WO2017057512A1 - 含フッ素弾性共重合体、その製造方法、架橋ゴムおよびその製造方法 - Google Patents

含フッ素弾性共重合体、その製造方法、架橋ゴムおよびその製造方法 Download PDF

Info

Publication number
WO2017057512A1
WO2017057512A1 PCT/JP2016/078720 JP2016078720W WO2017057512A1 WO 2017057512 A1 WO2017057512 A1 WO 2017057512A1 JP 2016078720 W JP2016078720 W JP 2016078720W WO 2017057512 A1 WO2017057512 A1 WO 2017057512A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
group
elastic copolymer
copolymer
crosslinked rubber
Prior art date
Application number
PCT/JP2016/078720
Other languages
English (en)
French (fr)
Inventor
八木 啓介
丈裕 巨勢
宏樹 長井
智子 安田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58423966&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017057512(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020187001834A priority Critical patent/KR102581553B1/ko
Priority to CN201680057643.7A priority patent/CN108137723B/zh
Priority to JP2017543520A priority patent/JP7125263B2/ja
Priority to RU2018115721A priority patent/RU2731565C1/ru
Priority to EP16851683.9A priority patent/EP3357936B1/en
Publication of WO2017057512A1 publication Critical patent/WO2017057512A1/ja
Priority to US15/880,647 priority patent/US10787531B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/12Incorporating halogen atoms into the molecule
    • C08C19/18Incorporating halogen atoms into the molecule by reaction with hydrocarbons substituted by halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/16Monomers containing bromine or iodine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators

Definitions

  • the present invention relates to a fluorine-containing elastic copolymer, a method for producing a fluorine-containing elastic copolymer, a crosslinked rubber, and a method for producing a crosslinked rubber.
  • Fluorine-containing elastic copolymers are excellent in heat resistance, chemical resistance, oil resistance, weather resistance, and the like, and are therefore suitable for use in harsh environments where hydrocarbon polymers cannot withstand.
  • Known fluorine-containing elastic copolymers include vinylidene fluoride / hexafluoropropylene copolymers, tetrafluoroethylene / propylene copolymers, tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymers, and the like. Yes.
  • fluorine-containing elastic copolymers are generally poor in reactivity
  • fluorine-containing fluorine-containing copolymers having iodine atoms are produced during the production of fluorine-containing elastic copolymers for the purpose of improving crosslinking reactivity with peroxides when forming crosslinked rubber.
  • Chain transfer agents are used (Patent Document 1).
  • the polymerization rate was low, and the productivity of the fluorinated elastic copolymer was very low.
  • the obtained fluorinated elastic copolymer has insufficient crosslinking reactivity, and the crosslinked rubber properties such as compression set are not satisfactory.
  • a fluorine-containing chain transfer agent having an iodine atom Patent Document 2.
  • An object of the present invention is to provide a fluorinated elastic copolymer that is capable of obtaining a crosslinked rubber having excellent tensile strength and low compression set under high temperature conditions, a method for producing the fluorinated elastic copolymer, and a crosslinked rubber. And a method for producing the crosslinked rubber.
  • [6] The above [1] to [5], wherein the content of iodine atoms contained in the fluorinated elastic copolymer is 0.01 to 5% by mass relative to the total mass of the fluorinated elastic copolymer. ] The fluorine-containing elastic copolymer as described in any one of.
  • the monomer (a) is tetrafluoroethylene, the monomer (c) is propylene, and the molar ratio of the structural unit (A) to the structural unit (C) ((A) / The fluorinated elastic copolymer according to any one of [1] to [6] above, wherein (C)) is 40/60 to 60/40.
  • a method for producing a fluorinated elastic copolymer comprising copolymerizing the body (a), the following monomer (b), and the following monomer (c).
  • Monomer (b) one or more selected from the group consisting of compounds represented by the following formula (I).
  • R 1 , R 2 , R 3 , R 5 , R 6 and R 7 each independently represents a hydrogen atom, a fluorine atom or a methyl group
  • R 4 represents a carbon atom having 1 to 10 carbon atoms.
  • the fluorinated elastic copolymer of the present invention is excellent in crosslinking reactivity.
  • a crosslinked rubber having excellent tensile strength and small compression set under high temperature conditions can be obtained.
  • the method for producing a fluorinated elastic copolymer of the present invention the fluorinated elastic copolymer of the present invention can be easily produced.
  • the cross-linked rubber of the present invention has excellent cross-linked rubber properties such as excellent tensile strength and low compression set even at high temperatures of 200 to 250 ° C. According to the method for producing a crosslinked rubber of the present invention, a crosslinked rubber having the above excellent crosslinked rubber properties can be easily produced.
  • tetrafluoroethylene is TFE
  • hexafluoropropylene is HFP
  • vinylidene fluoride is VdF
  • chlorotrifluoroethylene is CTFE
  • perfluoro (alkyl vinyl ether) is PAVE
  • perfluoro (methyl vinyl ether) is PMVE
  • perfluoro ( Propyl vinyl ether) is referred to as PPVE.
  • the structural unit based on each monomer is represented by adding “unit” to each monomer name (for example, “TFE unit”).
  • the structural unit based on propylene is referred to as “P unit”.
  • the fluorinated elastic copolymer of the present invention has an iodine atom, a structural unit (A) based on the monomer (a), a structural unit (B) based on the monomer (b), and a monomer (c ) Based on the structural unit (C).
  • the fluorinated elastic copolymer of the present invention is also referred to as “copolymer X”.
  • the monomer (a) is at least one selected from the group consisting of TFE, HFP, VdF, CTFE and PAVE.
  • TFE is more preferable, and TFE is most preferable from the viewpoint of obtaining excellent crosslinking reactivity.
  • PAVE is preferably a monomer represented by the following formula (II).
  • CF 2 CF—O—R f (II)
  • R f represents a perfluoroalkyl group which may contain an etheric oxygen atom having 1 to 8 carbon atoms.
  • the number of carbon atoms in R f is preferably 1-6, and more preferably 1-5.
  • PAVE examples include PMVE, perfluoro (ethyl vinyl ether), PPVE, perfluoro (3,6-dioxa-1-heptene), perfluoro (3,6-dioxa-1-octene), perfluoro (5 -Methyl-3,6-dioxa-1-nonene) and the like.
  • the monomer (b) is at least one selected from the group consisting of monomers represented by the following formula (I).
  • R 1 , R 2 , R 3 , R 5 , R 6 and R 7 each independently represent a hydrogen atom, a fluorine atom or a methyl group, and R 4 has 1 to 10 carbon atoms. Or a group having an etheric oxygen atom between both ends, one end or a carbon-carbon bond of the perfluoroalkylene group.
  • R 1 , R 2 , R 3 , R 5 , R 6 and R 7 of the above compound are fluorine atoms or hydrogen atoms, More preferably, all of R 1 , R 2 , R 3 , R 5 , R 6 and R 7 are fluorine atoms or all of them are hydrogen atoms, and R 1 , R 2 , R 3 , R 5 , R It is particularly preferred that all of 6 and R 7 are fluorine atoms.
  • R 4 may be linear or branched, but is preferably linear.
  • the number of carbon atoms of R 4 is preferably 2 to 8, more preferably 3 to 7, still more preferably 3 to 6, and particularly preferably 3 to 5.
  • the etheric oxygen atom in R 4 is preferably 0 to 3, more preferably 1 or 2.
  • One or two etheric oxygen atoms are preferably present at the end of the perfluoroalkylene group.
  • the monomer (b) for example, a vinyl group or a trifluorovinyl group is bonded to each of both ends of the perfluoroalkylene group having 1 to 10 carbon atoms through or without etheric oxygen. Compound etc. are mentioned.
  • CF 2 ⁇ CFO (CF 2 ) 3 OCF ⁇ CF 2 , CF 2 ⁇ CFO (CF 2 ) 4 OCF ⁇ CF 2 , CH 2 ⁇ CH (CF 2 ) 6 CH ⁇ CH 2 is mentioned.
  • the copolymer X having at least one of these compounds is particularly excellent in crosslinking reactivity, and the crosslinked rubber after crosslinking (after vulcanization) is excellent in tensile strength and has a smaller compression set at high temperatures. .
  • the monomer (c) is at least one selected from the group consisting of ethylene and propylene.
  • the monomer (c) propylene is preferable.
  • the content of the structural unit (B) with respect to all the structural units of the copolymer X is preferably 0.1 to 1.5 mol%, more preferably 0.15 to 0.8 mol%, and 0.25 to 0.00. 6 mol% is more preferable.
  • the crosslinking reactivity is excellent, the crosslinked rubber is excellent in tensile strength, and the compression set at a high temperature is much smaller. If it is not more than the upper limit of the above range, it is possible to reliably prevent or further reduce cracking when stress such as bending is applied at high temperature while maintaining the excellent physical properties of the crosslinked rubber.
  • the molar ratio [(A) / (C)] of the structural unit (A) to the structural unit (C) is preferably 30/70 to 99/1, more preferably 30/70 to 70/30, and 40/60 to 60/40 is more preferable. Within this range, the cross-linked rubber properties are excellent, and heat resistance, chemical resistance, oil resistance, and weather resistance are excellent.
  • the combination of the structural unit (A) and the structural unit (C) in the copolymer X include the following combinations 1 to 4 and the like. Since the copolymer X has excellent cross-linking reactivity and further has excellent mechanical properties, heat resistance, chemical resistance, oil resistance, and weather resistance of the cross-linked rubber, the combination 1, the combination 2, and the combination 4 are more preferable, and the combination 1 is Further preferred.
  • Combination 1 Combination of TFE unit and P unit
  • Combination 2 Combination of TFE unit, P unit and VdF unit
  • Combination 3 Combination of TFE unit, P unit and PPVE unit
  • Combination 4 TFE unit , P unit and PMVE unit combination
  • the copolymer composition in the combinations 1 to 4 is preferably in the following molar ratio.
  • the molar ratio is as follows, the cross-linking reactivity of the copolymer is further improved, and the mechanical properties, heat resistance, chemical resistance, oil resistance, and weather resistance of the cross-linked rubber are further improved.
  • TFE unit / P unit 40/60 to 60/40 (molar ratio)
  • TFE unit / P unit / VdF unit 40 to 59/59 to 40/1 to 10 (molar ratio)
  • TFE unit / P unit / PPVE unit 30 to 60/10 to 40/10 to 40 (molar ratio)
  • TFE unit / P unit / PMVE unit 30 to 60/10 to 40/10 to 40 (molar ratio)
  • Copolymer X is a structural unit based on other monomers in addition to monomer (a), monomer (b) and monomer (c), as long as the effects of the present invention are not impaired. You may have. Examples of other monomers include fluorine-containing monomers and non-fluorine monomers.
  • fluorine-containing monomer vinyl fluoride, pentafluoropropylene, perfluorocyclobutene
  • CH 2 CHCF 3
  • CH 2 CHCF 2 CF 3
  • CH 2 CHCF 2 CF 2 CF 3
  • CH 2 CHCF 2 CF 2 CF 3
  • CH 2 CHCF 2 CF 2 CF 3
  • CH 2 CHCF 2 CF 2 CF 3
  • Non-fluorinated monomers include ⁇ -olefins such as isobutylene and pentene, vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, and butyl vinyl ether, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, and capryl. Examples thereof include vinyl esters such as vinyl acid.
  • the content of structural units based on other monomers is preferably 0.001 to 2.0 mol%, more preferably 0.01 to 1.0 mol%, and more preferably 0.01 to 0 mol% in the copolymer X. 0.5 mol% is particularly preferred.
  • a monomer having an iodine atom may be used as another monomer.
  • the iodine atom can also be introduced into the side chain of the copolymer X.
  • the monomer having an iodine atom include iodoethylene, 4-iodo-3,3,4,4-tetrafluoro-1-butene, 2-iodo-1,1,2,2-tetrafluoro-1-vinyloxyethane.
  • 2-iodoethyl vinyl ether allyl iodide, 1,1,2,3,3,3-hexafluoro-2-iodo-1- (perfluorovinyloxy) propane, 3,3,4,5,5,5- Hexafluoro-4-iodopentene, iodotrifluoroethylene, 2-iodoperfluoro (ethyl vinyl ether) and the like can be mentioned.
  • the content of the structural unit based on the monomer having an iodine atom is preferably 0.001 to 2.0 mol%, more preferably 0.01 to 1.0 mol% in the copolymer X, ⁇ 0.5 mol% is particularly preferred.
  • the storage elastic modulus G ′ of the copolymer X is preferably from 100 kPa to 600 kPa, more preferably from 200 kPa to 500 kPa, and even more preferably from 200 kPa to 400 kPa.
  • a larger storage elastic modulus G ′ indicates a higher molecular weight of the polymer and a higher density of molecular chain entanglement.
  • the storage elastic modulus G ′ is a value measured at a temperature of 100 ° C., an amplitude of 0.5 degrees, and a frequency of 50 times / minute in accordance with ASTM D5289 and D6204.
  • the iodine atom in the copolymer X is preferably at the end of the copolymer X (polymer chain).
  • the term “end” means both the end of the main chain and the end of the branched chain of the copolymer X.
  • the iodine atom is preferably an iodine atom derived from an iodo compound that functions as a chain transfer agent described later.
  • the iodine atom contained in the copolymer X is not limited to those derived from the iodo compound. For example, in the case of the copolymer X having a structural unit based on the monomer having the iodine atom, Iodine atoms are also included.
  • the content of iodine atom in the copolymer X is preferably 0.01 to 5.0% by mass, more preferably 0.05 to 2.0% by mass, and most preferably 0.05 to 1.0% by mass. .
  • the content of iodine atoms is in the above range, the crosslinking reactivity of the copolymer X is further improved, and the mechanical properties of the crosslinked rubber are further improved.
  • the crosslinking degree of the copolymer X is preferably 55 dNm to 150 dNm, more preferably 65 dNm to 140 dNm, and further preferably 70 dNm to 130 dNm.
  • the degree of cross-linking is in the above range, the cross-linking reaction proceeds at an appropriate rate, and the cross-linked rubber is excellent in tensile strength and further has a compression set at a high temperature.
  • the copolymer X is preferably produced by the production method of the copolymer X described below, but is not limited to the one produced by the following production method.
  • the method for producing the copolymer X of the present invention is represented by a radical polymerization initiator and a general formula RI 2 (wherein R is an alkylene group or a perfluoroalkylene group having 3 or more carbon atoms).
  • R is an alkylene group or a perfluoroalkylene group having 3 or more carbon atoms.
  • the monomer (a), the monomer (b), and the monomer (c) are copolymerized in the presence of an iodo compound.
  • the iodo compound represented by the general formula RI 2 is a compound in which iodine atoms are bonded to both ends of an alkylene group or a perfluoroalkylene group having 3 or more carbon atoms.
  • Specific examples include 1,3-diiodopropane, 1,4-diiodobutane, 1,6-diiodohexane, 1,8-diiodooctane, 1,3-diiodoperfluoropropane, 1,4-diiodopropane.
  • Examples include iodoperfluorobutane, 1,6-diiodoperfluorohexane, 1,8-diiodoperfluorooctane, and the like.
  • the number of carbon atoms of the iodo compound represented by the general formula RI 2 is preferably 3-8.
  • the iodo compound represented by the general formula RI 2 is more preferably an iodo compound having a perfluoroalkylene group, and most preferably 1,4-diiodoperfluorobutane.
  • iodine atoms can be introduced into the main chain ends of the copolymer X by copolymerizing the above-described monomers in the presence of these iodo compounds. Further, in the present invention, when a copolymer X having a branched chain is obtained, an iodine atom can be similarly introduced into this branched chain end. Therefore, the polymer chain end having an iodine atom may be a main chain end or a branched chain end.
  • the abundance of the iodo compound during the copolymerization reaction is appropriately adjusted according to the production amount of the copolymer X.
  • the amount is preferably 0.005 to 10 parts by mass and more preferably 0.02 to 5 parts by mass with respect to 100 parts by mass of the copolymer X.
  • Examples of the polymerization method in the production method of the present invention include an emulsion polymerization method, a solution polymerization method, a suspension polymerization method, and a bulk polymerization method. Since the molecular weight and copolymer composition of the copolymer X can be easily adjusted and the productivity is excellent, an emulsion polymerization method in which a monomer is copolymerized in an aqueous medium in the presence of an emulsifier is preferable.
  • the aqueous medium water or water containing a water-soluble organic solvent is preferable.
  • the water-soluble organic solvent include tert-butanol, propylene glycol, dipropylene glycol, dipropylene glycol monomethyl ether, and tripropylene glycol, and tert-butanol, propylene glycol, and dipropylene glycol monomethyl ether are preferable.
  • the amount of the water-soluble organic solvent used is preferably 1 to 50 parts by mass and more preferably 3 to 20 parts by mass with respect to 100 parts by mass of water.
  • the pH of the aqueous medium is preferably 7 to 14, more preferably 7 to 11, further preferably 7.5 to 11, and most preferably 8 to 10.5.
  • the period during which the pH of the aqueous medium is maintained in the above range may not be the entire polymerization period from the start of polymerization to the end of polymerization.
  • the period during which the pH is maintained in the above range is preferably 80% or more of the total polymerization period, more preferably 90% or more, still more preferably 95% or more, and most preferably the total polymerization period.
  • pH buffering agents include inorganic salts.
  • examples of the inorganic salts include phosphates such as disodium hydrogen phosphate and sodium dihydrogen phosphate, and carbonates such as sodium bicarbonate and sodium carbonate. More preferable specific examples of the phosphate include disodium hydrogen phosphate dihydrate and disodium hydrogen phosphate dodecahydrate.
  • the emulsifier is preferably an ionic emulsifier and more preferably an anionic emulsifier because the latex of the copolymer X obtained is excellent in mechanical and chemical stability.
  • X represents a fluorine atom or a perfluoroalkyl group having 1 to 3 carbon atoms
  • A represents a hydrogen atom, an alkali metal, or NH 4
  • p represents an integer of 1 to 10
  • Q represents an integer of 0 to 3.
  • p is preferably 1 to 4, and more preferably 1 to 3.
  • q is preferably from 0 to 2, and more preferably from 1 to 2.
  • A is preferably a hydrogen atom, Na or NH 4 , more preferably NH 4 .
  • the amount of the emulsifier used is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, and most preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the aqueous medium.
  • a suitable radical polymerization initiator in the production method of the present invention a water-soluble polymerization initiator and a redox polymerization initiator are preferable.
  • water-soluble polymerization initiator examples include persulfates such as ammonium persulfate, sodium persulfate, and potassium persulfate, and organic polymerization initiators such as disuccinic acid peroxide and azobisisobutylamidine dihydrochloride. Of these, persulfates are preferable, and ammonium persulfate is more preferable.
  • the amount of the water-soluble polymerization initiator used is preferably 0.0001 to 3% by mass, more preferably 0.001 to 1% by mass, based on the total mass of the monomers.
  • redox polymerization initiators examples include polymerization initiators in which persulfuric acids are combined with a reducing agent. Among these, a polymerization initiator capable of polymerizing each monomer at a polymerization temperature in the range of 0 ° C. to 60 ° C. is preferable.
  • the persulfate constituting the redox polymerization initiator include alkali metal salts of persulfuric acid such as ammonium persulfate, sodium persulfate, and potassium persulfate. Of these, ammonium persulfate is preferable.
  • reducing agent combined with persulfates examples include thiosulfate, sulfite, bisulfite, pyrosulfite, hydroxymethanesulfinate, etc., hydroxymethanesulfinate is preferred, and hydroxymethanesulfinate sodium salt is Most preferred.
  • a small amount of iron, iron salt, silver sulfate or the like coexist as a third component, and it is more preferable that a water-soluble iron salt coexists.
  • water-soluble iron salts include ferrous sulfate, ferric sulfate, ferrous nitrate, ferric nitrate, ferrous chloride, ferric chloride, ferrous ammonium sulfate, ferric sulfate Ammonium etc. are mentioned.
  • a chelating agent ethylenediaminetetraacetic acid disodium salt is preferred.
  • the amount of persulfate used is preferably 0.001 to 3% by mass, more preferably 0.01 to 1% by mass, and further 0.05 to 0.5% by mass in the aqueous medium.
  • the amount of the reducing agent used in the aqueous medium is preferably 0.001 to 3% by mass, more preferably 0.01 to 1% by mass, and particularly preferably 0.05 to 0.5% by mass.
  • the amount of iron salt such as iron, ferrous salt, and the third component such as silver sulfate is preferably 0.0001 to 0.3% by mass, more preferably 0.001 to 0.1% by mass in the aqueous medium.
  • 0.01 to 0.1% by mass is particularly preferable.
  • the amount of the chelating agent used is preferably 0.0001 to 0.3% by mass in the aqueous medium, more preferably 0.001 to 0.1% by mass, and particularly preferably 0.01 to 0.1% by mass.
  • the polymerization conditions such as polymerization pressure and polymerization temperature in the production method of the present invention are appropriately selected depending on the monomer composition, the decomposition temperature of the radical polymerization initiator, and the like.
  • the polymerization pressure is preferably 1.0 to 10 MPaG, more preferably 1.5 to 5.0 MPaG, and most preferably 2.0 to 4.0 MPaG.
  • the polymerization pressure is 1.0 MPaG or more, the polymerization rate is sufficiently maintained, the reaction is easily controlled, and the productivity is excellent.
  • the polymerization pressure is 10 MPaG or less, it can be produced by a low-cost polymerization equipment that is widely used.
  • the polymerization temperature is preferably 0 to 60 ° C, more preferably 10 to 50 ° C, and particularly preferably 20 to 40 ° C.
  • the polymerization temperature is within the above range, the copolymer X having excellent crosslinking reactivity can be easily obtained, and the mechanical properties of the crosslinked rubber are excellent.
  • the polymerization rate is preferably 10 to 100 g / L ⁇ hour, more preferably 5 to 70 g / L ⁇ hour, and further preferably 30 to 50 g / L ⁇ hour.
  • the polymerization rate is equal to or higher than the lower limit, practical productivity is obtained.
  • the polymerization rate is not more than the above upper limit, the molecular weight of the obtained copolymer X is sufficiently high, and the crosslinking reactivity is also excellent.
  • examples of the method of isolating the copolymer X from the latex obtained by the emulsion polymerization method include a method of aggregating by a known method.
  • examples of agglomeration methods include a method of salting out by adding a metal salt to the latex, a method of adding an inorganic acid such as hydrochloric acid to the latex, a method of mechanically shearing the latex, and freezing and thawing the latex. And the like. It is also preferable that the latex is agglomerated after being diluted with water or the like as necessary.
  • the isolated copolymer X is preferably dried using a drying apparatus such as an oven.
  • the drying temperature is preferably 60 to 150 ° C, more preferably 80 to 120 ° C. Within this range, the cross-linking reactivity of the dried copolymer X is further improved, and the mechanical properties of the cross-linked rubber after the cross-linking are further improved.
  • the crosslinked rubber of the present invention is a crosslinked rubber obtained by crosslinking the above-mentioned copolymer X.
  • the compression set measured according to JIS K6262 of the crosslinked rubber of the present invention is preferably 50% or less, more preferably 40% or less, further preferably 25% or less, and 20% under the conditions of 200 ° C. and 22 hours. The following is particularly preferable, and 15% or less is most preferable. Moreover, it is preferable that it is the same as the above also on the conditions of 250 degreeC and 22 hours.
  • the lower limit is not particularly limited, and may be 0%.
  • the crosslinked rubber of the present invention is molded into a sheet having a thickness of 2 mm, punched out with a No. 3 dumbbell, and the tensile strength measured at 25 ° C. according to JISK 6251 is preferably 15 MPa or more, more preferably 18 MPa or more. Preferably, 21 MPa or more is more preferable.
  • An upper limit is not specifically limited, For example, about 100 MPa is mentioned.
  • the crosslinked rubber of the present invention is preferably produced by the method for producing a crosslinked rubber of the present invention described below, but is not limited to those produced by the following production method.
  • a manufacturing method of the crosslinked rubber of the present invention a manufacturing method in which the above-mentioned copolymer X is crosslinked with an organic peroxide is preferable.
  • a method for producing a crosslinked rubber obtained by crosslinking a copolymer X by preparing a crosslinkable composition containing the copolymer X and an organic peroxide and heating the composition can be mentioned.
  • the crosslinkable composition preferably contains a copolymer X and an organic peroxide, and further contains at least one additive selected from a crosslinking aid, a processing aid, a filler and a reinforcing agent.
  • organic peroxide examples include dialkyl peroxides, 1,1-di (tert-butylperoxy) -3,3,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroxyperoxide Benzoyl peroxide, tert-butylperoxybenzene, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, tert-butylperoxymaleic acid, tert-butylperoxysopropyl carbonate, etc. . Of these, dialkyl peroxides are preferred.
  • dialkyl peroxides examples include ditert-butyl peroxide, tert-butylcumyl peroxide, dicumyl peroxide, ⁇ , ⁇ -bis (tert-butylperoxy) -p-diisopropylbenzene, ⁇ , ⁇ - Bis (tert-butylperoxy) -m-diisopropylbenzene, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di (tert-butylperoxy) Oxy) -3-hexyne and the like.
  • the content of the organic peroxide in the crosslinkable composition is preferably 0.3 to 10 parts by mass, more preferably 0.3 to 5 parts by mass, with respect to 100 parts by mass of the copolymer X. More preferably, 5 to 3 parts by mass.
  • the content of the organic peroxide is in the above range, the crosslinking rate is appropriate, the obtained crosslinked rubber is excellent in tensile strength, and the compression set at a high temperature is much smaller.
  • cross-linking aid examples include triallyl cyanurate, triallyl isocyanurate, trimethallyl isocyanurate, 1,3,5-triacryloylhexahydro-1,3,5-triazine, triallyl trimellitate, m- Phenylenediamine bismaleimide, p-quinone dioxime, p, p'-dibenzoylquinone dioxime, dipropargyl terephthalate, diallyl phthalate, N, N ', N ", N' ''-tetraallyl terephthalamide, vinyl And group-containing siloxane oligomers (polymethylvinylsiloxane, polymethylphenylvinylsiloxane, etc.). Of these, triallyl cyanurate, triallyl isocyan
  • the content of the crosslinking aid in the composition is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the copolymer X. 10 parts by mass is more preferable.
  • the content of the crosslinking aid is in the above range, the crosslinking rate is appropriate, the obtained crosslinked rubber is excellent in tensile strength, and the compression set at a high temperature is much smaller.
  • the crosslinkable composition may contain a processing aid as necessary.
  • processing aids include fatty acid metal salts and fatty acid esters.
  • a metal salt represented by the following formula (IV) is preferable.
  • (RCOO ⁇ ) n M n + (IV) (Wherein R is an organic group having 10 to 30 carbon atoms, n is an integer of 2 or 3, M is an alkaline earth metal, Zn, Cd, Co, Sn, Cu, Pb, Ni or Al .)
  • R is an organic group having 10 to 30 carbon atoms.
  • the organic group preferably has 10 to 25 carbon atoms, more preferably 10 to 20 carbon atoms, and most preferably 12 to 18 carbon atoms.
  • the organic group may be saturated or unsaturated, is preferably an aliphatic hydrocarbon group, more preferably a linear aliphatic hydrocarbon group, and most preferably a saturated linear aliphatic hydrocarbon group.
  • the metal salt represented by the formula (IV) is a metal salt of a higher fatty acid generally known as a processing aid.
  • the fatty acid may be a naturally derived component such as animal fatty acid or an artificially synthesized component.
  • the mixture of a 2 or more types of carbon number fatty acid may be sufficient.
  • M is preferably an alkaline earth metal, Zn, Pb, or Al, more preferably Mg, Ba, Ca, Zn, or Al, still more preferably Ca or Al, and most preferably Ca.
  • the metal salt represented by the formula (IV) include calcium stearate, zinc stearate, barium stearate, magnesium stearate, aluminum stearate, cadmium stearate, cobalt stearate, tin stearate, lead stearate. , Copper stearate, nickel stearate, lithium stearate, calcium ricinoleate, zinc palmitate, aluminum myristate and the like. Two or more of these may be contained in the composition.
  • the metal salt represented by the formula (IV) calcium stearate, zinc stearate, barium stearate, magnesium stearate, and aluminum stearate are preferable, and calcium stearate and aluminum stearate are more preferable.
  • the content of the metal salt in the composition is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the copolymer X.
  • the content is appropriately determined within the above range depending on the composition of a composition containing a filler and an additive suitable for obtaining a target crosslinked rubber member.
  • the content is further preferably 0.2 to 5 parts by mass, more preferably 0.2 to 3 parts by mass, and most preferably 0.3 to 2 parts by mass. If the content is too small, the moldability is inferior, and if it is too large, the heat resistance of the resulting crosslinked rubber member may be lowered. Within the above range, the moldability is excellent and the cross-linked rubber member is remarkably excellent in hot water resistance and steam resistance.
  • the crosslinkable composition may contain a filler and a reinforcing agent as necessary.
  • the filler and reinforcing agent include carbon black, hydrophobic silica, barium sulfate, calcium metasilicate, calcium carbonate, titanium oxide, silicon dioxide, clay, and talc. In particular, carbon black is preferable.
  • the content thereof in the composition is preferably 1 to 100 parts by weight, more preferably 100 parts by weight of the copolymer X. It is 3 to 50 parts by mass, and most preferably 5 to 45 parts by mass. When the content is in the above range, the rubber is reinforced and excellent in mechanical properties such as elastic modulus and strength.
  • the crosslinkable composition may contain a metal oxide as necessary.
  • the metal oxide is preferably a divalent metal oxide.
  • Preferred examples of the divalent metal oxide include magnesium oxide, calcium oxide, zinc oxide, lead oxide and the like.
  • the content of the metal oxide in the composition is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the copolymer X, 0.5 More preferable is 5 parts by mass.
  • the crosslinkable composition may further contain additives such as known vulcanizing agents, coloring pigments, fillers and reinforcing agents other than the above as additives for rubber, if necessary.
  • the vulcanizing agent include thiourea vulcanizing agents.
  • Other fillers and reinforcing agents include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polychlorotrifluoroethylene, ethylene tetrafluoride / ethylene copolymer, and ethylene tetrafluoride / vinylidene fluoride. A polymer etc. are mentioned.
  • Examples of the apparatus for mixing each material when preparing the crosslinkable composition include rubber mixing apparatuses such as a roll, a kneader, a Banbury mixer, and an extruder.
  • Examples of the molding method of the crosslinkable composition include compression molding, injection molding, extrusion molding, calender molding, or a method of melting in a solvent, dipping and coating, and the like.
  • Examples of methods for producing a crosslinked rubber using the crosslinkable composition include various methods such as hot press crosslinking, steam crosslinking, and hot air crosslinking. From these methods, an appropriate selection may be made in consideration of the shape and application of the molded body.
  • the crosslinking temperature is preferably from 100 to 400 ° C. for several seconds to 24 hours.
  • the crosslinkable composition can be crosslinked at the same time as it is molded by a method of hot pressing the crosslinkable composition. Moreover, after shape
  • a crosslinked rubber obtained by heating the crosslinkable composition By performing secondary crosslinking, the mechanical properties, compression set, and other properties of the crosslinked rubber can be stabilized or improved.
  • the heating conditions for the secondary crosslinking are preferably 100 to 300 ° C. for 30 minutes to 48 hours.
  • a method of irradiating the crosslinkable composition with radiation instead of the heating method is also preferable.
  • radiation to be irradiated include electron beams and ultraviolet rays.
  • the irradiation amount in electron beam irradiation is preferably 0.1 to 30 Mrad, and more preferably 1 to 20 Mrad.
  • the crosslinkable composition may be a composition that does not contain an organic peroxide and that includes additives such as a crosslinking aid and a processing aid. Plasma resistance is improved by performing radiation irradiation before cross-linking of the cross-linkable composition, after primary cross-linking or after secondary cross-linking.
  • a crosslinked rubber having excellent tensile strength and low compression set at high temperatures can be obtained.
  • the reason for this is considered that the copolymer X is excellent in cross-linking reactivity and the cross-linked structure of the copolymer X is maintained even at high temperatures.
  • the reason why the cross-linking reactivity of the copolymer X is excellent is thought to be because the iodine atom at the end of the branched chain obtained from the monomer (b) increases the cross-linking reactivity.
  • the reason why the crosslinked structure of the copolymer X is maintained even at a high temperature is considered that the R 4 portion of the monomer (b) contributes to improvement in thermal stability and oxidation resistance.
  • the iodine content in the copolymer was quantified with an apparatus combining an automatic sample combustion apparatus ion chromatograph pretreatment apparatus AQF-100 type manufactured by Dia Instruments and an ion chromatograph.
  • the crosslinkable composition was hot-pressed (primary crosslinking) at 170 ° C. for 20 minutes and then subjected to secondary crosslinking in an oven at 200 ° C. for 4 hours to obtain a crosslinked rubber sheet having a thickness of 2 mm.
  • the obtained crosslinked rubber sheet was punched out with a No. 3 dumbbell to prepare a measurement sample, and the tensile strength was measured at 25 ° C. according to JISK6251.
  • the crosslinkable composition was hot-pressed (primary crosslinking) at 170 ° C. for 10 minutes, and then subjected to secondary crosslinking for 4 hours in an oven at 200 ° C. From a cylindrical crosslinked rubber having a diameter of 30 mm and a height of 13 mm. A molded body was obtained. Using this molded body as a measurement sample, a compression set was measured in accordance with JIS K6262, under the conditions of 200 ° C. for 22 hours and 250 ° C. for 22 hours, and the compression set was measured.
  • Example 1 (Production of copolymer A (TFE / C4DVE / propylene copolymer)) After degassing the inside of a 3200 mL stainless steel pressure-resistant reactor equipped with an anchor blade for stirring, 1500 g of ion-exchanged water, 59 g of disodium hydrogen phosphate 12 hydrate, 0.7 g of sodium oxide, 197 g of tert-butanol, 9 g of sodium lauryl sulfate, 9 g of 1,4-diiodoperfluorobutane, 5.6 g of C4DVE and 6 g of ammonium persulfate were added.
  • EDTA ethylenediaminetetraacetic acid disodium salt dihydrate
  • ferrous sulfate heptahydrate ferrous sulfate heptahydrate
  • Rongalite sodium hydroxymethanesulfinate dihydrate
  • Rongalite sodium hydroxide
  • Rongalite 2.5 mass% aqueous solution was continuously added to the reactor using a high-pressure pump.
  • Copolymer A In the infrared absorption spectrum of Copolymer A, absorption based on a carbon-carbon double bond was confirmed in the vicinity of 1700 cm ⁇ 1 .
  • the iodine content in copolymer A was 0.50% by mass.
  • Table 1 shows the cross-linking properties and physical properties of the cross-linked rubber of copolymer A.
  • Examples 7 to 35, Comparative Examples 4 to 6 Examples 1-6, the copolymers prepared in Comparative Examples 1 to 3, by blending the following peroxide and various additives and crosslinkable composition, the crosslinking properties using the composition (M H -M L ), physical properties such as tensile strength were measured.
  • Tables 2 to 6 show the composition of the composition and the properties of the crosslinked rubber obtained from the composition.
  • the abbreviations of peroxides and various additives listed in Tables 2 to 6 are as follows.
  • Parkadox 14 ⁇ , ⁇ ′-bis (tert-butylperoxy) -p-diisopropylbenzene (manufactured by Kayaku Akzo).
  • Perhexa 25B 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane (manufactured by NOF Corporation).
  • DCP Dicumyl peroxide.
  • TAIC triallyl isocyanurate (manufactured by Nippon Kasei Co., Ltd.)
  • St-Ca calcium stearate (manufactured by Kanto Chemical Co., Inc.).
  • Emaster 510P Processing aid (Riken Vitamin Co., Ltd.)
  • DBU 1,8-diazabicyclo [5.4.0] undecene-7
  • MT-carbon carbon black (manufactured by CANCARB).
  • Wollastonite (“NYAD325” manufactured by Nagase Sangyo Co., Ltd.) TiO 2 : “Titanium oxide A-190” manufactured by Sakai Chemical Industry Co., Ltd. White gloss flower AA: (Shiraishi calcium company)
  • the fluorine-containing elastic copolymer of Examples 1 to 6 obtained by copolymerizing specific monomer (a), monomer (b) and monomer (c) in the presence of an iodo compound. All the coalescence had a large (M H -M L ) value and excellent cross-linking reactivity.
  • the crosslinked rubbers obtained from the crosslinkable compositions of Examples 7 to 35 were not cracked at high temperatures, had low compression set at high temperatures, and were excellent in tensile strength.
  • the fluorinated elastic copolymer and the crosslinked rubber have more excellent crosslinking reactivity, Crosslinked rubber physical properties were exhibited.
  • the fluorinated elastic copolymer of the present invention can provide a crosslinked rubber having excellent crosslinking reactivity and excellent mechanical properties, heat resistance, chemical resistance, oil resistance, and weather resistance.
  • the obtained crosslinked rubber is suitable for materials such as O-rings, sheets, gaskets, oil seals, diaphragms and V-rings.
  • heat-resistant chemical-resistant seal materials heat-resistant oil-resistant seal materials, wire coating materials, semiconductor device seal materials, corrosion-resistant rubber paints, urea-based grease seal materials, rubber paints, adhesive rubber, hoses, tubes , Calendar sheets (rolls), sponges, rubber rolls, oil drilling members, heat dissipation sheets, solution cross-linked products, rubber sponges, bearing seals (anti-urea grease, etc.), linings (chemical resistant), automotive insulation sheets, insulation for electronic devices Seat, rubber band for watches, packing for endoscope (amine resistant), bellows hose (processing from calendar sheet), water heater packing / valve, fender (marine civil engineering, ship), textile / nonwoven fabric (protective clothing, etc.) ), Base seal materials, rubber gloves, uniaxial eccentric screw pump stators, urea SCR system components, anti-vibration agents, anti-vibration agents, sealing agents, and other materials Applicable to additives and toys.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

引張り強さに優れ、高温条件下での圧縮永久歪が小さい架橋ゴムを得ることが可能な含フッ素弾性共重合体、該含フッ素弾性共重合体の製造方法、架橋ゴムおよび該架橋ゴムの製造方法を提供する。 単量体(a)、(b)および(c)の構成単位を有し、さらにヨウ素原子を有する含フッ素弾性共重合体。 単量体(a):テトラフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、クロロトリフルオロエチレンおよびパーフルオロ(アルキルビニルエーテル)からなる群から選ばれる1種以上。 単量体(b):下記式(I)で表される化合物なる群からから選ばれる1種以上。 CR=CR-R-CR=CR ・・・(I) (式中、R、R、R、R、R、およびRは、それぞれ独立に、水素原子、フッ素原子またはメチル基を示し、Rはエーテル性酸素原子が炭素原子間に挿入されていてもよい炭素原子数1~10のパーフルオロアルキレン基を示す。) 単量体(c):エチレンおよびプロピレンからなる群から選ばれる1種以上。

Description

含フッ素弾性共重合体、その製造方法、架橋ゴムおよびその製造方法
 本発明は、含フッ素弾性共重合体、含フッ素弾性共重合体の製造方法、架橋ゴムおよび架橋ゴムの製造方法に関する。
 含フッ素弾性共重合体は、耐熱性、耐薬品性、耐油性、耐候性等に優れることから、炭化水素系の重合体が耐えられないような過酷な環境下での使用に適している。含フッ素弾性共重合体としては、フッ化ビニリデン/ヘキサフルオロプロピレン系共重合体、テトラフルオロエチレン/プロピレン系共重合体、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)系共重合体等が知られている。
 一般に含フッ素弾性共重合体は反応性に乏しいため、架橋ゴムを形成する際に過酸化物による架橋反応性を向上する目的で、含フッ素弾性共重合体の製造時に、ヨウ素原子を有する含フッ素連鎖移動剤が使用されている(特許文献1)。しかし、特許文献1に記載された製造方法では、重合速度が遅く、含フッ素弾性共重合体の生産性が非常に低かった。また、得られる含フッ素弾性共重合体は架橋反応性が不十分であり、圧縮永久歪などの架橋ゴム物性も満足のいくものではなかった。
 上記の架橋反応性や架橋ゴム物性を改善する目的で、特定の含フッ素単量体と、クロトン酸ビニル、アジピン酸ビニルおよび1,4-ブタンジオールジビニルエーテルからなる群から選ばれる単量体とを、ヨウ素原子を有する含フッ素連鎖移動剤の存在下に共重合させて得た含フッ素弾性共重合体が提案されている(特許文献2)。
特開平5-222130号公報 国際公開第2010/053056号
 しかしながら、特許文献1,2の含フッ素弾性共重合体に対して架橋反応性や架橋ゴム物性の更なる向上が望まれている。特に、従来よりも過酷な高温条件での圧縮永久歪等の架橋ゴム物性の向上が求められている。
 本発明の目的は、引張り強さに優れ、高温条件下での圧縮永久歪が小さい架橋ゴムを得ることが可能な含フッ素弾性共重合体、該含フッ素弾性共重合体の製造方法、架橋ゴムおよび該架橋ゴムの製造方法を提供することである。
 [1]ヨウ素原子を有すると共に、下記単量体(a)に基づく構成単位(A)、下記単量体(b)に基づく構成単位(B)および下記単量体(c)に基づく構成単位(C)を有することを特徴とする含フッ素弾性共重合体。
 単量体(a):テトラフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、クロロトリフルオロエチレンおよびパーフルオロ(アルキルビニルエーテル)からなる群から選ばれる1種以上。
 単量体(b):下記式(I)で表される化合物からなる群から選ばれる1種以上。
   CR=CR-R-CR=CR    ・・・(I)
(式中、R、R、R、R、RおよびRは、それぞれ独立に、水素原子、フッ素原子またはメチル基を示し、Rは、炭素原子数1~10のパーフルオロアルキレン基または該パーフルオロアルキレン基の両末端、片末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。)
 単量体(c):エチレンおよびプロピレンからなる群から選ばれる1種以上。
 [2]前記含フッ素弾性共重合体の全構成単位に対する前記構成単位(B)の含有量が0.1~1.5モル%である、上記[1]に記載の含フッ素弾性共重合体。
 [3]前記構成単位(C)に対する前記構成単位(A)のモル比((A)/(C))が、30/70~99/1である、上記[1]または[2]に記載の含フッ素弾性共重合体。
 [4]R、R、R、R、RおよびRがフッ素原子または水素原子である、上記[1]~[3]のいずれか一項に記載の含フッ素弾性共重合体。
 [5]前記単量体(b)が、CF=CFO(CFOCF=CF、CF=CFO(CFOCF=CFおよびCH=CH(CFCH=CHからなる群から選ばれる一種以上である、上記[1]~[4]のいずれか一項に記載の含フッ素弾性共重合体。
 [6]前記含フッ素弾性共重合体に含まれるヨウ素原子の含有量が、該含フッ素弾性共重合体の総質量に対して0.01~5質量%である、上記[1]~[5]のいずれか一項に記載の含フッ素弾性共重合体。
 [7]前記単量体(a)がテトラフルオロエチレンであり、前記単量体(c)がプロピレンであり、前記構成単位(C)に対する前記構成単位(A)のモル比((A)/(C))が、40/60~60/40である、上記[1]~[6]のいずれか一項に記載の含フッ素弾性共重合体。
 [8]ラジカル重合開始剤、および、一般式RI(式中、Rは炭素原子数3以上のアルキレン基またはパーフルオロアルキレン基である。)で表されるヨード化合物の存在下、下記単量体(a)、下記単量体(b)、および下記単量体(c)を共重合することを特徴とする含フッ素弾性共重合体の製造方法。
 単量体(a):テトラフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、クロロトリフルオロエチレンおよびパーフルオロ(アルキルビニルエーテル)からなる群から選ばれる1種以上。
 単量体(b):下記式(I)で表される化合物からなる群から選ばれる1種以上。
   CR=CR-R-CR=CR    ・・・(I)
(式中、R、R、R、R、RおよびRは、それぞれ独立に、水素原子、フッ素原子またはメチル基を示し、Rは、炭素原子数1~10のパーフルオロアルキレン基または該パーフルオロアルキレン基の両末端、片末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。)
 単量体(c):エチレンおよびプロピレンからなる群から選ばれる1種以上。
 [9]重合温度が0℃~60℃の範囲である、上記[8]に記載の含フッ素弾性共重合体の製造方法。
 [10]上記[1]~[7]のいずれか一項に記載の含フッ素弾性共重合体が架橋した架橋ゴム。
 [11]上記[1]~[7]のいずれか一項に記載の含フッ素弾性共重合体を有機過酸化物で架橋して、架橋ゴムを得ることを特徴とする架橋ゴムの製造方法。
 [12]上記[1]~[7]のいずれか一項に記載の含フッ素弾性共重合体および有機過酸化物を含む架橋性組成物。
 [13]さらに、架橋助剤、加工助剤、充填剤および補強剤から選ばれる少なくとも1種の添加剤を含む、上記[12]に記載の架橋性組成物。
 本発明の含フッ素弾性共重合体は架橋反応性に優れる。また、本発明の含フッ素弾性共重合体によれば、引張り強度に優れ、高温条件下での圧縮永久歪が小さい架橋ゴムを得ることができる。
 本発明の含フッ素弾性共重合体の製造方法によれば、上記の本発明の含フッ素弾性共重合体を容易に製造できる。
 本発明の架橋ゴムは、引張り強さに優れ、200~250℃の高温下においても圧縮永久歪が小さい等の優れた架橋ゴム物性を有する。
 本発明の架橋ゴムの製造方法によれば、上記の優れた架橋ゴム物性を有する架橋ゴムを容易に製造できる。
 以下、それぞれ、テトラフルオロエチレンをTFE、ヘキサフルオロプロピレンをHFP、フッ化ビニリデンをVdF、クロロトリフルオロエチレンをCTFE、パーフルオロ(アルキルビニルエーテル)をPAVE、パーフルオロ(メチルビニルエーテル)をPMVE、パーフルオロ(プロピルビニルエーテル)をPPVEと記す。
 また、各単量体に基づく構成単位は、各単量体名に「単位」を付して表す(たとえば、「TFE単位」)。なお、プロピレンに基づく構成単位は「P単位」と記す。
 <含フッ素弾性共重合体>
 本発明の含フッ素弾性共重合体は、ヨウ素原子を有すると共に、単量体(a)に基づく構成単位(A)、単量体(b)に基づく構成単位(B)および単量体(c)に基づく構成単位(C)を有する。
 なお、本発明の含フッ素弾性共重合体を、以下、「共重合体X」とも記す。
 単量体(a)は、TFE、HFP、VdF、CTFEおよびPAVEからなる群より選ばれる1種以上である。
 単量体(a)としては、優れた架橋反応性を得る観点から、TFE、HFP、VdFおよびPAVEからなる群から選ばれる1種以上がより好ましく、TFEが最も好ましい。
 PAVEとしては、下記式(II)で表される単量体が好ましい。
CF=CF-O-R ・・・(II)
 式(II)中、Rは、炭素原子数1~8のエーテル性酸素原子を含んでいてもよいパーフルオロアルキル基を示す。Rの炭素原子数は、1~6が好ましく、1~5がより好ましい。
 PAVEの具体例としては、PMVE、パーフルオロ(エチルビニルエーテル)、PPVE、パーフルオロ(3,6-ジオキサ-1-ヘプテン)、パーフルオロ(3,6-ジオキサ-1-オクテン)、パーフルオロ(5-メチル-3,6-ジオキサ-1-ノネン)等が挙げられる。
 単量体(b)は、下記式(I)で表される単量体からなる群から選ばれる1種以上である。
   CR=CR-R-CR=CR    ・・・(I)
 式(I)中、R、R、R、R、RおよびRは、それぞれ独立に、水素原子、フッ素原子またはメチル基を示し、Rは、炭素原子数1~10のパーフルオロアルキレン基または該パーフルオロアルキレン基の両末端、片末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。
 共重合体Xの架橋反応性および耐熱性を高める観点から、上記の化合物のR、R、R、R、RおよびRがフッ素原子または水素原子であることが好ましく、R、R、R、R、RおよびRの全てがフッ素原子であるかまたはそれら全てが水素原子であることがより好ましく、R、R、R、R、RおよびRの全てがフッ素原子であることが特に好ましい。
 Rは、直鎖であってもよく分岐鎖であってもよいが、直鎖であることが好ましい。Rの炭素原子数は、2~8が好ましく、3~7がより好ましく、3~6がさらに好ましく、3~5が特に好ましい。また、Rにおける前記エーテル性酸素原子は0~3個が好ましく、1または2個がより好ましい。1または2個のエーテル性酸素原子はパーフルオロアルキレン基の末端に存在していることが好ましい。Rがこれらの好適な範囲にあると、架橋ゴムの引張り強度に優れ、高温下での圧縮永久歪がより一層小さい。
 単量体(b)としては、例えば、炭素原子数1~10のパーフルオロアルキレン基の両末端の各々に、エーテル性酸素を介してまたは介することなく、ビニル基またはトリフルオロビニル基が結合した化合物などが挙げられる。
 単量体(b)の好適な具体例としては、CF=CFO(CFOCF=CF、CF=CFO(CFOCF=CF、CH=CH(CFCH=CHが挙げられる。これらの化合物の少なくとも1種を有する共重合体Xは、架橋反応性に特に優れ、架橋後(加硫後)の架橋ゴムは、引張り強度に優れ、高温下での圧縮永久歪がより一層小さい。
 式(I)で表される単量体(b)を共重合させると、重合中に単量体(b)の両末端にある重合性二重結合の一部が反応し、分岐鎖を有する共重合体Xが得られる。
 単量体(c)は、エチレンおよびプロピレンからなる群から選ばれる1種以上である。単量体(c)としては、プロピレンが好ましい。
 共重合体Xの全構成単位に対する構成単位(B)の含有量は、0.1~1.5モル%が好ましく、0.15~0.8モル%がより好ましく、0.25~0.6モル%がさらに好ましい。
 上記範囲の下限値以上であると、架橋反応性が優れ、架橋ゴムは、引張り強度に優れ、高温下での圧縮永久歪がより一層小さい。
 上記範囲の上限値以下であると、架橋ゴムとしての上記優れた物性を維持しつつ、高温下で折り曲げ等の応力が加えられた場合の割れを確実に防ぐまたはより一層低減できる。
 構成単位(C)に対する構成単位(A)のモル比[(A)/(C)]は、30/70~99/1が好ましく、30/70~70/30がより好ましく、40/60~60/40がさらに好ましい。この範囲にあると、架橋ゴム物性に優れ、耐熱性、耐薬品性、耐油性、および耐候性に優れる。
 共重合体Xにおいて、構成単位(A)および構成単位(C)の組み合わせの具体例としては、下記組合せ1~4等が挙げられる。共重合体Xの架橋反応性が優れ、さらに架橋ゴムの機械特性、耐熱性、耐薬品性、耐油性、および耐候性に優れるので、組合せ1、組合せ2、組合せ4がより好ましく、組合せ1がさらに好ましい。
 組合せ1:TFE単位と、P単位との組み合わせ
 組合せ2:TFE単位と、P単位と、VdF単位との組み合わせ
 組合せ3:TFE単位と、P単位と、PPVE単位との組み合わせ
 組合せ4:TFE単位と、P単位と、PMVE単位との組み合わせ
 組合せ1~4における共重合組成は下記のモル比であることが好ましい。下記のモル比であると、共重合体の架橋反応性がより一層優れ、さらに架橋ゴムの機械特性、耐熱性、耐薬品性、耐油性、および耐候性が優れる。
 組合せ1:TFE単位/P単位=40/60~60/40(モル比)
 組合せ2:TFE単位/P単位/VdF単位=40~59/59~40/1~10(モル比)
 組合せ3:TFE単位/P単位/PPVE単位=30~60/10~40/10~40(モル比)
 組合せ4:TFE単位/P単位/PMVE単位=30~60/10~40/10~40(モル比)
 共重合体Xは、本発明の効果を損なわない範囲で、単量体(a)、単量体(b)および単量体(c)に加えて、それら以外の単量体に基づく構成単位を有していてもよい。他の単量体としては、含フッ素系単量体や非フッ素系単量体が挙げられる。
 含フッ素系単量体としては、フッ化ビニル、ペンタフルオロプロピレン、パーフルオロシクロブテン、CH=CHCF、CH=CHCFCF、CH=CHCFCFCF、CH=CHCFCFCFCF、CH=CHCFCFCFCFCF等の(パーフルオロアルキル)エチレン類等が挙げられる。
 非フッ素系単量体としては、イソブチレン、ペンテンなどのα-オレフィン類、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル等のビニルエステル類等が挙げられる。
 他の単量体に基づく構成単位の含有量は、共重合体X中、0.001~2.0モル%が好ましく、0.01~1.0モル%がより好ましく、0.01~0.5モル%が特に好ましい。
 他の単量体として、ヨウ素原子を有する単量体を使用してもよい。ヨウ素原子を有する単量体を共重合させると、共重合体Xの側鎖にもヨウ素原子を導入することができる。
 ヨウ素原子を有する単量体としては、ヨードエチレン、4-ヨード-3,3,4,4-テトラフルオロ-1-ブテン、2-ヨード-1,1,2,2-テトラフルオロ-1-ビニロキシエタン、2-ヨードエチルビニルエーテル、アリルヨージド、1,1,2,3,3,3-ヘキサフルオロ-2-ヨード-1-(パーフルオロビニロキシ)プロパン、3,3,4,5,5,5-ヘキサフルオロ-4-ヨードペンテン、ヨードトリフルオロエチレン、2-ヨードパーフルオロ(エチルビニルエーテル)などが挙げられる。
 ヨウ素原子を有する単量体に基づく構成単位の含有量は、共重合体X中、0.001~2.0モル%が好ましく、0.01~1.0モル%がより好ましく、0.01~0.5モル%が特に好ましい。
 共重合体Xの貯蔵弾性率G’は、100kPa~600kPaが好ましく、200kPa~500kPaがより好ましく、200kPa~400kPaがさらに好ましい。貯蔵弾性率G’が大きい方が、重合体の分子量が大きく、分子鎖の絡み合いの密度も高いことを示す。ここで、貯蔵弾性率G’は、ASTM D5289およびD6204に従い、温度100℃、振幅0.5度、振動数50回/分で測定される値である。
 共重合体X中のヨウ素原子は、当該共重合体X(高分子鎖)の末端にあることが好ましい。ここで、末端とは、共重合体Xの主鎖の末端および分岐鎖の末端の両方を意味する。ヨウ素原子は、後述の連鎖移動剤として機能するヨード化合物に由来するヨウ素原子であることが好ましい。
 共重合体Xに含まれるヨウ素原子は、上記ヨード化合物に由来するものに限られず、たとえば、前記ヨウ素原子を有する単量体に基づく構成単位を有する共重合体Xの場合は該構成単位中のヨウ素原子も含まれる。
 共重合体X中のヨウ素原子の含有量は、0.01~5.0質量%が好ましく、0.05~2.0質量%がより好ましく、0.05~1.0質量%が最も好ましい。
 ヨウ素原子の含有量が上記範囲にあると、共重合体Xの架橋反応性がより一層優れ、架橋ゴムの機械特性がより一層優れる。
 共重合体Xの架橋特性の指標として、後述する実施例の方法で測定されるM-M(架橋度)が挙げられる。通常、架橋度の数値が大きいほど、架橋反応性が高いことを示す。共重合体Xの上記架橋度は、55dNm~150dNmが好ましく、65dNm~140dNmがより好ましく、70dNm~130dNmがさらに好ましい。
 架橋度が上記範囲であると、適切な速度で架橋反応が進行し、架橋ゴムは、引張り強度に優れ、高温下での圧縮永久歪がより一層小さい。
 共重合体Xは、以下に説明する共重合体Xの製造方法により製造することが好ましいが、以下の製造方法によって製造されたものに限定されない。
<含フッ素弾性共重合体の製造方法>
 本発明の共重合体Xの製造方法は、ラジカル重合開始剤、および、一般式RI(式中、Rは炭素原子数3以上のアルキレン基またはパーフルオロアルキレン基である。)で表されるヨード化合物の存在下、前記単量体(a)と、前記単量体(b)と、前記単量体(c)とを共重合する方法である。
 本発明における、一般式RIで表されるヨード化合物は、炭素原子数3以上のアルキレン基またはパーフルオロアルキレン基の両末端にヨウ素原子が結合した化合物である。具体例としては、1,3-ジヨードプロパン、1,4-ジヨードブタン、1,6-ジヨードヘキサン、1,8-ジヨードオクタン、1,3-ジヨードパーフルオロプロパン、1,4-ジヨードパーフルオロブタン、1,6-ジヨードパーフルオロヘキサン、1,8-ジヨードパーフルオロオクタン等が挙げられる。一般式RIで表されるヨード化合物の炭素原子数は、好ましくは3~8である。一般式RIで表されるヨード化合物としては、パーフルオロアルキレン基を有するヨード化合物がより好ましく、1,4-ジヨードパーフルオロブタンが最も好ましい。
 これらのヨード化合物は、連鎖移動剤として機能するため、これらのヨード化合物の存在下に前述した各単量体を共重合させると、共重合体Xの主鎖末端にヨウ素原子を導入できる。また、本発明において、分岐鎖を有する共重合体Xが得られる場合には、この分岐鎖末端にも同様にヨウ素原子を導入できる。したがって、ヨウ素原子を有する高分子鎖末端は、主鎖末端であってもよいし、分岐鎖末端であってもよい。
 共重合反応を行う際のヨード化合物の存在量は、共重合体Xの製造量によって適宜調整される。例えば、共重合体X100質量部に対して、0.005~10質量部が好ましく、0.02~5質量部がより好ましい。
 本発明の製造方法における重合方法としては、例えば、乳化重合法、溶液重合法、懸濁重合法、塊状重合法等が挙げられる。共重合体Xの分子量および共重合組成の調整が容易で、生産性に優れるので、乳化剤の存在下に水性媒体中で単量体を共重合する乳化重合法が好ましい。
 水性媒体としては、水、または水溶性有機溶媒を含む水が好ましい。
 水溶性有機溶媒としては、tert-ブタノール、プロピレングリコール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコール等が挙げられ、tert-ブタノール、プロピレングリコール、ジプロピレングリコールモノメチルエーテルが好ましい。
 水性媒体が水溶性有機溶媒を含む場合、水溶性有機溶媒の使用量は、水の100質量部に対して、1~50質量部が好ましく、3~20質量部がより好ましい。
 乳化重合法において、水性媒体のpHは好ましくは7~14、より好ましくは7~11、さらに好ましくは7.5~11、最も好ましくは8~10.5である。pHが7より大きいと、ヨード化合物の安定性が充分に保たれ、得られる共重合体Xの架橋反応性が充分に保たれる。
 水性媒体のpHを上記範囲に保持する期間は、乳化重合の重合開始から重合終了までの全重合期間でなくてもよい。pHを上記範囲に保持する期間は、好ましくは全重合期間の80%以上であり、より好ましくは90%以上であり、さらに好ましくは95%以上であり、最も好ましくは全重合期間である。
 pHの調整には、pH緩衝剤を用いることが好ましい。pH緩衝剤としては、無機塩類などが挙げられる。無機塩類としては、リン酸水素二ナトリウム、リン酸二水素ナトリウムなどのリン酸塩、炭酸水素ナトリウム、炭酸ナトリウムなどの炭酸塩などが挙げられる。リン酸塩のより好ましい具体例としては、リン酸水素二ナトリウム2水和物、リン酸水素二ナトリウム12水和物等が挙げられる。
 乳化剤としては、得られる共重合体Xのラテックスの機械的および化学的安定性が優れるので、イオン性乳化剤が好ましく、アニオン性乳化剤がより好ましい。アニオン性乳化剤としては、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム等の炭化水素系乳化剤、パーフルオロオクタン酸アンモニウム、パーフルオロヘキサン酸アンモニウム、ω-ヒドロパーフルオロオクタン酸アンモニウム等の含フッ素アルキルカルボン酸およびその塩、下記式(III)で表される乳化剤(以下、乳化剤(III)と記す。)、CFO(CFO)CFCOONH(ここで、n=2または3)等が好ましい。
 F(CFO(CF(X)CFO)CF(X)COOA ・・・(III)
 上記式(III)中、Xは、フッ素原子または炭素原子数1~3のパーフルオロアルキル基を表し、Aは、水素原子、アルカリ金属、またはNHを表し、pは、1~10の整数を表し、qは、0~3の整数を表す。
 上記式(III)中、pは、1~4が好ましく、1~3がより好ましい。qは、0~2が好ましく、1~2がより好ましい。Aは、水素原子、NaまたはNHが好ましく、NHがより好ましい。
 上記式(III)のAがNHである場合の乳化剤(III)の具体例を以下に挙げる。
 CFOCFCFOCFCOONH
 CFO(CFCFO)CFCOONH
 F(CFOCFCFOCFCOONH
 F(CFO(CFCFO)CFCOONH
 CFO(CF(CF)CFO)CF(CF)COONH
 F(CFO(CF(CF)CFO)CF(CF)COONH
 F(CFO(CF(CF)CFO)CF(CF)COONH
 F(CFOCFCFOCFCOONH
 F(CFO(CFCFO)CFCOONH
 F(CFOCFCFOCFCOONH
 F(CFO(CFCFO)CFCOONH
 CFOCF(CF)CFOCF(CF)COONH
 F(CFOCF(CF)CFOCF(CF)COONH
 F(CFOCF(CF)CFOCF(CF)COONH
 乳化剤の使用量は、水性媒体の100質量部に対して、0.01~10質量部が好ましく、0.1~5質量部がより好ましく、0.1~2質量部が最も好ましい。
 本発明の製造方法における好適なラジカル重合開始剤としては、水溶性重合開始剤、レドックス重合開始剤が好ましい。
 水溶性重合開始剤としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸類、ジコハク酸過酸化物、アゾビスイソブチルアミジン二塩酸塩等の有機系重合開始剤類等が挙げられる。なかでも、過硫酸類が好ましく、過硫酸アンモニウムがより好ましい。
 水溶性重合開始剤の使用量は、単量体の合計の質量に対して、0.0001~3質量%が好ましく、0.001~1質量%がより好ましい。
 レドックス重合開始剤としては、過硫酸類と還元剤を組み合せた重合開始剤が挙げられる。このうち、重合温度が0℃~60℃の範囲で各単量体を重合可能な重合開始剤が好ましい。レドックス重合開始剤を構成する過硫酸塩の具体例としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸のアルカリ金属塩等が挙げられる。なかでも、過硫酸アンモニウムが好ましい。過硫酸類と組み合わせる還元剤としては、チオ硫酸塩、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸塩、ヒドロキシメタンスルフィン酸塩等が挙げられ、ヒドロキシメタンスルフィン酸塩が好ましく、ヒドロキシメタンスルフィン酸ナトリウム塩が最も好ましい。
 レドックス重合開始剤には、第三成分として、少量の鉄、鉄塩、硫酸銀等を共存させることが好ましく、水溶性鉄塩を共存させることがより好ましい。
 水溶性鉄塩の具体例としては、硫酸第一鉄、硫酸第二鉄、硝酸第一鉄、硝酸第二鉄、塩化第一鉄、塩化第二鉄、硫酸第一鉄アンモニウム、硫酸第二鉄アンモニウム等が挙げられる。
 レドックス重合開始剤の使用時には、キレート剤を加えることが好ましい。キレート剤としては、エチレンジアミン四酢酸二ナトリウム塩が好ましい。
 レドックス重合開始剤において、過硫酸塩の使用量は、水性媒体中に0.001~3質量%が好ましく、0.01~1質量%がより好ましく、0.05~0.5質量%がさらに好ましい。還元剤の使用量は、水性媒体中に0.001~3質量%が好ましく、0.01~1質量%がより好ましく、0.05~0.5質量%が特に好ましい。
 鉄、第一鉄塩などの鉄塩、硫酸銀などの第三成分の使用量は、水性媒体中に0.0001~0.3質量%が好ましく、0.001~0.1質量%がより好ましく、0.01~0.1質量%が特に好ましい。
 キレート剤の使用量は、水性媒体中に0.0001~0.3質量%が好ましく、0.001~0.1質量%がより好ましく、0.01~0.1質量%が特に好ましい。
 本発明の製造方法における重合圧力、重合温度等の重合条件は、単量体の組成、ラジカル重合開始剤の分解温度等により適宜選択される。
 重合圧力としては、1.0~10MPaGが好ましく、1.5~5.0MPaGがより好ましく、2.0~4.0MPaGが最も好ましい。
 重合圧力が1.0MPaG以上であると、重合速度が充分に保たれ、反応を制御しやすく、生産性が優れる。重合圧力が10MPaG以下であると、汎用される廉価な重合設備で製造することができる。
 重合温度は0~60℃が好ましく、10~50℃がより好ましく、20~40℃が特に好ましい。
 重合温度が上記範囲にあると、架橋反応性に優れる共重合体Xが容易に得られ、架橋ゴムの機械特性が優れる。
 本発明の製造方法において、重合速度は10~100g/L・時間が好ましく、5~70g/L・時間がより好ましく、30~50g/L・時間がさらに好ましい。重合速度が上記下限値以上であると、実用的な生産性である。重合速度が上記上限値以下であると、得られる共重合体Xの分子量が充分に高くなり、架橋反応性も優れる。
 本発明において、乳化重合法で得られたラテックスから共重合体Xを単離する方法としては、公知の方法で凝集させる方法が例示できる。
 凝集方法としては、例えば、ラテックスに金属塩を添加して塩析する方法、該ラテックスに塩酸等の無機酸を添加する方法、該ラテックスを機械的に剪断する方法、該ラテックスを凍結して解凍する方法等が挙げられる。ラテックスは必要に応じて水等で希釈した後、凝集することも好ましい。
 単離された共重合体Xは、オーブン等の乾燥装置を用いて乾燥されることが好ましい。乾燥温度は、60~150℃が好ましく、80~120℃がより好ましい。この範囲にあると、乾燥された共重合体Xの架橋反応性がより一層優れ、架橋後の架橋ゴムの機械的特性がより一層優れる。
<架橋ゴム>
 本発明の架橋ゴムは、上述の共重合体Xが架橋した架橋ゴムである。
 本発明の架橋ゴムのJIS K6262に準じて測定される圧縮永久歪は、200℃且つ22時間の条件で、50%以下が好ましく、40%以下がより好ましく、25%以下がさらに好ましく、20%以下が特に好ましく、15%以下が最も好ましい。また、250℃且つ22時間の条件においても、上記と同様であることが好ましい。下限値は特に限定されず、0%であってもよい。
 本発明の架橋ゴムを厚さ2mmのシート状に成形し、3号ダンベルで打ち抜き試料を作製し、25℃でJISK 6251に準じて測定される引張り強度は、15MPa以上が好ましく、18MPa以上がより好ましく、21MPa以上がさらに好ましい。上限値は特に限定されず、例えば100MPa程度が挙げられる。
 本発明の架橋ゴムは、以下に説明する本発明の架橋ゴムの製造方法により製造することが好ましいが、以下の製造方法によって製造されたものに限定されない。
<架橋ゴムの製造方法>
 本発明の架橋ゴムの製造方法としては、上述の共重合体Xを有機過酸化物で架橋する製造方法が好ましい。具体例としては、共重合体Xと有機過酸化物とを含む架橋性組成物を調製し、該組成物を加熱することにより、共重合体Xが架橋してなる架橋ゴムを製造する方法が挙げられる。
 架橋性組成物としては、共重合体Xと有機過酸化物を含み、さらに、架橋助剤、加工助剤、充填剤および補強剤から選ばれる少なくとも1種の添加剤を含むものが好ましい
 有機過酸化物としては、例えば、ジアルキルパーオキシド類、1,1-ジ(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロキシパーオキシド、ベンゾイルパーオキシド、tert-ブチルパーオキシベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、tert-ブチルパーオキシマレイン酸、tert-ブチルパーオキシソプロピルカーボネート等が挙げられる。これらのうち、ジアルキルパーオキシド類が好ましい。
 ジアルキルパーオキシド類としては、例えば、ジtert-ブチルパーオキシド、tert-ブチルクミルパーオキシド、ジクミルパーオキシド、α,α-ビス(tert-ブチルパーオキシ)-p-ジイソプロピルベンゼン、α,α-ビス(tert-ブチルパーオキシ)-m-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)-3-ヘキシン等が挙げられる。
 架橋性組成物中の有機過酸化物の含有量は、共重合体Xの100質量部に対して、0.3~10質量部が好ましく、0.3~5質量部がより好ましく、0.5~3質量部がさらに好ましい。有機過酸化物の含有量が上記範囲にあると、架橋速度が適切で、得られた架橋ゴムは引張り強度に優れ、高温下での圧縮永久歪がより一層小さい。
 共重合体Xを架橋する際に、架橋助剤を配合すると、架橋反応性がさらに向上するので好ましい。架橋助剤としては、例えば、トリアリルシアヌレート、トリアリルイソシアヌレート、トリメタリルイソシアヌレート、1,3,5-トリアクリロイルヘキサヒドロ-1,3,5-トリアジン、トリアリルトリメリテート、m-フェニレンジアミンビスマレイミド、p-キノンジオキシム、p,p’-ジベンゾイルキノンジオキシム、ジプロパルギルテレフタレート、ジアリルフタレート、N,N’,N’’,N’’’-テトラアリルテレフタールアミド、ビニル基含有シロキサンオリゴマー(ポリメチルビニルシロキサン、ポリメチルフェニルビニルシロキサン等)等が挙げられる。これらのうち、トリアリルシアヌレート、トリアリルイソシアヌレート、トリメタリルイソシアヌレートが好ましく、トリアリルイソシアヌレートがより好ましい。
 架橋性組成物が架橋助剤を含有する場合、該組成物中の架橋助剤の含有量は、共重合体Xの100質量部に対して、0.1~20質量部が好ましく、1~10質量部がより好ましい。架橋助剤の含有量が上記範囲にあると、架橋速度が適切で、得られた架橋ゴムは引張り強度に優れ、高温下での圧縮永久歪がより一層小さい。
 架橋性組成物は、必要に応じて加工助剤を含有してもよい。加工助剤としては、脂肪酸金属塩、脂肪酸エステル等が挙げられる。脂肪酸金属塩としては下記式(IV)で表される金属塩が好ましい。
   (RCOOn+    ・・・(IV)
 (式中、Rは、炭素数10~30の有機基であり、nは2または3の整数であり、Mはアルカリ土類金属、Zn、Cd、Co、Sn、Cu、Pb、NiまたはAlである。)
 前記Rは、炭素数10~30の有機基である。有機基の炭素数は、10~25が好ましく、10~20がより好ましく、12~18が最も好ましい。有機基としては、飽和でも不飽和でもよく、脂肪族炭化水素基が好ましく、直鎖脂肪族炭化水素基がより好ましく、飽和の直鎖脂肪族炭化水素基が最も好ましい。
 式(IV)で表される金属塩は、一般に加工助剤として知られる高級脂肪酸の金属塩である。脂肪酸としては、動物性脂肪酸など天然由来成分であっても人工合成成分であってもよい。また、2種以上の炭素数の脂肪酸の混合物であってもよい。
 Mとしては、アルカリ土類金属、Zn、Pb、Alが好ましく、Mg、Ba、Ca、Zn、Alがより好ましく、Ca、Alがさらに好ましく、Caが最も好ましい。
 式(IV)で表される金属塩の具体例としては、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ステアリン酸カドミウム、ステアリン酸コバルト、ステアリン酸スズ、ステアリン酸鉛、ステアリン酸銅、ステアリン酸ニッケル、ステアリン酸リチウム、リシノール酸カルシウム、パルミチン酸亜鉛、ミリスチン酸アルミニウムなどが挙げられる。これらの2種以上が組成物に含有されてもよい。
 式(IV)で表される金属塩としては、なかでも、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸アルミニウムが好ましく、ステアリン酸カルシウム、ステアリン酸アルミニウムがより好ましい。さらにステアリン酸カルシウムが最も好ましい。
 架橋性組成物が加工助剤を含有する場合、該組成物中の金属塩の含有量は、共重合体Xの100質量部に対して0.1~10質量部であることが好ましい。該含有量は、目的とする架橋ゴム部材を得るために適した充填剤や添加剤を含有する組成物の組成により、前記範囲で適宜決められる。該含有量は、さらに、好ましくは0.2~5質量部であり、より好ましくは0.2~3質量部であり、最も好ましくは0.3~2質量部である。該含有量が少なすぎると成形加工性が劣り、多すぎると得られた架橋ゴム部材の耐熱性が低下することがある。前記範囲にあると成形加工性に優れ、架橋ゴム部材の耐熱水性および耐スチーム性に著しく優れる。
 架橋性組成物は、必要に応じて充填剤や補強剤を含有してもよい。充填剤や補強剤としては、カーボンブラック、疎水性シリカ、硫酸バリウム、メタケイ酸カルシウム、炭酸カルシウム、酸化チタン、二酸化珪素、クレー、タルク等が挙げられる。特に、カーボンブラックが好ましい。
 前記組成物が充填剤や補強剤を含有する場合、該組成物中のそれらの含有量は、共重合体Xの100質量部に対して、好ましくは1~100質量部であり、より好ましくは3~50質量部であり、最も好ましくは5~45質量部である。含有量が上記範囲にあると、ゴムが補強され、弾性率及び強度などの力学的特性に優れる。
 架橋性組成物は、必要に応じて金属酸化物を含有してもよい。金属酸化物としては、2価金属の酸化物が好ましい。2価金属の酸化物としては、酸化マグネシウム、酸化カルシウム、酸化亜鉛、酸化鉛等が好ましく挙げられる。前記組成物が金属酸化物を含有する場合、該組成物中の金属酸化物の含有量は、共重合体Xの100質量部に対して、0.1~10質量部が好ましく、0.5~5質量部がより好ましい。
 架橋性組成物には、必要に応じてさらにゴム用添加剤として公知の加硫剤、着色顔料、前記以外の充填剤や補強剤などの添加剤を含有してもよい。加硫剤としては、チオウレア系加硫剤等が挙げられる。前記以外の充填剤や補強剤としては、ポリ四フッ化エチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリクロロトリフルオロエチレン、四フッ化エチレン/エチレン共重合体、四フッ化エチレン/フッ化ビニリデン共重合体等が挙げられる。
 架橋性組成物を調製する際に各材料を混合する装置としては、例えば、ロール、ニーダー、バンバリーミキサー、押し出し機などのゴム用混合装置が挙げられる。
 架橋性組成物の成形方法としては、圧縮成形、射出成形、押し出し成形、カレンダー成形または溶剤に溶かしてディッピング、コーティングして成形する方法等が例示できる。
 架橋性組成物を使用して架橋ゴムを製造する方法としては、加熱プレス架橋、スチーム架橋、熱風架橋など種々の方法が挙げられる。これらの方法から、成形体の形状や用途を考慮して適宜選択すればよい。架橋温度は、100~400℃で数秒~24時間の範囲が好ましい。
 架橋性組成物を加熱プレスする方法によって、架橋性組成物を成形すると同時に架橋することもできる。また、架橋性組成物を予め成形して成形体を得た後に、当該成形体を架橋してもよい。
 架橋性組成物を加熱して1次架橋してなる架橋ゴムを、さらに加熱して2次架橋を行うことが好ましい。2次架橋を行うことにより、架橋ゴムの機械特性、圧縮永久歪、その他の特性を安定化したり、向上させたりすることができる。2次架橋を行う際の加熱条件は、100~300℃で30分間~48時間程度が好ましい。
 架橋性組成物を使用して架橋ゴムを製造する方法として、加熱する方法に代えて、架橋性組成物に放射線を照射する方法も好ましい。照射する放射線としては、電子線、紫外線などが挙げられる。電子線照射における照射量は、0.1~30Mradが好ましく、1~20Mradがより好ましい。放射線照射により架橋する場合には、架橋性組成物が有機過酸化物を含有せずかつ架橋助剤や加工助剤等の添加剤を含む組成物であってもよい。架橋性組成物の架橋前、1次架橋後または2次架橋後に放射線照射を行うことで耐プラズマ性が向上する。
<作用効果>
 本発明によれば、引張り強度に優れ、高温下での圧縮永久歪が小さい架橋ゴムが得られる。この理由は、共重合体Xが架橋反応性に優れると共に、共重合体Xの架橋構造が高温下でも維持されているため、と考えられる。
 共重合体Xの架橋反応性が優れる理由として、単量体(b)により得られる分岐鎖末端のヨウ素原子が架橋反応性を高めているため、と考えられる。
 共重合体Xの架橋構造が高温下でも維持される理由として、単量体(b)のR部分が、熱安定性や耐酸化性の向上に寄与するためと考えられる。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定して解釈されない。下記の方法により各特性を測定した。
[共重合組成の測定]
 フッ素含有量分析により、共重合体中のTFEに基づく構成単位の含有量をまた、赤外吸収スペクトルによりビニルエーテルに基づく構成単位の含有量を、算出し、共重合組成を決定した。
[ヨウ素含有量の測定]
 共重合体中のヨウ素含有量は、ダイアインスツルメンツ社製の自動試料燃焼装置イオンクロマトグラフ用前処理装置AQF-100型とイオンクロマトグラフを組み合わせた装置で定量した。
[架橋特性の測定]
 表2~6に示す成分および配合種と配合量に従い調合し、2本ロールにより、室温下にて10分間混練し、均一に混合された架橋性組成物を得た。
 得られた架橋性組成物について、架橋特性測定機(アルファーテクノロジーズ社製、商品名「RPA2000」)を用いて177℃で12分間、振幅3度の条件にて架橋特性を測定した。
 測定されるMはトルクの最大値を示し、Mはトルクの最小値を示し、M-Mは架橋度を示す。架橋度は、含フッ素弾性共重合体の架橋反応性の指標となり、M-Mの値が大きいほど、架橋反応性が優れることを示す。
[引張り強さの測定]
 前記架橋性組成物を170℃で20分間の熱プレス(1次架橋)した後、200℃のオーブン内で4時間の2次架橋を行い、厚さ2mmの架橋ゴムシートを得た。得られた架橋ゴムシートを3号ダンベルで打ち抜き、測定試料を作製し、25℃でJISK6251に準じて、引張り強さを測定した。
[圧縮永久歪の測定]
 前記架橋性組成物を170℃で10分間の熱プレス(1次架橋)した後、200℃のオーブン内で4時間の2次架橋を行い、直径30mm、高さ13mmの円柱状の架橋ゴムからなる成形体を得た。この成形体を測定試料として、JIS K6262に準じて、200℃で22時間、および250℃で22時間の各条件での圧縮永久歪試験を行い、圧縮永久歪を測定した。
[貯蔵弾性率G’の測定]
 Alpha Technologies社製RPA2000を用いて、ASTM D5289およびD6204に従い、温度100℃、振幅0.5度、振動数50回/分で貯蔵弾性率を測定した。
[高温割れの測定]
 前記架橋性組成物を170℃で12分間の熱プレスして、2mm厚の架橋ゴムシートを得た。このシートを60℃で保温した状態で、180°折り曲げた時の割れの有無を観察した。
 以下、共重合体の調製に使用した化合物の略称を示す。
  C4DVE:CF=CFO(CFOCF=CF
  C3DVE:CF=CFO(CFOCF=CF
  C6DV:CH=CH(CFCH=CH
  VC:クロトン酸ビニル
  DEGDVE:ジエチレングリコールジビニルエーテル
[実施例1]
(共重合体A(TFE/C4DVE/プロピレン共重合体)の製造)
 撹拌用アンカー翼を備えた内容積3200mLのステンレス鋼製の耐圧反応器の内部を脱気した後、該反応器に、イオン交換水の1500g、リン酸水素二ナトリウム12水和物の59g、水酸化ナトリウムの0.7g、tert-ブタノールの197g、ラウリル硫酸ナトリウムの9g、1,4-ジヨードパーフルオロブタンの9g、C4DVEの5.6gおよび過硫酸アンモニウムの6gを加えた。さらに、100gのイオン交換水に0.4gのエチレンジアミン四酢酸二ナトリウム塩二水和物(以下、EDTAと記す。)および0.3gの硫酸第一鉄7水和物を溶解させた水溶液を、反応器に加えた。このときの反応器内の水性媒体のpHは9.5であった。
 ついで、25℃で、TFE/プロピレン=88/12(モル比)の単量体混合ガスを、反応器の内圧が2.50MPaGになるように圧入した。アンカー翼を300rpmで回転させ、その後、水酸化ナトリウムでpHを10.0に調整したヒドロキシメタンスルフィン酸ナトリウム2水和物(以下、ロンガリットと記す。)の2.5質量%水溶液(以下、ロンガリット2.5質量%水溶液と記す。)を反応器に加え、重合反応を開始させた。以降、ロンガリット2.5質量%水溶液を、高圧ポンプを用いて連続的に反応器に加えた。
 TFE/プロピレンの単量体混合ガスの圧入量の総量が1000gとなった時点で、ロンガリット2.5質量%水溶液の添加を停止し、反応器の内温を10℃まで冷却し、重合反応を停止し、共重合体Aのラテックスを得た。ロンガリット2.5質量%水溶液の添加量は68gであった。重合時間は6時間であった。
 上記ラテックスに塩化カルシウムの5質量%水溶液を添加して、共重合体Aのラテックスを凝集し、共重合体Aを析出させた。共重合体Aをろ過し、回収した。ついで、共重合体Aをイオン交換水により洗浄し、100℃のオーブンで15時間乾燥させ、白色の共重合体Aの980gを得た。
 共重合体Aの赤外吸収スペクトルには、1700cm-1付近に炭素-炭素二重結合に基づく吸収が確認された。
 共重合体Aの共重合組成は、TFE単位/C4DVE単位/P単位=56/0.1/43.9(モル比)であった。共重合体A中のヨウ素含有量は0.50質量%であった。
 共重合体Aの架橋特性および架橋ゴム物性を表1に示す。
[実施例2~6、比較例1~3]
 C4DVEを、実施例2では11.2gに、実施例3では16.8gに、実施例4では22.4gに、実施例5ではC3DVEの9.8gに、実施例6ではC6DVの10.0gに、比較例1ではクロトン酸ビニルの3.2gに、比較例2ではDEGDVEの4.5gに、それぞれ代えた以外は、実施例1と同様に合成し、共重合体B~Hを得た。比較例3では単量体(b)、1,4-ジヨードパーフルオロブタンを使用しない以外は、実施例1と同様に合成し、共重合体Iを得た。
 共重合体A~Iの組成およびヨウ素含有量を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例7~35、比較例4~6]
 実施例1~6、比較例1~3で製造した共重合体に、下記過酸化物および各種添加剤を配合して架橋性組成物とし、該組成物を使用して前記架橋特性(M-M)、引張り強さ等の物性を測定した。組成物の組成と該組成物から得られた架橋ゴムの物性を表2~6に示す。なお、表2~6に記載の過酸化物および各種添加剤の略号は以下のとおりである。
 パーカドックス14:α,α’-ビス(tert-ブチルパーオキシ)-p-ジイソプロピルベンゼン(化薬アクゾ社製)。
 パーヘキサ25B:2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)ヘキサン(日油社製)。
 DCP:ジクミルパーオキシド。
 TAIC:トリアリルイソシアヌレート(日本化成社製)、
 St-Ca:ステアリン酸カルシウム(関東化学社製)。
 エマスター510P:加工助剤(理研ビタミン社製)
 DBU:1,8-ジアザビシクロ[5.4.0]ウンデセン-7
 MT-カーボン:カーボンブラック(CANCARB社製)。
 オースチンブラック:カーボンブラック(白石カルシウム社製「オースチンブラック325」)
 SRF-L 旭#35:カーボンブラック(旭カーボン社製)
 SAF-H 旭#50:カーボンブラック(旭カーボン社製)
 FEF 旭#60G:カーボンブラック(旭カーボン社製)
 HAF-C 旭#70:カーボンブラック(旭カーボン社製)
 アサヒサーマル (FT):カーボンブラック(旭カーボン社製)
 ISAF シースト6:カーボンブラック(東海カーボン社製)
 HAF シースト3:カーボンブラック(東海カーボン社製)
 SAF―H シーストSP:カーボンブラック(東海カーボン社製)
 GPF シーストV:カーボンブラック(東海カーボン社製)
 MAF シースト16:カーボンブラック(東海カーボン社製)
 R8200:疎水性シリカ(日本アエロジル社製)
 BaSO:堺化学工業社製「沈降性硫酸バリウム100」
 ウォラストナイト:(長瀬産業社製「NYAD325」)
 TiO:堺化学工業社製「酸化チタンA-190」
 白艶華AA:(白石カルシウム社製)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 以上の結果から、ヨード化合物存在下、特定の単量体(a)、単量体(b)および単量体(c)を共重合させて得た実施例1~6の含フッ素弾性共重合体は、いずれも(M-M)の値が大きく、架橋反応性に優れていた。また、実施例7~35の架橋性組成物から得られた架橋ゴムは、高温で割れず、かつ高温下での圧縮永久歪が小さく、引張り強さに優れていた。
 また、実施例1~4および実施例7~10から明らかなように、単量体(b)の含有量が高くなるにつれて含フッ素弾性共重合体および架橋ゴムは、より優れた架橋反応性、架橋ゴム物性を示した。
 一方、比較例1~6に示すように、単量体(b)に基づく構成単位を有しない含フッ素弾性共重合体はいずれも、架橋反応性に劣り、架橋ゴム物性が不充分であった。
 本発明の含フッ素弾性共重合体は、架橋反応性に優れ、機械特性、耐熱性、耐薬品性、耐油性、耐候性に優れる架橋ゴムを提供することができる。得られた架橋ゴムは、O-リング、シート、ガスケット、オイルシール、ダイヤフラム、V-リング等の材料に適する。また、耐熱性耐薬品性シール材、耐熱性耐油性シール材、電線被覆材、半導体装置用シール材、耐蝕性ゴム塗料、耐ウレア系グリース用シール材等、ゴム塗料、接着ゴム、ホース、チューブ、カレンダーシート(ロール)、スポンジ、ゴムロール、石油掘削用部材、放熱シート、溶液架橋体、ゴムスポンジ、ベアリングシール(耐ウレアグリース等)、ライニング(耐薬品)、自動車用絶縁シート、電子機器向け絶縁シート、時計向けゴムバンド、内視鏡用パッキン(耐アミン)、蛇腹ホース(カレンダーシートからの加工)、給湯器パッキン/弁、防舷材(海洋土木、船舶)、繊維・不織布(防護服等)、基盤シール材、ゴム手袋、一軸偏心ねじポンプのステータ、尿素SCRシステム用部品、防振剤、制振剤、シーリング剤、他材料への添加剤、玩具の用途にも適用できる。
 なお、2015年10月1日に出願された日本特許出願2015-196146号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (13)

  1.  ヨウ素原子を有すると共に、下記単量体(a)に基づく構成単位(A)、下記単量体(b)に基づく構成単位(B)および下記単量体(c)に基づく構成単位(C)を有することを特徴とする含フッ素弾性共重合体。
     単量体(a):テトラフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、クロロトリフルオロエチレンおよびパーフルオロ(アルキルビニルエーテル)からなる群から選ばれる1種以上。
     単量体(b):下記式(I)で表される化合物から選ばれる1種以上。
      CR=CR-R-CR=CR    ・・・(I)
    (式中、R、R、R、R、RおよびRは、それぞれ独立に、水素原子、フッ素原子またはメチル基を示し、Rは、炭素原子数1~10のパーフルオロアルキレン基または該パーフルオロアルキレン基の両末端、片末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。)
     単量体(c):エチレンおよびプロピレンからなる群から選ばれる1種以上。
  2.  前記含フッ素弾性共重合体の全構成単位に対する前記構成単位(B)の含有量が0.1~1.5モル%である、請求項1に記載の含フッ素弾性共重合体。
  3.  前記構成単位(C)に対する前記構成単位(A)のモル比((A)/(C))が、30/70~99/1である、請求項1または2に記載の含フッ素弾性共重合体。
  4.  R、R、R、R、RおよびRがフッ素原子または水素原子である、請求項1~3のいずれか一項に記載の含フッ素弾性共重合体。
  5.  前記単量体(b)が、CF=CFO(CFOCF=CF、CF=CFO(CFOCF=CFおよびCH=CH(CFCH=CHからなる群から選ばれる一種以上である、請求項1~4のいずれか一項に記載の含フッ素弾性共重合体。
  6.  前記含フッ素弾性共重合体に含まれるヨウ素原子の含有量が、該含フッ素弾性共重合体の総質量に対して0.01~5質量%である、請求項1~5のいずれか一項に記載の含フッ素弾性共重合体。
  7.  前記単量体(a)がテトラフルオロエチレンであり、前記単量体(c)がプロピレンであり、前記構成単位(C)に対する前記構成単位(A)のモル比((A)/(C))が、40/60~60/40である、請求項1~6のいずれか一項に記載の含フッ素弾性共重合体。
  8.  ラジカル重合開始剤、および、一般式RI(式中、Rは炭素原子数3以上のアルキレン基またはパーフルオロアルキレン基である。)で表されるヨード化合物の存在下、下記単量体(a)、下記単量体(b)、および下記単量体(c)を共重合することを特徴とする含フッ素弾性共重合体の製造方法。
     単量体(a):テトラフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニリデン、クロロトリフルオロエチレンおよびパーフルオロ(アルキルビニルエーテル)からなる群から選ばれる1種以上。
     単量体(b):下記式(I)で表される化合物からなる群から選ばれる1種以上。
      CR=CR-R-CR=CR    ・・・(I)
    (式中、R、R、R、R、RおよびRは、それぞれ独立に、水素原子、フッ素原子またはメチル基を示し、Rは、炭素原子数1~10のパーフルオロアルキレン基または該パーフルオロアルキレン基の両末端、片末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。)
     単量体(c):エチレンおよびプロピレンからなる群から選ばれる1種以上。
  9.  重合温度が0℃~60℃の範囲である、請求項8に記載の含フッ素弾性共重合体の製造方法。
  10.  請求項1~7のいずれか一項に記載の含フッ素弾性共重合体が架橋した架橋ゴム。
  11.  請求項1~7のいずれか一項に記載の含フッ素弾性共重合体を有機過酸化物で架橋して、架橋ゴムを得ることを特徴とする架橋ゴムの製造方法。
  12.  請求項1~7のいずれか一項に記載の含フッ素弾性共重合体および有機過酸化物を含む架橋性組成物。
  13.  さらに、架橋助剤、加工助剤、充填剤および補強剤から選ばれる少なくとも1種の添加剤を含む、請求項12に記載の架橋性組成物。
PCT/JP2016/078720 2015-10-01 2016-09-28 含フッ素弾性共重合体、その製造方法、架橋ゴムおよびその製造方法 WO2017057512A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187001834A KR102581553B1 (ko) 2015-10-01 2016-09-28 함불소 탄성 공중합체, 그 제조 방법, 가교 고무 및 그 제조 방법
CN201680057643.7A CN108137723B (zh) 2015-10-01 2016-09-28 含氟弹性共聚物、其制造方法、交联橡胶及其制造方法
JP2017543520A JP7125263B2 (ja) 2015-10-01 2016-09-28 含フッ素弾性共重合体、その製造方法、架橋ゴムおよびその製造方法
RU2018115721A RU2731565C1 (ru) 2015-10-01 2016-09-28 Фторированный эластичный сополимер, способ его получения, сшитый каучук и способ его получения
EP16851683.9A EP3357936B1 (en) 2015-10-01 2016-09-28 Fluorinated elastic copolymer, method for its production, crosslinked rubber and method for its production.
US15/880,647 US10787531B2 (en) 2015-10-01 2018-01-26 Fluorinated elastic copolymer, method for its production, crosslinked rubber and method for its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-196146 2015-10-01
JP2015196146 2015-10-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/880,647 Continuation US10787531B2 (en) 2015-10-01 2018-01-26 Fluorinated elastic copolymer, method for its production, crosslinked rubber and method for its production

Publications (1)

Publication Number Publication Date
WO2017057512A1 true WO2017057512A1 (ja) 2017-04-06

Family

ID=58423966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078720 WO2017057512A1 (ja) 2015-10-01 2016-09-28 含フッ素弾性共重合体、その製造方法、架橋ゴムおよびその製造方法

Country Status (8)

Country Link
US (1) US10787531B2 (ja)
EP (1) EP3357936B1 (ja)
JP (1) JP7125263B2 (ja)
KR (1) KR102581553B1 (ja)
CN (1) CN108137723B (ja)
RU (1) RU2731565C1 (ja)
TW (1) TWI711636B (ja)
WO (1) WO2017057512A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004059A1 (ja) * 2017-06-27 2019-01-03 Agc株式会社 含フッ素弾性共重合体およびその製造方法、含フッ素弾性共重合体組成物ならびに架橋ゴム物品
WO2019054500A1 (ja) 2017-09-15 2019-03-21 Agc株式会社 マイクロ流路チップ
WO2019070039A1 (ja) 2017-10-05 2019-04-11 Agc株式会社 積層体の製造方法及び積層体
WO2019070040A1 (ja) 2017-10-06 2019-04-11 Agc株式会社 含フッ素共重合体組成物及び金属ゴム積層体
WO2020184432A1 (ja) 2019-03-08 2020-09-17 Agc株式会社 架橋ゴム
WO2020184429A1 (ja) 2019-03-08 2020-09-17 Agc株式会社 組成物、架橋ゴムおよびその製造方法
WO2020204076A1 (ja) 2019-04-04 2020-10-08 Agc株式会社 積層体の製造方法および積層体
WO2021261450A1 (ja) 2020-06-25 2021-12-30 Agc株式会社 塗料および塗料の製造方法、ならびに、塗装物品および塗装物品の製造方法
WO2023277036A1 (ja) 2021-06-30 2023-01-05 Agc株式会社 組成物及びその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155106A1 (ja) * 2016-03-11 2017-09-14 旭硝子株式会社 フッ素樹脂組成物、成形材料および成形体
JP7160035B2 (ja) * 2017-07-05 2022-10-25 Agc株式会社 含フッ素弾性共重合体、その組成物および架橋ゴム物品
RU2020121824A (ru) * 2017-12-06 2022-01-10 ЭйДжиСи Инк. Фторированный эластичный сополимер и способ получения фторированного эластичного сополимера
CN112789300B (zh) * 2018-09-28 2023-06-06 Agc株式会社 含氟共聚物及其制造方法
CN111607027A (zh) * 2020-05-29 2020-09-01 中国工程物理研究院化工材料研究所 一种端羟基含氟丙烯酸酯低聚物及其制备方法
WO2022013332A1 (en) * 2020-07-16 2022-01-20 Omya International Ag Reinforced fluoropolymer
KR20230118578A (ko) 2020-12-14 2023-08-11 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. 플루오로탄성중합체의 제조 방법
WO2024115069A1 (en) 2022-11-30 2024-06-06 Solvay Specialty Polymers Italy S.P.A. Method for manufacturing fluoroelastomers in aqueous emulsion without using fluorinated surfactants
WO2024165313A1 (en) 2023-02-06 2024-08-15 Solvay Specialty Polymers Italy S.P.A. Method for manufacturing fluoroelastomers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230151A (ja) * 1991-08-06 1993-09-07 Asahi Glass Co Ltd 含フッ素ポリマーおよび硬化物
JPH06136218A (ja) * 1992-10-23 1994-05-17 Asahi Glass Co Ltd 硬化性含フッ素ポリマー組成物およびその硬化方法
JPH08504810A (ja) * 1992-12-21 1996-05-28 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー フッ素置換モノマー類およびポリマー類
JPH09124870A (ja) * 1995-10-20 1997-05-13 Ausimont Spa フルオロエラストマー用硬化系、フルオロエラストマー及びその使用
JP2008308544A (ja) * 2007-06-13 2008-12-25 Asahi Glass Co Ltd 含フッ素共重合体

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684711A (en) * 1979-12-14 1981-07-10 Asahi Glass Co Ltd Fluorine-containing elastomer and vulcanized composition thereof
US5037921A (en) * 1990-03-01 1991-08-06 E. I. Du Pont De Nemours And Company Base resistant fluoroelastomers with improved processibility and curability
US5260492A (en) * 1992-12-21 1993-11-09 E. I. Du Pont De Nemours And Company Fluorinated monomers and polymers
IT1265460B1 (it) 1993-12-29 1996-11-22 Ausimont Spa Elastomeri termoplastici fluorurati dotati di migliorate proprieta' meccaniche ed elastiche, e relativo processo di preparazione
IT1265461B1 (it) 1993-12-29 1996-11-22 Ausimont Spa Fluoroelastomeri comprendenti unita' monomeriche derivanti da una bis-olefina
IT1301780B1 (it) * 1998-06-23 2000-07-07 Ausimont Spa Fluoroelastomeri vulcanizzabili per via perossidica
JP4707819B2 (ja) * 2000-11-08 2011-06-22 東ソ−・エフテック株式会社 着色のないパーフルオロアルキルジエチレンの製造方法
ITMI20012165A1 (it) * 2001-10-18 2003-04-18 Ausimont Spa Perfluoroelastomeri
ITMI20012164A1 (it) * 2001-10-18 2003-04-18 Ausimont Spa Fluoroelastomeri
ITMI20041571A1 (it) * 2004-07-30 2004-10-30 Solvay Solexis Spa Perfluoroelastomeri
US7361930B2 (en) 2005-03-21 2008-04-22 Agilent Technologies, Inc. Method for forming a multiple layer passivation film and a device incorporating the same
JP5061510B2 (ja) * 2006-06-13 2012-10-31 旭硝子株式会社 含フッ素弾性共重合体組成物および架橋ゴム
EP2065409B1 (en) * 2006-09-28 2015-04-01 Asahi Glass Company, Limited Novel fluorine-containing polymer
WO2009096342A1 (ja) * 2008-01-28 2009-08-06 Asahi Glass Company, Limited 硬化性組成物、含フッ素硬化物、それらを用いた光学材料および発光素子
KR101586627B1 (ko) 2008-10-06 2016-01-19 삼성전자주식회사 멀티 터치를 이용한 리스트 관리 방법 및 장치
RU2011122653A (ru) 2008-11-05 2012-12-20 Асахи Гласс Компани, Лимитед Фторированный эластичный сополимер, способ его получения и сшитый каучук
RU2497838C2 (ru) * 2009-01-16 2013-11-10 Асахи Гласс Компани, Лимитед Фторированный эластичный сополимер, способ его получения и изделие из сшитого каучука
TWI496796B (zh) * 2009-02-13 2015-08-21 Solvay Solexis Spa 全氟彈性體
GB201012944D0 (en) 2010-08-02 2010-09-15 3M Innovative Properties Co Peroxide curable fluoroelastomers containing modifiers and iodine or bromine endgroups
EP2889315A4 (en) * 2012-08-21 2016-04-06 Asahi Glass Co Ltd CURABLE FLUORINE CONTAINING POLYMER, PROCESS FOR PRODUCING THE SAME, AND CURED POLYMER PRODUCT CONTAINING FLUORINE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230151A (ja) * 1991-08-06 1993-09-07 Asahi Glass Co Ltd 含フッ素ポリマーおよび硬化物
JPH06136218A (ja) * 1992-10-23 1994-05-17 Asahi Glass Co Ltd 硬化性含フッ素ポリマー組成物およびその硬化方法
JPH08504810A (ja) * 1992-12-21 1996-05-28 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー フッ素置換モノマー類およびポリマー類
JPH09124870A (ja) * 1995-10-20 1997-05-13 Ausimont Spa フルオロエラストマー用硬化系、フルオロエラストマー及びその使用
JP2008308544A (ja) * 2007-06-13 2008-12-25 Asahi Glass Co Ltd 含フッ素共重合体

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004059A1 (ja) * 2017-06-27 2019-01-03 Agc株式会社 含フッ素弾性共重合体およびその製造方法、含フッ素弾性共重合体組成物ならびに架橋ゴム物品
JPWO2019004059A1 (ja) * 2017-06-27 2020-04-23 Agc株式会社 含フッ素弾性共重合体およびその製造方法、含フッ素弾性共重合体組成物ならびに架橋ゴム物品
TWI751348B (zh) * 2017-06-27 2022-01-01 日商Agc股份有限公司 含氟彈性共聚物及其製造方法、含氟彈性共聚物組成物以及交聯橡膠物品
JP7140118B2 (ja) 2017-06-27 2022-09-21 Agc株式会社 含フッ素弾性共重合体およびその製造方法、含フッ素弾性共重合体組成物ならびに架橋ゴム物品
WO2019054500A1 (ja) 2017-09-15 2019-03-21 Agc株式会社 マイクロ流路チップ
WO2019070039A1 (ja) 2017-10-05 2019-04-11 Agc株式会社 積層体の製造方法及び積層体
WO2019070040A1 (ja) 2017-10-06 2019-04-11 Agc株式会社 含フッ素共重合体組成物及び金属ゴム積層体
WO2020184432A1 (ja) 2019-03-08 2020-09-17 Agc株式会社 架橋ゴム
WO2020184429A1 (ja) 2019-03-08 2020-09-17 Agc株式会社 組成物、架橋ゴムおよびその製造方法
WO2020204076A1 (ja) 2019-04-04 2020-10-08 Agc株式会社 積層体の製造方法および積層体
WO2021261450A1 (ja) 2020-06-25 2021-12-30 Agc株式会社 塗料および塗料の製造方法、ならびに、塗装物品および塗装物品の製造方法
WO2023277036A1 (ja) 2021-06-30 2023-01-05 Agc株式会社 組成物及びその製造方法

Also Published As

Publication number Publication date
EP3357936A1 (en) 2018-08-08
TWI711636B (zh) 2020-12-01
US20180148527A1 (en) 2018-05-31
KR20180059746A (ko) 2018-06-05
TW201726751A (zh) 2017-08-01
JP7125263B2 (ja) 2022-08-24
EP3357936A4 (en) 2019-03-20
EP3357936B1 (en) 2020-03-11
CN108137723A (zh) 2018-06-08
RU2731565C1 (ru) 2020-09-04
US10787531B2 (en) 2020-09-29
JPWO2017057512A1 (ja) 2018-07-26
KR102581553B1 (ko) 2023-09-21
CN108137723B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
US10787531B2 (en) Fluorinated elastic copolymer, method for its production, crosslinked rubber and method for its production
JP5321580B2 (ja) 含フッ素弾性共重合体及び製造方法
JP5644502B2 (ja) 含フッ素弾性共重合体、その製造方法および架橋ゴム
JP6582991B2 (ja) ペルフルオロエラストマー、ペルフルオロエラストマー組成物、及び架橋ゴム物品
JP5061510B2 (ja) 含フッ素弾性共重合体組成物および架橋ゴム
JP6965749B2 (ja) 含フッ素共重合体を含む架橋性組成物、架橋物および半導体製造装置用シール材
WO2006013894A1 (ja) 含フッ素弾性共重合体、その組成物および架橋ゴム
US8927668B2 (en) Fluorinated elastic copolymer and method for its production
JP2022165790A (ja) 含フッ素共重合体組成物、架橋ゴム物品、及び架橋ゴム物品の製造方法
WO2020067492A1 (ja) 含フッ素共重合体及びその製造方法
US11306167B2 (en) Fluorinated elastic copolymer, and method for producing fluorinated elastic copolymer
JP2018044078A (ja) 含フッ素弾性共重合体組成物および架橋ゴム
US20210380794A1 (en) Fluorinated copolymer composition, crosslinked rubber and method for its production
JP5163287B2 (ja) 含フッ素弾性共重合体、その製造方法および架橋ゴム
TW202124484A (zh) 含氟共聚物組成物及交聯橡膠物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187001834

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017543520

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016851683

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2018115721

Country of ref document: RU