005
     式D-1中、X’はそれぞれ独立に、O原子、S原子、Se原子、又は、NRD1を表し、Zdはそれぞれ独立に、N原子又はCRD2を表し、RD1はそれぞれ独立に、一価の有機基を表し、RD2はそれぞれ独立に、水素原子又は一価の有機基を表し、Mは単結合、二価の芳香族複素環基、二価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又は、これらを組み合わせてなる二価の基を表し、p及びqはそれぞれ独立に、0~4の整数を表し、*はそれぞれ独立に、他の構造との結合部位を表す。
  5.  前記式1で表される構成繰り返し単位が、式2~式5のいずれかで表される構成繰り返し単位である、請求項1~4のいずれか1項に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000006
     式2~式5中、Xはそれぞれ独立に、O原子、S原子、Se原子又はNRA1を表し、Yはそれぞれ独立に、O原子又はS原子を表し、Zaはそれぞれ独立に、CRA2又はN原子を表し、RA1はそれぞれ独立に、アルキル基、式1-1で表される一価の基、又は、他の構造との結合部位を表し、RA2はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、又は、他の構造との結合部位を表し、X’はそれぞれ独立に、O原子、S原子、Se原子、又は、NRD1を表し、Zdはそれぞれ独立に、N原子又はCRD2を表し、RD1はそれぞれ独立に、一価の有機基を表し、RD2はそれぞれ独立に、水素原子又は一価の有機基を表し、Mは単結合、二価の芳香族複素環基、二価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又は、これらを組み合わせてなる二価の基を表し、p及びqはそれぞれ独立に、0~4の整数を表す。
  6.  前記有機半導体層が、下記式I-1で表される構成単位を含む絶縁性ポリマーを更に含有する、請求項1~5のいずれか1項に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000007
     式I-1中、R22~R26はそれぞれ独立に、水素原子、ヒドロキシ基、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アリール基、アラルキル基、又は、ハロゲン原子を表し、R22~R26のうち隣り合う2つは互いに連結して環を形成してもよく、R21は水素原子又はアルキル基を表す。
  7.  表面エネルギーが50~75mNm-1であるゲート絶縁膜を更に含む、請求項6に記載の有機半導体素子。
  8.  有機薄膜トランジスタである、請求項1~7のいずれか1項に記載の有機半導体素子。
  9.  式1で表される構成繰り返し単位を有し、分子量が2,000以上であることを特徴とする
     化合物。
    Figure JPOXMLDOC01-appb-C000008
     式1中、Aは下記式A-1~式A-12で表される構造よりなる群から選ばれた少なくとも1つの構造を部分構造として有する電子アクセプターユニット、Dは少なくとも1つのN原子、O原子、S原子、若しくはSe原子を環構造内に有する二価の芳香族複素環基、又は2環以上の縮環構造からなる二価の芳香族炭化水素基を部分構造として含む電子ドナーユニットであり、D及び/又はAは式1-1により表される一価の基を少なくとも1つ有する。
    Figure JPOXMLDOC01-appb-C000009
     式A-1~式A-12中、Xはそれぞれ独立に、O原子、S原子、Se原子又はNRA1を表し、Yはそれぞれ独立に、O原子又はS原子を表し、Zaはそれぞれ独立に、CRA2又はN原子を表し、Wはそれぞれ独立に、C(RA22、NRA1、N原子、CRA2、O原子、S原子、又はSe原子を表し、RA1はそれぞれ独立に、アルキル基、式1-1で表される一価の基、又は、他の構造との結合部位を表し、RA2はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、又は、他の構造との結合部位を表し、*はそれぞれ独立に、他の構造との結合部位を表す。
    Figure JPOXMLDOC01-appb-C000010
     式1-1中、Lは直鎖状又は分岐鎖状の炭素数mのアルキレン基であり、Rは置換基を有さない炭素数nのアルキル基であり、6≦m+n≦50であり、*は他の構造との結合部位を表す。
