WO2017085903A1 - 欠陥領域の判定方法 - Google Patents

欠陥領域の判定方法 Download PDF

Info

Publication number
WO2017085903A1
WO2017085903A1 PCT/JP2016/004664 JP2016004664W WO2017085903A1 WO 2017085903 A1 WO2017085903 A1 WO 2017085903A1 JP 2016004664 W JP2016004664 W JP 2016004664W WO 2017085903 A1 WO2017085903 A1 WO 2017085903A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
region
silicon wafer
defects
wafer
Prior art date
Application number
PCT/JP2016/004664
Other languages
English (en)
French (fr)
Inventor
和弥 冨井
博康 菊地
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to SG11201803206YA priority Critical patent/SG11201803206YA/en
Priority to CN201680060750.5A priority patent/CN108140593B/zh
Priority to KR1020187013186A priority patent/KR102639121B1/ko
Priority to US15/770,333 priority patent/US10513798B2/en
Priority to DE112016004752.5T priority patent/DE112016004752T5/de
Publication of WO2017085903A1 publication Critical patent/WO2017085903A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/57Measuring gloss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps

Definitions

  • the present invention relates to a method for determining a defect area of a silicon wafer cut out from a silicon single crystal manufactured by a CZ method using a particle counter.
  • Silicon single crystals produced by the Czochralski (CZ) method include defects such as FPD (Flow Pattern Defect), LSTD (Laser Scattering Tomography Defect), and COP (Crystal Originated Particle) defects such as grown-in defects (Grown-in). Therefore, it is important to reduce these defects.
  • FPD Flow Pattern Defect
  • LSTD Laser Scattering Tomography Defect
  • COP Crystal Originated Particle defects
  • each of a vacancy type point defect called Vacancy (hereinafter referred to as V) incorporated into a silicon single crystal and an interstitial type silicon point defect called Interstitial-Si (hereinafter referred to as I) are respectively provided.
  • V vacancy type point defect
  • I Interstitial-Si
  • the V region is a region where there are a lot of recesses and holes generated due to a shortage of silicon atoms
  • the I region is a dislocation generated due to the presence of excess silicon atoms or an extra dislocation.
  • This is a region with a lot of silicon atoms.
  • grow-in defects such as FPD, LSTD, and COP generated in the V region are a cause of deteriorating oxide breakdown voltage characteristics in the device process.
  • a neutral region hereinafter referred to as an N region having no shortage or excess of atoms exists between the V region and the I region.
  • grow-in defects FPD, LSTD, COP, etc.
  • OSF Oxidation Induced Stacking Fault
  • a method for evaluating the aforementioned grow-in defect a method using heat treatment or oxidation treatment as in Patent Document 1 or Patent Document 2 or a method using etching as in Patent Document 3 is generally used. Also, as a method of determining a defect region, particularly an N region, a method of performing an oxidation treatment as in Patent Document 4 is known, and a method of performing a Cu deposition method in addition to this is also known. .
  • Patent Document 5 a method of manufacturing a silicon single crystal having a desired defect region such as a V region or an N region by adjusting manufacturing conditions such as furnace temperature during single crystal manufacturing has been proposed.
  • the manufacturing conditions required particularly in the N region are difficult, and it is difficult to obtain a stable product. Therefore, even when a single crystal is manufactured by such a method, it is important to determine a defect region as a quality inspection.
  • the present invention has been made in view of the above-described problems, and provides a method for determining a defect region of a silicon wafer cut out from a silicon single crystal manufactured by a CZ method in a short time by nondestructive inspection.
  • the purpose is to do.
  • the present invention is a method for determining a defect region of a silicon wafer cut out from a silicon single crystal manufactured by a CZ method, and (1) a laser having a wavelength of 266 nm is used to determine the silicon wafer. A step of mirror-finishing so that the haze level of the surface in the haze measurement by the used particle counter is 0.06 ppm or less; (2) the mirror-finishing is performed using a particle counter capable of measuring defects having a size of 15 nm or less.
  • a method for determining a defect region comprising: measuring a defect number and / or defect density distribution on the surface of a silicon wafer; and (3) determining a defect region of the silicon wafer from the measured defect number and / or defect density distribution. I will provide a.
  • the crystal wafer can be detected with high sensitivity by using a particle counter with a predetermined detection accuracy by setting the haze level of the silicon wafer for determining the defect area to a predetermined value or less, and measured.
  • the defect area of the silicon wafer can be determined in a short time by nondestructive inspection from the number of defects and / or the defect density distribution.
  • V region an OSF region, and an N region as the defect region.
  • the defect region determination method of the present invention is particularly effective for determining the V region, the OSF region, and the N region.
  • the step (3) the number of defects and / or the defect density distribution on the surface of the silicon wafer having the same oxygen concentration as the silicon wafer and the known defect area are measured by the particle counter used in the step (2). Then, the correspondence relationship between the defect area and the number of defects on the silicon wafer surface and / or the defect density distribution is obtained in advance, and in the step (3), based on the correspondence obtained in advance, the step (2) It is preferable to determine the defect area of the silicon wafer from the number of defects and / or the defect density distribution measured in (1).
  • the defect area of the silicon wafer can be determined in a shorter time by obtaining the correspondence relationship between the defect area and the number of defects on the silicon wafer surface and / or the defect density distribution in advance.
  • the silicon wafer has an oxygen concentration of 5 to 20 ppma (JEIDA).
  • a defect region such as a V region, an OSF region, or an N region is accurately determined in a silicon wafer cut out from a silicon single crystal manufactured by the CZ method.
  • the time required for determination can be greatly reduced.
  • this determination since this determination is performed by nondestructive inspection using a particle counter, it is possible to prevent a decrease in product yield.
  • FIG. 3 is a wafer map schematically showing defects in a silicon wafer surface cut out from locations AA, BB, and CC in the silicon single crystal of FIG. 2 is a wafer map showing defect density distributions of wafers (i) to (iii) measured in Example 1.
  • FIG. 3 is a wafer map showing defect density distributions of wafers (i) to (iii) measured in Comparative Example 1.
  • FIG. 10 is a wafer map showing defect density distributions of wafers (i) to (iii) measured in Comparative Example 2.
  • the present inventors set the haze level of the silicon wafer for determining the defect area to a predetermined value or less, and further measured crystal defects using a particle counter with a predetermined detection accuracy.
  • the inventors have found that the above problem can be achieved by determining the defect area from the result, and have completed the present invention.
  • the present invention is a method for determining a defect area of a silicon wafer cut out from a silicon single crystal manufactured by the CZ method, and (1) haze by a particle counter using a laser having a wavelength of 266 nm.
  • the particle counter generally includes an incident system and a detection system.
  • the silicon wafer is irradiated with incident light, and the defects present on the silicon wafer surface are detected as LPD (Light Point Defect) from the intensity of the scattered light. To do.
  • LPD Light Point Defect
  • the particle counter counts the number of LPDs described above, it is known that a roughness of several to several tens of nanometers existing on the wafer surface becomes a disturbing factor. The roughness of about several to several tens of nm is haze.
  • the magnitude of the scattered light due to haze is expressed as a ratio to the incident light intensity. Is expressed as 1 ppm.
  • FIG. 1 is a flowchart showing an example of a defect area determination method according to the present invention.
  • the defect region is determined by the following steps (1) to (3).
  • (2) Defects having a size of 15 nm or less can be measured.
  • the step of determining the defect area of the silicon wafer from the measured number of defects and / or the defect density distribution Each step will be described in more detail.
  • step (1) a silicon wafer cut out from a silicon single crystal manufactured by the CZ method is mirror-finished so that the haze level of the surface is 0.06 ppm or less. The smaller the haze level, the better.
  • a silicon wafer for determining a defect region is cut out from a silicon single crystal manufactured by the CZ method (slicing process).
  • a chamfering process, a lapping / surface grinding / double-head grinding process, an etching process, and the like may be performed before mirror finishing.
  • a chamfering process, a lapping / surface grinding / double-head grinding process, an etching process, and the like may be performed before mirror finishing.
  • what is necessary is just to perform these processes by a well-known method.
  • the mirror surface processing includes a polishing step and a cleaning step.
  • the polishing step the flatness of the silicon wafer subjected to etching or the like as described above is further improved, and the surface of the silicon wafer is mirror-finished.
  • the “flatness” described here includes various frequency components, and includes a large wavelength warp (waviness) and waviness, a small wavelength roughness, microroughness, haze, and the like.
