WO2017046946A1 - 非接触給電装置 - Google Patents

非接触給電装置 Download PDF

Info

Publication number
WO2017046946A1
WO2017046946A1 PCT/JP2015/076694 JP2015076694W WO2017046946A1 WO 2017046946 A1 WO2017046946 A1 WO 2017046946A1 JP 2015076694 W JP2015076694 W JP 2015076694W WO 2017046946 A1 WO2017046946 A1 WO 2017046946A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power receiving
elements
moving direction
moving body
Prior art date
Application number
PCT/JP2015/076694
Other languages
English (en)
French (fr)
Inventor
壮志 野村
慎二 瀧川
将志 沖
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to EP15904132.6A priority Critical patent/EP3352328B1/en
Priority to PCT/JP2015/076694 priority patent/WO2017046946A1/ja
Priority to JP2017540436A priority patent/JP6616422B2/ja
Priority to US15/753,204 priority patent/US11005295B2/en
Priority to CN201580083176.0A priority patent/CN108028549B/zh
Publication of WO2017046946A1 publication Critical patent/WO2017046946A1/ja
Priority to US16/897,898 priority patent/US11223238B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/36Current collectors for power supply lines of electrically-propelled vehicles with means for collecting current simultaneously from more than one conductor, e.g. from more than one phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/42Current collectors for power supply lines of electrically-propelled vehicles for collecting current from individual contact pieces connected to the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • B60L53/39Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer with position-responsive activation of primary coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G54/00Non-mechanical conveyors not otherwise provided for
    • B65G54/02Non-mechanical conveyors not otherwise provided for electrostatic, electric, or magnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a non-contact power feeding device that feeds power from a fixed part to a moving body in a non-contact manner, and more particularly to stabilization of performance of non-contact power feeding.
  • solder printing machine There are a solder printing machine, a component mounting machine, a reflow machine, a board inspection machine, etc. as a board production machine that produces a board on which a large number of parts are mounted. It has become common to configure a substrate production line by connecting these facilities. Furthermore, there are many cases where a substrate production line is configured by arranging modular board production machines of the same size. By using a modularized board production machine, it is easy to change the setup when changing the line or adding a longer line, and a flexible board production line is realized.
  • a non-contact power feeding device is considered as a power feeding means to the moving body.
  • the application of the non-contact power feeding device is not limited to the board production line, but covers a wide range of fields such as an assembly line and a processing line for producing other products, and power feeding during running of an electric vehicle.
  • Patent Documents 1 and 2 disclose technical examples related to this type of non-contact power feeding device.
  • the mobile power supply type non-contact power supply device of Patent Document 1 is a device that supplies power in a non-contact manner to a power receiving coil that moves from a stationary power transmission coil.
  • the power transmission coil has a long loop shape along the moving direction, and is formed with multiple units that are crossed in the middle and the direction of the magnetic field is alternately reversed.
  • the power receiving coils are arranged at intervals. Has been. Further, it is preferable that the size C along the moving direction of the two power receiving coils and the distance d between them satisfy the inequality d ⁇ C / 2. Furthermore, it is preferable that the size L in the moving direction of the power transmission coil unit satisfies the inequality L ⁇ C + d. Thus, the occurrence of pulsation in which the received power becomes zero instantaneously and periodically is reliably prevented.
  • the traveling non-contact power feeding system of Patent Document 2 is a system that feeds AC power in a non-contact manner from a plurality of primary side power feeding transformers on the ground side to a secondary side power feeding transformer of a moving body.
  • Each of the secondary-side power supply transformers is composed of double-sided coils.
  • the dimension of the magnetic pole of a primary side feed transformer is set to D, the center-to-center distance of the adjacent primary side feed transformer does not exceed 3D.
  • a mode is disclosed in which a plurality of primary side power supply transformers are connected in series to a high frequency power source. According to this, even if the primary-side power supply transformer is arranged in a stepping stone shape, the power supply to the secondary-side power supply transformer is not interrupted.
  • Patent Document 2 discloses that a storage element (battery) and a charging circuit are used. This means an increase in the weight of the moving body, and the power required for movement increases. Further, when a plurality of primary-side power supply transformers are connected in series to a high-frequency power source, the high-frequency power source becomes larger and its loss increases.
  • the present invention has been made in view of the above-described problems of the background art, and should solve the problem of providing a non-contact power supply apparatus that can suppress pulsation of alternating-current power to be received and can always perform stable non-contact power supply. Let it be an issue.
  • the non-contact power feeding device of the present invention that solves the above problems includes a plurality of power feeding elements that are spaced apart from each other along a moving direction set in a fixed portion, and an AC power source that supplies AC power to each of the power feeding elements And a power receiving element that is provided on a moving body that moves along the moving direction and that is electrically coupled to the power feeding elements arranged to face each other and receives AC power in a non-contact manner, and AC power received by the power receiving element
  • a non-contact power feeding device comprising: a power receiving circuit that converts and generates a driving voltage and outputs the driving voltage to an electric load provided in the moving body, wherein the power receiving element extends along the moving direction of the moving body.
  • a plurality of the power feeding elements are arranged apart from each other, the length of the power feeding element in the moving direction is LT, the distance between the power feeding elements is DT, and the length of the power receiving element in the moving direction is LR.
  • the power receiving elements When the separation distance between DR, relationship DT ⁇ DR, and (2 ⁇ LR + DR) relationship ⁇ LT holds.
  • the non-contact power feeding device of the present invention since the above-described two inequalities are established, at least one power receiving element always faces the power feeding element regardless of the position of the moving body.
  • “Directly facing” means a positional relationship in which the entire length LR in the moving direction of the power receiving element faces within the range of the length LT in the moving direction of the power feeding element.
  • the power receiving element directly facing the power feeding element is sequentially switched.
  • the positions of the other power receiving elements may change in relation to the combination of the lengths LT and LR and the separation distances DT and DR, and the position of the moving body.
  • the other power receiving element faces the same power feeding element as the one power receiving element, faces the other power feeding element, faces across the two power feeding elements, or faces any one of the power feeding elements. They may face each other or may not face any feeding element.
  • the term “opposite” means a positional relationship in which a part of the length LR in the moving direction of the power receiving element faces within the range of the length LT in the moving direction of the power feeding element. Therefore, regardless of the position of other power receiving elements, at least one power receiving element can always ensure a good power receiving state and receive a large amount of AC power. Thereby, the pulsation of the alternating current power received can be suppressed, and always stable non-contact electric power feeding can be performed.
  • FIG. 1 is a diagram schematically illustrating the configuration of the contactless power supply device 1 of the first embodiment.
  • the non-contact power feeding device 1 of the first embodiment is assembled to a board production line 9 corresponding to a fixed part.
  • the substrate production line 9 is configured by arranging three first to third substrate production machines 91, 92, 93.
  • the left-right direction in FIG. 1 is the direction in which the first to third substrate production machines 91, 92, 93 are arranged, and is also the movement direction of the moving body 99 described later.
  • Each board production machine 91, 92, 93 is modularized, and the width dimension ML in the row direction is equal to each other.
  • the first to third substrate production machines 91, 92, 93 can be changed in order of arrangement positions and replaced with other modular board production machines.
  • the number of board production machines that constitute the board production line 9 may be four or more, and it is possible to add modules to increase the number of board productions later.
  • a component mounting machine can be exemplified as the first to third board production machines 91, 92, 93, but is not limited thereto.
  • the moving body 99 moves along the guide rail in the moving direction (the direction in which the first to third substrate production machines 91, 92, 93 are arranged).
  • the moving body 99 has a role of loading equipment and members used in the substrate production machines 91, 92, and 93 from an unillustrated storage and returning the used equipment and members to the storage.
  • the contactless power supply device 1 of the first embodiment is a device that performs contactless power supply to the moving body 99 from the first to third substrate production machines 91, 92, 93.
  • the non-contact power feeding device 1 includes an AC power source 2, a power feeding coil 31, a power feeding side capacitor 35, and 2 provided on a moving body 99.
  • the AC power source 2 is provided in each of the first to third board production machines 91, 92, 93.
  • the power receiving coil 41 includes two power receiving coils 41, two power receiving capacitors 45, and a power receiving circuit 5.
  • the AC power supply 2 generates an AC voltage and supplies it to the power supply coil 31.
  • the frequency of the AC voltage is preferably set as appropriate based on the resonance frequencies of the power supply side resonance circuit and the power reception side resonance circuit described later.
  • a total of three AC power supplies 2 provided in the three substrate production machines 91, 92, 93 can operate independently of each other.
  • the AC power supply 2 can be configured using, for example, a DC power supply unit that outputs a DC voltage and a known bridge circuit that converts the DC voltage to AC.
  • the AC power supply 2 may have a function of adjusting a voltage value, a frequency, a phase, and the like.
  • the first output terminal 21 of the AC power supply 2 is directly connected to one end 311 of the power supply coil 31, and the second output terminal 22 is connected to one end 351 of the power supply side capacitor 35.
  • the other end 352 of the power supply side capacitor 35 is connected to the other end 352 of the power supply coil 31. Thereby, a closed power feeding circuit is configured.
  • the feeding coil 31 is a form of a feeding element.
  • the power feeding coil 31 is provided on the front surface of each of the substrate production machines 91, 92, 93, and is formed in a symmetrical shape before and after the conveyance direction.
  • the power supply side capacitor 35 is a resonance element that is connected in series to the power supply coil 31 to form a power supply side resonance circuit.
  • the two power receiving coils 41 are disposed on the side surface 98 of the moving body 99 that faces the power feeding coil 31 and are spaced apart from each other along the moving direction.
  • the power receiving coil 41 and the power feeding coil 31 are electromagnetically coupled to each other, and mutual inductance is generated to enable non-contact power feeding.
  • the power receiving coil 41 is a form of a power receiving element.
  • One end 411 of the power receiving coil 41 is connected to one end 451 of the power receiving side capacitor 45 and one terminal 511 on the input side of the rectifying circuit 51 constituting the power receiving circuit 5.
  • the other end 412 of the power receiving coil 41 is connected to the other end 452 of the power receiving side capacitor 45 and the other terminal 512 on the input side of the rectifier circuit 51.
  • the power receiving side capacitor 45 is a resonance element that is connected in parallel to the power receiving coil 41 to form a power receiving side resonance circuit.
  • FIG. 2 is a circuit diagram showing a detailed circuit configuration on the moving body 99 side of the non-contact power feeding apparatus 1.
  • the power receiving circuit 5 includes a rectifier circuit 51 provided separately for the two power receiving coils 41 and a DC power supply circuit 55 provided in common for the two power receiving coils 41. ing.
  • the rectifier circuit 51 includes a full-wave rectifier circuit 52 in which four rectifier diodes are bridge-connected, and a smoothing capacitor 53 connected to the output side of the full-wave rectifier circuit 52.
  • One terminal 513 and the other terminal 514 on the output side of the two rectifier circuits 51 are connected in parallel to the DC power supply circuit 55.
  • the two rectifier circuits 51 convert AC power received by the power receiving coils 41 connected to the respective input sides by non-contact power supply into DC voltage and output the DC voltage to the DC power supply circuit 55.
  • the DC power supply circuit 55 adjusts the DC voltage with an indefinite voltage value output from the rectifier circuit 51 to a DC drive voltage having a substantially constant voltage, and outputs it to the electric load 57 mounted on the moving body 99.
  • the electric load 57 may include a driving source for moving the moving body 99, such as a linear motor.
  • An example of the DC power supply circuit 55 is a switching or dropper type DCDC converter.
  • the length of the feeding coil 31 on the substrate production line 9 side in the moving direction is LT
  • the distance between the feeding coils 31 is DT.
  • the length in the moving direction of the power receiving coil 41 on the moving body 99 side is LR
  • the distance between the power receiving coils 41 is DR.
  • the length LT of the feeding coil 31 in the moving direction is slightly smaller than the width dimension ML of the board production machines 91, 92, 93.
  • the relationship of DT ⁇ DR holds. According to this relationship, the two power receiving coils 41 on the movable body 99 side do not face each other during the small separation distance DT on the substrate production line 9 side. Therefore, at least one of the two power receiving coils 41 is always out of the range of the separation distance DT and directly faces the power feeding coil 31. “Directly facing” means a positional relationship in which the entire length LR in the moving direction of the power receiving coil 41 faces within the range of the length LT in the moving direction of the power feeding coil 31.
  • the power receiving coil 41 on the left side in the figure faces the power feeding coil 31 of the first board production machine 91, and the power receiving coil 41 on the right side in the figure is the second board. It faces the feeding coil 31 of the production machine 92.
  • the two power receiving coils 41 are both in a good power receiving state, and can receive a large AC power as indicated by arrows P1 and P2.
  • the AC power received by the two power receiving coils 41 is rectified and summed by the DC power supply circuit 55. As a result, large DC power corresponding to the AC power received by the two power receiving coils 41 is supplied to the electric load 57.
  • the right power receiving coil 41 continues to face the power feeding coil 31 of the second substrate production machine 92.
  • the left power receiving coil 41 is opposed to the front surface of the power feeding coil 31 of the first board production machine 91.
  • “Opposite” means a positional relationship in which a part of the length LR in the moving direction of the power receiving coil 41 faces within the range of the length LT in the moving direction of the power feeding coil 31. In the receiving coil 41 in the facing state, the AC power received decreases as the facing area facing the feeding coil 31 decreases from the facing state.
  • FIG. 3 is a diagram illustrating a positional relationship in which one of the two power receiving coils 41 is directly facing the power feeding coil 31 and the other is in a power receiving state.
  • the right power receiving coil 41 faces the power feeding coil 31 of the second board production machine 92.
  • the left power receiving coil 41 is located between the first and second substrate producing machines 91 and 92 and faces the two power feeding coils 31.
  • the magnitude of the AC power received by the power receiving coil 41 in the straddled power receiving state depends on the positional relationship with the two feeding coils 31 facing each other, the frequency and phase of the two AC power supplies 2, and the like. Therefore, the power receiving coil 41 in the straddled power receiving state cannot be said to be in a good power receiving state.
  • the two AC power supplies 2 are in opposite phases as in the technique of Patent Document 1
  • the action of the magnetic flux formed by the two power supply coils 31 facing the power reception coil 41 in a straddled power reception state cancels each other. The state goes down.
  • the frequencies and phases of the two AC power supplies 2 are matched, the power receiving state of the power receiving coil 41 in the power receiving state is improved.
  • the power receiving coil 41 on the right side in the figure continues to face the power feeding coil 31 of the second board production machine 92. For this reason, the right power receiving coil 41 is maintained in a good power receiving state and can receive a large AC power as indicated by an arrow P3. Therefore, a large amount of AC power received by the right power receiving coil 41 in a good power receiving state is secured at least.
  • the two power receiving coils 41 are in a positional relationship facing the power supply coil 31 of the second substrate production machine 92. At this time, the two power receiving coils 41 share a magnetic flux induced by one power feeding coil 31 to be in a good power receiving state. Therefore, a larger AC power is ensured than in the positional relationship shown in FIG.
  • the left power receiving coil 41 is maintained in the facing state, and the right power receiving coil 41 is changed from the facing state to the facing state and the power receiving state. Thereafter, the power receiving coil 41 on the left side faces the feeding coil 31 of the second board production machine 92 and the power receiving coil 41 on the right side faces the feeding coil 31 of the third board production machine 93.
  • the power receiving coil 41 facing the power feeding coil 31 is sequentially switched. Nevertheless, at least any one of the power receiving coils 41 always faces the power feeding coil 31 to ensure a good power receiving state.
  • the substrate production shown in FIG. The arrangement on the line 9 side is maintained. That is, even if the line configuration of the board production line 9 is changed, the non-contact power feeding device 1 is ensured a good power receiving state without changing the configuration. Further, when the number of boards in the board production line 9 is increased to four or more modules, the length LT and the separation distance DT of the power supply coil 31 have the same value in the additional portion. Therefore, even when the board production line 9 is adapted for module addition, the non-contact power feeding device 1 is ensured in a good power receiving state.
  • the AC power supply 2 is provided in each of the three substrate production machines 91, 92, 93, and can operate independently of each other. Therefore, each AC power supply 2 can be reduced in size with a small capacity, and the space for mounting on the board production machines 91, 92, 93 is small. Furthermore, the AC power supply 2 can be stopped in the board production machine that is away from the moving body 99. For example, in the positional relationship shown in FIGS. 1 and 3, the third substrate production machine 93 can stop the AC power supply 2.
  • the non-contact power feeding device 1 includes a plurality of power feeding coils 31 (power feeding elements) arranged apart from each other along a moving direction set in a substrate production line 9 (fixed portion), and each power feeding coil.
  • the AC power source 2 that supplies AC power to the power source 31 and the power receiving coil 41 that is provided on the moving body 99 that moves in the moving direction and that is electrically coupled to the power feeding coil 31 that is arranged to be opposed to receive AC power without contact.
  • a power receiving element and a power receiving circuit 1 that converts AC power received by the power receiving coil 41, generates a driving voltage, and outputs the driving voltage to an electric load 57 provided in the moving body 99.
  • the plurality of power receiving coils 41 are arranged apart from each other along the moving direction of the moving body 99, the length of the power feeding coil 31 in the moving direction is LT, and the distance between the power feeding coils 31 is mutually separated.
  • DT The moving direction of the length of yl 41 and LR, the distance between each other of the power receiving coil 41 when a DR, the relationship of DT ⁇ DR, and (2 ⁇ LR + DR) relationship ⁇ LT holds.
  • At least one of the power receiving coils 41 always faces the power feeding coil 31 at all times. Accordingly, at least one power receiving coil 41 can always receive a large amount of AC power while ensuring a good power receiving state. Thereby, the pulsation of the alternating current power received can be suppressed, and always stable non-contact electric power feeding can be performed.
  • one of the plurality of power receiving coils 41 faces the one of the plurality of power feeding coils 31 as the moving body 99 moves, and There is a positional relationship in which the other power receiving coil 41 faces the other power feeding coil 31 among the plurality. At this time, the two power receiving coils 41 are both in a good power receiving state, and a large AC power is secured.
  • the non-contact power feeding device 1 of the first embodiment there is a positional relationship in which the two power receiving coils 41 adjacent to each other face the one power feeding coil 31 as the moving body 99 moves. At this time, the two power receiving coils 41 share a magnetic flux induced by one power feeding coil 31 to be in a good power receiving state, and a large AC power is secured.
  • the AC power supply 2 is composed of a plurality of power supply coils 31 that are individually provided and operate independently of each other. According to this, since each AC power supply 2 can be reduced in size with a small capacity, there are few restrictions on arrangement space. Furthermore, since the AC power supply 2 that supplies AC power to the power feeding coil 31 that is away from the moving body 99 can be stopped, the loss that occurs is reduced.
  • the power receiving circuit 5 includes a plurality of rectifier circuits 51 that are individually provided in the plurality of power receiving coils 41, convert the AC power received by the power receiving coils 41 into a DC driving voltage, and output the DC driving voltage.
  • the electric load 57 can be driven by AC power received by at least one power receiving coil 41 in a good power receiving state. Therefore, an electricity storage element (battery) and a charging circuit used in the technique of Patent Document 2 can be eliminated.
  • the non-contact power feeding device 1 of the first embodiment further includes a power receiving side capacitor 45 and a power feeding side capacitor 35 (resonance element) that are connected to the power receiving coil 41 and the power feeding coil 31 to form a resonance circuit. According to this, high power supply efficiency can be obtained using the resonance characteristics.
  • the power receiving element is a power receiving coil 41
  • the power feeding element is a power feeding coil 31. According to this, the electromagnetic coupling type non-contact power feeding device 1 can always perform stable non-contact power feeding.
  • the fixed part is a substrate production line 9 in which a plurality of substrate production machines 91 to 93 are arranged, and the moving direction is set in the arrangement direction of the plurality of substrate production machines 91 to 93.
  • the same number 31 is arranged on each of the plurality of substrate production machines 91 to 93. According to this, the order of the arrangement positions of the first to third substrate production machines 91, 92, 93 is changed, the module is replaced with other modular board production machines, and the number of arrangements is four or more. In all cases corresponding to the addition of modules to be added, the non-contact power feeding device 1 is ensured in a good power receiving state. Accordingly, when the line configuration of the board production line 9 is changed or when modules are added, the setup change work for the non-contact power feeding device 1 is simple.
  • FIG. 4 is a diagram schematically illustrating the configuration of the contactless power feeding device 1A of the second embodiment.
  • the non-contact power feeding device 1A of the second embodiment has the same device configuration as that of the first embodiment, and the lengths Lt and Lr in the moving direction of the power feeding coil 31 and the power receiving coil 41 and between adjacent coils in the moving direction.
  • the separation distances Dt and Dr are different from the first embodiment.
  • the length in the moving direction of the feeding coil 31 on the substrate production line 9 side is Lt, and the distance between the feeding coils 31 is Dt.
  • the length in the moving direction of the power receiving coil 41 on the moving body 99 side is Lr, and the distance between the power receiving coils 41 is Dr.
  • the relationship of Dt ⁇ Dr is established, and further, the relationship of (2 ⁇ Lr + Dr) ⁇ Lt is established. Therefore, also in the second embodiment, at least any one of the power receiving coils 41 always faces the power feeding coil 31 regardless of the position of the moving body 99.
  • the power receiving coil 41 on the left side in the figure faces the power supply coil 31 of the first board production machine 91
  • the power reception coil 41 on the right side in the figure faces the power supply coil 31 of the second board production machine 92.
  • This positional relationship is illustrated.
  • the left power receiving coil 41 receives AC power that is smaller than the directly facing state from the power feeding coil 31 of the first substrate production machine 91 as indicated by an arrow P4.
  • the right receiving coil 41 receives a large AC power from the feeding coil 31 of the second substrate production machine 92.
  • the length Lr in the moving direction of the power receiving coil 41 is set to be equal to or less than the separation distance Dt between the power feeding coils 31.
  • the power receiving state of the power receiving coil 41 since the power receiving state of the power receiving coil 41 does not occur, it is not necessary to consider a frequency shift or a phase shift among the plurality of AC power supplies 2.
  • the non-contact power feeding device 1A includes a plurality of power feeding coils 31 (power feeding elements) arranged apart from each other along the moving direction set in the substrate production line 9 (fixed portion), and each power feeding coil.
  • the AC power source 2 that supplies AC power to the power source 31 and the power receiving coil 41 that is provided on the moving body 99 that moves in the moving direction and that is electrically coupled to the power feeding coil 31 that is arranged to be opposed to receive AC power without contact.
  • a power receiving element and a power receiving circuit 1A including a power receiving circuit 5 that converts AC power received by the power receiving coil 41, generates a driving voltage, and outputs the driving voltage to an electric load 57 provided in the moving body 99.
  • the power receiving coil 41 has a positional relationship that directly faces the power feeding coil 31 as the moving body 99 moves, and the moving body 99 cannot simultaneously face two adjacent power feeding coils 31. Transfer And a plurality of spaced apart from each other along the direction.
  • FIG. 5 is a diagram schematically illustrating the configuration of the contactless power supply device 1B of the third embodiment.
  • the non-contact electric power feeder 1B of 3rd Embodiment is also assembled
  • one power receiving coil 41 is disposed on a side surface 98 of the moving body 99 that faces the power feeding coil 31. Both ends of the power receiving coil 41 are connected to the power receiving side capacitor 45 and also to the input side of the rectifying circuit 51 constituting the power receiving circuit 5B. The output side of the rectifier circuit 51 is connected to the DC power supply circuit 55.
  • a total of three AC power supplies 2 provided in the three substrate production machines 91, 92, 93 are controlled so that the frequency and phase are aligned by the feeding coil 31 in the vicinity of the moving body 99.
  • the length LS in the moving direction of the feeding coil 31 on the substrate production line 9B side is changed to be smaller than the length LT in the first embodiment. Accordingly, the separation distance DS between the feeding coils 31 becomes larger than the separation distance DT in the first embodiment. Further, the length LC in the moving direction of the power receiving coil 41 on the moving body 99 side is changed to be larger than the length LR in the first embodiment.
  • the relationship of DS ⁇ LC is established. According to this relationship, the power receiving coil 41 is in a state of facing or facing one power feeding coil 31 or a power receiving state straddling at least a part of the two power feeding coils 31. Even in the power receiving state, since the two AC power supplies 2 that supply AC voltage to the two power supply coils 31 have the same frequency and phase, the power receiving state of the power receiving coil 41 is good. If the relationship of DS ⁇ LC does not hold, there exists a positional relationship in which the entire length LC in the moving direction of the power receiving coil 41 enters between the separation distances DS of the two power feeding coils 31. At this time, the power receiving coil 41 can hardly interlink with the magnetic flux formed by the power feeding coil 31. Therefore, the power receiving state of the power receiving coil 41 is reduced, and the received AC power is extremely reduced.
  • the power receiving coil 41 faces a part of the power supply coil 31 of the first board production machine 91 and a part of the power supply coil 31 of the second board production machine 92. And it is in a power receiving state. Therefore, as indicated by arrows P6 and P7, the power receiving coil 41 can receive AC power from the two power feeding coils 31 and 32, respectively.
  • the non-contact power supply device 1B includes a plurality of power supply coils 31 (power supply elements) that are spaced apart from each other along a moving direction defined in a substrate production line 9B (fixed portion), and a power supply coil 31.
  • a power receiving coil 41 power receiving element
  • a power receiving circuit 5B that converts the AC power received by the power receiving coil 41, generates a driving voltage, and outputs the driving voltage to the electric load 57 provided in the moving body 99.
  • the power receiving coil 41 since the power receiving coil 41 always faces at least a part of at least one power feeding coil 31, no pulsation in which the received AC power is extremely reduced does not occur. Therefore, a better power receiving state is maintained as compared with the case where the secondary power supply transformer moves during the separation distance D with the technique of Patent Document 2, and stable non-contact power supply can always be performed.
  • the AC power supply 2 is composed of a plurality of power supply coils 31 that are individually provided and controlled so that the power supply coils 31 in the vicinity of the moving body 99 have the same frequency and phase. According to this, the power receiving state of the power receiving coil 41 in the power receiving state can be improved. Further, each AC power supply 2 can be reduced in size with a small capacity, so that there are few restrictions on the arrangement space. Furthermore, since the AC power supply 2 that supplies AC power to the power feeding coil 31 that is away from the moving body 99 can be stopped, the loss that occurs is reduced.
  • two feeding coils 31 can be arranged side by side in the moving direction of the front surface of each of the board production machines 91, 92, 93.
  • the AC power supply 2 supplies an AC voltage to both ends of which two power supply coils 31 are electrically connected in series or in parallel.
  • the number of power receiving coils 41 is three, at least one power receiving coil 41 is always directly facing the power feeding coil 31 under the condition in which the above-described two inequalities are satisfied.
  • the number of the power receiving coils 41 is four, at least any two power receiving coils 41 always face the power feeding coil 31 under the condition where the above-described two inequalities are satisfied.
  • the contactless power feeding method is not limited to the electromagnetic coupling method using the power feeding coil 31 and the power receiving coil 41, and may be, for example, an electrostatic coupling method using a power feeding electrode and a power receiving electrode.
  • the contactless power feeding method is not limited to the electromagnetic coupling method using the power feeding coil 31 and the power receiving coil 41, and may be, for example, an electrostatic coupling method using a power feeding electrode and a power receiving electrode.
  • Various other applications and modifications are possible for the present invention.
  • the non-contact power feeding device of the present invention can be used in a wide range of fields such as assembly lines and processing lines that produce other products, and power feeding during running of electric vehicles. .
  • Non-contact power supply device 2 AC power supply 31: Power supply coil (power supply element) 35: Power supply side capacitor 41: Power receiving coil (power receiving element) 45: Power receiving side capacitor 5, 5B: Power receiving circuit 51: Rectifier circuit 55: DC power supply circuit 57: Electric load 9, 9B: Board production line (fixed part) 91, 92, 93: First to third substrate production machines 99: Moving body LT, Lt, LS: Length of moving direction of feeding coil DT, Dt, DS: Separation distance between feeding coils LR, Lr, LC: Length in the moving direction of the receiving coil DR, Dr: Separation distance between the receiving coils

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本発明の非接触給電装置(1)は、移動方向に沿い相互に離間して配置された複数の給電素子(給電コイル31)と、各給電素子に交流電力を供給する交流電源(2)と、移動体(99)に設けられて非接触で交流電力を受け取る複数の受電素子(受電コイル41)と、受電素子が受け取った交流電力を変換して電気負荷(57)に出力する受電回路(5)とを備え、給電素子の移動方向の長さをLTとし、給電素子の相互間の離間距離をDTとし、受電素子の移動方向の長さをLRとし、受電素子の相互間の離間距離をDRとしたとき、DT≦DRの関係、および(2×LR+DR)≦LTの関係が成り立つ。これによれば、移動体の位置に関係なく常に、少なくとも1個の受電素子は良好な受電状態を確保して大きな交流電力を受け取ることができるので、受電する交流電力の脈動を抑制して、常に安定した非接触給電を行える。

Description

非接触給電装置
 本発明は、固定部から移動体に非接触で給電する非接触給電装置に関し、より詳細には、非接触給電の性能安定化に関する。
 多数の部品が実装された基板を生産する基板生産機として、はんだ印刷機、部品実装機、リフロー機、基板検査機などがある。これらの設備を連結して基板生産ラインを構成することが一般的になっている。さらに、モジュール化された同じ大きさの基板生産機を列設して基板生産ラインを構成する場合も多い。モジュール化された基板生産機を用いることにより、ラインの組み替え時やラインを長大化する増設時の段取り替え作業が容易になり、フレキシブルな基板生産ラインが実現される。
 近年、基板生産ラインの各基板生産機で使用する機材や部材を、基板生産ラインに沿って移動する移動体に搬送させ、省力化および自動化を推進することが検討されている。さらに、移動体への給電手段として、非接触給電装置が考えられている。なお、非接触給電装置の用途は、基板生産ラインに限定されず、他の製品を生産する組立ラインや加工ライン、電動車両の走行中給電など幅広い分野にわたっている。この種の非接触給電装置に関する技術例が特許文献1、2に開示されている。
 特許文献1の移動給電式の非接触給電装置は、定置された送電コイルから移動する受電コイルに非接触で電力を供給する装置である。送電コイルは、移動方向に沿い長いループ状をなすとともに、途中で交叉されて磁界の向きが交互に反転する複数のユニットが形成されており、受電コイルは、複数個が間隔を存して配置されている。また、2個の受電コイルの移動方向に沿ったサイズCおよび相互間の間隔dは、d≧C/2 の不等式を満足することが好ましい。さらに、送電コイルのユニットの移動方向のサイズLは、L≧C+d の不等式を満足することが好ましい。これにより、受電電力が瞬間的、周期的にゼロとなる脈動発生は確実に防止される、とされている。
 また、特許文献2の走行中非接触給電システムは、地上側の複数の一次側給電トランスから、移動体の二次側給電トランスに非接触で交流電力を給電するシステムであり、一次側給電トランスおよび二次側給電トランスはそれぞれ両側巻コイルからなっている。そして、一次側給電トランスの磁極の寸法をDとするとき、隣り合う一次側給電トランスの中心間距離が3Dを越えないことを特徴としている。さらに、複数の一次側給電トランスが高周波電源に直列に接続される態様が開示されている。これによれば、一次側給電トランスを飛び石状に配置しても、二次側給電トランスへの給電の途切れが発生しない、とされている。
特開2014-53984号公報 特開2014-147160号公報
 ところで、特許文献1の技術では、2個の受電コイルがともに送電コイルの2つのユニットの境界にまたがる、いわゆる「またぎ受電状態」の時間帯が発生し得る。この時間帯には、受電コイルに鎖交する2つのユニットの磁界が打ち消し合うので、受電電力はゼロにならずとも大幅に減少し、大きな脈動が生じ得る。受電電力が大きく脈動すると、移動体側の電気負荷を駆動できなくなるおそれが生じる。また、長いループ状の送電コイルの全体を常に充電することになるため、電源装置は大型化し、かつ漏れ磁束による損失の増加は避けられない。
 上記した受電電力の低下、ならびに電源装置の大型化および損失増加の問題点は、特許文献2の技術においても同様に発生する。すなわち、隣り合う一次側給電トランスの間には2Dの離間距離が存在し、この離間距離の間に二次側給電トランスが移動したとき、受電電力は低下して脈動する。脈動の影響を低減するため、特許文献2の実施形態には蓄電素子(バッテリ)および充電回路を用いる旨が開示されている。これは、移動体の重量の増加を意味し、移動に要する動力が増加してしまう。また、複数の一次側給電トランスが高周波電源に直列に接続されると、高周波電源は大型化し、その損失は増加する。
 本発明は、上記背景技術の問題点に鑑みてなされたものであり、受電する交流電力の脈動を抑制して、常に安定した非接触給電を行える非接触給電装置を提供することを解決すべき課題とする。
 上記課題を解決する本発明の非接触給電装置は、固定部に設定された移動方向に沿い相互に離間して配置された複数の給電素子と、各前記給電素子に交流電力を供給する交流電源と、前記移動方向に沿って移動する移動体に設けられ、対向配置される前記給電素子と電気的に結合して非接触で交流電力を受け取る受電素子と、前記受電素子が受け取った交流電力を変換し、駆動電圧を生成して前記移動体に設けられた電気負荷に出力する受電回路と、を備えた非接触給電装置であって、前記受電素子は、前記移動体の前記移動方向に沿い相互に離間して複数配置されており、前記給電素子の前記移動方向の長さをLTとし、前記給電素子の相互間の離間距離をDTとし、前記受電素子の前記移動方向の長さをLRとし、前記受電素子の相互間の離間距離をDRとしたとき、DT≦DRの関係、および(2×LR+DR)≦LTの関係が成り立つ。
 本発明の非接触給電装置において、上記した2つの不等式の関係が成り立っているので、移動体の位置に関係なく常に、少なくともいずれか1個の受電素子が給電素子に正対する。「正対」とは、受電素子の移動方向の長さLRの全体が給電素子の移動方向の長さLTの範囲内に向かい合う位置関係を意味する。移動体の移動に伴って、給電素子に正対する受電素子は順次切り替わってゆく。このとき、他の受電素子の位置は、長さLT、LRおよび離間距離DT、DRの組合せ、ならびに移動体の位置に関連して変化し得る。つまり、他の受電素子は、前記1個の受電素子と同じ給電素子に正対したり、他の給電素子に正対したり、2個の給電素子にまたがって対向したり、いずれかの給電素子に対向したり、いずれの給電素子にも対向しなくなったりし得る。「対向」とは、受電素子の移動方向の長さLRの一部が給電素子の移動方向の長さLTの範囲内に向かい合う位置関係を意味する。このため、他の受電素子の位置に関係なく常に、少なくとも1個の受電素子は、良好な受電状態を確保して大きな交流電力を受け取ることができる。これにより、受電する交流電力の脈動を抑制して、常に安定した非接触給電を行える。
第1実施形態の非接触給電装置の構成を模式的に説明する図である。 非接触給電装置の移動体の側の詳細な回路構成を示した回路図である。 2個の受電コイルのうち一方が給電コイルに正対し、他方がまたぎ受電状態となっている位置関係を例示した図である。 第2実施形態の非接触給電装置の構成を模式的に説明する図である。 第3実施形態の非接触給電装置の構成を模式的に説明する図である。
 (1.第1実施形態の非接触給電装置1の構成)
本発明の第1実施形態の非接触給電装置1について、図1~図3を参考にして説明する。図1は、第1実施形態の非接触給電装置1の構成を模式的に説明する図である。第1実施形態の非接触給電装置1は、固定部に相当する基板生産ライン9に組み付けられている。図1に示されるように、基板生産ライン9は、3台の第1~第3基板生産機91、92、93が列設されて構成されている。図1の左右方向は、第1~第3基板生産機91、92、93の列設方向であり、後述する移動体99の移動方向でもある
 各基板生産機91、92、93は、モジュール化されており、列設方向の幅寸法MLが互いに等しい。第1~第3基板生産機91、92、93、は列設位置の順序変更、およびモジュール化された他の基板生産機との入れ替えが可能とされている。基板生産ライン9を構成する基板生産機の列設台数は4台以上でもよく、後から列設台数を増やすモジュール増設対応も可能になっている。第1~第3基板生産機91、92、93として、部品実装機を例示でき、これに限定されない。
 第1~第3基板生産機91、92、93の前方には、列設方向に延在する図略のガイドレールが配設されている。移動体99は、ガイドレールに沿って移動方向(第1~第3基板生産機91、92、93の列設方向)に移動する。移動体99は、各基板生産機91、92、93で使用する機材や部材を図略の保管庫から搬入し、使用後の機材や部材を保管庫に戻す役割を担っている。
 第1実施形態の非接触給電装置1は、第1~第3基板生産機91、92、93から移動体99に非接触給電を行う装置である。非接触給電装置1は、第1~第3基板生産機91、92、93にそれぞれ設けられた交流電源2、給電コイル31、および給電側コンデンサ35、ならびに、移動体に99に設けられた2個の受電コイル41、2個の受電側コンデンサ45、および受電回路5などで構成されている。
 3台の基板生産機91、92、93、およびモジュール化された他の基板生産機の非接触給電装置1に関する構成は同一であるので、以降では第1基板生産機91に詳細な符号を付して説明する。交流電源2は、交流電圧を発生して給電コイル31に供給する。交流電圧の周波数は、後述する給電側共振回路および受電側共振回路の共振周波数に基づいて適宜設定されることが好ましい。3台の基板生産機91、92、93に設けられた合計3個の交流電源2は、相互に独立して動作可能となっている。
 交流電源2は、例えば、直流電圧を出力する直流電源部と、直流電圧を交流変換する公知のブリッジ回路とを用いて構成できる。交流電源2は、電圧値や周波数、位相などを調整する機能を具備していてもよい。交流電源2の第1出力端子21は、給電コイル31の一端311に直結されており、第2出力端子22は、給電側コンデンサ35の一端351に接続されている。
 給電側コンデンサ35の他端352は、給電コイル31の他端352に接続されている。これにより、閉じた給電回路が構成される。給電コイル31は、給電素子の一形態である。給電コイル31は、各基板生産機91、92、93の前面に設けられており、搬送方向の前後で対称形状に形成されている。給電側コンデンサ35は、給電コイル31に直列接続されて給電側共振回路を形成する共振用素子である。
 2個の受電コイル41は、移動体99の給電コイル31に対向する側面98に配設されており、移動方向に沿い相互に離間して配置される。受電コイル41および給電コイル31は相互に電磁結合し、相互インダクタンスが発生して非接触給電が可能になる。受電コイル41は、受電素子の一形態である。受電コイル41の一端411は、受電側コンデンサ45の一端451、および受電回路5を構成する整流回路51の入力側の一端子511に接続されている。受電コイル41の他端412は、受電側コンデンサ45の他端452、および整流回路51の入力側の他端子512に接続されている。受電側コンデンサ45は、受電コイル41に並列接続されて受電側共振回路を形成する共振用素子である。
 図2は、非接触給電装置1の移動体99の側の詳細な回路構成を示した回路図である。図示されるように、受電回路5は、2個の受電コイル41に個別に設けられた整流回路51、および、2個の受電コイル41に共通に設けられた直流電源回路55を含んで構成されている。整流回路51は、4個の整流ダイオードをブリッジ接続した全波整流回路52、および全波整流回路52の出力側に接続された平滑コンデンサ53によって構成される。2個の整流回路51の出力側の一端子513および他端子514は、直流電源回路55に対して並列接続されている。2個の整流回路51は、それぞれの入力側に接続された受電コイル41が非接触給電により受け取った交流電力を直流電圧に変換して、直流電源回路55に出力する。
 直流電源回路55は、整流回路51から出力された電圧値不定の直流電圧を概ね一定電圧の直流の駆動電圧に調整して、移動体99に搭載された電気負荷57に出力する。電気負荷57は、移動体99の移動用駆動源、例えばリニアモータなどを含んでいてもよい。直流電源回路55として、スイッチング方式またはドロッパ方式のDCDCコンバータを例示できる。
 (2.第1実施形態の非接触給電装置1の作用)
次に、給電コイル31および受電コイル41の移動方向の長さ、および移動方向に隣り合うコイル間の離間距離に関する大小関係、およびその大小関係がもたらす作用について説明する。図1に示されるように、基板生産ライン9側の給電コイル31の移動方向の長さをLTとし、給電コイル31の相互間の離間距離をDTとする。また、移動体99側の受電コイル41の移動方向の長さをLRとし、受電コイル41の相互間の離間距離をDRとする。給電コイル31の移動方向の長さLTは、基板生産機91、92、93の幅寸法MLよりも少しだけ小さい。
 ここで、DT≦DRの関係が成り立っている。この関係によれば、基板生産ライン9側の小さな離間距離DTの間に、移動体99側の2個の受電コイル41が向かい合うことが生じない。このため、2個の受電コイル41の少なくとも一方は必ず、離間距離DTの範囲から外れて給電コイル31に正対する。「正対」とは、受電コイル41の移動方向の長さLRの全体が給電コイル31の移動方向の長さLTの範囲内に向かい合う位置関係を意味する。
 また、(2×LR+DR)≦LTの関係が成り立っている。この関係によれば、2個の受電コイル41の移動方向の長さLRの全体が1個の給電コイル31の移動方向の長さLTの範囲内に対向する時間帯が発生する。換言すると、移動体99の移動に伴って、2個の受電コイル41が1個の給電コイル31に正対する位置関係が存在する。
 具体的に、図1に示される位置関係において、図中の左側の受電コイル41は、第1基板生産機91の給電コイル31に正対し、図中の右側の受電コイル41は、第2基板生産機92の給電コイル31に正対している。つまり、一の受電コイル41が一の給電コイル31と正対し、かつ、他の受電コイル41が他の給電コイル31と正対する位置関係が存在する。このとき、2個の受電コイル41は、ともに良好な受電状態となり、矢印P1、P2に示されるように大きな交流電力を受け取ることができる。そして、2個の受電コイル41が受け取った交流電力は、それぞれ整流された後に直流電源回路55で合算される。これにより、2個の受電コイル41が受け取った交流電力に相当する大きな直流電力が電気負荷57に供給される。
 図1の位置関係から移動体99が右方向に移動すると、右側の受電コイル41は、第2基板生産機92の給電コイル31に正対し続ける。これに対し、左側の受電コイル41は、第1基板生産機91の給電コイル31の正面からずれて対向する。「対向」とは、受電コイル41の移動方向の長さLRの一部が給電コイル31の移動方向の長さLTの範囲内に向かい合う位置関係を意味する。対向状態の受電コイル41では、給電コイル31と向かい合う対向面積が正対状態から減少するのにつれて、受け取る交流電力が減少する。
 さらに、移動体99が右方向に移動すると、図3に示される位置関係となる。図3は、2個の受電コイル41のうち一方が給電コイル31に正対し、他方がまたぎ受電状態となっている位置関係を例示した図である。図3において、右側の受電コイル41は第2基板生産機92の給電コイル31に正対している。左側の受電コイル41は、第1および第2基板生産機91、92の間に位置し、2個の給電コイル31にまたがって対向している。
 またぎ受電状態の受電コイル41が受け取る交流電力の大きさは、対向する2個の給電コイル31との位置関係や、2個の交流電源2の周波数および位相などに依存する。したがって、またぎ受電状態の受電コイル41は、良好な受電状態とは言えない。例えば、特許文献1の技術と同様に2個の交流電源2が逆位相であると、またぎ受電状態の受電コイル41に対向する2個の給電コイル31が形成する磁束の作用が打ち消し合い、受電状態は低下する。2個の交流電源2の周波数および位相が一致していると、またぎ受電状態の受電コイル41の受電状態は改善される。
 一方、図中の右側の受電コイル41は、第2基板生産機92の給電コイル31に正対し続けている。このため、右側の受電コイル41は、良好な受電状態が維持され、矢印P3に示されるように大きな交流電力を受け取ることができる。したがって、右側の受電コイル41が良好な受電状態で受け取る大きな交流電力が、最低でも確保される。
 図3の位置関係から移動体99がさらに右方向に移動すると、2個の受電コイル41が第2基板生産機92の給電コイル31に正対する位置関係となる。このとき、2個の受電コイル41は、1個の給電コイル31が誘起する磁束を分け合って良好な受電状態となる。したがって、図3に示される位置関係のときよりも大きな交流電力が確保される。移動体99がさらに右方向に移動すると、今度は、左側の受電コイル41の正対状態が維持され、右側の受電コイル41が正対状態から対向状態、またぎ受電状態へと変化してゆく。その後、左側の受電コイル41が第2基板生産機92の給電コイル31に正対し、右側の受電コイル41が第3基板生産機93の給電コイル31に正対した位置関係となる。
 上述した位置関係の変化から分かるように、第1実施形態では、移動体99の移動に伴って、給電コイル31に正対する受電コイル41は順次切り替わってゆく。それでも、常に、少なくともいずれか1個の受電コイル41が給電コイル31に正対して、良好な受電状態が確保される。
 また、第1~第3基板生産機91、92、93の列設位置の順序変更、およびモジュール化された他の基板生産機との入れ替えが行われても、図1に示された基板生産ライン9側の配置が維持される。つまり、基板生産ライン9のライン構成が変更されても、非接触給電装置1は、構成が変更されずに良好な受電状態が確保される。さらに、基板生産ライン9の列設台数が4台以上にモジュール増設対応されたとき、増設部分においても給電コイル31の長さLTおよび離間距離DTは同一値になる。したがって、基板生産ライン9がモジュール増設対応されたときにも、非接触給電装置1は、良好な受電状態が確保される。
 また、交流電源2は、3台の基板生産機91、92、93にそれぞれ設けられ、相互に独立して動作可能となっている。したがって、個々の交流電源2は、小容量で小形化が可能になり、基板生産機91、92、93へ搭載するスペースの制約が小さい。さらに、移動体99から離れている基板生産機では、交流電源2を停止できる。例えば、図1および図3に示される位置関係のとき、第3基板生産機93では交流電源2を停止できる。
 (3.第1実施形態の非接触給電装置1の態様および効果)
第1実施形態の非接触給電装置1は、基板生産ライン9(固定部)に設定された移動方向に沿い相互に離間して配置された複数の給電コイル31(給電素子)と、各給電コイル31に交流電力を供給する交流電源2と、移動方向に沿って移動する移動体99に設けられ、対向配置される給電コイル31と電気的に結合して非接触で交流電力を受け取る受電コイル41(受電素子)と、受電コイル41が受け取った交流電力を変換し、駆動電圧を生成して移動体99に設けられた電気負荷57に出力する受電回路5と、を備えた非接触給電装置1であって、受電コイル41は、移動体99の移動方向に沿い相互に離間して複数配置されており、給電コイル31の移動方向の長さをLTとし、給電コイル31の相互間の離間距離をDTとし、受電コイル41の移動方向の長さをLRとし、受電コイル41の相互間の離間距離をDRとしたとき、DT≦DRの関係、および(2×LR+DR)≦LTの関係が成り立つ。
 これによれば、移動体99の位置に関係なく常に、少なくともいずれか1個の受電コイル41が給電コイル31に正対する。したがって、常に、少なくとも1個の受電コイル41は、良好な受電状態を確保して大きな交流電力を受け取ることができる。これにより、受電する交流電力の脈動を抑制して、常に安定した非接触給電を行える。
 さらに、第1実施形態の非接触給電装置1において、移動体99の移動に伴って複数の内の一の受電コイル41が複数の内の一の給電コイル31と正対し、かつ、複数の内の他の受電コイル41が複数の内の他の給電コイル31と正対する位置関係が存在する。このとき、2個の受電コイル41は、ともに良好な受電状態となり、大きな交流電力が確保される。
 また、第1実施形態の非接触給電装置1において、移動体99の移動に伴って隣り合う2個の受電コイル41が1個の給電コイル31と正対する位置関係が存在する。このとき、2個の受電コイル41は、1個の給電コイル31が誘起する磁束を分け合って良好な受電状態となり、大きな交流電力が確保される。
 さらに、交流電源2は、複数の給電コイル31に個別に設けられ、かつ相互に独立して動作する複数からなる。これによれば、個々の交流電源2は、小容量で小形化が可能になるので、配置スペースの制約が少ない。さらに、移動体99から離れた給電コイル31に交流電力を供給する交流電源2を停止できるので、発生する損失が低減される。
 さらに、受電回路5は、複数の受電コイル41に個別に設けられ、受電コイル41が受け取った交流電力を直流の駆動電圧に変換して出力する複数の整流回路51を含むとともに、各整流回路51の出力側が電気負荷57に対して並列接続されている。この回路構成によれば、受電状態の良好な少なくとも1個の受電コイル41が受け取った交流電力で電気負荷57を駆動できる。したがって、特許文献2の技術などで用いられる蓄電素子(バッテリ)および充電回路を不要にできる。
 さらに、第1実施形態の非接触給電装置1は、受電コイル41および給電コイル31に接続されて共振回路を形成する受電側コンデンサ45および給電側コンデンサ35(共振用素子)をさらに備える。これによれば、共振特性を利用して高い給電効率が得られる。
 さらに、受電素子は受電コイル41とされ、給電素子は給電コイル31とされている。これによれば、電磁結合方式の非接触給電装置1で、常に安定した非接触給電を行える。
 さらに固定部は、複数の基板生産機91~93が列設された基板生産ライン9であり、複数の基板生産機91~93の列設方向に移動方向が設定されており、複数の給電コイル31は、複数の基板生産機91~93に同数個ずつ配置されている。これによれば、第1~第3基板生産機91、92、93の列設位置の順序変更、およびモジュール化された他の基板生産機との入れ替え、ならびに、列設台数が4台以上に増設されるモジュール増設対応の全ての場合に、非接触給電装置1は、良好な受電状態が確保される。したがって、基板生産ライン9のライン構成の変更時やモジュール増設対応時に、非接触給電装置1に関する段取り替え作業は簡素である。
 (4.第2実施形態の非接触給電装置1A)
次に、第2実施形態の非接触給電装置1Aについて、第1実施形態と異なる点を主に説明する。図4は、第2実施形態の非接触給電装置1Aの構成を模式的に説明する図である。第2実施形態の非接触給電装置1Aは、第1実施形態と同様の装置構成であり、給電コイル31および受電コイル41の移動方向の長さLt、Lr、および移動方向に隣り合うコイル間の離間距離Dt、Drが第1実施形態と異なる。
 図4に示されるように、基板生産ライン9側の給電コイル31の移動方向の長さをLtとし、給電コイル31の相互間の離間距離をDtとする。また、移動体99側の受電コイル41の移動方向の長さをLrとし、受電コイル41の相互間の離間距離をDrとする。ここで、第1実施形態と同様に、Dt≦Drの関係が成り立ち、さらに、(2×Lr+Dr)≦Ltの関係が成り立っている。したがって、第2実施形態においても、移動体99の位置に関係なく常に、少なくともいずれか1個の受電コイル41が給電コイル31に正対する。
 図4には、図中の左側の受電コイル41が第1基板生産機91の給電コイル31に対向し、図中の右側の受電コイル41が第2基板生産機92の給電コイル31に正対した位置関係が例示されている。図4の位置関係において、左側の受電コイル41は、矢印P4に示されるように、第1基板生産機91の給電コイル31から、正対状態よりも小さめの交流電力を受け取る。また、右側の受電コイル41は、第2基板生産機92の給電コイル31から、大きな交流電力を受け取る。
 また、第2実施形態において、第1実施形態と異なるLr≦Dtの関係が成り立っている。つまり、受電コイル41の移動方向の長さLrは、給電コイル31の相互間の離間距離Dt以下とされている。この構成では、受電コイル41のまたぎ受電状態が発生しないので、複数の交流電源2の相互間で、周波数ずれや位相ずれなどを考慮する必要が無くなる。
 第2実施形態の非接触給電装置1Aは、基板生産ライン9(固定部)に設定された移動方向に沿い相互に離間して配置された複数の給電コイル31(給電素子)と、各給電コイル31に交流電力を供給する交流電源2と、移動方向に沿って移動する移動体99に設けられ、対向配置される給電コイル31と電気的に結合して非接触で交流電力を受け取る受電コイル41(受電素子)と、受電コイル41が受け取った交流電力を変換し、駆動電圧を生成して移動体99に設けられた電気負荷57に出力する受電回路5と、を備えた非接触給電装置1Aであって、受電コイル41は、移動体99の移動に伴って給電コイル31と正対する位置関係が存在し、かつ、隣り合う2個の給電コイル31には同時に対向できないように、移動体99の移動方向に沿い相互に離間して複数配置されている。
 これによれば、受電コイル41のまたぎ受電状態が発生しないので、複数の交流電源2の相互間で、周波数ずれや位相ずれなどを考慮する必要が無くなる。
 (5.第3実施形態の非接触給電装置1B)
次に、第3実施形態の非接触給電装置1Bについて、第1および第2実施形態と異なる点を主に説明する。図5は、第3実施形態の非接触給電装置1Bの構成を模式的に説明する図である。第3実施形態の非接触給電装置1Bも基板生産ライン9Bに組み付けられているが、移動体99側の受電コイル41は1個である。また、給電コイル31および受電コイル41の移動方向の長さLS、LCなどは、第1および第2実施形態から変更されている。第3実施形態では、第1および第2実施形態とは逆に、受電コイル41が給電コイル31よりも長くなっている。
 図5に示されるように、1個の受電コイル41は、移動体99の給電コイル31に対向する側面98に配設されている。受電コイル41の両端は、受電側コンデンサ45に接続されるとともに、受電回路5Bを構成する整流回路51の入力側にも接続されている。整流回路51の出力側は、直流電源回路55に接続されている。一方、3台の基板生産機91、92、93に設けられた合計3個の交流電源2は、移動体99の近傍の給電コイル31で周波数および位相が揃うように制御される。
 ここで、基板生産ライン9B側の給電コイル31の移動方向の長さLSは、第1実施形態における長さLTよりも小さく変更されている。これに伴い、給電コイル31の相互間の離間距離DSは、第1実施形態における離間距離DTよりも大きくなる。また、移動体99側の受電コイル41の移動方向の長さLCは、第1実施形態における長さLRよりも大きく変更されている。
 そして、LS<LCの関係が成り立っている。この関係によれば、受電コイル41が給電コイル31に正対して、良好な受電状態を確保できる位置関係が存在する。ここで、「正対」とは、受電コイル41の移動方向の長さLRの範囲内に、給電コイル31の移動方向の長さLSの全体が向かい合う位置関係を意味する。「正対」の拡張された意味は、受電コイル41および給電コイル31の内の長い一方の範囲内に、短い他方の全体が向かい合うことである。
 さらに、DS<LCの関係が成り立っている。この関係によれば、受電コイル41は、1個の給電コイル31に正対または対向する状態、あるいは、2個の給電コイル31の少なくとも一部に対向するまたぎ受電状態になる。またぎ受電状態であっても、2個の給電コイル31に交流電圧を供給する2個の交流電源2は、周波数および位相が揃っているので、受電コイル41の受電状態は良好になる。仮に、DS<LCの関係が成り立たないと、受電コイル41の移動方向の長さLCの全体が2個の給電コイル31の離間距離DSの間に入り込む位置関係が存在する。このとき、受電コイル41は、給電コイル31が形成する磁束に殆ど鎖交できなくなる。したがって、受電コイル41は、受電状態が低下して、受け取る交流電力が極端に減少してしまう。
 具体的に、図5に示される位置関係において、受電コイル41は、第1基板生産機91の給電コイル31の一部、および第2基板生産機92の給電コイル31の一部に向かいあっており、またぎ受電状態になっている。したがって、矢印P6、P7に示されるように、受電コイル41は、2個の給電コイル31、32からそれぞれ交流電力を受け取ることができる。
 第3実施形態の非接触給電装置1Bは、基板生産ライン9B(固定部)に定められた移動方向に沿い相互に離間して配置された複数の給電コイル31(給電素子)と、給電コイル31に交流電力を供給する交流電源2と、移動方向に移動する移動体99に設けられ、対向配置される給電コイル31と電気的に結合して非接触で交流電力を受け取る受電コイル41(受電素子)と、受電コイル41が受け取った交流電力を変換し、駆動電圧を生成して移動体99に設けられた電気負荷57に出力する受電回路5Bと、を備えた非接触給電装置1Bであって、給電コイル31の移動方向の長さをLSとし、給電コイル31の相互間の離間距離をDSとし、受電コイル41の移動方向の長さをLCとしたとき、LS<LCの関係、およびDS<LCの関係が成り立つ。
 これによれば、受電コイル41は、常時、少なくとも1個の給電コイル31の少なくとも一部に対向するので、受け取る交流電力が極端に減少する脈動は発生しない。したがって、特許文献2の技術で離間距離Dの間に二次側給電トランスが移動する場合と比較して良好な受電状態が維持され、常に安定した非接触給電を行える。
 さらに、交流電源2は、複数の給電コイル31に個別に設けられ、かつ移動体99の近傍の給電コイル31で相互に周波数および位相が揃うように制御される複数からなる。これによれば、またぎ受電状態の受電コイル41の受電状態を良好にできる。また、個々の交流電源2は、小容量で小形化が可能になるので、配置スペースの制約が少ない。さらに、移動体99から離れた給電コイル31に交流電力を供給する交流電源2を停止できるので、発生する損失が低減される。
 (6.実施形態の応用および変形)
なお、第1および第2実施形態において、各基板生産機91、92、93の前面の移動方向に、給電コイル31を2個ずつ並べて配置することもできる。この場合、交流電源2は、2個の給電コイル31が電気的に直列接続または並列接続された両端に交流電圧を供給する。一方、移動体99側の受電コイル41を2個よりも多くすることができる。受電コイル41を3個とした場合、前述した2個の不等式の関係が成り立つ条件下で、常に、少なくともいずれか1個の受電コイル41が給電コイル31に正対する。さらに、受電コイル41を4個とした場合、前述した2個の不等式の関係が成り立つ条件下で、常に、少なくともいずれか2個の受電コイル41が給電コイル31に正対する。
 また、非接触給電の方式は、給電コイル31および受電コイル41を用いた電磁結合方式に限定されず、例えば、給電電極および受電電極を用いた静電結合方式であってもよい。本発明は、その他にも様々な応用や変形が可能である。
 本発明の非接触給電装置は、実施形態で説明した基板生産ライン9、9B以外にも、他の製品を生産する組立ラインや加工ライン、電動車両の走行中給電など幅広い分野に利用可能である。
  1、1A、1B:非接触給電装置
  2:交流電源  31:給電コイル(給電素子)
  35:給電側コンデンサ  41:受電コイル(受電素子)
  45:受電側コンデンサ  5、5B:受電回路
  51:整流回路  55:直流電源回路  57:電気負荷
  9、9B:基板生産ライン(固定部)
  91、92、93:第1~第3基板生産機  99:移動体
  LT、Lt、LS:給電コイルの移動方向の長さ
  DT、Dt、DS:給電コイルの相互間の離間距離
  LR、Lr、LC:受電コイルの移動方向の長さ
  DR、Dr:受電コイルの相互間の離間距離

Claims (11)

  1.  固定部に設定された移動方向に沿い相互に離間して配置された複数の給電素子と、
     各前記給電素子に交流電力を供給する交流電源と、
     前記移動方向に沿って移動する移動体に設けられ、対向配置される前記給電素子と電気的に結合して非接触で交流電力を受け取る受電素子と、
     前記受電素子が受け取った交流電力を変換し、駆動電圧を生成して前記移動体に設けられた電気負荷に出力する受電回路と、を備えた非接触給電装置であって、
     前記受電素子は、前記移動体の前記移動方向に沿い相互に離間して複数配置されており、
     前記給電素子の前記移動方向の長さをLTとし、前記給電素子の相互間の離間距離をDTとし、前記受電素子の前記移動方向の長さをLRとし、前記受電素子の相互間の離間距離をDRとしたとき、DT≦DRの関係、および(2×LR+DR)≦LTの関係が成り立つ非接触給電装置。
  2.  固定部に設定された移動方向に沿い相互に離間して配置された複数の給電素子と、
     各前記給電素子に交流電力を供給する交流電源と、
     前記移動方向に沿って移動する移動体に設けられ、対向配置される前記給電素子と電気的に結合して非接触で交流電力を受け取る受電素子と、
     前記受電素子が受け取った交流電力を変換し、駆動電圧を生成して前記移動体に設けられた電気負荷に出力する受電回路と、を備えた非接触給電装置であって、
     前記受電素子は、前記移動体の移動に伴って複数の内の一の前記受電素子が複数の内の一の前記給電素子と正対し、かつ、複数の内の他の前記受電素子が複数の内の他の前記給電素子と正対する位置関係が存在するように、前記移動体の前記移動方向に沿い相互に離間して複数配置される非接触給電装置。
  3.  固定部に設定された移動方向に沿い相互に離間して配置された複数の給電素子と、
     各前記給電素子に交流電力を供給する交流電源と、
     前記移動方向に沿って移動する移動体に設けられ、対向配置される前記給電素子と電気的に結合して非接触で交流電力を受け取る受電素子と、
     前記受電素子が受け取った交流電力を変換し、駆動電圧を生成して前記移動体に設けられた電気負荷に出力する受電回路と、を備えた非接触給電装置であって、
     前記受電素子は、前記移動体の移動に伴って隣り合う2個の前記受電素子が1個の前記給電素子と正対する位置関係が存在するように、前記移動体の前記移動方向に沿い相互に離間して複数配置される非接触給電装置。
  4.  固定部に設定された移動方向に沿い相互に離間して配置された複数の給電素子と、
     各前記給電素子に交流電力を供給する交流電源と、
     前記移動方向に沿って移動する移動体に設けられ、対向配置される前記給電素子と電気的に結合して非接触で交流電力を受け取る受電素子と、
     前記受電素子が受け取った交流電力を変換し、駆動電圧を生成して前記移動体に設けられた電気負荷に出力する受電回路と、を備えた非接触給電装置であって、
     前記受電素子は、前記移動体の移動に伴って前記給電素子と正対する位置関係が存在し、かつ、隣り合う2個の前記給電素子には同時に対向できないように、前記移動体の前記移動方向に沿い相互に離間して複数配置される非接触給電装置。
  5.  前記交流電源は、前記複数の給電素子に個別に設けられ、かつ相互に独立して動作する複数からなる請求項1~4のいずれか一項に記載の非接触給電装置。
  6.  前記受電回路は、前記複数の受電素子に個別に設けられ、前記受電素子が受け取った交流電力を直流の前記駆動電圧に変換して出力する複数の整流回路を含むとともに、各前記整流回路の出力側が前記電気負荷に対して並列接続されている請求項1~5のいずれか一項に記載の非接触給電装置。
  7.  固定部に定められた移動方向に沿い相互に離間して配置された複数の給電素子と、
     前記給電素子に交流電力を供給する交流電源と、
     前記移動方向に移動する移動体に設けられ、対向配置される前記給電素子と電気的に結合して非接触で交流電力を受け取る受電素子と、
     前記受電素子が受け取った交流電力を変換し、駆動電圧を生成して前記移動体に設けられた電気負荷に出力する受電回路と、を備えた非接触給電装置であって、
     前記給電素子の前記移動方向の長さをLSとし、前記給電素子の相互間の離間距離をDSとし、前記受電素子の前記移動方向の長さをLCとしたとき、LS<LCの関係、およびDS<LCの関係が成り立つ非接触給電装置。
  8.  前記交流電源は、前記複数の給電素子に個別に設けられ、かつ前記移動体の近傍の給電コイルで相互に周波数および位相が揃うように制御される複数からなる請求項7に記載の非接触給電装置。
  9.  前記受電素子および前記給電素子の少なくとも一方に接続されて共振回路を形成する共振用素子をさらに備えた請求項1~8のいずれか一項に記載の非接触給電装置。
  10.  前記受電素子は受電コイルであり、前記給電素子は給電コイルである請求項1~9のいずれか一項に記載の非接触給電装置。
  11.  前記固定部は、複数の基板生産機が列設された基板生産ラインであり、前記複数の基板生産機の列設方向に前記移動方向が設定されており、
     前記複数の給電素子は、前記複数の基板生産機に同数個ずつ配置されている請求項1~10のいずれか一項に記載の非接触給電装置。
PCT/JP2015/076694 2015-09-18 2015-09-18 非接触給電装置 WO2017046946A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP15904132.6A EP3352328B1 (en) 2015-09-18 2015-09-18 Non-contact power supply device
PCT/JP2015/076694 WO2017046946A1 (ja) 2015-09-18 2015-09-18 非接触給電装置
JP2017540436A JP6616422B2 (ja) 2015-09-18 2015-09-18 非接触給電装置
US15/753,204 US11005295B2 (en) 2015-09-18 2015-09-18 Non-contact power feeding device
CN201580083176.0A CN108028549B (zh) 2015-09-18 2015-09-18 非接触供电装置
US16/897,898 US11223238B2 (en) 2015-09-18 2020-06-10 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/076694 WO2017046946A1 (ja) 2015-09-18 2015-09-18 非接触給電装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/753,204 A-371-Of-International US11005295B2 (en) 2015-09-18 2015-09-18 Non-contact power feeding device
US16/897,898 Continuation US11223238B2 (en) 2015-09-18 2020-06-10 Non-contact power feeding device

Publications (1)

Publication Number Publication Date
WO2017046946A1 true WO2017046946A1 (ja) 2017-03-23

Family

ID=58288478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076694 WO2017046946A1 (ja) 2015-09-18 2015-09-18 非接触給電装置

Country Status (5)

Country Link
US (2) US11005295B2 (ja)
EP (1) EP3352328B1 (ja)
JP (1) JP6616422B2 (ja)
CN (1) CN108028549B (ja)
WO (1) WO2017046946A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174900A1 (ja) * 2019-02-28 2020-09-03 株式会社デンソー 走行中非接触給電システム
JP2020188649A (ja) * 2019-05-17 2020-11-19 株式会社デンソー 走行中給電システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3157124B1 (en) * 2015-10-13 2023-11-29 Nokia Technologies Oy Apparatuses, methods and computer programs for wireless energy transfer control
US10530175B2 (en) * 2016-08-09 2020-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Hexagonal semiconductor package structure
CN112311102B (zh) * 2019-07-31 2023-04-25 中车株洲电力机车研究所有限公司 一种非接触式轨道交通供电系统及方法
JP6957577B2 (ja) * 2019-11-05 2021-11-02 日本たばこ産業株式会社 エアロゾル吸引器用の電源ユニット
JP7357140B2 (ja) * 2020-02-27 2023-10-05 株式会社Fuji 電源遮断装置および電源遮断方法
CN111509866A (zh) * 2020-03-31 2020-08-07 中国科学院电工研究所 一种发射线圈分段的多接收线圈轨道交通无接触供电装置
CN113535488A (zh) * 2020-04-20 2021-10-22 华为技术有限公司 电子产品的处理方法及装置、控制单元

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289101A (ja) * 2004-03-31 2005-10-20 Tsubakimoto Chain Co 非接触給電システム
JP2009284695A (ja) * 2008-05-23 2009-12-03 Kawasaki Plant Systems Ltd 移動体用絶縁式給電装置
JP2010125974A (ja) * 2008-11-27 2010-06-10 Railway Technical Res Inst 鉄道車両用非接触給電システム
JP2011167031A (ja) * 2010-02-15 2011-08-25 Toyota Central R&D Labs Inc 移動体給電装置
JP2013538541A (ja) * 2010-07-15 2013-10-10 コリア・アドバンスト・インスティテュート・オブ・サイエンス・アンド・テクノロジー 電気自動車を用いる運送システムの給集電装置設計方法及び装置
WO2014038018A1 (ja) * 2012-09-05 2014-03-13 富士機械製造株式会社 非接触給電装置
WO2015008600A1 (ja) * 2013-07-18 2015-01-22 株式会社Ihi 移動機構

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4236340C2 (de) * 1992-10-28 1994-11-10 Daimler Benz Ag Anordnung zur induktiven Übertragung von Energie
US5519262A (en) * 1992-11-17 1996-05-21 Wood; Mark B. Near field power coupling system
JP3247186B2 (ja) * 1993-03-29 2002-01-15 江藤電気株式会社 可動体側電動駆動手段への給電装置
JPH07322535A (ja) * 1994-05-23 1995-12-08 Yaskawa Electric Corp 直動機構用無接触給電装置
JP3522413B2 (ja) * 1995-09-19 2004-04-26 日立機電工業株式会社 地上移動体の非接触給電装置
JP2006211804A (ja) 2005-01-27 2006-08-10 Tsubakimoto Chain Co 非接触給電システム
JP2007135335A (ja) * 2005-11-11 2007-05-31 Toyota Motor Corp エネルギー供給装置、エネルギー供給方法
DE102006012562B4 (de) * 2006-03-16 2019-07-11 Sew-Eurodrive Gmbh & Co Kg System und Verfahren
US8686684B2 (en) * 2009-03-27 2014-04-01 Microsoft Corporation Magnetic inductive charging with low far fields
JP5909714B2 (ja) * 2009-11-13 2016-04-27 パナソニックIpマネジメント株式会社 車両用充給電システム
JP5590530B2 (ja) 2010-08-03 2014-09-17 富士機械製造株式会社 基板印刷システム
US20130270921A1 (en) * 2010-08-05 2013-10-17 Auckland Uniservices Limited Inductive power transfer apparatus
TW201236299A (en) * 2010-11-04 2012-09-01 Access Business Group Int Llc Wireless power system and method with improved alignment
JP5579581B2 (ja) * 2010-11-17 2014-08-27 富士機械製造株式会社 往復移動装置
GB2491651A (en) * 2011-06-10 2012-12-12 Bombardier Transp Gmbh System and Method for Transferring Electric Energy to a Vehicle Using Constant Current Operation of Segments of a Conductor Arrangement at resonance frequency
JP5892491B2 (ja) 2012-08-14 2016-03-23 アルプス電気株式会社 流路チップ
JP6022267B2 (ja) 2012-09-05 2016-11-09 昭和飛行機工業株式会社 移動給電式の非接触給電装置
WO2014049750A1 (ja) 2012-09-26 2014-04-03 富士機械製造株式会社 静電結合方式非接触給電装置
JP6100502B2 (ja) * 2012-10-31 2017-03-22 トヨタ自動車株式会社 受電装置および電力伝送システム
JP6164853B2 (ja) * 2013-01-28 2017-07-19 株式会社テクノバ 走行中非接触給電システム
ITTO20130535A1 (it) 2013-06-28 2014-12-29 Ansaldo Sts Spa Linea di alimentazione di tipo smart
JP6291208B2 (ja) 2013-10-10 2018-03-14 株式会社東芝 移動体、無線電力伝送システムおよび無線電力伝送方法
JP5920371B2 (ja) * 2014-01-31 2016-05-18 トヨタ自動車株式会社 非接触電力伝送システム
CN103997078A (zh) * 2014-04-18 2014-08-20 河南速达电动汽车科技有限公司 一种电动汽车边走边充电的城市专线
CN104682580B (zh) * 2015-03-24 2016-11-02 哈尔滨工业大学 基于多级复合谐振结构并联的电动汽车动态无线供电系统及采用该系统实现的供电方法
CN104859488B (zh) * 2015-04-13 2017-03-22 中国民航大学 基于太空核电站的电动有轨列车分段供电系统及控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289101A (ja) * 2004-03-31 2005-10-20 Tsubakimoto Chain Co 非接触給電システム
JP2009284695A (ja) * 2008-05-23 2009-12-03 Kawasaki Plant Systems Ltd 移動体用絶縁式給電装置
JP2010125974A (ja) * 2008-11-27 2010-06-10 Railway Technical Res Inst 鉄道車両用非接触給電システム
JP2011167031A (ja) * 2010-02-15 2011-08-25 Toyota Central R&D Labs Inc 移動体給電装置
JP2013538541A (ja) * 2010-07-15 2013-10-10 コリア・アドバンスト・インスティテュート・オブ・サイエンス・アンド・テクノロジー 電気自動車を用いる運送システムの給集電装置設計方法及び装置
WO2014038018A1 (ja) * 2012-09-05 2014-03-13 富士機械製造株式会社 非接触給電装置
WO2015008600A1 (ja) * 2013-07-18 2015-01-22 株式会社Ihi 移動機構

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3352328A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174900A1 (ja) * 2019-02-28 2020-09-03 株式会社デンソー 走行中非接触給電システム
JP2020188649A (ja) * 2019-05-17 2020-11-19 株式会社デンソー 走行中給電システム
JP7081566B2 (ja) 2019-05-17 2022-06-07 株式会社デンソー 走行中給電システム

Also Published As

Publication number Publication date
JP6616422B2 (ja) 2019-12-04
EP3352328B1 (en) 2020-12-02
US20180241251A1 (en) 2018-08-23
JPWO2017046946A1 (ja) 2018-07-05
US11005295B2 (en) 2021-05-11
US20200303962A1 (en) 2020-09-24
CN108028549A (zh) 2018-05-11
US11223238B2 (en) 2022-01-11
CN108028549B (zh) 2022-04-19
EP3352328A4 (en) 2019-06-12
EP3352328A1 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6616422B2 (ja) 非接触給電装置
CN108028127B (zh) 非接触供电用线圈及非接触供电系统
JP6095661B2 (ja) 非接触給電装置
WO2014049750A1 (ja) 静電結合方式非接触給電装置
JP5812839B2 (ja) 非接触給電装置
JP6076355B2 (ja) 非接触給電装置
JP6049744B2 (ja) 非接触給電装置
CN108604822B (zh) 非接触供电装置
WO2017094119A1 (ja) 非接触給電装置
JP6873212B2 (ja) 基板生産ライン
JP6678730B2 (ja) 非接触給電装置
JP6677523B2 (ja) 非接触給電装置
WO2014010044A1 (ja) 静電結合方式非接触給電装置
WO2016016930A1 (ja) 非接触給電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540436

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15753204

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015904132

Country of ref document: EP