WO2017155106A1 - フッ素樹脂組成物、成形材料および成形体 - Google Patents

フッ素樹脂組成物、成形材料および成形体 Download PDF

Info

Publication number
WO2017155106A1
WO2017155106A1 PCT/JP2017/009774 JP2017009774W WO2017155106A1 WO 2017155106 A1 WO2017155106 A1 WO 2017155106A1 JP 2017009774 W JP2017009774 W JP 2017009774W WO 2017155106 A1 WO2017155106 A1 WO 2017155106A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororesin
fluorine
melt
tfe
mass
Prior art date
Application number
PCT/JP2017/009774
Other languages
English (en)
French (fr)
Inventor
智子 安田
宏樹 長井
西 栄一
佐々木 徹
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP17763438.3A priority Critical patent/EP3428230A4/en
Priority to CN201780016711.XA priority patent/CN108779312A/zh
Priority to JP2018504615A priority patent/JPWO2017155106A1/ja
Priority to KR1020187023193A priority patent/KR20180121884A/ko
Publication of WO2017155106A1 publication Critical patent/WO2017155106A1/ja
Priority to US16/047,548 priority patent/US20180371228A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/28Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts

Definitions

  • the present invention relates to a fluororesin composition, a molding material, and a molded body.
  • Fluorine-containing elastomers such as tetrafluoroethylene / propylene copolymer (hereinafter also referred to as “TFE / P copolymer”) have heat resistance, oil resistance, chemical resistance, electrical insulation, flexibility, etc.
  • TFE / P copolymer tetrafluoroethylene / propylene copolymer
  • blending of the fluorine-containing elastomer and a fluorine resin such as an ethylene / tetrafluoroethylene copolymer may be performed. Has been done.
  • Patent Document 1 a TFE / P copolymer and an E / TFE copolymer are blended to improve mechanical properties such as tensile strength and tear strength, and properties such as toughness.
  • an ethylene-acrylic acid ester copolymer or an ethylene-vinyl acetate copolymer is used in addition to the TFE / P copolymer and the E / TFE copolymer. A large amount of polymer is blended.
  • a material used for a harness in an automobile engine room is required to have excellent flexibility in order to ensure the wiring freedom of the harness.
  • Patent Document 3 in order to suppress flexibility and decrease in elongation and ensure flexibility, the ratio of the E / TFE copolymer blended with the TFE / P copolymer is lowered. There was a need to do. However, if the ratio of the content of the fluororesin to the fluoroelastomer is lowered, the oil resistance to lubricating oil such as automatic transmission oil may not be sufficient.
  • thermal discoloration may occur under heating. In this case, the degree of freedom with respect to the colorability of the molded product is narrowed. Further, when the moldability is not sufficient, there may be a defect due to molding failure such as a weld line in the molded body.
  • This invention is made
  • a fluororesin composition comprising a melt-kneaded product containing a fluorine-containing elastomer having a storage shear modulus G ′ of 100 or more and a melt-moldable fluororesin having a melting point of 150 ° C.
  • the fluorine-containing elastomer is dispersed in the fluororesin,
  • the content of the fluorine-containing elastomer with respect to the total of the fluorine-containing elastomer and the fluorine resin is 10 to 65% by mass,
  • the total amount of the fluoroelastomer and the fluororesin is 90% by mass or more based on the fluororesin composition,
  • a fluororesin composition having a storage elastic modulus E ′ of 250 kPa or less at a temperature 25 ° C. higher than the melting point of the fluororesin.
  • the fluororesin composition is a fluororesin composition comprising a melt-kneaded product containing an ethylene copolymer derived from an ethylene copolymer having an epoxy group, the fluoroelastomer, and the fluororesin, [1] The fluororesin composition according to [1], wherein the content of the ethylene copolymer is 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the fluorine-containing elastomer and the fluororesin. [3] The fluororesin composition according to [1] or [2], wherein the fluorine-containing elastomer is a copolymer having units based on tetrafluoroethylene and units based on propylene.
  • the fluororesin is a polymer having units based on tetrafluoroethylene, a polymer having units based on vinylidene fluoride, or a polymer having units based on chlorotrifluoroethylene.
  • a raw material containing a fluorine-containing elastomer having a storage shear modulus G ′ of 100 or more, a melt-moldable fluororesin having a melting point of 150 ° C. or more, and an ethylene copolymer having an epoxy group is melt-kneaded and cooled.
  • a method for producing a fluororesin composition In the raw material before the melt-kneading, the content of the fluorine-containing elastomer with respect to the total of the fluorine-containing elastomer and the fluorine resin is 10 to 65% by mass, and the total amount of the fluorine-containing elastomer and the fluorine resin is: 90 mass% or more based on the fluororesin composition, and the content of the ethylene copolymer having an epoxy group is 0 to 10 mass with respect to a total of 100 mass parts of the fluoroelastomer and the fluororesin.
  • the fluorine-containing elastomer is dispersed in the fluororesin, and the storage elastic modulus E ′ of the obtained fluororesin composition at a temperature 25 ° C. higher than the melting point of the fluororesin is 250 kPa.
  • the manufacturing method of the fluororesin composition characterized by the following. [9] The method for producing a fluororesin composition according to [8], wherein the fluorine-containing elastomer is dispersed in the fluororesin so as to form a sea-island structure or a co-continuous structure. [10] A molding material comprising the fluororesin composition according to any one of [1] to [7].
  • the fluororesin composition of the present invention is excellent in flexibility and oil resistance, hardly discolored by heat, and excellent in moldability.
  • the molded product of the present invention is excellent in flexibility and oil resistance, hardly discolored by heat, and has few defects due to defective molding.
  • the fluororesin composition of the present invention comprises a melt-kneaded product containing a specific fluorine-containing elastomer and a specific fluororesin.
  • the melt-kneaded product means a product cooled to room temperature after melt-kneading.
  • the specific fluorine-containing elastomer refers to a “fluorine-containing elastomer having a storage shear modulus G ′ of 100 or more”, and is hereinafter also referred to as “component A”.
  • the specific fluororesin refers to “a melt-moldable fluororesin having a melting point of 150 ° C. or higher”, and is hereinafter also referred to as “component B”.
  • the fluororesin composition of the present invention is used as a molding material for obtaining a film, a hose, a covered electric wire, and other molded articles.
  • the fluororesin composition of the present invention is also referred to as “the present composition”.
  • This composition is a melt-kneaded product obtained by melt-kneading raw materials.
  • the raw materials are the specific fluorine-containing elastomer and the specific fluororesin, and it is considered that these raw materials do not change during the melt-kneading process. Therefore, the raw materials before the melt-kneading are also referred to as component A and component B, respectively.
  • component A and component B the raw materials before the melt-kneading.
  • C component which is an arbitrary component mentioned later, the raw material changes in a melt kneading process, and it is thought that the C component in a raw material and a melt kneaded material differs.
  • the content of the A component with respect to the total of the A component and the B component in the composition is 10 to 65% by mass.
  • the content of the component A in the present composition is preferably 10 to 60% by mass, more preferably 20 to 60% by mass, and further preferably 30 to 55% by mass. If the A component is contained in the composition within the above range, a molded article having excellent flexibility can be obtained. If the B component is contained in the composition within the above range, a molded article having excellent oil resistance can be obtained.
  • the total content of the component A and the component B in the composition is 90% by mass or more based on the composition.
  • the total content of the component A and the component B in the composition is preferably 90 to 100% by mass, more preferably 95 to 99.7% by mass, and 97 to 99.5% with respect to the composition. More preferred is mass%. If the ratio of the total content of the A component and the B component in the mass of the composition is equal to or higher than the lower limit value, the effect of the present invention can be sufficiently exerted.
  • Other components for changing the properties of the product can be included.
  • the component A is dispersed in the component B, and the storage elastic modulus E ′ of the composition at a temperature 25 ° C. higher than the melting point of the component B is 250 kPa or less.
  • That the A component is dispersed in the B component means that the A component and the B component are phase-separated. Even if the A component and the B component are mixed in the melt-kneading process to form a uniform molten state, it is considered that phase separation occurs in the cooling process. In the case where the A component and the B component are not compatible in the melt-kneading process, the A component is considered to be dispersed as a fine structure in the B-component in the melt-kneading process.
  • the component A is preferably dispersed in the component B so as to form a sea-island structure (spherical shape) or a co-continuous structure (Gyroid).
  • the sea-island structure is a discontinuous portion (in the present invention, the A component) in a portion that appears relatively continuous (in the present invention, the B component). It means a structure in a mixed state, and means that the maximum width in each block of discontinuous portions is about 70 ⁇ m.
  • the term “co-continuous structure” means a state in which each lump of discontinuous portions in the sea-island structure has a continuous structure in which a part is joined and continuously connected with a maximum width of 50 ⁇ m or less.
  • the storage elastic modulus E ′ of the present composition was measured for viscoelasticity using the following test piece in an air atmosphere at a frequency of 10 Hz, a temperature rising start temperature: 23 ° C., and a temperature rising temperature: 3 ° C./min.
  • the storage elastic modulus at a temperature 25 ° C. higher than the melting point of the B component. (Test pieces) A sheet cut into a length of 45 mm, a width of 8 mm, and a thickness of 1 mm from a 1 mm thick sheet formed by press molding.
  • the storage elastic modulus E ′ of the present composition is 250 kPa or less, preferably 0 to 200 kPa, more preferably 0 to 150 kPa, and further preferably 0 to 130 kPa. If the storage elastic modulus E ′ of the present composition is within the above range, sufficient fluidity at the time of molding can be secured, the moldability is excellent, and the molded article containing the composition is excellent in surface smoothness.
  • the fluorine-containing elastomer as component A exhibits a storage shear modulus G ′ of 100 or more.
  • the storage shear elastic modulus G ′ of the fluorine-containing elastomer was measured using a Rubber Process Analyzer (RPA2000, manufactured by Alpha Technology Co., Ltd.) according to ASTM D6204, sample amount: 7.5 g, temperature: 100 ° C., displacement: 0.00.
  • the storage shear modulus G ′ of the fluorine-containing elastomer is 100 or more, preferably 150 to 1000, more preferably 200 to 800, and still more preferably 220 to 600. If the storage shear modulus G ′ of the fluorine-containing elastomer is not less than the lower limit, the mechanical strength of the molded article will be good. If the storage shear modulus G ′ is not more than the above upper limit value, it has high fluidity, good dispersion in the component B, and the flexibility of the molded product can be increased.
  • the fluorine-containing elastomer as the component A may be any elastic copolymer (elastomer) containing fluorine and having a storage shear modulus G ′ of 100 or more and having no melting point.
  • the fluorine content in the fluorine-containing elastomer is preferably 50 to 74% by mass or more, and more preferably 55 to 70% by mass or more.
  • the fluorine content in the fluorine-containing elastomer is preferably 57 to 60% by mass in the later-described TFE / P-containing copolymer, and 66 to 71% by mass in the later-described HFP / VdF-containing copolymer.
  • 66 to 70% by mass is preferable. If the fluorine content in the fluorine-containing elastomer is not less than the lower limit, a molded product having excellent heat resistance and chemical resistance can be obtained.
  • the fluorine content of the fluorine-containing elastomer is obtained by analyzing the fluorine content, and indicates the ratio of the mass of fluorine atoms to the total mass of all atoms constituting the fluorine-containing elastomer.
  • the number average molecular weight of the fluorine-containing elastomer is preferably 10,000 to 1,500,000, more preferably 20,000 to 1,000,000, still more preferably 20,000 to 800,000, and particularly preferably 50,000 to 600,000.
  • the number average molecular weight of the fluorine-containing elastomer is not less than the lower limit, the mechanical strength of the molded article is good. If the number average molecular weight of the fluorine-containing elastomer is not more than the above upper limit value, it has high fluidity, good dispersion in the component B, and the flexibility of the molded product can be increased.
  • the number average molecular weight of the fluorine-containing elastomer is a value measured by gel permeation chromatography (hereinafter referred to as “GPC”).
  • one type of fluorine-containing elastomer may be used, or two or more types may be used.
  • the fluorine-containing elastomer as component A is one or more monomers selected from tetrafluoroethylene (TFE), hexafluoropropylene (HFP), vinylidene fluoride (VdF), and chlorotrifluoroethylene (CTFE) (hereinafter referred to as “ It is preferably an elastomer containing units based on the monomer (MA1) ”.
  • the fluorine-containing elastomer is an elastomer containing units based on the monomer (MA1)
  • the fluorine-containing elastomer is also a unit based on TFE (hereinafter also referred to as “TFE unit”, the same applies to other units), HFP.
  • TFE unit TFE unit
  • HFP HFP
  • It may be an elastomer comprising only two or three units selected from a unit, a VdF unit, and a CTFE unit, and is copolymerizable with the monomer (MA1) and the monomer (MA1).
  • It may be an elastomer composed of one or more units based on another monomer (hereinafter also referred to as “monomer (MA2)”) other than the monomer (MA1) to be a polymer.
  • MA2 monomer
  • Monomers (MA2) include ethylene, propylene, perfluoro (alkyl vinyl ether) (PAVE), vinyl fluoride (VF), 1,2-difluoroethylene (DiFE), 1,1,2-trifluoroethylene (TrFE)
  • PAVE perfluoro (alkyl vinyl ether)
  • VF vinyl fluoride
  • DiFE 1,2-difluoroethylene
  • TrFE 1,1,2-trifluoroethylene
  • TrFE 1,1,2-trifluoroethylene
  • TrFE 1,1,2-trifluoroethylene
  • PAVE is a compound represented by the following formula (I), specifically, perfluoro (methyl vinyl ether) (PMVE), perfluoro (ethyl vinyl ether) (PEVE), perfluoro (propyl vinyl ether). (PPVE) and perfluoro (butyl vinyl ether) (PBVE).
  • CF 2 CF (OR F ) (I) [Wherein, R F represents a linear or branched perfluoroalkyl group having 1 to 8 carbon atoms. ]
  • the fluorine-containing elastomer can be copolymerized with the monomer (MA1), and the other elastomer (hereinafter referred to as “monomer (MA3)”) other than the monomer (MA1) and the monomer (MA2), in which the elastomer becomes an elastic copolymer. May have one or more of the units based on.
  • the unit based on the monomer (MA3) is preferably 20 mol% or less, more preferably 5 mol% or less, and the unit based on the monomer (MA3). More preferably not.
  • 100 mol% of all units constituting the fluorine-containing elastomer consists of two or three units based on the monomer (MA1), or one or more units based on the monomer (MA1) And one or more units based on the monomer (MA2).
  • An elastomer comprising two or three units based on the monomer (MA1) and an elastomer comprising one or more units based on the monomer (MA1) and one or more units based on the monomer (MA2) Contributes to flexibility.
  • the fluorine-containing elastomer as the component A is a TFE / P-containing copolymer (meaning a copolymer containing TFE units and P units.
  • TFE / P-containing copolymer meaning a copolymer containing TFE units and P units.
  • the ratio of the total of TFE units and P units to the total of all units is preferably 50 mol% or more, and the same applies to other “containing copolymers”.
  • HFP / VdF-containing copolymers and TFE / PAVE-containing copolymers are examples of the total of TFE units and P units.
  • a TFE / PAVE containing copolymer does not contain what further contains a P unit and a VdF unit.
  • a copolymer which has a HFP unit and a VdF unit in a HFP / VdF containing copolymer what contains a P unit further is not included.
  • TFE / P meaning a copolymer composed of TFE units and P units; the same applies to others
  • HFP / VdF-containing copolymers examples include HFP / VdF, TFE / VdF / HFP, TFE / VdF / HFP / TFP, TFE / VdF / HFP / PAVE, VdF / HFP / TFP, VdF / HFP / PAVE. Of these, HFP / VdF is preferred.
  • TFE / PAVE-containing copolymer include TFE / PAVE, TFE / PMVE, and TFE / PMVE / PPVE. Among them, TFE / PMVE is preferable.
  • TFE / P-containing copolymer As the fluorine-containing elastomer, in addition to the above-mentioned TFE / P-containing copolymer, HFP / VdF-containing copolymer, and TFE / PAVE-containing copolymer, TFE / VdF / 2,3,3,3-tetrafluoropropene, VdF / PAVE, VdF / 2,3,3,3-tetrafluoropropene, and E / HFP are also included.
  • a TFE / P-containing copolymer, an HFP / VdF-containing copolymer, and a TFE / PAVE-containing copolymer are preferable, a TFE / P-containing copolymer is more preferable, and a TFE / P copolymer is preferable. More preferred are polymers.
  • TFE / P TFE: P (meaning the molar ratio of TFE units to P units. The units are mol%: mol%, and the total is 100 mol%. The same applies to other molar ratios. ) Is preferably 30 to 80:70 to 20, more preferably 40 to 70:60 to 30, and still more preferably 60 to 50:40 to 50.
  • TFE / P / VdF 30 to 60:60 to 20: 0.
  • TFE: P: E 20 to 60:70 to 30: 0.05 to 40
  • TFE: P: TFP 30 to 60:60 to 30: 0.05-20
  • TFE / P: PAVE 40-70: 60-29.95: 0.05-20 in TFE / P / PAVE
  • the fluorine-containing elastomer can be produced by copolymerizing at least one monomer (MA1) and, if necessary, at least one of the monomer (MA2) and the monomer (MA3).
  • the polymerization method include an emulsion polymerization method, a solution polymerization method, a suspension polymerization method, and a bulk polymerization method.
  • An emulsion polymerization method in which a monomer is polymerized in the presence of an aqueous medium and an emulsifier is preferred because the number average molecular weight and copolymer composition of the fluorinated copolymer can be easily adjusted and the productivity is excellent.
  • an elastomer latex is obtained through a step (emulsion polymerization step) of polymerizing (emulsion polymerization) a monomer component containing the monomer in the presence of an aqueous medium, an emulsifier and a radical polymerization initiator.
  • a pH adjuster may be added.
  • the fluororesin as component B is a melt-moldable resin having a melting point of 150 ° C. or higher.
  • the fluorine content in the fluororesin as component B is preferably 50 to 74% by mass, and more preferably 53 to 70% by mass. In another aspect, the fluorine content in the fluororesin is preferably 50 to 70% by mass, and in yet another aspect, it is preferably 53 to 74% by mass.
  • the fluorine content in the fluororesin is not less than the lower limit value, a molded article having excellent heat resistance and chemical resistance can be obtained. If the fluorine content in the fluororesin is less than or equal to the above upper limit, the flexibility of the molded body can be increased.
  • the fluorine content of the fluororesin is obtained by analyzing the fluorine content, and indicates the ratio of the mass of fluorine atoms to the total mass of all atoms constituting the fluororesin.
  • the number average molecular weight of the fluororesin as component B is preferably 10,000 to 1,000,000, more preferably 20,000 to 500,000, still more preferably 20,000 to 300,000, and even more preferably 50,000 to 300,000. When the number average molecular weight of the fluororesin is not less than the lower limit, the mechanical strength of the molded article is good. If the number average molecular weight of the fluororesin (B) is not more than the above upper limit value, it has high fluidity, can disperse the fluorine-containing elastomer well, and can enhance the flexibility of the molded article.
  • the melting point of the fluororesin as component B is 150 ° C. or higher, preferably 150 to 300 ° C., more preferably 160 to 280 ° C., and still more preferably 170 to 270 ° C. If the melting point of the fluororesin is not less than the lower limit, this composition having sufficient heat resistance can be obtained. If the melting point of the fluororesin is not more than the above upper limit value, the present composition and molded product can be produced without requiring a high temperature.
  • fluororesin that is the B component one type may be used, or two or more types may be used. As the fluororesin, it is preferable to use one kind.
  • the fluororesin is preferably a polymer containing one or more units based on the following monomer (MB1) to monomer (MB7).
  • Monomer (MB1) TFE, CTFE.
  • Monomer (MB2) Compound represented by the following formula (II) (hereinafter also referred to as “FAE”).
  • Monomer (MB3) A fluoroolefin having a hydrogen atom in an unsaturated group such as VdF, vinyl fluoride, trifluoroethylene, hexafluoroisobutylene, or the like.
  • the fluororesin preferably contains a unit based on the monomer (MB1), and among the units based on the monomer (MB1), More preferably it contains TFE units.
  • the fluororesin is a unit based on the monomer (MB1) and any one of the monomer (MB2) to the monomer (MB7).
