WO2013146704A1 - 含フッ素エラストマー組成物及びその製造方法、成形体、架橋物、並びに被覆電線 - Google Patents

含フッ素エラストマー組成物及びその製造方法、成形体、架橋物、並びに被覆電線 Download PDF

Info

Publication number
WO2013146704A1
WO2013146704A1 PCT/JP2013/058633 JP2013058633W WO2013146704A1 WO 2013146704 A1 WO2013146704 A1 WO 2013146704A1 JP 2013058633 W JP2013058633 W JP 2013058633W WO 2013146704 A1 WO2013146704 A1 WO 2013146704A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
copolymer
elastomer composition
ethylene
containing elastomer
Prior art date
Application number
PCT/JP2013/058633
Other languages
English (en)
French (fr)
Inventor
水野 剛
正英 淀川
優一 岩野
海野 正男
松岡 康彦
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP13770391.4A priority Critical patent/EP2832786B8/en
Priority to IN7710DEN2014 priority patent/IN2014DN07710A/en
Priority to JP2014507874A priority patent/JP5979225B2/ja
Priority to CN201380016817.1A priority patent/CN104245826B/zh
Publication of WO2013146704A1 publication Critical patent/WO2013146704A1/ja
Priority to US14/482,057 priority patent/US9704616B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/28Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/447Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from acrylic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer

Definitions

  • the present invention relates to a fluorine-containing elastomer composition and a production method thereof, a molded body, a crosslinked product, and a covered electric wire.
  • Tetrafluoroethylene / propylene copolymer (hereinafter sometimes referred to as “TFE / P copolymer”) has excellent characteristics such as heat resistance, oil resistance, chemical resistance, electrical insulation, flexibility, and the like.
  • TFE / P copolymer As a radiation-crosslinkable elastomer material, it is used for hoses, tubes, gaskets, packings, diaphragms, sheets, wire covering materials, and the like.
  • an ethylene / tetrafluoroethylene copolymer (hereinafter sometimes referred to as “ETFE”) is blended with the TFE / P copolymer. Yes.
  • ETFE is blended with a TFE / P copolymer to improve mechanical properties such as tensile strength and tear strength, and properties such as toughness.
  • an ethylene-acrylic acid ester copolymer or an ethylene-vinyl acetate copolymer is blended in large quantities for the purpose of reducing the compound price. is doing.
  • ETFE is blended together with calcium carbonate in order to improve the cut-through property of TFE / P copolymer (characteristic that it is difficult to be softened under high temperature).
  • ETFE is blended to improve cut-through property.
  • Patent Document 3 if there is too much ETFE blended with the TFE / P copolymer, flexibility and elongation decrease, so the blending amount of ETFE with respect to the entire blend polymer is 40% by mass or less.
  • an elastomer material used for a harness in an automobile engine room is required to have excellent flexibility in order to ensure the wiring freedom of the harness.
  • the ratio of ETFE blended with the TFE / P copolymer is lowered, the oil resistance to lubricating oil such as automatic transmission oil may not be sufficient.
  • ETFE was blended with the TFE / P copolymer, it may be thermally discolored under heating, and the degree of freedom with respect to the colorability of the wires was small.
  • the present invention has been made in view of the above circumstances, and is a fluorine-containing elastomer composition excellent in flexibility, oil resistance to lubricating oil such as automatic transmission oil, hardly discolored thermally, and excellent in moldability, and It is an object to provide a manufacturing method thereof. Another object of the present invention is to provide a molded article, a crosslinked product, and a covered electric wire using the fluorine-containing elastomer composition.
  • the inventors of the present invention observed a fluorine-containing elastomer composition composed only of a TFE / P copolymer and ETFE, and noted that the compatibility between the TFE / P copolymer and ETFE was not sufficient. Further investigations have been made, and when an ethylene copolymer containing an epoxy group is blended at a specific ratio, the compatibility is improved and the above problems can be solved, and the present invention has been achieved. That is, the present invention provides a fluorine-containing elastomer composition, a production method thereof, a molded product, a cross-linked product, and a covered electric wire having the following configurations [1] to [10].
  • TFE / P copolymer (a), the following ETFE (b), and an ethylene copolymer (c) containing an epoxy group The mass ratio [(a) / (b)] of the TFE / P copolymer (a) and the ETFE (b) is 70/30 to 40/60, and the ETFE (b) and the epoxy group are A fluorine-containing elastomer composition, wherein the mass ratio [(b) / (c)] to the ethylene copolymer (c) contained is 100 / 0.1 to 100/10.
  • the ethylene / tetrafluoroethylene copolymer (b) is a unit based on tetrafluoroethylene, a unit based on ethylene, and CF 3 CF 2 CF 2 CF 2 CF ⁇ CH 2 or CF 3 CF 2 CF 2 CF.
  • the ethylene copolymer (c) containing the epoxy group is a copolymer composed of units based on ethylene, units based on glycidyl methacrylate, and units based on an ethylenically unsaturated ester.
  • the fluorine-containing elastomer composition according to any one of [3] to [3].
  • [5] A method for producing the fluorine-containing elastomer composition according to any one of [1] to [4] above, wherein the TFE / P copolymer (a) is heated under a heating condition of 250 to 320 ° C.
  • the manufacturing method of the fluorine-containing elastomer composition characterized by having the process of knead
  • a covered electric wire comprising a conductor and a covering material covering the conductor, wherein the covering material is the fluorine-containing elastomer composition according to any one of [1] to [4] above. Covered electric wire.
  • a covered electric wire comprising a conductor and a covering material covering the conductor, wherein the covering material is the cross-linked product according to [8].
  • the fluorine-containing elastomer composition of the present invention is excellent in flexibility, oil resistance to lubricating oil such as automatic transmission oil, hardly discolored by heat, and excellent in moldability.
  • the molded article, the crosslinked product, and the covered electric wire of the present invention are excellent in flexibility and oil resistance against lubricating oil such as automatic transmission oil, hardly discolored thermally, and have few defects due to poor molding such as a weld line.
  • the fluorine-containing elastomer composition of the present invention includes a TFE / P copolymer (a), ETFE (b), and an ethylene copolymer containing an epoxy group.
  • the molar ratio of units constituting each component is a molar ratio measured using 13 C-NMR and FT-IR.
  • TFE / P copolymer (a) The TFE / P copolymer (a) (hereinafter sometimes referred to as “component (a)”) is 45 to 70 mol% based on tetrafluoroethylene (hereinafter sometimes referred to as “TFE”), A copolymer composed of 30 to 55 mol% based on propylene (hereinafter sometimes referred to as “P”) and 0 to 20 mol% based on other monomers.
  • the component (a) is an elastic copolymer (fluorinated elastomer).
  • the proportion of units based on TFE in all the units constituting the component (a) is 45 to 70 mol%, preferably 50 to 65 mol%, more preferably 52 to 60 mol%.
  • the proportion of units based on TFE is 45 mol% or more, the composition of the present invention is excellent in mechanical properties, chemical resistance, and flexibility.
  • the ratio of the unit based on TFE is 70 mol% or less, it can have a sufficient ratio of the unit based on P.
  • the proportion of units based on P in all units constituting the component (a) is 30 to 55 mol%, preferably 35 to 50 mol%, more preferably 40 to 48 mol%.
  • the composition of the present invention is excellent in moldability and flexibility. Moreover, when the ratio of the unit based on P is 55 mol% or less, it can have a sufficient ratio of the unit based on TFE.
  • the proportion of units based on other monomers in all units constituting the component (a) is 0 to 20 mol%, preferably 0 to 15 mol%, more preferably 0 to 10 mol%. preferable. When the proportion of units based on other monomers is 20 mol% or less, it can have a sufficient proportion of units based on TFE and P.
  • Examples of other monomers include fluorine-containing monomers other than TFE, hydrocarbon monomers other than P, and crosslinkable monomers.
  • Examples of the fluorine-containing monomer include vinylidene fluoride, hexafluoropropylene, perfluoro (alkyl vinyl ether), perfluoro (alkyloxyalkyl vinyl ether) and the like.
  • the fluorine-containing monomer may be used alone or in combination of two or more.
  • the perfluoroalkyl group in perfluoro (alkyl vinyl ether) preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms.
  • the number of carbon atoms of the perfluoro (alkyloxyalkyl) group in perfluoro (alkyloxyalkyl vinyl ether) is preferably 2 to 8, and more preferably 2 to 6.
  • a CF 3 group, a C 2 F 5 group, or a C 3 F 7 group is preferable.
  • the number of etheric oxygen atoms in the perfluoro (alkyloxyalkyl) group is preferably 4 or less, and more preferably 2 or less.
  • perfluoro (alkyloxyalkyl) groups include CF 3 OCF (CF 3 ) CF 2 — group, C 2 F 5 OC 2 F 4 — group, C 3 F 7 OC 3 F 6 — group, or C 3 F 7 OC 3 F 6 OC 3 F 6 - groups are preferred.
  • hydrocarbon monomer examples include vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, tert-butyl vinyl ether, methoxyethyl vinyl ether, and ethoxyethyl vinyl ether; vinyl esters such as vinyl acetate, vinyl benzoate, and vinyl nonanoate; ethylene, butene, And ⁇ -olefins (excluding P) such as isobutene.
  • vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, tert-butyl vinyl ether, methoxyethyl vinyl ether, and ethoxyethyl vinyl ether
  • vinyl esters such as vinyl acetate, vinyl benzoate, and vinyl nonanoate
  • ethylene, butene, And ⁇ -olefins (excluding P) such as isobutene.
  • the content of the unit based on the other monomer is 0.01 to about the total number of moles of the unit based on TFE and P. 20 mol% is preferable, 0.1 to 15 mol% is more preferable, and 0.3 to 10 mol% is particularly preferable.
  • the crosslinkable monomer refers to a monomer having one or more crosslinkable groups in the same molecule.
  • the crosslinkable group in the crosslinkable monomer include a carbon-carbon double bond group and a halogen atom.
  • the crosslinking monomer include 1-bromo-1,1,2,2-tetrafluoroethyl trifluorovinyl ether, 1-iodo-1,1,2,2-tetrafluoroethyl trifluorovinyl ether, vinyl crotonic acid, methacrylic acid Vinyl etc. are mentioned.
  • the crosslinkable monomers may be used alone or in combination of two or more.
  • the content of units based on the crosslinkable monomer is preferably 0.001 to 8 mol%, more preferably 0.001 to 5 mol%, and more preferably 0.01 to 3 mol% in all units constituting the component (a). % Is particularly preferred.
  • the Mooney viscosity (ML 1 + 10 , 121 ° C.) of the component (a) is preferably 20 to 200, more preferably 30 to 150, and most preferably 40 to 120.
  • Mooney viscosity is a measure of molecular weight and is measured by the measurement method described below. A large value indicates that the molecular weight is large, and a small value indicates that the molecular weight is small. Within this range, the fluorine-containing elastomer composition is excellent in mechanical properties and moldability.
  • "AFLAS150CS” made by Asahi Glass Co., Ltd.
  • ETFE (b) ETFE (b)
  • component (b) is composed of 30 to 80 mol% based on TFE and 20 to 70 units based on ethylene (hereinafter sometimes referred to as “E”). It is a copolymer comprising 0 to 10 mol% of units based on mol% and other monomers.
  • the component (b) is a resin excellent in heat resistance, oil resistance, electrical insulation, chemical resistance, water resistance, radiation resistance and the like.
  • the proportion of units based on TFE in all the units constituting the component (b) is 30 to 80 mol%, preferably 40 to 70 mol%, more preferably 50 to 65 mol%.
  • the proportion of units based on TFE is 40 mol% or more, the composition of the present invention is excellent in oil resistance.
  • the ratio of the unit based on TFE is 70 mol% or less, it can have a sufficient ratio of the unit based on E.
  • the proportion of units based on E in all the units constituting the component (b) is 20 to 70 mol%, preferably 30 to 60 mol%, more preferably 35 to 50 mol%.
  • the component (b) When the proportion of units based on E is 60 mol% or less, the component (b) has a sufficiently high melting point and excellent heat resistance. Moreover, when the ratio of the unit based on E is 55 mol% or less, it can have a sufficient ratio of the unit based on TFE.
  • the proportion of units based on other monomers in all units constituting the component (b) is 0 to 10 mol%, preferably 0.01 to 7 mol%, preferably 0.1 to 5 mol%. More preferably. When the proportion of units based on other monomers is 10 mol% or less, it can have a sufficient proportion of units based on TFE and E. Moreover, if the ratio of the unit based on another monomer is more than a preferable lower limit, the characteristics such as stress crack resistance and processability of the composition of the present invention will be improved.
  • Examples of other monomers include fluorine-containing olefins other than TFE, fluorovinyl ethers, hydrocarbon monomers, fluorine-free vinyl ethers, and the like.
  • fluorine-containing olefins other than TFE fluorine-containing ethylene such as vinylidene fluoride and trifluorochloroethylene (excluding TFE);
  • CF 2 CFCF 3
  • CF 2 CHCF 3
  • CH 2 CHCF 3 and the like
  • Examples thereof include fluorine-containing propylene and a monomer represented by the following formula (1) (hereinafter referred to as “monomer (1)”).
  • R 1 and R 2 are each independently a hydrogen atom or a fluorine atom, and a is an integer of 1 to 12.
  • fluorovinyl ether examples include a fluorovinyl ether such as a monomer represented by the following formula (2) (hereinafter referred to as “monomer (2)”), CH 3 OC ( ⁇ O) CF 2 CF 2 CF 2 OCF ⁇ CF 2 , Examples thereof include fluorovinyl ethers having groups that can be easily converted into carboxylic acid groups or sulfonic acid groups, such as FSO 2 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF ⁇ CF 2 .
  • the stress crack resistance of the composition of the present invention can be improved.
  • Rf is a C 1-6 perfluoroalkyl group
  • R 3 is a fluorine atom or a trifluoromethyl group
  • b is an integer of 0-5.
  • hydrocarbon monomer examples include ⁇ -olefins having 3 to 4 carbon atoms such as P, butene, and isobutene, 4-methyl-1-pentene, and cyclohexene.
  • vinyl ethers not containing fluorine examples include methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, tert-butyl vinyl ether, cyclohexyl vinyl ether, hydroxybutyl vinyl ether, and the like, and vinyl acetate, vinyl lactate, vinyl butyrate, vinyl pivalate, and the like.
  • esters By containing a unit based on a hydrocarbon monomer, the processability of the composition of the present invention can be improved.
  • the monomer (1) is preferable.
  • R 1 is a hydrogen atom
  • R 2 is a fluorine atom.
  • Some monomers are more preferred, CF 3 CF 2 CF 2 CF 2 CF ⁇ CH 2 , CF 3 CF 2 CF 2 CF 2 CH ⁇ CH 2 , CF 3 CF 2 CF 2 CF 2 CF 2 CH ⁇ CH 2 in particular CF 3 CF 2 CF 2 CF 2 CH ⁇ CH 2 is most preferable.
  • the molecular weight of the component (b) is not particularly limited, and can be widely used at a temperature of 40 ° C. or lower from a wax-like low molecular weight product to a melt-moldable high molecular weight product.
  • the melt flow rate (hereinafter referred to as “MFR”) that is a measure of molecular weight is preferably 0.01 to 50000 g / 10 minutes, more preferably 0.1 to 2000 g / 10 minutes, and 0.3 to 100 g / 10. Minutes are more preferred. If the MFR is equal to or higher than the lower limit, a molding process equivalent to that of a fluororesin by thermal melting of the composition of the present invention is possible in terms of equipment.
  • the molded product has a strength that can be used for practical use.
  • the MFR in the present specification is the mass (g / 10) of resin that flows out from a nozzle having a diameter of 2.1 mm and a length of 8 mm for 10 minutes under a load of 297 ° C. and 5 kg / cm 2 in an elevated flow tester. Min).
  • Component (c) includes a binary copolymer comprising a unit based on E and a unit based on a monomer having an epoxy group; a unit based on E, a unit based on a monomer having an epoxy group, and other units.
  • An ethylene copolymer such as a ternary or higher copolymer comprising units based on a monomer; (C)
  • a component may be used individually by 1 type, or may use 2 or more types together.
  • Examples of the monomer having an epoxy group include unsaturated glycidyl ethers (for example, allyl glycidyl ether, 2-methylallyl glycidyl ether, vinyl glycidyl ether), and unsaturated glycidyl esters (for example, glycidyl acrylate, methacrylic acid). Glycidyl, etc.). Among these, glycidyl methacrylate is preferable because the component (c) that further improves the compatibility between the component (a) and the component (b) can be obtained.
  • the monomer which has an epoxy group may be used individually by 1 type, or may use 2 or more types together.
  • Other monomers include acrylic acid esters (eg, methyl acrylate, ethyl acrylate, etc.), methacrylic acid esters (eg, methyl methacrylate, ethyl methacrylate, etc.), and fatty acid vinyl such as vinyl acetate.
  • esters and ⁇ -olefins other than E examples include esters and ⁇ -olefins other than E.
  • ethylenically unsaturated esters that is, acrylic acid esters, methacrylic acid esters, or fatty acid vinyl esters are preferable.
  • a component (c) that further improves the compatibility between the component (a) and the component (b) can be obtained.
  • Other monomers may be used alone or in combination of two or more.
  • a copolymer having a unit based on E and a unit based on glycidyl methacrylate is preferable.
  • the resulting cross-linked product of the fluorine-containing elastomer composition is more excellent in properties such as flexibility, oil resistance and moldability.
  • a specific example of such a copolymer is an ethylene-glycidyl methacrylate copolymer.
  • a copolymer comprising a unit based on E, a unit based on glycidyl methacrylate, and a unit based on an ethylenically unsaturated ester is also preferred in terms of moldability and mechanical properties.
  • Specific examples include an ethylene-glycidyl methacrylate-vinyl acetate copolymer, an ethylene-methyl acrylate-glycidyl methacrylate copolymer, and an ethylene-ethyl acrylate-glycidyl methacrylate copolymer. Of these, an ethylene-methyl acrylate-glycidyl methacrylate copolymer or an ethylene-ethyl acrylate-glycidyl methacrylate copolymer is preferred.
  • the content of the unit based on E is preferably 55 to 99.9 mol%, more preferably 70 to 94 mol%.
  • the content of units based on the monomer containing an epoxy group is preferably from 0.1 to 45 mol%, more preferably from 1 to 10 mol%.
  • the composition of the present invention is excellent in heat resistance and toughness.
  • the composition of this invention is excellent in a moldability and a mechanical characteristic in content of the unit based on the monomer containing an epoxy group being 2 mol% or more.
  • the content of units based on other monomers is preferably 1 to 30 mol%, more preferably 5 to 20 mol%. If the content of each unit is the component (c) within the above range, the compatibility between the component (a) and the component (b) can be further improved. As a result, the obtained cross-linked product of the fluorine-containing elastomer composition is more excellent in properties such as flexibility, oil resistance, heat resistance change and moldability.
  • component (c) As a commercially available product of component (c), “Bond Fast E (trade name, manufactured by Sumitomo Chemical Co., Ltd.)” and the like can be mentioned.
  • Examples of commercially available ethylene-methyl acrylate-glycidyl methacrylate copolymers include “Bond Fast 7M (trade name, manufactured by Sumitomo Chemical Co., Ltd.)” and the like.
  • the mass ratio [(a) / (b)] of the component (a) and the component (b) in the fluorine-containing elastomer composition of the present invention is 70/30 to 40/60, and 65/35 to 45/55. 60/40 to 50/50 is more preferable.
  • the blending ratio of the component (a) is equal to or higher than the lower limit, excellent flexibility can be obtained.
  • the blending ratio of the component (b) is not less than the above lower limit value, excellent oil resistance can be obtained.
  • the mass ratio [(b) / (c)] of the component (b) and the component (c) in the fluorine-containing elastomer composition is 100 / 0.1 to 100/10, and 100 / 0.3 to 100 / 7 is preferable, and 100 / 0.5 to 100/5 is more preferable.
  • the compounding ratio of the component (c) is less than the above lower limit, the cross-linked product of the fluorine-containing elastomer composition is likely to have a problem of thermal discoloration. This is considered to be because the compatibility between the component (a) and the component (b) is lowered.
  • the compounding ratio of the component (c) exceeds the above upper limit value, the oil resistance is lowered and the heat resistance is also insufficient.
  • the total content [((a) + (b) + (c)) / fluorinated elastomer composition] of the components (a) to (c) when the entire fluorine-containing elastomer composition is 100% by mass is: 30 mass% or more is preferable, and 50 mass% or more is more preferable.
  • the fluorine-containing elastomer composition of the present invention may contain an optional component in addition to the components (a) to (c).
  • optional components include crosslinking agents, crosslinking aids, fillers, stabilizers, colorants, antioxidants, processing aids, lubricants, lubricants, flame retardants, antistatic agents, and the like. 1 or more types can be contained.
  • crosslinking agent or a crosslinking aid among these compounding agents.
  • crosslinking agent Any conventionally known crosslinking agent can be used as the crosslinking agent, but organic peroxides are preferred. Any organic peroxide can be used as long as it easily generates radicals in the presence of heating and redox. A fluorine-containing elastomer composition crosslinked with an organic peroxide is excellent in heat resistance.
