WO2016016930A1 - 非接触給電装置 - Google Patents

非接触給電装置 Download PDF

Info

Publication number
WO2016016930A1
WO2016016930A1 PCT/JP2014/069843 JP2014069843W WO2016016930A1 WO 2016016930 A1 WO2016016930 A1 WO 2016016930A1 JP 2014069843 W JP2014069843 W JP 2014069843W WO 2016016930 A1 WO2016016930 A1 WO 2016016930A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
frequency
side coil
circuit
Prior art date
Application number
PCT/JP2014/069843
Other languages
English (en)
French (fr)
Inventor
慎二 瀧川
克 齊藤
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to JP2016537623A priority Critical patent/JP6441929B2/ja
Priority to PCT/JP2014/069843 priority patent/WO2016016930A1/ja
Publication of WO2016016930A1 publication Critical patent/WO2016016930A1/ja

Links

Images

Definitions

  • the present invention relates to a non-contact power feeding device that feeds power in a non-contact manner by electromagnetic coupling between a power feeding side coil and a power receiving side coil. More specifically, a DC converter is provided on the power receiving side to eliminate voltage adjustment on the power feeding side.
  • the present invention relates to a non-contact power supply apparatus.
  • the component mounter generally includes a substrate transfer device, a component supply device, a component transfer device, and a control device.
  • a typical example of the component supply device is a feeder device that feeds out a tape in which a large number of electronic components are stored at a predetermined pitch.
  • the feeder device has a flat shape that is thin in the width direction, and a plurality of feeder devices are generally arranged on a machine base of a component mounting machine.
  • the feeder device includes a motor in a mechanism unit that supplies components, and further includes a control unit that controls the operation of the motor.
  • a contact power supply type multi-terminal connector In order to supply power from the main body of the component mounter to the feeder device, a contact power supply type multi-terminal connector has been conventionally used. However, in a multi-terminal connector, there is a risk of terminal deformation or breakage due to repeated insertion and removal operations. In recent years, the use of non-contact power feeding devices such as an electromagnetic coupling method and an electrostatic coupling method has been promoted as a countermeasure.
  • Each of the power feeding side coil and the power receiving side coil used in the electromagnetic coupling type non-contact power feeding device includes a core, and both the cores are arranged to face each other to form a magnetic circuit. Furthermore, a resonance capacitor is added to the contactless power supply circuit, and contactless power supply is often performed in consideration of the resonance frequency.
  • the non-contact power feeding system disclosed in Patent Document 1 includes a power feeding device in which a plurality of primary coils are arranged along a power feeding surface, and a power receiving device that is installed on the power feeding surface and has a secondary coil.
  • the resonance frequency when the secondary coil is located between the two primary coils or a frequency in the vicinity thereof is used. That is, in the configuration of Patent Document 1, the positional relationship between the plurality of primary coils and the secondary coil is indefinite, and the resonance frequency changes according to the positional relationship. Even so, if the resonance frequency when it exists in the gap position is used, stable output power can be ensured both when the secondary coil exists in front of the primary coil and when it exists in the gap position. Yes.
  • a non-contact power supply apparatus often uses a fixed resonance frequency by fixing the positional relationship between the primary coil and the secondary coil.
  • an apparatus for performing inductive energy transfer disclosed in Patent Document 2 includes a first magnetic core around which a primary coil is wound, and a second magnetic core around which a secondary coil is wound, The magnetic core is elastically supported so as to be pressed against the other magnetic core. According to this, the plug for contact power feeding can be omitted, and the plug cannot be peeled off.
  • the first method is a method of detecting the received voltage received on the power receiving side, transmitting the received voltage information from the power receiving side to the power feeding side, adjusting the power feeding voltage on the power feeding side, and controlling the power receiving voltage to be constant.
  • a voltage detecting unit is required on the power receiving side
  • a voltage adjusting unit is required on the power feeding side
  • means for transmitting received voltage information is also required.
  • the second method is a method of stabilizing the output voltage even if the received voltage fluctuates by providing a DC converter on the power receiving side and performing voltage adjustment.
  • the second method is simpler and less expensive than the first method.
  • the second method has a problem that the received voltage can jump if the electric load on the power receiving side fluctuates or the bonding state between the cores changes when performing non-contact power feeding.
  • the magnetic circuit may change greatly and the power receiving voltage may increase transiently.
  • the techniques of Patent Documents 1 and 2 are not effective, and it is necessary to take measures to provide a protection circuit on the power receiving side or to increase the withstand voltage of the DC converter. For this reason, also in the second method, the cost of the non-contact power feeding apparatus is increased and the installation space is increased.
  • the application of the non-contact power feeding device is not limited to the feeder device of the component mounting machine, but covers a wide range of fields such as other types of substrate working machines, assembling machines and processing machines for producing other products.
  • the present invention has been made in view of the above-described problems of the background art, and it is possible to make the device configuration and the circuit configuration simple by suppressing fluctuations in the received voltage, and to contribute to the reduction of the device cost and the reduction of the installation space. Providing a power feeding device is a problem to be solved.
  • the invention of the non-contact power feeding device according to claim 1 that solves the above-described problem includes a power feeding side coil provided in the power feeding side device, a high frequency power supply circuit that applies a high frequency voltage to the power feeding side coil, and the power feeding side device.
  • a power receiving side device that is provided in a power receiving side device disposed opposite to the power receiving side coil and receives high frequency power by non-contact power feeding by electromagnetically coupling with the power feeding side coil; and the power receiving side device that converts the high frequency power received by the power receiving side coil
  • a power receiving circuit that supplies power to the electrical load; and at least one resonance member that is connected to at least one of the power feeding side coil and the power receiving side coil to form a resonance circuit; Use a frequency that deviates from the resonant frequency of the resonant circuit.
  • the high-frequency power supply circuit performs non-contact power feeding using a frequency that deviates from the resonance frequency of the resonance circuit.
  • contactless power feeding can be performed at a frequency where the load-dependent characteristic of the received voltage is small and the frequency characteristic is flat, and voltage adjustment does not have to be performed on the power feeding side.
  • the power receiving side voltage detection unit, the power feeding side voltage adjustment unit, the receiving voltage information transmission means, and the like can be eliminated.
  • a withstand voltage measure for providing a protection circuit on the power receiving side becomes unnecessary. Therefore, fluctuations in the received voltage can be suppressed to simplify the device configuration and circuit configuration, thereby contributing to reduction in device cost and reduction in installation space.
  • FIG. 1 It is a perspective view which shows the whole structure of the component mounting machine with which the non-contact electric power supply of embodiment of this invention is integrated. It is a circuit diagram which shows the structure of the non-contact electric power feeder of embodiment. It is a side view which shows the condition where a feeder apparatus is mounted in a pallet member. It is the figure which showed qualitatively the characteristic in which the inductance value of a feeding side coil and a receiving side coil changes depending on the gap length of the joint surface of a core. It is the figure which showed the frequency characteristic of the receiving voltage in the favorable joining state with almost no gap length of a electric power feeding side core and a receiving side core. It is the figure which showed the frequency characteristic of the receiving voltage in the unsatisfactory joining state which the gap length of the electric power feeding side core and the receiving side core expanded.
  • FIG. 1 is a perspective view showing an overall configuration of a component mounter 9 in which a non-contact power feeding device 1 according to an embodiment of the present invention is incorporated.
  • the direction from the left back to the right front is the X-axis direction for loading and unloading the substrate K
  • the direction from the right back to the left front is the Y-axis direction
  • the direction from the top to the bottom is the Z-axis direction.
  • the component mounter 9 is configured by assembling a substrate transport device 92, a plurality of feeder devices 2, a pallet member 3, a component transfer device 94, a component camera 95, and a control device (not shown) on a machine base 91. .
  • the substrate transfer device 92, the feeder device 2, the component transfer device 94, and the component camera 95 are controlled by a control device, and each performs a predetermined operation.
  • Substrate transport device 92 carries substrate K into the mounting position, positions it, and carries it out.
  • the substrate transfer device 92 includes first and second guide rails 921, 922, a pair of conveyor belts, a clamp device, and the like.
  • the first and second guide rails 921 and 922 are assembled to the machine base 91 so as to extend in the transport direction (X-axis direction) across the upper center of the machine base 91 and to be parallel to each other.
  • a pair of endless annular conveyor belts (not shown) are arranged in parallel inside the first and second guide rails 921 and 922 facing each other.
  • the pair of conveyor belts rotate in a state where both edges of the substrate K are placed on the conveyor conveyance surface, and carry the substrate K to and from the mounting position set in the center of the machine base 91.
  • a clamp device (not shown) is provided below the conveyor belt at the mounting position. The clamp device pushes up the substrate K, clamps it in a horizontal posture, and positions it at the mounting position. As a result, the component transfer device 94 can perform the mounting operation at the mounting position.
  • the plurality of feeder devices 2 sequentially supply electronic components.
  • the feeder device 2 has a flat shape that extends in the vertical direction (Z-axis direction) and the front-back direction (Y-axis direction) and has a thin width direction (X-axis direction).
  • the plurality of feeder devices 2 are mounted side by side in the width direction (X-axis direction) of the upper surface of the pallet member 3.
  • Each feeder device 2 includes a main body portion 22, a supply reel 23 provided at the rear portion of the main body portion 22, and a component extraction portion 24 provided at the front end of the main body portion 22.
  • An elongated tape (not shown) in which a large number of electronic components are stored at a predetermined pitch is wound and held on the supply reel 23.
  • the tape is fed out by a predetermined pitch by a mechanism portion 56 (shown in FIG. 2), and the electronic components are released from the stored state and sequentially supplied to the component take-out portion 24. Further, an elongated convex portion 25 (shown in FIG. 3) is formed on the bottom surface of the feeder device 2 for easy mounting on the pallet member 3 and positioning.
