WO2017050019A1 - 一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯膜的方法 - Google Patents

一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯膜的方法 Download PDF

Info

Publication number
WO2017050019A1
WO2017050019A1 PCT/CN2016/092981 CN2016092981W WO2017050019A1 WO 2017050019 A1 WO2017050019 A1 WO 2017050019A1 CN 2016092981 W CN2016092981 W CN 2016092981W WO 2017050019 A1 WO2017050019 A1 WO 2017050019A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyvinylidene fluoride
polyvinyl alcohol
pva
preparing
Prior art date
Application number
PCT/CN2016/092981
Other languages
English (en)
French (fr)
Inventor
彭娜
王怀林
云金明
曹敏
尹航
时良晶
Original Assignee
江苏凯米膜科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏凯米膜科技股份有限公司 filed Critical 江苏凯米膜科技股份有限公司
Priority to US15/572,748 priority Critical patent/US10335741B2/en
Publication of WO2017050019A1 publication Critical patent/WO2017050019A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/082Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/18Pore-control agents or pore formers

Definitions

  • the present invention relates to the field of preparation of polymer film products, and more particularly to a method for preparing a network pore polyvinylidene fluoride film based on a polyvinyl alcohol gel.
  • Polyvinylidene fluoride is a thermoplastic fluorine-containing polymer film material with excellent weather resistance and chemical stability. It is not corroded by strong oxidants such as acid and alkali at room temperature, and has high Strength and wear resistance are widely used in industrial, municipal wastewater treatment, medicine, food, gas filtration, molecular transfer technology and other industrial fields, with broad development prospects and market application value.
  • Polyvinylidene fluoride is mainly used for microfiltration and nanofiltration in the membrane field, and its preparation processes are mainly non-solvent induced phase separation (NIPS) and thermally induced phase separation (TIPS).
  • NIPS non-solvent induced phase separation
  • TIPS thermally induced phase separation
  • the method utilizes solvent/non-solvent bi-directional diffusion mass transfer between the casting solution and the surrounding environment, so that the originally uniform stable solution becomes unstable, and a phase transition occurs. Phase separation, solidification into a film.
  • Polyvinylidene fluoride membranes used in the market are mostly prepared by this method, but this method also has disadvantages, mainly in the formation of finger pores in the pore structure of the membrane, which reduces the mechanical strength and service life of the membrane.
  • the thermally induced phase separation (TIPS) method mainly causes phase separation by cooling, forming a pore structure, and the prepared membrane has the advantages of high strength and uniform pore structure of the membrane pore structure, but the method requires high equipment and energy consumption. Larger, more difficult to prepare
  • US Patent Nos. 5,022,990 and US 6,297,773 use polyvinylidene fluoride resin mixed with organic liquid and inorganic granules, and melted at a high temperature to form a hollow fiber membrane by molding, etc., to form a three-dimensional network structure, but the addition of inorganic granules It will reduce the mechanical strength of the film, and it is more difficult to extract inorganic pellets later.
  • U.S. Patent No. 6,013,688 uses acetone as a solvent to prepare a polyvinylidene fluoride film with good penetration and high porosity by a non-solvent induced phase inversion method.
  • the object of the present invention is to provide a polyvinyl alcohol (PVA) gel for preparing a network pore polyvinylidene fluoride (PVDF) film, which solves the problem that the non-solvent induced phase inversion method is easy to generate finger holes in the prior art.
  • PVA polyvinyl alcohol
  • PVDF network pore polyvinylidene fluoride
  • the technical scheme adopted by the present invention is to control the formation conditions of a PVA gel, in which a gel is not formed in a uniform casting solution due to a masking agent (hydrogen bonding formed by masking a hydroxyl group and a solvent in PVA) and high temperature.
  • a masking agent hydrogen bonding formed by masking a hydroxyl group and a solvent in PVA
  • the PVA gel is formed due to the loss and cooling of the masking agent.
  • the PVA three-dimensional network gel solidifies the lean and rich phase formed by the phase separation of the PVDF membrane, and forms an interpenetrating network with the rich phase. Structure, after the phase separation is completed, the PVA gel is removed by a post-treatment process, and finally a PVDF film having a network structure with good pore penetration is formed.
  • the main steps include:
  • a method for preparing a network pore polyvinylidene fluoride film based on a polyvinyl alcohol gel comprising:
  • PVA, a masking agent and a solvent are mixed in a certain mass ratio: 0.5-5%, 1-8%, 30-60%, stirred, and uniformly dissolved by heating at 105 ° C to obtain a PVA solution;
  • membrane A is subjected to a post-treatment process to remove the PVA gel to obtain a membrane B;
  • PVA, a masking agent and a solvent are first mixed in a certain mass ratio, stirred, and uniformly dissolved by heating at 105 ° C to obtain a PVA solution for masking hydrogen bonds formed by hydroxyl groups and solvents in PVA.
  • the effect of adding a masking agent helps to form a uniform casting solution.
  • the degree of polymerization of the PVA in the step (1) is 300-2400, and the degree of alcoholysis is OHOO ⁇ .
  • the degree of polymerization of the controlled PVA in the present invention is 300-2400, and the degree of alcoholysis is 70%-100%. Because of PVA polymerization Degree > 2400 will affect the mutual solubility of PVA and PVDF. PVA polymerization degree ⁇ 300 will result in insufficient cross-linking degree of PVA. It has been verified by many experiments that PVA of this specification is helpful to form a uniform casting solution. The surface aperture is uniform.
  • the masking agent in the step (1) is lithium perchlorate, lithium chloride, lithium nitrate, zinc chloride.
  • One or more of calcium chloride One or more of calcium chloride.
  • the solvent in the step (1) is formamide, hydrazine, hydrazine-dimethylacetamide, hydrazine, hydrazine-dimethylformamide, hydrazine-methylpyrrolidone, dimethyl sulfoxide.
  • the solvent in the step (1) is formamide, hydrazine, hydrazine-dimethylacetamide, hydrazine, hydrazine-dimethylformamide, hydrazine-methylpyrrolidone, dimethyl sulfoxide.
  • the PVDF weight average molecular weight in the step (2) is 30-800,000 Daltons, and the intrinsic viscosity is 1.65-1.90.
  • the pore forming agent in the step (2) is one of polyethylene glycol, hydroxymethyl cellulose, methyl acrylate, polyvinyl pyrrolidone, inorganic salt, glycerin, octanol Or several combinations.
  • the solvent in the step (2) is triethyl phosphate, formamide, hydrazine, hydrazine-dimethylacetamide, hydrazine, hydrazine-dimethylformamide, hydrazine-methylpyrrolidone, One or several combinations of dimethyl sulfoxide.
  • the gel bath in the step (3) is one or a combination of a pure hydrogel bath, an isopropyl alcohol/water mixed solution, and a solvent/water mixed solution.
  • the post-treatment process in the step (4) is 40-100 ° C pure water immersion treatment 8-36h or 100-5000ppm 30-60 ° C sodium hypochlorite aqueous solution soaking treatment for 2-12h, or the above A combination of the two methods. Soaking with 40-100 ° C pure water is because PVA is easy to swell in water and thus removed; it is treated with 100-5000 ppm of 30-60 ° C sodium hypochlorite aqueous solution because sodium hypochlorite can oxidize PVA, destroy its structure and remove it.
  • the sodium hypochlorite aqueous solution is a 30 ° C, 500 ppm sodium hypochlorite aqueous solution.
  • the beneficial effects of the technical solution of the present invention are:
  • the present invention provides a method for preparing a network pore polyvinylidene fluoride film based on a polyvinyl alcohol gel, and a series of structures are controllable by a simple and feasible method.
  • the PVDF film has a cross-sectional structure of an asymmetric membrane with an ultra-thin skin layer and an interpenetrating network pore sub-layer structure, and the hole-to-hole penetration is good.
  • the method is simple in operation, saves energy and reduces cost, and the prepared membrane has excellent penetrability between pores, large flux, high mechanical strength, and the like, and can be applied to municipal waste. Water treatment and industrial wastewater treatment.
  • Example 1 is a cross-sectional scanning electron microscope image of a PVDF film prepared in Example 1 of the present invention
  • Example 2 is a cross-sectional scanning electron microscope image of a PVDF film prepared in Example 2 of the present invention
  • Example 3 is a cross-sectional scanning electron microscope image of a PVDF film prepared in Example 3 of the present invention.
  • Example 4 is a cross-sectional scanning electron microscope image of a PVDF film prepared in Example 4 of the present invention.
  • Example 5 is a cross-sectional scanning electron microscope image of a PVDF film prepared in Example 5 of the present invention.
  • Example 6 is a cross-sectional scanning electron microscope image of a PVDF film prepared in Example 6 of the present invention.
  • the residence time in the air is 10S, then phase separation in a 20°C pure hydrogel bath, and solidified into a film; the obtained film is further immersed in hot water at 100 ° C for 8 hours; finally, the residual solvent is removed to obtain a network pore structure.
  • Polyvinylidene fluoride membrane, pure water flux is 374 LMH (lbar, 25 ° C).
  • the residence time is 30S, then placed at 30 ° C, phase separation in a pure hydrogel bath, and solidified into a film; the obtained film is further immersed in a 50 ° C NaCIO aqueous solution at 30 ° C for 8 h; finally immersed in pure water to remove residual solvent.
  • the polyvinylidene fluoride film of the network pore structure has a pure water flux of 458 LMH (lbar, 25 ° C).
  • the aqueous solution of NaCIO in this embodiment may also be 60 ° C, 100 ppm; or 30 ° C, 5000 ppm.
  • the soaking day of the aqueous solution of NaCIO in this embodiment may also be 2 hours.
  • the residence time is 30S, then phase separation in a 50 °C pure hydrogel bath, and solidified into a film; the obtained film is further immersed in hot water at 60 ° C for 24 h; finally, the residual solvent is removed to obtain a polyfluorinated fluorine of network pore structure.
  • the ethylene film has a pure water flux of 547 L MH (lbar, 25. C).
  • Phase separation, solidification into film the obtained film is first immersed in 40 ° C hot water for 36h, then immersed in 30 ° C, 500ppm NaClO for 12h; finally remove the residual solvent to obtain a network pore structure of polyvinylidene fluoride film, pure water flux is 682LMH (lbar, 25 ° C).
  • the alcohol/hydrogel bath in this embodiment is an isopropanol/hydrogel bath, and other alcohol/hydrogel baths suitable for use in the present invention fall within the scope of the present invention.
  • the PVA polymerization degree in the above Examples 1-6 is 300-2400, and the degree of alcoholysis is OHOO ⁇
  • the PVDF weight average molecular weight in the above Examples 1-6 was from 30 to 800,000 Daltons, and the intrinsic viscosity was from 1.65 to 1.90.
  • the masking agent is preferably lithium chloride, and other such as lithium perchlorate, lithium nitrate, zinc chloride, calcium chloride or a combination thereof are suitable for use in the present invention, and all fall within the present invention.
  • lithium chloride and other such as lithium perchlorate, lithium nitrate, zinc chloride, calcium chloride or a combination thereof are suitable for use in the present invention, and all fall within the present invention. The scope of protection.
  • the solvent in the above Examples 1-6 is preferably DMSO and DMF, and other such as formamide, hydrazine, hydrazine-dimethylacetamide, hydrazine-methylpyrrolidone, triethyl phosphate or a combination thereof are suitable for use.
  • the present invention also falls within the scope of the present invention.
  • the pore formers in the above Examples 1-6 are preferably polyvinylpyrrolidone and polyethylene glycol, and others such as hydroxymethylcellulose, methyl acrylate, inorganic salts, glycerol, and octanol are suitable for use in the present invention. Also falls within the scope of protection of the present invention.
  • the gel bath in the above embodiments 1-6 is preferably a pure hydrogel bath, an isopropanol / water mixed solution, other alcohol / 7 mixed solution, a solvent / water mixed solution is also suitable for the present invention, also falls It is within the scope of protection of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯膜的方法:(1)将PVA、掩蔽剂和溶剂按一定质量比混合,搅拌,于105℃下加热溶解均匀,得PVA溶液;(2)在上述PVA溶液中加入PVDF,成孔剂,剩余补加溶剂直至总质量分数和为1,于80℃下搅拌、加热、溶解均匀得到均一铸膜液;(3)铸膜液经过滤,脱泡,分相,固化成膜A;(4)膜A脱除PVA凝胶,得膜B;(5)膜B进行水洗去除残留溶剂,得网络孔结构的PVDF膜。该PVDF膜为超薄皮层和互穿网络孔亚层结构的非对称膜,制备出的膜在孔之间贯穿性、通量、机械强度等性能有改善。

Description

一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯膜的方法 技术领域
[0001] 本发明涉及高分子膜产品制备领域, 尤其是一种基于聚乙烯醇凝胶制备网络孔 聚偏氟乙烯膜的方法。
背景技术
[0002] 聚偏氟乙烯是一种热塑性含氟高分子聚合物膜材料, 具有极好的耐气候性和化 学稳定性, 室温下不受酸、 碱等强氧化剂和¾素腐蚀, 并具有高强度和耐磨性 , 被广泛应用于工业、 市政废水处理、 医药、 食品、 气体过滤、 分子转印技术 等工业领域, 具有广泛的发展前景和市场应用价值。
[0003] 聚偏氟乙烯在膜领域主要用于微滤和纳滤, 其制备工艺主要是非溶剂致相分离 法 (NIPS) 和热致相分离法 (TIPS) 。 目前, 工业上应用较多的为 NIPS法, 该 法利用铸膜液与周围环境进行溶剂 /非溶剂的双向扩散传质, 使得原本均一稳定 的溶液变成不稳定状态, 从而发生相转变, 最终分相、 固化成膜。 市场上使用 的聚偏氟乙烯膜大多采用此法制备, 但是该法也有缺点, 主要是膜孔结构中常 有指状孔产生, 降低了膜的机械强度和使用寿命。 而热致相分离法 (TIPS) 法 主要通过降温造成相分离, 形成孔结构, 制备的膜具有强度高, 膜孔结构为均 一网络孔结构等优点, 但是该法对设备要求较高, 能耗较大, 制备方法较困难
[0004] 美国专利 US5022990和 US6299773采用聚偏氟乙烯树脂与有机液体和无机粒料 混合, 高温下熔融后采用模型模塑形成中空纤维膜等, 可形成三维网状结构, 但是无机粒料的加入会降低膜的机械强度, 而且后期萃取无机粒料的难度较大 。 美国专利 US6013688采用丙酮作为溶剂, 通过非溶剂诱导相转化法制备出贯通 性良好, 高孔隙率的聚偏氟乙烯膜, 但是该技术需要在丙酮沸点附近才能溶解 聚偏氟乙烯, 而丙酮为易挥发的有毒物质, 工业上实际操作困难较大。 中国专 禾 1JCN104607063A利用聚乙烯醇的强亲水性来改性聚偏氟乙烯膜, 采用共混聚乙 烯醇并交联固定聚乙烯醇在膜内, 与主体聚偏氟乙烯形成网络结构, 保留其永 久亲水性能。
技术问题
[0005] 本发明的目的是提供聚乙烯醇 (PVA) 凝胶制备网络孔聚偏氟乙烯 (PVDF) 膜的方法, 解决了现有技术中存在非溶剂诱导相转化法易生成指状孔, 降低膜 机械强度, 而热致相分离法对设备要求高, 能耗大等问题。
问题的解决方案
技术解决方案
[0006] 本发明所采用的技术方案是控制 PVA凝胶的形成条件, 在均一铸膜液中由于掩 蔽剂 (掩蔽 PVA中的羟基和溶剂形成的氢键作用) 和高温作用未形成凝胶, 而 在相转化分相过程中, 由于掩蔽剂的流失和降温会形成 PVA凝胶, 该 PVA三维 网状凝胶会固化 PVDF膜分相形成的贫、 富相, 并与富相形成互穿网络结构, 待 分相完成后, 再通过后处理工艺脱除 PVA凝胶, 最终形成孔贯通性较好的网络 状结构的 PVDF膜。 主要步骤包括:
[0007] 一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯膜的方法, 主要包括:
[0008] (1) 将 PVA、 掩蔽剂和溶剂按一定质量比: 0.5-5%, 1-8% , 30-60%混合, 搅 拌, 于 105°C下加热溶解均匀, 得 PVA溶液;
[0009] (2) 在上述 PVA溶液中加入 10-30%的 PVDF, 1-10%的成孔剂, 剩余补加溶剂 直至总质量分数和为 1, 于 80°C下搅拌、 加热、 溶解均匀得到均一铸膜液;
[0010] (3) 铸膜液经过滤, 脱泡, 在温度 20-40°C, 湿度 40-70%的制膜密闭环境中, 涂覆在光滑洁净玻璃板上, 涂膜厚度为 250μηι, 在空气中停留 10-45S后置于 20-5 0°C的凝胶浴中分相, 固化成膜 A;
[0011] (4) 膜 A进行后处理工艺脱除 PVA凝胶, 得到膜 B;
[0012] (5) 膜 B进行水洗去除残留溶剂, 得到网络孔结构的 PVDF膜。
[0013] 本发明中首先将 PVA、 掩蔽剂和溶剂按一定质量比混合, 搅拌, 于 105°C下加 热溶解均匀, 得 PVA溶液, 其目的是为了掩蔽 PVA中的羟基和溶剂形成的氢键 作用, 添加掩蔽剂后有助于形成均一铸膜液。
[0014] 进一步的, 所述步骤 (1) 中的 PVA聚合度为 300-2400, 醇解度为 OHOO^ 本发明中控制 PVA的聚合度为 300-2400, 醇解度为 70%- 100%, 是因为 PVA聚合 度〉 2400会影响 PVA和 PVDF的互溶性, PVA聚合度 < 300会造成 PVA交联度不 够, 经多次实验验证采用此规格的 PVA, 有助于形成均一铸膜液, 制得的膜的 表面孔径均匀。
[0015] 进一步的, 所述步骤 (1) 中的掩蔽剂为高氯酸锂、 氯化锂、 硝酸锂、 氯化锌
、 氯化钙中的一种或几种。
[0016] 进一步的, 所述步骤 (1) 中的溶剂为甲酰胺、 Ν,Ν-二甲基乙酰胺、 Ν,Ν-二甲 基甲酰胺、 Ν-甲基吡咯烷酮、 二甲基亚砜中的一种或几种组合。
[0017] 进一步的, 所述步骤 (2) 中的 PVDF重均分子量为 30-80万道尔顿, 特性粘度 为 1.65-1.90。
[0018] 进一步的, 所述步骤 (2) 中的成孔剂为聚乙二醇、 羟甲基纤维素、 丙烯酸甲 酯、 聚乙烯吡咯烷酮、 无机盐、 丙三醇、 辛醇中的一种或几种组合。
[0019] 进一步的, 所述步骤 (2) 中的溶剂为磷酸三乙酯、 甲酰胺、 Ν,Ν-二甲基乙酰 胺、 Ν,Ν-二甲基甲酰胺、 Ν-甲基吡咯烷酮、 二甲基亚砜中的一种或几种组合。
[0020] 进一步的, 所述步骤 (3) 中的凝胶浴为纯水凝胶浴, 异丙醇 /水混合溶液, 溶 剂 /水混合溶液中的一种或几种组合。
[0021] 进一步的, 所述步骤 (4) 中的后处理工艺为 40-100°C纯水浸泡处理 8-36h或 100 -5000ppm的 30-60°C次氯酸钠水溶液浸泡处理 2-12h, 或者上述两种方法的结合。 采用 40-100°C纯水浸泡处理是因为 PVA易在水中溶胀, 从而去除; 采用 100-5000 ppm的 30-60°C次氯酸钠水溶液处理是因为次氯酸钠能氧化 PVA, 破坏其结构, 从而去除。
[0022] 进一步的, 所述次氯酸钠水溶液采用 30°C, 500ppm的次氯酸钠水溶液。
发明的有益效果
有益效果
[0023] 采用本发明的技术方案的有益效果是: 本发明提供了一种基于聚乙烯醇凝胶制 备网络孔聚偏氟乙烯膜的方法, 通过简单可行的方法, 制备出一系列结构可控 的 PVDF膜, 该 PVDF膜的断面结构为具超薄皮层和互穿网络孔亚层结构的非对 称膜, 孔与孔之间贯通性良好。 该法操作简单, 节约能耗, 降低成本, 制备出 的膜具有孔之间贯穿性好, 通量大, 机械强度高等优异性能, 可应用于市政废 水处理及工业废水处理等领域。
对附图的简要说明
附图说明
[0024] 图 1为本发明实施例 1中制备的 PVDF膜的断面扫描电镜图片;
[0025] 图 2为本发明实施例 2中制备的 PVDF膜的断面扫描电镜图片;
[0026] 图 3为本发明实施例 3中制备的 PVDF膜的断面扫描电镜图片;
[0027] 图 4为本发明实施例 4中制备的 PVDF膜的断面扫描电镜图片;
[0028] 图 5为本发明实施例 5中制备的 PVDF膜的断面扫描电镜图片;
[0029] 图 6为本发明实施例 6中制备的 PVDF膜的断面扫描电镜图片。
具体实施方式
[0030] 下面结合具体实施例对本发明做进一步说明。
[0031] 实施例 1
[0032] 首先将 2gPVA溶于 18gDMSO有机溶剂中, 于 105°C下搅拌, 溶解均匀, 再加入 54gDMF, 8g氯化锂, 继续搅拌, 直至溶解均匀, 冷却至常温, 再加入 15gPVDF , 3g聚乙二醇成孔剂, 于 80°C下搅拌 12h, 溶解均匀, 静置脱泡; 在光滑洁净的 玻璃板上, 用厚度 250um的刮刀在 30°C, 60%湿度的空气环境中涂膜, 控制其在 空气中的停留吋间为 10S, 然后置于 30°C纯水凝胶浴中分相, 固化成膜; 所得膜 再经 70°C热水浸泡 24h; 最后去除残余溶剂, 得到网络孔结构的聚偏氟乙烯膜, 网络贯穿性较好, 纯水通量为 915LMH(lbar,25°C)。
[0033] 实施例 2
[0034] 首先将 0.5gPVA溶于 18gDMSO有机溶剂中, 于 105°C下搅拌, 溶解均匀, 再加 入 54gDMF, lg氯化锂, 继续搅拌, 直至溶解均匀, 冷却至常温, 再加入 lOgPV DF, lOgPVP成孔剂, 6.5gDMF, 于 80°C下搅拌 12h, 溶解均匀, 静置脱泡; 在 光滑洁净的玻璃板上, 用厚度 250um的刮刀在 30°C, 60%湿度的空气环境中涂膜 , 控制其在空气中的停留吋间为 10S, 然后置于 30°C纯水凝胶浴中分相, 固化成 膜; 所得膜再经 70°C热水浸泡 24h; 最后去除残余溶剂, 得到网络孔结构的聚偏 氟乙烯膜, 纯水通量为 1007LMH(lbar,25°C)。 [0035] 实施例 3
[0036] 首先将 5gPVA溶于 33.5gDMSO有机溶剂中, 于 105°C下搅拌, 溶解均匀, 再加 入 33.5gDMF, 5g氯化锂, 继续搅拌, 直至溶解均匀, 再加入 20g的 PVDF, 3gPV P成孔剂, 于 80°C下搅拌 12h, 溶解均匀, 静置脱泡; 在光滑洁净的玻璃板上, 用厚度 250um的刮刀在 20°C, 40%湿度的空气环境中涂膜, 控制其在空气中的停 留吋间为 10S, 然后置于 20°C纯水凝胶浴中分相, 固化成膜; 所得膜再经 100°C 热水浸泡 8h; 最后去除残余溶剂, 得到网络孔结构的聚偏氟乙烯膜, 纯水通量 为 374LMH(lbar,25。C)。
[0037] 实施例 4
[0038] 首先将 2gPVA溶于 22gDMSO有机溶剂中, 于 105°C下搅拌, 溶解均匀, 再加入 43gDMF, 2g氯化锂, 继续搅拌, 直至溶解均匀, 再加入 30g的 PVDF, lgPVP成 孔剂, 于 80°C下搅拌 12h, 溶解均匀, 静置脱泡; 在光滑洁净的玻璃板上, 用厚 度 250um的刮刀在 30°C, 70%湿度的空气环境中涂膜, 控制其在空气中的停留吋 间为 30S, 然后置于 30°C, 纯水凝胶浴中分相, 固化成膜; 所得膜再经 30°C, 50 OppmNaCIO水溶液浸泡 8h; 最后纯水浸泡, 去除残余溶剂后得到网络孔结构的 聚偏氟乙烯膜, 纯水通量为 458LMH( lbar,25°C)。
[0039] 本实施例中 NaCIO水溶液还可以是 60°C, lOOppm; 或者 30°C, 5000ppm。
[0040] 本实施例中 NaCIO水溶液的浸泡吋间为还可以为 2h。
[0041] 实施例 5
[0042] 首先将 2gPVA溶于 31gDMSO有机溶剂中, 于 105°C下搅拌, 溶解均匀, 再加入 47gDMF, 2g氯化锂, 继续搅拌, 直至溶解均匀, 再加入 15g的 PVDF, 3gPVP成 孔剂, 于 80°C下搅拌 12h, 溶解均匀, 静置脱泡; 在光滑洁净的玻璃板上, 用厚 度 250um的刮刀在 30°C, 40%湿度的空气环境中涂膜, 控制其在空气中的停留吋 间为 30S, 然后置于 50°C纯水凝胶浴中分相, 固化成膜; 所得膜再经 60°C热水浸 泡 24h; 最后去除残余溶剂, 得到网络孔结构的聚偏氟乙烯膜, 纯水通量为 547L MH(lbar,25。C)。
[0043] 实施例 6
[0044] 首先将 2gPVA溶于 31gDMSO有机溶剂中, 于 105°C下搅拌, 溶解均匀, 再加入 47gDMF, 2g氯化锂, 继续搅拌, 直至溶解均匀, 再加入 15g的 PVDF, 3gPVP成 孔剂, 于 80°C下搅拌 12h, 溶解均匀, 静置脱泡; 在光滑洁净的玻璃板上, 用厚 度 250um的刮刀在 40°C, 50%湿度的空气环境中涂膜, 控制其在空气中的停留吋 间为 45S, 然后置于 50°C, 40%的异丙醇 /水凝胶浴中分相, 固化成膜; 所得膜先 用 40°C热水浸泡 36h, 再用 30°C, 500ppmNaClO浸泡 12h; 最后去除残余溶剂, 得到网络孔结构的聚偏氟乙烯膜, 纯水通量为 682LMH(lbar,25°C)。
[0045] 本实施例中醇 /水凝胶浴选用异丙醇 /水凝胶浴, 其他适用于本发明的醇 /水凝胶 浴均落入本发明的保护范围。
[0046] 上述实施例 1-6中 PVA聚合度为 300-2400, 醇解度为 OHOO^
[0047] 上述实施例 1-6中 PVDF重均分子量为 30-80万道尔顿, 特性粘度为 1.65-1.90。
[0048] 上述实施例 1-6中掩蔽剂采用优选的氯化锂, 其他如高氯酸锂、 硝酸锂、 氯化 锌、 氯化钙或其结合均适用于本发明, 均落入本发明的保护范围。
[0049] 上述实施例 1-6中的溶剂优选为 DMSO和 DMF, 其他如甲酰胺、 Ν,Ν-二甲基乙 酰胺、 Ν-甲基吡咯烷酮、 磷酸三乙酯或其组合物均适用于本发明, 也均落入本 发明的保护范围。
[0050] 上述实施例 1-6中成孔剂优选为聚乙烯吡咯烷酮和聚乙二醇, 其他如羟甲基纤 维素、 丙烯酸甲酯、 无机盐、 丙三醇、 辛醇均适用于本发明, 也均落入本发明 的保护范围。
[0051] 上述实施例 1-6中的凝胶浴优选为纯水凝胶浴、 异丙醇 /水混合溶液, 其他醇 /7 混合溶液, 溶剂 /水混合溶液也适用于本发明, 也落入本发明的保护范围。
[0052] 尽管上述实施例已对本发明的技术方案进行了详细地描述, 但是本发明的技术 方案并不限于以上实施例, 在不脱离本发明的思想和宗旨的情况下, 对本发明 的技术方案所做的任何改动都将落入本发明的权利要求书所限定的范围。

Claims

权利要求书
[权利要求 1] 一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯膜的方法, 主要包括:
(1) 将 PVA、 掩蔽剂和溶剂按一定质量比: 0.5-5% , 1-8% , 30-60% 混合, 搅拌, 于 105°C下加热溶解均匀, 得 PVA溶液;
(2) 在上述 PVA溶液中加入 10-30%的 PVDF, 1-10%的成孔剂, 剩余 补加溶剂直至总质量分数和为 1, 于 80°C下搅拌、 加热、 溶解均匀得 到均一铸膜液;
(3) 铸膜液经过滤, 脱泡, 在温度 20-40°C, 湿度 40-70%的制膜密闭 环境中, 涂覆在光滑洁净玻璃板上, 涂膜厚度为 250μηι, 在空气中停 留 10-45S后置于 20-50°C的凝胶浴中分相, 固化成膜 A;
(4) 膜 A进行后处理工艺脱除 PVA凝胶, 得到膜 B;
(5) 膜 B进行水洗去除残留溶剂, 得到网络孔结构的 PVDF膜。
[权利要求 2] 根据权利要求 1所述的一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯 膜的方法, 其特征在于: 所述步骤 (1) 中的 PVA聚合度为 300-2400 , 醇解度为 OHOO^
[权利要求 3] 根据权利要求 1所述的一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯 膜的方法, 其特征在于: 所述步骤 (1) 中的掩蔽剂为高氯酸锂、 氯 化锂、 硝酸锂、 氯化锌、 氯化钙中的一种或几种。
[权利要求 4] 根据权利要求 1所述的一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯 膜的方法, 其特征在于: 所述步骤 (1) 中的溶剂为甲酰胺、 Ν,Ν-二 甲基乙酰胺、 Ν,Ν-二甲基甲酰胺、 Ν-甲基吡咯烷酮、 二甲基亚砜中的 一种或几种组合。
[权利要求 5] 根据权利要求 1所述的一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯 膜的方法, 其特征在于: 所述步骤 (2) 中的 PVDF重均分子量为 30-8 0万道尔顿, 特性粘度为 1.65-1.90。
[权利要求 6] 根据权利要求 1所述的一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯 膜的方法, 其特征在于: 所述步骤 (2) 中的成孔剂为聚乙二醇、 羟 甲基纤维素、 丙烯酸甲酯、 聚乙烯吡咯烷酮、 无机盐、 丙三醇、 辛醇 中的一种或几种组合。
[权利要求 7] 根据权利要求 1所述的一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯 膜的方法, 其特征在于: 所述步骤 (2) 中的溶剂为磷酸三乙酯、 甲 酰胺、 Ν,Ν-二甲基乙酰胺、 Ν,Ν-二甲基甲酰胺、 Ν-甲基吡咯烷酮、 二甲基亚砜中的一种或几种组合。
[权利要求 8] 根据权利要求 1所述的一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯 膜的方法, 其特征在于: 所述步骤 (3) 中的凝胶浴为纯水凝胶浴, 异丙醇 /水混合溶液, 溶剂 /水混合溶液中的一种或几种组合。
[权利要求 9] 根据权利要求 1所述的一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯 膜的方法, 其特征在于: 所述步骤 (4) 中的后处理工艺为 40-100°C 纯水浸泡处理8-361或100-500(^201的30-60(¾:次氯酸钠水溶液处理2-12 h, 或者上述两种方法的结合。
[权利要求 10] 根据权利要求 9所述的一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯 膜的方法, 其特征在于: 所述次氯酸钠水溶液采用 30°C, 500ppm的 次氯酸钠水溶液。
PCT/CN2016/092981 2015-09-21 2016-08-02 一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯膜的方法 WO2017050019A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/572,748 US10335741B2 (en) 2015-09-21 2016-08-02 Method for preparing the network-pore polyvinylidene fluoride membrane based on polyvinyl alcohol gel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510605509.3A CN105126648B (zh) 2015-09-21 2015-09-21 一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯膜的方法
CN201510605509.3 2015-09-21

Publications (1)

Publication Number Publication Date
WO2017050019A1 true WO2017050019A1 (zh) 2017-03-30

Family

ID=54712423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092981 WO2017050019A1 (zh) 2015-09-21 2016-08-02 一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯膜的方法

Country Status (3)

Country Link
US (1) US10335741B2 (zh)
CN (1) CN105126648B (zh)
WO (1) WO2017050019A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108285202A (zh) * 2018-04-10 2018-07-17 天津科技大学 一种利用包埋微生物凝胶的平板膜快速挂膜的方法及专用涂布装置
CN114053883A (zh) * 2021-09-10 2022-02-18 北京赛诺膜技术有限公司 一种聚偏氟乙烯中空纤维膜及其制备方法
CN115025636A (zh) * 2021-03-05 2022-09-09 中国石油化工股份有限公司 一种具有双连续高度贯通孔结构的聚合物超滤膜及其制备方法和应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105126648B (zh) * 2015-09-21 2018-03-09 江苏凯米膜科技股份有限公司 一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯膜的方法
CN106810704B (zh) * 2017-02-08 2019-08-02 郑州大学 聚乙烯醇水凝胶及其制备方法和应用
US20200139309A1 (en) * 2018-11-01 2020-05-07 Entegris, Inc. Porous polyethylene filter membrane with asymmetric pore structure, and related filters and methods
CN110479117A (zh) * 2019-07-31 2019-11-22 水发海若环境技术有限公司 一种亲水性大通量中空纤维超滤膜的制备方法
CN112397600A (zh) * 2019-08-16 2021-02-23 福建金石能源有限公司 一种高防水的柔性太阳能电池的封装材料及其制备方法
CN112090296A (zh) * 2020-08-31 2020-12-18 济南大学 基于F-TiO2/Fe-g-C3N4的自清洁平板式PVDF超滤膜及制备方法
CN113368703B (zh) * 2021-06-23 2022-05-31 安徽普朗膜技术有限公司 一种致孔剂制备聚芳醚酮有机管式膜的方法
CN114242956B (zh) * 2021-11-22 2023-05-23 华南理工大学 一种聚合物负极保护层及其制备方法与应用
CN113912886A (zh) * 2021-12-08 2022-01-11 武汉理工大学 一种纤维素/聚偏氟乙烯高介电复合膜的制备方法
CN115970508B (zh) * 2023-01-03 2024-04-19 浙江大学 一种具有凝胶网络的纳米纤维膜、制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5022990A (en) * 1989-01-12 1991-06-11 Asahi Kasei Kogyo Kabushiki Kaisha Polyvinylidene fluoride porous membrane and a method for producing the same
CN101559333A (zh) * 2009-06-03 2009-10-21 北方利德(北京)化工科技有限责任公司 一种聚乙烯醇缩醛/聚偏氟乙烯共混中空纤维微孔膜及其制备方法
CN102658037A (zh) * 2012-04-26 2012-09-12 青岛科技大学 一种聚偏氟乙烯平板微孔膜的制备方法
CN102764598A (zh) * 2012-07-17 2012-11-07 西安建筑科技大学 一种分离色氨酸异构体的分子印迹复合膜的制备方法
CN102872730A (zh) * 2012-09-26 2013-01-16 宁波大学 一种制备聚偏氟乙烯合金膜的方法
CN104607063A (zh) * 2014-08-18 2015-05-13 济南大学 一种pvdf永久性亲水化超滤膜及其改性方法
CN105126648A (zh) * 2015-09-21 2015-12-09 江苏凯米膜科技股份有限公司 一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯膜的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013688A (en) 1992-05-06 2000-01-11 Corning Costar Corporation PVDF microporous membrane and method
WO1999067013A1 (fr) 1996-12-10 1999-12-29 Asahi Kasei Kogyo Kabushiki Kaisha Film poreux d'une resine de fluorure de polyvinylidene et son procede de production
CN101269302B (zh) * 2008-05-06 2011-08-31 南京奥特高科技有限公司 非结晶型永久亲水聚偏氟乙烯膜材料及其制备方法
CN102764597B (zh) * 2012-08-01 2014-07-16 清华大学 一种制备聚偏氟乙烯超滤膜的方法
CN104043344A (zh) * 2013-03-15 2014-09-17 中化蓝天集团有限公司 一种聚偏氟乙烯中空纤维微孔膜及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5022990A (en) * 1989-01-12 1991-06-11 Asahi Kasei Kogyo Kabushiki Kaisha Polyvinylidene fluoride porous membrane and a method for producing the same
CN101559333A (zh) * 2009-06-03 2009-10-21 北方利德(北京)化工科技有限责任公司 一种聚乙烯醇缩醛/聚偏氟乙烯共混中空纤维微孔膜及其制备方法
CN102658037A (zh) * 2012-04-26 2012-09-12 青岛科技大学 一种聚偏氟乙烯平板微孔膜的制备方法
CN102764598A (zh) * 2012-07-17 2012-11-07 西安建筑科技大学 一种分离色氨酸异构体的分子印迹复合膜的制备方法
CN102872730A (zh) * 2012-09-26 2013-01-16 宁波大学 一种制备聚偏氟乙烯合金膜的方法
CN104607063A (zh) * 2014-08-18 2015-05-13 济南大学 一种pvdf永久性亲水化超滤膜及其改性方法
CN105126648A (zh) * 2015-09-21 2015-12-09 江苏凯米膜科技股份有限公司 一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯膜的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108285202A (zh) * 2018-04-10 2018-07-17 天津科技大学 一种利用包埋微生物凝胶的平板膜快速挂膜的方法及专用涂布装置
CN108285202B (zh) * 2018-04-10 2023-09-12 天津科技大学 一种利用包埋微生物凝胶的平板膜快速挂膜的方法及专用涂布装置
CN115025636A (zh) * 2021-03-05 2022-09-09 中国石油化工股份有限公司 一种具有双连续高度贯通孔结构的聚合物超滤膜及其制备方法和应用
CN115025636B (zh) * 2021-03-05 2023-08-15 中国石油化工股份有限公司 一种具有双连续高度贯通孔结构的聚合物超滤膜及其制备方法和应用
CN114053883A (zh) * 2021-09-10 2022-02-18 北京赛诺膜技术有限公司 一种聚偏氟乙烯中空纤维膜及其制备方法
CN114053883B (zh) * 2021-09-10 2022-11-29 北京赛诺膜技术有限公司 一种聚偏氟乙烯中空纤维膜及其制备方法

Also Published As

Publication number Publication date
CN105126648B (zh) 2018-03-09
US10335741B2 (en) 2019-07-02
CN105126648A (zh) 2015-12-09
US20180154314A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2017050019A1 (zh) 一种基于聚乙烯醇凝胶制备网络孔聚偏氟乙烯膜的方法
KR101539608B1 (ko) 폴리비닐리덴플루오라이드 중공사 분리막과 그 제조방법
JP3171947B2 (ja) ポリアクリロニトリル共重合体選択透過膜およびその製造方法
CN107081077A (zh) 一种荷正电复合纳滤膜及其制备方法
CN105289319B (zh) 一种聚合物中空纤维膜的制备方法
CN106474942B (zh) 中空纤维超滤膜的制备方法
KR102054838B1 (ko) 내오염성이 우수한 셀룰로스계 수처리 분리막 및 이의 제조 방법
CN102210979A (zh) 荷正电型聚氯乙烯中空纤维纳滤膜及其制备方法
JP6343470B2 (ja) Nf膜の製造方法
CN106731901A (zh) 聚酯纤维编织管增强型复合中空纤维正渗透膜的制备方法
CN112370978A (zh) 一种聚砜超滤膜及其制备方法
CN103230747B (zh) 一种水处理用复合膜的制备方法
CN104248915B (zh) 一种提高亲水性的增强型平板复合微孔膜的制备方法
CN107638813B (zh) 一种中空纤维耐溶剂纳滤膜的制备方法及其应用
CN112755812A (zh) 一种具有中间层的高通量交联复合纳滤膜及其制备方法
JP4057217B2 (ja) 耐溶剤性微孔質ポリベンゾイミダゾール薄膜の製造方法
CN106139912A (zh) 一种内支撑增强型聚偏氟乙烯中空纤维膜的制备方法
KR20120059755A (ko) 셀룰로오스계 수지를 이용한 수처리용 중공사막의 제조방법
CN110170250A (zh) 一种可降解聚乳酸/醋酸纤维素超滤膜及其制备方法
KR101806944B1 (ko) 중공사막의 제조방법
CN112808019A (zh) 一种使用绿色溶剂热致相法制备聚芳醚酮管式膜的方法
CN115463552B (zh) 一种抗污染耐氯反渗透膜及其制备方法和应用
KR20180015797A (ko) 폴리설폰계 중공사막 제조용 내부 응고액 및 이를 이용한 폴리설폰계 중공사막의 제조 방법
CN109621741B (zh) 一种正渗透复合膜的制备方法
JP2013031832A (ja) 多孔質膜の製造方法および精密ろ過膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847901

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15572748

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16847901

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16847901

Country of ref document: EP

Kind code of ref document: A1