  • organic peroxide examples include 1,1-di (t-hexylperoxy) -3,5,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroperoxide, Di-t-butyl peroxide, t-butyl cumyl peroxide, dicumyl peroxide, ⁇ , ⁇ '-bis (t-butylperoxy) -p-diisopropylbenzene, 2,5-dimethyl-2,5-di (T-butylperoxy) -hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -hexyne-3, dibenzoyl peroxide, t-butylperoxybenzene, 2,5 -Dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxymaleic acid, t-hexylperoxyisoprop
  • ⁇ , ⁇ ′-bis (t-butylperoxy) -p-diisopropylbenzene is exemplified.
  • These organic peroxides are excellent in the crosslinkability of the fluorine-containing elastomer composition.
  • the content of the organic peroxide is preferably 0.1 to 5 parts by mass, preferably 0.2 to 4 parts per 100 parts by mass of the total content of the components (a) to (c) in the fluorine-containing elastomer composition. Part by mass is more preferable, and 0.5 to 3 parts by mass is most preferable. Within this range, the crosslinking efficiency of the organic peroxide is high.
  • crosslinking aid examples include triallyl cyanurate, triallyl isocyanurate, triacryl formal, triallyl trimellitate, dipropargyl terephthalate, diallyl phthalate, tetraallyl terephthalamide, triallyl phosphate, etc. Allyl isocyanurate is preferred.
  • One or more crosslinking aids can be used.
  • the content of the crosslinking aid is preferably 0.1 to 30 parts by weight, preferably 0.5 to 15 parts by weight with respect to 100 parts by weight of the component (a). Part is more preferable, and 1 to 10 parts by mass is further preferable.
  • the content of the crosslinking aid is not less than the lower limit of the above range, the crosslinking rate is high and a sufficient degree of crosslinking is easily obtained.
  • the content is not more than the upper limit of the above range, properties such as elongation of a crosslinked product obtained by crosslinking the fluorine-containing elastomer composition are improved.
  • the filler examples include carbon black, white carbon, clay, talc, calcium carbonate, glass fiber, carbon fiber, fluororesin (polytetrafluoroethylene, ETFE, etc.) and the like.
  • Any carbon black can be used without limitation as long as it is used as a filler for fluororubber.
  • Specific examples thereof include furnace black, acetylene black, thermal black, channel black, and graphite, and furnace black is preferable.
  • furnace black include HAF-LS carbon, HAF carbon, HAF-HS carbon, FEF carbon, GPF carbon, APF carbon, SRF-LM carbon, SRF-HM carbon, MT carbon, and among these, MT carbon Is more preferable.
  • One or more fillers can be used.
  • the content of carbon black is preferably 1 to 50 parts by mass and more preferably 3 to 20 parts by mass with respect to 100 parts by mass of component (a).
  • the content of carbon black is not less than the lower limit of the above range, the crosslinked product of the fluorine-containing elastomer composition has excellent strength, and a reinforcing effect due to the incorporation of carbon black can be sufficiently obtained.
  • the elongation of a crosslinked material is excellent in it being below the upper limit of the said range.
  • the balance between the strength and elongation of the crosslinked product becomes good.
  • the fluorine-containing elastomer composition contains a filler other than carbon black
  • the content thereof is preferably 5 to 200 parts by mass, more preferably 10 to 100 parts by mass with respect to 100 parts by mass of the component (a).
  • carbon black and other fillers may be used in combination.
  • the content is preferably 1 to 100 parts by weight with respect to 100 parts by weight of component (a), and 3 to 50 parts by weight. Part is more preferred.
  • Examples of the stabilizer include copper iodide, lead oxide, calcium oxide, magnesium oxide, aluminum oxide, titanium oxide, antimony oxide, and phosphorus pentoxide.
  • Examples of the processing aid include higher fatty acids and alkali metal salts of higher fatty acids. Specifically, stearic acid, stearates and laurates are preferred. The content of the processing aid is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 5 parts by mass, and still more preferably 1 to 3 parts by mass with respect to 100 parts by mass of the component (a). One or more processing aids can be used.
  • Examples of the lubricant include higher fatty acids and alkali metal salts of higher fatty acids, and stearic acid, stearate and laurate are preferable.
  • the content of the lubricant is preferably 0.1 to 20 parts by mass, more preferably 0.2 to 0.2 parts by mass with respect to 100 parts by mass of the total content of the components (a) to (c) in the fluorine-containing elastomer composition.
  • the amount is 10 parts by mass, most preferably 1 to 5 parts by mass.
  • the melt flow rate (MFR) of the fluorine-containing elastomer composition of the present invention is preferably 4 to 50 g / 10 minutes, more preferably 5 to 40 g / 10 minutes, and most preferably 6 to 30 g / 10 minutes. When the MFR is in this range, the moldability and mechanical properties are excellent.
  • the flexural modulus of the fluorine-containing elastomer composition of the present invention is preferably 10 to 600 MPa, more preferably 50 to 400 MPa, and most preferably 70 to 300 MPa.
  • the flexural modulus is a value that serves as an index of flexibility. A large flexural modulus indicates low flexibility and a small flexural modulus indicates high flexibility.
  • the fluorine-containing elastomer composition of the present invention comprises the above-described components (a) to (c) and optional components such as various compounding agents blended as necessary, an internal mixer, a uniaxial kneader, a biaxial kneader, It is manufactured by kneading with an apparatus having a known kneading mechanism such as a single-screw extruder, a twin-screw extruder, or a multi-screw extruder.
  • knead mix using extrusion molding machines, such as a twin-screw extruder and a multi-screw extruder.
  • the optional component may be added together with these components in the step of kneading the components (a) to (c), or may be added after kneading the components (a) to (c). Good.
  • the kneading of each component is preferably melt kneading performed under heating at a temperature of 250 to 320 ° C.
  • the heating temperature is more preferably 255 to 310 ° C, further preferably 260 to 300 ° C.
  • the ratio of the melt viscosity of the components (a) and (b) is close to 1, and a fluorine-containing elastomer composition excellent in dispersibility is obtained. Excellent surface smoothness.
  • the components (a) to (c) are melted and become compatible with each other to be in a uniform dispersed state.
  • the dispersed phase was reduced in particle size.
  • the compatibility of the component (c) and the component (b) can be confirmed by observing the peak temperature of Tan ⁇ in the dynamic viscoelasticity measurement of the component (b) as a result of a change in the glass transition point. .
  • the problem of thermal discoloration tends to occur. This is considered to be because both are incompatible, and even when only these two components are kneaded under heating, dispersion is insufficient locally.
  • the fluorine-containing elastomer composition which has the outstanding characteristic is obtained by adding (c) component. This is considered to be because the compatibility is enhanced by the component (c). In particular, when the mass ratio of the component (a) to the component (b) is 55/45 to 45/55, both copolymers may become a continuous phase.
  • a twin-screw extruder or a single-screw extruder equipped with a screw having a high kneading effect is preferred, a twin-screw extruder is more preferred, and a twin-screw extruder equipped with a screw having a high kneading effect is the most. preferable.
  • the screw having a high kneading effect it is more preferable to select a screw that has a sufficient kneading effect for the composition and does not give an excessive shearing force.
  • the shear rate is preferably set according to the melt viscosity of the composition in the above temperature range.
  • the rotation speed of the screw of the extruder in the melt-kneading is preferably 50 to 1000 rpm, more preferably 100 to 500 rpm.
  • the rotational speed of the screw is too small, the dispersibility of the composition obtained by shearing may be low, and when it is too large, the elongation of the composition obtained by breaking the molecular chain of the copolymer may be low.
  • the compatibilization reaction proceeds optimally, and the balance between strength and elongation is good.
  • the progress of compatibilization can be controlled by adjusting parameters such as kneading time, kneading temperature, and shear rate.
  • the dispersed particles of the component (b) are made smaller by setting the shear rate condition to narrow the melt viscosity difference condition between the component (b) and the component (c) as much as possible.
  • the melt kneading is performed until the viscosity of the composition becomes constant.
  • a change in viscosity during melt kneading of the composition can be observed by a change with time in rotational torque by a torque meter via a screw.
  • the phrase “until the viscosity of the composition becomes constant” means that the kneading is performed until the fluctuation in the value of the rotational torque is within a range of 5% from the center value for a certain time or more.
  • the time required for the melt-kneading may vary depending on the temperature at which the melt-kneading is performed, the composition of the composition, and the screw shape, but is preferably 1 to 30 minutes, more preferably 1 to 20 minutes from the viewpoint of economy and productivity. Most preferred is ⁇ 10 minutes.
  • the kneading time is preferably 2 to 7 minutes. In a twin screw extruder, a residence time of 1 to 5 minutes is preferable.
  • the residence time can be set based on the data of the change over time by measuring the change over time of the viscosity in advance using a batch type biaxial kneader such as Labo Plast Mill (manufactured by Toyo Seiki Co., Ltd.).
  • the form of the component (b) used for melt kneading is preferably a powder.
  • the powder those having a small particle diameter are more preferable. When the particle size is small, kneading is facilitated during melt kneading, and a uniform melt kneaded state is easily obtained.
  • the powder is preferably a powder obtained by drying an ETFE slurry obtained by solution polymerization.
  • crumb is preferable as the form of the component (a). In particular, it is preferable to dry and use the crumb of the TFE / P copolymer obtained by agglomerating the latex of the TFE / P copolymer obtained by emulsion polymerization.
  • the molded body of the present invention is a molded body formed by molding the fluorine-containing elastomer composition of the present invention.
  • the molding method include injection molding, extrusion molding, coextrusion molding, blow molding, compression molding, inflation molding, transfer molding, and calendar molding. Since the fluorine-containing elastomer composition of the present invention has a lower melt viscosity than the raw material (a) component, the take-up speed can be set large, and the molding processability is excellent.
  • the crosslinked product of the present invention is obtained by crosslinking the fluorine-containing elastomer composition of the present invention. Crosslinking is preferably performed simultaneously with molding or after molding.
  • the molded product or the cross-linked product of the present invention can be used as an electrical insulating material such as a coating material for electrical components. Specific applications include a sheath material for protecting the electric wire, a sheath material for protecting the electric wire, a cable insulation coating material, a sheath material, and the like, as well as a covering material for the covered electric wire described later.
  • a crosslinked product can also be used as cylindrical products, such as a hose and a tube, for example.
  • a cylindrical product is manufactured by extruding a fluorine-containing elastomer composition into a cylindrical shape and then crosslinking.
  • the cross-linked product of the present invention can also be used as various parts used in various industrial fields such as automobiles, industrial robots, and thermal equipment, such as gaskets, packings, and diaphragms.
  • the crosslinking method for obtaining the crosslinked product is not particularly limited.
  • an organic peroxide such as ⁇ , ⁇ '-bis (t-butylperoxy) -p-diisopropylbenzene, dicumyl peroxide is used as a crosslinking agent.
  • chemical crosslinking methods X-rays, ⁇ -rays, electron beams, proton beams, deuteron beams, ⁇ -rays, ⁇ -rays and other irradiation crosslinking methods using ionizing radiation.
  • Electron beam crosslinking using an electron beam as ionizing radiation is preferable for coating materials for electric parts such as electric wires
  • chemical crosslinking methods using organic peroxides are preferable for cylindrical products such as hoses and tubes.
  • the covered electric wire of the present invention is obtained by coating a conductor with the fluorine-containing elastomer composition or cross-linked product of the present invention.
  • the conductor is not particularly limited, and examples thereof include copper, copper alloy, aluminum and aluminum alloy, various plating wires such as tin plating, silver plating, and nickel plating, stranded wires, superconductors, and plating wires for semiconductor element leads.
  • a coated electric wire in which a conductor is coated with the cross-linked product of the present invention is produced by irradiating the coated electric wire of the present invention in which a conductor is coated with the fluorinated elastomer composition of the present invention with an electron beam and cross-linking the fluorinated elastomer composition. it can.
  • the irradiation dose of the electron beam is preferably 50 to 700 kGy, more preferably 80 kGy to 400 kGy, and most preferably 100 to 250 kGy.
  • the temperature during electron beam irradiation is preferably 0 to 300 ° C, more preferably 10 to 200 ° C, and most preferably 20 to 100 ° C.
  • the fluorine-containing elastomer composition of the present invention has a lower melt viscosity than the raw material (a) component, the take-up speed can be set large, and the molding processability is excellent. Therefore, the covered electric wire of the present invention can be manufactured at high speed.
  • it since it contains the component (a), it can be used continuously at a high temperature as compared to the coated electric wire obtained using only the thermoplastic component (b), and it is also flexible. Since it is excellent, it is suitable for use in an automotive covered electric wire or the like that requires wiring to save space.
  • the molar ratio of units based on TFE to units based on P (TFE / P) is 56/44, peroxide crosslinking type, fluorine content is 57% by mass, Mooney viscosity ML 1 + 10 (121 ° C.) is 120, glass transition Temperature (Tg) is ⁇ 3 ° C. and melting point (Tm) is none.
  • Component (d) As a comparison of the component (c), “Evaflex EV260” manufactured by Mitsui DuPont Polychemical Co., Ltd., which is an ethylene-vinyl acetate copolymer, was used. The component (d) does not have an epoxy group.
  • the content of units based on E is 72 mol%
  • the content of units based on vinyl acetate is 28 mol%
  • MFR is 6 g / 10 min (measurement temperature 190 ° C.)
  • Tg is ⁇ 27 ° C.
  • Tm 72 ° C.
  • Examples 1 to 3, Comparative Examples 1 to 7 Using the internal mixer, each of the above materials was sufficiently kneaded (melt kneaded) with the number of blending parts (mass basis) shown in Tables 1 and 2 to obtain the fluorine-containing elastomer compositions of the respective examples.
  • the kneading temperature and time were 250 ° C. ⁇ 10 minutes, and the rotor rotational speed was 150 rpm.
  • the obtained fluorine-containing elastomer composition was press-molded under the conditions of 250 ° C. ⁇ 15 minutes and 10 MPa to prepare a sheet having a thickness of about 1 mm.
  • each sheet was subjected to electron beam crosslinking at an irradiation dose of 120 kGy to prepare a crosslinked sample of each example.
  • Example 1 The fluorine-containing elastomer compositions of Example 1, Example 3, Comparative Example 2, and Comparative Example 3 were observed with a scanning electron microscope (2,000 times magnification). The results are shown in FIGS. As shown in FIG. 1, in Example 1, it was observed that (a) component and (b) component formed the continuous phase. Moreover, as shown in FIG. 2, in Example 3, it was observed that (b) component became a fine dispersed phase and was disperse
  • the maximum take-off speed was measured using a capillary rheometer at an extrusion temperature of 300 ° C., an extrusion speed of 5 mm / min, and a capillary diameter of 1 mm, with the take-up speed varied.
  • the results are shown in Tables 1 and 2.
  • the fluorine-containing elastomer composition of Comparative Example 3 containing the component (c) in excess and Component 6 of the comparative example 6 using the component (d) instead of the component (c) is heat resistant.
  • the residual aging strength was 90% or less, and the material was inferior in heat aging.
  • Example 1 and Comparative Example 4 in which the mass ratio of both the component (a) and the component (b) is 50:50 are compared the maximum take-up speed of Example 1 is larger, and the component (c) It has been found that the processing efficiency is increased by blending.
  • crosslinked samples of Examples 1 to 3 all gave good results in all the items of normal physical properties (initial tensile strength and tensile elongation) and heat aging resistance (residual strength and residual elongation).
  • each of the crosslinked samples of Comparative Examples 1 to 7 had a problem in any of the items of normal physical properties (initial tensile strength, tensile elongation) and heat aging resistance (strength residual rate, residual elongation rate). It was.
  • all of the crosslinked samples of Examples 1 to 3 had a small volume change rate and excellent ATF resistance.
  • the crosslinked product of Comparative Example 1 containing no component (b) had a large volume change rate and was inferior in ATF resistance. Moreover, even if it contains (b) component, the comparative sample 3 and comparative example 5 which contain (c) component excessively, and the bridge
  • Extrusion coating was performed at a thickness of 0.5 mm to obtain an uncrosslinked covered electric wire. Subsequently, 120 kGy electron beam was irradiated about a part of uncrosslinked covered electric wire, and the crosslinked covered electric wire was obtained.
  • An electric wire sample was prepared by cutting each of the produced covered electric wires into a length of 1 m.
  • Five wire samples of each of the six types of covered wires obtained in each example were prepared, heated in a thermostat at 190 ° C. for 96 hours, and then cooled to room temperature. Then, for each wire sample, wind the remaining portion tightly over 10 times so that the wire is in contact with the periphery of one end of the wire sample itself, and again heat in a thermostat at 200 ° C. for 1 hour. And then cooled to room temperature. After cooling, the insulation coating material was visually checked for peeling or cracking. A case where no peeling or cracking occurred in all 5 pieces was evaluated as ⁇ (good), and a case where one or more peelings or cracking occurred was evaluated as x (defective).
  • An electric wire sample was prepared by cutting each of the produced covered electric wires into a length of 1 m. Prepare five samples of each of the six types of coated electric wires obtained in each example for each predetermined heating temperature, heat for 96 hours in a thermostat kept at a predetermined heating temperature (T), and then cool to room temperature did.
  • High temperature crack temperature (Tc) Th + ⁇ T (S / 100 ⁇ 1 / 2) Percentage of cracks: Number of peels or cracks generated at each heating temperature (T) / 5 ⁇ 100 Sum of crack percentages (S): Sum of crack percentages at each heating temperature (T) Maximum temperature at which all cracks occur (Th): Heating temperature when peeling or cracking occurred on all five
  • the fluorine-containing elastomer composition of the present invention is excellent in flexibility, oil resistance to lubricating oil such as automatic transmission oil, hardly discolored by heat, and excellent in moldability.
  • the molded article, the crosslinked product, and the covered electric wire of the present invention are excellent in flexibility and oil resistance against lubricating oil such as automatic transmission oil, hardly discolored thermally, and have few defects due to poor molding such as a weld line. Therefore, it is suitable as an insulating coating material or sheath material for electric wires and cables used in various fields such as automobiles, industrial robots, and thermal equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)