  • a unit based on one or more kinds of monomers it is preferable to include a unit based on one or more kinds of monomers, and a unit based on any one or more of the monomer (MB2), the monomer (MB4), and the monomer (MB5) based on the monomer (MB1). It is more preferable to include a unit based on the monomer (MB1), a unit based on the monomer (MB4), and a unit based on the monomer (MB5).
  • n in the formula (II) is an integer of 2 to 8, and is preferably an integer of 2 to 6 and more preferably an integer of 2 to 4 from the viewpoint of polymerization reactivity with other monomers. If n in Formula (II) is more than the said lower limit, generation
  • the fluororesin contains one or more units based on the monomer (MB1) to the monomer (MB7)
  • the fluororesin can be copolymerized with the monomer (MB1) to the monomer (MB7), the monomer (MB1) to the monomer ( One or more units based on monomers other than MB7) (hereinafter also referred to as “MB8”) may be included.
  • Examples of the monomer (MB8) include a monomer having no functional group and a functional group-containing monomer.
  • a monomer which does not have a functional group the following monomer is mentioned, for example.
  • ⁇ -olefins ethylene, propylene, butene and the like.
  • Alkyl vinyl ethers ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, isobutyl vinyl ether, cyclohexyl vinyl ether, and the like.
  • Vinyl esters vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl isobutyrate, vinyl valerate, vinyl pivalate, vinyl caproate, vinyl caprylate, vinyl caprate, vinyl versatate, vinyl laurate, myristic acid Vinyl, vinyl palmitate, vinyl stearate, vinyl benzoate, vinyl para-t-butylbenzoate, vinyl cyclohexanecarboxylate, vinyl monochloroacetate, vinyl adipate, vinyl acrylate, vinyl methacrylate, vinyl crotonic acid, sorbic acid Vinyl, vinyl cinnamate, vinyl undecylenate, vinyl hydroxyacetate, vinyl hydroxypropioate, vinyl hydroxybutyrate, vinyl hydroxyvalerate, vinyl hydroxyisobutyrate, vinyl hydroxycyclohexanecarboxylate, etc.
  • Alkyl allyl ethers ethyl allyl ether, propyl allyl ether, butyl allyl ether, isobutyl allyl ether, cyclohexyl allyl ether, and the like.
  • Alkyl allyl esters ethyl allyl ester, propyl allyl ester, butyl allyl ester, isobutyl allyl ester, cyclohexyl allyl ester, and the like.
  • Examples of the functional group-containing monomer include the following monomers. Vinyl ethers having a hydroxyl group and an epoxy group: glycidyl methacrylate and the like.
  • Unsaturated carboxylic acid acrylic acid, methacrylic acid, maleic acid, itaconic acid, citraconic acid, undecylenic acid and the like.
  • Unsaturated carboxylic anhydrides maleic anhydride, itaconic anhydride, citraconic anhydride, hymic anhydride, and the like.
  • fluororesin as component B examples include TFE-containing polymers (meaning polymers having TFE units. The same applies to other “containing polymers”), VdF-containing polymers, and CTFE-containing polymers. .
  • a polymer having VdF units is a VdF-containing polymer even if it has TFE units or CTFE units.
  • the CTFE-containing polymer does not include a polymer having CTFE units, which further includes one or both of TFE units and VdF units.
  • TFE-containing polymer examples include an E / TFE-containing copolymer, a TFE / HFP-containing copolymer, and a TFE / PAVE-containing copolymer.
  • CTFE-containing polymer examples include E / CTFE-containing copolymers.
  • PFA is mentioned as 1 type of a TFE / PAVE containing copolymer.
  • the B component is a melt-moldable fluororesin having a melting point of 150 ° C. or higher, and the A component is an elastic copolymer having no melting point. Therefore, for example, the TFE / PAVE-containing copolymer as the B component is different from the TFE / PAVE-containing copolymer as the containing A component.
  • the following ETFE and E / CTFE-containing copolymers are preferable as the B component from the viewpoint of excellent balance of heat resistance, chemical resistance, and mechanical strength.
  • the following ETFE is more preferable.
  • an E / CTFE-containing copolymer is more preferable.
  • the E / TFE-containing copolymer has a molar ratio of E units: TFE units of 80:20 to 20:20 because it tends to contribute to an excellent balance of heat resistance, chemical resistance and mechanical strength of the composition.
  • E / TFE-containing copolymer (hereinafter referred to as “ETFE”), which is 80 and includes units other than E units and TFE units (hereinafter also referred to as “third units”) in an amount of 20 mol or less relative to all units.
  • the molar ratio of E units to TFE units in ETFE is more preferably 70:30 to 30:70, and further preferably 50:50 to 35:65.
  • the content of the third unit in ETFE is preferably 0.01 to 20 mol%, more preferably 0.1 to 10 mol%, and still more preferably 0.8 to 5 mol%, based on all units.
  • a unit based on FAE is preferable.
  • ETFE having a melting point of 150 to 300 ° C. is preferable, ETFE having a melting point of 160 to 280 ° C. is more preferable, and ETFE having a melting point of 170 to 270 ° C. is more preferable.
  • ETFE having a volume flow rate of 0.1 to 200 mm 3 / sec is preferable, and ETFE having a volume flow rate of 0.5 to 100 mm 3 / sec is more preferable. More preferred is ETFE having a volumetric flow rate of ⁇ 50 mm 3 / sec.
  • the volume flow rate is an index representing the melt fluidity of the resin and is a measure of the molecular weight.
  • a large volumetric flow rate indicates a low molecular weight, and a small volumetric flow rate indicates a high molecular weight.
  • the flow rate of the resin is the extrusion speed of the resin when extruded into an orifice with a diameter of 2.1 mm and a length of 8 mm under a load of 7 kg at a temperature 50 ° C. higher than the melting point of the resin using a flow tester manufactured by Shimadzu Corporation. As obtained.
  • the present composition may contain other components as optional components. However, it does not include a component having an action such as modifying the A component or the B component during melt-kneading (for example, a crosslinking agent or a crosslinking aid described later).
  • a component having an action such as modifying the A component or the B component during melt-kneading
  • the other components include an ethylene copolymer derived from an ethylene copolymer containing an epoxy group and a flame retardant, and one or both of them may be contained in the composition. .
  • the “ethylene copolymer derived from an ethylene copolymer containing an epoxy group” is hereinafter also referred to as “C component”.
  • the total of the other components in the present composition is 10% by mass or less, preferably 8% by mass or less, and more preferably 5% by mass or less of the present composition.
  • the present composition may contain an ethylene copolymer which is a C component in addition to the A component and the B component.
  • the C component can increase the compatibility between the A component and the B component, and can improve the dispersion of the A component in the B component.
  • Component C is a component contained in the fluororesin composition that is a melt-kneaded product, and is derived from an ethylene copolymer that contains an epoxy group before melt-kneading.
  • an ethylene copolymer containing an epoxy group is melt-kneaded together with the fluorine-containing elastomer or the fluorine-containing resin to obtain a melt-kneaded product, part or all of the epoxy group is considered to be lost due to the reaction.
  • the disappearance of the epoxy group during melt-kneading is presumed to contribute to the action of the C component increasing the compatibility between the A component and the B component and improving the dispersibility of the A component.
  • component C in the melt-kneaded product contains epoxy groups in all raw material components (composed of an ethylene copolymer containing component A, component B and an epoxy group, and optionally a flame retardant) prior to melt-kneading. It is equal to the content of ethylene copolymer. This is because even if the epoxy group disappears, the mass change between the proportion of the ethylene copolymer containing the epoxy group in the raw material and the C component in the present composition can be ignored.
  • the content of the C component is 0.1 to 10 parts by mass with respect to a total of 100 parts by mass of the A component and the B component, and 0.3 to 8 parts by mass. Preferably, 0.5 to 5 parts by mass is more preferable. If the content of component C is not less than the lower limit, it is difficult to cause thermal discoloration of the composition or the molded article, and if it is not more than the upper limit, a molded article having sufficient oil resistance and heat resistance can be obtained.
  • the ethylene copolymer containing an epoxy group has a melting point capable of being melt-kneaded together with the fluorine-containing elastomer or the fluorine-containing resin. That is, its melting point is less than 150 ° C.
  • ethylene copolymer containing an epoxy group one type may be used, or two or more types may be used.
  • ethylene copolymer containing an epoxy group it is preferable to use one kind.
  • ethylene copolymer containing an epoxy group a binary or higher copolymer consisting of an E unit and a unit based on one or more monomers having an epoxy group (hereinafter also referred to as “monomer (MC1)”). 1 unit of monomer, other than ethylene and monomer (MC1) (hereinafter also referred to as “monomer (MC2)”) copolymerizable with ethylene, a unit based on one or more types of monomer (MC1), and ethylene.
  • An ethylene copolymer such as a ternary or higher copolymer composed of units based on species or more may be mentioned.
  • Examples of the monomer (MC1) include unsaturated glycidyl ethers (such as allyl glycidyl ether, 2-methylallyl glycidyl ether, and vinyl glycidyl ether), and unsaturated glycidyl esters (such as glycidyl acrylate and glycidyl methacrylate).
  • unsaturated glycidyl ethers such as allyl glycidyl ether, 2-methylallyl glycidyl ether, and vinyl glycidyl ether
  • unsaturated glycidyl esters such as glycidyl acrylate and glycidyl methacrylate.
  • glycidyl methacrylate is preferable from the viewpoint of improving the compatibility between the A component and the B component.
  • the monomer (MC2) includes acrylic acid esters, methacrylic acid esters, and fatty acid vinyl esters (hereinafter collectively referred to as “monomer (MC3)”).
  • the monomer (MC3) is a partial assembly of the monomer (MC2).
  • E / methacrylic acid having an E unit and a glycidyl methacrylate unit
  • a glycidyl acid-containing copolymer is preferable, and an E / glycidyl methacrylate copolymer and an E / glycidyl methacrylate / monomer (MC3) copolymer are more preferable.
  • E / glycidyl methacrylate / monomer (MC3) copolymer includes E / glycidyl methacrylate / vinyl acetate copolymer, E / glycidyl methacrylate / methyl acrylate copolymer, E / glycidyl methacrylate / ethyl acrylate.
  • Examples of the copolymer include E / glycidyl methacrylate / methyl acrylate copolymer and E / glycidyl methacrylate / ethyl acrylate copolymer.
  • the content of E units in the ethylene copolymer containing an epoxy group is preferably 55 to 99.9 mol%, more preferably 70 to 94 mol% from the viewpoint of heat resistance and toughness of the molded product.
  • the content of units based on the monomer (MC1) in the ethylene copolymer containing an epoxy group is preferably 0.1 to 45 mol% from the viewpoint of the moldability of the composition and the mechanical properties of the molded body. 1 to 10 mol% is more preferable.
  • the content of the unit based on the monomer (MC2) in the ethylene copolymer containing an epoxy group is 1 to 30 mol% Is preferable, and 5 to 20 mol% is more preferable.
  • the compatibility between the A component and the B component can be further improved.
  • the moldability of the present composition is excellent, and the resulting molded product is more excellent in properties such as flexibility, oil resistance, and heat resistance.
  • a commercially available product can also be used as the ethylene copolymer containing an epoxy group, and as a commercially available product of an ethylene copolymer containing an epoxy group, “bond first (registered trademark) E” (manufactured by Sumitomo Chemical Co., Ltd., E / glycidyl methacrylate copolymer) and “bond first 7M” (manufactured by Sumitomo Chemical Co., Ltd., E / glycidyl methacrylate / methyl acrylate copolymer).
  • bond first (registered trademark) E manufactured by Sumitomo Chemical Co., Ltd., E / glycidyl methacrylate copolymer
  • “bond first 7M” manufactured by Sumitomo Chemical Co., Ltd., E / glycidyl methacrylate / methyl acrylate copolymer
  • Flame retardants include aluminum hydroxide, magnesium hydroxide, magnesium carbonate, antimony trioxide, sodium antimonate, antimony pentoxide, phosphazene compounds, phosphate esters, ammonium polyphosphate, melamine, melam, melem, polyphosphoric acid, red phosphorus, A molybdenum compound, a boric acid compound, PTFE, etc. are mentioned.
  • antimony trioxide aromatic phosphate esters (triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl phenyl phosphate, 2-ethylhexyl diphenyl phosphate, etc.), PTFE (forms a fibril structure in the resin) Anti-drip agent) is preferred.
  • the fluororesin composition of the present invention is produced by melting and kneading and cooling the A component, the B component, and optionally the optional component.
  • the cooled melt-kneaded product is preferably a solid melt-kneaded product used as a molding material, formed into pellets or granules of an appropriate size.
  • a method of melt kneading extrusion with an apparatus having a melt kneading extrusion mechanism is preferable.
  • the melt-kneaded and extruded linear melt-kneaded product can be cut into an appropriate size to form a pellet-like or granular melt-kneaded product.
  • the optional component is melt-kneaded together with the components when the component A and the component B are melt-kneaded and extruded.
  • the optional component C is a component derived from an ethylene copolymer having an epoxy group as a raw material.
  • An ethylene copolymer having an epoxy group becomes a C component by melt-kneading, but it is considered that there is no quantitative change of the substance in the change (disappearance of epoxy group), and therefore has an epoxy group in the raw material before melt-kneading.
  • the amount of the ethylene copolymer is 0 to 10 parts by mass with respect to a total of 100 parts by mass of the specific fluorine-containing elastomer and the specific fluororesin.
  • an apparatus used for melt kneading extrusion it is preferable to use an apparatus having a melt kneading extrusion mechanism of two or more axes such as a twin screw extruder and a multi screw extruder, a twin screw extruder equipped with a screw having a high kneading effect, kneading. It is more preferable to use a multi-screw extruder equipped with a highly effective screw.
  • the screw having a high kneading effect a screw that gives a sufficient kneading effect to the melt-kneaded extrusion target and does not give an excessive shearing force can be selected.
  • the apparatus having a biaxial or higher melt kneading extrusion mechanism is preferably an apparatus having a continuous biaxial or higher melt kneading extrusion mechanism.
  • a sufficient kneading effect can be given to the melt kneading extrusion target.
  • a shearing force is insufficient, so that a sufficient kneading effect may not be given to an object to be melt-kneaded / extruded.
  • the apparatus which has a biaxial or more melt kneading extrusion mechanism is equipped with one or more kneading zones, and is equipped with two or more kneading zones.
  • the ratio (L / D) is preferably from 0.1 to 50, more preferably from 1 to 20, and even more preferably from 3 to 10.
  • the kneading temperature in the melt-kneading extrusion is preferably 5 ° C. or more, more preferably 5 to 80 ° C., more preferably 5 to 50 ° C. higher than the melting point of the component B. .
  • the shear rate in the melt-kneading extrusion is preferably set according to the melt viscosity of the melt-kneading extrusion target at the kneading temperature in the melt-kneading extrusion.
  • the rotational speed of the screw of the apparatus having a biaxial or more melt-kneading extrusion mechanism is preferably 50 to 700 rpm, more preferably 100 to 500 rpm, and further preferably 200 to 400 rpm.
  • the storage modulus of the composition at a temperature 25 ° C. higher than the melting point of the component B E ′ can be controlled to 250 kPa or less.
  • the component A dispersed in the component B can be made smaller in the melt-kneading extrusion, and a better dispersion state can be obtained. Further, by setting the length of the longer kneading zone (the sum of the lengths of the respective kneading zones when two or more kneading zones are provided), the components are dispersed in the B component in the melt-kneading extrusion.
  • the component A can be made smaller in particle size and can be in a better dispersion state.
  • the component A dispersed in the component B can be made smaller in the kneading and extrusion so as to have a better dispersion state.
  • distributed in B component can be made smaller particle size, and it can be set as a more favorable dispersion state.
  • the storage elastic modulus E ′ of the present composition can be controlled to 250 kPa or less.
  • the melt-kneading extrusion is performed until the viscosity of the melt-kneaded extrusion object becomes constant.
  • the viscosity change during the melt-kneading extrusion of the melt-kneaded extrusion object can be observed by the change with time of the rotational torque by a torque meter via a screw. “Until the viscosity of the melt-kneaded extrudate becomes constant” means that the melt-kneaded extrusion is performed until the fluctuation of the rotational torque value is within 5% of the center value for a certain time or more.
  • the time required for melt-kneading extrusion may vary depending on the kneading temperature, shear rate, composition of the melt-kneaded extrusion target object, screw shape of an apparatus having a biaxial or higher melt-kneading extrusion mechanism, etc., from the viewpoint of economy and productivity 1 to 30 minutes are preferred, 1 to 20 minutes are more preferred, and 2 to 10 minutes are even more preferred.
  • a crumb is preferable. In particular, it is preferable to dry and use the crumb of the fluorine-containing elastomer obtained by agglomerating the latex of the elastomer obtained by emulsion polymerization.
  • a powder is preferable. As the powder, those having a small particle diameter are more preferable. When the particle size is small, kneading in melt-kneading extrusion becomes easy, and a uniform melt-kneading extrusion state is easily obtained.
  • the powder is preferably a fluororesin powder obtained by drying a resin slurry obtained by solution polymerization.
  • the A component crumb and the B component powder may be mixed without heating using a known apparatus.
  • the A component crumb and the B component powder may be mixed in an apparatus having a biaxial or higher melt kneading extrusion mechanism at the time of melt kneading extrusion.
  • the molding material of the present invention is a molding material containing the present composition.
  • the molding material containing the composition is also referred to as “main molding material”.
  • the present molding material made of the present composition is a molding material in the form of pellets, granules, powders, etc.
  • the present molding material containing the following compounding agent has the present composition having a shape of pellets, granules, powders, etc. It is preferable that it is a mixture of a product and a compounding agent.
  • the composition and the compounding agent are melt-mixed to form pellets, granules, powders, etc. It may be a molding material having the following shape. Since the present molding material has a melt viscosity lower than that of the component A contained in the present composition, the take-up speed can be set large, so that the molding processability is excellent.
  • this molding material is a cross-linking agent, a crosslinking aid, a filler, a stabilizer, a colorant, an antioxidant, a processing aid, a lubricant, and a lubrication depending on the intended use of the molded product.
  • 1 type or more of compounding agents such as an agent and an antistatic agent, may be contained.
  • a crosslinking agent or a crosslinking adjuvant among these compounding agents may be contained.
  • crosslinking agent Any conventionally known crosslinking agent can be used as the crosslinking agent, but organic peroxides are preferred. Any organic peroxide can be used as long as it easily generates radicals in the presence of heating and redox. This composition crosslinked with an organic peroxide is excellent in heat resistance.
  • organic peroxide examples include 1,1-di (t-hexylperoxy) -3,5,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroperoxide, Di-t-butyl peroxide, t-butyl cumyl peroxide, dicumyl peroxide, ⁇ , ⁇ '-bis (t-butylperoxy) -p-diisopropylbenzene, 2,5-dimethyl-2,5-di (T-butylperoxy) -hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -hexyne-3, dibenzoyl peroxide, t-butylperoxybenzene, 2,5 -Dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxymaleic acid, t-hexylperoxyisoprop
  • the content of the crosslinking agent in the molding material is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 4 parts by mass with respect to 100 parts by mass of the component A. Preferably, 0.5 to 3 parts by mass is more preferable.
  • the crosslinking efficiency of the organic peroxide is high.
  • One or more crosslinking agents can be used.
  • the crosslinking aid examples include triallyl cyanurate, triallyl isocyanurate, triacryl formal, triallyl trimellitate, dipropargyl terephthalate, diallyl phthalate, tetraallyl terephthalamide, triallyl phosphate, among others.
  • Triallyl isocyanurate is preferred.
  • the content of the crosslinking aid in the molding material is preferably 0.1 to 30 parts by mass, and 0.5 to 15 parts by mass with respect to 100 parts by mass of the component A. More preferred is 1 to 10 parts by mass.
  • the content of the crosslinking aid is not less than the lower limit, the crosslinking rate is high and a sufficient degree of crosslinking is easily obtained. If content of a crosslinking adjuvant is below the said upper limit, characteristics, such as elongation of a crosslinked material, will become favorable.
  • One or more crosslinking aids can be used.
  • the filler examples include carbon black, white carbon, clay, talc, calcium carbonate, glass fiber, carbon fiber, fluororesin (polytetrafluoroethylene, ETFE, etc.) and the like.
  • Any carbon black can be used without limitation as long as it is used as a filler for fluororubber.
  • Specific examples thereof include furnace black, acetylene black, thermal black, channel black, and graphite, and furnace black is preferable.
  • furnace black include HAF-LS carbon, HAF carbon, HAF-HS carbon, FEF carbon, GPF carbon, APF carbon, SRF-LM carbon, SRF-HM carbon, MT carbon, and among these, MT carbon Is more preferable.
  • the content of carbon black is preferably 1 to 50 parts by mass, more preferably 3 to 20 parts by mass with respect to 100 parts by mass of the component A. If the content of carbon black is not less than the lower limit, the strength of the molded article is excellent, and the reinforcing effect due to the incorporation of carbon black can be sufficiently obtained. Further, if the carbon black content is not more than the above upper limit value, the elongation of the molded article is also excellent. As described above, when the carbon black content is within the above range, the balance between the strength and elongation of the molded article is good.
  • the content thereof is preferably 5 to 200 parts by mass and more preferably 10 to 100 parts by mass with respect to 100 parts by mass of the composition.
  • One or more fillers can be used, and carbon black and other fillers may be used in combination.
  • the content thereof is preferably 1 to 100 parts by mass, more preferably 3 to 50 parts by mass with respect to 100 parts by mass of the composition. preferable.
  • the stabilizer examples include copper iodide, lead oxide, calcium oxide, magnesium oxide, aluminum oxide, titanium oxide, antimony oxide, and phosphorus pentoxide.
  • the content of the stabilizer in the molding material is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 5 parts by mass, and 0.5 to 3 parts by mass with respect to 100 parts by mass of the composition. Is more preferable.
  • One or more stabilizers can be used.
  • the processing aid include higher fatty acids and alkali metal salts of higher fatty acids. Specifically, stearic acid, stearates and laurates are preferred.
  • the content of the processing aid in the present molding material is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, and more preferably 1 to 3 parts by weight with respect to 100 parts by weight of the present composition. Further preferred.
  • One or more processing aids can be used.
  • the lubricant include higher fatty acids and alkali metal salts of higher fatty acids. Specifically, stearic acid, stearates and laurates are preferable.
  • the content of the lubricant is preferably from 0.1 to 20 parts by weight, more preferably from 0.2 to 10 parts by weight, even more preferably from 1 to 5 parts by weight, based on 100 parts by weight of the present composition.
  • the molded body of the present invention is a molded body obtained by melt molding the present molding material.
  • the molded body of the present invention may be a molded body obtained by crosslinking the molding material during melt molding, or a molded body obtained by crosslinking a molded body obtained by melt molding the molding material after molding. It may be.
  • a molded body obtained by melt molding the present molding material is also referred to as a “main molded body”.
  • melt molding method for producing the molded article examples include injection molding, extrusion molding, coextrusion molding, blow molding, compression molding, inflation molding, transfer molding, and calendar molding.
  • crosslinking method for producing the molded article comprising the crosslinked product there is no particular limitation on the crosslinking method for producing the molded article comprising the crosslinked product, and a chemical crosslinking method, X-ray, ⁇ -ray, electron beam, proton beam, deuteron using the molding material containing the crosslinking agent is used.
  • a chemical crosslinking method X-ray, ⁇ -ray, electron beam, proton beam, deuteron using the molding material containing the crosslinking agent
  • examples thereof include an irradiation crosslinking method using ionizing radiation such as rays, ⁇ rays, and ⁇ rays, and crosslinking may be performed simultaneously with molding, or crosslinking may be performed after molding.
  • the shape of the molded body is not particularly limited, and may be a film or sheet shape, a hollow hose shape or a tube shape, and various other shapes depending on applications.
  • the molded body may be an independent molded product itself, or may be associated with another member such as a covering material.
  • the molded body is a molded body composed of a single-layer or multi-layered film, sheet, hose or tube, and at least one of the layers in the molded body is a layer formed by melt-molding the molding material. Certain molded bodies are preferred.
  • a covered electric wire having a conductive wire and a covering material which is a covering material formed by melt-molding the molding material, is preferable.
  • the film-shaped or sheet-shaped main molded body include mold release applications and agricultural applications.
  • the film or sheet may be a single layer or a laminate of two or more layers.
  • at least one layer is a layer that is a molded body of the present molding material, and may include a layer formed of a material other than the present molding material.
  • the use of the film or sheet is not particularly limited. For example, the following uses are mentioned.
  • Semiconductor release film, substrate release film, release film for optical element sealing process such as light emitting diode (LED), anticorrosion lining, release lining, anticorrosion coating, release coating, wire coating, carbon or glass fiber composite molding Mold release film, copy roll, antifouling film for office equipment such as copy belt, flameproof membrane material, green sheet and fuel cell electrode, carrier film for membrane production, cushion film for high heat press (cushion film for die attach etc.
  • LED light emitting diode
  • anticorrosion lining anticorrosion coating
  • release coating wire coating
  • carbon or glass fiber composite molding Mold release film copy roll
  • antifouling film for office equipment such as copy belt, flameproof membrane material, green sheet and fuel cell electrode, carrier film for membrane production, cushion film for high heat press (cushion film for die attach etc.
  • the green sheet refers to an unsintered ceramic sheet for a ceramic capacitor. Since the film or sheet as the molded article is excellent in flexibility, it is particularly suitable for use as a semiconductor release film, a release film for sealing an optical element such as an LED, and a laminated film for a rubber plug.
  • the film or sheet may be a single layer or a laminate of two or more layers.
  • the covering material formed on the outer periphery of the core wire is not only formed in direct contact with the core wire but also indirectly through another layer between the core wire. It may be formed on the outer periphery.
  • the coated electric wire of the present invention is not only coated with a conductor using the molded body of the present invention as a covering material, but also an electric wire having the molded body as a coating material as an outer layer, such as a cable or a wire harness having a sheath. Such things are also included.
  • the molded body include the film.
  • the conductor is not particularly limited, and examples thereof include copper, copper alloy, aluminum and aluminum alloy, various plating wires such as tin plating, silver plating, and nickel plating, stranded wires, superconductors, and plating wires for semiconductor element leads.
  • covering material can be manufactured by coat
  • the conductor can be coated with the molding material by a known method.
  • the covered electric wire with the formed body as a covering material is coated with the formed body which is a cross-linked product obtained by further irradiating an electron beam onto the covered electric wire whose conductor is coated with the forming material and crosslinking the formed body.
  • the irradiation dose of the electron beam at the time of crosslinking is preferably 50 to 700 kGy, more preferably 80 kGy to 400 kGy, and further preferably 100 to 250 kGy.
  • the temperature during electron beam irradiation is preferably from 0 to 300 ° C, more preferably from 10 to 200 ° C, and even more preferably from 20 to 100 ° C. Since this molding material is excellent in molding processability, a covered electric wire can be manufactured at high speed. In addition, since it contains the A component, it can be used continuously at high temperatures and has excellent flexibility compared to a covered electric wire using only the B component that is thermoplastic as a covering material. It is suitable for use in a coated electric wire for automobiles that needs to be wired.
  • the covering material may be a single layer or a laminate of two or more layers.
  • the hose or tube which is the main molded body may be a multilayer structure having a layer of the main molded body and a layer made of another material.
  • other materials include those described in paragraph [0040] of International Publication No. 2015/182702, liquid crystal polymers, polyaryl ketones, polyether sulfones, polyphenyl sulfones, polyacetals, polyurethanes, and the like. Of these, polyamide is preferred.
  • polyamide 6 polyamide 66, polyamide 46, polyamide 11, polyamide 12, polyamide 610, polyamide 612, polyamide 6/66 copolymer, polyamide 6/66/610 copolymer, polyamide MXD6, polyamide 6T, polyamide 9T and polyamide 6 / 6T copolymer and those described in paragraphs [0051] and [0052] of Japanese Patent No. 4619650.
  • polyamide 6/66 copolymer polyamide 6/66/610 copolymer
  • polyamide MXD6 polyamide 6T
  • polyamide 9T polyamide 6 / 6T copolymer
  • the other layer include a component B having a functional group-containing monomer as the monomer (MB8) because of good adhesion.
  • a component B having a functional group-containing monomer as the monomer (MB8) because of good adhesion.
  • the fluoropolymer described in International Publication No. 2015/182702 is mentioned.
  • hose or tube is not particularly limited.
  • Automotive hoses such as fuel hoses, intake / exhaust hoses, various oil hoses including transmission hoses such as ATF hoses, parts tubes, etc., except for automobiles, chemical tubes, chemical hoses, steam tubes, steam hoses
  • chemical tubes such as gas-liquid tubes, various tubes and hoses in food plants and food equipment, and general industrial parts.
  • the minimum bending radius of the tube is preferably 42 mm or less, more preferably 40 mm or less, and most preferably 38 mm or less.
  • hoses and tubes can be manufactured at high speed. Moreover, since the hose and tube which are this molded object are excellent also in a softness
  • the hose and tube may be a single layer or a laminate of two or more layers.
  • the molded body can be used as an electrical insulating material for electrical parts, for example, sheathing materials and insulation coating materials for cables.
  • Gaskets in various plants such as petroleum refining, petrochemical, electric power, and papermaking It can also be used as a packing, a diaphragm or the like.
  • it can also be set as the various components used in various industrial fields, such as a motor vehicle field, an industrial robot field, and a thermal equipment field.
  • it is suitable for various seals, rings, gaskets, packings, joint sheets, pump seals, oil seals, diaphragms and other sealing applications, insulation materials, sheaths and other electric wire / electric equipment related materials.
  • anti-vibration materials rolls, scrapers, valve parts, pump parts, mandrels, joints, resin plates, covers, paints, chemical stoppers, piping, sanitary packing, joints, and the like.
  • the storage elastic modulus E ′ of the fluororesin composition is considered to be an index indicating the dispersibility of the fluoroelastomer in the fluororesin composition. That is, when the fluoroelastomer is not sufficiently dispersed in the fluororesin, even if the temperature exceeds the melting point of the fluororesin, sufficient fluidity cannot be obtained due to the influence of the continuous phase of the fluoroelastomer.
  • the storage elastic modulus E ′ of the object is increased.
  • the following can be considered as causes of problems in dynamic molding when the storage elastic modulus E ′ of the fluororesin composition is large. That is, the fluororesin composition having a large storage elastic modulus E ′ at first glance seems to have a sufficient particle size of the fluoroelastomer in the present composition even though the fluoroelastomer appears to be sufficiently dispersed in the fluororesin. It is thought that it is larger than the particle size of. For this reason, it was considered that the dispersed state cannot be maintained by agglomeration of fluorine-containing elastomers having low compatibility with the fluororesin during dynamic molding.
  • the storage elastic modulus E ′ of the fluororesin composition is as small as 250 kPa or less. It is considered a thing. Further, since the fluorine-containing elastomer in the fluororesin composition is sufficiently reduced in particle size and dispersed, the progress of phase separation due to spinodal decomposition is suppressed, and the molding material containing the fluororesin composition is dynamically changed. Even when molded, it is considered that a good molded article having excellent surface smoothness can be obtained.
  • the inside of a 3.2 L reactor equipped with a stirring anchor blade was evacuated, and 1500 g of ion-exchanged water, 59 g of disodium hydrogenphosphate dodecahydrate, 0.7 g of sodium hydroxide, and tert-butanol 197 g, 9 g of sodium lauryl sulfate, and 6 g of ammonium persulfate were added. Further, an aqueous solution in which 0.4 g of ethylenediaminetetraacetic acid disodium salt dihydrate and 0.3 g of ferrous sulfate heptahydrate were dissolved in 100 g of ion exchange water was added to the reactor.
  • the pH of the aqueous medium in the reactor was 9.5.
  • the anchor blade was rotated at 300 rpm, and then a 2.5% by mass aqueous solution of sodium hydroxymethanesulfinate dihydrate adjusted to pH 10.0 with sodium hydroxide (hereinafter, “Longalite 2.5% by mass aqueous solution”) was added to the reactor to initiate the polymerization reaction. Thereafter, Rongalite 2.5 mass% aqueous solution was continuously added to the reactor using a high-pressure pump.
  • the addition of the 2.5% by weight aqueous solution of Rongalite is stopped, the internal temperature of the reactor is cooled to 10 ° C., and the polymerization reaction is performed. It stopped and the latex of the fluorine-containing elastomer was obtained.
  • the amount of Rongalite 2.5 mass% aqueous solution added was 68 g.
  • the polymerization time was 6 hours.
  • a 5% by mass aqueous solution of calcium chloride was added to the latex to agglomerate the latex of the fluorine-containing elastomer A1, and the fluorine-containing elastomer was precipitated, filtered and collected.
  • the storage shear elastic modulus G ′ of the fluorine-containing elastomer was measured according to ASTM D6204 using a Rubber Process Analyzer (RPA2000, manufactured by Alpha Technology Co., Ltd.) at a sample amount of 7.5 g, a temperature of 100 ° C., and a displacement of 0.5 °.
  • the storage elastic modulus and loss elastic modulus of the fluororesin composition were obtained by cutting a test piece from a sheet having a length of 130 mm, a width of 130 mm, and a thickness of 1 mm prepared by preheating at 255 ° C. for 5 minutes and press forming for 5 minutes. (EXSTAR6000, manufactured by Seiko Instruments Inc.) was used for measurement.
  • the storage elastic modulus and the loss elastic modulus are values measured at 250 ° C. in an air atmosphere.
  • the storage elastic modulus E ′ and the loss elastic modulus E ′′ are storage elastic modulus and loss elastic modulus at a temperature 25 ° C. higher than the melting point of the fluororesin, and the storage elastic modulus E ′ represents an elastic component, and the loss elastic modulus E ′.
  • Example 1 Using a twin-screw extruder (KZW32TW-45MG-NH, manufactured by Technobel Co., Ltd., continuous type), 50 parts by mass of A1, 50 parts by mass of B1, and 1 part by mass of C1 were melt-kneaded and extruded to obtain a fluororesin composition. Obtained.
  • the melt-kneading extrusion was performed under the condition of a screw rotation speed of 250 rpm and 240 ° C. for 2 minutes.
  • the twin screw extruder was provided with two kneading zones, and the ratio (L / D) of the total length L of the two kneading zones to the screw diameter D was 6.
  • Example 2 A fluororesin composition was obtained in the same manner as in Example 1 except that A2 was used instead of A1.
  • Example 3 A fluororesin composition was obtained in the same manner as in Example 1 except that the kneading temperature was 280 ° C.
  • Example 4 A fluororesin composition was obtained in the same manner as in Example 1 except that the kneading temperature was 300 ° C.
  • Example 5 A fluororesin composition was obtained in the same manner as in Example 4 except that B2 was used instead of B1.
  • Example 6 A fluororesin composition was obtained in the same manner as in Example 1 except that the amount of C1 used was 0.25 parts by mass.
  • Example 7 A fluororesin composition was obtained in the same manner as in Example 1 except that the amount of C1 used was 4 parts by mass.
  • Example 8 A fluororesin composition was obtained in the same manner as in Example 1 except that the screw speed in melt kneading extrusion was 150 rpm.
  • Example 9 A fluororesin composition was obtained in the same manner as in Example 1 except that the kneading temperature was 230 ° C.
  • Example 10 A fluororesin composition was obtained in the same manner as in Example 1 except that it was melt-kneaded and extruded using an internal mixer (Laboplast Mill KF70V2, manufactured by Toyo Seiki Co., Ltd., batch type).
  • the fluorine-containing elastomer was dispersed in the fluororesin.
  • Table 1 shows the storage elastic modulus E ′ and the loss elastic modulus E ′′ of the fluororesin composition obtained in each example.
  • “ND” indicates that it was below the detection limit (100 kPa or less).
  • the electric wire sample obtained by dynamic molding using the fluororesin composition obtained in Example 1 which is the fluororesin composition of the present invention was excellent in surface smoothness.
  • the fluororesin composition obtained in Example 8 has a high storage elastic modulus E ′ of the fluororesin composition, and the electric wire obtained by dynamic molding using the fluororesin composition obtained in Example 8 is used.
  • the sample had a rough surface and was inferior in surface smoothness.
  • the fluorine-containing copolymer (B3-1) was found to be TFE units / E units /
  • the ratio of CH 2 ⁇ CH (CF 2 ) 2 F units / IAH units was 56.1 / 42.7 / 0.5 / 0.7 (molar ratio).
  • the MFR of the fluorine-containing copolymer (B3-1) was 33.7 g / 10 minutes, and the melting point was 256 ° C.
  • the obtained slurry-like fluorine-containing copolymer (B3-2) was put into an 860 L granulation tank charged with 340 kg of water, and the temperature was raised to 105 ° C. with stirring to distill and remove the solvent. Granulated. The obtained granulated product was dried at 150 ° C. for 15 hours to obtain 25.0 kg of a dry granulated product of a fluorinated copolymer (B3-2).
  • the fluorinated copolymer (B3-2) was found to be TFE units / E units / The ratio of CH 2 ⁇ CH (CF 2 ) 2 F units was 57.5 / 41.7 / 0.8 (molar ratio). Further, the MFR of the fluorinated copolymer (B3-2) was 31.0 g / 10 min, and the melting point was 258 ° C.
  • Polyamide 12 is supplied to the cylinder that forms the outer layer
  • fluororesin B3 is supplied to the cylinder that forms the intermediate layer
  • the fluororesin composition obtained in Example 1 is supplied to the cylinder that forms the inner layer.
  • the heating temperatures in the transport zone of polyamide 12, fluororesin B3 and the fluororesin composition obtained in Example 1 were 230 ° C., 300 ° C., and 300 ° C., respectively.
  • Three-layer coextrusion was performed at a temperature of the common die of 320 ° C. to obtain a three-layer laminated tube.
  • the outer diameter of this laminated tube is 8 mm
  • the inner diameter is 6 mm
  • the thickness is 1 mm.
  • the thickness of the outer layer of polyamide 12, the intermediate layer of fluororesin B3, and the inner layer of the fluororesin composition obtained in Example 1 is 0. They were 75 mm, 0.15 mm, and 0.1 mm. The inner layer and the intermediate layer, and the intermediate layer and the outer layer were extremely firmly adhered and did not peel off, and the peel strength could not be measured. As a result of measuring the minimum bending radius of the obtained tube, it was 36 mm.
  • Polyamide 12 was supplied to the cylinder forming the outer layer, and fluororesin B3 was supplied to the cylinder forming the inner layer, and each was transferred to the transport zone of the cylinder.
  • the heating temperatures in the transport zone of polyamide 12 and fluororesin B3 were 230 ° C. and 300 ° C., respectively.
  • Two-layer coextrusion was performed at a temperature of the common die of 320 ° C. to obtain a two-layer laminated tube.
  • the outer diameter of this laminated tube was 8 mm, the inner diameter was 6 mm, and the thickness was 1 mm.
  • the thicknesses of the outer layer of polyamide 12 and the inner layer of fluororesin B3 were 0.8 mm and 0.2 mm, respectively.
  • the inner layer and the outer layer were extremely firmly adhered and did not peel off, and the peel strength could not be measured. As a result of measuring the minimum bending radius of the obtained tube, it was 42.5 mm.
  • the laminated tube obtained by molding using the fluororesin composition obtained in Example 1 which is the fluororesin composition of the present invention was excellent in bendability.
  • the laminated tube not using the fluororesin composition of the present invention was inferior in bendability.
  • Japanese Patent Application No. 2016-048759 filed on Mar. 11, 2016, Japanese Patent Application No. 2016-091850 filed on Apr. 28, 2016, and Japanese Patent Application filed on Sep. 16, 2016.
  • the entire contents of the specification, claims and abstract of application 2016-182183 are hereby incorporated herein by reference as the disclosure of the specification of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

柔軟性および耐油性に優れ、熱変色しにくく、かつ成形性に優れたフッ素樹脂組成物を提供する。 貯蔵せん断弾性率G'が100以上の含フッ素エラストマーと融点が150℃以上の溶融成形可能なフッ素樹脂とを含む溶融混練物からなるフッ素樹脂組成物であって、前記含フッ素エラストマーは、前記フッ素樹脂中に分散しており、前記含フッ素エラストマーと前記フッ素樹脂との合計に対する前記含フッ素エラストマーの含有量が10~65質量%であり、前記含フッ素エラストマーと前記フッ素樹脂との合計量が、前記フッ素樹脂組成物に対して90質量%以上であり、前記フッ素樹脂の融点より25℃高い温度における、前記フッ素樹脂組成物の貯蔵弾性率E'が250kPa以下である、フッ素樹脂組成物。

Description

フッ素樹脂組成物、成形材料および成形体
 本発明は、フッ素樹脂組成物、成形材料および成形体に関する。
 テトラフルオロエチレン/プロピレン共重合体(以下、「TFE/P共重合体」とも言う。)のような含フッ素エラストマーは、耐熱性、耐油性、耐薬品性、電気絶縁性、可とう性等の特性に優れ、かつ、放射線架橋可能なエラストマー材料として、ホース、チューブ、ガスケット、パッキン、ダイヤフラム、フィルムまたはシート、電線被覆材等に使用されている。
 また、含フッ素エラストマーの特性を補うため、含フッ素エラストマーと、エチレン/テトラフルオロエチレン共重合体(以下、「E/TFE共重合体」とも言う。)のようなフッ素樹脂とをブレンドすることが行われている。
 たとえば、特許文献1では、TFE/P共重合体とE/TFE共重合体とをブレンドして、引張強さや引裂き強さ等の機械的特性、強靱性等の特性の向上を図っている。そして、特許文献1では、コンパウンド価格を下げることを目的として、TFE/P共重合体とE/TFE共重合体とに加えて、さらに、エチレン-アクリル酸エステル共重合体またはエチレン-酢酸ビニル共重合体を大量にブレンドしている。
 また、特許文献2では、TFE/P共重合体のカットスルー性(高温下で熱軟化し難い特性)を改善するため、TFE/P共重合体と炭酸カルシウムと共に、E/TFE共重合体とをブレンドしている。
 特許文献3でも、カットスルー性改善のために、TFE/P共重合体とE/TFE共重合体とをブレンドしている。そして、特許文献3では、TFE/P共重合体とブレンドするE/TFE共重合体が多すぎると可とう性と伸びが低下するため、ブレンドポリマ全体に対するE/TFE共重合体の配合量は40質量%以下とされている。
特開平5-78539号公報 特開平10-334738号公報 特開2010-186585号公報
 たとえば、自動車のエンジンルームのハーネスに用いられる材料には、ハーネスの配線自由度を確保するため優れた柔軟性が求められる。しかし、特許文献3で指摘されているように、可とう性と伸びの低下を抑え柔軟性を確保するためには、TFE/P共重合体とブレンドするE/TFE共重合体の割合を低くする必要があった。しかしながら、含フッ素エラストマーに対するフッ素樹脂の含有量の割合を低くすると、自動変速機油等の潤滑油に対する耐油性が充分でない場合があった。
 また、含フッ素エラストマーとフッ素樹脂とをブレンドすると、加熱下で熱変色する場合があり、その場合には成形体の着色性に対する自由度を狭めることになる。また、成形性が充分でない場合には、成形体にウェルドラインが生じる等の成形不良に基づく欠点が生じる場合があった。
 本発明は、上記事情に鑑みてなされたものであって、柔軟性および耐油性に優れ、熱変色しにくい成形体となり、かつ成形性に優れたフッ素樹脂組成物を提供することを課題とする。
 また、本発明は、当該フッ素樹脂組成物を用いた、成形材料および成形体を提供することを課題とする。
 本発明は、以下の構成を有する。
[1]貯蔵せん断弾性率G’が100以上の含フッ素エラストマーと融点が150℃以上の溶融成形可能なフッ素樹脂とを含む溶融混練物からなるフッ素樹脂組成物であって、
 前記含フッ素エラストマーは、前記フッ素樹脂中に分散しており、
 前記含フッ素エラストマーと前記フッ素樹脂との合計に対する前記含フッ素エラストマーの含有量が10~65質量%であり、
 前記含フッ素エラストマーと前記フッ素樹脂との合計量が、前記フッ素樹脂組成物に対して90質量%以上であり、
 前記フッ素樹脂の融点より25℃高い温度における、前記フッ素樹脂組成物の貯蔵弾性率E’が250kPa以下であることを特徴とするフッ素樹脂組成物。
[2]前記フッ素樹脂組成物が、エポキシ基を有するエチレン共重合体に由来するエチレン共重合体と前記含フッ素エラストマーと前記フッ素樹脂とを含む溶融混練物からなるフッ素樹脂組成物であり、前記エチレン共重合体の含有量が、前記含フッ素エラストマーと前記フッ素樹脂との合計100質量部に対して0.1~10質量部である、[1]のフッ素樹脂組成物。
[3]前記含フッ素エラストマーが、テトラフルオロエチレンに基づく単位およびプロピレンに基づく単位を有する共重合体である、[1]または[2]のフッ素樹脂組成物。
[4]前記含フッ素エラストマーが、海島構造または共連続構造を形成して前記フッ素樹脂中に分散している、[1]~[3]のいずれかのフッ素樹脂組成物。
[5]前記フッ素樹脂が、テトラフルオロエチレンに基づく単位を有する重合体、フッ化ビニリデンに基づく単位を有する重合体またはクロロトリフルオロエチレンに基づく単位を有する重合体である、[1]~[4]のいずれかのフッ素樹脂組成物。
[6]前記フッ素樹脂が、エチレンに基づく単位およびテトラフルオロエチレンに基づく単位を有する共重合体である、[5]のフッ素樹脂組成物。
[7]前記フッ素樹脂の融点が150~300℃である、[1]~[6]のいずれかのフッ素樹脂組成物。
[8]貯蔵せん断弾性率G’が100以上の含フッ素エラストマーと融点が150℃以上の溶融成形可能なフッ素樹脂と任意にエポキシ基を有するエチレン共重合体とを含む原料を溶融混練し、冷却してフッ素樹脂組成物を製造する方法であって、
 前記溶融混練前の原料において、前記含フッ素エラストマーと前記フッ素樹脂との合計に対する前記含フッ素エラストマーの含有量が10~65質量%であり、前記含フッ素エラストマーと前記フッ素樹脂との合計量が、前記フッ素樹脂組成物に対して90質量%以上であり、前記エポキシ基を有するエチレン共重合体の含有量が、前記含フッ素エラストマーと前記フッ素樹脂との合計100質量部に対して0~10質量部であり、
 前記溶融混練後において、前記含フッ素エラストマーが前記フッ素樹脂中に分散しており、かつ、前記フッ素樹脂の融点より25℃高い温度における、得られたフッ素樹脂組成物の貯蔵弾性率E’が250kPa以下であることを特徴とするフッ素樹脂組成物の製造方法。
[9]前記含フッ素エラストマーを、海島構造または共連続構造を形成するように前記フッ素樹脂中に分散させる、[8]のフッ素樹脂組成物の製造方法。
[10]前記[1]~[7]のいずれかのフッ素樹脂組成物を含む成形材料。
[11]前記[10]の成形材料を溶融成形してなる成形体。
[12]1層または多層構造のフィルム、シート、ホースまたはチューブからなる成形体であって、それら成形体における層の少なくとも1層が[10]の成形材料の溶融成形により形成された層である、成形体。
[13]導線と被覆材とを有する被覆電線であって、該被覆材が[10]の成形材料の溶融成形により形成された被覆材である、被覆電線。
 本発明のフッ素樹脂組成物は、柔軟性および耐油性に優れ、熱変色しにくく、かつ成形性に優れる。
 本発明の成形体は、柔軟性および耐油性に優れ、熱変色しにくく、かつ成形不良に基づく欠点が少ない。
[フッ素樹脂組成物]
 本発明のフッ素樹脂組成物は、特定の含フッ素エラストマーおよび特定のフッ素樹脂を含む溶融混練物からなる。溶融混練物とは、溶融混練後常温に冷却されたものを意味する。
 特定の含フッ素エラストマーとは、「貯蔵せん断弾性率G’が100以上の含フッ素エラストマー」をいい、以下「A成分」とも言う。特定のフッ素樹脂とは、「融点が150℃以上の溶融成形可能なフッ素樹脂」をいい、以下「B成分」とも言う。
 本発明のフッ素樹脂組成物は、フィルム、ホース、被覆電線、その他の成形体を得るための成形材料として使用される。
 なお、以下、本発明のフッ素樹脂組成物を「本組成物」とも言う。
 本組成物は原料を溶融混練して得られた溶融混練物である。原料は前記特定の含フッ素エラストマーと前記特定のフッ素樹脂であり、溶融混練過程でそれら原料は変化しないと考えられるので、溶融混練前の原料もそれぞれA成分、B成分と称する。なお、後述の任意成分であるC成分については、その原料が溶融混練過程で変化し、原料と溶融混練物中のC成分は異なると考えられる。
 本組成物におけるA成分とB成分との合計に対するA成分の含有量は10~65質量%である。本組成物における上記A成分の含有量は、10~60質量%が好ましく、20~60質量%がより好ましく、30~55質量%がさらに好ましい。
 本組成物にA成分が上記範囲で含有されていれば、優れた柔軟性を有する成形体が得られる。本組成物にB成分が上記範囲で含有されていれば、優れた耐油性を有する成形体が得られる。
 本組成物におけるA成分とB成分の含有量の合計は、本組成物に対して90%質量以上である。本組成物におけるA成分とB成分との含有量の合計が、本組成物に対して90~100質量%であることが好ましく、95~99.7質量%がより好ましく、97~99.5質量%がさらに好ましい。
 本組成物の質量に占めるA成分とB成分の含有量の合計の割合が、前記下限値以上であれば本発明の効果を充分に奏することができ、前記上限値以下であれば、本組成物の性状を変化させるための他の成分を含有させることができる。
 また、A成分は、B成分に分散しており、B成分の融点より25℃高い温度における本組成物の貯蔵弾性率E’は、250kPa以下である。
 A成分がB成分中に分散しているとは、A成分とB成分が相分離していることを意味する。溶融混練過程においてA成分とB成分が相溶して均一な溶融状態になっていたとしても、冷却の過程において相分離が生じると考えられる。溶融混練過程においてA成分とB成分が相溶しない場合においては、溶融混練過程においてA成分がB成分中に微細な構造体となって分散すると考えられる。
 A成分は、海島構造(球状)または共連続構造(Gyroid)を形成するように、B成分中に分散していることが好ましい。
 本発明において、海島構造とは、比較的連続的に見える部分(本発明においては、B成分である。)の中に、不連続的な部分(本願発明においては、A成分である。)が混在している状態の構造を意味し、不連続な部分のそれぞれの塊における最大幅が70μm程度であることを意味する。
 本発明において、共連続構造とは、海島構造における不連続な部分のそれぞれの塊が、一部接合し、最大幅が50μm以下で連続的につながった連続性構造を有する状態を意味する。
 本組成物の貯蔵弾性率E’は、以下の試験片を用いて、空気雰囲気下、周波数:10Hz、昇温開始温度:23℃、昇温温度:3℃/分において粘弾性測定を行った際の、B成分の融点より25℃高い温度における貯蔵弾性率である。
(試験片)
 プレス成形により成形した厚さ1mmのシートから、長さ45mm、幅8mm、厚さ1mmに切り出したシート。
 本組成物の貯蔵弾性率E’は250kPa以下であり、0~200kPaが好ましく、0~150kPaがより好ましく、0~130kPaがさらに好ましい。
 本組成物の貯蔵弾性率E’が前記範囲内にあれば、成形時における充分な流動性を確保でき、成形性に優れ、本組成物を含む成形体は表面平滑性に優れる。
(含フッ素エラストマー)
 本発明において、A成分である含フッ素エラストマーは100以上の貯蔵せん断弾性率G’を示す。
 含フッ素エラストマーの貯蔵せん断弾性率G’は、ASTM D6204に準じて、Rubber Process Analyzer(RPA2000、アルファテクノロジー株式会社製)を用いて、サンプル量:7.5g、温度:100℃、変位:0.5°において周波数を1~2000cpmまで変化させてトルクを測定し、その測定値からG’およびG’’を算出した際の、50cpmにおけるG’である。
 含フッ素エラストマーの貯蔵せん断弾性率G’は100以上であり、150~1000が好ましく、200~800がより好ましく、220~600がさらに好ましい。
 含フッ素エラストマーの貯蔵せん断弾性率G’が前記下限値以上であれば、成形体の機械的強度が良好となる。貯蔵せん断弾性率G’が前記上限値以下であれば、高い流動性を有し、B成分中における分散が良好となり、かつ成形体の柔軟性を高めることができる。
 A成分である含フッ素エラストマーは、フッ素を含有し、100以上の貯蔵せん断弾性率G’を示す、融点を持たない弾性共重合体(エラストマー)であればよい。
 含フッ素エラストマーにおけるフッ素含有量は、50~74質量%以上であることが好ましく、55~70質量%以上であることがより好ましい。含フッ素エラストマーにおけるフッ素含有量は、具体的には、後述のTFE/P含有共重合体においては57~60質量%が好ましく、後述のHFP/VdF含有共重合体においては66~71質量%が好ましく、後述のTFE/PMVE含有共重合体においては66~70質量%が好ましい。
 含フッ素エラストマーにおけるフッ素含有量が前記下限値以上であれば、優れた耐熱性および耐薬品性を有する成形体が得られる。含フッ素エラストマーにおけるフッ素含有量が前記上限値以下であれば、成形体の柔軟性を高めることができる。
 含フッ素エラストマーのフッ素含有量は、フッ素含有量の分析により得られ、含フッ素エラストマーを構成するすべての原子の総質量に対するフッ素原子の質量の割合を示す。
 含フッ素エラストマーの数平均分子量は、1万~150万が好ましく、2万~100万がより好ましく、2万~80万がさらに好ましく、5万~60万が特に好ましい。含フッ素エラストマーの数平均分子量が前記下限値以上であれば、成形体の機械的強度が良好となる。含フッ素エラストマーの数平均分子量が前記上限値以下であれば、高い流動性を有し、B成分中における分散が良好となり、かつ成形体の柔軟性を高めることができる。
 含フッ素エラストマーの数平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、「GPC」と記す。)により測定された値である。
 A成分としては、含フッ素エラストマーの1種を用いてもよく、2種以上を用いてもよい。A成分としては、含フッ素エラストマーの1種を用いることが好ましい。
 A成分としての含フッ素エラストマーは、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、フッ化ビニリデン(VdF)、およびクロロトリフルオロエチレン(CTFE)から選ばれる1種以上のモノマー(以下、「モノマー(MA1)」とも言う。)に基づく単位を含むエラストマーであることが好ましい。
 含フッ素エラストマーが、モノマー(MA1)に基づく単位を含むエラストマーである場合、含フッ素エラストマーは、TFEに基づく単位(以下、「TFE単位」とも言う。他の単位についても同様である。)、HFP単位、VdF単位、およびCTFE単位から選ばれる2種または3種の単位のみからなるエラストマーであってもよく、モノマー(MA1)と、モノマー(MA1)と共重合可能であり、当該エラストマーが弾性共重合体となる、モノマー(MA1)以外の他のモノマー(以下、「モノマー(MA2)」とも言う。)に基づく単位の1種以上とからなるエラストマーであってもよい。
 モノマー(MA2)としては、エチレン、プロピレン、パーフルオロ(アルキルビニルエーテル)(PAVE)、フッ化ビニル(VF)、1,2-ジフルオロエチレン(DiFE)、1,1,2-トリフルオロエチレン(TrFE)、3,3,3-トリフルオロ-1-プロピレン(TFP)、1,3,3,3-テトラフルオロプロピレン、および2,3,3,3-テトラフルオロプロピレンからなる群より選ばれる1種以上の化合物が挙げられる。なお、重合体におけるエチレンに基づく単位は「E」で表し、プロピレンに基づく単位は「P」で表す。
 ここで、PAVEは、下式(I)で表される化合物であり、具体的には、パーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)、パーフルオロ(プロピルビニルエーテル)(PPVE)、パーフルオロ(ブチルビニルエーテル)(PBVE)が挙げられる。
 CF=CF(OR) ・・・(I)
[式中、Rは炭素数1~8の直鎖状または分岐状のパーフルオロアルキル基である。]
 含フッ素エラストマーは、モノマー(MA1)と共重合可能であり、当該エラストマーが弾性共重合体となる、モノマー(MA1)およびモノマー(MA2)以外の他のモノマー(以下、「モノマー(MA3)」とも言う。)に基づく単位の1種以上を有していてもよい。
 含フッ素エラストマーを構成する全単位のうち、モノマー(MA3)に基づく単位は20モル%以下であることが好ましく、5モル%以下であることがより好ましく、モノマー(MA3)に基づく単位を有さないことがさらに好ましい。
 含フッ素エラストマーは、含フッ素エラストマーを構成する全単位の100モル%が、モノマー(MA1)に基づく単位の2種または3種からなるか、または、モノマー(MA1)に基づく単位の1種以上と、モノマー(MA2)に基づく単位の1種以上とからなることが好ましい。ただし、本組成物の特性に影響を与えない範囲であれば、不純物等としてこれら以外の単位を含有することは許容される。
 モノマー(MA1)に基づく単位の2種または3種からなるエラストマー、および、モノマー(MA1)に基づく単位の1種以上とモノマー(MA2)に基づく単位の1種以上とからなるエラストマーは、成形体の柔軟性に寄与する。
 A成分としての含フッ素エラストマーとしては、TFE/P含有共重合体(TFE単位とP単位とを含有する共重合体を意味する。なお、「/」で結ばれた各単位の合計、TFE/P含有共重合体の場合にはTFE単位とP単位との合計が、すべての単位の合計に占める割合は、50モル%以上であることが好ましい。他の「含有共重合体」についても同様である。)、HFP/VdF含有共重合体、TFE/PAVE含有共重合体が挙げられる。
 なお、TFE/PAVE含有共重合体には、TFE単位とPAVE単位とを有する共重合体であっても、さらにP単位やVdF単位を含むものは含まない。また、HFP/VdF含有共重合体には、HFP単位とVdF単位とを有する共重合体であっても、さらにP単位を含むものは含まない。
 TFE/P含有共重合体としては、TFE/P(TFE単位とP単位とからなる共重合体を意味する。他についても同様である。)、TFE/P/VF、TFE/P/VdF、TFE/P/E、TFE/P/TFP、TFE/P/PAVE、TFE/P/1,3,3,3-テトラフルオロプロペン、TFE/P/2,3,3,3-テトラフルオロプロペン、TFE/P/TrFE、TFE/P/DiFE、TFE/P/VdF/TFP、TFE/P/VdF/PAVEが挙げられ、なかでもTFE/Pが好ましい。
 HFP/VdF含有共重合体としては、HFP/VdF、TFE/VdF/HFP、TFE/VdF/HFP/TFP、TFE/VdF/HFP/PAVE、VdF/HFP/TFP、VdF/HFP/PAVEが挙げられ、なかでもHFP/VdFが好ましい。
 TFE/PAVE含有共重合体としては、TFE/PAVE、TFE/PMVE、TFE/PMVE/PPVEが挙げられ、なかでもTFE/PMVEが好ましい。
 含フッ素エラストマーとしては、上記のTFE/P含有共重合体、HFP/VdF含有共重合体、TFE/PAVE含有共重合体以外に、TFE/VdF/2,3,3,3-テトラフルオロプロペン、VdF/PAVE、VdF/2,3,3,3-テトラフルオロプロペン、E/HFPも挙げられる。
 上記の含フッ素エラストマーのなかでも、TFE/P含有共重合体、HFP/VdF含有共重合体、TFE/PAVE含有共重合体が好ましく、TFE/P含有共重合体がより好ましく、TFE/P共重合体がさらに好ましい。
 これらのエラストマーの組成は、本組成物から得られる成形体の柔軟性に寄与しやすい点から、以下の範囲が好ましい。
 TFE/Pにおいて、TFE:P(TFE単位とP単位とのモル比を意味する。単位はモル%:モル%であり、合計で100モル%である。他のモル比についても同様である。)は、30~80:70~20が好ましく、40~70:60~30がより好ましく、60~50:40~50がさらに好ましい。TFE/P/VFにおいて、TFE:P:VF=30~60:60~20:0.05~40、TFE/P/VdFにおいて、TFE:P:VdF=30~60:60~20:0.05~40、TFE/P/Eにおいて、TFE:P:E=20~60:70~30:0.05~40、TFE/P/TFPにおいて、TFE:P:TFP=30~60:60~30:0.05~20、TFE/P/PAVEにおいて、TFE:P:PAVE=40~70:60~29.95:0.05~20、TFE/P/1,3,3,3-テトラフルオロプロペンにおいて、TFE:P:1,3,3,3-テトラフルオロプロペン=30~60:60~20:0.05~40、TFE/P/2,3,3,3-テトラフルオロプロペンにおいて、TFE:P:2,3,3,3-テトラフルオロプロペン=30~60:60~20:0.05~40、TFE/P/TrFEにおいて、TFE:P:TrFE=30~60:60~20:0.05~40、TFE/P/DiFEにおいて、TFE:P:DiFE=30~60:60~20:0.05~40、TFE/P/VdF/TFPにおいて、TFE:P:VdF:TFP=30~60:60~20:0.05~40:0.05~20、TFE/P/VdF/PAVEにおいて、TFE:P:VdF:PAVE=30~70:60~20:0.05~40:0.05~20、HFP/VdFにおいて、HFP:VdF=99~5:1~95、TFE/VdF/HFPにおいて、TFE:VdF:HFP=20~40:1~40:20~40、TFE/VdF/HFP/TFPにおいて、TFE:VdF:HFP:TFP=30~60:0.05~40:60~20:0.05~20、TFE/VdF/HFP/PAVEにおいて、TFE:VdF:HFP:PAVE=30~70:60~20:0.05~40:0.05~20、VdF/HFP/TFPにおいて、VdF:HFP:TFP=1~90:95~5:0.05~20、VdF/HFP/PAVEにおいて、VdF:HFP:PAVE=20~90:9.95~70:0.05~20、TFE/PAVEにおいて、TFE:PAVE=40~70:60~30、TFE/PMVEにおいて、TFE:PMVE=40~70:60~30、TFE/PMVE/PPVEにおいて、TFE:PMVE:PPVE=40~70:3~57:3~57、TFE/VdF/2,3,3,3-テトラフルオロプロペンにおいて、TFE:VdF:2,3,3,3-テトラフルオロプロペン=1~30:30~90:5~60、VdF/PAVEにおいて、VdF:PAVE=3~95:97~5、VdF/2,3,3,3-テトラフルオロプロペンにおいて、VdF:2,3,3,3-テトラフルオロプロペン=30~95:70~5、E/HFPにおいて、E:HFP=40~60:60~40が好ましい。
(含フッ素エラストマーの製造)
 含フッ素エラストマーは、1種以上のモノマー(MA1)、ならびに必要に応じてモノマー(MA2)およびモノマー(MA3)の一方または両方の1種以上を共重合することにより製造できる。
 重合法としては、乳化重合法、溶液重合法、懸濁重合法、塊状重合法等が挙げられる。含フッ素共重合体の数平均分子量や共重合体組成の調整が容易で、生産性に優れることから、水性媒体および乳化剤の存在下で、単量体を重合する乳化重合法が好ましい。
 乳化重合法では、水性媒体、乳化剤およびラジカル重合開始剤の存在下に、上記モノマーを含む単量体成分を重合(乳化重合)する工程(乳化重合工程)を経て、エラストマーのラテックスを得る。乳化重合工程においては、pH調整剤を添加してもよい。
(フッ素樹脂)
 本組成物において、B成分であるフッ素樹脂は融点が150℃以上の溶融成形可能な樹脂である。
 B成分であるフッ素樹脂におけるフッ素含有量は、50~74質量%であることが好ましく、53~70質量%であることがより好ましい。フッ素樹脂におけるフッ素含有量は、別の態様として、50~70質量%であることが好ましく、さらに別の態様として、53~74質量%であることが好ましい。
 フッ素樹脂におけるフッ素含有量が前記下限値以上であれば、優れたな耐熱性および耐薬品性の成形体が得られる。フッ素樹脂におけるフッ素含有量が前記上限値以下であれば、成形体の柔軟性を高めることができる。
 フッ素樹脂のフッ素含有量は、フッ素含有量の分析により得られ、フッ素樹脂を構成するすべての原子の総質量に対するフッ素原子の質量の割合を示す。
 B成分であるフッ素樹脂の数平均分子量は、1万~100万が好ましく、2万~50万がより好ましく、2万~30万が更に好ましく、5万~30万がさらに好ましい。フッ素樹脂の数平均分子量が前記下限値以上であれば、成形体の機械的強度が良好となる。フッ素樹脂(B)の数平均分子量が前記上限値以下であれば、高い流動性を有し、含フッ素エラストマーを良好に分散させることができ、かつ成形体の柔軟性を高めることができる。
 B成分であるフッ素樹脂の融点は150℃以上であり、150~300℃が好ましく、160~280℃がより好ましく、170~270℃がさらに好ましい。
 フッ素樹脂の融点が前記下限値以上であれば、充分な耐熱性を有する本組成物が得られる。フッ素樹脂の融点が前記上限値以下であれば、高温を必要とせずに本組成物および成形体が製造できる。
 B成分であるフッ素樹脂としては、1種を用いてもよく、2種以上を用いてもよい。フッ素樹脂としては、1種を用いることが好ましい。
 フッ素樹脂は、以下のモノマー(MB1)~モノマー(MB7)に基づく単位の1種以上を含む重合体であることが好ましい。
 モノマー(MB1):TFE、CTFE。
 モノマー(MB2):下式(II)で表される化合物(以下、「FAE」とも言う。)。
 CH=CX(CFY ・・・(II)
[式中、XおよびYは、それぞれ同一または異なって、水素原子またはフッ素原子であり、nは2~8の整数である。]
 モノマー(MB3):VdF、フッ化ビニル、トリフルオロエチレン、ヘキサフルオロイソブチレン等の不飽和基に水素原子を有するフルオロオレフィン。
 モノマー(MB4):HFP等の不飽和基に水素原子を有しないフルオロオレフィン(ただし、モノマー(MB1)を除く。)。
 モノマー(MB5):PAVE。
 モノマー(MB6):CF=CFOCFCF=CF、CF=CFO(CFCF=CF等の不飽和結合を2個有するパーフルオロビニルエーテル類。
 モノマー(MB7):パーフルオロ(2,2-ジメチル-1,3-ジオキソール)、2,2,4-トリフルオロ-5-トリフルオロメトキシ-1,3-ジオキソール、パーフルオロ(2-メチレン-4-メチル-1,3-ジオキソラン)等の脂肪族環構造を有する含フッ素モノマー類。
 得られる成形体の耐熱性、耐薬品性、耐候性、非粘着性が優れる点から、フッ素樹脂はモノマー(MB1)に基づく単位を含むことが好ましく、モノマー(MB1)に基づく単位のなかでも、TFE単位を含むことがより好ましい。
 また、得られる成形体の耐熱性、耐薬品性、耐候性、非粘着性が優れる点から、フッ素樹脂は、モノマー(MB1)に基づく単位と、モノマー(MB2)~モノマー(MB7)のいずれか1種以上のモノマーに基づく単位とを含むことが好ましく、モノマー(MB1)とに基づく単位と、モノマー(MB2)、モノマー(MB4)及びモノマー(MB5)のいずれか1種以上のモノマーに基づく単位とを含むことがより好ましく、モノマー(MB1)に基づく単位と、モノマー(MB4)に基づく単位と、モノマー(MB5)に基づく単位とを含むことがさらに好ましい。
 なお、式(II)におけるnは2~8の整数であり、他のモノマーとの重合反応性の観点から、2~6の整数が好ましく、2~4の整数がより好ましい。式(II)におけるnが前記下限値以上であれば、樹脂にクラックが発生する等の不具合の発生を抑制できる。式(II)におけるnが前記上限値以下であれば、良好な重合反応性を有する。
 FAEとしては、具体的には、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH、CH=CH(CFHが挙げられる。
 フッ素樹脂が、モノマー(MB1)~モノマー(MB7)に基づく単位の1種以上を含む場合、フッ素樹脂は、モノマー(MB1)~モノマー(MB7)と共重合可能な、モノマー(MB1)~モノマー(MB7)以外のモノマー(以下、「MB8」とも言う。)に基づく単位の1種以上を含んでもよい。
 モノマー(MB8)としては、官能基を有しないモノマーや官能基含有モノマーが挙げられる。
 官能基を有しないモノマーとしては、たとえば、下記のモノマーが挙げられる。
 α-オレフィン類:エチレン、プロピレン、ブテン等。
 アルキルビニルエーテル類:エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテル等。
 ビニルエステル類:酢酸ビニル、プロピオン酸ビニル、n-酪酸ビニル、イソ酪酸ビニル、吉草酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、パラ-t-ブチル安息香酸ビニル、シクロヘキサンカルボン酸ビニル、モノクロル酢酸ビニル、アジピン酸ビニル、アクリル酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、桂皮酸ビニル、ウンデシレン酸ビニル、ヒドロキシ酢酸ビニル、ヒドロキシプロピオイン酸ビニル、ヒドロキシ酪酸ビニル、ヒドロキシ吉草酸ビニル、ヒドロキシイソ酪酸ビニル、ヒドロキシシクロヘキサンカルボン酸ビニル等。
 アルキルアリルエーテル類:エチルアリルエーテル、プロピルアリルエーテル、ブチルアリルエーテル、イソブチルアリルエーテル、シクロヘキシルアリルエーテル等。
 アルキルアリルエステル類:エチルアリルエステル、プロピルアリルエステル、ブチルアリルエステル、イソブチルアリルエステル、シクロヘキシルアリルエステル等。
 官能基含有モノマーとしては、たとえば、下記のモノマーが挙げられる。
 水酸基、エポキシ基を有するビニルエーテル類:メタクリル酸グリシジル等。
 不飽和カルボン酸:アクリル酸、メタクリル酸、マレイン酸、イタコン酸、シトラコン酸、ウンデシレン酸等。
 不飽和カルボン酸無水物:無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水ハイミック酸等。
 B成分であるフッ素樹脂としては、TFE含有重合体(TFE単位を有する重合体を意味する。他の「含有重合体」も同様である。)、VdF含有重合体、CTFE含有重合体が挙げられる。
 なお、VdF単位を有する重合体は、さらにTFE単位やCTFE単位を有していてもVdF含有重合体とする。また、CTFE含有重合体には、CTFE単位を有する重合体であっても、さらにTFE単位およびVdF単位の一方または両方を含むものは含まない。
 TFE含有重合体としては、E/TFE含有共重合体、TFE/HFP含有共重合体、TFE/PAVE含有共重合体が挙げられる。
 CTFE含有重合体としては、E/CTFE含有共重合体が挙げられる。
 また、TFE/PAVE含有共重合体の一種としてPFAが挙げられる。
 なお、B成分は150℃以上の融点を持つ、溶融成形可能なフッ素樹脂であり、A成分は融点を持たない弾性共重合体である。したがって、たとえば、B成分であるTFE/PAVE含有共重合体と、含有A成分であるTFE/PAVE含有共重合体とは異なる。
 上記のフッ素樹脂のなかでも、耐熱性、耐薬品性、機械的強度のバランスに優れる点から、B成分としては、下記ETFEおよびE/CTFE含有共重合体が好ましく、ある態様として下記ETFEがより好ましく、別の態様としてE/CTFE含有共重合体がより好ましい。
 本組成物の耐熱性、耐薬品性、機械的強度の優れたバランスに寄与しやすい点から、E/TFE含有共重合体としては、E単位:TFE単位のモル比が80:20~20:80であって、E単位およびTFE単位以外の単位(以下、「第3の単位」とも言う。)を全単位に対して20モル以下含むE/TFE含有共重合体(以下、「ETFE」とも言う。)が好ましい。ETFEにおけるE単位:TFE単位のモル比は、70:30~30:70がより好ましく、50:50~35:65がさらに好ましい。
 ETFEにおける第3の単位の含有量は、全単位に対して、0.01~20モル%が好ましく、0.1~10モル%がより好ましく、0.8~5モル%がさらに好ましい。
 第3の単位としては、FAEに基づく単位が好ましい。
 B成分としてETFEを用いる場合のETFEとしては、150~300℃の融点を有するETFEが好ましく、160~280℃の融点を有するETFEがより好ましく、170~270℃の融点を有するETFEがさらに好ましい。
 また、B成分としてETFEを用いる場合のETFEとしては、0.1~200mm/秒の容量流速を有するETFEが好ましく、0.5~100mm/秒の容量流速を有するETFEがより好ましく、1~50mm/秒の容量流速を有するETFEがさらに好ましい。
 容量流速は、樹脂の溶融流動性を表す指標であり、分子量の目安となる。容量流速が大きいと分子量が低く、容量流速小さいと分子量が高いことを示す。
 容量流速は、島津製作所製フローテスターを用いて、樹脂の融点より50℃高い温度において、荷重7kg下に、直径:2.1mm、長さ:8mmのオリフィス中に押出すときの樹脂の押出し速度として得られる。
(他の成分)
 本組成物は、A成分およびB成分以外に、任意成分として他の成分を含んでもよい。ただし、溶融混練時にA成分やB成分を変性させる等の作用を有する成分(たとえば、後述の架橋剤、架橋助剤等)を含まない。
 他の成分としては、エポキシ基を含有するエチレン共重合体に由来するエチレン共重合体および難燃剤が挙げられ、本組成物にその一方が含まれていても、両方が含まれていてもよい。
 なお、「エポキシ基を含有するエチレン共重合体に由来するエチレン共重合体」を、以下「C成分」とも言う。
 本組成物に占める、上記他の成分の合計は、本組成物の10質量%以下であり、8質量%以下が好ましく、5質量%以下がより好ましい。
 本組成物は、A成分およびB成分の他に、C成分であるエチレン共重合体を含んでもよい。C成分は、A成分とB成分との相溶性を高め、B成分中におけるA成分の分散をより良好にすることができる。
 C成分は、溶融混練物であるフッ素樹脂組成物中に含まれる成分であり、溶融混練前のエポキシ基を含有するエチレン共重合体に由来する。エポキシ基を含有するエチレン共重合体を前記含フッ素エラストマーや前記含フッ素樹脂とともに溶融混練して溶融混練物とする際に、エポキシ基の一部または全部は反応により失われると考えられる。溶融混練の際のエポキシ基の消失は、C成分がA成分とB成分との相溶性を高めてA成分の分散性を向上させる作用に寄与していると推測される。
 前記溶融混練物中のC成分の含有量は、溶融混練前の全原料成分(A成分とB成分とエポキシ基を含有するエチレン共重合体と任意に難燃剤からなる)中のエポキシ基を含有するエチレン共重合体の含有量に等しい。エポキシ基が消失しても、原料におけるエポキシ基を含有するエチレン共重合体の割合と本組成物におけるC成分との間の質量変化は無視しうるからである。
 本組成物が、C成分を含む場合、C成分の含有量は、A成分とB成分の合計100質量部に対して、0.1~10質量部であり、0.3~8質量部が好ましく、0.5~5質量部がより好ましい。
 C成分の含有量が前記下限値以上であれば、本組成物や成形体の熱変色を生じにくく、前記上限値以下であれば、充分な耐油性および耐熱性を有する成形体が得られる。
<エポキシ基を含有するエチレン共重合体>
 エポキシ基を含有するエチレン共重合体は、前記含フッ素エラストマーや前記含フッ素樹脂とともに溶融混練できる融点を有する。すなわち、その融点は150℃未満である。
 エポキシ基を含有するエチレン共重合体としては、1種を用いてもよく、2種以上を用いてもよい。エポキシ基を含有するエチレン共重合体としては、1種を用いることが好ましい。
 エポキシ基を含有するエチレン共重合体としては、E単位と、エポキシ基を有するモノマー(以下、「モノマー(MC1)」とも言う。)の1種以上に基づく単位とからなる2元以上の共重合体、E単位と、モノマー(MC1)の1種以上に基づく単位と、エチレンと共重合可能な、エチレンおよびモノマー(MC1)以外のモノマー(以下、「モノマー(MC2)とも言う。」)の1種以上に基づく単位とからなる3元以上の共重合体等のエチレン共重合体が挙げられる。
 モノマー(MC1)としては、不飽和グリシジルエーテル類(アリルグリシジルエーテル、2-メチルアリルグリシジルエーテル、ビニルグリシジルエーテル等)、不飽和グリシジルエステル類(アクリル酸グリシジル、メタクリル酸グリシジル等)等が挙げられる。
 A成分とB成分との相溶性を向上させられる点から、モノマー(MC1)としては、メタクリル酸グリシジルが好ましい。
 モノマー(MC2)としては、アクリル酸エステル類(アクリル酸メチル、アクリル酸エチル等)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル等)、脂肪酸ビニルエステル類(酢酸ビニル等)、エチレン以外のαオレフィン類等が挙げられる。
 A成分とB成分との相溶性を向上させられる点から、モノマー(MC2)としては、アクリル酸エステル類、メタクリル酸エステル類、および脂肪酸ビニルエステル類(以下、まとめて「モノマー(MC3)」とも言う。モノマー(MC3)は、モノマー(MC2)の一部の集合である。)が好ましい。
 エポキシ基を含有するエチレン共重合体としては、本組成物の成形性や成形体の柔軟性、耐油性等の特性がより優れる点から、E単位とメタクリル酸グリシジル単位とを有する、E/メタクリル酸グリシジル含有共重合体が好ましく、E/メタクリル酸グリシジル共重合体、E/メタクリル酸グリシジル/モノマー(MC3)共重合体がより好ましい。
 E/メタクリル酸グリシジル/モノマー(MC3)共重合体としては、E/メタクリル酸グリシジル/酢酸ビニル共重合体、E/メタクリル酸グリシジル/アクリル酸メチル共重合体、E/メタクリル酸グリシジル/アクリル酸エチル共重合体が挙げられ、E/メタクリル酸グリシジル/アクリル酸メチル共重合体、E/メタクリル酸グリシジル/アクリル酸エチル共重合体が好ましい。
 エポキシ基を含有するエチレン共重合体に占める、E単位の含有量は、成形体の耐熱性および靱性の点から、55~99.9モル%が好ましく、70~94モル%がより好ましい。
 エポキシ基を含有するエチレン共重合体に占める、モノマー(MC1)に基づく単位の含有量は、本組成物の成形性および成形体の機械的特性の点から、0.1~45モル%が好ましく、1~10モル%がより好ましい。
 エポキシ基を含有するエチレン共重合体がモノマー(MC2)に基づく単位を有する場合、エポキシ基を含有するエチレン共重合体に占める、モノマー(MC2)に基づく単位の含有量は、1~30モル%が好ましく、5~20モル%がより好ましい。
 各単位の含有量が上記範囲内のエポキシ基を含有するエチレン共重合体を用いると、A成分とB成分との相溶性をより向上させることができる。その結果、本組成物の成形性が優れ、得られる成形体は、柔軟性、耐油性、耐熱性などの特性がより優れる。
 エポキシ基を含有するエチレン共重合体としては市販品を用いることもでき、エポキシ基を含有するエチレン共重合体の市販品としては、「ボンドファースト(登録商標)E」(住友化学株式会社製、E/メタクリル酸グリシジル共重合体)、「ボンドファースト7M」(住友化学株式会社製、E/メタクリル酸グリシジル/アクリル酸メチル共重合体)が挙げられる。
<難燃剤>
 難燃剤としては、特に限定されず、公知の難燃剤を採用できる。
 難燃剤としては、水酸化アルミニウム、水酸化マグネシウム、炭酸マグネシウム、三酸化アンチモン、アンチモン酸ナトリウム、五酸化アンチモン、ホスファゼン化合物、リン酸エステル、ポリリン酸アンモニウム、ポリリン酸メラミン・メラム・メレム、赤リン、モリブデン化合物、ホウ酸化合物、PTFE等が挙げられる。そのうちでも、三酸化アンチモン、芳香族リン酸エステル(トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート等)、PTFE(樹脂中でフィブリル構造を形成するドリップ防止剤である)が好ましい。
(フッ素樹脂組成物の製造方法)
 本発明のフッ素樹脂組成物は、A成分とB成分と、必要に応じて前記任意成分とを、溶融混練し冷却することにより製造される。冷却された溶融混練物は、適宜の大きさのペレット状や粒状に成形された、成形材料として使用される固体状溶融混練物であることが好ましい。溶融混練法としては、溶融混練押出機構を有する機器で溶融混練押出する方法が好ましい。溶融混練し押し出された線状の溶融混練物を適宜の大きさに切断してペレット状や粒状の溶融混練物とすることができる。
 なお、任意成分は、A成分とB成分とを溶融混練押出する際にそれら成分とともに溶融混練される。
 任意成分であるC成分は、前記のように、原料であるエポキシ基を有するエチレン共重合体に由来する成分である。エポキシ基を有するエチレン共重合体が溶融混練によりC成分となるが、その変化(エポキシ基の消失)において物質の量的変化はないと考えられることより、溶融混練前の原料におけるエポキシ基を有するエチレン共重合体の量は、前記特定の含フッ素エラストマーと前記特定のフッ素樹脂との合計100質量部に対して0~10質量部である。
 溶融混練押出に用いる装置としては、二軸押出機、多軸押出機等の二軸以上の溶融混練押出機構を有する機器を用いることが好ましく、混練効果の高いスクリューを備える二軸押出機、混練効果の高いスクリューを備える多軸押出機を用いることがより好ましい。
 混練効果の高いスクリューとしては、溶融混練押出対象物に充分な混練効果を与え、かつ、過剰なせん断力を与えないものを選択することができる。
 二軸以上の溶融混練押出機構を有する機器は連続式の二軸以上の溶融混練押出機構を有する機器であることが好ましい。
 連続式の二軸以上の溶融混練押出機構を有する機器を用いることにより、溶融混練押出対象物に充分な混練効果を与えることができる。バッチ式の溶融混練押出機構を有する機器を用いると、せん断力が不充分なため、溶融混練押出対象物に充分な混練効果を与えられないことがある。
 また、二軸以上の溶融混練押出機構を有する機器は1以上のニーディングゾーンを備え、2以上のニーディングゾーンを備えることが好ましい。
 また、二軸以上の溶融混練押出機構を有する機器におけるスクリュー径Dに対するニーディングゾーンの長さL(2以上のニーディングゾーンを備える場合には、それぞれのニーディングゾーンの長さの合計)の比(L/D)は、0.1~50であることが好ましく、1~20であることがより好ましく、3~10であることがさらに好ましい。
 溶融混練押出における混練温度は、B成分の融点より、5℃以上高い温度で行うことが好ましく、5~80℃高い温度で行うことがより好ましく、5~50℃高い温度で行うことがさらに好ましい。
 溶融混練押出におけるせん断速度は、上記の溶融混練押出における混練温度における、溶融混練押出対象物の溶融粘度に応じて設定することが好ましい。
 溶融混練押出における二軸以上の溶融混練押出機構を有する機器のスクリューの回転数は、50~700rpmが好ましく、100~500rpmがより好ましく、200~400rpmがさらに好ましい。
 溶融混練押出における、ニーディングゾーンの個数、ニーディングゾーンの長さ、混練温度、およびせん断速度を適切に調整することにより、本組成物の、B成分の融点より25℃高い温度における貯蔵弾性率E’を250kPa以下に制御できる。
 より多くのニーディングゾーンを設けることにより、溶融混練押出において、B成分中に分散するA成分をより小粒径化し、より良好な分散状態とすることができる。
 また、より長いニーディングゾーンの長さ(2以上のニーディングゾーンを備える場合には、それぞれのニーディングゾーンの長さの合計)とすることにより、溶融混練押出において、B成分中に分散するA成分をより小粒径化し、より良好な分散状態とすることができる。
 また、より高い混練温度とすることにより、混練押出において、B成分中に分散するA成分をより小粒径化し、より良好な分散状態とすることができる。
 また、より大きいせん断速度とすることにより、押出混練において、B成分中に分散するA成分をより小粒径化し、より良好な分散状態とすることができる。
 これらの条件を適宜調整して、溶融混練押出において、B成分中に分散するA成分を充分に小粒径化し、充分な分散状態とすることによって、B成分の融点より25℃高い温度における、本組成物の貯蔵弾性率E’を250kPa以下に制御できる。
 溶融混練押出は、溶融混練押出対象物の粘度が一定になるまで実施する。溶融混練押出対象物の溶融混練押出中の粘度変化は、スクリューを介してトルクメーターによる回転トルクの経時変化により観測できる。
 「溶融混練押出対象物の粘度が一定になるまで」とは、回転トルクの値の変動が一定時間以上中心値から5%以内にある状態となるまで溶融混練押出することを意味する。
 溶融混練押出に要する時間は、混練温度、せん断速度、溶融混練押出対象物の組成、二軸以上の溶融混練押出機構を有する機器のスクリュー形状等により変わり得るが、経済性と生産性の点から、1~30分が好ましく、1~20分がより好ましく、2~10分がさらに好ましい。
 溶融混練押出に用いるA成分の形態としては、クラムが好ましい。特に、乳化重合で得られたエラストマーのラテックスを凝集することにより得られた、含フッ素エラストマーのクラムを乾燥して用いることが好ましい。
 溶融混練押出に用いるB成分の形態としては、粉体が好ましい。粉体としては、粒子径の小さいものがより好ましい。粒径が小さいと、溶融混練押出における混練が容易となるうえ、均一な溶融混練押出状態を得られやすい。特に、粉体としては、溶液重合で得られた樹脂スラリーを乾燥して得られた、フッ素樹脂の粉体が好ましい。
 また、溶融混練押出を実施する前に、A成分のクラムとB成分の粉体とを、公知の装置を用いて加熱せずに混合してもよい。また、A成分のクラムとB成分の粉体とは、溶融混練押出時に二軸以上の溶融混練押出機構を有する機器内で混合してもよい。
[成形材料]
 本発明の成形材料は、本組成物を含む成形材料である。以下、本組成物を含む成形材料を「本成形材料」とも言う。
 本組成物からなる本成形材料は、ペレット状、粒状、粉末状等の形状の成形材料であり、下記配合剤を含む本成形材料は、ペレット状、粒状、粉末状等の形状を有する本組成物と配合剤の混合物であることが好ましい。場合により、架橋剤等の本組成物中の成分と反応する配合剤以外の配合剤を含む成形材料の場合は、本組成物と配合剤とを溶融混合してペレット状、粒状、粉末状等の形状にした成形材料であってもよい。
 本成形材料は、本組成物に含まれるA成分よりも溶融粘度が低いことから、引き取り速度を大きく設定できるため、成形加工性に優れる。
 本成形材料は、本組成物のほかに、成形体が使用される用途に応じて、架橋剤、架橋助剤、充填剤、安定剤、着色剤、酸化防止剤、加工助剤、滑剤、潤滑剤、帯電防止剤等などの配合剤の1種以上が含まれていてもよい。架橋された成形体を製造する場合には、これら配合剤のうち、架橋剤または架橋助剤を含有することが好ましい。
 架橋剤としては、従来公知のものはすべて使用できるが、有機過酸化物が好ましい。有機過酸化物としては、加熱、酸化還元の存在下で容易にラジカルを発生するものであれば使用できる。有機過酸化物を用いて架橋された本組成物は耐熱性に優れる。
 有機過酸化物の具体例としては、1,1-ジ(t-ヘキシルパーオキシ)-3,5,5-トリメチルシクロへキサン、2,5-ジメチルへキサン-2,5-ジヒドロパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、ジクミルパーオキシド、α,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-へキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-へキシン-3、ジベンゾイルパーオキシド、t-ブチルパーオキシベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)へキサン、t-ブチルパーオキシマレイン酸、t-ヘキシルパーオキシイソプロピルモノカーボネート等が挙げられる。中でもα,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼンが挙げられる。これらの有機過酸化物は、含フッ素エラストマー組成物の架橋性に優れる。
 架橋された成形体を製造する場合、本成形材料における架橋剤の含有量は、A成分の100質量部に対して、0.1~5質量部が好ましく、0.2~4質量部がより好ましく、0.5~3質量部がさらに好ましい。架橋剤の含有量が前記範囲内であれば、有機過酸化物の架橋効率が高い。
 架橋剤は1種以上を使用できる。
 架橋助剤としては、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアクリルホルマール、トリアリルトリメリテート、ジプロパルギルテレフタレート、ジアリルフタレート、テトラアリルテレフタールアミド、トリアリルホスフェート等が挙げられ、なかでも、トリアリルイソシアヌレートが好ましい。
 架橋された成形体を製造する場合、本成形材料における架橋助剤の含有量は、A成分の100質量部に対して、0.1~30質量部が好ましく、0.5~15質量部がより好ましく、1~10質量部がさらに好ましい。架橋助剤の含有量が前記下限値以上であれば、架橋速度が大きく、充分な架橋度が得られやすい。架橋助剤の含有量が前記上限値以下であれば、架橋物の伸びなどの特性が良好となる。
 架橋助剤は1種以上を使用できる。
 充填剤としては、カーボンブラック、ホワイトカーボン、クレー、タルク、炭酸カルシウム、ガラス繊維、炭素繊維、フッ素樹脂(ポリテトラフルオロエチレン、ETFEなど。)等が挙げられる。
 カーボンブラックとしては、フッ素ゴムの充填剤として用いられているものであれば制限なく使用できる。その具体例としては、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイト等が挙げられ、ファーネスブラックが好ましい。ファーネスブラックとしては、HAF-LSカーボン、HAFカーボン、HAF-HSカーボン、FEFカーボン、GPFカーボン、APFカーボン、SRF-LMカーボン、SRF-HMカーボン、MTカーボン等が挙げられ、これらのなかではMTカーボンがより好ましい。
 本成形材料がカーボンブラックを含有する場合、カーボンブラックの含有量は、A成分の100質量部に対して、1~50質量部が好ましく、3~20質量部がより好ましい。カーボンブラックの含有量が前記下限値以上であれば、成形体の強度が優れ、カーボンブラックを配合したことによる補強効果が充分に得られる。また、カーボンブラックの含有量が前記上限値以下であれば、成形体の伸びも優れる。このようにカーボンブラックの含有量が前記範囲内であれば、成形体の強度と伸びとのバランスが良好となる。
 本成形材料がカーボンブラック以外の充填剤を含有する場合、その含有量は、本組成物の100質量部に対して、5~200質量部が好ましく、10~100質量部がより好ましい。
 なお、充填剤は1種以上を使用でき、カーボンブラックとそれ以外の充填剤とを併用してもよい。本成形材料が、カーボンブラックとそれ以外の充填剤とを含有する場合、その含有量は、本組成物の100質量部に対して、1~100質量部が好ましく、3~50質量部がより好ましい。
 安定剤としては、ヨウ化銅、酸化鉛、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、酸化チタン、酸化アンチモン、五酸化リン等が挙げられる。本成形材料における安定剤の含有量は、本組成物の100質量部に対して、0.1~10質量部が好ましく、0.2~5質量部がより好ましく、0.5~3質量部がさらに好ましい。安定剤は1種以上を使用できる。
 加工助剤としては、高級脂肪酸、高級脂肪酸のアルカリ金属塩等が挙げられ、具体的には、ステアリン酸、ステアリン酸塩、ラウリン酸塩が好ましい。本成形材料における加工助剤の含有量は、本組成物の100質量部に対して、0.1~10質量部が好ましく、0.2~5質量部がより好ましく、1~3質量部がさらに好ましい。加工助剤は1種以上を使用できる。
 滑剤としては、高級脂肪酸、高級脂肪酸のアルカリ金属塩等があげられ、具体的には、ステアリン酸、ステアリン酸塩、ラウリン酸塩が好ましい。滑剤の含有量は、本組成物の100質量部に対して、0.1~20質量部が好ましく、0.2~10質量部がより好ましく、1~5質量部がさらに好ましい。
[成形体]
 本発明の成形体は、本成形材料を溶融成形してなる成形体である。また、本発明の成形体は、本成形材料を溶融成形の際に架橋してなる成形体であってもよく、本成形材料を溶融成形してなる成形体を成形後に架橋してなる成形体であってもよい。以下、本成形材料を溶融成形してなる成形体を「本成形体」とも言う。
 本成形体を製造するための溶融成形する方法としては、射出成形、押出成形、共押出成形、ブロー成形、圧縮成型、インフレーション成形、トランスファー成型、カレンダー成形等が挙げられる。
 架橋物からなる本成形体を製造するための架橋方法としては特に限定されず、前記架橋剤を含む本成形材料を使用した化学架橋法、X線、γ線、電子線、陽子線、重陽子線、α線、β線等の電離性放射線を使用した照射架橋法などが挙げられ、成形と同時に架橋が行われてもよく、成形の後に架橋が行われてもよい。
 本成形体の形状は特に限定されず、フィルムないしシート形状、中空のホース形状ないしチューブ形状、その他用途に応じた種々の形状とすることができる。
 本成形体は、それ自体が独立した成形品であってもよく、たとえば被覆材のような、他の部材に付随したものであってもよい。
 本成形体としては、1層または多層構造のフィルム、シート、ホースまたはチューブからなる成形体であって、それら成形体における層の少なくとも1層が本成形材料が溶融成形されて形成された層である、成形体が好ましい。また、導線と被覆材とを有する被覆電線であって、該被覆材が本成形材料が溶融成形されて形成された被覆材である、被覆電線が好ましい。
[フィルムまたはシート]
 フィルム状またはシート形状の本成形体の具体的な用途としては、離型用途、農業用途が挙げられる。フィルムやシートは、単層であってもよく、2層以上の積層体でもよい。積層体の場合、少なくとも1層は本成形材料の成形体である層であり、本成形材料以外の材料から形成された層を含んでいてもよい。
 上記フィルムまたはシートの用途は、特に限定されない。たとえば、以下の用途が挙げられる。
 半導体離型フィルム、基板離型フィルム、発光ダイオード(LED)等の光学素子封止工程用離型フィルム、防食ライニング、離型ライニング、防食コーティング、離型コーティング、電線被覆、炭素またはガラス繊維コンポジット成形用離型フィルム、コピーロール、コピーベルト等の事務機器用防汚フィルム、防炎膜材、グリーンシートや燃料電池用電極、膜製造用キャリアフィルム、高熱プレス用クッションフィルム(ダイアタッチ用クッションフィルム等)、太陽電池表面保護フィルム、太陽電池バックシート構成材、各種のシート部材用キャリアフィルム(グリーンシート、シリコン膜等)、ゴム栓用ラミネートフィルム、消防服用ラミネートフィルム、ディスプレイ表面保護シート材、膜構造建築用の膜材、農業用ハウス、薬液バッグ、リチウムイオン電池(LIB)の外装材、建材用塩ビラミネートまたは壁紙、鋼板ラミネート、絶縁材(モーター絶縁)等。なお、グリーンシートとは、セラミックコンデンサ用の未焼結セラミックシートを示す。
 本成形体であるフィルムまたはシートは柔軟性に優れるため、特に半導体離型フィルム、LED等の光学素子封止工程用離型フィルム、ゴム栓用ラミネートフィルム、への利用に好適である。フィルムまたはシートは単層、又は、2層以上の積層体でもよい。
[被覆電線]
 本成形体である被覆材を有する被覆電線において、芯線の外周に形成される被覆材は、芯線と直接接して形成されたものだけでなく、芯線との間に他の層を介して間接的に外周に形成されたものであってもよい。具体的には、本発明の被覆電線は、本発明の成形体を被覆材として導体を被覆しただけでなく、外層として前記成形体を被覆材とした電線、たとえばシースを有するケーブルやワイヤーハーネスのようなものも含む。該成形体としては、前記フィルムが挙げられる。
 導体としては、特に限定されず、銅、銅合金、アルミニウムおよびアルミニウム合金、スズメッキ、銀メッキ、ニッケルメッキ等の各種メッキ線、より線、超電導体、半導体素子リード用メッキ線などが挙げられる。
 本発明の成形体を被覆材として導体を被覆した被覆電線は、導体を本成形材料で被覆することにより製造できる。本成形材料による導体の被覆は、公知の方法により行うことができる。
 本成形体を被覆材とした被覆電線は、導体を本成形材料で被覆した被覆電線に、さらに電子線を照射して本成形体を架橋して得られる、架橋物である本成形体を被覆材とした被覆電線としてもよい。
 架橋の際の電子線の照射線量は、50~700kGyが好ましく、80kGy~400kGyがより好ましく、100~250kGyがさらに好ましい。電子線の照射時の温度は、0~300℃が好ましく、10~200℃がより好ましく、20~100℃がさらに好ましい。
 本成形材料は成形加工性に優れるため、被覆電線を高速で製造できる。また、A成分を含有しているため、熱可塑性であるB成分のみを被覆材とする被覆電線に比べて、高温での連続使用が可能であり、かつ、柔軟性にも優れるため、省スペースへの配線が必要な自動車用被覆電線等への利用に好適である。被覆材は単層、又は、2層以上の積層体でもよい。
[ホースまたはチューブ]
 本成形体であるホースやチューブは、本成形体の層と他の材料からなる層とを有する多層構造体であってもよい。他の材料としては、国際公開第2015/182702号の段落[0040]に記載したものや、液晶ポリマー、ポリアリールケトン、ポリエーテルスルフォン、ポリフェニルスルフォン、ポリアセタール、ポリウレタン、などが挙げられる。中でもポリアミドが好ましい。
 ポリアミドとしては、ポリアミド6、ポリアミド66、ポリアミド46、ポリアミド11、ポリアミド12、ポリアミド610、ポリアミド612、ポリアミド6/66コポリマー、ポリアミド6/66/610コポリマー、ポリアミドMXD6、ポリアミド6T、ポリアミド9T及びポリアミド6/6Tコポリマーや、特許第4619650号公報の段落[0051][0052]に記載されたものなどが挙げられる。
 積層ホースの構造、製法などは、特許第4619650号公報の段落[0053]~[0063]の「含フッ素共重合体からなる内層(I)」を本発明の成形体に置き換えることで参照することができる。
 また、ポリアミドの層と本成形体の層の間に、他の層を有していてもよい。他の層としては、接着性が良好であることから、B成分で、モノマー(MB8)として官能基含有モノマーを有するものが挙げられる。具体的には国際公開第2015/182702号に記載された含フッ素重合体が挙げられる。
 ホースやチューブの用途は、特に限定されない。たとえば、以下の用途が挙げられる。
 自動車用ホース、たとえば、燃料系ホース、吸気・排気系のホース、ATFホース等トランスミッション系ホースを含む各種オイルホース、部品のチューブなど、自動車用以外では、ケミカルチューブ、ケミカルホース、スチームチューブ、スチームホースなど気液チューブ等化学プラント、または、食品プラントおよび食品機器、一般工業部品における各種チューブ、ホースなどで、特に制限されることはない。厚み1mm、外径8mm、内径6mmチューブの場合においては、チューブの最少曲げ半径は、42mm以下が好ましく、40mm以下がより好ましく、38mm以下が最も好ましい。
 本成形材料は成形加工性に優れるため、ホースやチューブを高速で製造できる。また、本成形体であるホースやチューブは柔軟性にも優れるため、省スペースへの配管が必要な自動車用途等への利用に好適である。
ホースやチューブは単層、又は、2層以上の積層体でもよい。
 本成形体は、上記用途のほか、電気部品などに用いる電気絶縁性材料、たとえばシース材やケーブルの絶縁被覆材とすることができ、石油精製、石油化学、電力、製紙等の各種プラントにおけるガスケット、パッキン、ダイヤフラム等として使用することもできる。また、自動車分野、産業ロボット分野、熱機器分野などの各種産業分野で使用される各種部品とすることもできる。
 なかでも、各種シール、リング、ガスケット、パッキン、ジョイントシート、ポンプシール、オイルシール、ダイヤフラムなどシール用途、絶縁材、シースなど電線・電気機器関連材料用途として好適である。その他、防振材、ロール、スクレーパー、弁部品、ポンプ部品、マンドレル、ジョイント、樹脂板、カバー、塗料、薬栓、配管、サニタリーパッキング、継ぎ手などに好適である。
(作用機序)
 本発明者らは、本組成物を成形した場合、プレス成型等の静的成形のみならず、押出成形等の動的成形においても、表面平滑性に優れた良好な成形体が得られることを知見した。それに対して、従来のフッ素樹脂組成物においては、プレス成型等の静的成形においては良好な特性を有する成形体が得られる一方で、押出成形等の動的成形においては、その特性を保持することができず、表面平滑性が不充分となる等、成形不良が生じる場合があることを見出した。
 この差異が生じる原因を明らかにするため、それぞれのフッ素樹脂組成物における特性評価を行ったところ、フッ素樹脂組成物における貯蔵弾性率E’に相違が認められることを見出した。
 フッ素樹脂組成物の貯蔵弾性率E’は、フッ素樹脂組成物中の含フッ素エラストマーの分散性を示す指標となっていると考えられる。
 すなわち、フッ素樹脂に含フッ素エラストマーが充分に分散されていない場合、フッ素樹脂の融点以上の温度となっても、含フッ素エラストマーの連続相の影響により十分な流動性が得られず、フッ素樹脂組成物の貯蔵弾性率E’が大きくなる。
 これに対して、フッ素樹脂に含フッ素エラストマーが充分に小粒径化されて分散している場合、フッ素樹脂の融点以上の温度でフッ素樹脂が溶融すると、フッ素樹脂組成物全体の流動性が高まり、フッ素樹脂組成物の貯蔵弾性率E’が小さくなる。
 フッ素樹脂組成物の貯蔵弾性率E’が大きい場合に動的成形に不具合が生じる原因として、以下が考えられる。すなわち、貯蔵弾性率E’が大きいフッ素樹脂組成物は一見、フッ素樹脂に含フッ素エラストマーが充分に分散しているように見えても、含フッ素エラストマーの粒径が、本組成物における含フッ素エラストマーの粒径と比較して大きいものと考えられる。そのため、フッ素樹脂との相溶性が低い含フッ素エラストマーが動的成形時に凝集し合うことによって、その分散状態を保持できないものと考えられた。すなわち、含フッ素エラストマーが充分に小粒径化されて分散していない場合には、含フッ素エラストマーの分散が非平衡状態にあり、特に動的成形においてスピノーダル分解による相分離が進行するものと考えられた。
 そのため、従来のフッ素樹脂組成物では、プレス成型等の静的成形においては良好な特性を有する成形体が得られる一方で、押出成形等の動的成形においては、分散していた含フッ素エラストマーが、スピノーダル分解による相分離により凝集し、成形する前の状態では良好な物性を示すフッ素樹脂組成物であっても、動的成形を行うことによってその物性が変化し、成形する前の良好な物性を保持できないのではないかと推測された。
 これに対して、本組成物では、フッ素樹脂組成物中の含フッ素エラストマーが充分に小粒径化されて分散しているため、フッ素樹脂組成物の貯蔵弾性率E’が250kPa以下と小さくなるものと考えられる。また、フッ素樹脂組成物中の含フッ素エラストマーが充分に小粒径化されて分散していることにより、スピノーダル分解による相分離の進行が抑制され、当該フッ素樹脂組成物を含む成形材料を動的成形した際にも、表面平滑性に優れた良好な成形体が得られるものと考えられる。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 各例において使用した材料を以下に示す。
<含フッ素エラストマー>
A1:以下の製造法により製造した、含フッ素エラストマー(TFE/P共重合体(TFE単位/P単位のモル比=56/44、フッ素含有量=57質量%、ムーニー粘度(ML1+10(121℃))=120、ガラス転移温度(Tg)=-3℃、貯蔵せん断弾性率G’=530))。
 撹拌用アンカー翼を備えた3.2Lの反応器の内部を脱気し、イオン交換水の1500g、リン酸水素二ナトリウム12水和物の59g、水酸化ナトリウムの0.7g、tert-ブタノールの197g、ラウリル硫酸ナトリウムの9g、および過硫酸アンモニウムの6gを加えた。さらに、100gのイオン交換水に0.4gのエチレンジアミン四酢酸二ナトリウム塩二水和物および0.3gの硫酸第一鉄7水和物を溶解させた水溶液を、反応器に加えた。このときの反応器内の水性媒体のpHは9.5であった。
 ついで、25℃で、TFE/プロピレン=88/12(モル比)の単量体混合ガスを、反応器の内圧が2.50MPaGになるように圧入した。アンカー翼を300rpmで回転させ、その後、水酸化ナトリウムでpHを10.0に調整したヒドロキシメタンスルフィン酸ナトリウム2水和物の2.5質量%水溶液(以下、「ロンガリット2.5質量%水溶液」と記す。)を反応器に加え、重合反応を開始させた。以降、ロンガリット2.5質量%水溶液を、高圧ポンプを用いて連続的に反応器に加えた。TFE/プロピレンの単量体混合ガスの圧入量の総量が1000gとなった時点で、ロンガリット2.5質量%水溶液の添加を停止し、反応器の内温を10℃まで冷却し、重合反応を停止し、含フッ素エラストマーのラテックスを得た。ロンガリット2.5質量%水溶液の添加量は68gであった。重合時間は6時間であった。上記ラテックスに塩化カルシウムの5質量%水溶液を添加して、含フッ素エラストマーA1のラテックスを凝集し、含フッ素エラストマーを析出させ、ろ過し、回収した。
A2:重合温度を25℃から40℃に変更した以外は、上記のA1の製造法と同様に製造した、含フッ素エラストマー(TFE/P共重合体(TFE単位/P単位のモル比=56/44、フッ素含有量:57質量%、ムーニー粘度(ML1+10(121℃))=100、ガラス転移温度(Tg)=-3℃、貯蔵せん断弾性率G’=390))。
<フッ素樹脂>
B1:WO2016/006644の例9と同様に製造した、フッ素樹脂(エチレン/TFE/(パーフルオロブチル)エチレン共重合体(E単位/TFE単位/(パーフルオロブチル)エチレン単位のモル比=40/57/3、メルトフローレート(MFR)=25g/10分、Tg=75℃、Tm=225℃))。
B2:WO2016/002887の製造例2と同様に製造した、フッ素樹脂(エチレン/TFE/(パーフルオロブチル)エチレン共重合体(E単位/TFE単位/(パーフルオロブチル)エチレン単位のモル比=46.0/54.0/1.50、メルトフローレート(MFR)=11.3g/10分、Tg:240℃、Tm=255℃))。
<エポキシ基を含有するエチレン共重合体>
C1:「ボンドファースト(登録商標) 7M」(E/メタクリル酸グリシジル/アクリル酸メチル共重合体、住友化学株式会社製)。
<貯蔵せん断弾性率G’の測定>
 含フッ素エラストマーの貯蔵せん断弾性率G’は、ASTM D6204に準じて、Rubber Process Analyzer(RPA2000、アルファテクノロジー株式会社製)を用いて、サンプル量7.5g、温度100℃、変位0.5°において周波数を1~2000cpmまで変化させてトルクを測定し、その測定値からG’およびG’’を算出した際の、50cpmにおけるG’である。
<貯蔵弾性率E’および損失弾性率E’’の測定>
 フッ素樹脂組成物の貯蔵弾性率および損失弾性率は、255℃で5分間予熱し、5分間プレス成形して作成した、長さ130mm、幅130mm、厚さ1mmのシートから試験片を切り出し、DMA(EXSTAR6000、セイコーインスツル株式会社製)を用いて測定した。貯蔵弾性率および損失弾性率は、空気雰囲気下、250℃で測定する値であり、長さ45mm、幅8mm、厚み1mmの試験片を引張モード、つかみ幅=20mm、測定温度=25℃から300℃、昇温速度=3℃/min、周波数=10Hzの条件で測定した。貯蔵弾性率E’および損失弾性率E’’は、フッ素樹脂の融点より25℃高い温度における貯蔵弾性率および損失弾性率であり、貯蔵弾性率E’は弾性成分を表し、損失弾性率E’’は粘性成分を表す。
<成形体表面の性状評価>
 押し出し機(MS30-25、アイ・ケー・ジー株式会社製)、スクリュー(フルフライト、L/D=24、φ30mm、アイ・ケー・ジー株式会社製)、電線ダイスクロスヘッド(最大導体径3mm、最大ダイス穴径20mm、ユニテック株式会社製)、電線引き取り機(株式会社聖製作所製)、巻き取り機(株式会社聖製作所製)を用いて、混練温度=270℃、スクリュー回転数=35rpm、引き取り速度=10m/分の条件下、フッ素樹脂組成物と芯線(スズめっき銅練り線、直径1.8mm、構成37/0.26mm(1層:右撚7本、2層:左撚12本、3層:右撚18本)、安田工業株式会社製)から、被覆厚み0.5mm、電線径φ2.8mmの電線サンプルを得た。得られた電線サンプルの表面粗さを目視確認した。表面荒れがなく、表面平滑性に優れたものを「A」、表面荒れが認められ、表面平滑性に劣ったものを「B」とした。
<チューブの最少曲げ半径の測定>
JIS B8381に準じて測定した。
〔例1〕
 二軸押出機(KZW32TW-45MG-NH、株式会社テクノベル製、連続式)を用いて、A1の50質量部、B1の50質量部、C1の1質量部を溶融混練押出し、フッ素樹脂組成物を得た。溶融混練押出は、スクリュー回転数を250rpmとし、240℃で2分間の条件にて行った。また、二軸押出機には、2カ所のニーディングゾーンを設け、スクリュー径Dに対する2カ所のニーディングゾーンの長さの合計Lとの比(L/D)は6とした。
〔例2〕
 A1に代えてA2を使用した以外は、例1と同様にしてフッ素樹脂組成物を得た。
〔例3〕
 混練温度を280℃とした以外は、例1と同様にしてフッ素樹脂組成物を得た。
〔例4〕
 混練温度を300℃とした以外は、例1と同様にしてフッ素樹脂組成物を得た。
〔例5〕
 B1に代えてB2を使用した以外は、例4と同様にしてフッ素樹脂組成物を得た。
〔例6〕
 C1の使用量を0.25質量部とした以外は、例1と同様にしてフッ素樹脂組成物を得た。
〔例7〕
 C1の使用量を4質量部とした以外は、例1と同様にしてフッ素樹脂組成物を得た。
〔例8〕
 溶融混練押出におけるスクリュー回転数を150rpmとした以外は、例1と同様にしてフッ素樹脂組成物を得た。
〔例9〕
 混練温度を230℃とした以外は、例1と同様にしてフッ素樹脂組成物を得た。
〔例10〕
 インターナルミキサー(ラボプラストミルKF70V2、東洋精機株式会社製、バッチ式)を用いて溶融混練押出した以外は、例1と同様にしてフッ素樹脂組成物を得た。
 各例で得られたフッ素樹脂組成物においては、含フッ素エラストマーは、フッ素樹脂中に分散していた。
 各例で得られたフッ素樹脂組成物の貯蔵弾性率E’および損失弾性率E’’を表1に示す。なお、表中「ND」は、検出限界以下(100kPa以下)であったことを示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明のフッ素樹脂組成物である例1で得られたフッ素樹脂組成物を用いて動的成形して得られた電線サンプルは表面平滑性に優れていた。その一方、例8で得られたフッ素樹脂組成物は、フッ素樹脂組成物の貯蔵弾性率E’が高く、例8で得られたフッ素樹脂組成物を用いて動的成形して得られた電線サンプルはその表面に荒れが生じており、表面平滑性に劣っていた。
〔例11〕
フッ素樹脂B3:
(1)内容積が430リットルの撹拌機付き重合槽を脱気し、CFCHO(CFHの368.0kg、メタノールの4.1kg、CH=CH(CFFの0.43kgを仕込み、重合槽内を66℃に昇温し、TFEとエチレンの混合ガス(TFE/エチレン=89/11(モル比))で、1.5MPa/Gまで昇圧した。重合開始剤としてtert-ブチルペルオキシピバレートの2%CFCHO(CFH溶液の1993gを仕込み、重合を開始させた。重合中、圧力が一定になるようにTFEとエチレンのモノマー混合ガス(TFE/エチレン=59/41(モル比))を連続的に仕込んだ。また、重合中に仕込むTFEとエチレンの合計モル数に対して0.6モル%に相当する量のCH=CH(CFFと0.6モル%に相当する量のIAHを連続的に仕込んだ。重合開始255分後、モノマー混合ガスの22kgを仕込んだ時点で、重合槽内温を室温まで降温するとともに、常圧までパージした。
 得られたスラリ状の含フッ素共重合体(B3-1)を、水の340kgを仕込んだ860Lの造粒槽に投入し、撹拌下に105℃まで昇温して溶媒を留出除去しながら造粒した。得られた造粒物を150℃で15時間乾燥することにより、24.8kgの含フッ素共重合体(B3-1)の乾燥造粒物が得られた。
 含フッ素共重合体(B3-1)についての、溶融NMR分析、フッ素含有量分析および赤外吸収スペクトル分析の結果から、当該含フッ素共重合体(B3-1)は、TFE単位/E単位/CH=CH(CFF単位/IAH単位の比が、56.1/42.7/0.5/0.7(モル比)であった。
 また、含フッ素共重合体(B3-1)のMFRは、33.7g/10分、融点は256℃であった。
(2)内容積が430リットルの撹拌機付き重合槽を脱気し、CFCHO(CFHの367.2kg、メタノールの4.4kg、CH=CH(CFFの0.65kgを仕込み、重合槽内を66℃に昇温し、TFEとエチレンの混合ガス(TFE/エチレン=89/11(モル比))で、1.5MPa/Gまで昇圧した。重合開始剤としてtert-ブチルペルオキシピバレートの2%CFCHO(CFH溶液の154gを仕込み、重合を開始させた。重合中、圧力が一定になるようにTFEとエチレンのモノマー混合ガス(TFE/エチレン=59/41(モル比))を連続的に仕込んだ。また、重合中に仕込むTFEとエチレンの合計モル数に対して0.9モル%に相当する量のCH=CH(CFFを連続的に仕込んだ。重合開始494分後、モノマー混合ガスの22kgを仕込んだ時点で、重合槽内温を室温まで降温するとともに、常圧までパージした。
 得られたスラリ状の含フッ素共重合体(B3-2)を、水の340kgを仕込んだ860Lの造粒槽に投入し、撹拌下に105℃まで昇温して溶媒を留出除去しながら造粒した。得られた造粒物を150℃で15時間乾燥することにより、25.0kgの含フッ素共重合体(B3-2)の乾燥造粒物が得られた。
 含フッ素共重合体(B3-2)についての、溶融NMR分析、フッ素含有量分析および赤外吸収スペクトル分析の結果から、当該含フッ素共重合体(B3-2)は、TFE単位/E単位/CH=CH(CFF単位の比が、57.5/41.7/0.8(モル比)であった。
 また、含フッ素共重合体(B3-2)のMFRは、31.0g/10分、融点は258℃であった。
(3)造粒物(B3-1)の20質量部と造粒物(B3-2)の80質量部とをドライブレンドした後、二軸押出機を用いて滞留時間2分で溶融混練し、フッ素樹脂B3のペレットを作製した。
 ポリアミド12:宇部興産社製、商品名:UBESTA3030JLX2A
 外層を形成するシリンダにポリアミド12を供給し、中間層を形成するシリンダにフッ素樹脂B3を供給し、内層を形成するシリンダに例1で得られたフッ素樹脂組成物を供給し、それぞれシリンダの輸送ゾーンに移送させた。ポリアミド12、フッ素樹脂B3および例1で得られたフッ素樹脂組成物の輸送ゾーンにおける加熱温度をそれぞれ230℃、300℃、300℃とした。共ダイの温度を320℃として3層共押出しを行い、3層の積層チューブを得た。この積層チューブの外径は8mm、内径は6mm、厚さは1mmであり、ポリアミド12の外層、フッ素樹脂B3の中間層、例1で得られたフッ素樹脂組成物の内層の厚みはそれぞれ0.75mm、0.15mm、0,1mmであった。内層と中間層および中間層と外層とはきわめて強固に接着していて剥がれず、剥離強度の測定不可能であった。
 得られたチューブの最少曲げ半径を測定した結果、36mmであった。
 外層を形成するシリンダにポリアミド12を供給し、内層を形成するシリンダにフッ素樹脂B3を供給し、それぞれシリンダの輸送ゾーンに移送させた。ポリアミド12、およびフッ素樹脂B3の輸送ゾーンにおける加熱温度をそれぞれ230℃、300℃とした。共ダイの温度を320℃として2層共押出しを行い、2層の積層チューブを得た。この積層チューブの外径は8mm、内径は6mm、厚さは1mmであり、ポリアミド12の外層、フッ素樹脂B3の内層の厚みはそれぞれ0.8mm、0.2mmであった。内層と外層とはきわめて強固に接着していて剥がれず、剥離強度の測定不可能であった。
得られたチューブの最少曲げ半径を測定した結果、42.5mmであった。
 本発明のフッ素樹脂組成物である例1で得られたフッ素樹脂組成物を用いて成形して得られた積層チューブは曲げ性に優れていた。その一方、本発明のフッ素樹脂組成物を用いない積層チューブは曲げ性に劣った。
 なお、2016年03月11日に出願された日本特許出願2016-048759号、2016年04月28日に出願された日本特許出願2016-091850号および2016年09月16日に出願された日本特許出願2016-182183号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (13)

  1.  貯蔵せん断弾性率G’が100以上の含フッ素エラストマーと融点が150℃以上の溶融成形可能なフッ素樹脂とを含む溶融混練物からなるフッ素樹脂組成物であって、
     前記含フッ素エラストマーは、前記フッ素樹脂中に分散しており、
     前記含フッ素エラストマーと前記フッ素樹脂との合計に対する前記含フッ素エラストマーの含有量が10~65質量%であり、
     前記含フッ素エラストマーと前記フッ素樹脂との合計量が、前記フッ素樹脂組成物に対して90質量%以上であり、
     前記フッ素樹脂の融点より25℃高い温度における、前記フッ素樹脂組成物の貯蔵弾性率E’が250kPa以下であることを特徴とするフッ素樹脂組成物。
  2.  前記フッ素樹脂組成物が、エポキシ基を有するエチレン共重合体に由来するエチレン共重合体と前記含フッ素エラストマーと前記フッ素樹脂とを含む溶融混練物からなるフッ素樹脂組成物であり、
     前記エチレン共重合体の含有量が、前記含フッ素エラストマーと前記フッ素樹脂との合計100質量部に対して0.1~10質量部である、請求項1に記載のフッ素樹脂組成物。
  3.  前記含フッ素エラストマーが、テトラフルオロエチレンに基づく単位およびプロピレンに基づく単位を有する共重合体である、請求項1または2に記載のフッ素樹脂組成物。
  4.  前記含フッ素エラストマーが、海島構造または共連続構造を形成して前記フッ素樹脂中に分散している、請求項1~3のいずれか1項に記載のフッ素樹脂組成物。
  5.  前記フッ素樹脂が、テトラフルオロエチレンに基づく単位を有する重合体、フッ化ビニリデンに基づく単位を有する重合体またはクロロトリフルオロエチレンに基づく単位を有する重合体である、請求項1~4のいずれか1項に記載のフッ素樹脂組成物。
  6.  前記フッ素樹脂が、エチレンに基づく単位およびテトラフルオロエチレンに基づく単位を有する共重合体である、請求項5に記載のフッ素樹脂組成物。
  7.  前記フッ素樹脂の融点が150~300℃である、請求項1~6のいずれか1項に記載のフッ素樹脂組成物。
  8.  貯蔵せん断弾性率G’が100以上の含フッ素エラストマーと融点が150℃以上の溶融成形可能なフッ素樹脂と任意にエポキシ基を有するエチレン共重合体とを含む原料を溶融混練し、冷却してフッ素樹脂組成物を製造する方法であって、
     前記溶融混練前の原料において、前記含フッ素エラストマーと前記フッ素樹脂との合計に対する前記含フッ素エラストマーの含有量が10~65質量%であり、前記含フッ素エラストマーと前記フッ素樹脂との合計量が、前記フッ素樹脂組成物に対して90質量%以上であり、前記エポキシ基を有するエチレン共重合体の含有量が、前記含フッ素エラストマーと前記フッ素樹脂との合計100質量部に対して0~10質量部であり、
     前記溶融混練後において、前記含フッ素エラストマーが前記フッ素樹脂中に分散しており、かつ、前記フッ素樹脂の融点より25℃高い温度における、得られたフッ素樹脂組成物の貯蔵弾性率E’が250kPa以下であることを特徴とするフッ素樹脂組成物の製造方法。
  9.  前記含フッ素エラストマーを、海島構造または共連続構造を形成するように前記フッ素樹脂中に分散させる、請求項8に記載のフッ素樹脂組成物の製造方法。
  10.  請求項1~7のいずれか1項に記載のフッ素樹脂組成物を含む成形材料。
  11.  請求項10に記載の成形材料を溶融成形してなる成形体。
  12.  1層または多層構造のフィルム、シート、ホースまたはチューブからなる成形体であって、それら成形体における層の少なくとも1層が請求項10に記載の成形材料の溶融成形により形成された層である、成形体。
  13.  導線と被覆材とを有する被覆電線であって、該被覆材が請求項10に記載の成形材料の溶融成形により形成された被覆材である、被覆電線。
PCT/JP2017/009774 2016-03-11 2017-03-10 フッ素樹脂組成物、成形材料および成形体 WO2017155106A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17763438.3A EP3428230A4 (en) 2016-03-11 2017-03-10 FLUORIDE RESIN COMPOSITION, FORM MATERIAL AND FORM BODY
CN201780016711.XA CN108779312A (zh) 2016-03-11 2017-03-10 氟树脂组合物、成形材料及成形体
JP2018504615A JPWO2017155106A1 (ja) 2016-03-11 2017-03-10 フッ素樹脂組成物、成形材料および成形体
KR1020187023193A KR20180121884A (ko) 2016-03-11 2017-03-10 불소 수지 조성물, 성형 재료 및 성형체
US16/047,548 US20180371228A1 (en) 2016-03-11 2018-07-27 Fluororesin composition, molding material and molded product

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-048759 2016-03-11
JP2016048759 2016-03-11
JP2016091850 2016-04-28
JP2016-091850 2016-04-28
JP2016182183 2016-09-16
JP2016-182183 2016-09-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/047,548 Continuation US20180371228A1 (en) 2016-03-11 2018-07-27 Fluororesin composition, molding material and molded product

Publications (1)

Publication Number Publication Date
WO2017155106A1 true WO2017155106A1 (ja) 2017-09-14

Family

ID=59790501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009774 WO2017155106A1 (ja) 2016-03-11 2017-03-10 フッ素樹脂組成物、成形材料および成形体

Country Status (7)

Country Link
US (1) US20180371228A1 (ja)
EP (1) EP3428230A4 (ja)
JP (1) JPWO2017155106A1 (ja)
KR (1) KR20180121884A (ja)
CN (1) CN108779312A (ja)
TW (1) TW201803930A (ja)
WO (1) WO2017155106A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109401142A (zh) * 2018-10-26 2019-03-01 长春工业大学 一种具有海岛结构的pvdf基复合材料及其制备方法
WO2019131636A1 (ja) * 2017-12-27 2019-07-04 Agc株式会社 粉体塗料の製造方法
US11657984B2 (en) 2018-06-20 2023-05-23 Lg Chem, Ltd. Separator for electrochemical device, method for manufacturing same, and electrochemical device comprising same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110669302A (zh) * 2018-07-02 2020-01-10 清华大学 含氟树脂组合物及其制造方法
KR102097222B1 (ko) 2018-12-27 2020-04-06 주식회사 두산 수지 조성물, 이를 이용한 금속 적층체와 인쇄회로기판 및 상기 금속 적층체의 제조방법
CN116234698A (zh) * 2020-09-30 2023-06-06 大金工业株式会社 氟树脂、层积体、管和管的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578539A (ja) * 1991-09-24 1993-03-30 Hitachi Cable Ltd 放射線照射架橋用含ふつ素エラストマ組成物
JPH10334738A (ja) * 1997-05-30 1998-12-18 Hitachi Cable Ltd 含ふっ素エラストマ被覆電線・ケーブル
JP2006096968A (ja) * 2004-09-03 2006-04-13 Daikin Ind Ltd 電線ジャケット用材料及び電線ジャケット
JP2010186585A (ja) * 2009-02-10 2010-08-26 Hitachi Cable Ltd 含ふっ素エラストマ被覆電線
WO2013146704A1 (ja) * 2012-03-26 2013-10-03 旭硝子株式会社 含フッ素エラストマー組成物及びその製造方法、成形体、架橋物、並びに被覆電線
WO2015046176A1 (ja) * 2013-09-25 2015-04-02 旭硝子株式会社 含フッ素エラストマー組成物、その製造方法、成形体、架橋物、及び被覆電線
WO2015045818A1 (ja) * 2013-09-25 2015-04-02 旭硝子株式会社 含フッ素エラストマー組成物、その製造方法、成形体、架橋物、及び被覆電線

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0972798A4 (en) * 1997-03-31 2001-01-17 Nippon Zeon Co MIXED COMPOSITION OF SYNTHETIC RESIN AND RUBBER
ITMI20011062A1 (it) * 2001-05-22 2002-11-22 Ausimont Spa Composizioni fluoroelastomeriche
EP2383302B1 (en) * 2009-01-16 2014-12-17 Asahi Glass Company, Limited Fluorine-containing elastic copolymer, process for the production thereof, and crosslinked rubber articles
WO2014084082A1 (ja) * 2012-11-29 2014-06-05 旭硝子株式会社 フッ素ゴム組成物およびこれを用いた架橋ゴム物品
JP6658539B2 (ja) * 2014-11-28 2020-03-04 Agc株式会社 フッ素ゴム組成物及びフッ素ゴム架橋物品
WO2016181936A1 (ja) * 2015-05-11 2016-11-17 旭硝子株式会社 プリント基板用材料、金属積層板、それらの製造方法およびプリント基板の製造方法
CN105082495B (zh) * 2015-07-07 2019-07-05 上海交通大学 一种氟树脂复合物的制造方法,氟树脂复合物及其制品成形
WO2017057512A1 (ja) * 2015-10-01 2017-04-06 旭硝子株式会社 含フッ素弾性共重合体、その製造方法、架橋ゴムおよびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578539A (ja) * 1991-09-24 1993-03-30 Hitachi Cable Ltd 放射線照射架橋用含ふつ素エラストマ組成物
JPH10334738A (ja) * 1997-05-30 1998-12-18 Hitachi Cable Ltd 含ふっ素エラストマ被覆電線・ケーブル
JP2006096968A (ja) * 2004-09-03 2006-04-13 Daikin Ind Ltd 電線ジャケット用材料及び電線ジャケット
JP2010186585A (ja) * 2009-02-10 2010-08-26 Hitachi Cable Ltd 含ふっ素エラストマ被覆電線
WO2013146704A1 (ja) * 2012-03-26 2013-10-03 旭硝子株式会社 含フッ素エラストマー組成物及びその製造方法、成形体、架橋物、並びに被覆電線
WO2015046176A1 (ja) * 2013-09-25 2015-04-02 旭硝子株式会社 含フッ素エラストマー組成物、その製造方法、成形体、架橋物、及び被覆電線
WO2015045818A1 (ja) * 2013-09-25 2015-04-02 旭硝子株式会社 含フッ素エラストマー組成物、その製造方法、成形体、架橋物、及び被覆電線

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3428230A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131636A1 (ja) * 2017-12-27 2019-07-04 Agc株式会社 粉体塗料の製造方法
JPWO2019131636A1 (ja) * 2017-12-27 2020-12-10 Agc株式会社 粉体塗料の製造方法
JP7140141B2 (ja) 2017-12-27 2022-09-21 Agc株式会社 粉体塗料の製造方法
US11657984B2 (en) 2018-06-20 2023-05-23 Lg Chem, Ltd. Separator for electrochemical device, method for manufacturing same, and electrochemical device comprising same
CN109401142A (zh) * 2018-10-26 2019-03-01 长春工业大学 一种具有海岛结构的pvdf基复合材料及其制备方法
CN109401142B (zh) * 2018-10-26 2021-04-27 长春工业大学 一种具有海岛结构的pvdf基复合材料及其制备方法

Also Published As

Publication number Publication date
US20180371228A1 (en) 2018-12-27
EP3428230A1 (en) 2019-01-16
EP3428230A4 (en) 2019-11-13
TW201803930A (zh) 2018-02-01
JPWO2017155106A1 (ja) 2019-01-10
KR20180121884A (ko) 2018-11-09
CN108779312A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
WO2017155106A1 (ja) フッ素樹脂組成物、成形材料および成形体
US8231974B2 (en) Fluoropolymer molding method and molded article
JP7180738B2 (ja) 含フッ素共重合体組成物、その製造方法、および成形体
KR102212538B1 (ko) 함불소 엘라스토머 조성물, 그 제조 방법, 성형체, 가교물, 및 피복 전선
JP7405074B2 (ja) スピーカー振動板及び医療用カテーテル
JP6278282B2 (ja) 含フッ素エラストマー組成物、その製造方法、成形体、架橋物、及び被覆電線
US10839980B2 (en) Covered electric wire
JP2015034278A (ja) フッ素樹脂組成物、溶融混練物、電線、溶融混練物の製造方法、及び電線用被覆材の製造方法
JP7408651B2 (ja) フッ素系共重合体組成物
WO2022034903A1 (ja) 樹脂組成物、成形体、複合体及びその用途
JP2017088815A (ja) フッ素ゴムとフッ素樹脂の相溶化剤、該相溶化剤とフッ素樹脂とフッ素ゴムを含む組成物
JP2017198317A (ja) ガスケット
WO2023022085A1 (ja) 組成物及び組成物の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187023193

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018504615

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017763438

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763438

Country of ref document: EP

Effective date: 20181011

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763438

Country of ref document: EP

Kind code of ref document: A1