  10.  式1において、Dが式D-1で表される構造である、請求項9に記載の化合物。
    Figure JPOXMLDOC01-appb-C000011
     式D-1中、X’はそれぞれ独立に、O原子、S原子、Se原子、又は、NRD1を表し、Zdはそれぞれ独立に、N原子又はCRD2を表し、RD1はそれぞれ独立に、一価の有機基を表し、RD2はそれぞれ独立に、水素原子又は一価の有機基を表し、Mは単結合、二価の芳香族複素環基、二価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又は、これらを組み合わせてなる二価の基を表し、p及びqはそれぞれ独立に、0~4の整数を表し、*はそれぞれ独立に、他の構造との結合部位を表す。
  11.  前記式1で表される構成繰り返し単位が、式2~式5のいずれかで表される構成繰り返し単位である、請求項9又は10に記載の化合物。
    Figure JPOXMLDOC01-appb-C000012
     式2~式5中、Xはそれぞれ独立に、O原子、S原子、Se原子又はNRA1を表し、Yはそれぞれ独立に、O原子又はS原子を表し、Zaはそれぞれ独立に、CRA2又はN原子を表し、RA1はそれぞれ独立に、アルキル基、式1-1で表される一価の基、又は、他の構造との結合部位を表し、RA2はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、又は、他の構造との結合部位を表し、X’はそれぞれ独立に、O原子、S原子、Se原子、又は、NRD1を表し、Zdはそれぞれ独立に、N原子又はCRD2を表し、RD1はそれぞれ独立に、一価の有機基を表し、RD2はそれぞれ独立に、水素原子又は一価の有機基を表し、Mは単結合、二価の芳香族複素環基、二価の芳香族炭化水素基、アルケニレン基、アルキニレン基、又は、これらを組み合わせてなる二価の基を表し、p及びqはそれぞれ独立に、0~4の整数を表す。
  12.  有機半導体化合物である、請求項9~11のいずれか1項に記載の化合物。
  13.  式1で表される構成繰り返し単位を有する、分子量2,000以上の化合物と、
     溶媒と、を含むことを特徴とする
     有機半導体組成物。
    Figure JPOXMLDOC01-appb-C000013
     式1中、Aはsp2窒素原子、カルボニル基、及び、チオカルボニル基のうち少なくとも1つを環構造内に有する部分構造を含む電子アクセプターユニット、Dは少なくとも1つのN原子、O原子、S原子、若しくはSe原子を環構造内に有する二価の芳香族複素環基、又は2環以上の縮環構造からなる二価の芳香族炭化水素基を部分構造として含む電子ドナーユニットであり、D及び/又はAは式1-1で表される一価の基を少なくとも1つ有する。
    Figure JPOXMLDOC01-appb-C000014
     式1-1中、Lは直鎖状又は分岐鎖状の炭素数mのアルキレン基であり、Rは置換基を有さない炭素数nのアルキル基であり、6≦m+n≦50であり、*は他の構造との結合部位を表す。
  14.  下記式I-1で表される構成単位を含む絶縁性ポリマーを更に含有する、請求項13に記載の有機半導体組成物。
    Figure JPOXMLDOC01-appb-C000015
     式I-1中、R22~R26はそれぞれ独立に、水素原子、ヒドロキシ基、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アリール基、アラルキル基、又は、ハロゲン原子を表し、R22~R26のうち隣り合う2つは互いに連結して環を形成してもよく、R21は水素原子又はアルキル基を表す。
  15.  式1で表される構成繰り返し単位を有する、分子量2,000以上の化合物を含むことを特徴とする
     有機半導体膜。
    Figure JPOXMLDOC01-appb-C000016
     式1中、Aはsp2窒素原子、カルボニル基、及び、チオカルボニル基のうち少なくとも1つを環構造内に有する部分構造を含む電子アクセプターユニット、Dは少なくとも1つのN原子、O原子、S原子、若しくはSe原子を環構造内に有する二価の芳香族複素環基、又は2環以上の縮環構造からなる二価の芳香族炭化水素基を部分構造として含む電子ドナーユニットであり、D及び/又はAは式1-1で表される一価の基を少なくとも1つ有する。
    Figure JPOXMLDOC01-appb-C000017