Abstract

 柔軟性、自動変速機油等の潤滑油に対する耐油性に優れ、熱変色しにくく、かつ成形性に優れる含フッ素エラストマー組成物と、該含フッ素エラストマー組成物を用いた、成形体、架橋物、および被覆電線を提供する。 テトラフルオロエチレン/プロピレン共重合体(a)と、エチレン/テトラフルオロエチレン共重合体(b)と、エポキシ基を含有するエチレン共重合体(c)とを含有し、前記テトラフルオロエチレン/プロピレン共重合体(a)と前記エチレン/テトラフルオロエチレン共重合体(b)との質量比[(a)/(b)]が70/30~40/60であり、前記エチレン/テトラフルオロエチレン共重合体(b)と前記エポキシ基を含有するエチレン共重合体(c)との質量比[(b)/(c)]が100/0.1~100/10である含フッ素エラストマー組成物。

Description

含フッ素エラストマー組成物及びその製造方法、成形体、架橋物、並びに被覆電線
 本発明は、含フッ素エラストマー組成物及びその製造方法、成形体、架橋物、並びに被覆電線に関する。
 テトラフルオロエチレン/プロピレン共重合体(以下、「TFE/P共重合体」という場合がある。)は耐熱性、耐油性、耐薬品性、電気絶縁性、可とう性等の特性に優れ、かつ、放射線架橋可能なエラストマー材料として、ホース、チューブ、ガスケット、パッキン、ダイヤフラム、シート、電線被覆材等に使用されている。
 また、TFE/P共重合体の特性を補うため、TFE/P共重合体に、エチレン/テトラフルオロエチレン共重合体(以下、「ETFE」という場合がある。)をブレンドすることが行われている。
 例えば、特許文献1では、TFE/P共重合体に、ETFEをブレンドして、引張強さや引裂き強さ等の機械的特性、強靱性等の特性の向上を図っている。そして、特許文献1では、コンパウンド価格を下げることを目的として、TFE/P共重合体とETFEに加えて、さらに、エチレン-アクリル酸エステル共重合体またはエチレン-酢酸ビニル共重合体を大量にブレンドしている。
 また、特許文献2では、TFE/P共重合体のカットスルー性(高温下で熱軟化し難い特性)を改善するため、炭酸カルシウムと共に、ETFEをブレンドしている。
 特許文献3でも、カットスルー性改善のために、ETFEをブレンドしている。
 特許文献3では、TFE/P共重合体にブレンドするETFEが多すぎると可とう性と伸びが低下するため、ブレンドポリマ全体に対するETFEの配合量は40質量%以下とされている。
日本特開平5-78539号公報 日本特開平10-334738号公報 日本特開2010-186585号公報
 特に、自動車のエンジンルームのハーネスに用いられるエラストマー材料には、ハーネスの配線自由度を確保するため優れた柔軟性が求められる。可とう性と伸びの低下を抑え柔軟性を確保するためには、特許文献3で指摘されているように、TFE/P共重合体にブレンドするETFEの割合を低くする必要があった。しかしながら、TFE/P共重合体にブレンドするETFEの割合を低くすると、自動変速機油等の潤滑油に対する耐油性が充分でない場合があった。
 また、TFE/P共重合体にETFEをブレンドすると、加熱下で熱変色する場合があり、電線の着色性に対する自由度が少なかった。また、成形性が充分でなく、電線の被覆材として用いると、ウェルドライン等の成形不良に基づく欠点が生じる場合があった。
 本発明は、上記事情に鑑みてなされたものであって、柔軟性、自動変速機油等の潤滑油に対する耐油性に優れ、熱変色もしにくく、かつ成形性にも優れる含フッ素エラストマー組成物、およびその製造方法を提供することを課題とする。また、該含フッ素エラストマー組成物を用いた、成形体、架橋物、および被覆電線を提供することを課題とする。
 本発明者らは、TFE/P共重合体とETFEのみからなる含フッ素エラストマー組成物を観察し、TFE/P共重合体とETFEの相溶性が充分でないことに着目した。そして、さらに検討を進め、エポキシ基を含有するエチレン共重合体を特定の割合で配合すると相溶性が高まり、上記課題を解決できることを見出し、本発明を成した。
 すなわち、本発明は、以下の[1]~[10]の構成を有する、含フッ素エラストマー組成物、その製造方法、成形体、架橋物、および被覆電線を提供する。
[1]下記のTFE/P共重合体(a)と、下記のETFE(b)と、エポキシ基を含有するエチレン共重合体(c)とを含有し、
 前記TFE/P共重合体(a)と前記ETFE(b)との質量比[(a)/(b)]が70/30~40/60であり、前記ETFE(b)と前記エポキシ基を含有するエチレン共重合体(c)との質量比[(b)/(c)]が100/0.1~100/10であることを特徴とする含フッ素エラストマー組成物。
 TFE/P共重合体(a):テトラフルオロエチレンに基づく単位45~70モル%、プロピレンに基づく単位30~55モル%、及びその他のモノマーに基づく単位0~20モル%からなる共重合体。
 ETFE(b):テトラフルオロエチレンに基づく単位45~70モル%、エチレンに基づく単位30~55モル%、及びその他のモノマーに基づく単位0~20モル%からなる共重合体。
[2]温度297℃で測定したメルトフローレイトが4~50g/10分である、上記[1]に記載の含フッ素エラストマー組成物。
[3]前記エチレン/テトラフルオロエチレン共重合体(b)が、テトラフルオロエチレンに基づく単位、エチレンに基づく単位、及びCFCFCFCFCF=CHもしくはCFCFCFCFCFCFCH=CHに基づく単位とからなる共重合体である、上記[1]または[2]に記載の含フッ素エラストマー組成物。
[4]前記エポキシ基を含有するエチレン共重合体(c)が、エチレンに基づく単位、メタクリル酸グリシジルに基づく単位、及びエチレン不飽和エステルに基づく単位とからなる共重合体である、上記[1]~[3]のいずれかに記載の含フッ素エラストマー組成物。
[5]上記[1]~[4]のいずれかに記載の含フッ素エラストマー組成物の製造方法であって、250~320℃の加熱条件下に、前記TFE/P共重合体(a)、前記ETFE(b)、及び前記エポキシ基を含有するエチレン共重合体(c)を混練する工程を有することを特徴とする含フッ素エラストマー組成物の製造方法。
[6]前記混練する工程が、押出成形機を用いて1~30分間混練する工程である、上記[5]に記載の含フッ素エラストマー組成物の製造方法。
[7]上記[1]~[4]のいずれかに記載の含フッ素エラストマー組成物を成形してなる成形体。
[8]上記[1]~[4]のいずれかに記載の含フッ素エラストマー組成物を架橋してなる架橋物。
[9]導体と、該導体を被覆する被覆材を備える被覆電線であって、前記被覆材が上記[1]~[4]のいずれかに記載の含フッ素エラストマー組成物であることを特徴とする被覆電線。
[10]導体と、該導体を被覆する被覆材を備える被覆電線であって、前記被覆材が、上記[8]に記載の架橋物であることを特徴とする被覆電線。
 本発明の含フッ素エラストマー組成物は、柔軟性、自動変速機油等の潤滑油に対する耐油性に優れ、熱変色しにくく、成形性に優れる。
 また、本発明の成形体、架橋物、被覆電線は、柔軟性、自動変速機油等の潤滑油に対する耐油性に優れ、熱変色もしにくく、ウェルドライン等の成形不良に基づく欠点が少ない。
本発明の実施例1の含フッ素エラストマー組成物の走査型電子顕微鏡写真(倍率2,000倍)を示す図である。 本発明の実施例3の含フッ素エラストマー組成物の走査型電子顕微鏡写真(倍率2,000倍)を示す図である。 本発明の比較例2の含フッ素エラストマー組成物の走査型電子顕微鏡写真(倍率2,000倍)を示す図である。 本発明の比較例3の含フッ素エラストマー組成物の走査型電子顕微鏡写真(倍率2,000倍)を示す図である。
[含フッ素エラストマー組成物]
 本発明の含フッ素エラストマー組成物(以下、「本発明の組成物」という場合がある。)は、TFE/P共重合体(a)と、ETFE(b)と、エポキシ基を含有するエチレン共重合体(c)とを含有する。
 なお、以下の説明において、各成分を構成する単位のモル比は、13C-NMR,FT-IRを用いて測定されるモル比である。
(TFE/P共重合体(a))
 TFE/P共重合体(a)(以下、「(a)成分」という場合がある。)は、テトラフルオロエチレン(以下、「TFE」という場合がある。)に基づく単位45~70モル%、プロピレン(以下、「P」という場合がある。)に基づく単位30~55モル%、及びその他のモノマーに基づく単位0~20モル%からなる共重合体である。(a)成分は、弾性共重合体(含フッ素エラストマー)である。
 (a)成分を構成する全単位中に占めるTFEに基づく単位の割合は45~70モル%であり、50~65モル%であることが好ましく、52~60モル%であることがより好ましい。TFEに基づく単位の割合が45モル%以上であることにより、本発明の組成物は、機械的特性、耐薬品性、柔軟性に優れる。また、TFEに基づく単位の割合が70モル%以下であることにより、Pに基づく単位を充分な割合で有することができる。
 (a)成分を構成する全単位中に占めるPに基づく単位の割合は30~55モル%であり、35~50モル%であることが好ましく、40~48モル%であることがより好ましい。Pに基づく単位の割合が30モル%以上であることにより、本発明の組成物は、成形加工性、柔軟性に優れる。また、Pに基づく単位の割合が55モル%以下であることにより、TFEに基づく単位を充分な割合で有することができる。
 (a)成分を構成する全単位中に占めるその他のモノマーに基づく単位の割合は0~20モル%であり、0~15モル%であることが好ましく、0~10モル%であることがより好ましい。その他のモノマーに基づく単位の割合が20モル%以下であることにより、TFEとPに基づく単位を充分な割合で有することができる。
 その他のモノマーとしては、TFE以外の含フッ素モノマー、P以外の炭化水素モノマー、架橋性モノマー等が挙げられる。
 含フッ素モノマーとしては、フッ化ビニリデン、ヘキサフルオロプロピレン、パーフルオロ(アルキルビニルエーテル)、パーフルオロ(アルキルオキシアルキルビニルエーテル)等が挙げられる。含フッ素モノマーは1種単独または2種以上を併用してもよい。
 パーフルオロ(アルキルビニルエーテル)中のパーフルオロアルキル基の炭素数は、1~6が好ましく、1~4がより好ましい。また、パーフルオロ(アルキルオキシアルキルビニルエーテル)中のパーフルオロ(アルキルオキシアルキル)基の炭素数は、2~8が好ましく、2~6がより好ましい。
 パーフルオロアルキル基の具体例としては、CF基、C基、またはC基が好ましい。
 パーフルオロ(アルキルオキシアルキル)基におけるエーテル性酸素原子の数は4個以下が好ましく、2個以下がより好ましい。パーフルオロ(アルキルオキシアルキル)基の具体例としては、CFOCF(CF)CF-基、COC-基、COC-基、またはCOCOC-基が好ましい。
 パーフルオロ(アルキルビニルエーテル)およびパーフルオロ(アルキルオキシアルキルビニルエーテル)の具体例としては、CF=CFOCF、CF=CFOCFCF、CF=CFOCFCFCF、CF=CFO(CFCF、CF=CFO(CFCF、CF=CFOCFOCF、CF=CFOCFCFOCF、CF=CFOCFCFOCFCF、CF=CFO(CFOCFCF、CF=CFOCFCF(CF)OCF、CF=CFOCFCF(CF)O(CFCF、CF=CFO(CFCFO)CFCF、CF=CFO[CFCF(CF)O]CF、CF=CFO[CFCF(CF)O](CFCF等が挙げられる。
 TFE以外の含フッ素モノマーに基づく単位を含有することにより、本発明の組成物の低温柔軟性などを改善することができる。
 炭化水素モノマーとしては、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル、tert-ブチルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル等のビニルエーテル;酢酸ビニル、安息香酸ビニル、ノナン酸ビニル等のビニルエステル;エチレン、ブテン、イソブテン等のα-オレフィン(Pを除く)等が挙げられる。
 P以外の炭化水素モノマーに基づく単位を含有することにより、本発明の組成物の成形加工性などを改善することができる。
 その他のモノマーとして、含フッ素モノマー、炭化水素モノマーまたはそれらの混合物を用いる場合、TFEとPに基づく単位の合計のモル数に対して、その他のモノマーに基づく単位の含有量は、0.01~20モル%が好ましく、0.1~15モル%がより好ましく、0.3~10モル%が特に好ましい。
 架橋性モノマーとは、同一分子内に架橋性基を1個以上有するモノマーをいう。架橋性モノマー中の架橋性基としては、炭素-炭素二重結合基、ハロゲン原子などが挙げられる。架橋性モノマーとしては、1-ブロモ-1,1,2,2-テトラフルオロエチルトリフルオロビニルエーテル、1-ヨード-1,1,2,2-テトラフルオロエチルトリフルオロビニルエーテル、クロトン酸ビニル、メタクリル酸ビニル等が挙げられる。架橋性モノマーは1種単独または2種以上を併用してもよい。
 架橋性モノマーに基づく単位の含有量は、(a)成分を構成する全単位中に、0.001~8モル%が好ましく、0.001~5モル%がより好ましく、0.01~3モル%が特に好ましい。
 架橋性モノマーに基づく単位を含有することにより、本発明の組成物の機械的特性や圧縮永久歪などを改善することができる。
 (a)成分のムーニー粘度(ML1+10,121℃)は、20~200が好ましく、30~150がより好ましく、40~120が最も好ましい。ムーニー粘度は、分子量の尺度であり、後述の測定方法で測定される。この値が大きいと分子量が大きいことを示し、小さいと分子量が小さいことを示す。この範囲にあると含フッ素エラストマー組成物は機械的特性、成形性に優れる。
 (a)成分の市販品の例としては、「AFLAS150CS」(旭硝子社製)等が挙げられる。
(ETFE(b))
 ETFE(b)(以下、「(b)成分」という場合がある。)は、TFEに基づく単位30~80モル%、エチレン(以下、「E」とう場合がある。)に基づく単位20~70モル%、及びその他のモノマーに基づく単位0~10モル%からなる共重合体である。
 (b)成分は、耐熱性、耐油性、電気絶縁性、耐薬品性、耐水性、耐放射線性等に優れる樹脂である。
 (b)成分を構成する全単位中に占めるTFEに基づく単位の割合は30~80モル%であり、40~70モル%であることが好ましく、50~65モル%であることがより好ましい。TFEに基づく単位の割合が40モル%以上であることにより、本発明の組成物は、耐油性に優れる。また、TFEに基づく単位の割合が70モル%以下であることにより、Eに基づく単位を充分な割合で有することができる。
 (b)成分を構成する全単位中に占めるEに基づく単位の割合は20~70モル%であり、30~60モル%であることが好ましく、35~50モル%であることがより好ましい。Eに基づく単位の割合が60モル%以下であることにより、(b)成分は、融点が充分に高く耐熱性に優れる。また、Eに基づく単位の割合が55モル%以下であることにより、TFEに基づく単位を充分な割合で有することができる。
 (b)成分を構成する全単位中に占めるその他のモノマーに基づく単位の割合は0~10モル%であり、0.01~7モル%であることが好ましく、0.1~5モル%であることがより好ましい。その他のモノマーに基づく単位の割合が10モル%以下であることにより、TFEとEに基づく単位を充分な割合で有することができる。また、その他のモノマーに基づく単位の割合が好ましい下限値以上であれば、本発明の組成物の耐ストレスクラック性、加工性等の特性が向上する。
 その他のモノマーとしては、TFE以外の含フッ素オレフィン、フルオロビニルエーテル、炭化水素モノマー、フッ素を含まないビニルエーテル等が挙げられる。
 TFE以外の含フッ素オレフィンとしては、フッ化ビニリデン、トリフルオロクロロエチレン等の含フッ素エチレン(ただし、TFEを除く。);CF=CFCF、CF=CHCF、CH=CHCF等の含フッ素プロピレン、下式(1)で表されるモノマー(以下、「モノマー(1)」という。)、が挙げられる。
  CH=CR-(CF ・・・(1)
ただし、前記式(1)中、RおよびRはそれぞれ独立に水素原子またはフッ素原子であり、aは1~12の整数である。
モノマー(1)としては、CFCFCH=CH、CFCFCFCFCH=CH、CFCFCFCFCFCFCH=CH、CFCFCFCFCF=CH、CFHCFCFCF=CH等が挙げられる。
 TFE以外の含フッ素オレフィンに基づく単位を含有することにより、本発明の組成物の耐ストレスクラック性や機械的特性を改善することができる。
 フルオロビニルエーテルとしては、下式(2)で表されるモノマー等のフルオロビニルエーテル(以下、「モノマー(2)」という。)、CHOC(=O)CFCFCFOCF=CF、FSOCFCFOCF(CF)CFOCF=CF等の、容易にカルボン酸基やスルホン酸基に変換可能な基を有するフルオロビニルエーテルが挙げられる。
