WO2017072871A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2017072871A1
WO2017072871A1 PCT/JP2015/080324 JP2015080324W WO2017072871A1 WO 2017072871 A1 WO2017072871 A1 WO 2017072871A1 JP 2015080324 W JP2015080324 W JP 2015080324W WO 2017072871 A1 WO2017072871 A1 WO 2017072871A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
insulating layer
semiconductor device
semiconductor
main surface
Prior art date
Application number
PCT/JP2015/080324
Other languages
English (en)
French (fr)
Inventor
拓郎 巣山
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201580084162.0A priority Critical patent/CN108352321B/zh
Priority to JP2017547245A priority patent/JP6713481B2/ja
Priority to PCT/JP2015/080324 priority patent/WO2017072871A1/ja
Priority to EP15907235.4A priority patent/EP3370252A4/en
Publication of WO2017072871A1 publication Critical patent/WO2017072871A1/ja
Priority to US15/959,343 priority patent/US10665538B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics

Definitions

  • a semiconductor device having a semiconductor circuit formed on a first main surface and a via having an opening on a second main surface, and extending from the contact portion at the bottom of the via to the second main surface And a rewiring.
  • Japanese Patent Laid-Open Publication No. 2010-205921 discloses a semiconductor device in which the wiring of the first main surface on which the semiconductor circuit of the semiconductor element is formed is extended to the second main surface through the rewiring. .
  • the rewiring is electrically connected by being in contact with the back surface of the wiring of the first main surface exposed at the bottom surface of the via having an opening in the second main surface.
  • the contact portion at the bottom of the via for the rewiring has unevenness.
  • the contact portion is in contact with only the upper surface of the first main surface wiring. That is, the contact between the contact portion in the via and the wiring of the first main surface is a surface contact between the flat surface and the flat surface. For this reason, there is a possibility that the contact portion may not have sufficient bonding strength, or the contact resistance may increase, and the reliability may be lowered.
  • Japanese Patent Application Laid-Open No. 5-09730 discloses a method of manufacturing a semiconductor device in which the contact resistance in a via is reduced.
  • the polycrystalline silicon film having irregularities is disposed, and then the polycrystalline silicon film is made to be a metal silicide underlayer by ion implantation. That is, after the base film having the unevenness is provided, the insulating layer in which the via is formed is provided.
  • the method of manufacturing the semiconductor device can not be applied to the contact portion of the through wiring penetrating the semiconductor element.
  • the contact between the contact portion in the via and the wiring on the first main surface was a surface contact between the surface and the surface even if the contact surface had irregularities.
  • An embodiment of the present invention aims to provide a semiconductor device having high connection reliability of the contact portion of the rewiring extended from the contact portion of the bottom surface of the via of the semiconductor element to the second main surface. .
  • a semiconductor device includes a semiconductor element having a semiconductor circuit formed on a first main surface and a via having an opening on a second main surface facing the first main surface, and the semiconductor element A first wiring connected to the semiconductor circuit which is disposed on the first main surface of the semiconductor substrate and which constitutes a part of the bottom surface of the via, and a first insulating layer which covers the first wiring; And a rewiring extending from the contact portion in contact with the first wiring on the bottom surface of the via to the second main surface through the inside of the via, and A first through hole is formed, and the contact portion is in contact with a plurality of surfaces of the first wiring.
  • FIG. 3 is a cross-sectional view of the semiconductor device of the first embodiment taken along the line III-III in FIG. 1;
  • FIG. 7 is a top view of the vicinity of a via of a first wiring of the semiconductor device of the first embodiment;
  • FIG. 5 is a cross-sectional view of the semiconductor device of the first embodiment taken along the line VV of FIG. 4;
  • FIG. 5 is a cross-sectional view of the semiconductor device of the first embodiment taken along the line VV of FIG. 4;
  • FIG. 5 is a cross-sectional view of the semiconductor device of the first embodiment taken along the line VV of FIG. 4;
  • FIG. 5 is a cross-sectional view of the semiconductor device of the first embodiment taken along the line VV of FIG.
  • FIG. 4 It is a top view of via vicinity of 1st wiring of the semiconductor device of 2nd Embodiment.
  • FIG. 7 is a cross-sectional view of the semiconductor device of the second embodiment along the line VII-VII in FIG. 6;
  • FIG. 21 is a top view of the vicinity of a via of a first wiring of a semiconductor device of Modification Example 1 of the second embodiment;
  • FIG. 26 is a top view of the vicinity of a via of a first wiring of a semiconductor device of Modification 2 of the second embodiment; It is sectional drawing of the semiconductor device of 3rd Embodiment.
  • It is a top view of via vicinity of 1st wiring of the semiconductor device of 4th Embodiment.
  • FIG. 12 is a cross-sectional view of the semiconductor device of the fourth embodiment taken along the line XII-XII in FIG. It is an exploded view for demonstrating the laminated structure of the conductor layer of the semiconductor device of 4th Embodiment.
  • the semiconductor device 1 includes a semiconductor element 10 having a first main surface 10SA and a second main surface 10SB facing the first main surface 10SA.
  • a first wiring 21A disposed on the first main surface 10SA of the semiconductor element 10, a first insulating layer 22A covering the first wiring 21A, and a second insulating film extended to the second main surface 10SB It is a chip size package type provided with the wiring 30.
  • a semiconductor circuit 11 is formed on the first main surface 10SA of the semiconductor element 10.
  • the semiconductor device 1 of the present embodiment is an imaging device, and the semiconductor circuit 11 is a light receiving circuit such as a CCD or a CMOS light receiving circuit.
  • the first major surface 10SA of the semiconductor element 10 is covered with an insulating layer 15 made of an oxide such as silicon oxide.
  • the semiconductor circuit 11 is electrically connected to the plurality of first wires 21 ⁇ / b> A disposed on the insulating layer 15.
  • the first wiring 21A transmits the drive power and the drive signal to the semiconductor circuit 11, and transmits the output signal from the semiconductor circuit 11.
  • the direction of moving away from the first main surface (XY plane) 10SA is the downward direction in the figure, but the order of manufacturing steps Along the "upward direction".
  • the first insulating layer 22A is disposed “above” the plurality of first wires 21A after the plurality of first wires 21A are disposed.
  • the plurality of first wires 21A are covered with the first insulating layer 22A. That is, on the first major surface 10SA of the semiconductor element 10, the multilayer film 20 including the first wiring 21A and the first insulating layer 22A is disposed.
  • a plurality of vias H10 having openings are formed in the second major surface 10SB.
  • the via H10 is a through hole penetrating the semiconductor element 10 made of silicon, and the bottom surface is a TSV (Trough Silicon Via) closed by the multilayer film 20 disposed on the first major surface 10SA. is there.
  • the end of the first wiring 21A is a substantially rectangular connection electrode.
  • the back surface of the multilayer film 20 disposed on the first major surface 10SA constitutes the bottom surface of the via H10 formed on the second major surface 10SB.
  • the wall surfaces and the like of the vias H10 are covered with an insulating layer 31 made of, for example, silicon oxide or the like formed of TEOS.
  • the second main surface 10SB of the semiconductor element 10 extends from the contact portion 30A, which is in contact with the first wiring 21A, to the top of the second main surface 10SB on the bottom surface of each via H10.
  • the plurality of rewirings 30 are disposed.
  • An electrode pad 35 is disposed at the end of the rewiring 30.
  • a through hole H21A having a substantially square sectional shape is formed in the connection electrode of the first wiring 21A.
  • the through hole H21A may be referred to as a first through hole.
  • the bottom surface of the contact portion 30A of the rewiring 30 has unevenness. That is, the convex portion of the contact portion 30A is in contact with the first insulating layer 22A, and the concave portion (flat portion) is in contact with the first wiring 21A. Furthermore, the contact portion 30A is in contact with not only the back surface of the first wiring 21A but also the side surface of the first wiring 21A which is the wall surface of the through hole H21A. That is, the contact portion 30A is in contact with the plurality of surfaces of the first wiring 21A.
  • connection reliability of the contact portion 30A of the semiconductor device 1 is high.
  • the plurality of light receiving units 11 are formed on the first main surface 10SA of the silicon wafer by a known semiconductor manufacturing technology. Then, an insulating layer 15 made of, for example, silicon oxide or the like is provided on the first major surface 10SA. Next, a plurality of first wires 21A connected to the light receiving unit 11 are disposed on the insulating layer 15.
  • the insulating layer 15 may be disposed only between at least the first wiring 21A and the base (silicon).
  • the insulating layer 15 is made of a transparent material, the insulating layer 15 preferably covers the light receiving portion 11 in order to protect the light receiving portion 11.
  • the plurality of first wirings 21A may be formed through a mask disposed by photolithography. It manufactures by patterning by an etching process.
  • through holes H21A are formed at predetermined positions of the connection electrodes at the ends. That is, the through holes H21A are formed by the etching process.
  • the through holes H21A may be formed by laser processing or the like after the first wires 21A are provided.
  • the first insulating layer 22A is disposed on the first major surface 10SA so as to cover the plurality of first wires 21A.
  • the first insulating layer 22A preferably uses, for example, a material having a dielectric constant lower than that of silicon oxide, so-called low-k material, in order to reduce parasitic capacitance.
  • Porous SiOC is a methyl-containing polysiloxane mainly containing a large amount of Si—CH 3 groups, and is porous because a gap is generated in the molecular structure due to the presence of CH 3, and the dielectric constant k is low.
  • a porous material based on SiOF or SiOCH As a material of the first insulating layer 22A, a porous material based on SiOF or SiOCH, a porous silica material such as Nano Clustering Silica film, an H-containing polysiloxane called porous HSQ, or a porous material of organic polymer or organic polymer, etc. are also available.
  • the first insulating layer 22A may be disposed to cover at least the plurality of first wirings 21A.
  • the first insulating layer 22A is made of a transparent material, it is preferable that the first insulating layer 22A also cover the light receiving portion 11 for protection of the light receiving portion 11.
  • an etching mask having an opening corresponding to the opening of the via H10 is provided on the second main surface 10SB of the silicon wafer. Etching from the second main surface 10SB side is performed through the mask. At this time, since the insulating layer 15 disposed on the first major surface 10SA serves as an etching stop layer, the via H10 penetrating the silicon wafer is formed. When the insulating layer 15 is removed, the back surface of the multilayer film 20 constitutes the bottom surface of the via H10.
  • the via H10 whose wall surface is substantially perpendicular to the main surface is formed by dry etching such as ICP-RIE.
  • the via H10 may have a tapered bottom whose bottom is smaller than the opening.
  • an alkali solution such as KOH or TMAH using a single crystal silicon (100) wafer
  • the etching rate in the ⁇ 100> direction is relatively faster than the etching rate in the ⁇ 111> direction. Because of the directional etching, a tapered via H10 is formed.
  • the insulating layer 31 is disposed on the inner wall of the via H10 and the second major surface 10SB from the second major surface 10SB side, for example, by the CVD method. Note that a thermally oxidized silicon film may be formed on the second major surface 10SB.
  • the rewiring 30 is provided.
  • the insulating layer 31 or a part of the insulating layer 15 of the first major surface 10SA may be left unetched in the outer peripheral portion of the bottom surface of the via H10.
  • the insulating layer 31 shown in FIG. 5A is not in contact with the first wiring 21A, the insulating layer 31 may be in contact with the first wiring 21A.
  • the insulating layer 31 shown in FIG. 5B is disposed after the insulating layer 15 is removed after the formation of the via H10, the insulating layer 31 is in contact with the first wiring 21A.
  • the insulating layer 31 on the bottom surface of the via H10 is removed, and the first wiring 21A and the first insulating layer 22A are exposed, and then the rewiring 30 is disposed.
  • the insulating layer 31 shown in FIG. 5C is disposed after the formation of the via H10.
  • the insulating layer 15 is not etched when the via H10 is formed. However, in practice, the insulating layer 15 is also etched slightly. Then, after the insulating layer 31 is provided, the insulating layer 31 and the insulating layer 15 on the bottom of the via H10 are partially removed by pattern etching, and the first wiring 21A and the first insulating layer 22A are exposed.
  • FIG. 4 is a top view of the vicinity of the via H10 of the semiconductor device 1 before the rewiring 30 is provided.
  • the via H10 penetrating the silicon wafer is formed, the first wiring 21A and the first insulating layer 22A are respectively formed on the bottom of the via H10 and the bottom of the through hole H21A. Some of the are exposed.
  • the rewiring 30 is made of, for example, a copper film which is disposed by pattern plating after the underlying conductive film is disposed by CVD.
  • the rewiring 30 is extended from the contact portion 30A on the bottom surface of the via H10 to the top of the second major surface 10SB via the wall surface of the via H10. Then, at the end portion of each rewiring 30, an electrode pad 35 for external connection made of, for example, gold or the like is disposed.
  • the inside of the via H10 may be filled with a resin material or a conductive material.
  • the inside of the via H10 may be filled with copper at the same time as the rewiring 30 made of copper is provided by the so-called via fill plating method.
  • a silicon wafer including a plurality of semiconductor devices is cut and separated into semiconductor devices.
  • the through holes H21A of the first wires 21A may be formed after the vias H10 are formed. In order to form the through holes H21A in the first wiring 21A exposed at the bottom of the via H10, etching using a mask by photolithography, laser processing, or the like is used.
  • the semiconductor device 1A of the second embodiment will be described below with reference to FIGS. 6 and 7. Note that, since the semiconductor device 1A is similar to the semiconductor device 1, the same components are denoted by the same reference numerals and descriptions thereof will be omitted.
  • the multilayer film 20A includes a first wiring 21A in which a plurality of slit-shaped through holes H21A are arranged in a row, and a first insulating layer 22A covering the first wiring 21A.
  • the semiconductor device 1A has the effect of the semiconductor device 1 and further has a plurality of irregularities on the bottom of the contact portion 30A, and the contact portion 30A has a wider area than the side surface of the first wiring 21A (the wall surface of the through hole H21A).
  • the connection reliability is higher because the
  • the semiconductor devices 1 B and 1 C have the same effect as the semiconductor device 1. That is, the number of through holes H21A formed in the first wiring 21A is not particularly limited.
  • the cross-sectional shape of the through hole H21A may be circular or the like.
  • the semiconductor device 1D according to the third embodiment will be described below with reference to FIG. Since the semiconductor device 1D of this embodiment is similar to the semiconductor device 1A and the like, the same components are denoted by the same reference numerals and the description thereof will be omitted.
  • the semiconductor device 1D further includes the semiconductor circuit 11 disposed on the first insulating layer 22A, and a plurality of second wires 21B connected to the respective first wires 21A. That is, the multilayer film 20D of the first major surface 10SA includes the first wiring 21A, the first insulating layer 22A, and the second wiring 21B.
  • the plurality of second wires 21B are made of, for example, copper in the same manner as the first wires 21A.
  • the first wiring 21A may be indirectly connected to the semiconductor circuit 11 through the second wiring 21B.
  • the through wiring penetrating the first insulating layer 22A is simultaneously provided, for example, when the second wiring 21B is provided by a damascene plating method.
  • the second wiring 21B may be directly connected to the semiconductor circuit 11, and may be connected indirectly via the second wiring 21B.
  • the through hole H22A penetrates the first wiring 21A and the first insulating layer 22A. For this reason, the contact portion 30A of the rewiring 30 is in contact with the second wiring 21B.
  • the semiconductor device 1D has the effect of the semiconductor device 1, and further, the length of the convex portion (the depth of the through hole H22A) of the contact portion 30A is long, and the contact portion 30A is in contact with the second wiring 21B.
  • the connection reliability is higher.
  • a through hole H21A penetrating the first wiring 21A and a through hole H22A penetrating the first insulating layer 22A having an outer diameter smaller than the through hole H21A are formed. It may be
  • the semiconductor device 1E of the fourth embodiment will be described below with reference to FIGS. 11 to 13.
  • the semiconductor device 1E of the present embodiment is similar to the semiconductor device 1A and the like, the same components are denoted by the same reference numerals and the description thereof will be omitted.
  • the semiconductor device 1E further includes a second insulating layer 22B covering the second wiring 21B. That is, the multilayer film 20E includes the first wiring 21A, the first insulating layer 22A, the second wiring 21B, and the second insulating layer 22B.
  • the second insulating layer 22B is preferably made of a low-k material, like the first insulating layer 22A.
  • a plurality of slit-like second through holes H21B are formed in the connection electrode of the second wiring 21B of the multilayer film 20E.
  • the longitudinal direction of the second through hole H21B is orthogonal to the longitudinal direction of the through hole H22A of the first wiring 21A.
  • the through hole H22A and the second through hole H21B are extended to the outside of the bottom surface of the via H10.
  • the through holes H22A and the second through holes H21B also have an effect of reducing the stress of the multilayer film 20E.
  • the semiconductor device 1E has the effect of the semiconductor device 1D, and the stress of the multilayer film 20E is further reduced, so the connection reliability is higher.
  • a plurality of (wiring layers / insulating layers) may be further disposed on the second insulating layer 22B as a multilayer film. That is, a multilayer film including a plurality of (wiring layer / insulating layer) including the first wiring (wiring layer) / first insulating layer may be provided.
  • the insulating layer is preferably made of a low-k material, and the wiring is preferably made of copper. Further, it is preferable that the wirings be connected by a through wiring that penetrates the insulating layer.
  • the rewiring 30 may be filled in the through holes penetrating the plurality of wiring layers of the multilayer film.
  • the reliability of the interlayer connection is improved because the through holes are filled with a metal having high mechanical strength, even if the insulating layer is made of a so-called weak low-k material having low mechanical strength.
  • slit-like through holes in a direction orthogonal to the slit-like through holes of the adjacent wires may be formed in the connection electrodes of the respective wires.
  • at least one of the wirings may be connected to the semiconductor circuit through a wiring directly connected to the semiconductor circuit.
  • the semiconductor device of the present invention is not limited to the imaging device.
  • semiconductor device 10 semiconductor element 11: semiconductor circuit (light receiving portion) 15: Insulating layer 20: Multilayer film 21A: First wiring 21B: Second wiring 22A: First insulating layer 22B: Second insulating layer 30 Rewiring 30A: contact portion 31: insulating layer 35: electrode pad H10: via H21A: first through hole H21B: second through hole

Abstract

半導体装置1は、第1の主面10SAに半導体回路11が形成され、第2の主面10SBに開口があるビアH10を有する半導体素子10と、前記半導体素子10の前記第1の主面10SAに配設され、前記ビアH10の底面に一部が露出している、前記半導体回路11と接続された第1の配線21Aと、前記第1の配線21Aを覆う第1の絶縁層22Aと、前記ビアH10の底面において前記第1の配線21Aと接しているコンタクト部30Aから、前記ビアH10の内部を介して、前記第2の主面10SB上まで延設された再配線30と、を具備し、前記第1の配線21Aに第1の貫通孔H21Aが形成されており、前記コンタクト部30Aが前記第1の配線21Aの複数の面と接している。

Description

半導体装置
 本発明は、第1の主面に半導体回路が形成されており第2の主面に開口のあるビアを有する半導体素子と、前記ビアの底面のコンタクト部から第2の主面上まで延設された再配線と、を具備する半導体装置に関する。
 近年、半導体装置の小型化および薄型化等の要求が高まっている。そこで、半導体素子を貫通する貫通配線を有するチップサイズパッケージ(CSP)型の半導体装置が開発されている。日本国特開2010-205921公報には、半導体素子の半導体回路が形成された第1の主面の配線を、再配線を介して第2の主面まで延設した半導体装置が開示されている。再配線は、第2の主面に開口を有するビアの底面に露出している第1の主面の配線の裏面と接することで電気的に接続されている。
 上記半導体装置では、ビアの内面を覆っている絶縁層の一部がビアの底面にも残存している。このため再配線のビア底面のコンタクト部には凹凸がある。しかし、コンタクト部は、第1の主面の配線とは、その上面だけと接している。すなわち、ビアにおけるコンタクト部と第1の主面の配線との接触は、平坦面と平坦面との面接触である。このため、コンタクト部は接合強度が十分ではなかったり、コンタクト抵抗が増加したりして、信頼性が低下するおそれがあった。
 なお、日本国特開平5-09730号公報には、ビアにおけるコンタクト抵抗を低減した半導体装置の製造方法が開示されている。上記半導体装置の製造方法では、コンタクト部分の表面積を増加するために、凹凸のある多結晶シリコン膜を配設した後、イオン打ち込みにより、多結晶シリコン膜を金属シリサイド下地層とする。すなわち、凹凸のある下地膜を配設した後に、ビアが形成される絶縁層が配設される。
 このため、上記半導体装置の製造方法を、半導体素子を貫通する貫通配線のコンタクト部に適用することはできない。また、ビアにおけるコンタクト部と第1の主面の配線との接触は、接触面に凹凸があっても、面と面との面接触であった。
特開2010-205921号公報 特開平5-09730号公報
 本発明の実施形態は、半導体素子のビアの底面のコンタクト部から第2の主面上まで延設された再配線の前記コンタクト部の接続信頼性の高い半導体装置を提供することを目的とする。
 本発明の実施形態の半導体装置は、第1の主面に半導体回路が形成され、前記第1の主面と対向する第2の主面に開口があるビアを有する半導体素子と、前記半導体素子の前記第1の主面に配設され前記ビアの底面の一部を構成している前記半導体回路と接続された第1の配線と、前記第1の配線を覆う第1の絶縁層と、前記ビアの底面において前記第1の配線と接しているコンタクト部から前記ビアの内部を介して前記第2の主面上まで延設された再配線と、を具備し、前記第1の配線に第1の貫通孔が形成されており前記コンタクト部が前記第1の配線の複数の面と接している。
 本発明の実施形態によれば、半導体素子のビアの底面のコンタクト部から第2の主面上まで延設された再配線の前記コンタクト部の接続信頼性の高い半導体装置を提供できる。
第1実施形態の半導体装置の上面図である。 第1実施形態の半導体装置の下面図である。 第1実施形態の半導体装置の図1のIII-III線に沿った断面図である。 第1実施形態の半導体装置の第1の配線のビア付近の上面図である。 第1実施形態の半導体装置の図4のV-V線に沿った断面図である。 第1実施形態の半導体装置の図4のV-V線に沿った断面図である。 第1実施形態の半導体装置の図4のV-V線に沿った断面図である。 第2実施形態の半導体装置の第1の配線のビア付近の上面図である。 第2実施形態の半導体装置の図6のVII-VII線に沿った断面図である。 第2実施形態の変形例1の半導体装置の第1の配線のビア付近の上面図である。 第2実施形態の変形例2の半導体装置の第1の配線のビア付近の上面図である。 第3実施形態の半導体装置の断面図である。 第4実施形態の半導体装置の第1の配線のビア付近の上面図である。 第4実施形態の半導体装置の図11のXII-XII線に沿った断面図である。 第4実施形態の半導体装置の導体層の積層構造を説明するための分解図である。
<第1実施形態>
 以下、図面を参照して本発明の第1実施形態の半導体装置1について説明する。なお、以下の説明において、各実施形態に基づく図面は、模式的なものであり、各部分の厚さと幅との関係、夫々の部分の厚さの比率および相対角度などは現実のものとは異なることに留意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、一部の構成要素の図示を省略する場合がある。
 図1から図3に示すように、本実施形態の半導体装置1は、第1の主面10SAと第1の主面10SAと対向している第2の主面10SBとを有する半導体素子10と、半導体素子10の第1の主面10SAに配設された第1の配線21Aと、第1の配線21Aを覆う第1の絶縁層22Aと、第2の主面10SBまで延設された再配線30と、を具備するチップサイズパッケージ型である。
 半導体素子10の第1の主面10SAには半導体回路11が形成されている。本実施形態の半導体装置1は撮像装置で、半導体回路11が、CCDまたはCMOS受光回路等の受光回路である。
 半導体素子10の第1の主面10SAは酸化シリコン等の酸化物からなる絶縁層15で覆われている。半導体回路11は、絶縁層15の上に配設された複数の第1の配線21Aと電気的に接続されている。第1の配線21Aは、半導体回路11に駆動電力および駆動信号を伝送するとともに、半導体回路11からの出力信号を伝送する。
 なお、本発明の説明では、図3等においては、例えば、第1の主面(XY平面)10SAから遠ざかる方向(Z軸増加方向)は、図中の下方向であるが、製造工程の順序に沿って「上方向」という。例えば、後述するように、第1の絶縁層22Aは複数の第1の配線21Aを配設後に複数の第1の配線21Aの「上」に配設される。
 複数の第1の配線21Aは、第1の絶縁層22Aで覆われている。すなわち、半導体素子10の第1の主面10SAには、第1の配線21Aと第1の絶縁層22Aとからなる多層膜20が配設されている。
 半導体素子10には、第2の主面10SBに、開口がある複数のビアH10が形成されている。ビアH10は、シリコンからなる半導体素子10を貫通している貫通孔であるが、底面は第1の主面10SAに配設された多層膜20により塞がれているTSV(Trough Silicon Via)である。
 第1の配線21Aの端部は、略矩形の接続電極となっている。そして、第1の主面10SAに配設された多層膜20の裏面が、第2の主面10SBに形成されたビアH10の底面を構成している。なお、ビアH10の壁面等は、例えば、TEOSから形成された酸化シリコン等からなる絶縁層31で覆われている。
 そして、半導体素子10の第2の主面10SBには、それぞれのビアH10の底面において、それぞれが第1の配線21Aと接しているコンタクト部30Aから、第2の主面10SBの上まで延設された複数の再配線30が配設されている。再配線30の端部には電極パッド35が配設されている。
 図4および図5Aに示すように、第1の配線21Aの接続電極には、断面形状が略正方形の貫通孔H21Aが形成されている。なお、説明の都合上、貫通孔H21Aを第1の貫通孔という場合がある。
 貫通孔H21Aがあるため、再配線30のコンタクト部30Aの底面には凹凸がある。すなわち、コンタクト部30Aの凸部は第1の絶縁層22Aと接しており、凹部(平坦部)は、第1の配線21Aと接している。さらに、コンタクト部30Aは、第1の配線21Aの裏面だけでなく、貫通孔H21Aの壁面である第1の配線21Aの側面とも接している。すなわち、コンタクト部30Aは第1の配線21Aの複数の面と接している。
 このため、半導体装置1のコンタクト部30Aの接続信頼性は高い。
 次に、半導体装置1の製造方法について簡単に説明する。半導体装置1は、ウエハ状態で多数個が同時に作製され個片化される。
 例えば、シリコンウエハの第1の主面10SAに複数の受光部11が公知の半導体製造技術により形成される。そして、第1の主面10SAに例えば酸化シリコン等からなる絶縁層15が配設される。次に、絶縁層15の上に受光部11と接続された複数の第1の配線21Aが配設される。なお、絶縁層15は、少なくとも第1の配線21Aと基体(シリコン)との間だけに配設されていればよい。また、絶縁層15が透明材料からなる場合には、受光部11を保護するために、絶縁層15が受光部11を覆っていることが好ましい。
 複数の第1の配線21Aは、例えば、スパッタ法により第1の主面10SAの全体に、銅等の低抵抗材料からなる膜を成膜後に、フォトリソグラフィ法により配設されたマスクを介してエッチング処理によりパターニングすることにより作製される。
 半導体装置1では、第1の配線21Aのパターニングのときに、同時に、端部の接続電極の所定位置に貫通孔H21Aが形成される。すなわち、貫通孔H21Aはエッチング処理により形成される。なお、貫通孔H21Aは第1の配線21Aを配設後に、レーザー加工等により形成されてもよい。
 次に第1の主面10SAに、複数の第1の配線21Aを覆うように、第1の絶縁層22Aが配設される。第1の絶縁層22Aは、寄生容量を小さくするために、例えば、酸化シリコンよりも低誘電率の材料、いわゆるLow-k材料を用いることが好ましい。半導体装置1では、第1の絶縁層22Aは、ポーラスSiOC(k=2.7)である。ポーラスSiOCは、主にSi-CH3基を多く含むメチル含有ポリシロキサンであり、CH3の存在により分子構造内に間隙を生じるために多孔質であり、比誘電率kが低い。
 第1の絶縁層22Aの材料としては、SiOF若しくはSiOCHベースのポーラス材料、Nano Clustering Silica膜などのポーラスシリカ系材料、ポーラスHSQと呼ばれるH含有ポリシロキサン、又は、有機ポリマー若しくは有機ポリマーのポーラス材料等も使用可能である。
 すでに説明したように、第1の絶縁層22Aは、少なくとも複数の第1の配線21Aを覆うように配設されていればよい。また、第1の絶縁層22Aが透明材料からなる場合には、第1の絶縁層22Aは、受光部11の保護のため、受光部11も覆っていることが好ましい。
 次に、シリコンウエハの第2の主面10SBに、ビアH10の開口に相当する開口のあるエッチングマスクが配設される。マスクを介して、第2の主面10SB側からのエッチングが行われる。このとき、第1の主面10SAに配設された絶縁層15がエッチングストップ層となるため、シリコンウエハを貫通するビアH10が形成される。絶縁層15が除去されると、多層膜20の裏面がビアH10の底面を構成している。
 例えば、ICP-RIE等のドライエッチング処理により、壁面が主面に対して略垂直なビアH10が形成される。なお、ビアH10は、底面が開口よりも小さなテーパ形状であってもよい。例えば、単結晶シリコン(100)ウエハを用い、KOHまたはTMAH等のアルカリ溶液でウエットエッチング処理を行うことにより、<100>方向のエッチング速度が<111>方向のエッチング速度より相対的に早い、異方性エッチングとなるため、テーパ形状のビアH10が形成される。
 そして、第2の主面10SB側から、ビアH10の内壁および第2の主面10SBに絶縁層31が、例えば、CVD法により配設される。なお、第2の主面10SBには、熱酸化シリコン膜が形成されていてもよい。
 ビアH10の底面の絶縁層31が除去された後に、再配線30が配設される。なお、ビアH10の底面の外周部に絶縁層31または第1の主面10SAの絶縁層15の一部をエッチングしないで残しておいてもよい。
 なお、図5Aに示した絶縁層31は、第1の配線21Aと接触していないが、絶縁層31が第1の配線21Aと接触していてもよい。例えば、図5Bに示す絶縁層31は、ビアH10の形成後に絶縁層15が除去されてから配設されているため、絶縁層31は、第1の配線21Aと接触している。ビアH10の底面の絶縁層31が除去され、第1の配線21Aと第1の絶縁層22Aとが露出してから再配線30が配設される。
 また、図5Cに示す絶縁層31は、ビアH10の形成後に配設されている。なお、図5CではビアH10の形成時に絶縁層15がエッチングされていないように図示している。しかし、実際には、絶縁層15も若干エッチングされる。そして、絶縁層31を配設後に、ビアH10の底面の絶縁層31および絶縁層15がパターンエッチングにより部分的に除去され、第1の配線21Aおよび第1の絶縁層22Aが露出する。
 ここで、図4は、再配線30を配設する前の半導体装置1のビアH10の周辺の上面図である。図4に示すように、シリコンウエハを貫通するビアH10が形成されると、ビアH10の底面には、貫通孔H21Aの底面には、第1の配線21Aおよび第1の絶縁層22Aの、それぞれの一部が露出している。
 再配線30は、例えば、CVD法により下地導電膜を配設後にパターンめっき法により配設される銅膜からなる。
 再配線30は、ビアH10の底面のコンタクト部30Aから、ビアH10の壁面を介して、第2の主面10SBの上まで延設されている。そして、それぞれの再配線30の端部には、例えば金等からなる外部接続のための電極パッド35が配設される。
 なお、ビアH10の内部は、樹脂材料または導電材料で充填されていてもよい。例えば、いわゆるビアフィルめっき法により、銅からなる再配線30を配設するときに同時にビアH10の内部が銅で充填されていてもよい。
 そして、複数の半導体装置を含むシリコンウエハが切断され、半導体装置に個片化される。
 なお、第1の配線21Aの貫通孔H21Aは、ビアH10を形成した後に形成してもよい。ビアH10の底面に露出した第1の配線21Aに貫通孔H21Aを形成するには、フォトリソグラフィ法によるマスクを用いたエッチング処理、または、レーザー加工等を用いる。
<第2実施形態>
 以下、図6および図7を用いて第2実施形態の半導体装置1Aについて説明する。なお、半導体装置1Aは半導体装置1と類似しているため、同じ構成要素には同じ符号を付し説明は省略する。
 半導体装置1Aでは、第1の配線21Aに複数の貫通孔(第1の貫通孔)H21Aが形成されている。貫通孔H21Aは細長いスリット状である。すなわち、多層膜20Aは複数のスリット状の貫通孔H21Aが列設されている第1の配線21Aと、第1の配線21Aを覆う第1の絶縁層22Aからなる。
 半導体装置1Aは、半導体装置1の効果を有し、さらにコンタクト部30Aの底面に複数の凹凸があり、コンタクト部30Aが第1の配線21Aの側面(貫通孔H21Aの壁面)と、より広い面積で接しているため、より接続信頼性が高い。
 <第2実施形態の変形例>
 図8に示す第2実施形態の変形例1の半導体装置1Bでは、第1の配線21Aには、4個の断面形状が矩形の貫通孔H21Aが形成されている。すなわち、貫通孔H10の底面の4箇所に第1の絶縁層22Aが露出している。
 また、図9に示す第2実施形態の変形例2の半導体装置1Cでは、第1の配線21Aには、20個の断面形状が円形の貫通孔H21Aが形成されている。
 半導体装置1B、1Cは、半導体装置1と同じ効果を有する。すなわち、第1の配線21Aに形成される貫通孔H21Aの数は特に制限はない。また、貫通孔H21Aの断面形状は、円形等であってもよい。
<第3実施形態>
 以下、図10を用いて第3実施形態の半導体装置1Dについて説明する。なお、本実施形態の半導体装置1Dは半導体装置1A等と類似しているため、同じ構成要素には同じ符号を付し説明は省略する。
 半導体装置1Dは、第1の絶縁層22Aの上に配設された、半導体回路11および、それぞれの第1の配線21Aと接続された複数の第2の配線21Bを更に具備する。すなわち、第1の主面10SAの多層膜20Dは、第1の配線21Aと第1の絶縁層22Aと第2の配線21Bとからなる。複数の第2の配線21Bは、第1の配線21Aと同じように、例えば銅からなる。
 なお、第2の配線21Bが半導体回路11と直接、接続されていて、第1の配線21Aが第1の絶縁層22Aを貫通する貫通配線を介して第2の配線21Bと接続されていてもよい。すなわち、第1の配線21Aは、第2の配線21Bを介して半導体回路11と間接的に接続されていてもよい。第1の絶縁層22Aを貫通する貫通配線は、例えば、ダマシンめっき法により第2の配線21Bを配設するときに、同時に配設される。もちろん、第2の配線21Bが、半導体回路11と直接、接続されており、かつ、第2の配線21Bを介して間接的に接続されていてもよい。
 そして、半導体装置1Dでは、貫通孔H22Aが、第1の配線21Aおよび第1の絶縁層22Aを貫通している。このため、再配線30のコンタクト部30Aが第2の配線21Bと接している。
 半導体装置1Dは、半導体装置1の効果を有し、さらに、コンタクト部30Aの凸部の長さ(貫通孔H22Aの深さ)が長く、かつ、コンタクト部30Aが第2の配線21Bと接しているため、より接続信頼性が高い。
 なお、図示しないが、第1の配線21Aを貫通している貫通孔H21Aと、貫通孔H21Aよりも外径の小さい、第1の絶縁層22Aを貫通している貫通孔H22Aと、が形成されていてもよい。
<第4実施形態>
 以下、図11~図13を用いて第4実施形態の半導体装置1Eについて説明する。なお、本実施形態の半導体装置1Eは半導体装置1A等と類似しているため、同じ構成要素には同じ符号を付し説明は省略する。
 半導体装置1Eは、第2の配線21Bを覆う第2の絶縁層22Bを更に具備する。すなわち、多層膜20Eは、第1の配線21Aと第1の絶縁層22Aと第2の配線21Bと第2の絶縁層22Bとからなる。第2の絶縁層22Bは、第1の絶縁層22Aと同じように、Low-k材料からなることが好ましい。
 そして、図13に示すように、多層膜20Eの第2の配線21Bの接続電極には、複数のスリット状の第2の貫通孔H21Bが形成されている。第2の貫通孔H21Bの長手方向は、第1の配線21Aの貫通孔H22Aの長手方向と直交している。
 なお、半導体装置1Eでは、貫通孔H22Aおよび第2の貫通孔H21Bは、ビアH10の底面の外側まで延設されている。貫通孔H22Aおよび第2の貫通孔H21Bは多層膜20Eの応力を低減する効果も有する。
 半導体装置1Eは、半導体装置1Dの効果を有し、さらに多層膜20Eの応力が低減されているため、より接続信頼性が高い。
 なお、本発明の半導体装置では、多層膜として、第2の絶縁層22Bの上に更に、複数の(配線層/絶縁層)が配設されていてもよい。すなわち、第1の配線(配線層)/第1の絶縁層を含む複数の(配線層/絶縁層)からなる多層膜が配設されていてもよい。なお、絶縁層は、Low-k材料からなり、配線は銅からなることが好ましい。また、配線間は絶縁層を貫通する貫通配線で接続されていることが好ましい。
 また、再配線30が、多層膜の複数の配線層を貫通する貫通孔を充填していてもよい。絶縁層が、機械的強度が弱い、いわゆる脆弱な、Low-k材料から構成されていても、貫通孔が機械的強度が強い金属で充填されるため、層間接続の信頼性が向上する。
 また、それぞれの配線の接続電極に、隣り合う配線のスリット状の貫通孔と直交する方向のスリット状の貫通孔が形成されていてもよい。また、少なくとも、いずれかの配線が、半導体回路と直接、接続されている配線を介して、半導体回路と接続されていてもよい。
 なお、以上の説明では、半導体装置として、半導体素子10が撮像素子である撮像装置の場合について説明したが、本発明の半導体装置は撮像装置に限られるものではない。
 本発明は、上述した実施形態および変形例等に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更、組み合わせおよび応用が可能である。
1、1A~1E・・・半導体装置
10・・・半導体素子
11・・・半導体回路(受光部)
15・・・絶縁層
20・・・多層膜
21A・・・第1の配線
21B・・・第2の配線
22A・・・第1の絶縁層
22B・・・第2の絶縁層
30・・・再配線
30A・・・コンタクト部
31・・・絶縁層
35・・・電極パッド
H10・・・ビア
H21A・・・第1の貫通孔
H21B・・・第2の貫通孔

Claims (6)

  1.  第1の主面に半導体回路が形成され、前記第1の主面と対向する第2の主面に開口があるビアを有する半導体素子と、
     前記半導体素子の前記第1の主面に配設され、前記ビアの底面の一部を構成している、前記半導体回路と接続された第1の配線と、
     前記第1の配線を覆う第1の絶縁層と、
     前記ビアの底面において前記第1の配線と接しているコンタクト部から、前記ビアの内部を介して、前記第2の主面上まで延設された再配線と、を具備する半導体装置であって、
     前記第1の配線に第1の貫通孔が形成されており、前記コンタクト部が、前記第1の配線の複数の面と接していることを特徴とする半導体装置。
  2.  前記第1の配線に複数の第1の貫通孔が形成されていることを特徴とする請求項1に記載の半導体装置。
  3.  前記複数の第1の貫通孔が、スリット状であることを特徴とする請求項2に記載の半導体装置。
  4.  前記第1の絶縁層の上に配設された、前記半導体回路および前記第1の配線と接続された第2の配線を更に具備し、
     前記第1の貫通孔が、前記第1の配線および前記第1の絶縁層を貫通しており、前記コンタクト部が前記第2の配線と接していることを特徴とする請求項3に記載の半導体装置。
  5.  前記第2の配線を覆う第2の絶縁層を更に具備し、
     前記第2の配線に、前記第1の配線の前記第1の貫通孔と直交する方向の複数のスリット状の第2の貫通孔が、形成されていることを特徴とする請求項4に記載の半導体装置。
  6.  前記半導体回路が、受光回路で、
     前記受光回路を覆っている前記第1の絶縁層が透明材料からなることを特徴とする請求項1から請求項5のいずれか1項に記載の半導体装置。
PCT/JP2015/080324 2015-10-28 2015-10-28 半導体装置 WO2017072871A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580084162.0A CN108352321B (zh) 2015-10-28 2015-10-28 半导体装置
JP2017547245A JP6713481B2 (ja) 2015-10-28 2015-10-28 半導体装置
PCT/JP2015/080324 WO2017072871A1 (ja) 2015-10-28 2015-10-28 半導体装置
EP15907235.4A EP3370252A4 (en) 2015-10-28 2015-10-28 SEMICONDUCTOR COMPONENT
US15/959,343 US10665538B2 (en) 2015-10-28 2018-04-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/080324 WO2017072871A1 (ja) 2015-10-28 2015-10-28 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/959,343 Continuation US10665538B2 (en) 2015-10-28 2018-04-23 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2017072871A1 true WO2017072871A1 (ja) 2017-05-04

Family

ID=58629961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080324 WO2017072871A1 (ja) 2015-10-28 2015-10-28 半導体装置

Country Status (5)

Country Link
US (1) US10665538B2 (ja)
EP (1) EP3370252A4 (ja)
JP (1) JP6713481B2 (ja)
CN (1) CN108352321B (ja)
WO (1) WO2017072871A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251433A (ja) * 1998-03-06 1999-09-17 Rohm Co Ltd 半導体装置およびその製法
JP2000091423A (ja) * 1998-09-16 2000-03-31 Nec Corp 多層配線半導体装置及びその製造方法
JP2011009645A (ja) * 2009-06-29 2011-01-13 Toshiba Corp 半導体装置及びその製造方法
JP2011119432A (ja) * 2009-12-03 2011-06-16 Seiko Epson Corp 半導体装置および半導体装置の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768622B2 (ja) 1991-07-02 1995-07-26 中外炉工業株式会社 連続式真空処理装置のシール装置
US7579681B2 (en) * 2002-06-11 2009-08-25 Micron Technology, Inc. Super high density module with integrated wafer level packages
JP2007305960A (ja) * 2006-04-14 2007-11-22 Sharp Corp 半導体装置およびその製造方法
JP4585561B2 (ja) * 2007-09-04 2010-11-24 株式会社東芝 半導体装置の製造方法
JP5537016B2 (ja) * 2008-10-27 2014-07-02 株式会社東芝 半導体装置および半導体装置の製造方法
JP2010205921A (ja) 2009-03-03 2010-09-16 Olympus Corp 半導体装置および半導体装置の製造方法
JP2012243953A (ja) * 2011-05-19 2012-12-10 Panasonic Corp 半導体装置及びその製造方法並びに積層型半導体装置
JP6157100B2 (ja) 2012-12-13 2017-07-05 ルネサスエレクトロニクス株式会社 半導体装置
US8933564B2 (en) * 2012-12-21 2015-01-13 Intel Corporation Landing structure for through-silicon via
US8841751B2 (en) * 2013-01-23 2014-09-23 Advanced Semiconductor Engineering, Inc. Through silicon vias for semiconductor devices and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251433A (ja) * 1998-03-06 1999-09-17 Rohm Co Ltd 半導体装置およびその製法
JP2000091423A (ja) * 1998-09-16 2000-03-31 Nec Corp 多層配線半導体装置及びその製造方法
JP2011009645A (ja) * 2009-06-29 2011-01-13 Toshiba Corp 半導体装置及びその製造方法
JP2011119432A (ja) * 2009-12-03 2011-06-16 Seiko Epson Corp 半導体装置および半導体装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3370252A4 *

Also Published As

Publication number Publication date
US10665538B2 (en) 2020-05-26
EP3370252A4 (en) 2019-08-28
CN108352321A (zh) 2018-07-31
CN108352321B (zh) 2022-09-16
JPWO2017072871A1 (ja) 2018-08-16
JP6713481B2 (ja) 2020-06-24
US20180308794A1 (en) 2018-10-25
EP3370252A1 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
US8564101B2 (en) Semiconductor apparatus having a through-hole interconnection
US8039963B2 (en) Semiconductor device having seal ring structure
US7812457B2 (en) Semiconductor device and semiconductor wafer and a method for manufacturing the same
JP4596001B2 (ja) 半導体装置の製造方法
JP4360881B2 (ja) 多層配線を含む半導体装置およびその製造方法
US10930619B2 (en) Multi-wafer bonding structure and bonding method
TWI551199B (zh) 具電性連接結構之基板及其製法
JP5393722B2 (ja) 半導体装置
KR20110050957A (ko) 반도체 소자의 관통 비아 콘택 및 그 형성 방법
TW201637138A (zh) 半導體元件的堆疊結構
WO2011151961A1 (ja) 半導体装置及びその製造方法
JP4280204B2 (ja) 半導体装置
JP2007012896A (ja) 回路基板、回路基板の製造方法および半導体装置
JP4913563B2 (ja) 半導体装置の製造方法
JP2005142351A (ja) 半導体装置およびその製造方法
JP2010093273A (ja) 半導体装置の製造方法
JP2015053371A (ja) 半導体装置およびその製造方法
WO2017072871A1 (ja) 半導体装置
JP5751131B2 (ja) 半導体装置及びその製造方法
US8536710B2 (en) Semiconductor device and manufacturing method thereof
JP5504311B2 (ja) 半導体装置およびその製造方法
KR101068305B1 (ko) 적층형 반도체 패키지 및 그 제조 방법
JP4770892B2 (ja) 半導体装置の製造方法
JP2009135421A (ja) 半導体装置およびその製造方法
JP2012129376A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547245

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015907235

Country of ref document: EP