  • the frequency component related to haze can be reduced by adjusting the abrasive used in the polishing process, the polishing cloth, the polishing temperature, and the like. More specifically, for example, the average particle diameter of silica contained in the abrasive is 30 nm or less, and a nap layer in which a large number of elongated fine holes (nap) are formed is provided on the polishing cloth, and the nap layer is an ether-based resin.
  • the present invention is not limited to these.
  • the polishing liquid and the polishing agent used in the polishing step are removed from the silicon wafer, and metal impurities and environment-induced particles adhering to the silicon wafer surface layer are removed.
  • the cleaning process it is important not to deteriorate the haze quality of the silicon wafer surface created in the above polishing process, and cleaning without deteriorating the haze quality by adjusting the cleaning liquid, cleaning temperature, etc. Can do. More specifically, for example, after cleaning with SC1, which is a general cleaning process, cleaning with hydrofluoric acid and further ozone is performed, and the etching allowance of the silicon wafer is set to 0.1 to 2.0 nm. Although it is preferable, of course, it is not limited to these.
  • polishing conditions, cleaning conditions, and the like are any conventionally known conditions as long as the haze level can be 0.06 ppm or less by haze measurement with a particle counter using a laser with a wavelength of 266 nm. Can be adopted.
  • haze measurement is performed by a particle counter using a laser having a wavelength of 266 nm.
  • a laser having a wavelength of 266 nm As an apparatus that can be used for such haze measurement, for example, the DWO mode of SurfScan SP3 manufactured by KLA-Tencor can be cited. Note that since the detection accuracy of haze differs depending on the laser wavelength, the same haze value is not obtained when a particle counter having a different laser wavelength is used.
  • mirror processing is performed so that the haze level of the silicon wafer surface after mirror processing measured as described above is 0.06 ppm or less. That is, when the measured haze level exceeds 0.06 ppm, the mirror surface processing is performed again on the same wafer, or the mirror surface processing is performed again on another wafer. A silicon wafer of 0.06 ppm or less is prepared.
  • step (2) the number of defects and / or the defect density distribution on the surface of the silicon wafer mirror-finished in the step (1) is measured using a particle counter capable of measuring defects having a size of 15 nm or less.
  • a particle counter capable of measuring a defect having a size of 15 nm or less is used.
  • a particle counter with a detection accuracy lower than this for example, one that can only measure defects having a size of about 20 nm
  • the number of defects and the defect density for each defect region especially OSF region and N region. Since the difference in distribution becomes unclear, these areas cannot be discriminated.
  • An example of a particle counter capable of measuring a defect having a size of 15 nm or less includes SurfScan SP5 manufactured by KLA-Tencor.
  • the defect area of the silicon wafer is determined from the number of defects and / or the defect density distribution measured in the step (2).
  • the defect region determination method of the present invention is particularly effective in determining the V region, the OSF region, and the N region.
  • FIG. 2 is a schematic diagram showing each defect region in a silicon single crystal grown while decreasing the pulling rate by the CZ method.
  • the V region 2, the N region 3, the OSF region 4, and the I region 5 exist in the silicon single crystal 1 grown while reducing the pulling rate by the CZ method.
  • the characteristics of these defect areas are as described above.
  • AA, BB, and CC in FIG. 2 indicate the cut-out positions when a silicon wafer including each defect region is cut out from the silicon single crystal 1, and FIG.
  • the defect density distribution in the silicon wafer surface cut out from the locations AA, BB, and CC in the figure is schematically shown.
  • the defect area of the silicon wafer can be determined from the defect density distribution.
  • the number of defects and / or the defect density distribution on the surface of another silicon wafer having the same oxygen concentration as that of the silicon wafer for determining the defect region and the known defect region are obtained as described in the step (2).
  • the correspondence between the defect area and the number of defects on the silicon wafer surface and / or the defect density distribution is obtained in advance, and based on the correspondence obtained in advance in the step (3).
  • the defect area of the silicon wafer can be determined from the number of defects and / or the defect density distribution measured in the step (2).
  • region of a silicon wafer can be determined in a shorter time by calculating
  • the silicon wafer for determining the defect region has an oxygen concentration (initial oxygen concentration) of 5 to 20 ppma (JEIDA). This is because the number of defects measured by the particle counter is related to the oxygen concentration of the silicon wafer. If the oxygen concentration is 5 ppma or more, the number of defects in the V region and the OSF region increases, so that the difference in the number of defects and the defect density distribution in each region of the V region, the OSF region, and the N region becomes clearer. Thus, it is possible to more accurately determine the defect region only by the measurement result of the defect number and / or the defect density distribution according to (ie, without performing the determination based on the correspondence previously obtained as described above).
  • the oxygen concentration is 8 ppma or more, the difference for each defect region becomes clearer, which is more preferable. Further, it is preferable that the oxygen concentration is 20 ppma or less because there is no possibility that the number of defects of the particle counter overflows in the measurement of the V region.
  • a defect region such as a V region, an OSF region, or an N region is accurately determined in a silicon wafer cut out from a silicon single crystal manufactured by the CZ method.
  • the time required for determination can be greatly reduced.
  • this determination since this determination is performed by nondestructive inspection using a particle counter, it is possible to prevent a decrease in product yield.
  • Example 1 and Comparative Examples 1 and 2 a silicon wafer having a known defect region cut out from the same silicon single crystal was used.
  • the silicon single crystal had a diameter of 300 mm and an initial oxygen concentration of 11 ppma (JEIDA) grown while changing the pulling rate by the CZ method.
  • three types of silicon wafers are prepared: (i) the entire surface of the V region, (ii) the V region, the OSF region, and the N region, and (iii) the entire surface of the N region.
  • a chamfering process, lapping / surface grinding / double-head grinding process, and etching process were performed.
  • Example 1 The silicon wafers (i) to (iii) prepared as described above were mirror-finished by performing a polishing process and a cleaning process according to a conventional method. Next, the haze level of the wafer surface after the mirror finishing was measured in the DWO mode (laser wavelength: 266 nm) of SurfScan SP3 manufactured by KLA-Tencor, and the haze level was 0.055 to 0.060 ppm in any wafer. It was confirmed. Next, the number of defects on the mirror-finished wafer surface and the defect density distribution were measured using a SurfScan SP5 manufactured by KLA-Tencor, which can measure defects with a size of 15 nm or less. FIG.
  • wafer map 4 shows a defect density distribution (wafer map) of each wafer in which defects of 14 nm or more are detected.
  • the number of defects was about 60,000 for wafer (i), about 10,000 for wafer (ii), and about 200 for wafer (iii).
  • the silicon wafer (i) is the entire V region
  • the silicon wafer (ii) includes the V region, the OSF region, and the N region
  • the silicon wafer (iii) is the entire N region. I was able to.
  • the silicon wafer (i) is the entire V area
  • the silicon wafer (ii) is the V area, the OSF area
  • the N region the silicon wafer (iii) could be determined to be the entire N region.
  • FIG. 5 shows a defect density distribution (wafer map) in which defects of 26 nm or more are detected. The number of defects was about 200 for wafer (i), about 40 for wafer (ii), and about 40 for wafer (iii).
  • the number of defects in wafer (i) is larger than the number of defects in wafer (ii) and wafer (iii), but the number of defects in wafer (ii) and wafer (iii) is almost the same. Thus, the wafer (ii) and the wafer (iii) could not be distinguished.
  • the wafer (ii) and the wafer (iii) could not be distinguished.
  • the haze level after mirror finishing is set to 0.06 ppm or less. It can be seen that the defect area cannot be determined.
  • the number of defects in the particle counter overflows in any wafer, and as shown in FIG. 6, an accurate defect density distribution cannot be obtained, so that the wafers (i) to (iii) are distinguished. I could't. This is because the defect component and the haze component on the surface of the silicon wafer are both detected as defects by the particle counter because the haze component after mirror finishing is insufficiently reduced. From this, when the haze level after mirror finishing exceeds 0.06 ppm, even if a particle counter having a defect detection capability of 10 nm level (that is, capable of measuring a defect having a size of 15 nm or less) is used, It can be seen that the defect area cannot be determined.
  • the crystal wafer sensitivity is determined by setting the haze level of the silicon wafer for determining the defect region to a predetermined value or less and using a particle counter with a predetermined detection accuracy. It was found that the defect area of the silicon wafer can be determined in a short time and by nondestructive inspection from the number of defects and / or the defect density distribution measured.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

本発明は、CZ法で製造されたシリコン単結晶から切り出したシリコンウェーハの欠陥領域を判定する方法であって、(1)前記シリコンウェーハを、波長266nmのレーザーを用いたパーティクルカウンタによるヘイズ測定における表面のヘイズレベルが0.06ppm以下となるように鏡面加工する工程、(2)15nm以下のサイズの欠陥の測定が可能なパーティクルカウンタを用いて、前記鏡面加工したシリコンウェーハ表面の欠陥数及び/又は欠陥密度分布を測定する工程、(3)該測定した欠陥数及び/又は欠陥密度分布から前記シリコンウェーハの欠陥領域を判定する工程、を有する欠陥領域の判定方法である。これにより、CZ法で製造されたシリコン単結晶から切り出したシリコンウェーハの欠陥領域を短時間にかつ非破壊検査にて判定する方法が提供される。

Description

欠陥領域の判定方法
 本発明は、CZ法で製造されたシリコン単結晶から切り出したシリコンウェーハの欠陥領域をパーティクルカウンタを用いて判定する方法に関する。
 チョクラルスキー(CZ)法で製造されたシリコン単結晶には、FPD(Flow Pattern Defect)、LSTD(Laser Scattering Tomography Defect)、COP(Crystal Originated Particle)などのグローンイン(Grown-in)欠陥と呼ばれる欠陥が存在し、これらはデバイス特性を悪化させる一因となるため、これらの欠陥を低減することが重要視されている。
 これらの欠陥を説明するに当たって、まず、シリコン単結晶に取り込まれるVacancy(以下、V)と呼ばれる空孔型の点欠陥と、Interstitial-Si(以下、I)と呼ばれる格子間型シリコン点欠陥のそれぞれについて、一般的に知られていることを説明する。
 シリコン単結晶において、V領域とは、シリコン原子の不足から発生する凹部や穴のようなものが多い領域であり、I領域とは、シリコン原子が余分に存在することにより発生する転位や余分なシリコン原子の塊が多い領域である。特に、V領域で発生するFPD、LSTD、COP等のグローンイン欠陥は、デバイス工程において酸化膜耐圧特性を悪化させる一因であることが知られている。また、V領域とI領域の間には、原子の不足や余分が無い(少ない)Neutral領域(以下、N領域)が存在する。そして、上記のグローンイン欠陥(FPD、LSTD、COP等)とは、あくまでもVやIが過飽和な状態のときに発生するものであり、多少の原子の偏りがあっても、飽和以下であれば、グローンイン欠陥としては存在しないことが分かっている。
 更に、V領域とI領域との境界近辺にはOSF(酸化誘起積層欠陥、Oxidation Induced Stacking Fault)と呼ばれる欠陥が、結晶成長軸に対する垂直方向の断面で見たときに、リング状に分布していることが確認されている(以下、OSFが発生する領域を「OSF領域」と記す)。また、これらの欠陥領域は、結晶育成時の引上げ速度などによって変化することが知られている。
 前述のグローンイン欠陥を評価する方法としては、特許文献1や特許文献2のような熱処理や酸化処理を用いる方法や、特許文献3のようなエッチングを用いる方法が一般的である。また、欠陥領域、特にN領域を判定する方法としても、特許文献4のように酸化処理を行う方法が知られており、更にこれにCuデポジション法を併せて実施する方法も知られている。
 また、特許文献5のように、単結晶製造時に炉内温度などの製造条件を調節することによってV領域やN領域などの所望の欠陥領域を有するシリコン単結晶を製造する方法も提案されているが、特にN領域に求められる製造条件は難しく、安定した製品が得られにくい。従って、このような方法で単結晶の製造を行う場合においても、品質検査としての欠陥領域の判定をすることは重要である。
特開平10-297995号公報 特開2000-269288号公報 特開2000-058509号公報 特開2004-153083号公報 特開平11-79889号公報
 インゴットから切り出したウェーハの欠陥領域(V領域、OSF領域、N領域)を判定する場合、上記の特許文献1~4のように熱処理等を実施し、その後OSF検査や酸化膜耐圧評価、ウェーハライフタイム検査などを行うことが一般的である。しかし、これらの方法では前述の熱処理だけで20時間程度を要し、その後のOSF検査などを含めると判定までに最短でも丸1日が必要となる。更に、これらの検査は破壊検査であるため製品の収率を落とす原因でもあった。
 本発明は、前述のような問題に鑑みてなされたものであり、CZ法で製造されたシリコン単結晶から切り出したシリコンウェーハの欠陥領域を短時間にかつ非破壊検査にて判定する方法を提供することを目的とする。
 上記目的を達成するために、本発明では、CZ法で製造されたシリコン単結晶から切り出したシリコンウェーハの欠陥領域を判定する方法であって、(1)前記シリコンウェーハを、波長266nmのレーザーを用いたパーティクルカウンタによるヘイズ測定における表面のヘイズレベルが0.06ppm以下となるように鏡面加工する工程、(2)15nm以下のサイズの欠陥の測定が可能なパーティクルカウンタを用いて、前記鏡面加工したシリコンウェーハ表面の欠陥数及び/又は欠陥密度分布を測定する工程、(3)該測定した欠陥数及び/又は欠陥密度分布から前記シリコンウェーハの欠陥領域を判定する工程、を有する欠陥領域の判定方法を提供する。
 このような方法であれば、欠陥領域を判定するシリコンウェーハのヘイズレベルを所定の値以下とし、所定の検出精度のパーティクルカウンタを用いることで、結晶欠陥を感度良く検出することができ、測定した欠陥数及び/又は欠陥密度分布からシリコンウェーハの欠陥領域を短時間にかつ非破壊検査にて判定することができる。
 また、前記欠陥領域として、V領域、OSF領域、N領域を判定することが好ましい。
 本発明の欠陥領域の判定方法は、V領域、OSF領域、N領域の判定に特に有効である。
 また、前記(3)工程より前に、前記シリコンウェーハと同じ酸素濃度でかつ欠陥領域が既知のシリコンウェーハの表面の欠陥数及び/又は欠陥密度分布を前記(2)工程で用いるパーティクルカウンタで測定し、欠陥領域とシリコンウェーハ表面の欠陥数及び/又は欠陥密度分布の対応関係を予め求めておき、前記(3)工程において、前記予め求めておいた対応関係に基づいて、前記(2)工程で測定した欠陥数及び/又は欠陥密度分布から前記シリコンウェーハの欠陥領域を判定することが好ましい。