     式1-1中、Lは直鎖状又は分岐鎖状の炭素数mのアルキレン基であり、Rは置換基を有さない炭素数nのアルキル基であり、6≦m+n≦50であり、*は他の構造との結合部位を表す。
  16.  下記式I-1で表される構成単位を含む絶縁性ポリマーを更に含有する、請求項15に記載の有機半導体膜。
    Figure JPOXMLDOC01-appb-C000018
     式I-1中、R22~R26はそれぞれ独立に、水素原子、ヒドロキシ基、アルキル基、アルコキシ基、アルケニル基、アルキニル基、アリール基、アラルキル基、又は、ハロゲン原子を表し、R22~R26のうち隣り合う2つは互いに連結して環を形成してもよく、R21は水素原子又はアルキル基を表す。
  17.  請求項13又は14に記載の有機半導体組成物を基板上に塗布する塗布工程を含む、有機半導体膜の製造方法。
  18.  請求項14に記載の有機半導体組成物を、表面エネルギーが50~75mNm-1以下であるゲート絶縁膜上に塗布する塗布工程を含む、有機半導体膜の製造方法。
  19.  請求項13又は14に記載の有機半導体組成物を基板上に塗布する塗布工程を含む、有機半導体素子の製造方法。
  20.  請求項14に記載の有機半導体組成物を、表面エネルギーが50~75mNm-1以下であるゲート絶縁膜上に塗布する塗布工程を含む、有機半導体素子の製造方法。
PCT/JP2016/058256 2015-03-16 2016-03-16 有機半導体素子及びその製造方法、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法 WO2016148169A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16764998.7A EP3258513B1 (en) 2015-03-16 2016-03-16 Organic semiconductor element, manufacturing method thereof, compound, organic semiconductor composition, organic semiconductor film, and manufacturing method thereof
KR1020177026146A KR20170113671A (ko) 2015-03-16 2016-03-16 유기 반도체 소자 및 그 제조 방법, 화합물, 유기 반도체 조성물과, 유기 반도체막 및 그 제조 방법
JP2017506576A JP6285075B2 (ja) 2015-03-16 2016-03-16 有機半導体素子及びその製造方法、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法
CN201680014948.XA CN107431125B (zh) 2015-03-16 2016-03-16 有机半导体元件及其制造方法、化合物、有机半导体组合物和有机半导体膜及其制造方法
US15/696,194 US10312447B2 (en) 2015-03-16 2017-09-06 Organic semiconductor element, manufacturing method thereof, compound, organic semiconductor composition, organic semiconductor film, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-051881 2015-03-16
JP2015051881 2015-03-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/696,194 Continuation US10312447B2 (en) 2015-03-16 2017-09-06 Organic semiconductor element, manufacturing method thereof, compound, organic semiconductor composition, organic semiconductor film, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2016148169A1 true WO2016148169A1 (ja) 2016-09-22