  • the pallet member 3 is a member for mounting a plurality of feeder devices 2, and is detachably held on the upper surface of the machine base 91.
  • the pallet member 3 is a member belonging to the main body of the component mounting machine 9 and includes a bottom plate portion 31 and a front plate portion 32.
  • the bottom plate portion 31 has a rectangular plate shape, and its width dimension (X-axis direction dimension) is smaller than the width dimension of the machine base 91.
  • the front plate portion 32 is erected from the front edge of the bottom plate portion 31.
  • a groove-like slot 33 (shown in FIG. 3) extending in the front-rear direction (Y-axis direction) is formed on the upper surface of the bottom plate portion 31.
  • the feeder device 2 is mounted on the pallet member 3 by being slid from the rear toward the front plate portion 32 with the convex portion 25 on the bottom surface being inserted into the slot 33 of the bottom plate portion 31. Finally, the feeder device 2 is mounted in contact with the bottom plate portion 31 and the front plate portion 32 of the pallet member 3.
  • the component transfer device 94 sucks and collects components from each component take-out unit 24 of the plurality of feeder devices 2 and transports and mounts them to the positioned substrate K.
  • the component transfer device 94 is an XY robot type device that can move horizontally in the X-axis direction and the Y-axis direction.
  • the component transfer device 94 includes a pair of Y-axis rails 941 and 942, a Y-axis slider 943, a head holding unit 944, a suction nozzle 945, and the like.
  • the pair of Y-axis rails 941 and 942 extends in the front-rear direction (Y-axis direction) of the machine base 91 and is disposed above the substrate transfer device 92 and the feeder device 2.
  • a Y-axis slider 943 is mounted on the Y-axis rails 941 and 942 so as to be movable in the Y-axis direction.
  • a head holding portion 944 is mounted on the Y-axis slider 943 so as to be movable in the X-axis direction.
  • the head holding unit 944 is driven in two horizontal directions (X-axis and Y-axis directions) by two servo motors.
  • the head holding unit 944 holds the suction nozzle 945 on the lower side thereof in a replaceable manner.
  • the suction nozzle 945 has a suction opening at the lower end, and sucks electronic components into the suction opening using negative pressure.
  • the component camera 95 is provided upward on the upper surface of the machine base 91 between the substrate transfer device 92 and the feeder device 2.
  • the component camera 95 captures and detects the state of the sucked electronic component while the suction nozzle 945 moves from the feeder device 2 onto the substrate K.
  • the control device 96 finely adjusts the component mounting operation as necessary, and discards the component if mounting is difficult. To do.
  • the control device holds a mounting sequence specifying the order of mounting electronic components on the substrate K and the feeder device 2 that supplies the electronic components.
  • the control device controls the component mounting operation according to the mounting sequence based on the imaging data of the component camera 95 and the detection data of a sensor (not shown).
  • the control device sequentially collects and updates operation data such as the number of boards K that have been produced, the mounting time required for mounting electronic components, and the number of occurrences of component suction errors.
  • the non-contact power feeding device 1 of the embodiment is a device that performs non-contact power feeding by an electromagnetic coupling method from the pallet member 3 toward the feeder device 2.
  • the pallet member 3 corresponds to the power supply side device of the present invention, the main body of the substrate working machine, and the main body of the component mounting machine 9.
  • the feeder device 2 corresponds to a power receiving side device, a mounting device, and a component supply device of the present invention.
  • FIG. 2 is a circuit diagram illustrating a configuration of the contactless power supply device 1 of the embodiment.
  • the pallet member 3 includes a high frequency power supply circuit 41, a power supply side capacitor 42, and a power supply side coil 43 shown on the left side of FIG.
  • the feeder device 2 includes a power receiving side coil 51, a power receiving side capacitor 53, a rectifier circuit 54, and a DC converter 55 shown on the right side of FIG.
  • the feeder apparatus 2 has a motor and control CPU in the mechanism part 56 as an electric load supplied with electric power.
  • the high frequency power supply circuit 41 on the pallet member 3 side outputs a high frequency voltage Vs having a power supply frequency fs.
  • the high frequency power supply circuit 41 can be configured by combining, for example, a DC power source that generates a DC voltage and a switching circuit that generates a high frequency voltage Vs by switching the DC voltage.
  • One output terminal 411 of the high frequency power supply circuit 41 is connected to one end 421 of the power supply side capacitor 42.
  • the other output terminal 412 of the high frequency power supply circuit 41 is directly connected to the other end 432 of the power feeding side coil 43.
  • the power supply side capacitor 42 is an example of a resonance member.
  • the other end 422 of the power supply side capacitor 42 is connected to one end 431 of the power supply side coil 43.
  • the power supply side coil 43 is formed by winding a conductor a predetermined number of times around a power supply side core (not shown).
  • the power supply side core has a C-shaped core having a coil formed in the middle part and having joint surfaces 44 (shown in FIG. 3) at both ends, and a coil formed in the center core and having joint surfaces 44 (shown in FIG. 3) at three locations It has an E-type core.
  • Examples of the material constituting the power supply side core include a laminate of magnetic steel sheets with high magnetic permeability and ferrite, and may be aluminum with low magnetic permeability.
  • the power feeding side coil 43 and the power feeding side core are disposed near the upper portion of the front plate portion 32 of the pallet member 3 (shown in FIG. 3).
  • the power receiving side coil 51 on the feeder device 2 side is formed by winding a conductor around a power receiving side core (not shown) a predetermined number of times.
  • the cross-sectional area and the number of turns of the conductor of the power receiving side coil 51 may be the same as or different from those of the power feeding side coil 43.
  • One end 511 and the other end 512 of the power receiving coil 51 are connected to the rectifier circuit 54.
  • the power receiving side core is preferably made of the same material as the power feeding side core and has the same shape and substantially the same magnetic path cross-sectional area.
  • the joint surface 52 (shown in FIG. 3) of the power receiving side core is formed so as to be opposed to the joint surface 44 of the power feeding side core.
  • the power receiving side coil 51 and the power receiving side core are disposed near the upper part of the front surface of the feeder device 2 (shown in FIG. 3).
  • the power supply side core and the power reception side core electromagnetically couple the power supply side coil 43 and the power reception side coil 51 by forming a magnetic circuit.
  • the power receiving side coil 51 can receive high frequency power from the power feeding side coil 43 by a non-contact power feeding method.
  • a voltage generated between one end 511 and the other end 512 of the power receiving coil 51 is a power receiving voltage Vr.
  • the power receiving side capacitor 53 is an example of a resonance member. One end and the other end of the power reception side capacitor 53 are connected to the rectifier circuit 54.
  • the power receiving side coil 51 and the power receiving side capacitor 53 are connected in parallel to form a parallel resonance circuit. From the inductance value L2 of the power receiving side coil 51 and the capacitance value C2 of the power receiving side capacitor 53, the parallel resonance frequency f2 is obtained using the following equation 2.
  • f2 (1 / 2 ⁇ ) ⁇ (L2 ⁇ C2) ⁇ 0.5 (equation 2) Incidentally, even if there is a difference between series connection and parallel connection, Expression 1 and Expression 2 are the same shape.
  • the rectifier circuit 54 rectifies the high frequency received voltage Vr received from the power receiving side coil 51 to generate a DC voltage Vd and supplies it to the DC converter 55.
  • Examples of the rectifier circuit 54 include a full-wave rectifier circuit in which four diodes are bridge-connected, and a smoothing circuit may be provided as appropriate.
  • the circuit configuration of the rectifier circuit 54 is not limited to the above.
  • the DC converter 55 adjusts the DC voltage Vd received from the rectifier circuit 54 to a predetermined output voltage VL and supplies it to the electric load of the mechanism unit 56.
  • the DC converter 55 generates the output voltage VL even if the received voltage Vr and the DC voltage Vd fluctuate due to a decrease in the degree of electromagnetic coupling between the power feeding side coil 43 and the power receiving side coil 51 or a load fluctuation of the electric load.
  • the DC converter 55 has a predetermined withstand voltage performance on the assumption that the input DC voltage Vd rises.
  • the DC converter 55 having high withstand voltage performance increases the cost.
  • a switching regulator can be used as the DC converter 55.
  • the rectifier circuit 54 and the DC converter 55 constitute a power receiving circuit of the present invention.
  • the output voltage VL may be a single DC voltage or a two-stage DC voltage having different magnitudes corresponding to a plurality of types of electric loads.
  • the DC drive voltage of the motor in the mechanism unit 56 and the DC control voltage of the control CPU may be different.
  • two DC converters 55 can be provided corresponding to the DC drive voltage and the DC control voltage.
  • the DC voltage Vd supplied from the rectifier circuit 54 may be used as it is as the DC drive voltage, and the DC voltage Vd may be converted into a DC control voltage by the single DC converter 55 and supplied.
  • FIG. 3 is a side view showing a situation where the feeder apparatus 2 is mounted on the pallet member 3.
  • the power receiving side coil 51 and the power receiving side core face the power feeding side coil 43 and the power feeding side core.
  • the power supply side core joining surface 44 and the power receiving side core joining surface 52 are aligned. On the other hand, it joins or approaches while decreasing the gap length GL.
  • the joint surfaces 44 and 52 are joined together, and the gap length GL is almost eliminated.
  • some abnormality occurs between the joint surfaces 44 and 52.
  • the gap length GL remains between the joint surfaces 44 and 52, or the joint surfaces 44 and 52 are not parallel to each other, or a foreign object is sandwiched between the joint surfaces 44 and 52.
  • a part of the joint surfaces 44 and 52 is cracked and missing.
  • a defect occurs in the magnetic circuit, and the degree of electromagnetic coupling between the power supply side coil 43 and the power reception side coil 51 decreases.
  • FIG. 4 is a diagram qualitatively showing characteristics in which the inductance values L1 and L2 of the power supply side coil 43 and the power reception side coil 51 change depending on the gap length GL of the core joint surfaces 44 and 52.
  • the inductance values L1 and L2 decrease.
  • the inductance values L1 and L2 settle to constant values.
  • the resonance frequencies f1 and f2 obtained by Expressions 1 and 2 shift.
  • FIG. 5 is a diagram showing the frequency characteristics of the received voltage Vr in a good joined state in which there is almost no gap length GL between the power feeding side core and the power receiving side core.
  • FIG. 6 is a diagram illustrating the frequency characteristics of the power reception voltage Vr in an unsatisfactory bonding state in which the gap length GL between the power supply side core and the power reception side core is widened.
  • the horizontal axis indicates the power supply frequency fs (logarithm display) of the high frequency power supply circuit 41
  • the vertical axis indicates the power reception voltage Vr between the one end 511 and the other end 512 of the power reception side coil 51. ing.
  • the magnitude of the high frequency voltage Vs of the high frequency power supply circuit 41 is changed as a constant condition, and the power supply frequency fs is changed.
  • the frequency characteristic of the received voltage Vr at the time of low load is indicated by a solid line
  • the frequency characteristic of the received voltage Vr at the time of high load is indicated by a broken line.
  • the frequency characteristics of the received voltage Vr in a good junction state are two-peak characteristics having peaks at two locations.
  • the lower peak frequency fA is derived from the series resonance frequency f1 on the power supply side
  • the upper peak frequency fC is derived from the parallel resonance frequency f2 on the power reception side.
  • the frequency characteristic of the received voltage Vr in an unsatisfactory junction state is also a double peak characteristic having peaks at two locations.
  • the lower and upper peak frequencies fB and fD are shifted to a higher frequency side than FIG.
  • the series resonance frequency f1 on the power supply side increases from the peak frequency fA to the peak frequency fB.
  • the parallel resonance frequency f2 on the power receiving side increases from the peak frequency fC to the peak frequency fD.
  • the inductance values L1 and L2 settle to a constant value even when the gap length GL is extremely widened, there is an upper limit for increasing the series resonance frequency f1 and the parallel resonance frequency f2.
  • the high frequency power supply circuit 41 uses a frequency f0 between the series resonance frequency f1 and the parallel resonance frequency f2. Strictly speaking, the high-frequency power supply circuit 41 is higher than the upper limit peak frequency fB at which the series resonance frequency f1 on the power supply side fluctuates when the degree of electromagnetic coupling changes, and the parallel resonance frequency f2 on the power reception side fluctuates.
  • a frequency f0 lower than the lower limit peak frequency fC is used as the feeding frequency fs.
  • the received voltage Vr is higher at the low load in all frequency bands.
  • the received voltage Vr at the time of low load jumps greatly in the vicinity of each peak frequency fA, fB, fC, fD.
  • the power receiving voltage Vr at the time of high load increases in the vicinity of the lower peak frequencies fA and fB, but does not jump up significantly as the load is low. Further, the increase in the received voltage Vr at the time of high load is not conspicuous in the vicinity of the upper peak frequencies fC and fD.
  • the high frequency power supply circuit 41 uses a frequency other than the frequency f0 as the power supply frequency fs.
  • the received voltage Vr jumps from Vr1 to Vr2 in FIG.
  • the high frequency power supply circuit 41 uses the peak frequency fA
  • the received voltage Vr when the junction state decreases from FIG. 5 to FIG. 6, the received voltage Vr extremely decreases to Vr3 in FIG.
  • the high frequency power supply circuit 41 uses the peak frequency fB, the received voltage Vr jumps from Vr4 to Vr5 in FIG.
  • the high frequency power supply circuit 41 uses a frequency between the peak frequency fA and the peak frequency fB, the possibility that the received voltage Vr jumps up when the load changes in the intermediate junction state of FIGS. 5 and 6 cannot be solved.
  • the high frequency power supply circuit 41 uses a frequency between the peak frequency fC and the peak frequency fD, and the possibility that the received voltage Vr jumps when the load changes cannot be solved.
  • the frequency f0 used by the high frequency power supply circuit 41 does not overlap the peak of the frequency characteristic.
  • the received voltage Vr at the frequency f0 is relatively large and has a small load dependence characteristic, as indicated by Vr6 and Vr7 in FIG. 5 and Vr8 and Vr9 in FIG. Therefore, according to the embodiment, even if the electric load of the feeder device 2 fluctuates and the joining state between the cores changes, the possibility that the received voltage Vr jumps up can be solved.
  • the high-frequency power supply circuit 41 outputs the high-frequency voltage Vs, even if the feeder device 2 is suddenly attached / detached, a transient increase in the received voltage Vr can be suppressed.
  • the fact that the received voltage Vr is relatively high means that the high frequency voltage Vs of the high frequency power supply circuit 41 can be small. Further, even if the frequency f0 is slightly shifted (moved left and right in FIGS. 5 and 6), the received voltage Vr hardly changes and the frequency characteristics are flat. That is, a constant power receiving voltage Vr can be obtained even if the power feeding frequency fs varies slightly or the inductance values L1 and L2 and the capacitance values C1 and C2 slightly vary. Therefore, the contactless power supply device 1 of the embodiment is excellent in operation stability.
  • the non-contact power feeding device 1 of the embodiment includes a power feeding side coil 43 provided on the pallet member 3, a high frequency power supply circuit 41 that applies a high frequency voltage to the power feeding side coil 43, and a feeder device 2 that is disposed to face the pallet member 3.
  • the power receiving side coil 51 that is electromagnetically coupled to the power feeding side coil 43 and receives high frequency power by non-contact power feeding, and the power receiving power that converts the high frequency power received by the power receiving side coil 51 and feeds the electric load to the feeder device 2
  • At least one resonance member (a power supply side capacitor 42 and a power reception side capacitor 53) connected to at least one of a circuit (rectifier circuit 54 and a DC converter 55) and at least one of a power supply side coil 43 and a power reception side coil 51 to form a resonance circuit.
  • the high frequency power supply circuit 41 uses a frequency f0 deviating from the resonance frequencies f1 and f2 of the resonance circuit. .
  • the high frequency power supply circuit 41 performs non-contact power feeding using the frequency f0 deviating from the resonance frequencies f1 and f2 of the resonance circuit.
  • non-contact power supply can be performed at a frequency f0 having a small load dependency characteristic of the received voltage Vr and a flat frequency characteristic, and the high frequency voltage Vs of the high frequency power supply circuit 41 need not be adjusted.
  • the power receiving side voltage detection unit, the power feeding side voltage adjustment unit, the receiving voltage information transmission means, and the like can be eliminated.
  • a withstand voltage measure for providing a protection circuit on the power receiving side becomes unnecessary. Therefore, fluctuations in the received voltage Vr can be suppressed to simplify the device configuration and circuit configuration, thereby contributing to reduction in device cost and installation space.
  • the contactless power supply device 1 of the embodiment is excellent in operational stability. This means that fluctuations in the power supply frequency fs of the high frequency power supply circuit and fluctuations in the inductance values L1 and L2 and the capacitance values C1 and C2 can be allowed. Therefore, the design and manufacturing freedom of the device 1 is greatly expanded.
  • the high frequency power supply circuit 41 includes a range (peak) in which the resonance frequencies f1 and f2 fluctuate when the coupling degree of electromagnetic coupling between the power supply side coil 43 and the power reception side coil 51 changes.
  • the frequency f0 used by the high frequency power supply circuit 41 does not overlap the peak of the frequency characteristic. Therefore, the possibility that the received voltage Vr jumps up can be solved. Further, since the frequency characteristic of the power reception voltage Vr is flat in the vicinity of the frequency f0, strictness is not required for the management of the gap length GL of the joint surfaces 44 and 52 between the cores. Therefore, the design and manufacturing freedom of the device 1 is greatly expanded.
  • the resonance member includes a power supply side capacitor 42 connected in series to the power supply side coil 43 and a power reception side capacitor 53 connected in parallel to the power reception side coil 51.
  • the resonance frequency includes a series resonance frequency f1 that depends on the power supply side coil 43 and the power supply side capacitor 42, and a parallel resonance frequency f2 that depends on the power reception side coil 51 and the power reception side capacitor 53. The frequency f0 between the series resonance frequency f1 and the parallel resonance frequency f2 is used.
  • the high frequency voltage Vs of the high frequency power supply circuit 41 can be small. If a frequency deviating from between the series resonance frequency f1 and the parallel resonance frequency f2 is used, the high frequency voltage Vs of the high frequency power supply circuit 41 needs to be increased.
  • the pallet member 3 belongs to the main body of the component mounting machine 9 that mounts electronic components on the board K, and the feeder device 2 is detachably mounted on the component mounting machine 9.
  • the power supply side coil 43 provided in the pallet member 3 has a power supply side iron core that performs electromagnetic coupling
  • the power reception side coil 51 provided in the feeder device 2 is a power supply side.
  • the joint surface 44 of the power feeding side iron core and the joint surface 52 of the power receiving side iron core face each other to form a gap. Join or approach while reducing the length GL.
  • the voltage adjustment function is not necessary on the side of the pallet member 3, and it can contribute to the reduction of the cost and the installation space of the pallet member 3.
  • the withstand voltage measure which provides a protective circuit in the feeder apparatus 2 side is unnecessary, and it can contribute to the reduction of the cost of the feeder apparatus 2, and the reduction of an installation space.
  • the non-contact power feeding from the pallet member 3 toward the feeder device 2 is excellent in operational stability.
  • the power receiving circuit adjusts the high frequency power received by the power receiving coil 51 to direct current, and the direct current voltage Vd received from the rectifying circuit 54 to the output voltage VL.
  • the DC converter 55 is configured.
  • the output voltage VL applied to the electric load can be stabilized by the voltage adjusting action of the DC converter 55, so that voltage adjustment on the power supply side can be made unnecessary.
  • non-contact power feeding is performed at the frequency f0 where the load-dependent characteristic of the received voltage Vr is small and the frequency characteristic is flat, a measure for increasing the withstand voltage of the DC converter 55 is not necessary. Therefore, it can greatly contribute to the reduction of the device cost and the installation space.
  • the magnitude relationship between the series resonance frequency f1 on the power supply side and the parallel resonance frequency f2 on the power reception side is not limited to the embodiment, and the series resonance frequency f1 may be higher than the parallel resonance frequency f2.
  • the series resonance frequency f1 may be higher than the parallel resonance frequency f2.
  • the contactless power supply device of the present invention is widely used for other types of substrate work machines, assembly machines and processing machines for producing other products, in addition to the feeder device 2 of the component mounting machine 9 described in the embodiment. it can.
  • Non-contact power feeding device 2 Feeder device (power receiving side device, mounting device) 3: Pallet member (power supply side device, main body of substrate work machine) 41: High-frequency power circuit 42: Power supply side capacitor (resonance member) 43: Power supply side coil 44: Power supply side core joint surface 51: Power reception side coil 52: Power reception side core joint surface 53: Power reception side capacitor (resonance member) 54: Rectifier circuit 55: DC converter 56: Mechanism (electricity) load) fA, fB, fC, fD: peak frequency f0: frequency used for feeding frequency Vr, Vr1 to Vr9: received voltage GL: gap length

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

 本発明の非接触給電装置は、給電側装置に設けられた給電側コイルと、給電側コイルに高周波電圧を印加する高周波電源回路と、給電側装置に対向配置される受電側装置に設けられ給電側コイルと電磁結合して非接触給電により高周波電力を受け取る受電側コイルと、受電側コイルが受け取った高周波電力を変換して受電側装置の電気負荷に給電する受電回路と、給電側コイルおよび受電側コイルの少なくとも一方に接続されて共振回路を形成する少なくとも1個の共振用部材と、を備え、高周波電源回路は、共振回路の共振周波数から外れた周波数を使用する。これによれば、受電電圧の変動を抑制して装置構成および回路構成を簡易とし、装置コストの削減および取付スペースの削減に貢献できる。

Description

非接触給電装置
 本発明は、給電側コイルと受電側コイルとの電磁結合により非接触で給電する非接触給電装置に関し、より詳細には、受電側に直流コンバータを設けて給電側での電圧調整を不要とした非接触給電装置に関する。
 多数の部品が実装された基板を生産する対基板作業機として、はんだ印刷機、部品実装機、リフロー機、基板検査機などがある。これらの対基板作業機を連結して基板生産ラインを構築する場合が多い。このうち部品実装機は、基板搬送装置、部品供給装置、部品移載装置、および制御装置を備えるのが一般的である。部品供給装置の代表例として、多数の電子部品が所定ピッチで収納されたテープを繰り出す方式のフィーダ装置がある。フィーダ装置は、幅方向に薄い扁平形状とされており、部品実装機の機台上に複数台列設されるのが一般的である。フィーダ装置は、部品を供給する機構部にモータを有し、さらに、モータの動作を制御する制御部を有する。
 部品実装機の本体からフィーダ装置へ給電するために、従来から接触給電方式の多端子コネクタが用いられてきた。しかしながら、多端子コネクタでは抜き差し操作の繰り返しによる端子の変形や折損などのおそれがある。この対策として、近年では、電磁結合方式や静電結合方式などの非接触給電装置の利用が進められている。電磁結合方式の非接触給電装置に用いられる給電側コイルおよび受電側コイルは、それぞれコアを備え、両者のコアが対向配置されて磁気回路が形成される。さらに、非接触給電の回路に共振用コンデンサが追加され、共振周波数を考慮した非接触給電が行われる場合が多い。
 例えば、特許文献1に開示された非接触給電システムは、1次コイルが給電面に沿って複数配置される給電装置と、給電面に設置されて2次コイルを有する受電装置と、を備え、2次コイルが2つの1次コイルの間の狭間位置に存在するときの共振周波数またはその近傍の周波数を使用する。つまり、特許文献1の構成では、複数の1次コイルと2次コイルとの位置関係が不定であり、位置関係に応じて共振周波数が変化する。それでも、狭間位置に存在するときの共振周波数を使用すれば、2次コイルが1次コイルの正面に存在するときおよび狭間位置に存在するときの両方で安定した出力電力を確保できる、とされている。なお、一般的な非接触給電装置では、1次コイルと2次コイルとの位置関係を固定して、一定の共振周波数を使用する場合が多い。
 また、電磁結合方式の非接触給電装置では、コア同士の接合状態が低下してギャップが生じると、給電性能が低下する。このため、コア同士の接合状態を良好に維持する技術が開発されている。例えば、特許文献2に開示された誘導性エネルギー伝達を行う装置は、1次コイルが巻回された第1磁気コアと、2次コイルが巻回された第2磁気コアとを有し、一方の磁気コアが他方の磁気コアに対して押圧されるように弾性支承されている。これによれば、接触給電用のプラグを省略でき、プラグが剥ぎ取られるようなことは生じ得ない、とされている。
特開2013-27132号公報 特開2006-191098号公報
 ところで、電磁結合方式の非接触給電装置では、受電側の電気負荷に加える出力電圧を安定化するために、大別して2つの方法が用いられている。第1の方法は、受電側で受け取る受電電圧を検出し、受電側から給電側に受電電圧情報を伝達して、給電側で給電電圧を調整して受電電圧を一定に制御する方法である。第1の方法では、受電側に電圧検出部が必要となり、給電側に電圧調整部が必要となり、さらには、受電電圧情報の伝達手段も必要となる。このため、第1の方法では、非接触給電装置のコストが増大し、取付スペースも増大する。
 第2の方法は、受電側に直流コンバータを設けて電圧調整を行うことにより、受電電圧が変動しても出力電圧を安定化させる方法である。第2の方法は、第1の方法と比較して簡易であり、コストも安価である。しかしながら、第2の方法では、非接触給電を行っているときに受電側の電気負荷が変動したり、コア同士の接合状態が変化したりすると、受電電圧が跳ね上がり得るという問題点がある。また、受電側装置を急に着脱操作したときにも、磁気回路が大きく変化して過渡的に受電電圧が増加するおそれがある。これらの問題点に対して、特許文献1および2の技術は効果的でなく、受電側に保護回路を設けたり、直流コンバータを高耐電圧化したりする対策が必要になる。このため、第2の方法でも、やはり非接触給電装置のコストが増大し、取付スペースが増大する。
 なお、非接触給電装置の用途は、部品実装機のフィーダ装置に限定されず、他種の対基板作業機や、他の製品を生産する組立機や加工機など幅広い分野にわたっている。
 本発明は、上記背景技術の問題点に鑑みてなされたものであり、受電電圧の変動を抑制して装置構成および回路構成を簡易とし、装置コストの削減および取付スペースの削減に貢献できる非接触給電装置を提供することを解決すべき課題とする。
 上記課題を解決する請求項1に係る非接触給電装置の発明は、給電側装置に設けられた給電側コイルと、前記給電側コイルに高周波電圧を印加する高周波電源回路と、前記給電側装置に対向配置される受電側装置に設けられ、前記給電側コイルと電磁結合して非接触給電により高周波電力を受け取る受電側コイルと、前記受電側コイルが受け取った高周波電力を変換して前記受電側装置の電気負荷に給電する受電回路と、前記給電側コイルおよび前記受電側コイルの少なくとも一方に接続されて共振回路を形成する少なくとも1個の共振用部材と、を備え、前記高周波電源回路は、前記共振回路の共振周波数から外れた周波数を使用する。
 請求項1に係る非接触給電装置の発明によれば、高周波電源回路は、共振回路の共振周波数から外れた周波数を使用して非接触給電を行う。これにより、受電電圧の負荷依存特性が小さくかつ周波数特性の平坦な周波数で非接触給電を行え、給電側で電圧調整をしなくてよくなる。つまり、受電側の電圧検出部、給電側の電圧調整部、および受電電圧情報の伝達手段などを不要にできる。また、受電側の電気負荷の変動によって引き起こされる受電電圧の跳ね上がりが抑制されるので、受電側に保護回路を設ける耐電圧対策は不要となる。したがって、受電電圧の変動を抑制して装置構成および回路構成を簡易とし、装置コストの削減および取付スペースの削減に貢献できる。
本発明の実施形態の非接触給電装置が組み込まれる部品実装機の全体構成を示す斜視図である。 実施形態の非接触給電装置の構成を示す回路図である。 フィーダ装置がパレット部材に搭載される状況を示す側面図である。 給電側コイルおよび受電側コイルのインダクタンス値がコアの接合面のギャップ長に依存して変化する特性を定性的に示した図である。 給電側コアと受電側コアとのギャップ長が殆ど無い良好な接合状態における受電電圧の周波数特性を示した図である。 給電側コアと受電側コアとのギャップ長が拡がった良好でない接合状態における受電電圧の周波数特性を示した図である。
 本発明の実施形態の非接触給電装置1について、図1~図6を参考にして説明する。図1は、本発明の実施形態の非接触給電装置1が組み込まれる部品実装機9の全体構成を示す斜視図である。図1の左奥から右手前に向かう方向が基板Kを搬入出するX軸方向、右奥から左手前に向かう方向がY軸方向、上下に向かう方向がZ軸方向である。部品実装機9は、基板搬送装置92、複数台のフィーダ装置2、パレット部材3、部品移載装置94、部品カメラ95、および図略の制御装置が機台91に組み付けられて構成されている。基板搬送装置92、フィーダ装置2、部品移載装置94、および部品カメラ95は、制御装置から制御され、それぞれが所定の作業を行うようになっている。
 基板搬送装置92は、基板Kを装着実施位置に搬入し位置決めし搬出する。基板搬送装置92は、第1および第2ガイドレール921、922、一対のコンベアベルト、およびクランプ装置などで構成されている。第1および第2ガイドレール921、922は、機台91の上部中央を横断して搬送方向(X軸方向)に延在し、かつ互いに平行するように機台91に組み付けられている。第1および第2ガイドレール921、922の向かい合う内側に、無端環状の一対のコンベアベルト(図略)が並設されている。一対のコンベアベルトは、コンベア搬送面に基板Kの両縁をそれぞれ戴置した状態で輪転して、基板Kを機台91の中央部に設定された装着実施位置に搬入および搬出する。装着実施位置のコンベアベルトの下方には、クランプ装置(図略)が設けられている。クランプ装置は、基板Kを押し上げて水平姿勢でクランプし、装着実施位置に位置決めする。これにより、部品移載装置94が装着実施位置で装着動作を行えるようになる。
 複数台のフィーダ装置2は、それぞれ電子部品を順次供給する。フィーダ装置2は、上下方向(Z軸方向)および前後方向(Y軸方向)に広がり、幅方向(X軸方向)が薄い扁平形状である。複数台のフィーダ装置2は、パレット部材3の上面の幅方向(X軸方向)に並べて搭載される。各フィーダ装置2は、本体部22と、本体部22の後部に設けられた供給リール23と、本体部22の前端に設けられた部品取出部24とを有している。供給リール23には多数の電子部品が所定ピッチで収納された細長いテープ(図略)が巻回保持されている。このテープが機構部56(図2示)により所定ピッチずつ繰り出され、電子部品が収納状態を解除されて部品取出部24に順次供給されるようになっている。さらに、フィーダ装置2の底面には、パレット部材3への搭載を容易にして位置決めを行うために細長い凸部25(図3示)が形成されている。
 パレット部材3は、複数台のフィーダ装置2を搭載するための部材であり、機台91の上面に着脱可能に保持される。パレット部材3は、部品実装機9の本体に属する部材であり、底板部31および前板部32からなる。底板部31は、矩形板状であり、その幅寸法(X軸方向寸法)は、機台91の幅寸法よりも小さめである。前板部32は、底板部31の前縁から立設されている。底板部31の上面には、前後方向(Y軸方向)に延在する溝状のスロット33(図3示)が刻設されている。フィーダ装置2は、底面の凸部25が底板部31のスロット33に挿入された状態で、後方から前板部32に向かってスライド移動されることにより、パレット部材3に搭載される。最終的に、フィーダ装置2は、パレット部材3の底板部31および前板部32に接して搭載される。
 部品移載装置94は、複数のフィーダ装置2の各部品取出部24から部品を吸着採取し、位置決めされた基板Kまで搬送して装着する。部品移載装置94は、X軸方向およびY軸方向に水平移動可能なXYロボットタイプの装置である。部品移載装置94は、一対のY軸レール941、942、Y軸スライダ943、ヘッド保持部944、および吸着ノズル945などで構成されている。一対のY軸レール941、942は、機台91の前後方向(Y軸方向)に延在して、基板搬送装置92およびフィーダ装置2の上方に配設されている。Y軸レール941、942上に、Y軸スライダ943がY軸方向に移動可能に装架されている。Y軸スライダ943には、ヘッド保持部944がX軸方向に移動可能に装架されている。ヘッド保持部944は、2つのサーボモータによって水平2方向(X軸およびY軸方向)に駆動される。ヘッド保持部944は、その下側に吸着ノズル945を交換可能に保持する。吸着ノズル945は、下端に吸着開口部をもち、負圧を利用して吸着開口部に電子部品を吸着する。
 部品カメラ95は、基板搬送装置92とフィーダ装置2との間の機台91の上面に、上向きに設けられている。部品カメラ95は、吸着ノズル945がフィーダ装置2から基板K上に移動する途中で、吸着されている電子部品の状態を撮像して検出するものである。部品カメラ95が電子部品の吸着姿勢の誤差や回転角のずれなどを検出すると、制御装置96は、必要に応じて部品装着動作を微調整し、装着が困難な場合には当該の部品を廃棄する。
 制御装置は、基板Kに電子部品を装着する順序および電子部品を供給するフィーダ装置2を指定した装着シーケンスを保持している。制御装置は、部品カメラ95の撮像データおよび図略のセンサの検出データなどに基づき、装着シーケンスにしたがって部品装着動作を制御する。また、制御装置は、生産完了した基板Kの生産数や、電子部品の装着に要した装着時間、部品の吸着エラーの発生回数などの稼動データを逐次収集して更新する。
 次に、実施形態の非接触給電装置1の説明に移る。実施形態の非接触給電装置1は、パレット部材3からフィーダ装置2に向けて、電磁結合方式で非接触給電する装置である。パレット部材3は、本発明の給電側装置、対基板作業機の本体、および部品実装機9の本体に相当する。一方、フィーダ装置2は、本発明の受電側装置、搭載装置、および部品供給装置に相当する。図2は、実施形態の非接触給電装置1の構成を示す回路図である。
 パレット部材3は、非接触給電装置1の構成要素として、図2の左側に示される高周波電源回路41、給電側コンデンサ42、および給電側コイル43を有する。一方、フィーダ装置2は、非接触給電装置1の構成要素として、図2の右側に示される受電側コイル51、受電側コンデンサ53、整流回路54、および直流コンバータ55を有する。また、フィーダ装置2は、給電される電気負荷として、機構部56内にモータおよび制御CPUを有する。
 パレット部材3側の高周波電源回路41は、給電周波数fsの高周波電圧Vsを出力する。高周波電源回路41は、例えば、直流電圧を発生する直流電源と、直流電圧をスイッチングして高周波電圧Vsを生成するスイッチング回路とを組み合わせて構成できる。高周波電源回路41の一方の出力端子411は、給電側コンデンサ42の一端421に接続されている。高周波電源回路41の他方の出力端子412は、給電側コイル43の他端432に直結されている。給電側コンデンサ42は、共振用部材の一実施例である。給電側コンデンサ42の他端422は、給電側コイル43の一端431に接続されている。
 給電側コイル43は、図略の給電側コアに導体が所定回数だけ巻回されて形成されている。給電側コアは、中間部にコイルを形成して両端に接合面44(図3示)を有するC型コアや、センターコアにコイルを形成して3箇所に接合面44(図3示)を有するE型コアなどとする。給電側コアを構成する材質として、透磁率の高い電磁鋼板の積層体やフェライトなどを例示でき、透磁率の低いアルミなどであってもよい。給電側コイル43および給電側コアは、パレット部材3の前板部32の上部寄りに配設されている(図3示)。
 給電側コンデンサ42および給電側コイル43は、直列接続されており、直列共振回路を形成する。給電側コンデンサ42の静電容量値C1および給電側コイル43のインダクタンス値L1から、次式1を用いて直列共振周波数f1が求められる。
   f1=(1/2π)・(L1・C1)-0.5 ……………(式1)
 フィーダ装置2側の受電側コイル51は、図略の受電側コアに導体が所定回数だけ巻回されて形成されている。受電側コイル51の導体の断面積および巻回数は、給電側コイル43と同じでもよいし、異なっていてもよい。受電側コイル51の一端511および他端512は、整流回路54に接続されている。受電側コアは、給電側コアと同じ材質で構成され、かつ同じ形状で概ね等しい磁路断面積を有することが好ましい。受電側コアの接合面52(図3示)は、給電側コアの接合面44と対向して接合するように形成されている。受電側コイル51および受電側コアは、フィーダ装置2の前面の上部寄りに配設されている(図3示)。
 給電側コアの接合面44と受電側コアの接合面52とが対向配置されると、閉じた磁気回路が形成される。給電側コアおよび受電側コアは、磁気回路を形成することによって、給電側コイル43と受電側コイル51とを電磁結合する。これにより、受電側コイル51は、給電側コイル43から非接触給電方式で高周波電力を受け取ることができるようになる。受電側コイル51の一端511と他端512との間に発生する電圧が受電電圧Vrである。
 受電側コンデンサ53は、共振用部材の一実施例である。受電側コンデンサ53の一端および他端は、整流回路54に接続されている。受電側コイル51および受電側コンデンサ53は、並列接続されて、並列共振回路を形成する。受電側コイル51のインダクタンス値L2および受電側コンデンサ53の静電容量値C2から、次式2を用いて並列共振周波数f2が求められる。
   f2=(1/2π)・(L2・C2)-0.5 ……………(式2)
ちなみに、直列接続と並列接続の違いがあっても、式1と式2は同形である。
 整流回路54は、受電側コイル51から受け取った高周波の受電電圧Vrを整流して直流電圧Vdを生成し、直流コンバータ55に供給する。整流回路54として、4個のダイオードをブリッジ接続した全波整流回路を例示でき、適宜平滑回路を設けてもよい。整流回路54の回路構成は、上記に限定されない。
 直流コンバータ55は、整流回路54から受け取った直流電圧Vdを所定の出力電圧VLに調整して、機構部56の電気負荷に供給する。直流コンバータ55は、給電側コイル43と受電側コイル51との電磁結合の結合度の低下や電気負荷の負荷変動に起因して受電電圧Vrおよび直流電圧Vdが変動しても、出力電圧VLを一定に保つ電圧調整作用を有する。直流コンバータ55は、入力される直流電圧Vdが上昇することを想定して、所定の耐電圧性能が具備されている。高い耐電圧性能を有する直流コンバータ55は、コストがアップする。直流コンバータ55として、例えば、スイッチングレギュレータを用いることができる。整流回路54および直流コンバータ55は、本発明の受電回路を構成する。
 出力電圧VLは、単一の直流電圧であってもよく、複数種類の電気負荷に対応して大きさの異なる2段階の直流電圧であってもよい。例えば、機構部56内のモータの直流駆動電圧と制御CPUの直流制御電圧とが異なっていてもよい。この場合、直流駆動電圧および直流制御電圧に対応して、直流コンバータ55を2台設けることができる。また、直流駆動電圧として整流回路54から供給される直流電圧Vdをそのまま使用するとともに、1台の直流コンバータ55で直流電圧Vdを直流制御電圧に変換して供給するようにしてもよい。
 ここで、図3に示されるように、フィーダ装置2がパレット部材3に搭載される状況を考える。図3は、フィーダ装置2がパレット部材3に搭載される状況を示す側面図である。フィーダ装置2がパレット部材3に搭載されるときに、受電側コイル51および受電側コアは、給電側コイル43および給電側コアに正対する。そして、白抜き矢印Jに示されるようにフィーダ装置2が前方に向かって(図では左方に)スライド移動されると、給電側コアの接合面44と受電側コアの接合面52とが正対してギャップ長GLを減少させながら接合または接近する。
 フィーダ装置2が良好に搭載されると、接合面44、52同士が接合して、ギャップ長GLは殆ど無くなる。フィーダ装置2が良好に搭載されない場合には、接合面44、52同士の間に何らかの異常が発生する。例えば、接合面44、52の間にギャップ長GLが残ったままとなり、あるいは、接合面44、52同士が平行せずに片当りし、あるいは、接合面44、52の間に異物を挟み込んでしまい、あるいは、接合面44、52の一部が割れて欠損する。このような異常では、磁気回路に欠陥が発生して、給電側コイル43と受電側コイル51との電磁結合の結合度が低下する。
 さらに、磁気回路の状態に応じて、給電側コイル43のインダクタンス値L1および受電側コイル51のインダクタンス値L2が変化する。図4は、給電側コイル43および受電側コイル51のインダクタンス値L1、L2がコアの接合面44、52のギャップ長GLに依存して変化する特性を定性的に示した図である。図示されるように、接合面44、52のギャップ長GLが増加すると、インダクタンス値L1、L2は減少する。ただし、ギャップ長GLが極端に拡がっても、インダクタンス値L1、L2は一定値に落ち着く。そして、インダクタンス値L1、L2の変化に伴い、式1および式2で求められる共振周波数f1、f2が偏移する。
 上記した共振周波数f1、f2の偏移および受電電圧Vrの変化は、シミュレーションによって求めることができる。図5は、給電側コアと受電側コアとのギャップ長GLが殆ど無い良好な接合状態における受電電圧Vrの周波数特性を示した図である。また、図6は、給電側コアと受電側コアとのギャップ長GLが拡がった良好でない接合状態における受電電圧Vrの周波数特性を示した図である。図5および図6で、横軸は、高周波電源回路41の給電周波数fs(対数表示)を示し、縦軸は、受電側コイル51の一端511と他端512との間の受電電圧Vrを示している。シミュレーションにおいて、高周波電源回路41の高周波電圧Vsの大きさは一定条件として給電周波数fsを変化させ、さらに、機構部56の電気負荷は低負荷時と高負荷時の2条件を設定した。図5および図6において、低負荷時の受電電圧Vrの周波数特性は実線で示され、高負荷時の受電電圧Vrの周波数特性は破線で示されている。
 図5に示されるように、良好な接合状態における受電電圧Vrの周波数特性は、2箇所にピークを有する二山特性となっている。下側のピーク周波数fAは、給電側の直列共振周波数f1に由来し、上側のピーク周波数fCは、受電側の並列共振周波数f2に由来している。また、図6に示されるように、良好でない接合状態における受電電圧Vrの周波数特性も、2箇所にピークを有する二山特性となっている。ただし、下側および上側のピーク周波数fB、fDは、図5よりも高周波側に偏移している。
 逆に言えば、ギャップ長GLの増加に応じて電磁結合の結合度が低下してゆくと、給電側の直列共振周波数f1は、ピーク周波数fAからピーク周波数fBまで増加する。同様に、電磁結合の結合度が低下してゆくと、受電側の並列共振周波数f2は、ピーク周波数fCからピーク周波数fDまで増加する。なお、前述したようにギャップ長GLが極端に拡がってもインダクタンス値L1、L2は一定値に落ち着くので、直列共振周波数f1および並列共振周波数f2の増加には上限がある。
 本実施形態において、高周波電源回路41は、直列共振周波数f1と並列共振周波数f2との間の周波数f0を使用する。厳密には、高周波電源回路41は、電磁結合の結合度が変化したときに給電側の直列共振周波数f1が変動する上限のピーク周波数fBよりも高く、かつ受電側の並列共振周波数f2が変動する下限のピーク周波数fCよりも低い周波数f0を給電周波数fsに使用する。各周波数の大小関係は、次の不等式で表される。
   f1(=fA~fBまで偏移)<f0(=fs)<f2(=fC~fDまで偏移)
 また、低負荷時と高負荷時とを比較すると、全周波数帯において低負荷時のほうが受電電圧Vrは高くなる。特に、低負荷時の受電電圧Vrは、各ピーク周波数fA、fB、fC、fDの近傍において大きく跳ね上がる。一方、高負荷時の受電電圧Vrは、下側のピーク周波数fA、fBの近傍において増加するが、低負荷時ほど顕著に跳ね上がらない。また、高負荷時の受電電圧Vrは、上側のピーク周波数fC、fDの近傍において増加が目立たない。
 ここで、高周波電源回路41が給電周波数fsとして周波数f0以外の周波数を使用した場合を考える。例えば、高周波電源回路41がピーク周波数fAを使用した場合、良好な接合状態において高負荷時から低負荷時に変化すると、受電電圧Vrは、図5のVr1からVr2に跳ね上がる。また、高周波電源回路41がピーク周波数fAを使用した場合、接合状態が図5から図6に低下すると、受電電圧Vrは、図6のVr3と極端に低下する。また例えば、高周波電源回路41がピーク周波数fBを使用した場合、良好でない接合状態において高負荷時から低負荷時に変化すると、受電電圧Vrは、図6のVr4からVr5に跳ね上がる。
 さらに、高周波電源回路41がピーク周波数fAとピーク周波数fBとの間の周波数を使用した場合、図5と図6の中間的な接合状態において負荷変化時に受電電圧Vrが跳ね上がるおそれを解消できない。一方、高周波電源回路41がピーク周波数fCとピーク周波数fDとの間の周波数を使用した場合も同様であり、やはり、負荷変化時に受電電圧Vrが跳ね上がるおそれを解消できない。
 これに対し、実施形態においては、コア間の接合状態の変化に伴い受電電圧Vrの周波数特性が偏移しても、高周波電源回路41が使用する周波数f0は、周波数特性のピークに重ならない。周波数f0における受電電圧Vrは、図5のVr6、Vr7および図6のVr8、Vr9に示されるように、比較的大きく、かつ負荷依存特性が小さい。したがって、実施形態によれば、フィーダ装置2の電気負荷が負荷変動し、さらにコア間の接合状態が変化しても、受電電圧Vrが跳ね上がるおそれを解消できる。加えて、高周波電源回路41が高周波電圧Vsを出力しているときに、フィーダ装置2を急に着脱操作しても、過渡的な受電電圧Vrの増加を抑制できる。
 また、受電電圧Vrが比較的大きいことは、高周波電源回路41の高周波電圧Vsが小さくて済むことを意味する。さらに、周波数f0が少し偏移しても(図5および図6で左右に移動しても)、受電電圧Vrは殆ど変化せず、周波数特性が平坦になっている。つまり、給電周波数fsが多少変動しても、あるいはインダクタンス値L1、L2および静電容量値C1、C2が多少変動しても、一定の受電電圧Vrが得られる。したがって、実施形態の非接触給電装置1は、動作安定性に優れる。
 なお、ピーク周波数fAよりも低い周波数やピーク周波数fDよりも高い周波数を給電周波数fsに使用しても、受電電圧Vrが跳ね上がるおそれは解消できる。しかしながら、この場合には、受電電圧Vrの大きさが極端に低下してしまう。したがって、所定の受電電圧Vrを得るために高周波電源回路41の高周波電圧Vsを大きくする必要が生じるため、得策にならない。
 実施形態の非接触給電装置1は、パレット部材3に設けられた給電側コイル43と、給電側コイル43に高周波電圧を印加する高周波電源回路41と、パレット部材3に対向配置されるフィーダ装置2に設けられ、給電側コイル43と電磁結合して非接触給電により高周波電力を受け取る受電側コイル51と、受電側コイル51が受け取った高周波電力を変換してフィーダ装置2の電気負荷に給電する受電回路(整流回路54および直流コンバータ55)と、給電側コイル43および受電側コイル51の少なくとも一方に接続されて共振回路を形成する少なくとも1個の共振用部材(給電側コンデンサ42および受電側コンデンサ53)と、を備え、高周波電源回路41は、共振回路の共振周波数f1、f2から外れた周波数f0を使用する。
 これによれば、高周波電源回路41は、共振回路の共振周波数f1、f2から外れた周波数f0を使用して非接触給電を行う。これにより、受電電圧Vrの負荷依存特性が小さくかつ周波数特性の平坦な周波数f0で非接触給電を行え、高周波電源回路41の高周波電圧Vsを電圧調整しなくてよくなる。つまり、受電側の電圧検出部、給電側の電圧調整部、および受電電圧情報の伝達手段などを不要にできる。また、受電側の電気負荷の変動によって引き起こされる受電電圧Vrの跳ね上がりが抑制されるので、受電側に保護回路を設ける耐電圧対策は不要となる。したがって、受電電圧Vrの変動を抑制して装置構成および回路構成を簡易とし、装置コストの削減および取付スペースの削減に貢献できる。
 また、受電電圧Vrの負荷依存特性および周波数特性による変動が抑制されるので、実施形態の非接触給電装置1は、動作安定性に優れる。このことは、高周波電源回路の給電周波数fsの変動や、インダクタンス値L1、L2および静電容量値C1、C2の変動を許容できることを意味する。したがって、装置1の設計上および製造上の自由度が大いに拡がる。
 さらに、実施形態の非接触給電装置1において、高周波電源回路41は、給電側コイル43と受電側コイル51との電磁結合の結合度が変化したときに共振周波数f1、f2が変動する範囲(ピーク周波数fA~fB、ピーク周波数fC~fD)から外れた周波数f0を使用する。
 これによれば、コア間の接合状態の変化に伴い受電電圧Vrの周波数特性が偏移しても、高周波電源回路41が使用する周波数f0は、周波数特性のピークに重ならない。したがって、受電電圧Vrが跳ね上がるおそれを解消できる。また、受電電圧Vrの周波数特性が周波数f0の付近で平坦であるので、コア同士の接合面44、52のギャップ長GLの管理に厳密性を必要としない。したがって、装置1の設計上および製造上の自由度が大いに拡がる。
 さらに、実施形態の非接触給電装置1において、共振用部材は、給電側コイル43に直列接続された給電側コンデンサ42と、受電側コイル51に並列接続された受電側コンデンサ53とを含む。加えて、共振周波数は、給電側コイル43および給電側コンデンサ42に依存する直列共振周波数f1、ならびに、受電側コイル51および受電側コンデンサ53に依存する並列共振周波数f2を含み、高周波電源回路41は、直列共振周波数f1と並列共振周波数f2との間の周波数f0を使用する。
 これによれば、比較的大きく安定した受電電圧Vrが得られることから、高周波電源回路41の高周波電圧Vsが小さくて済む。仮に、直列共振周波数f1と並列共振周波数f2との間から外れた周波数を使用した場合に、高周波電源回路41の高周波電圧Vsを大きくする必要が生じるため、得策にならない。
 さらに、実施形態の非接触給電装置1において、パレット部材3は、基板Kに電子部品を装着する部品実装機9の本体に属し、フィーダ装置2は、部品実装機9に着脱可能に搭載されて電子部品を供給する部品供給装置であり、パレット部材3に設けられた給電側コイル43は、電磁結合を担う給電側鉄心を有し、フィーダ装置2に設けられた受電側コイル51は、給電側鉄心と共同して電磁結合を担う受電側鉄心を有し、フィーダ装置2がパレット部材3搭載されるときに、給電側鉄心の接合面44と受電側鉄心の接合面52とが正対してギャップ長GLを減少させながら接合または接近する。
 これによれば、パレット部材3の側に電圧調整機能は不要であり、パレット部材3のコストの削減および取付スペースの削減に貢献できる。また、フィーダ装置2の側に保護回路を設ける耐電圧対策は不要であり、フィーダ装置2のコストの削減および取付スペースの削減に貢献できる。さらに、パレット部材3からフィーダ装置2に向けての非接触給電は、動作安定性に優れる。
 さらに、実施形態の非接触給電装置1において、受電回路は、受電側コイル51が受け取った高周波電力を直流に変換する整流回路54、および整流回路54から受け取った直流電圧Vdを出力電圧VLに調整する直流コンバータ55を含んで構成される。
 これによれば、仮に受電電圧Vrが変動しても、直流コンバータ55の電圧調整作用により電気負荷に加える出力電圧VLを安定化できるので、給電側での電圧調整を確実に不要化できる。また、受電電圧Vrの負荷依存特性が小さくかつ周波数特性の平坦な周波数f0で非接触給電を行うので、直流コンバータ55を高耐電圧化する対策は不要となる。したがって、装置コストの削減および取付スペースの削減に大きく貢献できる。
 なお、給電側の直列共振周波数f1と受電側の並列共振周波数f2との大小関係は、実施形態に限定されず、直列共振周波数f1が並列共振周波数f2より高くてもよい。本発明は、その他にも様々な応用や変形が可能である。
 本発明の非接触給電装置は、実施形態で説明した部品実装機9のフィーダ装置2以外にも、他種の対基板作業機や、他の製品を生産する組立機や加工機などに幅広く利用できる。
  1:非接触給電装置
  2:フィーダ装置(受電側装置、搭載装置)
  3:パレット部材(給電側装置、対基板作業機の本体)
  41:高周波電源回路  42:給電側コンデンサ(共振用部材)
  43:給電側コイル  44:給電側コアの接合面
  51:受電側コイル  52:受電側コアの接合面
  53:受電側コンデンサ(共振用部材)  54:整流回路
  55:直流コンバータ  56:機構部(電気負荷)
  fA、fB、fC、fD:ピーク周波数
  f0:給電周波数に使用する周波数
  Vr、Vr1~Vr9:受電電圧  GL:ギャップ長

Claims (7)

  1.  給電側装置に設けられた給電側コイルと、
     前記給電側コイルに高周波電圧を印加する高周波電源回路と、
     前記給電側装置に対向配置される受電側装置に設けられ、前記給電側コイルと電磁結合して非接触給電により高周波電力を受け取る受電側コイルと、
     前記受電側コイルが受け取った高周波電力を変換して前記受電側装置の電気負荷に給電する受電回路と、
     前記給電側コイルおよび前記受電側コイルの少なくとも一方に接続されて共振回路を形成する少なくとも1個の共振用部材と、を備え、
     前記高周波電源回路は、前記共振回路の共振周波数から外れた周波数を使用する非接触給電装置。
  2.  前記高周波電源回路は、前記給電側コイルと前記受電側コイルとの電磁結合の結合度が変化したときに前記共振周波数が変動する範囲から外れた周波数を使用する請求項1に記載の非接触給電装置。
  3.  前記共振用部材は、前記給電側コイルに直列接続された給電側コンデンサと、前記受電側コイルに並列接続された受電側コンデンサとを含む請求項1または2に記載の非接触給電装置。
  4.  前記共振周波数は、前記給電側コイルおよび前記給電側コンデンサに依存する直列共振周波数、ならびに、前記受電側コイルおよび前記受電側コンデンサに依存する並列共振周波数を含み、
     前記高周波電源回路は、前記直列共振周波数と前記並列共振周波数との間の周波数を使用する請求項3に記載の非接触給電装置。
  5.  前記給電側装置は、基板に所定の作業を行う対基板作業機の本体であり、前記受電側装置は、前記対基板作業機に搭載される搭載装置である請求項1~4のいずれか一項に記載の非接触給電装置。
  6.  前記対基板作業機の本体は、前記基板に電子部品を装着する部品実装機の本体であり、前記搭載装置は、前記部品実装機に着脱可能に搭載されて前記電子部品を供給する部品供給装置であり、
     前記部品実装機の本体に設けられた給電側コイルは、前記電磁結合を担う給電側鉄心を有し、
     前記部品供給装置に設けられた受電側コイルは、前記給電側鉄心と共同して前記電磁結合を担う受電側鉄心を有し、
     前記部品供給装置が前記部品実装機の本体に搭載されるときに、前記給電側鉄心の接合面と前記受電側鉄心の接合面とが正対してギャップ長を減少させながら接合または接近する請求項5に記載の非接触給電装置。
  7.  前記受電回路は、前記受電側コイルが受け取った高周波電力を直流に変換する整流回路、および前記直流の電圧を調整する直流コンバータを含んで構成される請求項1~6のいずれか一項に記載の非接触給電装置。
PCT/JP2014/069843 2014-07-28 2014-07-28 非接触給電装置 WO2016016930A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016537623A JP6441929B2 (ja) 2014-07-28 2014-07-28 非接触給電装置
PCT/JP2014/069843 WO2016016930A1 (ja) 2014-07-28 2014-07-28 非接触給電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069843 WO2016016930A1 (ja) 2014-07-28 2014-07-28 非接触給電装置

Publications (1)

Publication Number Publication Date
WO2016016930A1 true WO2016016930A1 (ja) 2016-02-04

Family

ID=55216876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069843 WO2016016930A1 (ja) 2014-07-28 2014-07-28 非接触給電装置

Country Status (2)

Country Link
JP (1) JP6441929B2 (ja)
WO (1) WO2016016930A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113831A (ja) * 2017-01-13 2018-07-19 オムロン株式会社 非接触給電装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125198A (ja) * 2006-11-09 2008-05-29 Ishida Co Ltd 非接触給電装置
JP2010200571A (ja) * 2009-02-27 2010-09-09 Toko Inc 非接触電力伝送回路
JP2010283257A (ja) * 2009-06-08 2010-12-16 Juki Corp 電子部品実装装置
JP2013027132A (ja) * 2011-07-20 2013-02-04 Panasonic Corp 非接触給電システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125198A (ja) * 2006-11-09 2008-05-29 Ishida Co Ltd 非接触給電装置
JP2010200571A (ja) * 2009-02-27 2010-09-09 Toko Inc 非接触電力伝送回路
JP2010283257A (ja) * 2009-06-08 2010-12-16 Juki Corp 電子部品実装装置
JP2013027132A (ja) * 2011-07-20 2013-02-04 Panasonic Corp 非接触給電システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113831A (ja) * 2017-01-13 2018-07-19 オムロン株式会社 非接触給電装置
WO2018131261A1 (ja) * 2017-01-13 2018-07-19 オムロン株式会社 非接触給電装置

Also Published As

Publication number Publication date
JP6441929B2 (ja) 2018-12-19
JPWO2016016930A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
US9601265B2 (en) Wireless power transmission apparatus and direct drive type system including the apparatus
JP5550785B2 (ja) 非接触型の誘導電力伝送システムの回路
CN108028549B (zh) 非接触供电装置
JP5980329B2 (ja) 静電結合方式非接触給電装置
JP6095661B2 (ja) 非接触給電装置
JP6076355B2 (ja) 非接触給電装置
JP6441929B2 (ja) 非接触給電装置
JP6170057B2 (ja) 静電結合方式非接触給電装置およびその制御方法
CN108604822B (zh) 非接触供电装置
JP6126880B2 (ja) 直動ロボットの無線給電装置
JP6343003B2 (ja) 非接触給電装置
WO2017094119A1 (ja) 非接触給電装置
WO2016009525A1 (ja) 給電装置
JP6104231B2 (ja) 静電結合方式非接触給電装置
JP6086927B2 (ja) 静電結合方式非接触給電装置
CN108886272B (zh) 非接触供电装置
JPWO2014010044A1 (ja) 静電結合方式非接触給電装置
US20140054972A1 (en) Wireless power transmission system
JP2017147848A (ja) 非接触給電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016537623

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898970

Country of ref document: EP

Kind code of ref document: A1