 フルオロビニルエーテルに基づく単位を含有することにより、本発明の組成物の耐ストレスクラック性を改善することができる。
 Rf(OCFRCFOCF=CF ・・・(2)
(ただし、前記式(2)中、Rfは炭素数1~6のペルフルオロアルキル基、Rはフッ素原子またはトリフルオロメチル基、bは0~5の整数である。)
 モノマー(2)としては、CFCFOCFCFOCF=CF、COCF(CF)CFOCF=CF等が挙げられる。
 炭化水素モノマーとしては、P、ブテン、イソブテン等の炭素数3~4のα-オレフィン、4-メチル-1-ペンテン、シクロヘキセン等が挙げられる。
 フッ素を含まないビニルエーテルとしては、メチルビニルエーテル、エチルビニルエーテル、イソブチルビニルエーテル、tert-ブチルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシブチルビニルエーテル等が挙げられ、また、酢酸ビニル、乳酸ビニル、酪酸ビニル、ピバリン酸ビニル等のビニルエステル等が挙げられる。
 炭化水素モノマーに基づく単位を含有することにより、本発明の組成物の加工性等を改善することができる。
 その他のモノマーとしては、本発明の組成物の機械的強度を向上させることができることから、モノマー(1)が好ましく、前記式(1)中のRが水素原子で、Rがフッ素原子であるモノマーがより好ましく、CFCFCFCFCF=CH、CFCFCFCFCH=CH、CFCFCFCFCFCFCH=CHが特に好ましく、CFCFCFCFCH=CH が最も好ましい。
 (b)成分の分子量は、特には限定されず、40℃以下でワックス状の低分子量物から溶融成形可能な高分子量物まで幅広く使用できる。
 分子量の目安となるメルトフローレイト(以下、「MFR」という。)としては、0.01~50000g/10分が好ましく、0.1~2000g/10分がより好ましく、0.3~100g/10分がさらに好ましい。前記MFRが上記下限値以上であれば、本発明の組成物の熱溶融によるフッ素樹脂同等の成型加工が設備的に可能となる。前記MFRが上記上限値以下であれば、成型加工品が実用途に使用可能な強度を有する。
 なお、本明細書におけるMFRは、高化式フローテスターにおいて、297℃、5kg/cm荷重下で、直径2.1mm、長さ8mmのノズルから10分間に流出する樹脂の質量(g/10分)である。
(エポキシ基を含有するエチレン共重合体(c))
 エポキシ基を有するエチレン共重合体(c)(以下、「(c)成分」という場合がある。)は、上述した(a)成分と(b)成分との相溶性を高める働きをしていると考えられる。
 (c)成分としては、Eに基づく単位とエポキシ基を有する単量体に基づく単位とからなる2元共重合体;Eに基づく単位、エポキシ基を有する単量体に基づく単位及びその他の単量体に基づく単位からなる3元以上の共重合体;等のエチレン共重合体が挙げられる。(c)成分は、1種単独で用いても、2種以上を併用してもよい。
 エポキシ基を有する単量体としては、不飽和グリシジルエーテル類(例えば、アリルグリシジルエーテル、2-メチルアリルグリシジルエーテル、ビニルグリシジルエーテルなど。)、不飽和グリシジルエステル類(例えば、アクリル酸グリシジル、メタクリル酸グリシジルなど。)等が挙げられる。これらの中では、(a)成分と(b)成分との相溶性をより向上させる(c)成分が得られることから、メタクリル酸グリシジルが好ましい。エポキシ基を有する単量体は、1種単独で用いても、2種以上を併用してもよい。
 その他の単量体としては、アクリル酸エステル類(例えば、アクリル酸メチル、アクリル酸エチルなど。)、メタクリル酸エステル類(例えば、メタクリル酸メチル、メタクリル酸エチルなど。)、酢酸ビニルなどの脂肪酸ビニルエステル類、E以外のαオレフィン類等が挙げられる。これらの中では、エチレン不飽和エステル、すなわち、アクリル酸エステル類、メタクリル酸エステル類、または脂肪酸ビニルエステル類が好ましい。その他の単量体としてこれらの単量体を用いると、(a)成分と(b)成分との相溶性をより向上させる(c)成分が得られる。その他の単量体は、1種単独で用いても、2種以上を併用してもよい。
 (c)成分としては、Eに基づく単位とメタクリル酸グリシジルに基づく単位とを有する共重合体が好ましい。該共重合体を用いると、得られる含フッ素エラストマー組成物の架橋物は、柔軟性、耐油性、成形性などの特性がより優れる。
 このような共重合体の具体例としては、エチレン-メタクリル酸グリシジル共重合体が挙げられる。
 また、Eに基づく単位、メタクリル酸グリシジルに基づく単位及びエチレン不飽和エステルに基づく単位とからなる共重合体も成形性、機械的特性の点で好ましい。具体例としては、エチレン-メタクリル酸グリシジル-酢酸ビニル共重合体、エチレン-アクリル酸メチル-メタクリル酸グリシジル共重合体、エチレン-アクリル酸エチル-メタクリル酸グリシジル共重合体が挙げられる。中でも、エチレン-アクリル酸メチル-メタクリル酸グリシジル共重合体、またはエチレン-アクリル酸エチル-メタクリル酸グリシジル共重合体が好ましい。
 (c)成分における、Eに基づく単位の含有量は、55~99.9モル%が好ましく、70~94モル%がより好ましい。エポキシ基を含有する単量体に基づく単位の含有量は、0.1~45モル%が好ましく、1~10モル%がより好ましい。Eに基づく繰返し単位が55モル%以上であると、本発明の組成物は耐熱性や靭性に優れる。エポキシ基を含有する単量体に基づく単位の含有量が2モル%以上であると、本発明の組成物は、成形性、機械的特性に優れる。
 (c)成分がその他の単量体に基づく単位を有する場合には、その他の単量体に基づく単位の含有量は、1~30モル%が好ましく、5~20モル%がより好ましい。各単位の含有量が上記範囲内の(c)成分を用いると、(a)成分と(b)成分との相溶性をより向上させることができる。その結果、得られる含フッ素エラストマー組成物の架橋物は、柔軟性、耐油性、耐熱変、成形性などの特性がより優れる。
 (c)成分の市販品としては、「ボンドファストE(商品名、住友化学社製)」等が挙げられる。エチレン-アクリル酸メチル-メタクリル酸グリシジル共重合体の市販品としては、「ボンドファスト7M(商品名、住友化学社製)」等が挙げられる。
(配合比)
 本発明の含フッ素エラストマー組成物における(a)成分と(b)成分との質量比[(a)/(b)]は、70/30~40/60であり、65/35~45/55が好ましく、60/40~50/50がより好ましい。
 (a)成分の配合比が上記下限値以上であると、優れた柔軟性が得られる。一方、(b)成分の配合比が上記下限値以上であると、優れた耐油性が得られる。
 含フッ素エラストマー組成物における(b)成分と(c)成分との質量比[(b)/(c)]は、100/0.1~100/10であり、100/0.3~100/7が好ましく、100/0.5~100/5がより好ましい。
 (c)成分の配合比が上記下限値未満では、含フッ素エラストマー組成物の架橋物は、熱変色の問題が生じやすい。これは、(a)成分と(b)成分との相溶性を低下するためであると考えられる。
 (c)成分の配合比が上記上限値を超えると、耐油性が低下すると共に、耐熱性も不充分となる。
 また、含フッ素エラストマー組成物全体を100質量%とした場合の(a)~(c)成分の合計含有量[((a)+(b)+(c))/含フッ素エラストマー組成物]は、30質量%以上が好ましく、50質量%以上がより好ましい。
 本発明の含フッ素エラストマー組成物は、上記(a)~(c)成分以外に任意成分を含有してもよい。任意成分としては、架橋剤、架橋助剤、充填剤、安定剤、着色剤、酸化防止剤、加工助剤、滑剤、潤滑剤、難燃剤、帯電防止剤等などが挙げられ、必要に応じて1種以上を含有できる。
 本発明の含フッ素エラストマー組成物が架橋される場合には、これら配合剤のうち、架橋剤または架橋助剤を含有することが好ましい。
 架橋剤としては、従来公知のものはすべて使用できるが、有機過酸化物が好ましい。有機過酸化物としては、加熱、酸化還元の存在下で容易にラジカルを発生するものであれば使用できる。有機過酸化物を用いて架橋された含フッ素エラストマー組成物は耐熱性に優れる。
 有機過酸化物の具体例としては、1,1-ジ(t-ヘキシルパーオキシ)-3,5,5-トリメチルシクロへキサン、2,5-ジメチルへキサン-2,5-ジヒドロパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、ジクミルパーオキシド、α,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-へキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-へキシン-3、ジベンゾイルパーオキシド、t-ブチルパーオキシベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)へキサン、t-ブチルパーオキシマレイン酸、t-ヘキシルパーオキシイソプロピルモノカーボネート等が挙げられる。中でもα,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼンが挙げられる。これらの有機過酸化物は、含フッ素エラストマー組成物の架橋性に優れる。
 有機過酸化物の含有量は、含フッ素エラストマー組成物中の(a)~(c)成分の合計含有量の100質量部に対して0.1~5質量部が好ましく、0.2~4質量部がより好ましく、0.5~3質量部が最も好ましい。この範囲にあると、有機過酸化物の架橋効率が高い。
 架橋助剤としては、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアクリルホルマール、トリアリルトリメリテート、ジプロパルギルテレフタレート、ジアリルフタレート、テトラアリルテレフタールアミド、トリアリルホスフェート等が挙げられ、中でも、トリアリルイソシアヌレートが好ましい。架橋助剤は1種以上を使用できる。
 含フッ素エラストマー組成物が架橋助剤を含有する場合、架橋助剤の含有量は、(a)成分の100質量部に対して、0.1~30質量部が好ましく、0.5~15質量部がより好ましく、1~10質量部がさらに好ましい。架橋助剤の含有量が上記範囲の下限値以上であると、架橋速度が大きく、充分な架橋度が得られやすい。上記範囲の上限値以下であると、含フッ素エラストマー組成物が架橋してなる架橋物の伸びなどの特性が良好となる。
 充填剤としては、カーボンブラック、ホワイトカーボン、クレー、タルク、炭酸カルシウム、ガラス繊維、炭素繊維、フッ素樹脂(ポリテトラフルオロエチレン、ETFEなど。)等が挙げられる。
 カーボンブラックとしては、フッ素ゴムの充填剤として用いられているものであれば制限なく使用できる。その具体例としては、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイト等が挙げられ、ファーネスブラックが好ましい。ファーネスブラックとしては、HAF-LSカーボン、HAFカーボン、HAF-HSカーボン、FEFカーボン、GPFカーボン、APFカーボン、SRF-LMカーボン、SRF-HMカーボン、MTカーボン等が挙げられ、これらのなかではMTカーボンがより好ましい。充填剤は1種以上を使用できる。
 含フッ素エラストマー組成物がカーボンブラックを含有する場合、カーボンブラックの含有量は、(a)成分の100質量部に対して、1~50質量部が好ましく、3~20質量部がより好ましい。カーボンブラックの含有量が上記範囲の下限値以上であると、含フッ素エラストマー組成物の架橋物は強度が優れ、カーボンブラックを配合したことによる補強効果が充分に得られる。また、上記範囲の上限値以下であると、架橋物の伸びも優れる。このようにカーボンブラックの含有量が上記範囲内であると、架橋物の強度と伸びとのバランスが良となる。
 含フッ素エラストマー組成物がカーボンブラック以外の充填剤を含有する場合、その含有量は、(a)成分の100質量部に対して、5~200質量部が好ましく、10~100質量部がより好ましい。
 なお、充填剤としては、カーボングラックとそれ以外の充填剤とを併用してもよい。含フッ素エラストマー組成物が、カーボンブラックとそれ以外の充填剤とを含有する場合、その含有量は、(a)成分の100質量部に対して、1~100質量部が好ましく、3~50質量部がより好ましい。
 安定剤としては、ヨウ化銅、酸化鉛、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、酸化チタン、酸化アンチモン、五酸化リン等が挙げられる。
 加工助剤としては、高級脂肪酸、高級脂肪酸のアルカリ金属塩等が挙げられ、具体的には、ステアリン酸、ステアリン酸塩、ラウリン酸塩が好ましい。加工助剤の含有量は、(a)成分の100質量部に対して、0.1~10質量部が好ましく、0.2~5質量部がより好ましく、1~3質量部がさらに好ましい。加工助剤は1種以上を使用できる。
 滑剤としては、高級脂肪酸、高級脂肪酸のアルカリ金属塩等があげられ、ステアリン酸、ステアリン酸塩、ラウリン酸塩が好ましい。滑剤の含有量は、含フッ素エラストマー組成物中の(a)~(c)成分の合計含有量の100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.2~10質量部、最も好ましくは1~5質量部である。
(含フッ素エラストマー組成物の特性)
 本発明の含フッ素エラストマー組成物のメルトフローレイト(MFR)は、4~50g/10分が好ましく、5~40g/10分がより好ましく、6~30g/10分が最も好ましい。MFRがこの範囲にあると成形性および機械的特性が優れている。
 本発明の含フッ素エラストマー組成物の曲げ弾性率は、10~600MPaが好ましく、50~400MPaがより好ましく、70~300MPaが最も好ましい。曲げ弾性率は、柔軟性の指標となる値である。曲げ弾性率が大きいと柔軟性が低いことを示し、小さいと柔軟性が高いことを示す。
(含フッ素エラストマー組成物の製造方法)
 本発明の含フッ素エラストマー組成物は、上述の(a)~(c)成分と必要に応じて配合される各種配合剤などの任意成分とをインターナルミキサー、一軸混練機、二軸混練機、単軸押出機、二軸押出機、多軸押出機等の公知の混練機構を有する機器で混練することによって製造される。中でも、二軸押出機、多軸押出機等の押出成形機を用いて混練することが好ましい。なお、任意成分は、(a)~(c)の各成分を混練する工程でこれら各成分とともに添加されてもよいし、(a)~(c)の各成分を混練した後に添加されてもよい。
 各成分の混練は、温度250~320℃に加熱下に行う溶融混練であることが好ましい。加熱温度は、255~310℃がより好ましく、260~300℃がさらに好ましい。混練温度がこの範囲内であると、(a)成分と(b)成分の溶融粘度の比が1に近くなり、分散性に優れる含フッ素エラストマー組成物が得られ、それから得た成形体は、表面平滑性に優れる。
 溶融混練によって、(a)~(c)成分が溶融し、互いに相溶化し、均一な分散状態となる。実際、走査型電子顕微鏡にて観察されるモルフォロジー観察の結果、分散相が小粒径化することにより確認できた。また、(c)成分と(b)成分とが相溶することは、(b)成分の動的粘弾性測定におけるTanδのピーク温度を観察の結果、ガラス転移点が変化することにより確認できた。
 (a)成分と(b)成分の2成分のみでは、熱変色性の問題が生じやすい。これは、両者が非相溶であり、これら2成分のみを加熱下に混練しても、局部的に分散が不充分となるためであると考えられる。
 本発明では、(c)成分を加えることにより、優れた特性を有する含フッ素エラストマー組成物が得られる。これは、(c)成分により相溶性が高められるためと考えられる。特に、(a)成分と(b)成分の質量比が55/45~45/55の場合は、両共重合体が連続相になる場合がある。
 (a)成分と(b)成分が連続相になる場合、そのようなモルフォロジーが固定化されることにより、含フッ素エラストマー組成物の柔軟性や耐熱性が保持できるものと考えられる。このようなモルフォロジーの固定化によって、分散不良の発生を抑え、伸びなどの機械的特性に優れた成形体を得ることができると考えられる。
 溶融混練に用いる装置としては、二軸押出機または混練効果の高いスクリューを備えた単軸押出機が好ましく、二軸押出機がより好ましく、混練効果の高いスクリューを備えた二軸押出機が最も好ましい。混練効果の高いスクリューとしては、組成物に充分な混練効果を有し、かつ、過剰なせん断力を与えないものを選択することがより好ましい。
 せん断速度は、上述の温度範囲において、上記組成物の溶融粘度に応じて設定することが好ましい。
 溶融混練における押出成形機のスクリューの回転数は、好ましくは50~1000rpm、より好ましくは100~500rpmである。スクリューの回転数が小さすぎるとせん断により得られる組成物の分散性が低い場合があり、大きすぎると共重合体の分子鎖の切断により得られる組成物の伸びが低い場合がある。この範囲にあると、相溶化反応が最適に進み、強度と伸びとのバランスが良好である。