Family

ID=56920050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058256 WO2016148169A1 (ja) 2015-03-16 2016-03-16 有機半導体素子及びその製造方法、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法

Country Status (7)

Country Link
US (1) US10312447B2 (ja)
EP (1) EP3258513B1 (ja)
JP (1) JP6285075B2 (ja)
KR (1) KR20170113671A (ja)
CN (1) CN107431125B (ja)
TW (1) TWI688586B (ja)
WO (1) WO2016148169A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038948A1 (ja) * 2015-09-02 2017-03-09 富士フイルム株式会社 有機薄膜トランジスタ、有機薄膜トランジスタの製造方法、有機半導体組成物、有機半導体膜および有機半導体膜の製造方法
WO2017086320A1 (ja) * 2015-11-20 2017-05-26 富士フイルム株式会社 有機半導体組成物、有機半導体膜、有機薄膜トランジスタおよび有機薄膜トランジスタの製造方法
WO2017159703A1 (ja) * 2016-03-16 2017-09-21 富士フイルム株式会社 有機半導体組成物、有機薄膜トランジスタの製造方法、及び有機薄膜トランジスタ
WO2019146368A1 (ja) 2018-01-23 2019-08-01 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜、有機半導体膜の製造方法、及び、これらに用いるポリマー

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10622570B2 (en) * 2016-03-28 2020-04-14 Nippon Steel Chemical & Material Co., Ltd. Organic electroluminescent element
US11183638B2 (en) * 2018-05-29 2021-11-23 Purdue Research Foundation Semiconducting polymer blends for high temperature organic electronics
KR102554065B1 (ko) * 2019-03-26 2023-07-11 도레이 카부시키가이샤 n형 반도체 소자, n형 반도체 소자의 제조 방법, 무선 통신 장치 및 상품 태그
CN110379924A (zh) * 2019-06-11 2019-10-25 北京大学深圳研究生院 一种钙钛矿红外光电晶体管及其制备方法
CN110655640B (zh) * 2019-08-02 2022-01-18 中国科学院大学 一种室温柔性日盲型短波红外聚合物光电探测器及其制备方法
CN110600613B (zh) * 2019-09-18 2022-04-26 中国科学院大学 一种聚合物光电探测器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335840A (ja) * 2006-05-18 2007-12-27 Konica Minolta Holdings Inc 有機薄膜トランジスタの形成方法、及び有機薄膜トランジスタ
WO2008044585A1 (en) * 2006-10-11 2008-04-17 Toray Industries, Inc. Electron-donating organic material for photovoltaic devices, material for photovoltaic devices, and photovoltaic devices
JP2009177136A (ja) * 2007-12-27 2009-08-06 Sony Corp 半導体薄膜の形成方法および薄膜半導体装置の製造方法
WO2009139339A1 (ja) * 2008-05-12 2009-11-19 東レ株式会社 カーボンナノチューブ複合体、有機半導体コンポジットならびに電界効果型トランジスタ
JP2015038955A (ja) * 2013-07-19 2015-02-26 富士フイルム株式会社 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
WO2015029910A1 (ja) * 2013-08-30 2015-03-05 富士フイルム株式会社 有機半導体デバイス、これに用いる化合物、組成物及び塗布膜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718999B2 (en) * 2006-12-14 2010-05-18 Xerox Corporation Polythiophene electronic devices
KR101128943B1 (ko) 2007-04-13 2012-03-27 주식회사 엘지화학 디옥시피롤기를 포함하는 헤테로고리 화합물 및 이를이용한 유기 전자 소자
CA2700713A1 (en) * 2007-10-09 2009-04-16 Zhimin Hao Pyrrolopyrrole derivatives, their manufacture and use
WO2012147564A1 (ja) * 2011-04-25 2012-11-01 住友化学株式会社 高分子化合物及びそれを用いた電子素子
KR101589048B1 (ko) * 2012-12-14 2016-01-27 경상대학교산학협력단 신규한 유기반도체 화합물 및 이를 포함하는 유기전자소자
KR102218245B1 (ko) * 2014-02-14 2021-02-22 도요보 가부시키가이샤 유기 반도체 재료