 このように、欠陥領域とシリコンウェーハ表面の欠陥数及び/又は欠陥密度分布の対応関係を予め求めておくことで、シリコンウェーハの欠陥領域をより短時間で判定することができる。
 また、前記シリコンウェーハを、酸素濃度が5~20ppma(JEIDA)のものとすることが好ましい。
 このような酸素濃度のものであれば、欠陥領域ごとの欠陥数や欠陥密度分布の違いがより明確になるため、シリコンウェーハの欠陥領域をより正確に判定することができる。
 以上のように、本発明の欠陥領域の判定方法であれば、CZ法で製造されたシリコン単結晶から切り出したシリコンウェーハにおいて、V領域、OSF領域、N領域などの欠陥領域を正確に判定することができ、また判定にかかる時間を大幅に短縮することができる。更に、本発明の欠陥領域の判定方法であれば、この判定をパーティクルカウンタを用いて非破壊検査で行うため、製品の収率低下を防止することもできる。
本発明の欠陥領域の判定方法の一例を示すフロー図である。 CZ法で引上げ速度を減少させながら成長させたシリコン単結晶における各欠陥領域を示す模式図である。 図2のシリコン単結晶において、A-A、B-B、C-Cの箇所から切り出したシリコンウェーハ面内の欠陥を模式的に示すウェーハマップである。 実施例1で測定したウェーハ(i)~(iii)の欠陥密度分布を示すウェーハマップである。 比較例1で測定したウェーハ(i)~(iii)の欠陥密度分布を示すウェーハマップである。 比較例2で測定したウェーハ(i)~(iii)の欠陥密度分布を示すウェーハマップである。
 上述のように、CZ法で製造されたシリコン単結晶から切り出したシリコンウェーハの欠陥領域を短時間にかつ非破壊検査にて判定する方法の開発が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、欠陥領域を判定するシリコンウェーハのヘイズレベルを所定の値以下とし、更に所定の検出精度のパーティクルカウンタを用いて結晶欠陥を測定して、その結果から欠陥領域を判定することで、上記課題を達成できることを見出し、本発明を完成させた。
 即ち、本発明は、CZ法で製造されたシリコン単結晶から切り出したシリコンウェーハの欠陥領域を判定する方法であって、(1)前記シリコンウェーハを、波長266nmのレーザーを用いたパーティクルカウンタによるヘイズ測定における表面のヘイズレベルが0.06ppm以下となるように鏡面加工する工程、(2)15nm以下のサイズの欠陥の測定が可能なパーティクルカウンタを用いて、前記鏡面加工したシリコンウェーハ表面の欠陥数及び/又は欠陥密度分布を測定する工程、(3)該測定した欠陥数及び/又は欠陥密度分布から前記シリコンウェーハの欠陥領域を判定する工程、を有する欠陥領域の判定方法である。
 なお、ここでパーティクルカウンタについて簡単に説明する。パーティクルカウンタは一般的に入射系と検出系とを備えており、シリコンウェーハに入射光を照射し、その散乱光の強度から、このシリコンウェーハ表面に存在する欠陥をLPD(Light Point Defect)として検出する。パーティクルカウンタが前述のLPD数をカウントする際に、ウェーハ表面に存在する数~数十nm程度の粗さが妨害要因となることが知られている。この数~数十nm程度の粗さがヘイズである。通常、ヘイズによる散乱光の大きさは入射光強度に対する比で表し、例えば、入射光強度1に対し散乱光の強度がその100万分の1の場合は、散乱光の強度(即ち、ヘイズレベル)を1ppmと表す。
 以下、本発明について図面を参照しながら詳細に説明するが、本発明はこれらに限定されるものではない。
 図1は、本発明の欠陥領域の判定方法の一例を示すフロー図である。図1の欠陥領域の判定方法では、以下の(1)~(3)工程で欠陥領域を判定する。
(1)CZ法で製造されたシリコン単結晶から切り出したシリコンウェーハを、表面のヘイズレベルが0.06ppm以下となるように鏡面加工する工程
(2)15nm以下のサイズの欠陥の測定が可能なパーティクルカウンタを用いて、鏡面加工したシリコンウェーハ表面の欠陥数及び/又は欠陥密度分布を測定する工程
(3)測定した欠陥数及び/又は欠陥密度分布からシリコンウェーハの欠陥領域を判定する工程
 以下、各工程について更に詳しく説明する。
[(1)工程]
 (1)工程では、CZ法で製造されたシリコン単結晶から切り出したシリコンウェーハを、表面のヘイズレベルが0.06ppm以下となるように鏡面加工する。なお、ヘイズレベルは小さければ小さいほどよい。
 (1)工程の前段階として、CZ法で製造されたシリコン単結晶から欠陥領域を判定するシリコンウェーハを切り出す(スライス工程)。次いで、鏡面加工の前に、面取り工程、ラッピング・平面研削・両頭研削工程、エッチング工程等を行ってもよい。なお、これらの工程は公知の方法で行えばよい。
 次に、このようにして用意したシリコンウェーハを鏡面加工する。鏡面加工は研磨工程と洗浄工程からなり、研磨工程では、上記のようにエッチング等を行ったシリコンウェーハの平坦度を更に向上させ、またそのシリコンウェーハの表面を鏡面化させる。なお、ここで述べた「平坦度」には、様々な周波数成分があり、大きな波長のWarp(反り)やうねり、小さな波長の粗さやマイクロラフネス、ヘイズなどが含まれる。
 ヘイズに関連した周波数成分は、研磨工程に使用する研磨剤、研磨布、研磨温度などを調節することで、低減させることができる。より具体的には、例えば、研磨剤に含まれるシリカの平均粒径を30nm以下とし、研磨布には細長い微細な穴(ナップ)を多数形成したナップ層を設け、そのナップ層はエーテル系樹脂などで軟質に仕上げることが好ましいが、もちろんこれらに限定されない。
 上記の研磨工程後の洗浄工程では、研磨工程で使用された研磨液や研磨剤をシリコンウェーハから除去し、またシリコンウェーハ表層に付着した金属不純物や環境起因のパーティクルを除去する。
 なお、洗浄工程においては、上記の研磨工程で作り上げたシリコンウェーハ表面のヘイズ品質を悪化させないことが重要であり、洗浄液や洗浄温度などを調節することで、ヘイズ品質を悪化させずに洗浄することができる。より具体的には、例えば、洗浄工程として一般的なSC1での洗浄後に、フッ酸と更にオゾンを用いた洗浄を実施し、シリコンウェーハのエッチング代を0.1~2.0nmとすることが好ましいが、もちろんこれらに限定されない。
 これら研磨条件や洗浄条件等は、波長266nmのレーザーを用いたパーティクルカウンタによるヘイズ測定で、ヘイズレベルが0.06ppm以下となるようにすることができる条件であれば、従来公知のいずれの条件も採用できる。
 次に、鏡面加工後のシリコンウェーハ表面のヘイズレベルを測定する。このとき、本発明では、波長266nmのレーザーを用いたパーティクルカウンタによるヘイズ測定を行う。このようなヘイズ測定に用いることができる装置としては、例えば、KLA-Tencor社製SurfScan SP3のDWOモード等を挙げることができる。なお、レーザーの波長によりヘイズの検出精度が異なるため、レーザーの波長が異なるパーティクルカウンタを使用した場合には同じヘイズの値にならない点に注意が必要である。
 本発明では、上記のようにして測定した鏡面加工後のシリコンウェーハ表面のヘイズレベルが0.06ppm以下となるように鏡面加工を行う。即ち、測定したヘイズレベルが0.06ppmを超えている場合には、同じウェーハに対し再度鏡面加工を行う、あるいは別のウェーハで鏡面加工をやり直すなどして、鏡面加工後の表面のヘイズレベルが0.06ppm以下のシリコンウェーハを用意する。
[(2)工程]
 (2)工程では、15nm以下のサイズの欠陥の測定が可能なパーティクルカウンタを用いて、上記(1)工程で鏡面加工したシリコンウェーハ表面の欠陥数及び/又は欠陥密度分布を測定する。
 パーティクルカウンタを用いることで、上記のようにシリコンウェーハ表面に存在する結晶欠陥をLPDとして検出し、そのLPD数をカウントすることで、シリコンウェーハ表面の欠陥数及び/又は欠陥密度分布を測定することができる。
 なお、本発明では、このとき15nm以下のサイズの欠陥の測定が可能なパーティクルカウンタを使用する。これよりも検出精度の低いパーティクルカウンタ(例えば、20nm程度のサイズの欠陥までしか測定できないもの)を使用した場合には、各欠陥領域ごと(特に、OSF領域とN領域)の欠陥数や欠陥密度分布の違いが不明確になるため、これらの領域を判別できなくなる。なお、15nm以下のサイズの欠陥の測定が可能なパーティクルカウンタとしては、例えば、KLA-Tencor社製SurfScan SP5等を挙げることができる。
[(3)工程]
 (3)工程では、上記(2)工程で測定した欠陥数及び/又は欠陥密度分布からシリコンウェーハの欠陥領域を判定する。なお、本発明の欠陥領域の判定方法は、V領域、OSF領域、N領域の判定に特に有効である。
 ここで、各欠陥領域とマップの特徴について説明する。図2は、CZ法で引上げ速度を減少させながら成長させたシリコン単結晶における各欠陥領域を示す模式図である。図2に示されるように、CZ法で引上げ速度を減少させながら成長させたシリコン単結晶1には、V領域2、N領域3、OSF領域4、及びI領域5が存在する。これらの各欠陥領域の特徴については上述の通りである。また、図2中の、A-A、B-B、C-Cは、シリコン単結晶1から各欠陥領域を含むシリコンウェーハを切り出す場合の切り出し箇所を示しており、図3は、この図2中のA-A、B-B、C-Cの箇所から切り出したシリコンウェーハ面内の欠陥密度分布を模式的に示している。
 図3に示されるように、A-Aの箇所から切り出した全面V領域のシリコンウェーハでは、シリコンウェーハ全面にFPD、LSTD、COPなどのグローンイン欠陥が発生する。また、B-Bの箇所から切り出したV領域、N領域、及びOSF領域を含むシリコンウェーハでは、熱酸化処理によって顕在化するリング状の欠陥(OSFリング)が発生し、更に中央部にはV領域で示したグローンイン欠陥が発生する。一方、C-Cの箇所から切り出した全面N領域のシリコンウェーハでは、熱処理等を施しても欠陥の発生が非常に少ない。このように、本来、各欠陥領域ごとに欠陥数や欠陥密度分布が異なるため、パーティクルカウンタの欠陥の検出感度を高めることができれば、エッチングや熱処理等を施さなくてもパーティクルカウンタで測定した欠陥数及び/又は欠陥密度分布からシリコンウェーハの欠陥領域を判定することができると考えられる。
 そこで、(3)工程より前に、欠陥領域を判定するシリコンウェーハと同じ酸素濃度でかつ欠陥領域が既知の別のシリコンウェーハの表面の欠陥数及び/又は欠陥密度分布を上記の(2)工程で使用するパーティクルカウンタを用いて測定し、欠陥領域とシリコンウェーハ表面の欠陥数及び/又は欠陥密度分布の対応関係を予め求めておき、(3)工程において、予め求めておいた対応関係に基づいて、(2)工程で測定した欠陥数及び/又は欠陥密度分布からシリコンウェーハの欠陥領域を判定することができる。このように、欠陥領域とシリコンウェーハ表面の欠陥数及び/又は欠陥密度分布の対応関係を予め求めておくことで、シリコンウェーハの欠陥領域をより短時間で判定することができる。
 また、本発明では、欠陥領域を判定するシリコンウェーハを、酸素濃度(初期酸素濃度)が5~20ppma(JEIDA)のものとすることが好ましい。これは、パーティクルカウンタで測定される欠陥数がシリコンウェーハの酸素濃度と関係しているためである。酸素濃度が5ppma以上であれば、V領域及びOSF領域の欠陥数が増加するので、V領域、OSF領域、N領域の各領域ごとの欠陥数や欠陥密度分布の違いがより明確となり、パーティクルカウンタによる欠陥数及び/又は欠陥密度分布の測定結果のみでも(即ち、上記のように予め求めておいた対応関係に基づいた判定を行わなくとも)欠陥領域のより正確な判定が可能となる。酸素濃度が8ppma以上であれば、欠陥領域ごとの違いが更に明確となるので、更に好ましい。また、酸素濃度が20ppma以下であれば、V領域の測定においてパーティクルカウンタの欠陥数がオーバーフローする恐れがないため、好ましい。
 以上のように、本発明の欠陥領域の判定方法であれば、CZ法で製造されたシリコン単結晶から切り出したシリコンウェーハにおいて、V領域、OSF領域、N領域などの欠陥領域を正確に判定することができ、また判定にかかる時間を大幅に短縮することができる。更に、本発明の欠陥領域の判定方法であれば、この判定をパーティクルカウンタを用いて非破壊検査で行うため、製品の収率低下を防止することもできる。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 実施例1及び比較例1、2では、同じシリコン単結晶から切り出した欠陥領域が既知のシリコンウェーハを使用した。なお、シリコン単結晶は、CZ法で引上げ速度を変えながら成長させた直径300mm、初期酸素濃度11ppma(JEIDA)のものとした。また、シリコンウェーハとしては、(i)全面がV領域のもの、(ii)V領域、OSF領域、及びN領域を含むもの、(iii)全面がN領域のもの、の3種類を用意し、それぞれ従来法に従って、面取り工程、ラッピング・平面研削・両頭研削工程、エッチング工程を行った。
[実施例1]
 上記のようにして用意したシリコンウェーハ(i)~(iii)に対して、従来法に従って、研磨工程及び洗浄工程を行い、鏡面加工した。次に、この鏡面加工後のウェーハ表面のヘイズレベルをKLA-Tencor社製SurfScan SP3のDWOモード(レーザー波長:266nm)で測定し、いずれのウェーハでもヘイズレベルが0.055~0.060ppmであることを確認した。次に、15nm以下のサイズの欠陥の測定が可能なKLA-Tencor社製SurfScan SP5を用いて、鏡面加工したウェーハ表面の欠陥数及び欠陥密度分布を測定した。14nm以上の欠陥を検出させた各ウェーハの欠陥密度分布(ウェーハマップ)を図4に示す。なお、欠陥数はウェーハ(i)で約60,000個、ウェーハ(ii)で約10,000個、ウェーハ(iii)で約200個であった。
 まず、欠陥数のみを比較すると、ウェーハ(i)、ウェーハ(ii)、ウェーハ(iii)でそれぞれ欠陥数に顕著な違いがあり、これらのウェーハをそれぞれ区別することができた。次に、欠陥密度分布を比較すると、図4に示されるように、ウェーハ(i)ではウェーハ全面にグローンイン欠陥が顕在化しており、ウェーハ(ii)では外周付近のリング状の欠陥(OSFリング)と中央部にはV領域起因と思われる欠陥が顕在化しており、ウェーハ(iii)ではウェーハ全面にわたって欠陥が非常に少ないことから、これらのウェーハをそれぞれ区別することができた。これらの結果から、シリコンウェーハ(i)は全面V領域であり、シリコンウェーハ(ii)はV領域、OSF領域、及びN領域を含み、シリコンウェーハ(iii)は全面N領域であると判定することができた。
 更に、上記のようにして測定したウェーハ(i)~(iii)の欠陥数及び欠陥密度分布と、予め求めておいた初期酸素濃度11ppma(JEIDA)のシリコン単結晶における欠陥領域とシリコンウェーハ表面の欠陥数及び欠陥密度分布の対応表(不図示)をもとに欠陥領域の判定を行ったところ、シリコンウェーハ(i)は全面V領域であり、シリコンウェーハ(ii)はV領域、OSF領域、及びN領域を含み、シリコンウェーハ(iii)は全面N領域であると判定することができた。
[比較例1]
 実施例1で欠陥数及び欠陥密度分布を測定した鏡面加工後のシリコンウェーハに対し、20nmまでのサイズの欠陥しか測定できないKLA-Tencor社製SurfScan SP3のDWOモードを用いて、欠陥数及び欠陥密度分布を測定した。26nm以上の欠陥を検出させた欠陥密度分布(ウェーハマップ)を図5に示す。なお、欠陥数はウェーハ(i)で約200個、ウェーハ(ii)で約40個、ウェーハ(iii)で約40個であった。
 まず、欠陥数のみを比較すると、ウェーハ(i)の欠陥数はウェーハ(ii)及びウェーハ(iii)の欠陥数に比べると多いものの、ウェーハ(ii)とウェーハ(iii)の欠陥数はほぼ同数であり、ウェーハ(ii)とウェーハ(iii)を区別することができなかった。次に、欠陥密度分布を比較すると、図5に示されるように、ウェーハ(i)ではウェーハ(ii)及びウェーハ(iii)に比べるとウェーハ中央部に多くの欠陥が見られるものの、ウェーハ(ii)とウェーハ(iii)ではウェーハ全面にわたって欠陥が非常に少なく、ウェーハ(ii)とウェーハ(iii)を区別することができなかった。このように、欠陥検出能力が20nmレベルの(即ち、15nm以下のサイズの欠陥の測定が不可能な)パーティクルカウンタを使用した場合には、鏡面加工後のヘイズレベルを0.06ppm以下にしても欠陥領域の判定ができないことが分かる。
[比較例2]
 実施例1と同様にしてシリコンウェーハ(i)~(iii)を準備し、研磨条件を変更して鏡面加工を行い、いずれのウェーハでも鏡面加工後のウェーハ表面のヘイズレベルが0.068~0.072ppmであることを確認した。次に、15nm以下のサイズの欠陥の測定が可能なKLA-Tencor社製SurfScan SP5を用いて、鏡面加工したウェーハ表面の欠陥数及び欠陥密度分布を測定した。14nm以上の欠陥を検出させた欠陥密度分布(ウェーハマップ)を図6に示す。なお、いずれのウェーハでもパーティクルカウンタの欠陥数がオーバーフローしており、欠陥数は測定できなかった。
 上記のように、いずれのウェーハでもパーティクルカウンタの欠陥数がオーバーフローしており、また図6に示されるように、正確な欠陥密度分布が得られなかったため、ウェーハ(i)~(iii)を区別することができなかった。これは、鏡面加工後のヘイズ成分の低減が不十分であるために、シリコンウェーハ表面の欠陥成分とヘイズ成分が、パーティクルカウンタではともに欠陥として検出されたためである。このことから、鏡面加工後のヘイズレベルが0.06ppmを超える場合には、欠陥検出能力が10nmレベルの(即ち、15nm以下のサイズの欠陥の測定が可能な)パーティクルカウンタを使用しても、欠陥領域の判定ができないことが分かる。
 以上のことから、本発明の欠陥領域の判定方法のように、欠陥領域を判定するシリコンウェーハのヘイズレベルを所定の値以下とし、所定の検出精度のパーティクルカウンタを用いることで、結晶欠陥を感度良く検出することができ、測定した欠陥数及び/又は欠陥密度分布からシリコンウェーハの欠陥領域を短時間にかつ非破壊検査にて判定できることが明らかとなった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (4)

  1.  CZ法で製造されたシリコン単結晶から切り出したシリコンウェーハの欠陥領域を判定する方法であって、
    (1)前記シリコンウェーハを、波長266nmのレーザーを用いたパーティクルカウンタによるヘイズ測定における表面のヘイズレベルが0.06ppm以下となるように鏡面加工する工程、
    (2)15nm以下のサイズの欠陥の測定が可能なパーティクルカウンタを用いて、前記鏡面加工したシリコンウェーハ表面の欠陥数及び欠陥密度分布のいずれか又は両方を測定する工程、
    (3)該測定した欠陥数及び欠陥密度分布のいずれか又は両方から前記シリコンウェーハの欠陥領域を判定する工程、
    を有することを特徴とする欠陥領域の判定方法。
  2.  前記欠陥領域として、V領域、OSF領域、N領域を判定することを特徴とする請求項1に記載の欠陥領域の判定方法。
  3.  前記(3)工程より前に、前記シリコンウェーハと同じ酸素濃度でかつ欠陥領域が既知のシリコンウェーハの表面の欠陥数及び欠陥密度分布のいずれか又は両方を前記(2)工程で用いるパーティクルカウンタで測定し、欠陥領域とシリコンウェーハ表面の欠陥数及び欠陥密度分布のいずれか又は両方の対応関係を予め求めておき、前記(3)工程において、前記予め求めておいた対応関係に基づいて、前記(2)工程で測定した欠陥数及び欠陥密度分布のいずれか又は両方から前記シリコンウェーハの欠陥領域を判定することを特徴とする請求項1又は請求項2に記載の欠陥領域の判定方法。
  4.  前記シリコンウェーハを、酸素濃度が5~20ppma(JEIDA)のものとすることを特徴とする請求項1から請求項3のいずれか一項に記載の欠陥領域の判定方法。
PCT/JP2016/004664 2015-11-17 2016-10-24 欠陥領域の判定方法 WO2017085903A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201803206YA SG11201803206YA (en) 2015-11-17 2016-10-24 Method for determining defect region
CN201680060750.5A CN108140593B (zh) 2015-11-17 2016-10-24 缺陷区域的判定方法
KR1020187013186A KR102639121B1 (ko) 2015-11-17 2016-10-24 결함영역의 판정방법
US15/770,333 US10513798B2 (en) 2015-11-17 2016-10-24 Method for determining defect region
DE112016004752.5T DE112016004752T5 (de) 2015-11-17 2016-10-24 Verfahren zum Ermitteln von Defektregionen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015224369A JP6402703B2 (ja) 2015-11-17 2015-11-17 欠陥領域の判定方法
JP2015-224369 2015-11-17

Publications (1)

Publication Number Publication Date
WO2017085903A1 true WO2017085903A1 (ja) 2017-05-26

Family

ID=58718576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004664 WO2017085903A1 (ja) 2015-11-17 2016-10-24 欠陥領域の判定方法

Country Status (8)

Country Link
US (1) US10513798B2 (ja)
JP (1) JP6402703B2 (ja)
KR (1) KR102639121B1 (ja)
CN (1) CN108140593B (ja)
DE (1) DE112016004752T5 (ja)
SG (1) SG11201803206YA (ja)
TW (1) TWI714654B (ja)
WO (1) WO2017085903A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102060085B1 (ko) * 2018-08-20 2019-12-27 에스케이실트론 주식회사 웨이퍼의 결함 영역을 평가하는 방법
CN110132991A (zh) * 2019-06-18 2019-08-16 徐州鑫晶半导体科技有限公司 用于检测硅晶圆上激光打标缺陷的方法
JP7342789B2 (ja) * 2020-05-28 2023-09-12 株式会社Sumco シリコンウェーハおよびシリコンウェーハの製造方法
CN111781204A (zh) * 2020-06-16 2020-10-16 天津中环领先材料技术有限公司 一种半导体圆硅片环状层错的测试方法
CN113109363B (zh) * 2021-03-10 2022-09-20 中国科学院上海微系统与信息技术研究所 一种表征硅晶体中缺陷的方法
CN113138195A (zh) * 2021-04-16 2021-07-20 上海新昇半导体科技有限公司 晶体缺陷的监控方法及晶棒生长方法
CN115360115A (zh) * 2022-10-19 2022-11-18 西安奕斯伟材料科技有限公司 一种测量晶圆表面损伤层深度的方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142544A (ja) * 2001-11-07 2003-05-16 Toshiba Ceramics Co Ltd シリコンウエハの微小欠陥の評価方法
JP2006112871A (ja) * 2004-10-13 2006-04-27 Sumco Corp 半導体基板の検査方法及びその検査装置
JP2008222505A (ja) * 2007-03-14 2008-09-25 Shin Etsu Handotai Co Ltd シリコン単結晶ウエーハの評価方法およびシリコン単結晶の製造方法
JP2009021572A (ja) * 2007-06-12 2009-01-29 Shin Etsu Handotai Co Ltd 欠陥検出方法及び欠陥検出システム並びに発光素子の製造方法
JP2015501533A (ja) * 2011-10-14 2015-01-15 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッドMemc Electronic Materials,Incorporated 結晶関連欠陥の位置を示す方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100252214B1 (ko) 1997-04-23 2000-04-15 윤종용 반도체장치 제조용 베어 웨이퍼 분석방법
JPH1179889A (ja) 1997-07-09 1999-03-23 Shin Etsu Handotai Co Ltd 結晶欠陥が少ないシリコン単結晶の製造方法、製造装置並びにこの方法、装置で製造されたシリコン単結晶とシリコンウエーハ
JP3451955B2 (ja) 1998-08-13 2003-09-29 株式会社豊田中央研究所 結晶欠陥の評価方法及び結晶欠陥評価装置
KR20010031444A (ko) * 1998-08-31 2001-04-16 와다 다다시 실리콘 단결정 웨이퍼의 제조방법 및 실리콘 단결정 웨이퍼
EP1061565A1 (en) * 1998-12-28 2000-12-20 Shin-Etsu Handotai Co., Ltd Method for thermally annealing silicon wafer and silicon wafer
JP2000269288A (ja) 1999-03-15 2000-09-29 Shin Etsu Handotai Co Ltd シリコンウエーハの結晶欠陥検出法および結晶欠陥評価法ならびに酸化膜耐圧特性評価法
DE19960823B4 (de) * 1999-12-16 2007-04-12 Siltronic Ag Verfahren zur Herstellung einer epitaxierten Halbleiterscheibe und deren Verwendung
US8529695B2 (en) * 2000-11-22 2013-09-10 Sumco Corporation Method for manufacturing a silicon wafer
JP3994665B2 (ja) * 2000-12-28 2007-10-24 信越半導体株式会社 シリコン単結晶ウエーハおよびシリコン単結晶の製造方法
US6743495B2 (en) * 2001-03-30 2004-06-01 Memc Electronic Materials, Inc. Thermal annealing process for producing silicon wafers with improved surface characteristics
JP3994139B2 (ja) * 2002-03-15 2007-10-17 コバレントマテリアル株式会社 シリコンウエハのグローン・イン欠陥密度の評価方法
JP4380141B2 (ja) 2002-10-31 2009-12-09 信越半導体株式会社 シリコンウェーハの評価方法
JP4385978B2 (ja) * 2005-03-28 2009-12-16 信越半導体株式会社 半導体ウエーハの評価方法及び製造方法
JP5212472B2 (ja) * 2008-06-10 2013-06-19 株式会社Sumco シリコンエピタキシャルウェーハの製造方法
JP4358889B1 (ja) * 2008-06-27 2009-11-04 日本エレクトロセンサリデバイス株式会社 ウエーハ欠陥検査装置
JP5440564B2 (ja) * 2011-07-14 2014-03-12 信越半導体株式会社 結晶欠陥の検出方法
JP5799935B2 (ja) * 2012-11-13 2015-10-28 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
US9777394B2 (en) * 2013-02-22 2017-10-03 Shin-Etsu Handotai Co., Ltd. Method of producing silicon single crystal ingot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142544A (ja) * 2001-11-07 2003-05-16 Toshiba Ceramics Co Ltd シリコンウエハの微小欠陥の評価方法
JP2006112871A (ja) * 2004-10-13 2006-04-27 Sumco Corp 半導体基板の検査方法及びその検査装置
JP2008222505A (ja) * 2007-03-14 2008-09-25 Shin Etsu Handotai Co Ltd シリコン単結晶ウエーハの評価方法およびシリコン単結晶の製造方法
JP2009021572A (ja) * 2007-06-12 2009-01-29 Shin Etsu Handotai Co Ltd 欠陥検出方法及び欠陥検出システム並びに発光素子の製造方法
JP2015501533A (ja) * 2011-10-14 2015-01-15 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッドMemc Electronic Materials,Incorporated 結晶関連欠陥の位置を示す方法

Also Published As

Publication number Publication date
TWI714654B (zh) 2021-01-01
DE112016004752T5 (de) 2018-07-05
CN108140593B (zh) 2022-03-22
CN108140593A (zh) 2018-06-08
KR102639121B1 (ko) 2024-02-22
US20180312994A1 (en) 2018-11-01
JP6402703B2 (ja) 2018-10-10
JP2017092400A (ja) 2017-05-25
US10513798B2 (en) 2019-12-24
KR20180083326A (ko) 2018-07-20
TW201729316A (zh) 2017-08-16
SG11201803206YA (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6402703B2 (ja) 欠陥領域の判定方法
KR102373801B1 (ko) 실리콘 웨이퍼의 품질 평가 방법, 실리콘 웨이퍼의 제조 방법 및 실리콘 웨이퍼
JP6388058B2 (ja) シリコンウェーハの製造方法
JP2006208314A (ja) シリコン単結晶ウエーハの結晶欠陥の評価方法
KR20070048183A (ko) 실리콘 단결정의 품질평가방법
CN111624460A (zh) 一种单晶硅缺陷分布区域的检测方法
JP5467923B2 (ja) 金属汚染評価用シリコンウエーハの製造方法
JP6558308B2 (ja) シリコンウェーハの高感度欠陥評価方法およびシリコン単結晶の製造方法
JP6731161B2 (ja) シリコン単結晶の欠陥領域特定方法
JP2006108151A (ja) シリコンエピタキシャルウェーハの製造方法
KR102661941B1 (ko) 웨이퍼의 결함 영역의 평가 방법
KR20200094976A (ko) 웨이퍼의 평가 방법
JP6536502B2 (ja) パーティクルカウンタ校正用ウェーハの作製方法
JP3651440B2 (ja) シリコンウェーハの評価方法及びそのエッチング液
JP5521775B2 (ja) 単結晶シリコンウェーハの評価方法
JP2000208578A (ja) シリコンウェ―ハの評価方法及びシリコンウェ―ハ
JP3784300B2 (ja) シリコンウエハの微小欠陥の評価方法
JP2004119446A (ja) アニールウエーハの製造方法及びアニールウエーハ
KR101238840B1 (ko) 웨이퍼의 결함 검출 방법
JP2008162832A (ja) ウェーハの検査方法とウェーハの検査装置
JP2000306968A (ja) モニタ用兼校正用の標準シリコンウェーハ
JP2017183471A (ja) 点欠陥領域の評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865907

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201803206Y

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 15770333

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187013186

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016004752

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865907

Country of ref document: EP

Kind code of ref document: A1