 相溶化の進行は、混練時間、混練温度、せん断速度等のパラメータを調整することにより制御できる。特に、(b)成分と(c)成分との溶融粘度差の条件を出来るだけ狭める、せん断速度条件にすることにより(b)成分の分散粒子がより小粒径化する。
 溶融混練は、組成物の粘度が一定になるまで実施する。組成物の溶融混練中の粘度変化は、スクリューを介してトルクメーターによる回転トルクの経時変化により観測できる。「組成物の粘度が一定になるまで」とは、回転トルクの値の変動が一定時間以上中心値から5%以内にある状態となるまで溶融混練することを意味する。
 溶融混練に要する時間は、溶融混練を行う温度、組成物の組成、スクリュー形状により変わり得るが、経済性と生産性の点で、1~30分が好ましく、1~20分がより好ましく、2~10分が最も好ましい。
 例えば、溶融粘度が2.3kPa・sの(a)成分と溶融粘度が2.4kPa・sの(b)成分とを質量比50/50として270℃で溶融混練する場合、インターナルミキサーでは、混練時間は2~7分が好ましい。また、二軸押出成形機では、1~5分の滞留時間が好ましい。滞留時間は、ラボプラストミル(東洋精機社製)などのバッチ式二軸混練機を用いて粘度の経時変化を予め測定しておき、その経時変化のデータに基づき設定できる。
 溶融混練に用いる(b)成分の形態としては、粉体が好ましい。粉体としては、粒子径の小さいものがより好ましい。粒径が小さいと、溶融混練を行う際、混練が容易となるうえ、均一な溶融混練状態を得られやすい。特に、粉体としては、溶液重合で得られたETFEスラリーを乾燥して得られた粉体が好ましい。
 また、(a)成分の形態としては、クラムが好ましい。特に、乳化重合で得られたTFE/P共重合体のラテックスを凝集して得られたTFE/P共重合体のクラムを乾燥して用いることが好ましい。
 上記溶融混練の前に、上記TFE/P共重合体のクラム及びETFEの粉体を、従来公知の装置を用いて加熱せずに混合することも好ましい。また、溶融混練時に両共重合体を押出成形機内で混合することも好ましい。
[成形体および架橋物]
 本発明の成形体は、本発明の含フッ素エラストマー組成物を成形してなる成形体である。成形方法としては、射出成形、押出成形、共押出成形、ブロー成形、圧縮成型、インフレーション成形、トランスファー成型またはカレンダー成形等が挙げられる。
 本発明の含フッ素エラストマー組成物は、原料の(a)成分よりも溶融粘度が低いことから、引取速度を大きく設定でき、成形加工性に優れる。
 本発明の架橋物は、本発明の含フッ素エラストマー組成物を架橋したものである。架橋は、成形と同時に、または成形の後に行われることが好ましい。
 本発明の成形体または架橋物は、例えば電気部品の被覆材などの電気絶縁性材料とすることができる。具体的な用途としては、後述の被覆電線における被覆材の他、電線を保護するためのシース材や、ケーブルの絶縁被覆材およびシース材などが挙げられる。
 また、架橋物は、例えばホース、チューブなどの筒状製品とすることもできる。筒状製品は、含フッ素エラストマー組成物を筒状に押出成形し、その後、架橋することにより製造される。
 本発明の架橋物は、ガスケット、パッキン、ダイヤフラムなど、自動車分野、産業ロボット分野、熱機器分野などの各種産業分野で使用される各種部品とすることもできる。
 架橋物を得る際の架橋方法は特に限定されず、例えば、α,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン、ジクミルパーオキシド等の有機過酸化物を架橋剤として使用した化学架橋法、X線、γ線、電子線、陽子線、重陽子線、α線、β線等の電離性放射線を使用した照射架橋法などが挙げられる。
 電線などの電気部品の被覆材用途においては、電離性放射線として電子線を用いる電子線架橋が好ましく、ホース、チューブなどの筒状製品用途においては、有機過酸化物を用いる化学架橋法が好ましい。
[被覆電線]
 本発明の被覆電線は、導体を本発明の含フッ素エラストマー組成物または架橋物で被覆したものである。
 導体としては、特に限定されず、銅、銅合金、アルミニウム及びアルミニウム合金、スズメッキ、銀メッキ、ニッケルメッキ等の各種メッキ線、より線、超電導体、半導体素子リード用メッキ線などが挙げられる。
 導体を本発明の架橋物で被覆した被覆電線は、導体を本発明の含フッ素エラストマー組成物で被覆した本発明の被覆電線に電子線を照射し、含フッ素エラストマー組成物を架橋することにより製造できる。
 電子線の照射線量は、50~700kGyが好ましく、80kGy~400kGyがより好ましく、100~250kGyが最も好ましい。電子線の照射時の温度は、0~300℃が好ましく、10~200℃がより好ましく、20~100℃が最も好ましい。
 本発明の含フッ素エラストマー組成物は、原料の(a)成分よりも溶融粘度が低いことから、引取速度を大きく設定でき、成形加工性に優れる。そのため、本発明の被覆電線は、高速で製造できる。また、(a)成分を含有しているので、熱可塑性である(b)成分のみを用いて得られた被覆電線に比べて、高温での連続使用が可能であり、かつ、柔軟性にも優れるため、省スペースへの配線が必要な自動車用被覆電線等への利用に好適である。
 以下、本発明について、実施例および比較例を用いて具体的に説明する。
 各例において使用した材料を下記に示す。
〔(a)成分〕
 TFE/P2元共重合体である、旭硝子社製「AFLAS 150C」を用いた。
 TFEに基づく単位とPに基づく単位とのモル比(TFE/P)は56/44、過酸化物架橋タイプ、フッ素含有量は57質量%、ムーニー粘度ML1+10(121℃)は120、ガラス転移温度(Tg)は-3℃、融点(Tm)は無し。
〔(b)成分〕
 E/TFE/(パーフルオロブチル)エチレン3元共重合体である、旭硝子社製「Fluon LM-730AP」を用いた。
 Eに基づく単位と、TFEに基づく単位と、(パーフルオロブチル)エチレンに基づく単位とのモル比(E/TFE/(パーフルオロブチル)エチレン)は、40/57/3、MFRは25g/10分、Tgは75℃、Tmは225℃。
〔(c)成分〕
 エチレン-アクリル酸メチル-メタクリル酸グリシジル共重合体である、住友化学社製「ボンドファスト 7M」を用いた。
 Eに基づく単位の含有量は67モル%、アクリル酸メチルに基づく単位の含有量は27モル%、メタクリル酸グリシジルに基づく単位の含有量は6モル%、MFRは7g/10min、Tgは-33℃、Tmは52℃。
〔(d)成分〕
 (c)成分の比較として、エチレン-酢酸ビニル共重合体である、三井デュポンポリケミカル社製「エバフレックス EV260」を用いた。(d)成分はエポキシ基を有しない。
 Eに基づく単位の含有量は72モル%、酢酸ビニルに基づく単位の含有量は28モル%、MFRは6g/10分(測定温度190℃)、Tgは-27℃、Tmは72℃。
〔充填剤〕
 シリカ、アエロジルR972。東新化成社製。
〔架橋助剤〕
 トリアリルイソシアネート。日本化成社製。
[実施例1~3、比較例1~7]
 インターナルミキサーを用いて、上記の各材料を表1、表2に示した配合部数(質量基準)で充分に混練(溶融混練)し、各例の含フッ素エラストマー組成物を得た。混練の温度および時間は250℃×10分間、ローター回転数は150rpmとした。
 ついで、得られた含フッ素エラストマー組成物を250℃×15分、10MPaの条件にてプレス成型し、厚さ約1mmのシートを作成した。ついで、各シートを照射線量120kGyで電子線架橋し、各例の架橋サンプルを作製した。
[含フッ素エラストマー組成物の観察]
 実施例1、実施例3、比較例2、および比較例3の含フッ素エラストマー組成物を、走査型電子顕微鏡(倍率2,000倍)にて観察した。結果を図1~4に示す。
 図1に示すように、実施例1では(a)成分と(b)成分が連続相を形成していることが観察された。また、図2に示すように、実施例3では、(b)成分が微細な分散相となって(a)成分中に良好に分散していることが観察された。
 これに対して、図3、図4に示すように、比較例2、4では、(b)成分が不定形かつ大きい分散相となって(a)成分中に存在し、分散性に劣ることが観察された。
[含フッ素エラストマー組成物の評価]
 熱変色性の指標となる黄色度は、JIS K7373:2006に準拠して求めた。実施例1と比較例7以外の例については、目視で実施例1及び比較例7と比較し、黄色度が10未満に相当するものを○(良好)、黄色度が10以上に相当するものを×(不良)と評価した。MFRは、メルトインデクサーを用いて、温度297℃、荷重5kg下に、直径2mm、長さ8mmのノズルから単位時間(10分間)に流出する含フッ素エラストマー組成物の質量(g)を測定し、MFRとした。
 最大引取速度は、キャピラリーレオメーターを用いて、押出温度300℃、押出速度5mm/分、キャピラリー径1mmで、引取速度を変化させて測定した。結果を表1、表2に示す。
[架橋サンプルの評価]
 各例の架橋サンプルについて、JIS K6251:1999およびJIS K6253:1999に準拠して、常態物性(初期の引張強度、引張伸び)、耐熱老化性(強度残率、伸び残率)、耐ATF性(165℃で120時間、自動変速機油に晒した際の体積変化率)を評価した。
 なお、耐熱老化性の強度残率は、250℃で96時間放置した後における引張強度の初期引張強度に対する割合であり、耐熱老化性の伸び残率は、250℃で96時間放置した後における引張伸びの初期引張伸びに対する割合である。
 また、柔軟性の指標となる曲げ弾性率を、JIS K7171:1994に準拠して評価した。結果を表1、表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、2に示すように、実施例1~3の含フッ素エラストマー組成物は、いずれも、黄色度が10未満であり熱変色しにくいものであった。これに対して、(c)成分と(d)成分を共に含まない比較例2、4、7では、黄色度が10以上であり熱変色しやすいものであった。
 また、実施例1~3の含フッ素エラストマー組成物は、いずれも、MFRが10~20g/10分の範囲にあり、加工性に優れる。これに対して、(b)成分を含まない比較例1の含フッ素エラストマー組成物は、MFRが4未満であり加工性が充分でなかった。
 また、(b)成分を含んでいても、(c)成分を過剰に含む比較例3と(c)成分に代えて(d)成分を用いた比較例6の含フッ素エラストマー組成物は、耐熱老化性強度残率が90%以下となり、熱老化性が劣る材料であった。
 また、(a)成分と(b)成分の質量比率が共に50:50である実施例1と比較例4とを対比すると、実施例1の最大引取速度の方が大きく、(c)成分の配合により加工効率が高まることが分かった。
 また、実施例1~3の架橋サンプルは、いずれも、常態物性(初期の引張強度、引張伸び)、耐熱老化性(強度残率、伸び残率)の総ての項目で良好な結果が得られたが、比較例1~7の架橋サンプルは、いずれも、常態物性(初期の引張強度、引張伸び)、耐熱老化性(強度残率、伸び残率)のいずれかの項目で問題があった。
 また、実施例1~3の架橋サンプルは、いずれも、体積変化率が小さく、耐ATF性に優れていた。これに対して、(b)成分を含まない比較例1の架橋物は、体積変化率が大きく、耐ATF性に劣っていた。また、(b)成分を含んでいても、(c)成分を過剰に含む比較例3及び比較例5と、(c)成分に代えて(d)成分を用いた比較例6の架橋サンプルも、体積変化率が大きく、耐ATF性に劣っていた。
 また、実施例1~3の架橋サンプルは、いずれも、曲げ弾性率が充分に低く、柔軟性を備えていた。
[実施例4]
 表3の(a)成分、(b)成分および(c)成分を15mm二軸押出成形機(L/D=45)に一括で投入することで2分間混練した。温度は250~300℃とし、スクリュー回転は300~400rpmとした。これをペレット化し、表1の実施例1と同じ組成の含フッ素エラストマー組成物を得た。
 得られた含フッ素エラストマー組成物を、260℃~290℃に予熱した30mm押出成形機(L/D=24)を用い、外径1.8mmの導体(すずめっき銅芯撚線)上に厚さ0.5mmで押出被覆し、未架橋の被覆電線を得た。次いで、未架橋の被覆電線の一部について120kGyの電子線を照射して、架橋させた被覆電線を得た。
[比較例8]
 表3の(a)成分と(b)成分を15mm二軸押出成形機(L/D=45)に一括で投入し、2分混練した。温度は250~300℃とし、スクリュー回転は300~400rpmとした。これをペレット化し、表1の比較例4と同じ組成の含フッ素エラストマー組成物を得た。
 得られた含フッ素エラストマー組成物を用いる以外は、実施例4と同様にして、未架橋の被覆電線及び架橋被覆電線を得た。
[比較例9]
 表3の(a)成分と(b)成分を15mm二軸押出成形機(L/D=45)に一括で投入し、2分混練した。温度は250~300℃とし、スクリュー回転は300~400rpmとした。これをペレット化し、表1の比較例7と同じ組成の含フッ素エラストマー組成物を得た。
 得られた含フッ素エラストマー組成物を用いる以外は、実施例4と同様にして、未架橋の被覆電線及び架橋被覆電線を得た。
[被覆電線の評価]
 各例で得た被覆電線6種について、ウェルドラインを起点とした被覆材の剥離現象を確認するため、高温自己径巻付け試験を行った。また、成形体である被覆電線の耐熱性を確認するため、高温クラック温度試験を行った。
(高温自己径巻付け試験)
 作製した各被覆電線を、1mごとの長さに切断したものを電線サンプルとした。各例で得た被覆電線6種の電線サンプルを各々5本ずつ準備し、190℃の恒温槽内で96時間加熱した後、常温まで冷却した。その後、それぞれの電線サンプルについて、その電線サンプル自身の一端側の周囲に、残りの部分を線と線が接触するように緊密に10回以上巻き付けて、再度200℃の恒温槽内で1時間加熱した後、常温まで冷却した。冷却後、絶縁被覆材の剥離またはクラックがないかを目視により確認した。5本全てに剥離またはクラックがないものを○(良)、1本以上に剥離またはクラックがあるものを×(不良)とした。
(高温クラック温度試験)
 作製した各被覆電線を、1mごとの長さに切断したものを電線サンプルとした。各例で得た被覆電線6種の電線サンプルを所定の加熱温度毎に各々5本ずつ準備し、所定の加熱温度(T)に保温された恒温槽内で96時間加熱した後、常温まで冷却した。加熱温度は、180~200℃の間で、5℃間隔(ΔT=20℃)で設定した。
 その後、それぞれの電線サンプルについて、その電線サンプル自身の一端側の周囲に、残りの部分を線と線が接触するように緊密に10回以上巻き付けて、再度200℃の恒温槽内で1時間加熱した後、常温まで冷却した。冷却後、絶縁被覆材の剥離またはクラックがないかを目視により確認した。
 その結果より、全クラックする最高温度(Th)とクラック百分率の総和(S)を求め、高温クラック温度(Tc)を以下の式で算出した。結果を表3に示す。
高温クラック温度(Tc)=Th+ΔT(S/100-1/2)
クラック百分率:各加熱温度(T)において剥離またはクラックが発生した本数/5×100
クラック百分率の総和(S):各加熱温度(T)におけるクラック百分率の合計
全クラックする最高温度(Th):5本の全てに剥離またはクラックが発生したときの加熱温度
Figure JPOXMLDOC01-appb-T000003
 高温自己径巻付け試験の結果、表3に示すように、実施例4の被覆電線は、電子線架橋の有無に関わらず、ウェルドラインを起点とした被覆材の剥離またはクラックが発生しなかった。一方、比較例8、9の被覆電線は、電子線架橋を行わなかった場合、ウェルドラインを起点とした部位から、被覆材の剥離またはクラックが発生した。
 また、高温クラック温度試験の結果、実施例4の被覆電線は、電子線架橋をしていなくても200℃近くの全クラックする最高温度が得られたが、比較例8、9の被覆電線は、電子線架橋を行わなかった場合の全クラックする最高温度が低く耐熱性に劣っていた。
 本発明の含フッ素エラストマー組成物は、柔軟性、自動変速機油等の潤滑油に対する耐油性に優れ、熱変色しにくく、成形性に優れる。
 また、本発明の成形体、架橋物、被覆電線は、柔軟性、自動変速機油等の潤滑油に対する耐油性に優れ、熱変色もしにくく、ウェルドライン等の成形不良に基づく欠点が少ない。
 したがって、自動車、産業ロボット、熱機器等の各種の分野で使用される電線、ケーブルの絶縁被覆材料やシース材料などとして好適である。また、その優れた性質を利用して、ホース、ガスケット、パッキン、ダイヤフラム、チューブ等の自動車用部品、産業ロボット分野、工業用品などにも利用できる。
 なお、2012年3月26日に出願された日本特許出願2012-069078号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (10)

  1.  下記のテトラフルオロエチレン/プロピレン共重合体(a)と、下記のエチレン/テトラフルオロエチレン共重合体(b)と、エポキシ基を含有するエチレン共重合体(c)とを含有し、
     前記テトラフルオロエチレン/プロピレン共重合体(a)と前記エチレン/テトラフルオロエチレン共重合体(b)との質量比[(a)/(b)]が70/30~40/60であり、前記エチレン/テトラフルオロエチレン共重合体(b)と前記エポキシ基を含有するエチレン共重合体(c)との質量比[(b)/(c)]が100/0.1~100/10であることを特徴とする含フッ素エラストマー組成物。
     テトラフルオロエチレン/プロピレン共重合体(a):テトラフルオロエチレンに基づく単位45~70モル%、プロピレンに基づく単位30~55モル%、及びその他のモノマーに基づく単位0~20モル%からなる共重合体。
     エチレン/テトラフルオロエチレン共重合体(b):テトラフルオロエチレンに基づく単位45~70モル%、エチレンに基づく単位30~55モル%、及びその他のモノマーに基づく単位0~20モル%からなる共重合体。
  2.  温度297℃で測定したメルトフローレイトが4~50g/10分である、請求項1に記載の含フッ素エラストマー組成物。
  3.  前記エチレン/テトラフルオロエチレン共重合体(b)が、テトラフルオロエチレンに基づく単位、エチレンに基づく単位、及びCFCFCFCFCF=CHもしくはCFCFCFCFCFCFCH=CHに基づく単位とからなる共重合体である、請求項1または2に記載の含フッ素エラストマー組成物。
  4.  前記エポキシ基を含有するエチレン共重合体(c)が、エチレンに基づく単位、メタクリル酸グリシジルに基づく単位、及びエチレン不飽和エステルに基づく単位とからなる共重合体である、請求項1~3のいずれかに記載の含フッ素エラストマー組成物。
  5.  請求項1~4のいずれかに記載の含フッ素エラストマー組成物の製造方法であって、
     250~320℃の加熱条件下に、前記テトラフルオロエチレン/プロピレン共重合体(a)、前記エチレン/テトラフルオロエチレン共重合体(b)、及び前記エポキシ基を含有するエチレン共重合体(c)を混練する工程を有することを特徴とする含フッ素エラストマー組成物の製造方法。
  6.  前記混練する工程が、押出成形機を用いて1~30分間混練する工程である、請求項5に記載の含フッ素エラストマー組成物の製造方法。
  7.  請求項1~4のいずれかに記載の含フッ素エラストマー組成物を成形してなる成形体。
  8.  請求項1~4のいずれかに記載の含フッ素エラストマー組成物を架橋してなる架橋物。
  9.  導体と、該導体を被覆する被覆材を備える被覆電線であって、前記被覆材が請求項1~4のいずれかに記載の含フッ素エラストマー組成物であることを特徴とする被覆電線。
  10.  導体と、該導体を被覆する被覆材を備える被覆電線であって、前記被覆材が、請求項8に記載の架橋物であることを特徴とする被覆電線。
PCT/JP2013/058633 2012-03-26 2013-03-25 含フッ素エラストマー組成物及びその製造方法、成形体、架橋物、並びに被覆電線 WO2013146704A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13770391.4A EP2832786B8 (en) 2012-03-26 2013-03-25 Fluorinated elastomer composition and method for its production, molded product, cross-linked product, and covered electric wire
IN7710DEN2014 IN2014DN07710A (ja) 2012-03-26 2013-03-25
JP2014507874A JP5979225B2 (ja) 2012-03-26 2013-03-25 含フッ素エラストマー組成物及びその製造方法、成形体、架橋物、並びに被覆電線
CN201380016817.1A CN104245826B (zh) 2012-03-26 2013-03-25 含氟弹性体组合物及其制造方法、成型体、交联物、以及包覆电线
US14/482,057 US9704616B2 (en) 2012-03-26 2014-09-10 Fluorinated elastomer composition and method for its production, molded product, cross-linked product, and covered electric wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012069078 2012-03-26
JP2012-069078 2012-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/482,057 Continuation US9704616B2 (en) 2012-03-26 2014-09-10 Fluorinated elastomer composition and method for its production, molded product, cross-linked product, and covered electric wire