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335840A (ja) * 2006-05-18 2007-12-27 Konica Minolta Holdings Inc 有機薄膜トランジスタの形成方法、及び有機薄膜トランジスタ
WO2008044585A1 (en) * 2006-10-11 2008-04-17 Toray Industries, Inc. Electron-donating organic material for photovoltaic devices, material for photovoltaic devices, and photovoltaic devices
JP2009177136A (ja) * 2007-12-27 2009-08-06 Sony Corp 半導体薄膜の形成方法および薄膜半導体装置の製造方法
WO2009139339A1 (ja) * 2008-05-12 2009-11-19 東レ株式会社 カーボンナノチューブ複合体、有機半導体コンポジットならびに電界効果型トランジスタ
JP2015038955A (ja) * 2013-07-19 2015-02-26 富士フイルム株式会社 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
WO2015029910A1 (ja) * 2013-08-30 2015-03-05 富士フイルム株式会社 有機半導体デバイス、これに用いる化合物、組成物及び塗布膜

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038948A1 (ja) * 2015-09-02 2017-03-09 富士フイルム株式会社 有機薄膜トランジスタ、有機薄膜トランジスタの製造方法、有機半導体組成物、有機半導体膜および有機半導体膜の製造方法
WO2017086320A1 (ja) * 2015-11-20 2017-05-26 富士フイルム株式会社 有機半導体組成物、有機半導体膜、有機薄膜トランジスタおよび有機薄膜トランジスタの製造方法
JPWO2017086320A1 (ja) * 2015-11-20 2018-08-02 富士フイルム株式会社 有機半導体組成物、有機半導体膜、有機薄膜トランジスタおよび有機薄膜トランジスタの製造方法
US10902969B2 (en) 2015-11-20 2021-01-26 Fujifilm Corporation Organic semiconductor composition, organic semiconductor film, organic thin film transistor, and method of manufacturing organic thin film transistor
WO2017159703A1 (ja) * 2016-03-16 2017-09-21 富士フイルム株式会社 有機半導体組成物、有機薄膜トランジスタの製造方法、及び有機薄膜トランジスタ
WO2019146368A1 (ja) 2018-01-23 2019-08-01 富士フイルム株式会社 有機半導体素子、有機半導体組成物、有機半導体膜、有機半導体膜の製造方法、及び、これらに用いるポリマー

Also Published As

Publication number Publication date
JP6285075B2 (ja) 2018-02-28
TWI688586B (zh) 2020-03-21
EP3258513A1 (en) 2017-12-20
US20180006229A1 (en) 2018-01-04
CN107431125B (zh) 2020-01-07
US10312447B2 (en) 2019-06-04
KR20170113671A (ko) 2017-10-12
EP3258513A4 (en) 2018-04-25
TW201634520A (zh) 2016-10-01
JPWO2016148169A1 (ja) 2017-06-29
EP3258513B1 (en) 2023-09-13
CN107431125A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
JP6285075B2 (ja) 有機半導体素子及びその製造方法、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法
US10971686B2 (en) Organic semiconductor element, polymer, organic semiconductor composition, and organic semiconductor film
JP6666996B2 (ja) 有機薄膜トランジスタ素子、有機半導体膜形成用組成物、有機半導体膜の製造方法及び有機半導体膜
WO2018061821A1 (ja) 有機半導体膜形成用組成物、有機半導体膜及びその製造方法、並びに、有機半導体素子
JP6651606B2 (ja) 有機半導体組成物、有機薄膜トランジスタの製造方法、及び有機薄膜トランジスタ
JP6469615B2 (ja) 有機半導体膜形成用組成物、有機半導体膜及びその製造方法、並びに有機半導体素子
JP6754126B2 (ja) 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー
JP6463475B2 (ja) 有機半導体素子、化合物、有機半導体組成物、および、有機半導体膜の製造方法
JP6328792B2 (ja) 有機半導体素子及び化合物
JP6442057B2 (ja) 有機半導体素子、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法
JP6328791B2 (ja) 有機半導体素子及び化合物
JP6573983B2 (ja) 有機半導体膜形成用組成物、化合物、有機半導体膜、有機半導体素子
US11038125B2 (en) Organic semiconductor element, polymer, organic semiconductor composition, and organic semiconductor film
JP6325128B2 (ja) 有機半導体素子及び化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506576

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177026146

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016764998

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE