WO2017068708A1 - 電池パックおよびその製造方法 - Google Patents

電池パックおよびその製造方法 Download PDF

Info

Publication number
WO2017068708A1
WO2017068708A1 PCT/JP2015/079903 JP2015079903W WO2017068708A1 WO 2017068708 A1 WO2017068708 A1 WO 2017068708A1 JP 2015079903 W JP2015079903 W JP 2015079903W WO 2017068708 A1 WO2017068708 A1 WO 2017068708A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
stacked
battery module
base member
battery pack
Prior art date
Application number
PCT/JP2015/079903
Other languages
English (en)
French (fr)
Inventor
昌之 中井
康宏 柳原
学 福岡
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to MYPI2018701492A priority Critical patent/MY169882A/en
Priority to CN201580084031.2A priority patent/CN108140761B/zh
Priority to EP15906714.9A priority patent/EP3367461B1/en
Priority to KR1020187012803A priority patent/KR101943285B1/ko
Priority to US15/767,896 priority patent/US10622603B2/en
Priority to PCT/JP2015/079903 priority patent/WO2017068708A1/ja
Priority to ES15906714T priority patent/ES2961966T3/es
Priority to JP2017546364A priority patent/JP6797819B2/ja
Publication of WO2017068708A1 publication Critical patent/WO2017068708A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack and a method of manufacturing the same.
  • a desired number of secondary batteries are stacked to form a battery module in order to enable navigation of the vehicle.
  • a predetermined number of battery modules may be collected to be a battery pack (also referred to as a battery pack).
  • a battery pack the battery module which laminated
  • a battery pack requires a large number of battery cells or battery modules to generate predetermined power. Therefore, a large number of wires are also required to extract power from the battery pack. As described above, since the battery pack requires a large number of wires, the layout of the battery pack may greatly change depending on the manner of mounting the wires, which may affect the work space when manufacturing the battery pack.
  • An object of the present invention is to provide a battery pack in which the work space for attaching wiring to a battery module is made efficient and a method of manufacturing the same.
  • a plurality of battery modules provided with a plurality of flatly formed unit cells stacked in the thickness direction and a plurality of positive and negative terminals for inputting and outputting power are installed. And a base member.
  • the terminals of the plurality of battery modules are arranged at the end opposite to the base member side, and the plurality of battery modules are arranged on the installation surface along the installation surface of the plurality of battery modules in the base member doing.
  • the present invention for achieving the above object is a method of manufacturing a battery pack including a plurality of battery modules including a plurality of flatly formed unit cells stacked in the thickness direction and having positive and negative terminals for inputting and outputting power.
  • the plurality of battery modules are disposed on the base member such that the terminal is located at the end opposite to the side where the base member is located, and the plurality of battery modules are disposed on the plurality of battery cells in the base member It arranges on the said installation surface along the installation surface of a module.
  • FIG. 1 (A), 1 (B), and 1 (C) are a perspective view, a plan view, and a front view showing the battery pack according to the first embodiment. It is a conceptual diagram which shows the electrical connection of the battery modules in a battery pack.
  • FIG. 3A and FIG. 3B are a perspective view and a plan view showing a base member on which the battery module is installed. It is a perspective view showing a battery module which constitutes a battery pack.
  • FIG. 5A and FIG. 5B are a plan view and a side view showing the battery module of FIG. 4. It is sectional drawing which shows a mode that a battery module is installed in a base part by a volt
  • FIG. 9 is an exploded perspective view of the bus bar unit shown in FIG.
  • FIG. 11 (A) is a perspective view showing a state in which a pair of spacers (first and second spacers) are attached to a unit cell
  • FIG. 11 (B) shows a pair of spacers (first spacer and 2)
  • FIG. 11 (B) shows a pair of spacers (first spacer and 2)
  • FIG. 11 (B) shows the state which removed 2 spacers.
  • FIG. 13 (A) is a perspective view showing in cross section an essential part of a state in which a bus bar is joined to electrode tabs of stacked single cells
  • Fig. 13 (B) is a side view showing Fig. 13 (A) from the side. is there.
  • FIG. 18 is a perspective view schematically showing a state in which the side plate is laser-welded to the upper pressing plate and the lower pressing plate, following FIG. 17; It is a perspective view which shows typically the state which has attached the one part member of the bus bar unit to the battery group following FIG. It is a perspective view which shows typically the state which laser-welds the bus bar of a bus bar unit with respect to the electrode tab of a cell following FIG. It is a side view which shows the principal part of the state which carries out laser joining of the bus bar to the electrode tab of the laminated
  • FIG. 18 is a perspective view schematically showing a state in which the side plate is laser-welded to the upper pressing plate and the lower pressing plate, following FIG. 17; It is a perspective view which shows typically the state which has attached the one part member of the bus bar unit to the battery group following FIG. It is a perspective view which shows typically the state which laser-welds the bus bar of a bus bar unit with respect to the electrode tab of
  • FIG. 21 is a perspective view schematically showing a state in which a protective cover is attached to the bus bar unit and the anode side terminal and the cathode side terminal are laser welded to the anode side bus bar and the cathode side bus bar, following FIGS.
  • It is a perspective view showing a battery module which constitutes a battery pack concerning a 2nd embodiment.
  • It is a fragmentary sectional view showing the inside of a battery module in a battery pack concerning a 2nd embodiment.
  • 25 (A) and 25 (B) are a schematic perspective view and a schematic plan view showing a modification of FIG. 1 (A) and FIG. 1 (B). It is sectional drawing which cut
  • the same elements will be denoted by the same reference symbols, without redundant description.
  • the size and ratio of each member in the drawings may be exaggerated for the convenience of the description and may be different from the actual size and ratio.
  • the arrows are used to indicate the orientation using X, Y, and Z.
  • the direction of the arrow represented by X intersects the stacking direction of the unit cells 110 and indicates the direction along the longitudinal direction of the unit cells 110.
  • the direction of the arrow represented by Y intersects the stacking direction of the unit cells 110 and indicates the direction along the short direction of the unit cells 110.
  • the direction of the arrow represented by Z indicates the stacking direction of the unit cells 110.
  • FIG. 1 (A), 1 (B), and 1 (C) are a perspective view, a plan view, and a front view showing the battery pack according to the first embodiment.
  • FIG. 2 is a conceptual view showing the electrical connection between the battery modules in the battery pack.
  • FIG. 3A and FIG. 3B are a perspective view and a plan view showing a base member on which the battery module is installed.
  • FIG. 4 is a perspective view showing a battery module 100 constituting the battery pack 10.
  • FIG. 5A and FIG. 5B are a plan view and a side view showing the battery module of FIG. 4.
  • FIG. 6 is a cross-sectional view showing how the battery module is installed on the base member by bolts and brackets.
  • FIG. 7 is a perspective view showing the battery module in which the upper pressure plate, the lower pressure plate and the left and right side plates are disassembled to expose the entire laminate in a state in which the protective cover is attached.
  • FIG. 8 is a perspective view showing the laminated body shown in FIG. 7 with the protective cover removed and the laminated body disassembled into a battery group and a bus bar unit.
  • FIG. 9 is an exploded perspective view of the bus bar unit shown in FIG.
  • FIG. 10 schematically shows a state in which the anode-side electrode tab of the first cell subassembly (unit cells connected in parallel every three sets) and the cathode-side electrode tab of the second cell subassembly (unit cells connected in parallel every three sets) are connected by a bus bar It is a perspective view shown disassembled.
  • FIG. 11 (A) is a perspective view showing a state in which a pair of spacers (first and second spacers) are attached to a unit cell
  • FIG. 11 (B) shows a pair of spacers (first spacer and 2) It is a perspective view which shows the state which removed 2 spacers.
  • FIG. 12 is a perspective view showing a pair of spacers (a first spacer and a second spacer).
  • Fig. 13 (A) is a perspective view showing in cross section an essential part in a state where a bus bar is joined to the electrode tabs of stacked single cells
  • Fig. 13 (B) is a side view showing Fig. 12 (A) from the side. is there.
  • FIG. 14 is a view showing a comparative example for explaining the attachment position of the inter-module bus bar in the battery module.
  • the left front side is referred to as the “front side” of the entire battery module 100 and each component
  • the back right side is referred to as the “back side” of the entire battery module 100 and each component
  • the front side and the left hand rear side are referred to as the “side sides” of the entire battery module 100 and the left and right of each component.
  • the battery pack 10 has a plurality of unit cells 110 formed in a flat shape, stacked in the thickness direction, as described in general with reference to FIGS. 1A to 1C, 7 and 11.
  • a plurality of battery modules 100A and 100B having an anode side terminal 133 and a cathode side terminal 134 for performing input and output of the above, and a base member 310 for setting the plurality of battery modules 100A and 100B and configuring the base portion 300. .
  • the anode side terminal 133 and the cathode side terminal 134 are disposed at the end opposite to the side of the base member 310, and the battery modules 100A and 100B are installed along the mounting portion 311 of the base member 310. It is arranged on the part 311.
  • battery pack 10 is disposed at the position of the electrical end of a plurality of battery modules 100A, 100B electrically connected between module bus bars 410, 420, 430 that electrically connect adjacent battery modules to each other. And the wiring 440.
  • the upper pressure plate 151 and the lower pressure plate 152 are arranged at the end in the stacking direction Z of the battery group 100G in which the single cells 110 are stacked.
  • side plates 153 are disposed at both ends in a transverse direction Y intersecting the longitudinal direction X in which the electrode tabs 113 are led out.
  • Battery pack 10 has battery module 100A and battery module 100B in which the number of stacked single cells 110 is different.
  • the battery modules 100A and 100B are installed in one step without being stacked on the base member 310.
  • the battery modules 100A and 100B are disposed such that the surfaces on which terminals that input and output power are located face each other, as shown in FIGS. 1 (A) and 1 (C).
  • all battery modules in the same row in FIG. 1B are configured to face in the same direction.
  • the battery module 100A is configured by stacking 27 single cells 110
  • the battery module 100B is configured by stacking 21 single cells 110.
  • the number of layers is merely an example, and is not limited thereto. As described above, since the number of stacked unit cells 110 is different between the battery module 100A and the battery module 100B, the specifications of the side plate 153 that covers the battery group 100G from the lateral direction Y are different.
  • the configuration of side plate 153 is such that the height of battery module 100A is higher than that of battery module 100B. doing.
  • the upper pressure plate 151 and the lower pressure plate 152 covering the battery group 100 G from the outside in the stacking direction Z are not affected by the number of stacked cells 110. Therefore, parts can be shared by the battery module 100A and the battery module 100B. Details of the upper pressure plate 151, the lower pressure plate 152, and the side plate 153 will be described later.
  • the base unit 300 is shown in FIG. As shown in FIGS. 4 and 6, it has a base member 310 for installing the battery modules 100A and 100B, a bracket 320 for attaching the battery modules 100A and 100B to the base member 310, and bolts 330 and nuts 340. As shown in FIGS. 3A and 3B, the base member 310 includes an installation portion 311 for installing the battery modules 100A and 100B, and a flange portion 312 provided outward of the installation portion 311. Have. Although the installation part 311 is comprised flatly, as long as battery module 100A, 100B can be installed, shapes other than flat may be sufficient. The flange portion 312 is configured by bending a flat plate so that the bracket can be attached when the battery pack 10 is mounted, for example, on a vehicle.
  • the battery modules 100A and 100B include a laminated portion 100C corresponding to a portion where the single cells 110 are laminated, and an insertion portion 100D for inserting the bolt 330 for attaching the battery modules 100A and 100B to the base member 310. And.
  • the insertion portion 100D is configured to have a shorter length in the stacking direction Z than that of the stacked portion 100C.
  • a recessed portion 100F is formed as a step from the stacked portion 100C to the insertion portion 100D.
  • the bracket 320 is prepared for installing the battery modules 100A, 100B on the base member 310. As shown in FIG. 6, the bracket 320 is fitted between the battery module 100A or the battery module 100B and the base member 310 in the shape of the recess 100F from the laminated part 100C of the battery module 100A, 100B to the insertion part 100D. It is arranged properly. Thereby, when attaching battery module 100A, 100B to the base member 310, it can be functioned as a reinforcing material of an attachment location.
  • the bracket 320 is joined to the base member 310 by welding in the present embodiment, but may be joined by a method other than welding if the battery modules 100A and 100B can be installed.
  • the bolts 330 are inserted through the plurality of cells 110 constituting the battery modules 100A and 100B in a direction intersecting the installation portion 311 of the base member 310, and the battery modules 100A and 100B are attached to the bracket 320 together with the nuts 340. Since the bracket 320 is joined to the base member 310, the battery modules 100A, 100B are attached to the base portion 300 by attaching the battery modules 100A, 100B to the bracket 320, as shown in FIG. The battery modules 100A and 100B are installed on the base member 310 in a state in which the single cells 110 are stacked in the stacking direction Z.
  • the bolt 330 is inserted in the stacking direction of the battery modules 100A and 100B, in the present embodiment, in the stacking direction Z in accordance with the stacking mode of the unit cells 110, and fastened with the nut 340. Further, as shown in FIG. 6, the head of the bolt 330 is configured not to exceed the upper pressure plate 151 located at the upper part of the stacked portion 100C.
  • the intermodule bus bars 410, 420 and 430 are used to connect adjacent battery modules in the battery pack 10 as shown in FIG. 1 (B) and FIG.
  • the inter-module bus bar 410 electrically connects adjacent battery modules in the same column in FIG. 1B (see, for example, battery modules in (1) and (2) in FIG. 2).
  • the inter-module bus bar 420 electrically connects battery modules having different row positions between adjacent columns, that is, battery modules in a so-called oblique positional relationship (eg, (2) in FIG. See 3) Battery module).
  • the inter-module bus bar 430 electrically connects battery modules in the same row position between adjacent columns (see, for example, battery modules (4) and (5) in FIG. 2).
  • the battery pack 10 electrically connects the battery modules in the order of (1) to (16) in FIG. 2 by arranging the intermodule bus bars 410, 420 and 430 as shown in FIGS. 1 (A) and 1 (B). Connected.
  • FIG. 2 is merely an example and is not limited thereto.
  • Inter-module bus bars 410, 420, 430 are fastened to battery modules 100A, 100B by bolts 450 on the top surfaces of battery modules 100A, 100B.
  • the space in which the battery pack parts do not exist can be used as a work space, as compared to the case where the mounting position of the bolt for fastening the inter-module bus bar is between the facing battery modules. it can.
  • the wire 440 is located on the left in FIG. 1B and FIG. 2 and is connected to a terminal portion (not shown) serving as an outlet for power generated from the plurality of battery modules 100A and 100B.
  • the battery module 100 has the laminated body 100S containing 100 G of battery groups which laminated
  • the battery module 100 further includes a protective cover 140 attached to the front side of the stacked body 100S, and a case 150 for housing the stacked body 100S in a state where each of the single cells 110 is pressurized along the stacking direction of the single cells 110. And. As shown in FIG. 4 and FIG. 7, the battery module 100 has the laminated body 100S containing 100 G of battery groups which laminated
  • the battery module 100 further includes a protective cover 140 attached to the front side of the stacked body 100S, and a case 150 for housing the stacked body 100S in a state where each of the single cells 110 is pressurized along the stacking direction of the single cells 110. And. As shown in FIG.
  • the stacked body 100S includes a battery group 100G and a bus bar unit 130 attached to the front side of the battery group 100G and integrally holding a plurality of bus bars 131.
  • the protective cover 140 covers and protects the bus bar unit 130.
  • the bus bar unit 130 has a plurality of bus bars 131 and a bus bar holder 132 to which the plurality of bus bars 131 are integrally attached in a matrix.
  • the anode side terminal 133 is attached to the end on the anode side
  • the cathode side terminal 134 is attached to the end on the cathode side.
  • the battery group 100G includes a first cell subassembly 100M consisting of three unit cells 110 electrically connected in parallel and a second cell subassembly 100N consisting of another three unit cells 110 electrically connected in parallel. And are connected in series by the bus bar 131.
  • the first cell subassembly 100M and the second cell subassembly 100N have the same configuration except for the direction of refraction of the tip portion 113d of the electrode tab 113 of the unit cell 110.
  • the second cell subassembly 100N is obtained by reversing the top and bottom of the unit cell 110 included in the first cell subassembly 100M.
  • the direction of refraction of the tip 113 d of the electrode tab 113 of the second cell subassembly 100 N is aligned with the lower side of the stacking direction Z so as to be the same as the direction of refraction of the tip 113 d of the electrode tab 113 of the first cell subassembly 100 M.
  • Each unit cell 110 has a pair of spacers 120 (a first spacer 121 and a second spacer 122) attached.
  • the unit cell 110 corresponds to, for example, a flat lithium ion secondary battery. As shown in FIGS. 13A and 13B, the unit cell 110 is electrically connected to the battery main body 110H in which the power generation element 111 is sealed by a pair of laminate films 112 (corresponding to an outer package) and the power generation element 111. And thin plate-like electrode tabs 113 which are connected to each other and are led out from the battery body 110H.
  • the laminate film 112 is configured by laminating, for example, polyethylene or nickel.
  • the power generation element 111 is configured by stacking a plurality of positive and negative electrodes sandwiched by separators.
  • the power generation element 111 is supplied with power from the outside and charged, and then supplies power while discharging to an external electric device.
  • the laminate film 112 is configured by covering both sides of the metal foil with a sheet having an insulating property.
  • the pair of laminate films 112 covers the power generation element 111 from both sides along the stacking direction Z and seals the four sides.
  • the pair of laminate films 112 causes the anode side electrode tab 113A and the cathode side electrode tab 113K to be drawn out from between the one ends 112a along the short direction Y toward the outside. There is.
  • the laminate film 112 has a pair of connection pins of the first spacer 121 in a pair of connection holes 112e respectively provided at both ends of one end 112a along the short direction Y. Each 121i is inserted.
  • the pair of connection pins 122i are respectively inserted into the pair of connection holes 112e respectively provided at both ends of the other end 112b along the short direction Y.
  • the laminate film 112 is formed by bending both end portions 112 c and 112 d along the longitudinal direction X toward the upper side in the stacking direction Z.
  • the electrode tab 113 is composed of an anode electrode tab 113A and a cathode electrode tab 113K, as shown in FIGS. 11 (B), 13 (A), and 13 (B). It extends to the outside in a state of being separated from each other from between the one end portions 112a.
  • the anode-side electrode tab 113A is made of aluminum in accordance with the characteristics of the component on the anode side in the power generation element 111.
  • the cathode-side electrode tab 113 ⁇ / b> K is made of copper in accordance with the characteristics of the cathode-side component in the power generation element 111.
  • the electrode tab 113 is formed in an L shape from the proximal end 113c adjacent to the battery body 110H to the distal end 113d. Specifically, the electrode tab 113 extends along one of the longitudinal direction X from its proximal end 113 c. On the other hand, the front end portion 113 d of the electrode tab 113 is formed to be refracted along the lower side in the stacking direction Z.
  • the shape of the tip portion 113 d of the electrode tab 113 is not limited to the L-shape.
  • the tip portion 113 d of the electrode tab 113 is formed in a planar shape so as to face the bus bar 131.
  • the electrode tab 113 may be formed in a U-shape by further extending the distal end portion 113 d and bending the extended portion toward the battery main 110 H side along the proximal end portion 113 c.
  • the base end 113 c of the electrode tab 113 may be formed in a wave shape or in a curved shape.
  • the surface of the electrode tab 113 is disposed on the same side as the surfaces of the anode side electrode tab 113A and the cathode side electrode tab 113K.
  • the battery module 100 includes three unit cells 110 (first cell subassembly 100M) electrically connected in parallel, and three other unit cells 110 electrically connected in parallel (second Cell subassemblies 100N) are connected in series. Therefore, the positions of the anode side electrode tab 113A and the cathode side electrode tab 113K of the unit cell 110 are made to intersect along the stacking direction Z by replacing the top and bottom of the unit cell 110 for every three unit cells 110. There is.
  • each of the three unit cells 110 simply replacing the top and bottom of each of the three unit cells 110 causes the position of the tip portion 113 d of the electrode tab 113 to vary in the vertical direction along the stacking direction Z. It adjusts so that the position of the front-end
  • the anode-side electrode tab 113A is disposed on the right side in the figure, and the cathode-side electrode tab 113K is disposed on the left side in the figure.
  • the cathode side electrode tab 113K is disposed on the right side in the figure, and the anode side electrode tab 113A is disposed on the left side in the figure.
  • the end portion 113d of the electrode tab 113 of the unit cell 110 is refracted downward along the stacking direction Z. Further, as shown in FIG. 13B, the end portions 113d of the respective electrode tabs 113 are disposed on the same side of the laminate 100S.
  • a double-sided adhesive tape 160 is attached to the unit cells 110 located on the top surfaces of the first cell subassembly 100M and the second cell subassembly 100N.
  • the pair of spacers 120 (the first spacer 121 and the second spacer 122) are disposed between the stacked unit cells 110, as shown in FIGS. 13 (A) and 13 (B).
  • the first spacer 121 is disposed along one end portion 112 a of the laminate film 112 in which the electrode tab 113 of the unit cell 110 is protruded.
  • the second spacer 122 is disposed along the other end 112 b of the laminate film 112.
  • the second spacer 122 has a configuration in which the shape of the first spacer 121 is simplified.
  • Each unit cell 110 has a pair of spacers 120 (the first spacer 121 and the second spacer 122) attached thereto, and then a plurality of the unit cells 110 are stacked along the stacking direction Z.
  • the pair of spacers 120 (the first spacer 121 and the second spacer 122) are made of insulating plastic.
  • the configuration of the second spacer 122 will be described in comparison with the configuration of the first spacer 121.
  • the first spacer 121 is formed in a rectangular parallelepiped shape that is long in the short direction Y.
  • the first spacer 121 is provided with mounting portions 121M and 121N at both ends in the longitudinal direction (short direction Y).
  • the first spacers 121 when the first spacers 121 are stacked in a state of being attached to the single battery 110, the first spacers 121 are placed on the top surfaces 121a of the mounting portions 121M and 121N of the first spacer 121 and the first spacers 121N.
  • the lower surfaces 121b of the mounting portions 121M and 121N of the other first spacers 121 disposed above the one spacer 121 abut.
  • the first spacer 121 is provided on the upper surface 121a of one first spacer 121 in order to perform relative positioning of the plurality of stacked single cells 110.
  • the determination pin 121c is engaged with the lower surface 121b of the other first spacer 121, and the positioning hole 121d corresponding to the position of the positioning pin 121c is fitted.
  • the first spacer 121 places the locating hole 121e along the stacking direction Z in order to insert a bolt connecting the plurality of single cells 110 connected along the stacking direction Z. They are open at 121 M and 121 N respectively.
  • the first spacer 121 is formed such that the region between the mounting portions 121M and 121N is cut away from the upper side in the stacking direction Z.
  • the notched portion includes a first support surface 121 g and a second support surface 121 h along the longitudinal direction of the first spacer 121 (the short direction Y of the single battery 110).
  • the first support surface 121g is formed higher along the stacking direction Z than the second support surface 121h, and is positioned on the unit cell 110 side.
  • the first spacer 121 mounts and supports the one end portion 112a of the laminate film 112 in which the electrode tab 113 is protruded by the first support surface 121g.
  • the first spacer 121 includes a pair of connection pins 121i that project upward from both ends of the first support surface 121g.
  • the first spacer 121 is in contact with the electrode tab 113 from the side opposite to the bus bar 131 to support the support portion 121j for supporting the tip portion 113d of the electrode tab 113 of the unit cell 110.
  • 121 h adjacent to the second support surface 121 h, and is provided on the side surface along the stacking direction Z.
  • the support portion 121j of the first spacer 121 sandwiches the end portion 113d of the electrode tab 113 together with the bus bar 131 so that the end portion 113d and the bus bar 131 sufficiently abut on each other.
  • the second spacer 122 has a configuration in which the shape of the first spacer 121 is simplified as shown in FIG. 11B and FIG.
  • the second spacer 122 corresponds to a configuration in which a part of the first spacer 121 is deleted along the short direction Y of the unit cell 110.
  • the second spacer 122 is configured by replacing the second support surface 121 h and the first support surface 121 g of the first spacer 121 with a support surface 122 k.
  • the second spacer 122 includes the mounting portions 122M and 122N.
  • the second spacer 122 is provided with a support surface 122k at a portion where the region between the mounting portions 122M and 122N is cut away from the upper side in the stacking direction Z.
  • the support surface 122 k mounts and supports the other end 112 b of the laminate film 112. Similar to the first spacer 121, the second spacer 122 includes a positioning pin 122c, a positioning hole, a locating hole 122e, and a connection pin 122i.
  • the bus bar unit 130 integrally includes a plurality of bus bars 131 as shown in FIGS. 8 and 9.
  • the bus bar 131 is made of conductive metal, and electrically connects tip portions 113 d of the electrode tabs 113 of different cells 110 to each other.
  • the bus bar 131 is formed in a flat plate shape and stands up along the stacking direction Z.
  • the bus bar 131 is an anode side bus bar 131A laser welded to the anode side electrode tab 113A of one unit cell 110 and a cathode side laser welded to the cathode side electrode tab 113K of another unit cell 110 adjacent along the stacking direction Z.
  • the bus bar 131K is integrally formed by joining.
  • the anode side bus bar 131A and the cathode side bus bar 131K have the same shape and are respectively formed in an L shape.
  • the anode side bus bar 131A and the cathode side bus bar 131K are superimposed with the top and bottom reversed.
  • the bus bar 131 joins the bent portion of one end along the stacking direction Z of the anode side bus bar 131A and the bent portion of one end along the stacking direction Z of the cathode side bus bar 131K, Integrated.
  • the anode side bus bar 131A and the cathode side bus bar 131K are provided with a side portion 131c along the longitudinal direction X from one end in the short side direction Y, as shown in FIG.
  • the side portion 131 c is joined to the bus bar holder 132.
  • the anode side bus bar 131A is made of aluminum in the same manner as the anode side electrode tab 113A.
  • the cathode side bus bar 131K is made of copper, similarly to the cathode side electrode tab 113K.
  • the anode side bus bar 131A and the cathode side bus bar 131K made of different metals are joined to each other by ultrasonic bonding.
  • the battery module 100 is configured by connecting in series a plurality of battery cells 100 connected in parallel, for example, as shown in FIG.
  • Laser welding is performed on the anode-side electrode tabs 113A of three unit cells 110 adjacent to each other along the stacking direction Z.
  • the bus bar 131 laser welds the portion of the cathode side bus bar 131 K to the cathode side electrode tabs 113 K of three unit cells 110 adjacent to each other along the stacking direction Z.
  • the bus bar 131 located at the upper right in FIGS. 8 and 9 corresponds to the end on the anode side of 21 single cells 110 (3 parallels 7 series), and the anode It comprises only the side bus bar 131A.
  • the anode side bus bar 131A is laser-bonded to the anode side electrode tabs 113A of the top three unit cells 110 of the battery group 100G.
  • the bus bar 131 located at the lower left in FIGS. 8 and 9 corresponds to the end on the cathode side of 21 single cells 110 (3 parallels 7 series), It comprises only the cathode side bus bar 131K.
  • the cathode side bus bar 131K is laser-bonded to the cathode side electrode tabs 113K of the lowermost three unit cells 110 of the battery group 100G.
  • the bus bar holder 132 integrally holds the plurality of bus bars 131 in a matrix so as to face the electrode tabs 113 of the plurality of stacked single cells 110.
  • the bus bar holder 132 is made of insulating resin and is formed in a frame shape.
  • the bus bar holder 132 is a pair of stand up along the stacking direction Z so as to be located on both sides in the longitudinal direction of the first spacer 121 supporting the electrode tab 113 of the unit cell 110.
  • Each has a support portion 132a.
  • the pair of support portions 132a is fitted to the side surfaces of the mounting portions 121M and 121N of the first spacer 121.
  • the pair of support portions 132a is L-shaped when viewed along the stacking direction Z, and is formed in a plate shape extending along the stacking direction Z.
  • the bus bar holder 132 is provided with a pair of auxiliary support portions 132 b standing up along the stacking direction Z so as to be located near the center of the first spacer 121 in the longitudinal direction.
  • the pair of auxiliary support portions 132 b is formed in a plate shape extending along the stacking direction Z.
  • the bus bar holder 132 includes insulating portions 132 c that respectively project between the adjacent bus bars 131 along the stacking direction Z.
  • the insulating portion 132 c is formed in a plate shape extending along the short direction Y.
  • Each insulating portion 132c is horizontally provided between the support portion 132a and the auxiliary support portion 132b.
  • the insulating portion 132 c prevents discharge by insulating between the bus bars 131 of the adjacent single cells 110 along the stacking direction Z.
  • the bus bar holder 132 may be constructed by mutually joining the support column part 132a, the auxiliary support column part 132b and the insulating part 132c formed independently, respectively, or the support column part 132a, the auxiliary support column part 132b and the insulating part 132c are integrated. You may shape
  • the anode-side terminal 133 corresponds to the end of the anode side of the battery group 100G configured by alternately stacking the first cell subassembly 100M and the second cell subassembly 100N, as shown in FIGS. 7 and 9.
  • the anode side terminal 133 is joined to the anode side bus bar 131A positioned at the upper right in the figure among the bus bars 131 arranged in a matrix.
  • the anode-side terminal 133 is made of a conductive metal plate, and when planarly viewed along the latitudinal direction Y, the flat member is bent at approximately 90 degrees or an L shape at bending points 133a, 133b, and 133c. It consists of The surface from the bent portion 133a to the end is laser-bonded to the anode side bus bar 131A.
  • the surface from the bending point 133c to the end faces the upper surface of the battery module 100 to connect any of the intermodule bus bars 410, 420, 430, and is provided with a hole 133d (including a screw groove) opened at the center.
  • a bolt 450 is attached to the hole 133 d to connect one of the inter-module bus bars 410, 420, 430.
  • the cathode side terminal 134 corresponds to the end of the cathode side of the battery group 100G configured by alternately stacking the first cell subassembly 100M and the second cell subassembly 100N as shown in FIG. As shown in FIG. 9, the cathode side terminal 134 is joined to the cathode side bus bar 131K located at the lower left in the figure among the bus bars 131 arranged in a matrix.
  • the cathode side terminal 134 is configured to be able to connect any one of the inter-module bus bars 410, 420, 430 at the top surface of the battery module 100 as the anode side terminal 133.
  • the cathode side terminal 134 forms bent portions 134a, 134b and 134c obtained by bending a flat plate material into approximately 90 degrees or an L shape as shown in FIG.
  • the surface below the bent portion 134a is joined to the cathode side bus bar 131K by a laser or the like.
  • the surface from the bending point 134 c to the end has a hole 134 d (including a screw groove) opened at the center thereof, like the anode side terminal 133.
  • One of the inter-module bus bars 410, 420, 430 is connected to the hole 134d.
  • the protective cover 140 covers the bus bar unit 130 so that the bus bars 131 short each other, or the bus bar 131 contacts an external member to cause a short circuit or an electric leakage. To prevent. Furthermore, the protective cover 140 causes the anode side terminal 133 and the cathode side terminal 134 to be exposed to the outside, and causes the power generation element 111 of each unit cell 110 to be charged and discharged.
  • the protective cover 140 is made of insulating plastic.
  • the protective cover 140 is formed in a flat plate shape as shown in FIG. 8 and stands up along the stacking direction Z.
  • the protective cover 140 has a shape in which the upper end 140 b and the lower end 140 c of the side surface 140 a are bent along the longitudinal direction X, and is fitted to the bus bar unit 130.
  • the side surface 140a of the protective cover 140 is, as shown in FIG. 8, a rectangular hole slightly larger than the anode side terminal 133 for joining the anode side terminal 133 provided in the bus bar unit 130 to the anode side bus bar 131A. And a first opening 140d.
  • the side surface 140a of the protective cover 140 is formed of a second rectangular hole slightly larger than the cathode side terminal 134 in order to join the cathode side terminal 134 provided in the bus bar unit 130 to the cathode side bus bar 131K. It has an opening 140e.
  • the housing 150 accommodates the battery group 100G in a pressurized state along the stacking direction Z, as shown in FIGS. 4 and 5B.
  • the upper pressure plate 151 and the lower pressure plate 152 apply an appropriate surface pressure to the power generation element 111 by holding and pressing the power generation element 111 of each unit cell 110 provided in the battery group 100G.
  • the height of the battery group 100G in the battery module 100 is the height of the same number as that of the battery group 100G in the unloaded state with the upper pressing plate 151 and the lower pressing plate 152. The height is smaller than the height.
  • the upper pressure plate 151 is disposed above along the stacking direction Z of the battery group 100G, as shown in FIGS. 4 and 7.
  • the upper pressure plate 151 is provided at its center with a pressure surface 151 a that protrudes downward along the stacking direction Z.
  • the power generation element 111 of each unit cell 110 is pressed downward by the pressing surface 151a.
  • the upper pressure plate 151 includes holding portions 151 b extending along the longitudinal direction X from both sides along the lateral direction Y.
  • the holding part 151 b covers the placement parts 121 M and 121 N of the first spacer 121 or the placement parts 122 M and 122 N of the second spacer 122.
  • a locate hole 151c communicating with the positioning hole 121d of the first spacer 121 or the positioning hole 122d of the second spacer 122 along the stacking direction Z is opened.
  • a bolt 330 connecting the single cells 110 is inserted into the locate hole 151c.
  • the upper pressure plate 151 is made of a metal plate having a sufficient thickness.
  • the upper pressure plate 151 also has a bent portion 151 d formed by bending both ends in the short direction Y intersecting the stacking direction Z as a joint with the side plate 153 as shown in FIG. 7.
  • the lower pressure plate 152 has the same structure as the upper pressure plate 151, as shown in FIGS. 4 and 7, and is disposed in a state where the upper pressure plate 151 is turned upside down.
  • the lower pressure plate 152 is disposed downward along the stacking direction Z of the battery group 100G.
  • the lower pressure plate 152 presses the power generation element 111 of each of the unit cells 110 upward by a pressure surface 152 a that protrudes upward along the stacking direction Z.
  • the lower pressure plate 152 also has a bent portion 152 d formed by bending both ends in the short direction Y intersecting the stacking direction Z as a joint with the side plate 153 as shown in FIG. 7.
  • the pair of side plates 153 is an upper portion so that the upper pressing plate 151 and the lower pressing plate 152 pressing the battery group 100G while sandwiching it from above and below in the stacking direction Z do not separate from each other.
  • the relative positions of the pressure plate 151 and the lower pressure plate 152 are fixed.
  • the side plate 153 is made of a rectangular metal plate and stands up along the stacking direction Z.
  • the pair of side plates 153 is disposed outward of the bent portion 151 d of the upper pressure plate 151 and the bent portion 152 d of the lower pressure plate 152.
  • each side plate 153 has a linear welded portion 153c by seam welding or the like along the longitudinal direction X with respect to the portion of the upper end 153a in contact with the upper pressure plate 151. (Corresponding to a joint) is formed.
  • each side plate 153 has a linear welded portion 153 d (corresponding to a joint) by seam welding or the like along the longitudinal direction X with respect to the portion of the lower end 153 b in contact with the lower pressure plate 152. It is formed.
  • the pair of side plates 153 covers and protects both sides in the short direction Y of the battery group 100G.
  • FIG. 15 is a flowchart showing a method of manufacturing the battery pack 10 according to the first embodiment.
  • step ST1 The arrangement of the lower pressure plate 152 (step ST1), the lamination of the unit cells 110 (step ST2), and the arrangement of the upper pressure plate 151 (step ST3).
  • step ST4 Pressurization
  • step ST5 bonding of the side plate 153 to the upper pressing plate 151 and the lower pressing plate 152 (step ST5), bonding of the electrode tab 113 and the bus bar 131 (step ST6), and the anode side terminal 133 And attaching the cathode side terminal 134 (step ST7), attaching the battery modules 100A and 100B to the base member 310 (step ST9), and attaching the intermodule bus bars 410, 420 and 430 (step ST10).
  • steps ST1 to ST3 are referred to as a lamination process, step ST4 as a pressure application process, step ST5 as a first bonding process, step ST6 and step ST7 as a second bonding process, and steps ST9 and ST10 as attachment processes. .
  • the above steps are called for convenience of explanation, and the steps may not be called or divided in the same manner as described above as long as each operation described below is the same.
  • step ST1 to ST3 a stacking process (steps ST1 to ST3) of stacking members constituting the battery modules 100A and 100B will be described with reference to FIG.
  • FIG. 16 is a view showing the method of manufacturing the battery pack 10 according to the first embodiment, and a perspective view schematically showing a state in which members constituting the battery module 100 are sequentially stacked on the mounting table 701. It is.
  • the mounting table 701 used in the stacking step is formed in a plate shape and provided along the horizontal surface.
  • the mounting table 701 is a locating pin for aligning the relative positions of the lower pressure plate 152, the first cell subassembly 100M, the second cell subassembly 100N, and the upper pressure plate 151 along the longitudinal direction X and the lateral direction Y. 702 is provided.
  • Four locating pins 702 are erected on the upper surface 701 a of the mounting table 701 at a predetermined interval.
  • the distance between the four locate pins 702 corresponds, for example, to the distance between the locate holes 152 c provided at the four corners of the upper pressure plate 151.
  • the members constituting the battery module 100 are stacked by using a robot arm, a hand lifter, a vacuum suction type collet or the like.
  • the lower pressure plate 152 is mounted by lowering it along the stacking direction Z by the robot arm in a state where the locate holes 152c provided at the four corners thereof are inserted into the locate pins 702. It mounts on the upper surface 701a of the mounting base 701 (step ST1).
  • step ST1 the stacking direction Z in a state where the locate hole provided in the first spacer 121 and the second spacer 122 of the constituent members of the first cell subassembly 100M having the unit cell 110 is inserted into the locate pin 702 by the robot arm. Drop along. Then, the first cell subassembly 100M is stacked on the lower pressure plate 152.
  • step ST2 three sets of the second cell subassembly 100N having the unit cell 110 and the first cell subassembly 100M are alternately stacked by the robot arm (step ST2).
  • a double-sided tape 160 is attached, which adheres to the laminating member to be laminated above.
  • the upper pressure plate 151 is stacked on the first cell subassembly 100M while being lowered along the stacking direction Z in a state where the locating holes 151c provided at the four corners are inserted into the locating pins 702 by the robot arm (step ST3) ).
  • FIG. 17 is a perspective view schematically showing a state in which the constituent members of the battery module 100 are pressed from above following FIG.
  • the pressing jig 703 used in the pressing step includes a pressing portion 703a formed in a plate shape and provided along a horizontal surface, and a support portion 703b formed in a cylindrical shape and erected on an upper surface of the pressing portion 703a and joined. Have.
  • the support portion 703 b connects an electric stage and a hydraulic cylinder which are driven along the stacking direction Z.
  • the pressing unit 703a moves downward and upward along the stacking direction Z via the support unit 703b.
  • the pressing unit 703a presses the stacked member in contact (step ST4).
  • the pressing portion 703a of the pressing jig 703 drives the motorized stage connected to the support portion 703b to contact the upper pressing plate 151 while the pressing in the stacking direction Z is performed. It descends along the lower side.
  • the battery group 100G is held and pressed by the upper pressure plate 151 pressed downward and the lower pressure plate 152 placed on the mounting table 701.
  • the power generation element 111 of each unit cell 110 provided in the battery group 100G is provided with an appropriate surface pressure. The pressurization process is continued until the next first bonding process is completed.
  • FIG. 18 is a perspective view schematically showing a state in which the side plate 153 is laser-welded to the upper pressure plate 151 and the lower pressure plate 152 subsequently to FIG.
  • the pressing plate 704 used in the first bonding step presses the side plate 153 against the upper pressing plate 151 and the lower pressing plate 152, respectively, and brings the side plate 153 into close contact with the upper pressing plate 151 and the lower pressing plate 152, respectively.
  • the pressing plate 704 is made of metal and formed in a long plate shape.
  • the pressing plate 704 opens a linear slit 704 b in the longitudinal direction in the main body 704 a.
  • the pressing plate 704 raises its short side direction along the stacking direction Z.
  • the pressing plate 704 allows the laser beam L1 for welding to pass through the slit 704b while pressing the side plate 153 by the main body 704a.
  • the laser oscillator 705 is a light source for joining the side plate 153 to the upper pressure plate 151 and the lower pressure plate 152.
  • the laser oscillator 705 is composed of, for example, a YAG (yttrium aluminum garnet) laser.
  • the laser beam L1 derived from the laser oscillator 705 adjusts the optical path by, for example, an optical fiber or mirror, and irradiates the upper end 153a and the lower end 153b of the side plate 153 in a state of being condensed by a condensing lens.
  • the laser beam L1 derived from the laser oscillator 705 may be branched by a half mirror, for example, and be simultaneously irradiated to the upper end 153a and the lower end 153b of the side plate 153.
  • the laser oscillator 705 horizontally scans the laser light L1 through the slit 704 b of the pressing plate 704 with respect to the upper end 153 a of the side plate 153 pressed by the pressing plate 704. Then, the side plate 153 and the upper pressure plate 151 are seam welded and joined over a plurality of places. Similarly, the laser oscillator 705 horizontally scans the laser beam L1 with respect to the lower end 153b of the side plate 153 pressed by the pressing plate 704 via the slit 704b of the pressing plate 704, and the side plate 153 and the lower pressure plate 152 Seam welding is performed over a plurality of places and joined (step ST5).
  • FIG. 19 is a perspective view schematically showing a state in which some members of the bus bar unit 130 are attached to the battery group 100G, following FIG. 18.
  • FIG. 20 is a perspective view schematically showing a state in which the bus bar 131 of the bus bar unit 130 is laser-welded to the electrode tab 113 of the unit cell 110 subsequently to FIG.
  • FIG. 21 is a side view showing in cross section an essential part in a state in which the bus bar 131 is laser-bonded to the electrode tab 113 of the stacked unit cells 110.
  • the mounting table 701 is rotated 90 ° counterclockwise in the figure to make the electrode tab 113 of the battery group 100G face the laser oscillator 705.
  • the bus bar holder 132 in which each bus bar 131 is integrally held is kept pressed by the robot arm while being in contact with the corresponding electrode tab 113 of the battery group 100G.
  • the laser oscillator 705 irradiates the bus bar 131 with the laser light L1 to join the bus bar 131 and the tip portion 113d of the electrode tab 113 by seam welding or spot welding. Thereafter, as shown in FIG.
  • the anode side terminal 133 is joined to the anode side bus bar 131A (upper right in FIG. 9) corresponding to the end on the anode side among the bus bars 131 arranged in a matrix.
  • the cathode side terminal 134 is joined to the cathode side bus bar 131K (lower left in FIG. 9) corresponding to the end on the cathode side among the bus bars 131 arranged in a matrix (step ST6).
  • the protective cover 140 is attached to the bus bar 131, and the anode terminal 133 and the cathode terminal 134 are bonded to the bus bar 131 will be described with reference to FIG.
  • FIG. 22 is a perspective view schematically showing a state in which a protective cover is attached to the bus bar unit and the anode side terminal and the cathode side terminal are laser welded to the anode side bus bar and the cathode side bus bar, following FIG. 20 and FIG. FIG.
  • the protective cover 140 is attached to the bus bar unit 130 while the upper end 140 b and the lower end 140 c of the protective cover 140 are fitted to the bus bar unit 130 using a robot arm.
  • the upper end 140 b and the lower end 140 c of the protective cover 140 may be bonded to the bus bar unit 130 by an adhesive.
  • a laser is irradiated from the first opening 140d to weld the anode side terminal 133 to the anode side bus bar 131A.
  • the cathode side terminal 134 is welded to the cathode side bus bar 131K by irradiating a laser from the second opening 140e (step ST7).
  • the protective cover 140 covers the bus bar unit 130 to prevent the bus bars 131 from shorting each other or preventing the bus bars 131 from contacting an external member and causing a short circuit or an electric leakage. Thereafter, the battery module 100 is removed from the mounting table 701 and carried out to an inspection process for inspecting battery performance and the like.
  • the battery pack 10 which concerns on this embodiment uses 16 battery modules.
  • step ST8: NO only one battery module can be formed. Therefore, steps ST1 to ST7 are repeated until 16 battery modules 100A and 100B can be prepared in total.
  • step ST2 changes the number of stacked cells 110 according to the specification of the battery module.
  • step ST5 the specification of the side plate 153 to be used is changed according to the specification of the battery module.
  • step ST8 When 16 battery modules 100A and 100B are prepared in total (step ST8: YES), the battery modules 100A and 100B are attached to the base member 310 using the bracket 320, the bolt 330 and the nut 340 in the attachment process (step ST9) .
  • the battery modules 100A and 100B are not stacked in the direction intersecting with the base portion 300, and are installed in one step. Then, one of the inter-module bus bars 410, 420, 430, or the wiring 440 is attached to the battery modules 100A, 100B (step ST10).
  • step ST1 to step ST10 are implemented by an automatic machine that controls the entire process with a controller, a semi-automatic machine in which the operator takes part of the process, or a manual machine in which the operator takes the whole process. May be
  • the attachment portion of the inter-module bus bar 410, 420, 430 or the wire 440 attached to each of the anode side terminal 133 and the cathode side terminal 134 of the battery module 100A, 100B is the end opposite to the base member 310
  • the battery modules 100A and 100B are arranged on the installation surface along the installation surface of the installation portion 311 of the base member 310. Since the number of cells 110 and battery modules 100 is large, the configuration as described above eliminates the need to handle the inter-module bus bar 410 and the like to the lower part close to the base portion 300.
  • the components of the battery pack are not disposed on the side of the intermodule bus bar 410 or the like opposite to the base member 310.
  • the space where the battery pack components do not exist can be used as a work space when the inter-module bus bar 410 or the like is attached.
  • no work space can be provided between adjacent battery modules, or it can be difficult to provide a work space.
  • the battery pack can be assembled even if the distance between the battery modules is relatively small.
  • the ratio of the space occupied by the battery modules can be increased in the entire volume of the battery pack, which may lead to the downsizing of the battery pack.
  • the above-described effects can also be achieved by arranging the battery modules 100A and 100B in one step without stacking them on the base members 100A and 100B.
  • the anode side terminal 133 and the cathode side terminal 134 of the adjacent cell module 100A in the longitudinal direction X face the anode side terminal 133 and the cathode side terminal 134 of the cell module 100B.
  • the inter-module bus bar 420 can be shortened at this portion, and the bus bar can be made compact.
  • the surface of the electrode tab 113 is disposed on the same side as the surfaces of the anode terminal 133 and the cathode terminal 134. Therefore, it is possible to relatively shorten the length of parts required for the electrical connection between the electrode tab and the terminal as well as between the battery modules.
  • the bolt 450 is inserted in the stacking direction Z in FIG. 1C, the present invention is not limited to this, and the bolt 450 can be used if the working space for the bolt 450 can be reduced between adjacent battery modules. It may be attached to the side of the battery module 100. In this case, as shown in FIG. 1C, the heights of the anode terminal 133 and the cathode terminal 134 of the opposite battery module 100A from the base member 310 and the bases of the anode terminal 133 and the cathode terminal 134 of the battery module 100B. It is desirable that the heights from the members 310 be configured to be different. If the heights of bolt mounting positions of the inter-module bus bars of adjacent battery modules are the same, as shown in FIG.
  • the bolt mounting position of the inter-module bus bar of a battery module with a high number of stacked cells is a battery with a small number of stacked layers It is desirable to provide it higher than the top of the module.
  • the battery modules 100A and 100B are fixed to the base member 310 via the brackets 320 by inserting the bolts 330 into the plurality of cells 110 in the direction intersecting the base portion 300 and fastening them with the nuts 340. .
  • the working space of the bolt inserted into the unit cell in the battery module changes depending on how it is placed on the base of the battery module. If the battery modules are arranged so that the cells are stacked in parallel to the base, tools and the like may intrude along the direction of the gaps between the battery modules, so more work space is required. I will.
  • the bolt 330 by inserting the bolt 330 in the direction intersecting with the base portion 300, the space where the battery back parts do not exist can be effectively used to reduce the work space required between the battery modules. it can.
  • the bracket 320 is fitted in the shape of a recess 100F formed from the lamination part 100C to the insertion part 100D whose length in the lamination direction Z is shorter than the lamination part 100C, and is connected to the battery modules 100A, 100B. Therefore, even when an external force acts on the battery pack 10, the bracket 320 can function to strengthen the rigidity of the portion of the insertion portion 100D.
  • the portion of the bolt head has a length not exceeding the upper pressure plate 151 located at the end of the laminated portion 100C. Configured. Therefore, the volume of the entire battery pack can be reduced compared to the case where the bolt protrudes beyond the stacked portion. Therefore, even when the battery pack 10 is mounted on, for example, a vehicle, it is advantageous in the clearance with adjacent parts and the like, and the applicability of the battery pack 10 can be improved.
  • the pair of side plates 153 is joined to the upper pressing plate 151 and the lower pressing plate 152 by welding in a state where the battery group 100G is pressed in the stacking direction Z by the upper pressing plate 151 and the lower pressing plate 152. Therefore, the battery group 100G can be firmly fixed by the upper pressure plate 151, the lower pressure plate 152, and the side plate 153, and the reliability against impact can be improved.
  • the battery modules 100A and 100B are configured to use the same upper pressure plate 151 and lower pressure plate 152 regardless of the number of stacked cells 110.
  • members such as the side plate 153 related to the stacking direction Z are changed according to the number of stacked cells 110 according to the number of stacked cells. Therefore, the number of single cells mounted on one battery module can be flexibly adjusted. Therefore, the layout and performance as a battery pack can be flexibly adjusted.
  • FIG. 23 is a perspective view showing the battery pack according to the second embodiment
  • FIG. 24 is a partial cross-sectional view showing the inside of the battery module in the battery pack according to the second embodiment.
  • first cell subassembly 100M and the second cell subassembly 100N in which three unit cells 110 are stacked is stacked between the upper pressure plate 151 and the lower pressure plate 152 .
  • it can also be configured as follows.
  • the heat dissipating member 270 (the heat that may be generated when using the battery pack between the first cell subassembly 100M and the second cell subassembly 100N) is dissipated to the outside.
  • the heat radiating member 270 includes a cell contact portion 271 in contact with the first cell subassembly 100M or the second cell subassembly 100N, and a heat radiating portion 272 in contact with the side plate 253 which is an outer wall to radiate the heat obtained from the cell contact portion 271 to the outside.
  • the side plate 153 is in contact with the heat dissipation member 270 via the insulating member 280.
  • the heat dissipation member 270 is made of a material such as aluminum having a thermal conductivity higher than that of the laminate film 112 covering the power generation element 111 of the unit cell 110 except for the electrode tab 113.
  • the heat dissipation member 270 can be formed, for example, by bending a flat plate of aluminum or the like at an end to form a cell contact portion 271 around the center relatively and a heat dissipation portion 272 at the bent end.
  • the invention is not limited to the above as long as the heat generated from the first cell subassembly 100M can be dissipated to the outside.
  • An insulating member 280 is disposed on the outside of the side plate 253, and a water jacket 290 or the like is disposed on the outside of the insulating member 280 so that heat can be dissipated. Further, in FIG. 24, one heat dissipation member 230 is disposed between the fourth and fifth unit cells 110 from the bottom.
  • the number and position of the heat dissipation members 270 are not limited to the above, and may be changed as appropriate.
  • a gap may be provided between the battery group 100G and the side plate 153, and outside air may be introduced into the gap portion.
  • the configurations of the heat dissipation member 270, the insulating member 280, and the water jacket 290 are different from those of the first embodiment, and the other configurations are the same as those of the first embodiment. Do.
  • the heat dissipation member 270 having a thermal conductivity higher than that of the laminate film 112 is disposed at any position in the stacking direction Z of the battery group 100G in which the first cell subassembly 100M and the second cell subassembly 100N are stacked. ing.
  • the upper pressure plate 151, the lower pressure plate 152, and the side plate 153 whose dimensions are changed according to the number of stacked cells 110 configure the casing regardless of the number of stacked cells 110. doing.
  • the heat radiating member 270 in the present embodiment can arbitrarily adjust the positions and the number to be arranged according to an aspect in which the cells 110 are connected in series or in parallel, in other words, the amount of heat radiation per unit volume.
  • the battery pack 10 can be cooled efficiently.
  • 25 (A) and 25 (B) are a schematic perspective view and a schematic plan view showing a modification of FIG. 1 (A) and FIG. 1 (B).
  • illustration of inter-module bus bars and wiring is omitted for convenience of explanation.
  • the direction perpendicular to the installation portion 311 of the base member 310 and the stacking direction of the single cells 110 coincide with each other as shown in FIGS.
  • the configuration to be installed in the present invention is not limited to this, and as shown in FIGS. 25A and 25B, a battery module 100A in which the single cells 110 are stacked in the direction perpendicular to the installation portion 311 of the base member 310. And the battery module 100E in which the single battery 110 is stacked in the direction parallel to the installation portion 311.
  • the battery module 100A the case where the cells 110 are stacked vertically to the base portion 300 is vertically disposed, and the case where the cells 110 are disposed parallel to the base portion 300 as in the battery module 100E is horizontally disposed.
  • the battery module 100 E horizontally on the base member 310 as in the battery module 100 E, the battery module can be arranged without being restricted by the width dimension of the battery module 100 in plan view in the stacking direction. Since the battery module 100 according to the first and second embodiments can arbitrarily adjust the number of stacked cells as described above, the battery module can be efficiently arranged in a small space by arranging horizontally.
  • the battery module which comprises a battery pack demonstrated the embodiment which is two types of battery module 100A, 100B, it is not limited to this. Two or more types of battery modules may be used, or one type may be used. Moreover, although the number of the battery modules arrange
  • bus bars are ultrasonically bonded and the electrode tab and the bus bar are bonded by laser welding
  • present invention is not limited to this.
  • the bus bars may be joined to each other, or the electrode tabs and the bus bars may be joined by welding.
  • the embodiment which joined adjacent electrode tabs to a bus bar was described above, it is not limited to this.
  • the electrode tabs may be joined by ultrasonic bonding or welding.
  • FIG. 26 is a cross-sectional view of the battery module cut along the stacking direction, showing a variation of the first embodiment.
  • the embodiment has been described in which the battery group 100G in which a plurality of the single cells 110 are stacked is disposed between the upper pressure plate 151 and the lower pressure plate 152 that constitute the housing 150.
  • an elastic member 370 that generates an elastic force in the stacking direction Z may be provided.
  • the elastic member 370 is disposed at any position in the stacking direction Z.
  • the elastic member 370 has elastic members 371 and 372 which are mainly elastically deformed at a substantially central position in FIG. 26, and is joined to an adjacent member at a point a1.
  • the elastic member 370 is joined to the adjacent member, but it is desirable to join to the plate-like intermediate member 280 as shown in FIG.
  • the elastic member 371 and the elastic member 372 are joined at a point b1 on the outer side than the point a1.
  • the elastic member 370 absorbs the change in the thickness direction, and external force Can be prevented from moving when the unit cell 110 is input.
  • 10 battery packs 100, 100A, 100B, 100E battery modules, 100G battery group, 110 cells, 113 electrode tabs, 121 first spacer, 122 second spacer, 151 upper pressure plate, 152 Lower pressure plate, 153 side plates, 270 heat dissipation member, 300 base member, 310 based, 311 placement unit, 312 flange part, 320 bracket, 330 volts, 340 nuts, 410, 420, 430 inter-module bus bar, 440 wiring, X longitudinal direction, Y short direction, Z stacking direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】配線を電池モジュールに取り付けるための作業スペースを効率化した電池パックおよびその製造方法を提供する。 【解決手段】本発明は、偏平に形成した単電池110を厚み方向に複数積層して備えると共に電力の入出力を行なう正負のターミナル133、134を備えた複数の電池モジュール100A、100Bと、複数の電池モジュールを設置するベース部材310と、を有する。複数の電池モジュールのターミナルは、ベース部材側とは反対側の端部に配置し、複数の電池モジュールは、ベース部材における複数の電池モジュールの設置面に沿って、設置面上に配列して構成している。

Description

電池パックおよびその製造方法
 本発明は、電池パックおよびその製造方法に関する。
 自動車業界では近年、環境保護や燃費などの観点から二次電池や燃料電池の開発が主に行なわれている。二次電池は電池ひとつひとつの出力がそれほど大きくないため、自動車の航続を可能にするために、所望の数積層されて電池モジュールとされる。また、電池モジュールは所定個数集められて電池パック(組電池とも呼ばれる)とされる場合もある。電池パックに関する従来の技術として、特許文献1にはセル(単電池とも呼ばれる)を所定個数積層した電池モジュールを高さ方向に積層して構成している。
特開2015-5361号公報
 電池パックは、所定の電力を生じさせるために電池セルや電池モジュールを多くの数、必要とする。そのため、電池パックから電力を取り出すための配線も数多く必要となる。このように電池パックには多くの配線が必要となるため、配線の取り付け態様によっては電池パックのレイアウトも大きく変わり、電池パックを製造する際の作業スペースに影響を与えるおそれがある。
 本発明は、配線を電池モジュールに取り付けるための作業スペースを効率化した電池パックおよびその製造方法を提供することを目的とする。
 上記目的を達成する本発明は、偏平に形成した単電池を厚み方向に複数積層して備えると共に電力の入出力を行なう正負のターミナルを備えた複数の電池モジュールと、複数の電池モジュールを設置するベース部材と、を有する。複数の電池モジュールのターミナルは、ベース部材側とは反対側の端部に配置し、複数の電池モジュールは、ベース部材における複数の電池モジュールの設置面に沿って、設置面上に配列して構成している。
 上記目的を達成する本発明は、偏平に形成した単電池を厚み方向に複数積層して備えると共に電力の入出力を行なう正負のターミナルを備えた電池モジュールを複数含む電池パックの製造方法である。当該製造方法では、複数の電池モジュールを、ターミナルがベース部材が位置する側と反対側の端部に位置するように、ベース部材上に配置し、複数の電池モジュールを、ベース部材における複数の電池モジュールの設置面に沿って、当該設置面上に配列する。
図1(A)、図1(B)、図1(C)は第1実施形態に係る電池パックを示す斜視図、平面図および正面図である。 電池パックにおける電池モジュール同士の電気的な接続を示す概念図である。 図3(A)、図3(B)は電池モジュールを設置するベース部材を示す斜視図および平面図である。 電池パックを構成する電池モジュールを示す斜視図である。 図5(A)、図5(B)は図4の電池モジュールを示す平面図、側面図である。 電池モジュールをボルトとブラケットによってベース部に設置する様子を示す断面図である。 電池モジュールから上部加圧板と下部加圧板および左右の側板を分解して保護カバーを取り付けた状態の積層体全体を露出させた状態を示す斜視図である。 図7に示される積層体から保護カバーを取り外し、かつ、積層体を電池群とバスバユニットに分解して示す斜視図である。 図8に示されるバスバユニットを分解して示す斜視図である。 第1セルサブアッシ(3組毎に並列接続する単電池)のアノード側電極タブと第2セルサブアッシ(3組毎に並列接続する単電池)のカソード側電極タブをバスバによって接合する状態を模式的に分解して示す斜視図である。 図11(A)は、単電池に一対のスペーサ(第1スペーサおよび第2スペーサ)を取り付けた状態を示す斜視図、図11(B)は、単電池から一対のスペーサ(第1スペーサおよび第2スペーサ)を取り外した状態を示す斜視図である。 一対のスペーサ(第1スペーサおよび第2スペーサ)を示す斜視図である。 図13(A)は、積層した単電池の電極タブにバスバを接合した状態の要部を断面で示す斜視図、図13(B)は、図13(A)を側方から示す側面図である。 電池モジュールにおいてモジュール間バスバの取り付け位置を説明するための比較例を示す図である。 第1実施形態に係る電池パックの製造方法を示すフローチャートである。 第1実施形態に係る電池パックの製造方法を示す図であって、電池モジュールを構成する部材を載置台に対して順に積層している状態を模式的に示す斜視図である。 図16に引き続き、電池モジュールの構成部材を上方から押圧している状態を模式的に示す斜視図である。 図17に引き続き、側板を上部加圧板および下部加圧板に対してレーザ溶接している状態を模式的に示す斜視図である。 図18に引き続き、電池群にバスバユニットの一部の部材を取り付けている状態を模式的に示す斜視図である。 図19に引き続き、バスバユニットのバスバを単電池の電極タブに対してレーザ溶接している状態を模式的に示す斜視図である。 積層した単電池の電極タブにバスバをレーザ接合している状態の要部を断面で示す側面図である。 図20および図21に引き続き、バスバユニットに保護カバーを取り付け、アノード側ターミナルおよびカソード側ターミナルをアノード側バスバおよびカソード側バスバに対してレーザ溶接している状態を模式的に示す斜視図である。 第2実施形態に係る電池パックを構成する電池モジュールを示す斜視図である。 第2実施形態に係る電池パックにおいて電池モジュールの内部を示す部分断面図である。 図25(A)、図25(B)は図1(A)、図1(B)の変形例を示す概略斜視図、概略平面図である。 電池モジュールを積層方向に沿って切断した断面図であり、第1実施形態の変形例を示す断面図である。
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面における各部材の大きさや比率は、説明の都合上誇張され実際の大きさや比率とは異なる場合がある。図中において、X、Y、およびZで表す矢印を用いて、方位を示している。Xによって表す矢印の方向は、単電池110の積層方向と交差し、かつ、単電池110の長手方向に沿った方向を示している。Yによって表す矢印の方向は、単電池110の積層方向と交差し、かつ、単電池110の短手方向に沿った方向を示している。Zによって表す矢印の方向は、単電池110の積層方向を示している。
 (第1実施形態)
 まず、第1実施形態の電池パック10を図1~図14を参照しつつ説明する。
 図1(A)、図1(B)、図1(C)は第1実施形態に係る電池パックを示す斜視図、平面図および正面図である。図2は電池パックにおける電池モジュール同士の電気的な接続を示す概念図である。図3(A)、図3(B)は電池モジュールを設置するベース部材を示す斜視図および平面図である。図4は、電池パック10を構成する電池モジュール100を示す斜視図である。図5(A)、図5(B)は図4の電池モジュールを示す平面図、側面図である。図6は、電池モジュールをボルトとブラケットによってベース部材に設置する様子を示す断面図である。図7は電池モジュールから上部加圧板と下部加圧板および左右の側板を分解して保護カバーを取り付けた状態の積層体全体を露出させた状態を示す斜視図である。
 図8は図7に示される積層体から保護カバーを取り外し、かつ、積層体を電池群とバスバユニットに分解して示す斜視図である。図9は図8に示されるバスバユニットを分解して示す斜視図である。図10は第1セルサブアッシ(3組毎に並列接続する単電池)のアノード側電極タブと第2セルサブアッシ(3組毎に並列接続する単電池)のカソード側電極タブをバスバによって接合する状態を模式的に分解して示す斜視図である。
 図11(A)は、単電池に一対のスペーサ(第1スペーサおよび第2スペーサ)を取り付けた状態を示す斜視図、図11(B)は、単電池から一対のスペーサ(第1スペーサおよび第2スペーサ)を取り外した状態を示す斜視図である。図12は一対のスペーサ(第1スペーサおよび第2スペーサ)を示す斜視図である。図13(A)は、積層した単電池の電極タブにバスバを接合した状態の要部を断面で示す斜視図、図13(B)は、図12(A)を側方から示す側面図である。図14は電池モジュールにおいてモジュール間バスバの取り付け位置を説明するための比較例を示す図である。
 なお、図1に示される状態において、左手前側を電池モジュール100全体および各構成部品の「前面側」といい、右手奥側を電池モジュール100全体および各構成部品の「背面側」といい、右手前側および左手奥側を電池モジュール100全体および各構成部品の左右の「側方側」という。
 (電池パック)
 まず、電池パックについて説明する。電池パック10は、図1(A)~図1(C)、図7、図11を参照して概説すれば、偏平に形成した単電池110を、厚み方向に複数積層して備えるとともに、電力の入出力を行なうアノード側ターミナル133とカソード側ターミナル134とを備えた複数の電池モジュール100A、100Bと、複数の電池モジュール100A、100Bを設置しベース部300を構成するベース部材310と、を有する。電池モジュール100A,100Bは、アノード側ターミナル133およびカソード側ターミナル134はベース部材310の側とは反対側の端部に配置し、電池モジュール100A、100Bはベース部材310の設置部311に沿って設置部311上に配列している。また、電池パック10は、隣接する電池モジュール同士を電気的に接続するモジュール間バスバ410、420、430と、電気的に接続された複数の電池モジュール100A、100Bの電気的な終端の位置に配置される配線440と、を有する。電池モジュール100A、100Bは、単電池110を積層した電池群100Gの積層方向Zにおける端部において上部加圧板151と下部加圧板152(一対の第1カバー部材に相当)を配置し、積層方向Zと交差し、電極タブ113を導出する長手方向Xと交差する短手方向Yにおける両端部に側板153(一対の第2カバー部材に相当)を配置している。
 電池パック10は、単電池110の積層数が異なる電池モジュール100Aと電池モジュール100Bとを有する。電池モジュール100A、100Bはベース部材310において積層することなく一段で設置している。電池モジュール100A、100Bは、図1(A)、図1(C)などに示すように、電力の入出力を行なうターミナルの位置する面が向かい合うように配置している。一方で、図1(B)において同じ行における電池モジュールは皆、同じ方向を向くように構成している。電池モジュール100Aは、単電池110を27積層して構成し、電池モジュール100Bは単電池110を21積層して構成している。しかし、積層数はあくまで例示であって、これに限定されない。このように、電池モジュール100Aと電池モジュール100Bとでは単電池110の積層数が異なるため、電池群100Gを短手方向Yから覆う側板153の仕様が異なる。
 具体的にいえば、電池モジュール100Aは電池モジュール100Bよりも単電池110の積層数が多いため、それに合わせて側板153の高さが電池モジュール100Bよりも電池モジュール100Aの方が高くなるように構成している。一方で、電池群100Gを積層方向Zにおける外方から覆う上部加圧板151および下部加圧板152は単電池110の積層数の影響を受けない。よって、電池モジュール100Aと電池モジュール100Bとで部品を共用しうる。上部加圧板151、下部加圧板152、および側板153の詳細については後述する。
 ベース部300は、図3.図4、図6に示すように、電池モジュール100A、100Bを設置するベース部材310と、電池モジュール100A、100Bをベース部材310に取り付けるためのブラケット320と、ボルト330およびナット340と、を有する。ベース部材310は、図3(A)、図3(B)に示すように、電池モジュール100A、100Bを設置する設置部311と、設置部311よりも外方に設けられるフランジ部312と、を有する。設置部311は、平坦に構成しているが、電池モジュール100A、100Bを設置できれば、平坦以外の形状であってもよい。フランジ部312は、電池パック10を例えば車両に搭載する際などにブラケットを取り付けることができるように、平坦な板材を折り曲げるなどして構成している。
 また、電池モジュール100A、100Bは、図6に示すように、単電池110が積層される部位にあたる積層部100Cと、電池モジュール100A、100Bをベース部材310に取り付けるボルト330を挿通させる挿通部100Dと、を有する。電池モジュール100Aを正面(X方向)または側面(Y方向)から見た場合、挿通部100Dは積層部100Cよりも積層方向Zにおける長さを短く構成している。さらに、積層部100Cから挿通部100Dにかけては、段差として凹部100Fが形成されている。
 ブラケット320は、電池モジュール100A、100Bをベース部材310に設置するために用意される。ブラケット320は、図6に示すように、電池モジュール100Aまたは電池モジュール100Bとベース部材310との間であって、電池モジュール100A、100Bの積層部100Cから挿通部100Dにかけての凹部100Fの形状に嵌り合って配置される。これにより、電池モジュール100A、100Bをベース部材310に取り付けた際に取り付け箇所の補強材として機能させることができる。ブラケット320は、本実施形態においてベース部材310と溶接によって接合しているが、電池モジュール100A、100Bを設置できれば、溶接以外の方法によって接合してもよい。
 ボルト330は、ベース部材310の設置部311と交差する方向において電池モジュール100A、100Bを構成する複数の単電池110に挿通し、電池モジュール100A,100Bをナット340と共にブラケット320に取り付ける。ブラケット320はベース部材310に接合しているため、図6に示すように、電池モジュール100A、100Bをブラケット320に取り付けることによって、電池モジュール100A、100Bがベース部300に取り付けられる。電池モジュール100A、100Bは、単電池110を積層方向Zに積層した状態でベース部材310に設置している。ボルト330は、単電池110の積層態様に応じて電池モジュール100A、100Bの積層方向、本実施形態では積層方向Zに挿通し、ナット340と締結している。また、図6に示すように、ボルト330の頭部は積層部100Cの上部に位置する上部加圧板151を超えないように構成している。
 モジュール間バスバ410、420、430は、図1(B)、図2に示すように電池パック10における隣接する電池モジュールを接続するために用いられる。モジュール間バスバ410は、図1(B)において同じ列において隣接する電池モジュール同士を電気的に接続する(例えば、図2における(1)と(2)の電池モジュール参照)。モジュール間バスバ420は、隣接する列間であって、行の位置が異なる電池モジュール同士、いわゆる斜めの位置関係にある電池モジュール同士を電気的に接続する(例えば、図2における(2)と(3)の電池モジュール参照)。モジュール間バスバ430は、隣接する列間であって、同じ行の位置にある電池モジュール同士を電気的に接続する(例えば、図2における(4)と(5)の電池モジュール参照)。電池パック10は、図1(A)、図1(B)のようにモジュール間バスバ410、420、430を配置することによって、図2の(1)~(16)の順番で電池モジュールを電気的に接続している。しかし、図2はあくまで例示であり、これに限定されない。また、モジュール間バスバ410、420、430は、電池モジュール100A、100Bの上面においてボルト450によって電池モジュール100A,100Bに締結されている。これにより、図14に示すように、モジュール間バスバを締結するボルトの取り付け位置が向かい合う電池モジュールの間に位置する場合と比べて、電池パックの部品が存在しない空間を作業スペースとして利用することができる。よって、隣接する電池モジュールをより近接させて配置できる。また、長手方向Xにおける電池モジュール100A、100Bはターミナルの部分を向かい合わせている。そのため、モジュール間バスバ420の長さを比較的短くできる。配線440は、図1(B)、図2における左に位置し、複数の電池モジュール100A、100Bから生じる電力の取り出し口となる不図示の端子部分に接続される。
 (電池モジュール)
 次に電池モジュールについて説明する。ここでは特に言及しないかぎり、電池モジュール100A、100Bは、単電池110の積層数と側板153の積層方向Zの寸法のみが異なるため、電池モジュール100と総称して説明する。図4および図7に示すように、電池モジュール100は、扁平形状を有する単電池110を厚み方向に複数枚積層した電池群100Gを含む積層体100Sを有する。電池モジュール100はさらに、積層体100Sの前面側に取り付けられる保護カバー140と、単電池110の積層方向に沿ってそれぞれの単電池110を加圧した状態において積層体100Sを収容する筐体150と、を有する。図8に示すように、積層体100Sは、電池群100Gと、電池群100Gの前面側に取り付けられ複数個のバスバ131を一体的に保持するバスバユニット130と、を有する。保護カバー140は、バスバユニット130を被覆して保護する。図9に示すように、バスバユニット130は、複数個のバスバ131と、複数個のバスバ131をマトリクス状に一体的に取り付けるバスバホルダ132と、を有する。複数のバスバ131のうち、アノード側の終端にはアノード側ターミナル133を取り付け、カソード側の終端にはカソード側ターミナル134を取り付けている。
 図10に示すように、電池群100Gは、電気的に並列接続した3つの単電池110からなる第1セルサブアッシ100Mと、電気的に並列接続した別の3つの単電池110からなる第2セルサブアッシ100Nと、をバスバ131によって直列に接続して構成している。
 第1セルサブアッシ100Mおよび第2セルサブアッシ100Nは、単電池110の電極タブ113の先端部113dの屈折方向を除いて同一の構成である。具体的には、第2セルサブアッシ100Nは、第1セルサブアッシ100Mに含まれる単電池110の天地を逆転させたものである。但し、第2セルサブアッシ100Nの電極タブ113の先端部113dの屈折方向は、第1セルサブアッシ100Mの電極タブ113の先端部113dの屈折方向と、同一になるように積層方向Zの下方の側に揃えている。各々の単電池110は、一対のスペーサ120(第1スペーサ121および第2スペーサ122)を取り付けている。
 単電池110は、例えば、扁平なリチウムイオン二次電池に相当する。単電池110は、図13(A)および図13(B)に示すように、発電要素111を一対のラミネートフィルム112(外装体に相当)によって封止した電池本体110Hと、発電要素111に電気的に接続され電池本体110Hから外部に導出された薄板状の電極タブ113と、を備えている。ラミネートフィルム112は、例えばポリエチレンやニッケルをラミネートして構成している。
 発電要素111は、正極と負極をセパレータで挟持したものを複数枚積層して構成している。発電要素111は、外部から電力の供給を受けて充電した上で、外部の電気デバイスに対して放電しつつ電力を供給する。
 ラミネートフィルム112は、絶縁性を備えたシートによって金属箔の両側を覆って構成している。一対のラミネートフィルム112は、発電要素111を積層方向Zに沿った両側から被覆して、その四辺を封止している。一対のラミネートフィルム112は、図11(B)に示すように、短手方向Yに沿った一端部112aの間から外部に向かって、アノード側電極タブ113Aおよびカソード側電極タブ113Kを導出させている。
 ラミネートフィルム112は、図11(B)および図12に示すように、短手方向Yに沿った一端部112aの両端にそれぞれ備えた一対の連結孔112eに、第1スペーサ121の一対の連結ピン121iをそれぞれ挿通させている。一方、ラミネートフィルム112は、短手方向Yに沿った他端部112bの両端にそれぞれ備えた一対の連結孔112eに、一対の連結ピン122iをそれぞれ挿通させている。ラミネートフィルム112は、長手方向Xに沿った両端部112cおよび112dを、積層方向Zの上方に向かって折り曲げて形成している。
 電極タブ113は、図11(B)、図13(A)、および図13(B)に示すように、アノード側電極タブ113Aおよびカソード側電極タブ113Kから構成し、それぞれ一対のラミネートフィルム112の一端部112aの間から互いに離間した状態において外部に向かって延在している。アノード側電極タブ113Aは、発電要素111中のアノード側の構成部材の特性に合わせて、アルミニウムからなる。カソード側電極タブ113Kは、発電要素111中のカソード側の構成部材の特性に合わせて、銅からなる。
 電極タブ113は、図13(A)および図13(B)に示すように、電池本体110Hと隣接する基端部113cから先端部113dにかけてL字状に形成している。具体的には、電極タブ113は、その基端部113cから長手方向Xの一方に沿って延在している。一方、電極タブ113の先端部113dは、積層方向Zの下方に沿って屈折して形成している。電極タブ113の先端部113dの形状は、L字形状に限定されない。電極タブ113の先端部113dは、バスバ131と対面するように面状に形成している。電極タブ113は、先端部113dをさらに延在させ、その延在部分を基端部113cに沿って電池本体110H側に折り返すようにして、U字形状に形成してもよい。一方、電極タブ113の基端部113cは、波状に形成したり湾曲形状に形成したりしてもよい。また、電極タブ113の面は、アノード側電極タブ113Aおよびカソード側電極タブ113Kの面と同じ側に配置している。
 各々の電極タブ113の先端部113dは、複数枚積層した単電池110において、図13(B)に示すように、積層方向Zの下方に揃えて屈折させている。ここで、電池モジュール100は、図10に示すように、電気的に並列接続した3つの単電池110(第1セルサブアッシ100M)と、電気的に並列接続した別の3つの単電池110(第2セルサブアッシ100N)を、直列に接続している。したがって、3つの単電池110毎に、その単電池110の天地を入れ替えて、単電池110のアノード側電極タブ113Aとカソード側電極タブ113Kの位置を、積層方向Zに沿って交差させるようにしている。
 但し、3つの単電池110毎の天地を単純に入れ替えただけでは、電極タブ113の先端部113dの位置が積層方向Zに沿った上下方向にばらついてしまうため、全ての単電池110の電極タブ113の先端部113dの位置が揃うように調整して屈折させている。
 図10の下方に図示した第1セルサブアッシ100Mは、図中の右側にアノード側電極タブ113Aを配置し、図中の左側にカソード側電極タブ113Kを配置している。一方、図10の上方に図示した第2セルサブアッシ100Nは、図中の右側にカソード側電極タブ113Kを配置し、図中の左側にアノード側電極タブ113Aを配置している。
 このように、アノード側電極タブ113Aとカソード側電極タブ113Kの配置が異なっていても、単電池110の電極タブ113の先端部113dは積層方向Zに沿った下方に屈折している。また、各々の電極タブ113の先端部113dは、図13(B)に示すように、積層体100Sの同一面の側に配設している。第1セルサブアッシ100Mおよび第2セルサブアッシ100Nの上面に位置する単電池110には、上方に積層する積層部材と接着する両面テープ160を貼り付けている。
 一対のスペーサ120(第1スペーサ121および第2スペーサ122)は、図13(A)、13(B)などに示すように、積層した単電池110の間に配設している。第1スペーサ121は、図11(A)に示すように、単電池110の電極タブ113を突出させたラミネートフィルム112の一端部112aに沿って配設している。第2スペーサ122は、図11(A)に示すように、ラミネートフィルム112の他端部112bに沿って配設している。第2スペーサ122は、第1スペーサ121の形状を簡略した構成からなる。各々の単電池110は、一対のスペーサ120(第1スペーサ121および第2スペーサ122)を取り付けた上で、積層方向Zに沿って複数枚積層する。一対のスペーサ120(第1スペーサ121および第2スペーサ122)は、絶縁性を備えた強化プラスチックスからなる。以下、第1スペーサ121の構成について説明した後に、第2スペーサ122の構成について第1スペーサ121の構成と比較しつつ説明する。
 第1スペーサ121は、図11(B)および図12に示すように、短手方向Yに沿って長尺な直方体形状から形成している。第1スペーサ121は、その長手方向(短手方向Y)の両端に載置部121Mおよび121Nを備えている。
 第1スペーサ121は、図13(B)に示すように、単電池110に取り付けた状態で積層したとき、一の第1スペーサ121の載置部121Mおよび121Nの上面121aと、当該一の第1スペーサ121の上方に配設された他の第1スペーサ121の載置部121Mおよび121Nの下面121bが、当接する。
 第1スペーサ121は、図12および図13(B)に示すように、複数枚積層する単電池110の相対的な位置決めを行うために、一の第1スペーサ121の上面121aに備えられた位置決ピン121cと、他の第1スペーサ121の下面121bに開口し位置決ピン121cの位置に対応した位置決穴121dを、嵌合させる。
 第1スペーサ121は、図12に示すように、積層方向Zに沿って連結する複数の単電池110同士を連結するボルトを挿通するためにロケート孔121eを、積層方向Zに沿って載置部121Mおよび121Nにそれぞれ開口している。
 第1スペーサ121は、図11(B)および図12に示すように、載置部121Mおよび121Nの間の領域を積層方向Zの上側から切り欠いたように形成している。当該切り欠いた部分は、第1スペーサ121の長手方向(単電池110の短手方向Y)に沿って第1支持面121gおよび第2支持面121hを備えている。第1支持面121gは、第2支持面121hよりも積層方向Zに沿って高く形成し、かつ、単電池110側に位置している。
 第1スペーサ121は、図10(B)に示すように、第1支持面121gによって、電極タブ113を突出させたラミネートフィルム112の一端部112aを載置して支持している。第1スペーサ121は、第1支持面121gの両端から上方に突出した一対の連結ピン121iを備えている。
 第1スペーサ121は、図11(B)および図12に示すように、電極タブ113にバスバ131と反対側から当接して単電池110の電極タブ113の先端部113dを支持する支持部121jを、第2支持面121hと隣接し、積層方向Zに沿った側面に備えている。第1スペーサ121の支持部121jは、バスバ131と共に電極タブ113の先端部113dを挟持して、先端部113dとバスバ131が互いに十分に当接するようにしている。
 第2スペーサ122は、図11(B)および図12に示すように、第1スペーサ121の形状を簡略した構成からなる。第2スペーサ122は、第1スペーサ121の一部を単電池110の短手方向Yに沿って削除した構成に相当する。具体的には、第2スペーサ122は、第1スペーサ121の第2支持面121hおよび第1支持面121gを支持面122kに置き換えて構成している。具体的に、第2スペーサ122は、第1スペーサ121と同様に、載置部122Mおよび122Nを備えている。第2スペーサ122は、載置部122Mおよび122Nの間の領域を積層方向Zの上側から切り欠いた部分に、支持面122kを備えている。支持面122kは、ラミネートフィルム112の他端部112bを載置して支持している。第2スペーサ122は、第1スペーサ121と同様に、位置決ピン122c、位置決穴、ロケート孔122e、および連結ピン122iを備えている。
 バスバユニット130は、図8および図9に示すように、バスバ131を一体的に複数備えている。バスバ131は、導電性を備えた金属からなり、異なる単電池110の電極タブ113の先端部113d同士を電気的に接続する。バスバ131は、平板状に形成し、積層方向Zに沿って起立している。
 バスバ131は、一の単電池110のアノード側電極タブ113Aとレーザ溶接するアノード側バスバ131Aと、積層方向Zに沿って隣り合う他の単電池110のカソード側電極タブ113Kとレーザ溶接するカソード側バスバ131Kを、接合して一体的に構成している。
 アノード側バスバ131Aとカソード側バスバ131Kは、図9および図10に示すように、同一の形状からなり、それぞれL字状に形成している。アノード側バスバ131Aとカソード側バスバ131Kは、天地を反転させて重ね合わせている。具体的には、バスバ131は、アノード側バスバ131Aの積層方向Zに沿った一端部の屈折した部分と、カソード側バスバ131Kの積層方向Zに沿った一端部の屈折した部分を接合して、一体化している。アノード側バスバ131Aとカソード側バスバ131Kは、図9に示すように、短手方向Yの一端から長手方向Xに沿って側部131cを備えている。側部131cは、バスバホルダ132に接合する。
 アノード側バスバ131Aは、アノード側電極タブ113Aと同様に、アルミニウムからなる。カソード側バスバ131Kは、カソード側電極タブ113Kと同様に、銅からなる。異なる金属からなるアノード側バスバ131Aとカソード側バスバ131Kは、超音波接合によって互いに接合している。
 バスバ131は、図9に示すように、電池モジュール100が例えば3つの単電池110を並列接続したものを複数組にわたって直列接続して構成されたものである場合、アノード側バスバ131Aの部分を、積層方向Zに沿って互いに隣接している3つの単電池110のアノード側電極タブ113Aに対してレーザ溶接する。同様に、バスバ131は、カソード側バスバ131Kの部分を、積層方向Zに沿って互いに隣接している3つの単電池110のカソード側電極タブ113Kに対してレーザ溶接する。
 但し、マトリクス状に配設したバスバ131のうち、図8および図9の図中右上に位置するバスバ131は、21つの単電池110(3並列7直列)のアノード側の終端に相当し、アノード側バスバ131Aのみから構成している。このアノード側バスバ131Aは、電池群100Gの最上部の3つの単電池110のアノード側電極タブ113Aに対してレーザ接合する。同様に、マトリクス状に配設したバスバ131のうち、図8および図9の図中左下に位置するバスバ131は、21つの単電池110(3並列7直列)のカソード側の終端に相当し、カソード側バスバ131Kのみから構成している。このカソード側バスバ131Kは、電池群100Gの最下部の3つの単電池110のカソード側電極タブ113Kに対してレーザ接合する。
 バスバホルダ132は、図9に示すように、複数のバスバ131を、複数枚積層した各々の単電池110の電極タブ113に対面するようにマトリクス状に一体的に保持している。バスバホルダ132は、絶縁性を備えた樹脂からなり、枠状に形成している。
 バスバホルダ132は、図9に示すように、単電池110の電極タブ113を支持している方の第1スペーサ121の長手方向の両側に位置するように、積層方向Zに沿って起立した一対の支柱部132aをそれぞれ備えている。一対の支柱部132aは、第1スペーサ121の載置部121Mおよび121Nの側面に嵌合する。一対の支柱部132aは、積層方向Zに沿って視認した場合にL字状であって、積層方向Zに沿って延在した板状に形成している。バスバホルダ132は、第1スペーサ121の長手方向の中央付近に位置するように、積層方向Zに沿って起立した一対の補助支柱部132bを離間させて備えている。一対の補助支柱部132bは、積層方向Zに沿って延在した板状に形成している。
 バスバホルダ132は、図9に示すように、積層方向Zに沿って隣り合うバスバ131の間にそれぞれ突出する絶縁部132cを備えている。絶縁部132cは、短手方向Yに沿って延在した板状に形成している。各々の絶縁部132cは、支柱部132aと補助支柱部132bとの間に水平に備えている。絶縁部132cは、積層方向Zに沿って隣り合う単電池110のバスバ131の間を絶縁することによって放電を防止する。
 バスバホルダ132は、それぞれ独立して形成した支柱部132aと補助支柱部132bおよび絶縁部132cを互いに接合して構成してもよいし、支柱部132aと補助支柱部132bおよび絶縁部132cを一体的に成形して構成してもよい。
 アノード側ターミナル133は、図7及び図9に示すように、第1セルサブアッシ100Mと第2セルサブアッシ100Nを交互に積層して構成した電池群100Gのアノード側の終端に相当する。
 アノード側ターミナル133は、図9に示すように、マトリクス状に配設したバスバ131のうち、図中右上に位置するアノード側バスバ131Aに接合する。アノード側ターミナル133は、導電性を備えた金属板からなり、短手方向Yに沿って平面視した場合、平板状の部材を折り曲げ箇所133a、133b、133cにおいて略90度またはL字状に折り曲げた形状からなる。折り曲げ箇所133aから端部までの面は、アノード側バスバ131Aにレーザ接合する。折り曲げ箇所133cから端部までの面は、電池モジュール100の上面に臨んでモジュール間バスバ410、420、430のいずれかを接続させ、その中央に開口した孔133d(ネジ溝を含む)を備える。孔133dには、ボルト450を取り付けて、モジュール間バスバ410、420、430のいずれかを接続させる。
 カソード側ターミナル134は、図9に示すように、第1セルサブアッシ100Mと第2セルサブアッシ100Nを交互に積層して構成した電池群100Gのカソード側の終端に相当する。カソード側ターミナル134は、図9に示すように、マトリクス状に配設したバスバ131のうち、図中左下に位置するカソード側バスバ131Kに接合する。カソード側ターミナル134は、アノード側ターミナル133と同様にモジュール間バスバ410、420、430のいずれかを電池モジュール100の上面にて接続できるように構成している。カソード側ターミナル134は、アノード側ターミナル133と同様に、図9に示すように平坦な板材を略90度またはL字状に折り曲げた折り曲げ箇所134a、134b、134cを形成している。折り曲げ箇所134aよりも下方の面は、カソード側バスバ131Kにレーザ等によって接合される。折り曲げ箇所134cから端部までの面は、アノード側ターミナル133と同様に、その中央に開口した孔134d(ネジ溝を含む)を備える。孔134dには、モジュール間バスバ410、420、430のいずれかを接続させる。
 保護カバー140は、図7および図8に示すように、バスバユニット130を被覆することによって、バスバ131同士が短絡したり、バスバ131が外部の部材に接触して短絡したり漏電したりすることを防止する。さらに、保護カバー140は、アノード側ターミナル133およびカソード側ターミナル134を外部に臨ませて、各々の単電池110の発電要素111に充放電をさせる。保護カバー140は、絶縁性を備えたプラスチックスからなる。
 保護カバー140は、図8に示すように、平板状に形成し、積層方向Zに沿って起立している。保護カバー140は、その側面140aの上端140bと下端140cを長手方向Xに沿って屈折した形状からなり、バスバユニット130に嵌合させる。
 保護カバー140の側面140aは、図8に示すように、バスバユニット130に備えられたアノード側ターミナル133をアノード側バスバ131Aに接合するために、当該アノード側ターミナル133よりも若干大きい矩形状の孔からなる第1開口140dを備えている。同様に、保護カバー140の側面140aは、バスバユニット130に備えられたカソード側ターミナル134をカソード側バスバ131Kに接合するために、当該カソード側ターミナル134よりも若干大きい矩形状の孔からなる第2開口140eを備えている。
 筐体150は、図4および図5(B)に示すように、電池群100Gを積層方向Zに沿って加圧した状態において収容している。上部加圧板151および下部加圧板152は、電池群100Gに備えられた各々の単電池110の発電要素111を挟持しつつ加圧することによって、発電要素111に適正な面圧を与える。別の言い方をすれば、電池モジュール100における電池群100Gの高さは、上部加圧板151および下部加圧板152によって、単電池110を無負荷状態で電池群100Gと同じ数だけ積層した際の高さよりも高さが低くなるように構成している。
 上部加圧板151は、図4および図7に示すように、電池群100Gの積層方向Zに沿った上方に配設している。上部加圧板151は、積層方向Zに沿って下方に突出した加圧面151aを、中央に備えている。加圧面151aによって、各々の単電池110の発電要素111を下方に押圧する。上部加圧板151は、短手方向Yに沿った両側から、長手方向Xに沿って延在した保持部151bを備えている。保持部151bは、第1スペーサ121の載置部121Mおよび121N、または第2スペーサ122の載置部122Mおよび122Nを被覆する。保持部151bの中央には、第1スペーサ121の位置決穴121dまたは第2スペーサ122の位置決穴122dと積層方向Zに沿って連通するロケート孔151cが開口している。ロケート孔151cには、単電池110同士を連結するボルト330が挿通する。上部加圧板151は、十分な厚みを備えた金属板からなる。上部加圧板151は、また、図7に示すように側板153との接合部として積層方向Zと交差する短手方向Yにおける両端を折り曲げた折り曲げ部151dを有している。
 下部加圧板152は、図4および図7に示すように、上部加圧板151と同一の構成からなり、上部加圧板151の上下が逆転した状態で配置している。下部加圧板152は、電池群100Gの積層方向Zに沿った下方に配設している。下部加圧板152は、積層方向Zに沿って上方に突出した加圧面152aによって、各々の単電池110の発電要素111を上方に押圧する。下部加圧板152は、また、図7に示すように側板153との接合部として積層方向Zに交差する短手方向Yにおける両端を折り曲げた折り曲げ部152dを有している。
 一対の側板153は、図4および図7に示すように、電池群100Gを積層方向Zの上下から挟持しつつ加圧している上部加圧板151および下部加圧板152が互いに離間しないように、上部加圧板151および下部加圧板152の相対位置を固定する。側板153は、矩形状の金属板からなり、積層方向Zに沿って起立している。一対の側板153は、図4に示すように上部加圧板151の折り曲げ部151dおよび下部加圧板152の折り曲げ部152dよりも外方に配置している。一対の側板153は、上部加圧板151および下部加圧板152に対して電池群100Gの短手方向Yの両側からレーザ溶接によって接合される。各々の側板153は、図5(B)に示すように、上部加圧板151と当接している上端153aの部分に対して、長手方向Xに沿って、シーム溶接等で線状の溶接部153c(接合部に相当)を形成している。同様に、各々の側板153は、下部加圧板152と当接している下端153bの部分に対して、長手方向Xに沿って、シーム溶接等で線状の溶接部153d(接合部に相当)を形成している。一対の側板153は、電池群100Gの短手方向Yの両側を被覆して保護する。
 (電池パックの製造方法)
 次に、電池パック10の製造方法について図15~図22を参照しつつ説明する。図15は第1実施形態に係る電池パック10の製造方法を示すフローチャートである。
 図15を参照して電池パック10の製造方法について概説すれば、下部加圧板152の配置(ステップST1)と、単電池110の積層(ステップST2)と、上部加圧板151の配置(ステップST3)と、加圧(ステップST4)と、側板153の上部加圧板151および下部加圧板152への接合(ステップST5)と、電極タブ113、バスバ131の接合(ステップST6)と、、アノード側ターミナル133およびカソード側ターミナル134の接合(ステップST7)と、電池モジュール100A、100Bのベース部材310への取り付け(ステップST9)と、モジュール間バスバ410、420、430の取り付け(ステップST10)と、を有する。なお、便宜上、ステップST1からステップST3までを積層工程、ステップST4を加圧工程、ステップST5を第1接合工程、ステップST6、ステップST7を第2接合工程、ステップST9、10を取り付け工程、と称する。なお、上記工程は説明の便宜上呼称しているものであり、以下に述べる各々の動作が同様であれば、工程が上記と同様に呼称されたり、分けられたりしていなくてもよい。
 まず、電池モジュール100A、100Bを構成する部材を積層する積層工程(ステップST1からステップST3)について図16を参照しつつ説明する。
 図16は、第1実施形態に係る電池パック10の製造方法を示す図であって、電池モジュール100を構成する部材を載置台701に対して順に積層している状態を模式的に示す斜視図である。
 積層工程に用いる載置台701は、板状に形成し、水平面に沿って設けている。載置台701は、順に積層する下部加圧板152、第1セルサブアッシ100M、第2セルサブアッシ100N、および上部加圧板151の長手方向Xおよび短手方向Yに沿った相対的な位置を合わせる位置決め用のロケートピン702を備えている。ロケートピン702は、載置台701の上面701aに、所定の間隔を隔てて4本起立している。4本のロケートピン702の互いの間隔は、例えば、上部加圧板151の4隅に備えられたロケート孔152cの互いの間隔に対応している。ロボットアーム、ハンドリフタ、および真空吸着タイプのコレット等を用いて、電池モジュール100を構成する部材を積層する。
 積層工程では、図16に示すように、ロボットアームによって、下部加圧板152を、その四隅に設けたロケート孔152cがロケートピン702に挿入された状態において、積層方向Zに沿って降下させつつ、載置台701の上面701aに載置する(ステップST1)。次に、ロボットアームによって、単電池110を有する第1セルサブアッシ100Mを、その構成部材の第1スペーサ121および第2スペーサ122に備えたロケート孔がロケートピン702に挿入された状態において、積層方向Zに沿って降下させる。そして、第1セルサブアッシ100Mを下部加圧板152に積層する。同様に、ロボットアームによって、単電池110を有する第2セルサブアッシ100Nと第1セルサブアッシ100Mを、交互に3組ずつ積層する(ステップST2)。第1セルサブアッシ100Mおよび第2セルサブアッシ100Nの上面には、上方に積層する積層部材と接着する両面テープ160を貼り付けている。その後、ロボットアームによって、上部加圧板151を、その四隅に設けたロケート孔151cがロケートピン702に挿入された状態において、積層方向Zに沿って降下させつつ、第1セルサブアッシ100Mに積層する(ステップST3)。
 次に、電池モジュール100の電池群100Gを加圧する加圧工程について図17を参照しつつ説明する。
 図17は、図16に引き続き、電池モジュール100の構成部材を上方から押圧している状態を模式的に示す斜視図である。
 加圧工程に用いる加圧治具703は、板状に形成し水平面に沿って設けた加圧部703aと、円柱形状に形成し加圧部703aの上面に起立させて接合した支持部703bを備えている。支持部703bは、積層方向Zに沿って駆動する電動ステージや油圧シリンダを連結している。加圧部703aは、支持部703bを介して、積層方向Zに沿って下方および上方に移動する。加圧部703aは、当接した積層部材を加圧する(ステップST4)。
 加圧工程では、図17に示すように、加圧治具703の加圧部703aは、支持部703bに連結した電動ステージが駆動することによって、上部加圧板151に当接しつつ積層方向Zの下方に沿って降下する。下方に沿って押圧された上部加圧板151と、載置台701に載置された下部加圧板152によって、電池群100Gを挟持しつつ加圧する。電池群100Gに備えられた各々の単電池110の発電要素111は、適正な面圧が与えられる。加圧工程は、次の第1接合工程が完了するまで継続する。
 次に、側板153を上部加圧板151および下部加圧板152に接合する第1接合工程について図18を参照しつつ説明する。
 図18は、図17に引き続き、側板153を上部加圧板151および下部加圧板152に対してレーザ溶接している状態を模式的に示す斜視図である。
 第1接合工程に用いる押板704は、側板153を上部加圧板151および下部加圧板152に対してそれぞれ押圧して、側板153を上部加圧板151および下部加圧板152にそれぞれ密着させる。押板704は、金属からなり、長尺な板形状に形成している。押板704は、本体704aに長手方向に沿って直線状のスリット704bを開口している。押板704は、積層方向Zに沿って、その短手方向を起立させている。押板704は、本体704aによって側板153を押圧しつつ、スリット704bによって溶接用のレーザ光L1を通過させる。
 レーザ発振器705は、側板153を上部加圧板151および下部加圧板152に接合する光源である。レーザ発振器705は、例えば、YAG(イットリウム・アルミニウム・ガーネット)レーザから構成する。レーザ発振器705から導出したレーザ光L1は、例えば、光ファイバーやミラーによって光路を調整し、集光レンズによって集光した状態において、側板153の上端153aと下端153bに対して照射する。レーザ発振器705から導出したレーザ光L1は、例えば、ハーフミラーによって分岐させて、側板153の上端153aおよび下端153bに対して同時に照射する構成としてもよい。
 第1接合工程では、図18に示すように、レーザ発振器705が、押板704によって押圧された側板153の上端153aに対して、押板704のスリット704bを介してレーザ光L1を水平に走査し、側板153と上部加圧板151を複数箇所にわたりシーム溶接して接合する。同様に、レーザ発振器705は、押板704によって押圧された側板153の下端153bに対して、押板704のスリット704bを介してレーザ光L1を水平に走査し、側板153と下部加圧板152を複数箇所にわたりシーム溶接して接合する(ステップST5)。
 次に、第2接合工程のうち、バスバ131を単電池110の電極タブ113に接合する際について図19~図21を参照しつつ説明する。
 図19は、図18に引き続き、電池群100Gにバスバユニット130の一部の部材を取り付けている状態を模式的に示す斜視図である。図20は、図19に引き続き、バスバユニット130のバスバ131を単電池110の電極タブ113に対してレーザ溶接している状態を模式的に示す斜視図である。図21は、積層した単電池110の電極タブ113にバスバ131をレーザ接合している状態の要部を断面で示す側面図である。
 第2接合工程では、図19から図20に示すように、載置台701が、図中の反時計回りに90°回転して、電池群100Gの電極タブ113とレーザ発振器705を対面させる。さらに、各々のバスバ131が一体的に保持されたバスバホルダ132を、ロボットアームによって、電池群100Gの対応する電極タブ113に当接させつつ押圧し続ける。さらに、図20および図21に示すように、レーザ発振器705は、バスバ131にレーザ光L1を照射して、バスバ131と電極タブ113の先端部113dをシーム溶接またはスポット溶接して接合する。その後、図21に示すように、アノード側ターミナル133を、マトリクス状に配設したバスバ131のうち、アノード側の終端に相当するアノード側バスバ131A(図9中右上)に接合する。同様に、カソード側ターミナル134を、マトリクス状に配設したバスバ131のうち、カソード側の終端に相当するカソード側バスバ131K(図9中左下)に接合する(ステップST6)。
 次に、第2接合工程のうち、保護カバー140をバスバ131に対して取り付け、アノード側ターミナル133およびカソード側ターミナル134をバスバ131に接合する際について図22を参照しつつ説明する。
 図22は、図20および図21に引き続き、バスバユニットに保護カバーを取り付け、アノード側ターミナルおよびカソード側ターミナルをアノード側バスバおよびカソード側バスバに対してレーザ溶接している状態を模式的に示す斜視図である。
 ここでは、ロボットアームを用いて、保護カバー140の上端140bと下端140cをバスバユニット130に嵌合させつつ、保護カバー140をバスバユニット130に取り付ける。保護カバー140の上端140bと下端140cは、バスバユニット130に対して接着剤によって接合してもよい。そして、図22に示すように、第1開口140dからレーザーを照射してアノード側ターミナル133をアノード側バスバ131Aに溶接する。同様に、第2開口140eからレーザーを照射してカソード側ターミナル134をカソード側バスバ131Kに溶接する(ステップST7)。保護カバー140によってバスバユニット130を被覆して、バスバ131同士が短絡したり、バスバ131が外部の部材に接触して短絡したり漏電したりすることを防止する。この後、電池モジュール100は、載置台701から取り外して、電池性能等を検査する検査工程に搬出する。
 図1(A)、図1(B)などに示すように、本実施形態に係る電池パック10は、電池モジュールを16個使用している。現時点では電池モジュールを1つしか形成できていない(ステップST8:NO)。そのため、電池モジュール100A、100Bを合わせて16個用意できるまで、ステップST1からステップST7を繰り返す。なお、上記のように、電池モジュール100Aと電池モジュール100Bは、単電池110の積層数や側板153の仕様が異なる。そのため、ステップST2は電池モジュールの仕様に応じて単電池110の積層数を変更する。同様に、ステップST5では電池モジュールの仕様に応じて使用する側板153の仕様を変更する。
 電池モジュール100A、100Bを合わせて16個用意できたら(ステップST8:YES)、取り付け工程においてブラケット320、ボルト330、およびナット340を用いてベース部材310に電池モジュール100A、100Bを取り付ける(ステップST9)。電池モジュール100A,100Bはベース部300に対して交差する方向には積層されず、一段で設置される。そして、電池モジュール100A、100Bにモジュール間バスバ410、420、430、または配線440のいずれかを取り付ける(ステップST10)。
 なお、ステップST1からステップST10までの作業は、工程全般をコントローラによって制御する自動機、工程の一部を作業者が担う半自動機、または工程全般を作業者が担うマニュアル機のいずれの形態によって具現化してもよい。
 (作用効果)
 上述した第1実施形態に係る電池パック10およびその電池パック10の製造方法によれば、以下の作用効果を奏する。
 第1実施形態では電池モジュール100A、100Bのアノード側ターミナル133とカソード側ターミナル134各々に取り付けられるモジュール間バスバ410、420、430、または配線440の取り付け部をベース部材310とは反対側の端部に配置し、電池モジュール100A、100Bをベース部材310の設置部311の設置面に沿って、設置面上に配列している。単電池110や電池モジュール100の数は多くに及ぶため、上記のように構成することによって、モジュール間バスバ410等をベース部300に近い下部まで取り回す必要がなくなる。そして、モジュール間バスバ410等においてベース部材310と反対側には電池パックの部品は配置されていない。そのため、電池パックの部品が存在しない空間をモジュール間バスバ410等を取り付ける際の作業スペースとすることができる。よって、隣接する電池モジュール同士の間に作業スペースを設けないか、または設けにくくすることができる。これにより、電池モジュール同士の間の間隔が比較的小さくても組み立てが可能な電池パックとすることができる。また、電池モジュール同士の間隔を比較的小さくできることによって、電池パック全体の容積のうち、電池モジュールが占める空間の割合を大きくでき、電池パックの小型化にもつながり得る。また、上記のような効果は、電池モジュール100A、100Bをベース部材100A,100Bにおいて積層することなく一段で配置することによっても奏することができる。
 また、図1(C)において隣接する列、言い換えれば長手方向Xにおいて隣接する電池モジュール100Aのアノード側ターミナル133とカソード側ターミナル134は、電池モジュール100Bのアノード側ターミナル133とカソード側ターミナル134と向かい合うように構成している。そのため、当該部位ではモジュール間バスバ420を短くでき、バスバの取り回しをコンパクトにすることができる。また、電池モジュール100において電極タブ113の面はアノード側ターミナル133およびカソード側ターミナル134の面と同じ側に配置している。そのため、電池モジュール間だけでなく、電極タブからターミナルまでの間の電気的接続に必要な部品の長さを比較的短くすることができる。
 また、図1(C)ではボルト450を積層方向Zに挿通させているが、これに限定されず、隣接する電池モジュール同士の間にボルト450などのための作業スペースを少なくできれば、ボルト450は電池モジュール100の側面に取り付けてもよい。この場合、図1(C)に示すように、向かい合う電池モジュール100Aのアノード側ターミナル133およびカソード側ターミナル134のベース部材310からの高さと電池モジュール100Bのアノード側ターミナル133およびカソード側ターミナル134のベース部材310からの高さは、異なるように構成することが望ましい。隣接する電池モジュール同士のモジュール間バスバのボルト取り付け位置の高さが同じであると、図14に示すように、ボルト取り付け位置の高さが異なる場合と比べて2倍程度の作業スペースが必要になるおそれがある。そのため、上記のように構成することによって、電池モジュール同士の間隔を比較的小さくすることができる。なお、図1(C)のように隣接する電池モジュールにおいて単電池の積層数が異なる場合、積層数の高い電池モジュールのモジュール間バスバのボルト取り付け位置は、作業スペースの観点から積層数の少ない電池モジュールの上部よりも高い位置に設けることが望ましい。
 また、電池モジュール100A、100Bは、ボルト330をベース部300と交差する方向において複数の単電池110に挿通させ、ナット340と共に締結することによって、ブラケット320を介してベース部材310に固定している。電池モジュールにおいて単電池に挿通するボルトの作業スペースは電池モジュールのベース部に対する置き方によって変わる。仮に電池モジュールを単電池がベース部に平行に積層するように配置した場合には、工具等が電池モジュール同士の隙間の方向に沿って侵入し得るため、より多くの作業スペースが必要になってしまう。これに対して、ベース部300と交差する方向にボルト330を挿通させることによって、電池バックの部品が存在しないスペースを有効活用して、電池モジュール同士の間に必要な作業スペースを少なくすることができる。
 また、ブラケット320は、積層部100Cから当該積層部100Cよりも積層方向Zにおける長さが短い挿通部100Dにかけて形成された凹部100Fの形状に嵌り合って電池モジュール100A、100Bに接続している。そのため、電池パック10に外力が作用した際にも、ブラケット320を挿通部100Dの部位の剛性を強化するように機能させることができる。
 また、図5に示すように、挿通部100Dにおいてボルト330を配置した部位の中でもボルト頭部の部位は、積層部100Cの端部に位置する上部加圧板151を超えない長さを有するように構成している。そのため、ボルトが積層部よりも突出している場合に比べて電池パック全体の容積を小さくすることができる。よって、電池パック10を例えば車両に搭載する場合にも、近接する部品等とのクリアランスにおいて有利になり、電池パック10の適用可能性を向上させることができる。
 また、一対の側板153は、電池群100Gを上部加圧板151および下部加圧板152によって積層方向Zに加圧した状態において上部加圧板151および下部加圧板152と溶接によって接合している。そのため、上部加圧板151、下部加圧板152、および側板153によって電池群100Gをしっかりと固定することができ、衝撃に対する信頼性を向上させることができる。
 また、電池モジュール100A,100Bは、単電池110の積層数に拘わらず同一の上部加圧板151および下部加圧板152を使用するように構成している。別の言い方をすれば、積層数に応じて積層方向Zに関係する側板153などの部材は単電池110の積層数に応じて変更する。そのため、ひとつの電池モジュールに搭載する単電池の数を柔軟に調整することができる。よって、電池パックとしてのレイアウトや性能などを柔軟に調整することができる。
 (第2実施形態)
 次に第2実施形態に係る電池パックおよびその製造方法について説明する。図23は第2実施形態に係る電池パックを示す斜視図、図24は第2実施形態に係る電池パックにおいて電池モジュールの内部を示す部分断面図である。
 第1実施形態では上部加圧板151と下部加圧板152の間に、単電池110を3つ積層した第1セルサブアッシ100Mと第2セルサブアッシ100Nを積層する実施形態について説明した。しかし、以下のように構成することもできる。
 第2実施形態に係る電池モジュール200は、図23、図24に示すように、第1セルサブアッシ100Mおよび第2セルサブアッシ100Nの間に電池パックの使用時に生じうる熱を外部に放熱する放熱部材270(伝熱部材に相当)を配置している。放熱部材270は、第1セルサブアッシ100Mまたは第2セルサブアッシ100Nと接触するセル接触部271と、セル接触部271から得た熱を外部に放熱するために外壁である側板253と接触する放熱部272と、を有する。また、側板153は、絶縁部材280を介して放熱部材270と接触している。
 放熱部材270は、電極タブ113を除いて単電池110の発電要素111を覆うラミネートフィルム112よりも熱伝導率が高いアルミ等の材料によって構成している。放熱部材270は、例えばアルミ等の平板を端部にて折り曲げ、比較的中央付近をセル接触部271、折り曲げた端部を放熱部272とすることができる。しかし、第1セルサブアッシ100Mなどから発生した熱を外部に放熱することができれば、上記に限定されない。側板253の外部には絶縁部材280を配置し、さらにその外側にはウォータージャケット290などを配置して放熱などを行なうことができる。また、図24において放熱部材230は、下から4個目と5個目の単電池110の間に1つ配置している。しかし、放熱部材270の個数や位置は上記に限定されず、適宜変更してもよい。また、電池群100Gと側板153との間には隙間を設け、当該隙間部分に外気を導入してもよい。なお、第2実施形態では放熱部材270、絶縁部材280、およびウォータージャケット290の構成が第1実施形態と異なり、その他の構成は第1実施形態と同様であるため、その他の構成の説明を省略する。
 (作用効果)
 次に第2実施形態に係る作用効果について説明する。第2実施形態では第1セルサブアッシ100Mおよび第2セルサブアッシ100Nを積層した電池群100Gの積層方向Zにおけるいずれかの位置にラミネートフィルム112よりも熱伝導率の高い放熱部材270を配置するように構成している。電池モジュール200は、第1実施形態と同様に単電池110の積層数に拘わらず上部加圧板151、下部加圧板152、および単電池110の積層数によって寸法を変更した側板153によって筐体を構成している。本実施形態における放熱部材270は、単電池110を直列や並列などに接続する態様、言い換えれば単位体積当たりの放熱量に応じて、配置する位置や数を任意に調整できる。よって、電池パック10の冷却を効率よく行うことができる。
 なお、本発明は上述した実施形態にのみ限定されず、特許請求の範囲において種々の変更が可能である。図25(A)、図25(B)は図1(A)、図1(B)の変形例を示す概略斜視図、概略平面図である。なお、図25(A)、図25(B)では説明の便宜上、モジュール間バスバおよび配線の図示を省略している。
 第1実施形態では、図1(B)、図1(C)に示すように電池モジュール100A、100Bをベース部材310の設置部311に垂直な方向と単電池110の積層方向とが一致するように設置する構成について説明した。しかし、これに限定されず、電池パック10aは、図25(A)、図25(B)に示すように、ベース部材310の設置部311に垂直な方向に単電池110を積層した電池モジュール100Aと、設置部311に平行な方向に単電池110を積層した電池モジュール100Eとによって構成してもよい。
 ここで、電池モジュール100Aのように単電池110をベース部300に対して垂直に積層した場合を縦置き、電池モジュール100Eのように単電池110をベース部300に平行に配置した場合を横置きと呼ぶ。電池モジュール100Eのようにベース部材310に横置きに配置することによって、電池モジュール100を積層方向から平面視した際の幅寸法に拘束されずに電池モジュールを配置できる。第1、第2実施形態による電池モジュール100は上述のように単電池の積層数を任意に調整できるため、横置きに配置することによって、少ないスペースに効率よく電池モジュールを配置することができる。
 また、電池パックを構成する電池モジュールは、電池モジュール100A、100Bの2種類である実施形態について説明したが、これに限定されない。電池モジュールの種類は2種類以上であってもよいし、一種類であってもよい。また、電池パック10に配置する電池モジュールの数は16個と説明したが、例示であり、16個に限定されない。
 また、上記ではバスバ同士を超音波接合、電極タブとバスバとをレーザ溶接によって接合する実施形態について説明したが、これに限定されない。バスバ同士、または電極タブとバスバとは溶接によって接合してもよい。また、上記では隣接する電極タブ同士をバスバに接合する実施形態について説明したが、これに限定されない。上記以外にも電極タブ同士を超音波接合または溶接によって接合してもよい。
 図26は電池モジュールを積層方向に沿って切断した断面図であり、第1実施形態の変形例を示す断面図である。第1実施形態では筐体150を構成する上部加圧板151および下部加圧板152の間に単電池110を複数積層した電池群100Gを配置する実施形態について説明した。しかし、これに限定されず、複数の単電池110のほかに、積層方向Zにおいて弾性力を生じさせる弾性部材370を設けるように構成してもよい。弾性部材370は、積層方向Zにおけるいずれかの位置に配置される。弾性部材370は、図26における略中央の位置において主に弾性変形する弾性部材371、372を有し、隣接する部材と箇所a1にて接合される。弾性部材370は、隣接する部材と接合されるが、図26に示すように、板状の中間部材280に接合することが望ましい。弾性部材371と弾性部材372とは、箇所a1よりも外方の箇所b1にて接合される。
 このように構成することによって、電池パックの使用時に充放電などによって経時的に単電池110の積層方向Zの厚さが変化しても、弾性部材370が厚さ方向の変化を吸収し、外力が入力された際の単電池110などの移動を防止することができる。
10 電池パック、
100、100A、100B、100E 電池モジュール、
100G 電池群、
110 単電池、
113 電極タブ、
121 第1スペーサ、
122 第2スペーサ、
151 上部加圧板、
152 下部加圧板、
153 側板、
270 放熱部材、
300 ベース部材、
310 ベース、
311 載置部、
312 フランジ部、
320 ブラケット、
330 ボルト、
340 ナット、
410、420、430 モジュール間バスバ、
440 配線、
X 長手方向、
Y 短手方向、
Z 積層方向。

Claims (15)

  1.  偏平に形成した単電池を厚み方向に複数積層して備えると共に電力の入出力を行なう正負のターミナルを備えた複数の電池モジュールと、
     前記複数の電池モジュールを設置するベース部材と、を有し、
     前記複数の電池モジュールの前記ターミナルを、電池モジュールにおける前記ベース部材側とは反対側の端部に配置し、前記複数の電池モジュールを、前記ベース部材における前記複数の電池モジュールの設置面に沿って、前記設置面上に配列した、電池パック。
  2.  前記複数の電池モジュールは、積層することなく一段で前記ベース部材上に設置されている請求項1に記載の電池パック。
  3.  一の電池モジュールは、その前記ターミナルを備える面が、隣接する他の電池モジュールにおいて前記ターミナルを備える面と向かい合って配置されている請求項1または2に記載の電池パック。
  4.  前記単電池は、発電要素を含む電池本体と、前記電池本体から導出した電極タブと、を備え、
     前記ターミナルを備える面は、前記電池モジュールにおいて前記電極タブを備える面と同じ側に位置する請求項3に記載の電池パック。
  5.  互いに向かい合う前記一の電池モジュールの前記ターミナルと前記他の電池モジュールの前記ターミナルとは、前記ベース部材からの高さが異なっている請求項3に記載の電池パック。
  6.  前記複数の電池モジュールにおける少なくとも一の電池モジュールは、複数の前記単電池に、前記ベース部材に対して交差する方向にボルトを挿通させた状態で前記ベース部材に取り付けている請求項1から3のいずれか1項に記載の電池パック。
  7.  前記電池モジュールを前記ベース部材に取り付けるブラケットをさらに有し、
     前記電池モジュールは、前記単電池を積層した積層部と、前記ボルトが挿通し前記積層部よりも前記単電池の積層方向の長さが短い挿通部と、を備え、
     前記積層部と前記挿通部との間にかけて凹部が形成され、
     前記ブラケットは、前記凹部の形状に嵌り合って前記電池モジュールに接続されている請求項6に記載の電池パック。
  8.  前記ボルトは、当該ボルトの頭部が前記積層部を超えない長さを有する請求項7に記載の電池パック。
  9.  前記複数の電池モジュールにおける一の電池モジュールは、前記単電池の積層方向を前記ベース部材に対して垂直な方向に沿わせた状態で前記ベース部材に配置され、
     前記複数の電池モジュールにおける他の電池モジュールは、前記単電池の積層方向を前記ベース部材に平行な方向に沿わせた状態で前記ベース部材に配置されている請求項1に記載の電池パック。
  10.  前記単電池は、発電要素を含む電池本体と、前記電池本体から導出した電極タブと、を備え、
     前記電池モジュールは、前記単電池の積層方向における両側から積層した前記単電池を覆う一対の第1カバー部材と、前記単電池の積層方向と交差し、かつ、前記電極タブが延びる方向と交差する方向における両側から積層した前記単電池を覆う一対の第2カバー部材と、を備え、
     前記一対の第2カバー部材は、積層した前記単電池を前記一対の第1カバー部材によって前記単電池の積層方向に加圧した状態において前記一対の第1カバー部材と接合されている、請求項1に記載の電池パック。
  11.  前記単電池は、発電要素を含む電池本体と、前記電池本体から導出した電極タブと、を備え、
     前記電池モジュールは、積層した前記単電池の前記複数の電極タブにおける各々と接合されるバスバを複数備え、
     電極タブとバスバとの間、隣接する電極タブ同士の間、または隣接するバスバ同士の間は超音波接合されているか、または溶接されている請求項1に記載の電池パック。
  12.  前記単電池は、発電要素を覆う外装体を備え、
     前記電池モジュールは、前記単電池の積層方向におけるいずれかの位置に配置され前記外装体よりも熱伝導率の高い部材を含む伝熱部材をさらに有する、請求項1に記載の電池パック。
  13.  前記複数の電池モジュールの各々は、前記単電池の積層数に拘わらず同一の前記一対の第1カバー部材が用いられる、請求項1に記載の電池パック。
  14.  前記電池モジュールは、前記単電池の積層方向におけるいずれかの位置に配置され前記積層方向に沿って弾発力を生じさせる弾性部材をさらに有する請求項1に記載の電池パック。
  15.  偏平に形成した単電池が厚み方向に複数積層されると共に電力の入出力を行なう正負のターミナルを備えた電池モジュールを複数含む電池パックの製造方法であって、
     前記複数の電池モジュールを、前記ターミナルがベース部材が位置する側と反対側の端部に位置するように、前記ベース部材上に配置し、
     前記複数の電池モジュールを、前記ベース部材における前記複数の電池モジュールの設置面に沿って、前記設置面上に配列する、電池パックの製造方法。
PCT/JP2015/079903 2015-10-22 2015-10-22 電池パックおよびその製造方法 WO2017068708A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MYPI2018701492A MY169882A (en) 2015-10-22 2015-10-22 Battery pack and method for producing same
CN201580084031.2A CN108140761B (zh) 2015-10-22 2015-10-22 组电池及其制造方法
EP15906714.9A EP3367461B1 (en) 2015-10-22 2015-10-22 Battery pack and method for producing same
KR1020187012803A KR101943285B1 (ko) 2015-10-22 2015-10-22 전지 팩 및 그 제조 방법
US15/767,896 US10622603B2 (en) 2015-10-22 2015-10-22 Battery pack and method for producing same
PCT/JP2015/079903 WO2017068708A1 (ja) 2015-10-22 2015-10-22 電池パックおよびその製造方法
ES15906714T ES2961966T3 (es) 2015-10-22 2015-10-22 Paquete de baterías y procedimiento para fabricarla
JP2017546364A JP6797819B2 (ja) 2015-10-22 2015-10-22 電池パックおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079903 WO2017068708A1 (ja) 2015-10-22 2015-10-22 電池パックおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2017068708A1 true WO2017068708A1 (ja) 2017-04-27

Family

ID=58556799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079903 WO2017068708A1 (ja) 2015-10-22 2015-10-22 電池パックおよびその製造方法

Country Status (7)

Country Link
US (1) US10622603B2 (ja)
EP (1) EP3367461B1 (ja)
JP (1) JP6797819B2 (ja)
KR (1) KR101943285B1 (ja)
CN (1) CN108140761B (ja)
ES (1) ES2961966T3 (ja)
WO (1) WO2017068708A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018181780A (ja) * 2017-04-21 2018-11-15 矢崎総業株式会社 積層バスバおよび電池モジュール
WO2019139098A1 (ja) * 2018-01-10 2019-07-18 藤森工業株式会社 組電池および電動装置
JP2019533279A (ja) * 2016-09-12 2019-11-14 ハイパードライブ イノベーション リミテッド バッテリーパック・エンクロージャ
CN110770934A (zh) * 2017-11-09 2020-02-07 株式会社Lg化学 二次电池单元模块及其组装方法
JP2020522845A (ja) * 2017-12-20 2020-07-30 エルジー・ケム・リミテッド バッテリーモジュール、これを含むバッテリーパック及び自動車
JP2022500829A (ja) * 2019-06-12 2022-01-04 エルジー・ケム・リミテッド 電池モジュール、その製造方法および電池モジュールを含む電池パック
WO2022210003A1 (ja) * 2021-03-31 2022-10-06 ソフトバンク株式会社 電池モジュール、電池モジュールの製造方法、プログラム、及び電池モジュールの製造装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102373774B1 (ko) * 2018-08-21 2022-03-14 에스케이온 주식회사 배터리 모듈 및 이를 포함하는 배터리 팩
CN209104208U (zh) * 2018-11-23 2019-07-12 宁德时代新能源科技股份有限公司 电池模组
JP7310561B2 (ja) * 2019-11-13 2023-07-19 Tdk株式会社 積層型バッテリーパック
CN112331983B (zh) 2019-11-29 2021-10-08 宁德时代新能源科技股份有限公司 电池模块、装置及失效电池单体的失效处理方法
KR20210108127A (ko) * 2020-02-25 2021-09-02 삼성에스디아이 주식회사 이차 전지 팩
JP7416005B2 (ja) * 2021-03-31 2024-01-17 トヨタ自動車株式会社 蓄電装置
CN113270626A (zh) * 2021-05-14 2021-08-17 华霆(合肥)动力技术有限公司 一种电池模组整形装置及方法
KR20230026041A (ko) * 2021-08-17 2023-02-24 주식회사 엘지에너지솔루션 전지팩 및 이를 포함하는 디바이스
CN114039103B (zh) * 2021-10-26 2023-09-08 三一技术装备有限公司 卷绕电芯的生产方法及其生产装置
CN114709533B (zh) * 2022-03-24 2024-06-21 中创新航科技股份有限公司 电池组及电池装置
KR20240094743A (ko) * 2022-12-16 2024-06-25 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지 팩
CN116031562B (zh) * 2023-03-28 2023-07-04 合肥召洋电子科技有限公司 一种储能电池的电池包安装结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253060A (ja) * 2005-03-14 2006-09-21 Nec Lamilion Energy Ltd フィルム外装電気デバイス集合体
JP2006313733A (ja) * 2005-04-07 2006-11-16 Nissan Motor Co Ltd 電池モジュール、および組電池
WO2011040297A1 (ja) * 2009-10-02 2011-04-07 株式会社 村田製作所 蓄電デバイス組立構造体と蓄電デバイス単位構造体
JP2012523087A (ja) * 2009-04-01 2012-09-27 エルジー・ケム・リミテッド モジュールの設計構造に柔軟性を有するバッテリーモジュール、並びにそのバッテリーモジュールを含む中型および大型のバッテリーパック
WO2013118874A1 (ja) * 2012-02-10 2013-08-15 住友重機械工業株式会社 ショベル
JP2013229266A (ja) * 2012-04-27 2013-11-07 Automotive Energy Supply Corp 組電池
JP2015520922A (ja) * 2012-06-07 2015-07-23 エルジー・ケム・リミテッド 安定性が向上した構造及び高い冷却効率性を有する電池モジュール
JP2015195136A (ja) * 2014-03-31 2015-11-05 株式会社Gsユアサ 蓄電装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5306639B2 (ja) 2007-12-17 2013-10-02 ダイキョーニシカワ株式会社 バッテリーパック
JP5573032B2 (ja) 2009-07-17 2014-08-20 日産自動車株式会社 組電池およびその製造方法
MX2012014397A (es) 2010-06-09 2013-02-01 Nissan Motor Modulo de bateria.
KR20120005727A (ko) 2010-07-09 2012-01-17 (주)브이이엔에스 배터리 모듈
JP5613601B2 (ja) 2011-03-24 2014-10-29 カヤバ工業株式会社 蓄電装置及びその製造方法
DE102011120511A1 (de) 2011-12-07 2013-06-13 Daimler Ag Batterie und Zellblock für eine Batterie
KR101732285B1 (ko) 2012-11-09 2017-05-02 닛산 지도우샤 가부시키가이샤 조전지 및 조전지의 제조 방법
JP2015002264A (ja) 2013-06-14 2015-01-05 旭化成Fdkエナジーデバイス株式会社 蓄電モジュール
JP2015005361A (ja) 2013-06-19 2015-01-08 株式会社豊田自動織機 電池パック
US9385355B2 (en) * 2013-07-30 2016-07-05 Johnson Controls Technology Company System and method for crimping interconnection of battery cells
KR101772115B1 (ko) * 2013-09-03 2017-08-28 삼성에스디아이 주식회사 유동 방지부를 포함하는 배터리 팩
JP6149670B2 (ja) 2013-10-07 2017-06-21 株式会社デンソー 電池モジュール
JP6349673B2 (ja) 2013-10-16 2018-07-04 日産自動車株式会社 筐体およびバッテリパック

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253060A (ja) * 2005-03-14 2006-09-21 Nec Lamilion Energy Ltd フィルム外装電気デバイス集合体
JP2006313733A (ja) * 2005-04-07 2006-11-16 Nissan Motor Co Ltd 電池モジュール、および組電池
JP2012523087A (ja) * 2009-04-01 2012-09-27 エルジー・ケム・リミテッド モジュールの設計構造に柔軟性を有するバッテリーモジュール、並びにそのバッテリーモジュールを含む中型および大型のバッテリーパック
WO2011040297A1 (ja) * 2009-10-02 2011-04-07 株式会社 村田製作所 蓄電デバイス組立構造体と蓄電デバイス単位構造体
WO2013118874A1 (ja) * 2012-02-10 2013-08-15 住友重機械工業株式会社 ショベル
JP2013229266A (ja) * 2012-04-27 2013-11-07 Automotive Energy Supply Corp 組電池
JP2015520922A (ja) * 2012-06-07 2015-07-23 エルジー・ケム・リミテッド 安定性が向上した構造及び高い冷却効率性を有する電池モジュール
JP2015195136A (ja) * 2014-03-31 2015-11-05 株式会社Gsユアサ 蓄電装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7149932B2 (ja) 2016-09-12 2022-10-07 ハイパードライブ イノベーション リミテッド バッテリーパック・エンクロージャ
JP2019533279A (ja) * 2016-09-12 2019-11-14 ハイパードライブ イノベーション リミテッド バッテリーパック・エンクロージャ
JP2018181780A (ja) * 2017-04-21 2018-11-15 矢崎総業株式会社 積層バスバおよび電池モジュール
CN110770934A (zh) * 2017-11-09 2020-02-07 株式会社Lg化学 二次电池单元模块及其组装方法
JP2020521284A (ja) * 2017-11-09 2020-07-16 エルジー・ケム・リミテッド 二次電池セルモジュールおよびその組立方法
US11996510B2 (en) 2017-11-09 2024-05-28 Lg Energy Solution, Ltd. Secondary battery cell module and assembling method thereof
US11329308B2 (en) 2017-11-09 2022-05-10 Lg Energy Solution, Ltd. Secondary battery cell module and assembling method thereof
JP7062168B2 (ja) 2017-11-09 2022-05-06 エルジー エナジー ソリューション リミテッド 二次電池セルモジュールおよびその組立方法
JP7045566B2 (ja) 2017-12-20 2022-04-01 エルジー エナジー ソリューション リミテッド バッテリーモジュール、これを含むバッテリーパック及び自動車
US11196120B2 (en) 2017-12-20 2021-12-07 Lg Chem, Ltd. Battery module, and battery pack and vehicle comprising same
JP2020522845A (ja) * 2017-12-20 2020-07-30 エルジー・ケム・リミテッド バッテリーモジュール、これを含むバッテリーパック及び自動車
JP7242560B2 (ja) 2018-01-10 2023-03-20 藤森工業株式会社 組電池および電動装置
JPWO2019139098A1 (ja) * 2018-01-10 2020-12-24 藤森工業株式会社 組電池および電動装置
WO2019139098A1 (ja) * 2018-01-10 2019-07-18 藤森工業株式会社 組電池および電動装置
JP2022500829A (ja) * 2019-06-12 2022-01-04 エルジー・ケム・リミテッド 電池モジュール、その製造方法および電池モジュールを含む電池パック
JP7226889B2 (ja) 2019-06-12 2023-02-21 エルジー エナジー ソリューション リミテッド 電池モジュール、その製造方法および電池モジュールを含む電池パック
US12046731B2 (en) 2019-06-12 2024-07-23 Lg Energy Solution, Ltd. Battery module, method for preparing the same and battery pack including the same
WO2022210003A1 (ja) * 2021-03-31 2022-10-06 ソフトバンク株式会社 電池モジュール、電池モジュールの製造方法、プログラム、及び電池モジュールの製造装置

Also Published As

Publication number Publication date
JP6797819B2 (ja) 2020-12-09
KR101943285B1 (ko) 2019-01-28
US20180309101A1 (en) 2018-10-25
KR20180053418A (ko) 2018-05-21
EP3367461A4 (en) 2018-10-03
ES2961966T3 (es) 2024-03-14
CN108140761A (zh) 2018-06-08
US10622603B2 (en) 2020-04-14
JPWO2017068708A1 (ja) 2018-08-30
CN108140761B (zh) 2020-08-04
EP3367461A1 (en) 2018-08-29
EP3367461B1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2017068708A1 (ja) 電池パックおよびその製造方法
KR101943284B1 (ko) 조전지의 제조 방법 및 제조 장치
JP6633643B2 (ja) 組電池および組電池の製造方法
KR101980501B1 (ko) 조전지 및 조전지의 제조 방법
JP6861045B2 (ja) 組電池、電池パック、組電池の製造方法及び電池パックの製造方法
CN108352470B (zh) 组电池的组装方法及组电池
JP6519662B2 (ja) 組電池
JP6667255B2 (ja) 組電池および組電池の製造方法
JP6737905B2 (ja) 組電池、組電池に用いられるバスバホルダおよび組電池の製造方法
JP6690920B2 (ja) 組電池および組電池用のバスバカバー並びに組電池の製造方法
JPWO2018142476A1 (ja) 組電池の製造方法および製造装置
JP2018010843A (ja) 組電池及び組電池の製造方法
JP6717581B2 (ja) 組電池および組電池用のスペーサ
JP2017084464A (ja) 組電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906714

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15767896

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017546364

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187012803

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015906714

Country of ref document: EP