Publications (1)

Publication Number Publication Date
WO2013146704A1 true WO2013146704A1 (ja) 2013-10-03

Family

ID=49259955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058633 WO2013146704A1 (ja) 2012-03-26 2013-03-25 含フッ素エラストマー組成物及びその製造方法、成形体、架橋物、並びに被覆電線

Country Status (6)

Country Link
US (1) US9704616B2 (ja)
EP (1) EP2832786B8 (ja)
JP (1) JP5979225B2 (ja)
CN (1) CN104245826B (ja)
IN (1) IN2014DN07710A (ja)
WO (1) WO2013146704A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103980605A (zh) * 2014-05-26 2014-08-13 沈群华 一种防蚁电缆料及使用该材料的电缆
WO2015045818A1 (ja) * 2013-09-25 2015-04-02 旭硝子株式会社 含フッ素エラストマー組成物、その製造方法、成形体、架橋物、及び被覆電線
WO2015046176A1 (ja) * 2013-09-25 2015-04-02 旭硝子株式会社 含フッ素エラストマー組成物、その製造方法、成形体、架橋物、及び被覆電線
JP2017019263A (ja) * 2015-07-07 2017-01-26 上海交通大学 フッ素樹脂複合体の製造方法および成形体の製造方法
JP2017033784A (ja) * 2015-08-03 2017-02-09 日立金属株式会社 絶縁電線
JP2017033783A (ja) * 2015-08-03 2017-02-09 日立金属株式会社 絶縁電線
US9728298B2 (en) * 2015-06-26 2017-08-08 Daikin America, Inc. Radiation crosslinked fluoropolymer compositions containing low level of extractable fluorides
WO2017155106A1 (ja) * 2016-03-11 2017-09-14 旭硝子株式会社 フッ素樹脂組成物、成形材料および成形体
KR20190003483A (ko) * 2016-04-28 2019-01-09 에이지씨 가부시키가이샤 피복 전선

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002887A1 (ja) * 2014-07-04 2016-01-07 旭硝子株式会社 フッ素樹脂組成物およびその製造方法、ならびに、成形物、発泡成形物および被覆電線
JP6406098B2 (ja) * 2015-03-31 2018-10-17 株式会社オートネットワーク技術研究所 絶縁電線
CN106409382A (zh) * 2015-08-03 2017-02-15 日立金属株式会社 绝缘电线
CN108698390B (zh) 2015-11-02 2020-11-17 旭硝子化学美国有限公司 包括用作热绝缘层的含氟聚合物组合物的保温管道
JP2017183166A (ja) * 2016-03-31 2017-10-05 株式会社オートネットワーク技術研究所 絶縁電線
CN105885200A (zh) * 2016-06-12 2016-08-24 安徽天元电缆有限公司 一种防霉抗腐阻燃型电缆料及其制备方法
BR112018077213A2 (pt) * 2016-06-30 2019-04-09 Dow Global Technologies Llc blindagem semicondutora livre de linhas de solda e saliências

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578539A (ja) 1991-09-24 1993-03-30 Hitachi Cable Ltd 放射線照射架橋用含ふつ素エラストマ組成物
JPH06228397A (ja) * 1993-01-29 1994-08-16 Asahi Glass Co Ltd 柔軟性を有するフッ素樹脂組成物及びその製造方法
JPH0797458A (ja) * 1993-09-29 1995-04-11 Asahi Glass Co Ltd フッ素ゴム組成物の加硫方法
JPH0931285A (ja) * 1995-07-19 1997-02-04 Hitachi Cable Ltd 熱収縮性チューブ及びその組成物
JPH10334738A (ja) 1997-05-30 1998-12-18 Hitachi Cable Ltd 含ふっ素エラストマ被覆電線・ケーブル
JP2000030535A (ja) * 1998-07-10 2000-01-28 Hitachi Cable Ltd 含ふっ素エラストマ被覆電線・ケーブル及びその製造方法
JP2010186585A (ja) 2009-02-10 2010-08-26 Hitachi Cable Ltd 含ふっ素エラストマ被覆電線

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090008236A (ko) * 2006-04-19 2009-01-21 아사히 가라스 가부시키가이샤 함불소 엘라스토머 조성물 및 함불소 고무 성형품
KR20160060649A (ko) * 2013-09-25 2016-05-30 아사히 가라스 가부시키가이샤 함불소 엘라스토머 조성물, 그 제조 방법, 성형체, 가교물, 및 피복 전선
WO2015046176A1 (ja) * 2013-09-25 2015-04-02 旭硝子株式会社 含フッ素エラストマー組成物、その製造方法、成形体、架橋物、及び被覆電線

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578539A (ja) 1991-09-24 1993-03-30 Hitachi Cable Ltd 放射線照射架橋用含ふつ素エラストマ組成物
JPH06228397A (ja) * 1993-01-29 1994-08-16 Asahi Glass Co Ltd 柔軟性を有するフッ素樹脂組成物及びその製造方法
JPH0797458A (ja) * 1993-09-29 1995-04-11 Asahi Glass Co Ltd フッ素ゴム組成物の加硫方法
JPH0931285A (ja) * 1995-07-19 1997-02-04 Hitachi Cable Ltd 熱収縮性チューブ及びその組成物
JPH10334738A (ja) 1997-05-30 1998-12-18 Hitachi Cable Ltd 含ふっ素エラストマ被覆電線・ケーブル
JP2000030535A (ja) * 1998-07-10 2000-01-28 Hitachi Cable Ltd 含ふっ素エラストマ被覆電線・ケーブル及びその製造方法
JP2010186585A (ja) 2009-02-10 2010-08-26 Hitachi Cable Ltd 含ふっ素エラストマ被覆電線

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2832786A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045818A1 (ja) * 2013-09-25 2015-04-02 旭硝子株式会社 含フッ素エラストマー組成物、その製造方法、成形体、架橋物、及び被覆電線
WO2015046176A1 (ja) * 2013-09-25 2015-04-02 旭硝子株式会社 含フッ素エラストマー組成物、その製造方法、成形体、架橋物、及び被覆電線
US9701828B2 (en) 2013-09-25 2017-07-11 Asahi Glass Company, Limited Fluorinated elastomer composition and method for its production, molded product, cross-linked product, and covered electric wire
US9711257B2 (en) 2013-09-25 2017-07-18 Asahi Glass Company, Limited Fluorinated elastomer composition and method for its production, molded product, cross-linked product, and covered electric wire
CN105419079A (zh) * 2014-05-26 2016-03-23 沈群华 一种可防蚁的电缆料、使用该材料的防蚁电缆及防蚁光缆
CN105462054A (zh) * 2014-05-26 2016-04-06 沈群华 一种防蚁光电缆护套材料及使用该材料的光电缆
CN103980605B (zh) * 2014-05-26 2016-06-01 国家电网公司 一种防蚁电缆料及使用该材料的电缆
CN103980605A (zh) * 2014-05-26 2014-08-13 沈群华 一种防蚁电缆料及使用该材料的电缆
US10008302B2 (en) * 2015-06-26 2018-06-26 Daikin America, Inc. Radiation crosslinked fluoropolymer compositions containing low level of extractable fluorides
US10431349B2 (en) 2015-06-26 2019-10-01 Daikin America, Inc. Method for making crosslinked fluoropolymer compositions containing low level of extractable fluorides
US9728298B2 (en) * 2015-06-26 2017-08-08 Daikin America, Inc. Radiation crosslinked fluoropolymer compositions containing low level of extractable fluorides
JP2017019263A (ja) * 2015-07-07 2017-01-26 上海交通大学 フッ素樹脂複合体の製造方法および成形体の製造方法
JP2017033783A (ja) * 2015-08-03 2017-02-09 日立金属株式会社 絶縁電線
JP2017033784A (ja) * 2015-08-03 2017-02-09 日立金属株式会社 絶縁電線
WO2017155106A1 (ja) * 2016-03-11 2017-09-14 旭硝子株式会社 フッ素樹脂組成物、成形材料および成形体
JPWO2017155106A1 (ja) * 2016-03-11 2019-01-10 Agc株式会社 フッ素樹脂組成物、成形材料および成形体
KR20190003483A (ko) * 2016-04-28 2019-01-09 에이지씨 가부시키가이샤 피복 전선
KR102357451B1 (ko) 2016-04-28 2022-01-28 에이지씨 가부시키가이샤 피복 전선

Also Published As

Publication number Publication date
EP2832786A1 (en) 2015-02-04
CN104245826A (zh) 2014-12-24
CN104245826B (zh) 2016-03-02
US20140377558A1 (en) 2014-12-25
JPWO2013146704A1 (ja) 2015-12-14
EP2832786B8 (en) 2017-03-01
EP2832786B1 (en) 2016-11-23
US9704616B2 (en) 2017-07-11
IN2014DN07710A (ja) 2015-05-15
JP5979225B2 (ja) 2016-08-24
EP2832786A4 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP5979225B2 (ja) 含フッ素エラストマー組成物及びその製造方法、成形体、架橋物、並びに被覆電線
JP6304258B2 (ja) 含フッ素エラストマー組成物、成形体、架橋物、及び被覆電線
JP6278282B2 (ja) 含フッ素エラストマー組成物、その製造方法、成形体、架橋物、及び被覆電線
KR20180121884A (ko) 불소 수지 조성물, 성형 재료 및 성형체
JP5299850B2 (ja) ゴム組成物及びこれを被覆した絶縁電線
US10839980B2 (en) Covered electric wire
JP6638261B2 (ja) 電線被覆材用フッ素樹脂組成物および電線
JP5857788B2 (ja) 含フッ素エラストマー組成物およびその架橋物品
WO2019130975A1 (ja) 電線、電線の製造方法及びマスターバッチ
JP7229952B2 (ja) フッ素化熱可塑性エラストマー及び加硫物を含有する組成物
JPH0116651B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507874

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013770391

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013770391

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE