WO2017043417A1 - 化合物系薄膜太陽電池基板用ステンレス鋼およびその製造方法並びに化合物系薄膜太陽電池 - Google Patents

化合物系薄膜太陽電池基板用ステンレス鋼およびその製造方法並びに化合物系薄膜太陽電池 Download PDF

Info

Publication number
WO2017043417A1
WO2017043417A1 PCT/JP2016/075720 JP2016075720W WO2017043417A1 WO 2017043417 A1 WO2017043417 A1 WO 2017043417A1 JP 2016075720 W JP2016075720 W JP 2016075720W WO 2017043417 A1 WO2017043417 A1 WO 2017043417A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
solar cell
compound
film solar
Prior art date
Application number
PCT/JP2016/075720
Other languages
English (en)
French (fr)
Inventor
秦野 正治
昭仁 山岸
俊彦 内田
浅野 明彦
雅弘 斉藤
Original Assignee
ソーラーフロンティア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソーラーフロンティア株式会社 filed Critical ソーラーフロンティア株式会社
Priority to US15/758,296 priority Critical patent/US20180265953A1/en
Publication of WO2017043417A1 publication Critical patent/WO2017043417A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Definitions

  • the present invention relates to a technique for producing a stainless steel substrate having excellent gas corrosion resistance without depending on surface treatment such as coating or plating, and a method for producing the same.
  • the present invention also relates to a compound thin film solar cell in which a compound light absorption layer such as an inorganic insulating layer or a CIS (Cu—In—Ga—Se—S) thin film is laminated.
  • Patent Documents 1 and 2 disclose an insulating material in which a surface of a smooth stainless steel plate is coated with alumina, silicon oxide, or a silicon nitride film.
  • a general-purpose ferritic stainless steel SUS430 (17Cr steel) is used as the material for the insulating material.
  • Patent Document 3 discloses a material that defines both the surface roughness parameters Rz and Rsk as stainless steel having good film formability.
  • SUS430J1L (18Cr-0.4Cu-0.4Nb) to which Nb and Cu are added and general-purpose austenitic stainless steel SUS304 (18Cr-8Ni) are used as the stainless steel material.
  • a compound-based thin film solar cell is formed by forming an insulating layer on a substrate, forming a first electrode layer made of a Mo layer on the insulating layer, and forming a chalcopyrite type compound layer as a light absorption layer thereon. And a second electrode layer is formed.
  • the chalcopyrite type compound is a ternary alloy represented by a Cu—In—Ga—Se—S system (hereinafter referred to as CIS system).
  • Patent Document 4 an insulating film disclosed in Patent Documents 1 and 2 is formed on a stainless steel foil of 0.2 mm or less, and a back electrode made of a Mo layer described in [0004] on the insulating substrate. and Cu (in 1-x Ga x ) the production method of the solar cell substrate material for forming a light absorbing layer consisting of Se 2 film is disclosed.
  • SUS430, SUS444 (18Cr-2Mo), and SUS447J1 (30Cr-2Mo) are used as the material for the stainless steel foil.
  • Patent Documents 5 and 6 in a Cu-coated steel sheet having a Cu coating layer, a light absorption layer composed of the Mo electrode and the Cu (In 1-x Ga x ) Se 2 film is formed on the Cu coating layer.
  • An electrode substrate for a CIS solar cell is disclosed.
  • the material of the Cu-coated steel sheet C: 0.0001 to 0.15%, Si: 0.001 to 1.2%, Mn: 0.001 to 1.2%, P: 0.001 to 0 0.04%, S: 0.0005-0.03%, Ni: 0-0.6%, Cr: 11.5-32.0%, Mo: 0-2.5%, Cu: 0-1.
  • Patent Document 7 discloses a stainless steel material on which an insulating film having good heat resistance is formed and a method for producing the same.
  • Stainless steel used as a base material is: C: 0.0001 to 0.15%, Si: 0.001 to 1.2%, Mn: 0.001 to 2.0%, P: 0.001 to 0.05.
  • a mixed layer of NiO and NiFe 2 O 4 having a thickness of 1.0 ⁇ m or more is formed.
  • the mixed layer of NiO or the like and the Al oxide layer are formed by applying Ni by electroplating, and then forming an Al oxide layer at the interface between the steel and the Ni plating by heat treatment in the atmosphere. Created by transforming into an oxide layer.
  • Patent Documents 8 and 9 in a film forming process of a compound thin film solar cell, Cu, In, and Ga, which are precursors of a light absorption layer, are sputtered onto a substrate to form a CIS compound thin film.
  • a heat treatment process (selenization / sulfurization process) is disclosed in which it is exposed to a highly corrosive gas atmosphere such as hydrogen selenide (H 2 Se) or hydrogen sulfide (H 2 S).
  • H 2 Se hydrogen selenide
  • H 2 S hydrogen sulfide
  • an object of the present invention is to provide a stainless steel having gas corrosion resistance suitable for a substrate of a compound-based thin film solar cell, a manufacturing method thereof, and a method based on the stainless steel, without depending on a coating or plating surface treatment.
  • the object is to provide a compound thin-film solar cell as a material.
  • the present inventors have conducted extensive experiments and studies on the resistance to gas corrosion that occurs in the manufacturing process of ferritic stainless steel having a thermal expansion coefficient close to that of glass and a compound thin film solar cell.
  • the present invention was completed. The knowledge obtained by the present invention will be described below.
  • the gist of the present invention based on the above findings (a) to (e) is as follows.
  • an Fe—Cr—Al-based oxide film having at least a maximum value of Si or Ti of 2% by mass or more is further formed ( Stainless steel for compound-based thin-film solar cell substrates according to 1).
  • Si: 0.3% or more, Ti: 0.03-0.5%, Mg: 0.05% or less, Ga: 0.1% or less, including one or more Mg + Ga> 0.001% is satisfied, The compound type thin film solar cell substrate stainless steel described in (1) or (2).
  • the stainless steel is further mass%, Ni: 1% or less, Cu: 1% or less, Mo: 2% or less, V: 0.5% or less, Nb: 0.5% or less, Sn: 0.2% or less, Sb: 0.2%, W: 1% or less, Zr: 0.2% or less, Co: 0.2% or less, B: 0.005% or less, Ca: 0.005% or less , La: 0.1% or less, Y: 0.1% or less, Hf: 0.1% or less, REM: 0.1% or less, or one or more thereof (1)
  • the stainless steel for a compound thin film solar cell substrate according to any one of (3).
  • the stainless steel having the composition described in any one of (1), (3), and (4) is heat-treated in an atmosphere containing hydrogen gas in a temperature range of 700 to 1100 ° C.
  • a method for producing stainless steel for a compound-based thin-film solar cell substrate comprising forming the Fe—Cr—Al-based oxide film described in (1) or (2) on the surface of a stainless steel plate.
  • (6) Using the stainless steel described in any one of (1) to (4) as a substrate, an insulating layer formed on the substrate, and a first electrode layer formed on the insulating layer, A compound-based thin film solar cell comprising: a compound-based light absorption layer formed on the first electrode layer; and a second electrode layer formed on the compound-based light absorption layer.
  • the inventions related to the steels (1) to (6) are referred to as the present invention.
  • the upper limit is made 0.03%.
  • the lower limit is preferably 0.001%. From the viewpoint of oxidation resistance and manufacturability, the preferred range is 0.002 to 0.02%.
  • Si is an important element in securing the gas corrosion resistance aimed by the present invention.
  • Si dissolves in the oxide film and also concentrates at the oxide film / steel interface to improve gas corrosion resistance in a hydrogen selenide (H 2 Se) and hydrogen sulfide (H 2 S) atmosphere.
  • the lower limit is preferably 0.1%.
  • the upper limit is made 2%. From the viewpoint of gas corrosion resistance and basic characteristics, 1.5% or less is preferable.
  • the content is preferably 0.3% or more.
  • Mn suppresses the surface oxidation of Fe and promotes the formation of the surface film of Al, Si and Ti, which is the target of the present invention.
  • the lower limit is preferably 0.1% or more.
  • excessive addition reduces oxidation resistance and inhibits the target gas corrosion resistance of the present invention, so the upper limit is made 2%. From the viewpoint of oxidation resistance and gas corrosion resistance of the present invention, 1% or less is preferable.
  • the content is preferably in the range of 0.2 to 1%.
  • Cr in addition to corrosion resistance, is a basic constituent element for ensuring the formation of the target surface film and gas corrosion resistance in the present invention.
  • the lower limit is 10%.
  • excessive addition of Cr not only promotes the formation of the ⁇ phase that is an embrittlement phase when exposed to a high-temperature atmosphere, but also increases the cost of the alloy.
  • the upper limit is set to 25% from the viewpoints of basic characteristics and manufacturability and the target gas corrosion resistance of the present invention. From the viewpoint of basic characteristics, gas corrosion resistance and alloy cost, the preferred range is 13 to 22%, and the more preferred range is 16 to 19%.
  • the upper limit is made 0.05%.
  • the lower limit is preferably 0.003%. From the viewpoint of manufacturability and weldability, the preferred range is 0.005 to 0.04%, more preferably 0.01 to 0.03%.
  • the S is an unavoidable impurity element contained in the steel, and lowers the oxidation resistance and inhibits the gas corrosion resistance aimed by the present invention.
  • the presence of Mn inclusions and solute S also acts as a starting point for breaking the surface oxide film when exposed to a high temperature atmosphere. Therefore, the lower the amount of S, the better. Therefore, the upper limit is made 0.01%.
  • the lower limit is set to 0.0001.
  • the preferred range is 0.0001 to 0.002%, more preferably 0.0002 to 0.001%.
  • N like C, inhibits the target gas corrosion resistance of the present invention. For this reason, the smaller the amount of N, the better.
  • the upper limit is made 0.03%. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.002%. From the viewpoint of gas corrosion resistance and manufacturability, the preferred range is 0.005 to 0.02%.
  • Al is an additive element essential for achieving gas corrosion resistance by the surface film modification aimed by the present invention.
  • the lower limit is 0.5%.
  • excessive addition of Al causes a reduction in the toughness and weldability of the steel and hinders the productivity, which raises the cost of the alloy and raises the problem of economic efficiency.
  • the upper limit is 5% from the viewpoint of basic characteristics and economy. From the viewpoint of gas corrosion resistance, basic characteristics, and economical efficiency of the present invention, the preferred range is 1.0 to 3.5%, and the more preferred range is 1.5 to 2.5%.
  • Ti in addition to improving oxidation resistance through high purity of steel by the action of a stabilizing element that fixes C and N, improves gas corrosion resistance through film modification, which is a target of the present invention.
  • it is added as necessary.
  • the content is 0.03% or more.
  • the upper limit is preferably set to 0.5%.
  • the preferred range is 0.05 to 0.35%, and more preferred range is 0.1 to 0.3% more actively utilizing the effect of Ti. is there.
  • Mg and Ga are preferable in order to obtain the surface film formation and gas corrosion resistance which are the targets of the present invention.
  • these elements are concentrated in the vicinity of the iron-iron interface and suppress the surface concentration of Fe, and as a result, they have an action of promoting selective oxidation of Al, Si, and Ti.
  • the lower limit of Mg and Ga is 0.0005%.
  • Mg and Ga the total content shall be over 0.001%.
  • the upper limits are Mg: 0.05% and Ga: 0.1%.
  • Mg: 0.001 to 0.02% and Ga: 0.001 to 0.02% are preferable.
  • the stainless steel of the present invention may further comprise Ni: 1% or less, Cu: 1% or less, Mo: 2% or less, V: 0.5% or less, Nb: 0.5% or less, Sn if necessary. : 0.2% or less, Sb: 0.2% or less, W: 1% or less, Zr: 0.5% or less, Co: 0.5% or less, B: 0.005% or less, Ca: 0.005 % Or less, La: 0.1% or less, Y: 0.1% or less, Hf: 0.1% or less, REM: 0.1% or less. Also good.
  • Ni, Cu, Mo, V, Nb, W, Sn, Sb, and Co are effective elements for increasing the high temperature strength and corrosion resistance of the stainless steel, and are added as necessary.
  • the upper limit of Ni, Cu and W is 1%.
  • Mo is an element effective for suppressing high-temperature deformation due to a decrease in thermal expansion coefficient, the upper limit is made 2%.
  • the upper limit of V, Nb, Zr, and Co is 0.5%.
  • the upper limit of Sn and Sb is 0.2% from the viewpoint of manufacturability.
  • the lower limit of the more preferable content of any element is 0.1%.
  • B and Ca are elements that improve hot workability and secondary workability, and are added as necessary. However, since excessive addition leads to the inhibition of manufacturability, the upper limit is made 0.005%. A preferred lower limit is 0.0001%.
  • Zr, La, Y, Hf, and REM are elements that are conventionally effective for improving hot workability, cleanliness of steel, and improving oxidation resistance, and are added as necessary. Also good.
  • the gas corrosion resistance targeted by the present invention does not depend on the effect of addition of these elements.
  • the upper limit of Zr is 0.5%, and the upper limits of La, Y, Hf, and REM are each 0.1%.
  • a more preferable lower limit of Zr is 0.01%, and a preferable lower limit of La, Y, Hf, and REM is 0.001%.
  • REM is an element belonging to atomic numbers 57 to 71, such as Ce, Pr, and Nd.
  • the elements of the present invention can be contained within a range not impairing the effects. It is preferable to reduce as much as possible Zn, Bi, Pb, Se, H, Ta, etc. as well as the above-mentioned general impurity elements P and S. On the other hand, the content ratio of these elements is controlled within the limits of solving the problems of the present invention. If necessary, Zn ⁇ 500 ppm, Bi ⁇ 100 ppm, Pb ⁇ 100 ppm, Se ⁇ 100 ppm, H ⁇ 100 ppm, Ta One or more of ⁇ 500 ppm may be contained.
  • the compound-type thin film solar cell substrate stainless steel of the present invention has the above-described steel components and forms a film on which Al, Si, and / or Ti are concentrated.
  • the upper limit of the film thickness is preferably 15 nm, and is preferably 10 nm or less by performing bright annealing in consideration of productivity, or heat treatment or pickling that provides an effect equivalent to bright annealing.
  • the lower limit of the film thickness is not particularly specified, but is preferably 2 nm or more which exerts an effect on the gas corrosion resistance in H 2 Se and H 2 S.
  • a more preferable film thickness range is 3 to 8 nm.
  • the above film composition has an effect on the gas corrosion resistance in H 2 Se and H 2 S, and in the cation ion fraction excluding O and C, the maximum value of Al concentration is 30% by mass or more, and the surface The Fe concentration at a depth of 2 nm is set to 30% by mass or less. Al is concentrated from the inner layer of the surface coating to the interface with the iron base, and exhibits an effect of remarkably suppressing the penetration of corrosive gas into the steel of Se or S. These effects are manifested by increasing the Al concentration in the surface film to a maximum value of 30% by mass or more, preferably 50% by mass or more, and more preferably 60% by mass or more.
  • the upper limit of the Al concentration is not particularly specified, but is 90% by mass, more preferably 80% by mass in consideration of efficiency such as bright annealing.
  • the Fe concentration is lowered by forming a film enriched with Al on the surface, and corrosion products composed of Se or a compound of S and Fe can be reduced. These effects are manifested by reducing the Fe concentration at a depth of 2 nm from the surface to 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less.
  • the lower limit of the Fe concentration is not particularly specified, but is set to 1% by mass, more preferably 3% by mass in consideration of efficiency such as bright annealing.
  • the surface film preferably further contains Si and / or Ti in order to enhance gas corrosion resistance.
  • Si or Ti When Si or Ti is concentrated in the Fe—Cr—Al-based oxide film and at the film / base metal interface, it has an action of suppressing the penetration of corrosive gas into the steel of Se or S and the formation of corrosion products.
  • the presence of Fe, Cr, Al, Si, and Ti in the surface coating is determined by glow discharge mass spectrometry (GDS analysis; Grow Discharge optical emission Spectrometry). It can detect with some Fe and Cr, and can measure each element profile from the surface. From the measurement results of each element profile from the surface, the film thickness can be obtained from the position (half width) at which the detected intensity of O becomes half in the depth direction from the surface.
  • the concentration from the surface of Fe to 2 nm and the maximum values of Al, Si, and Ti can be obtained by removing each of O and C and creating each element profile converted into a cation ion fraction.
  • the production method will be described below.
  • the materials are thin plates, foils, thick intermediate plates, and bar wires, and the manufacturing method of the materials is not particularly specified.
  • the thickness of the thin plate is 0.2 mm or more
  • the foil is 0.02 to less than 0.2 mm
  • the thickness of the thick intermediate plate is 6 mm or more.
  • the surface roughness of steel is not particularly specified, and JIS-compliant BA, 2B, 2D, No. 4. What is necessary is just polishing.
  • the hot-rolled steel strip is mainly subjected to annealing or annealing, followed by cold rolling and then cold rolling, followed by finish annealing by bright annealing, and descaling as necessary.
  • the finish annealing temperature is preferably 700 to 1100 ° C. If it is less than 700 degreeC, softening and recrystallization of steel become inadequate, and a predetermined material characteristic may not be acquired. On the other hand, if it exceeds 1100 ° C., it becomes coarse particles, which may impair the toughness and ductility of steel.
  • the bright annealing atmosphere gas contains 50% by volume or more of hydrogen gas in order to suppress the oxidation of Fe and Cr and selectively concentrate Al, Si and / or Ti on the surface, and the balance is an inert gas.
  • the dew point of the atmospheric gas is preferably ⁇ 40 ° C. or less, and the hydrogen gas is preferably 80% by volume or more, more preferably 90% by volume or more.
  • the remaining inert gas is industrially preferably inexpensive nitrogen gas, but may be Ar gas or He gas.
  • oxygen and other gases may be mixed in the atmosphere gas in a range of less than 5% by volume within a range where the formation of the surface film targeted by the present invention is promoted or is not hindered.
  • the bright annealing temperature is 700 ° C. or higher, which is the recrystallization temperature of steel, and preferably 800 ° C. or higher, more preferably 850 ° C. or higher in order to lower the dew point of the atmospheric gas.
  • the heating temperature of the steel material is preferably in the range of 850 to 1000 ° C.
  • the heating time staying at the above temperature is preferably within 10 minutes assuming that bright annealing is performed in an industrial continuous annealing line. More preferably, it is within 5 minutes.
  • the lower limit of the heating temperature and the upper limit of the heating time are not particularly defined, and may be, for example, 700 ° C. and 24 hours.
  • the stainless steel of the present invention capable of achieving the formation of the surface film and the gas corrosion resistance targeted by the present invention is not limited to the bright annealing conditions.
  • the (IV) compound-based thin film solar cell will be described below.
  • the present invention provides a compound thin film solar cell using the stainless steel substrate described in the items (I) and (II).
  • a CIS type compound thin film solar cell will be described as an example, but the present invention can also be applied to a compound type thin film solar cell other than the CIS type.
  • the light absorption layer is made of a compound containing copper (Cu), zinc (Zn), tin (Sn), and a chalcogen element (selenium (Se) or sulfur (S)).
  • a CdTe system in which the light absorption layer is made of a compound containing cadmium (Cd) and tellurium (Te).
  • the insulating layer, the first electrode layer, the compound light absorption layer, and the second electrode layer are formed on the element formation surface using the stainless steel as a substrate.
  • Insulating layer SiO 2, CaO, B 2 O 3, SrO, BaO, Al 2 O 3, ZnO, ZrO 2, MgO, Na 2 O, glass or low melting point glass to at least one component of K 2 O It is preferable that
  • the thickness of the insulating layer is preferably 10 ⁇ m or more and 50 ⁇ m or less in consideration of adhesion and flatness.
  • Mo is preferably used for the first electrode layer, and Ti, W, or the like may be used from the viewpoint of gas corrosion resistance in an atmosphere of H 2 Se and H 2 S.
  • the thickness of the electrode layer is preferably several tens nm to several ⁇ m.
  • the compound-based light absorption layer is a portion that photoelectrically converts irradiated sunlight, etc. It can be formed of a CIS-based compound thin film composed of IIIB-VIB group elements.
  • the material of the CIS-based compound thin film includes at least one IB group element selected from the group consisting of Cu and Ag, at least one IIIB group element selected from the group consisting of Al, Ga, and In, and S and It can be set as at least 1 type of compound semiconductor containing the at least 1 type of VIB group element selected from the group which consists of Se.
  • the composition of the constituent elements actually forms a distribution (profile) in the depth direction of the compound light absorption layer. Note that this is not a single compound layer.
  • the thicknesses of these compound light absorption layers are set to 0. 0 in consideration of the efficiency of photoelectric conversion. It is preferably several ⁇ m to several tens of ⁇
  • An extremely thin, n-type high-resistance ZnO-based buffer layer is formed on the CIS compound light absorption layer made of a P-type semiconductor by a chemical solution growth method (Chemical-Bath-Deposition method). A pn heterojunction is formed between the two.
  • the second electrode layer is made of a transparent conductive film.
  • a zinc oxide thin film (ZnO) or indium tin oxide (ITO) doped with boron, aluminum, or gallium at a high concentration can be used.
  • the thickness of the electrode layer is preferably 0.5 ⁇ m to 2.5 ⁇ m, for example.
  • the above-described CIS solar cell thin film may have an integrated structure in which a plurality of cells are connected in series.
  • a ferritic stainless steel having the components shown in Table 1 was melted, subjected to hot rolling and annealing, and then subjected to cold rolling to obtain a foil or thin plate having a thickness of 0.05 to 0.5 mm.
  • the component of steel was made into the range prescribed
  • All of the cold-rolled steel sheets were subjected to finish annealing by bright annealing (BA) in the range of 800 to 1000 ° C. where recrystallization was completed.
  • the obtained steel sheet was subjected to heat treatment for 0.5 to 1 hour in H 2 Se and H 2 S at 400 to 600 ° C., which is a film formation process of CIS solar cells, for gas resistance. Corrosivity was evaluated. Furthermore, for steel plates with good gas corrosion resistance, CIS solar cells were formed and the conversion efficiency was measured.
  • the surface coating of the produced steel sheet can be obtained by measuring each element profile from the surface of the detected element by GDS analysis and determining the film thickness and composition. As described above, the film thickness is a half width of O, the element profile converted to the cation ion fraction, Fe is a concentration at a depth of 2 nm from the surface, and Al, Si, and Ti are the maximum values in the surface film. . Prior to the heat treatment in H 2 Se and H 2 S, these test pieces were oxidized for 1 hour in dry air at 600 to 800 ° C., which is performed during the film formation process of the solar cell.
  • the gas corrosion resistance of the steel sheet surface is determined by visual judgment as “ ⁇ ” when no corrosion is observed, “ ⁇ ” when the metal has not fallen off, and corrosion to such an extent that the metal falls off. Was marked “x”.
  • the gas corrosion resistance targeted by the present invention is assumed to correspond to “ ⁇ ”to“ ⁇ ”.
  • Table 2 summarizes the evaluation results of the surface film and gas corrosion resistance.
  • No. Nos. 1 to 8 have the components specified in the present invention and a surface film, and achieve corrosion inhibition in an H 2 Se and H 2 S atmosphere, which is a film forming process of a CIS thin film solar cell.
  • no. 3, 4, 6, 7, 8 contain the trace element Mg + Ga, satisfy a suitable Al concentration and Fe concentration in the surface film, and further contain Si and Ti in a suitable range in the surface film, Remarkable gas corrosion resistance was developed, and the evaluation was “ ⁇ ”.
  • No. Nos. 1, 2, and 5 obtained the target film composition and gas corrosion resistance of the present invention, and the evaluation was “ ⁇ ”.
  • the maximum value of Al concentration specified in the present invention is 30 mass or more
  • the Fe concentration at a depth of 2 nm from the surface is 30% by mass or less.
  • the Al concentration is increased to 60% by mass or more
  • the Fe concentration is reduced to 10% by mass or less
  • the surface film of the present invention can be produced by bright annealing, and a compound thin film solar cell using the surface film as a substrate can obtain battery characteristics equal to or higher than those of a glass substrate.
  • stainless steel having a surface film excellent in gas corrosion resistance suitable for a substrate of a compound thin film solar cell without depending on surface treatment such as coating or plating, and a compound using the same as a substrate -Based thin film solar cells can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photovoltaic Devices (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明は、コーティングやメッキの表面処理に頼らなくても、化合物系薄膜太陽電池の基板に好適な耐ガス腐食性を備えたステンレス鋼とその製造方法ならびにそれを基板とした化合物系薄膜太陽電池を提供することを課題とする。 上記課題を解決するために、本発明は、質量%で、C:0.03%以下、Si:2%以下、Mn:2%以下、Cr:10~25%、P:0.05%以下、S:0.01%以下、N:0.03%以下、Al:0.5~5%を含み、残部がFeおよび不可避的不純物からなり、膜厚15nm以下、OやCを除いたカチオンイオン分率のプロファイルにおいて、Al濃度の極大値が30質量%以上、かつ表面から2nm深さにおけるFe濃度が30質量%以下であるFe-Cr-Al系酸化皮膜を形成することを特徴とする。さらに、Si:0.3%以上、Ti:0.03~0.5%、Mg+Ga>0.001%を満たし、表面皮膜中にはSiやTiを含有すると良い。表面皮膜は、700~1100℃の温度範囲で低露点水素ガス中の焼鈍を行い付与する。

Description

化合物系薄膜太陽電池基板用ステンレス鋼およびその製造方法並びに化合物系薄膜太陽電池
 本発明は、コーティングやメッキ等の表面処理に頼らなくても、耐ガス腐食性に優れたステンレス製基板とする技術およびその製造方法に関する。
 また、本発明は、無機系の絶縁層やCIS系(Cu-In-Ga-Se-S系)薄膜等の化合物系光吸収層を積層形成する化合物系薄膜太陽電池に関する。
 従来、化合物系薄膜太陽電池の基板用材料には、熱膨張係数の小さいセラミックスやガラスが使用されているが、これらに加えて、耐熱性に優れるステンレス鋼の適用も検討されている。
 たとえば特許文献1,2には、平滑なステンレス鋼板の表面に、アルミナや酸化シリコンあるいは窒化シリコン膜をコーティングした絶縁性材料が開示されている。該絶縁性材料の素材には、汎用のフェライト系ステンレス鋼SUS430(17Cr鋼)が使用されている。
 さらに、特許文献3には、成膜性が良好なステンレスとして、表面粗さパラメータのRzとRskの両者を規定した材料が開示されている。ステンレス素材には、NbとCuを添加したSUS430J1L(18Cr-0.4Cu-0.4Nb)と汎用のオーステナイト系ステンレス鋼SUS304(18Cr-8Ni)が使用されている。
 近年、太陽光発電は、化石燃料に替わる主要なエネルギーの一つに発展しつつあり、太陽電池の技術開発が加速している。中でも、CIS系薄膜等の化合物系太陽電池は、低コストと高効率を両立した太陽電池として、将来の普及が期待されている。
 化合物系薄膜太陽電池は、例えば、基板上に絶縁層を形成し、絶縁層上にMo層からなる第一の電極層を製膜し、その上に光吸収層としてカルコパイライト型化合物層の被膜を形成し、更に第2の電極層を製膜する。ここで、カルコパイライト型化合物とは、Cu-In-Ga-Se-S系(以下CIS系)に代表される5元系合金である。
 古くから、太陽電池基板には、絶縁体であって、熱膨張係数の小さいガラスが広く使用されてきた。しかしながら、ガラスは脆くて重いため、ガラス表面に光吸収層を形成した太陽電池基板を大量生産することは容易でない。そこで、近年、軽量化と大量生産を指向するうえで、耐熱性と強度・延性バランスに優れるステンレス鋼を用いた太陽電池基板の開発も進められている。
 たとえば特許文献4には、0.2mm以下のステンレス箔に対して、特許文献1や2で開示された絶縁被膜を形成させ、その絶縁性基板上に[0004]記載のMo層からなる裏面電極およびCu(In1-xGax)Se2皮膜からなる光吸収層を形成する太陽電池基板材の製造方法が開示されている。ステンレス箔の素材には、SUS430、SUS444(18Cr-2Mo)、SUS447J1(30Cr-2Mo)が用いられている。
 また、特許文献5及び6には、Cu被覆層を有するCu被覆鋼板において、Cu被覆層上に、上記のMo電極およびCu(In1-xGax)Se2皮膜からなる光吸収層を形成したCIS太陽電池用電極基板が開示されている。ここでは、Cu被覆鋼板の素材として、C:0.0001~0.15%、Si:0.001~1.2%、Mn:0.001~1.2%、P:0.001~0.04%、S:0.0005~0.03%、Ni:0~0.6%、Cr:11.5~32.0%、Mo:0~2.5%、Cu:0~1.0%、Nb:0~1.0%、Ti:0~1.0%、Al:0~0.2%、N:0~0.025%、B:0~0.01%、V:0~0.5%、W:0~0.3%、Ca、Mg、Y、REM(希土類元素)の合計:0~0.1%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼を使用することが開示されている。但し、実施例で使用されるフェライト系ステンレス鋼はSUS430に限定されている。
 最近、特許文献7には、耐熱性の良い絶縁皮膜を形成したステンレス鋼材およびその製造方法について開示されている。基材となるステンレス鋼は、C:0.0001~0.15%、Si:0.001~1.2%、Mn:0.001~2.0%、P:0.001~0.05%、S:0.0005~0.03%、Ni:0~2.0%,Cu:0~1.0%、Cr:11.0~32.0%、Mo:0~3.0%、Al:1.0~6.0%、Nb:0~1.0%、Ti:0~1.0%、N:0~0.025%、B:0~0.01%,V:0~0.5%、W:0~0.3%、Ca、Mg、Y、REM(希土類元素)の合計:0~0.1%、残部Feおよび不可避的不純物からなり、Al酸化物層を介して、厚さ1.0μm以上のNiOとNiFe24の混合層が形成されていることを特徴としている。ここで、NiO等の混合層とAl酸化物層は、電気メッキによりNiを塗布した後、大気中の熱処理により、鋼とNiメッキの界面にAl酸化物層を形成させ、かつ、Niメッキを酸化物層へ変質させることにより創られる。
 特許文献8及び9には、化合物系薄膜太陽電池の製膜工程において、光吸収層の前駆体(Pricusor)であるCu、In、Gaを基板にスパッタリングして製膜した後、CIS系化合物薄膜に転化するために、セレン化水素(H2Se)や硫化水素(H2S)等の腐食性が高いガス雰囲気に曝される熱処理工程(セレン化・硫化工程)が開示されている。コーティングやメッキの表面処理によらず、ステンレス鋼を基板に適用するには、金属面が露出するデバイスの裏面において、耐ガス腐食性を確保することが重要な課題となる。
特開平6-299347号公報 特開平6-306611号公報 特開2011-204723号公報 特開2012-169479号公報 特開2012-59854号公報 特開2012-59855号公報 特開2012-214886号公報 特許第3249407号公報 特許第3249408号公報
 上述した通り、軽量化と大量生産を指向して太陽電池を普及する上で、ステンレス鋼の基板への適用は有効である。将来、主要な太陽光発電として、化合物系薄膜太陽電池の普及を拡大していくには、光吸収層の変換効率を高位に持続する耐久性に加えて、ステンレス基板に対してコーティング等の煩雑な表面処理を省略したコストダウンも重要な課題である。この点に関しては、特許文献1~7で開示されている通り、コーティングやメッキ等によるステンレス鋼への適用技術に限定される。
 そこで本発明の目的は、コーティングやメッキの表面処理に頼らなくても、化合物系薄膜太陽電池の基板に好適な耐ガス腐食性を具備したステンレス鋼、およびその製造方法、並びに該ステンレス鋼を基材とする化合物系薄膜太陽電池を提供することにある。
 本発明者らは、前記した課題を解決するために、ガラスと熱膨張係数の近いフェライト系ステンレス鋼の表面酸化皮膜と化合物系薄膜太陽電池の製造過程で生じる耐ガス腐食性について鋭意実験と検討を重ね、本発明を完成させた。以下に本発明で得られた知見について説明する。
(a)ステンレス基板のガス腐食は、製膜工程において400~600℃で実施されるセレン化水素(H2Se)によるセレン化、及び硫化水素(H2S)による硫化で生じる。これらのガス腐食は、ステンレス鋼の構成元素であるFeが、雰囲気ガス中のSe及びSと反応して化合物を形成するために発生する。
(b)上述したガス腐食には、Al含有フェライト系ステンレス鋼の素材に形成した表面皮膜に大きく影響される。通常、酸洗や研磨後の表面には、数nmからなる薄いFe-Crの不動態皮膜が形成されている。ガス腐食は、Fe-Crを主体とする薄い不動態皮膜が表面に形成されている場合に促進され易くなる。
 このような素材の耐ガス腐食性を高めるには、高温の酸化性雰囲気中で予備酸化等を施し、数十nmを超えるAl23からなる酸化物層を形成させる必要があり、酸化プロセスの負荷が生じる。ここで、ステンレス鋼素材の薄い表面皮膜において、予めAl濃度を高め、かつ、最表面のFe濃度を低減させることにより、当該ガス環境下におけるセレン化、及び硫化によるガス腐食を顕著に抑止できる新規な知見が得られた。
(c)前記した表面皮膜中のAl濃度を上昇させ、Fe濃度を低減させてガス腐食を抑止するには、Alの添加量を過度に高めるのではなく、Si、Tiの添加と、MgやGaの微量添加が有効であることを知見した。これらの元素はいずれも表面活性元素であり、地鉄界面近傍に濃縮してFeの表面濃化を抑制するとともに、Crよりも酸化物の生成自由エネルギーが小さく、酸化し易いAlやSi及びTiの選択酸化を促進し、耐ガス腐食性を有する皮膜の形成に寄与する。特に、Si:0.3%以上、Ti:0.05%以上とし、Mg+Gaのトータル含有量が0.001%を超える場合に顕著な効果を奏でる。
(d)前記した表面皮膜中のAl濃度を上昇させ、Fe濃度を効率的に低減させるには、冷間加工後に、水素ガスを含む低露点雰囲気中で光輝焼鈍を行うことが有効である。その場合でも、前記したSi、Tiの添加とMg、Gaを微量添加することが、表面の皮膜形成に有効である。
(e)上述した表面皮膜を改質したAl含有フェライト系ステンレス鋼を基板として、セレン化水素(H2Se)によるセレン化、及び硫化水素(H2S)による硫化を行うことにより、製膜した化合物系太陽電池は、ガス腐食を抑制して電池の性能を損なうことなく製造できることが分かった。
 上記(a)~(e)の知見に基づいて成された本発明の要旨は、以下の通りである。
(1)質量%で、C:0.03%以下、Si:2%以下、Mn:2%以下、Cr:10~25%、P:0.05%以下、S:0.01%以下、N:0.03%以下、Al:0.5~5%を含み、残部がFeおよび不可避的不純物からなるステンレス鋼の表面に、膜厚15nm以下、OとCを除いたカチオンイオン分率のプロファイルにおいて、Al濃度の極大値が30質量%以上、かつ表面から2nm深さにおけるFe濃度が30質量%以下であるFe-Cr-Al系酸化皮膜を形成していることを特徴とする化合物系薄膜太陽電池基板用ステンレス鋼。
(2)前記ステンレス鋼の表面のカチオンイオン分率において、更に、少なくともSi又はTiの極大値が2質量%以上であるFe-Cr-Al系酸化皮膜を形成していることを特徴とする(1)に記載の化合物系薄膜太陽電池基板用ステンレス鋼。
(3)質量%で、Si:0.3%以上、Ti:0.03~0.5%、Mg:0.05%以下、Ga:0.1%以下の1種または2種以上を含み、Mg+Ga>0.001%を満たすことを特徴とする(1)または(2)に記載する化合物系薄膜太陽電池基板用ステンレス鋼。
(4)前記ステンレス鋼が、更に、質量%で、Ni:1%以下、Cu:1%以下、Mo:2%以下、V:0.5%以下、Nb:0.5%以下、Sn:0.2%以下、Sb:0.2%、W:1%以下、Zr:0.2%以下、Co:0.2%以下、B:0.005%以下、Ca:0.005%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下、の1種または2種以上を含有していることを特徴とする(1)~(3)のいずれか1項に記載する化合物系薄膜太陽電池基板用ステンレス鋼。
(5)(1)、(3)、(4)のいずれか1項に記載する組成を有するステンレス鋼を、水素ガスを含む雰囲気中で700~1100℃の温度範囲で熱処理することにより、前記ステンレス鋼板の表面に(1)または(2)に記載するFe-Cr-Al系酸化皮膜を形成させることを特徴とする化合物系薄膜太陽電池基板用ステンレス鋼の製造方法。
(6)(1)から(4)のいずれか1項に記載するステンレス鋼を基板として、前記基板上に形成された絶縁層と、前記絶縁層上に製膜された第一の電極層と、前記第一の電極層上に製膜された化合物系光吸収層と、前記化合物系光吸収層上に製膜された第2の電極層を有することを特徴とする化合物系薄膜太陽電池。
 以下、上記(1)~(6)の鋼に係る発明をそれぞれ本発明という。
 本発明によれば、コーティングやメッキ等の表面処理に頼らなくても、化合物系薄膜太陽電池の基板に好適な耐ガス腐食性を具備したステンレス鋼、ならびにそれを基板とした化合物系薄膜太陽電池を得ることができるという顕著な効果を奏するものである。
基板用ステンレス鋼表面のGDS元素プロファイル分析結果を示すグラフである。
 以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は、特に断りのない限り「質量%」を意味する。
(I)成分の限定理由を以下に説明する。
 Cは、フェライト相に固溶、あるいはCr炭化物を形成して耐酸化性を低下させ、本発明が目標とする表面皮膜の形成を阻害する。このため、C量は少ないほど良く、上限を0.03%とする。但し、過度の低減は精錬コストの上昇に繋がるため、下限は0.001%とすることが好ましい。耐酸化性と製造性の点から、好ましい範囲は0.002~0.02%である。
 Siは、本発明が目的とする耐ガス腐食性を確保する上で重要な元素である。Siは酸化皮膜中に固溶するとともに、酸化皮膜/鋼界面にも濃化して、セレン化水素(H2Se)及び硫化水素(H2S)雰囲気中での耐ガス腐食性を向上させる。これらの効果を得るためには、下限は0.1%とすることが好ましい。一方、過度な添加は、鋼の靭性や加工性の低下を招くため、上限は2%とする。耐ガス腐食性と基本特性の点から、1.5%以下が好ましい。Siの効果を積極的に活用する場合は0.3%以上とすることが好ましい。
 Mnは、Feの表面酸化を抑制して、本発明の目標とするAlやSi及びTiの表面皮膜形成を促進する。これらの効果を得るために、下限は0.1%以上とすることが好ましい。一方、過度な添加は耐酸化性を低下させ、本発明の目標とする耐ガス腐食性を阻害することに繋がるため、上限は2%とする。耐酸化性と本発明の耐ガス腐食の点から、1%以下が好ましい。Mnの効果を積極的に活用する場合は、0.2~1%の範囲とすることが好ましい。
 Crは、耐食性に加えて、本発明の目標とする表面皮膜形成と、耐ガス腐食性を確保する上でも基本となる構成元素である。本発明において、10%未満では目標とする耐ガス腐食性が十分に確保されない。従って、下限は10%とする。しかし、過度なCrの添加は高温雰囲気に曝された際、脆化相であるσ相の生成を助長することに加え、合金コストの上昇を招く。上限は基本特性や製造性と本発明の目標とする耐ガス腐食性の視点から25%とする。基本特性及び耐ガス腐食性と合金コストの点から、好ましい範囲は13~22%、より好ましい範囲は16~19%である。
 Pは、製造性や溶接性を阻害する元素であり、その含有量は少ないほど良いため、上限を0.05%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.003%とすることが好ましい。製造性と溶接性の点から、好ましい範囲は0.005~0.04%、より好ましくは0.01~0.03%である。
 Sは、鋼中に含まれる不可避的不純物元素であり、耐酸化性を低下させて本発明が目的とする耐ガス腐食性を阻害する。特に、Mn系介在物や、固溶Sの存在は、高温雰囲気に曝された際、表面酸化皮膜の破壊起点としても作用する。従って、S量は低いほど良いため、上限は0.01%とする。但し、過度な低減は原料や精錬コストの上昇に繋がるため、下限は0.0001とする。製造性と耐ガス腐食性の点から、好ましい範囲は0.0001~0.002%、より好ましくは0.0002~0.001%である。
 Nは、Cと同様に、本発明が目的とする耐ガス腐食性を阻害する。このため、N量は少ないほど良く、上限を0.03%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.002%とすることが好ましい。耐ガス腐食性と製造性の点から、好ましい範囲は0.005~0.02%である。
 Alは、脱酸元素であることに加えて、本発明が目的とする表面皮膜改質による耐ガス腐食性を達成するために必須の添加元素である。本発明において、0.5%未満では目標とする皮膜改質と耐ガス腐食性が得られない。従って、下限は0.5%とする。しかし、過度なAlの添加は、鋼の靭性や溶接性の低下を招き、生産性を阻害するため、合金コストの上昇とともに、経済性にも課題を生じる。上限は、基本特性と経済性の視点から5%とする。本発明の耐ガス腐食性、及び基本特性と経済性の点から、好ましい範囲は1.0~3.5%、より好ましい範囲は1.5~2.5%である。
 Tiは、C,Nを固定する安定化元素の作用による鋼の高純度化を通じて耐酸化性を向上させることに加えて、本発明の目標とする皮膜改質による耐ガス腐食性を向上させる。これらの効果を得るために必要に応じて添加する。添加する場合は、その効果が発現する0.03%以上とする。但し、過度な添加は合金コストの上昇や、再結晶温度の上昇に伴う製造性の低下にも繋がるため、上限は0.5%とすることが好ましい。合金コストや製造性及び耐ガス腐食性の点から、好ましい範囲は0.05~0.35%、更に、Tiの効果を積極的に活用するより好ましい範囲は0.1~0.3%である。
 上記の基本組成に加えて、本発明の目標とする表面皮膜形成と耐ガス腐食性を得るには、Mg、Gaのいずれか1種以上を添加することが好ましい。これらの元素は、前記した通り、地鉄界面近傍に濃縮してFeの表面濃化を抑制する結果、AlやSi及びTiの選択酸化を促進する作用がある。これらの効果を得るために、Mg、Gaの下限は0.0005%とする。Mg、Gaについては、そのトータル含有量を0.001%超とする。一方、過度な添加は、鋼の精錬コスト上昇や製造性を阻害するため、上限は、Mg:0.05%、Ga:0.1%とする。本発明が目的とする耐ガス腐食性とコスト及び製造性の点から、Mg:0.001~0.02%、Ga:0.001~0.02%の範囲とすることが好ましい。
 また、本発明のステンレス鋼は、更に必要に応じて、Ni:1%以下、Cu:1%以下、Mo:2%以下、V:0.5%以下、Nb:0.5%以下、Sn:0.2%以下、Sb:0.2%以下、W:1%以下、Zr:0.5%以下、Co:0.5%以下、B:0.005%以下、Ca:0.005%以下、La:0.1%以下,Y:0.1%以下,Hf:0.1%以下,REM:0.1%以下の1種または2種以上を含有しているものであってもよい。
 Ni、Cu、Mo、V、Nb、W、Sn、Sb、Coは、当該ステンレス鋼の高温強度と耐食性を高めるのに有効な元素であり、必要に応じて添加する。但し、過度な添加は合金コストの上昇や、製造性を阻害することに繋がるため、Ni、Cu、Wの上限は1%とする。Moは熱膨張係数の低下による高温変形の抑制にも有効な元素であることから、上限は2%とする。V、Nb、Zr、Coの上限は0.5%とする。Sn、Sbの上限は製造性の点から0.2%とする。いずれの元素も、より好ましい含有量の下限は0.1%とする。
 B、Caは、熱間加工性や、2次加工性を向上させる元素であり、必要に応じて添加する。但し、過度な添加は製造性を阻害することに繋がるため、上限は0.005%とする。好ましい下限は0.0001%とする。
 Zr、La、Y、Hf、REMは、熱間加工性や、鋼の清浄度を向上し、ならびに耐酸化性改善に対しても、従来から有効な元素であり、必要に応じて添加しても良い。但し、本発明が目標とする耐ガス腐食性は、これら元素の添加効果に頼るものではい。添加する場合、Zrの上限は0.5%、La、Y、Hf、REMの上限はそれぞれ0.1%とする。Zrのより好ましい下限は0.01%、La、Y、Hf、REMの好ましい下限は0.001%とする。ここで、REMは原子番号57~71に帰属する元素であり、例えば、Ce、Pr、Nd等である。
 以上説明した各元素の他にも、本発明の効果を損なわない範囲で含有させることが出来る。一般的な不純物元素である前述のP、Sを始め、Zn、Bi、Pb、Se、H、Ta等は、可能な限り低減することが好ましい。一方、これらの元素は、本発明の課題を解決する限度において、その含有割合が制御され、必要に応じて、Zn≦500ppm、Bi≦100ppm、Pb≦100ppm、Se≦100ppm、H≦100ppm、Ta≦500ppmの1種以上を含有してもよい。
(II)表面皮膜の限定理由について、以下に説明する。
 本発明の化合物系薄膜太陽電池基板用ステンレス鋼は、上述した鋼成分を有し、その表面にAl、更にSi及び/又はTiが濃縮した皮膜を形成するものとする。皮膜厚さの上限は15nmとし、生産性を考慮した光輝焼鈍、又は光輝焼鈍と同等な効果が得られる熱処理や酸洗を施して、10nm以下とすることが好ましい。皮膜厚さの下限は特に規定するものではないが、好ましくはH2Se及びH2S中の耐ガス腐食性に効果を発揮する2nm以上とする。より好ましい膜厚の範囲は3~8nmである。
 上記皮膜組成は、H2Se及びH2S中の耐ガス腐食性に関して効果を発揮するために、OとCを除くカチオンイオン分率において、Al濃度の極大値が30質量%以上、かつ表面から2nm深さにおけるFe濃度が30質量%以下とする。Alは表面皮膜の内層から地鉄界面にかけて濃縮し、腐食性ガスのSeやSの鋼への侵入を顕著に抑制する効果を発現する。これらの効果は、表面皮膜中のAl濃度を極大値で30質量%以上に高めることで発現し、好ましくは50質量%以上、より好ましくは60質量%以上である。Al濃度の上限は、特に規定するものでないが、光輝焼鈍等の効率を考慮して90質量%、より好ましくは80質量%とする。Fe濃度は、表面にAlの濃縮した皮膜を形成することで低下し、SeやSとFeの化合物からなる腐食生成物を低減させることができる。これらの効果は、表面から2nm深さのFe濃度を30質量%以下に低減することで発現し、好ましくは20質量%以下、より好ましくは10質量%以下である。Fe濃度の下限は、特に規定するものでないが、光輝焼鈍等の効率を考慮して1質量%、より好ましくは3質量%とする。
 表面皮膜中には、耐ガス腐食性を高めるために、更に、Si及び又はTiを含むことが好ましい。SiやTiは、Fe-Cr-Al系酸化皮膜中ならびに皮膜/地鉄界面に濃縮すると、腐食性ガスのSeやSの鋼への侵入や、腐食生成物の形成を抑制する作用を持つ。これらの効果を得るには、表面皮膜中のSiやTi濃度を、極大値で2質量%以上に高めることが好ましい。より好ましくは、Si濃度は10質量%以上、Ti濃度は5質量%以上であり、両元素を複合して含有することが更に好ましい。
 表面皮膜中のFe、Cr、Al、Si、Tiの存在については、グロー放電質量分析法(GDS分析法;Grow Discharge optical emission Spectrometry)により、OやCなどの軽元素と、鋼の構成元素であるFe、Crとともに検出し、表面からの各元素プロファイルを測定することができる。表面からの各元素プロファイル測定結果から、皮膜厚さは、Oの検出強度が表面から深さ方向で半分となる位置(半値幅)により、求めることができる。Feの表面から2nmまでの濃度や、Al、Si、Tiの極大値は、OとCを除去し、カチオンイオン分率へ換算した各元素プロファイルを作成することによって求めることが出来る。
(III)製造方法について以下に説明する。
 (I)項に記載する成分の鋼において、(II)項に記載した表面皮膜を形成させるために、以下の諸条件で熱処理することが好ましい。素材は、薄板、箔、厚中板、棒線材を対象とし、素材の製造方法は特に規定するものでない。ここで、薄板は0.2mm以上、箔は0.02~0.2mm未満、厚中板は6mm以上の板厚を対象にするものとする。鋼の表面粗度は特に規定するものでなく、JIS準拠したBA、2B、2D、No.4、研磨等であれば良い。
 本発明のステンレス鋼は、主として,熱間圧延鋼帯を焼鈍あるいは焼鈍を省略してデスケ-リングの後、冷間圧延し,続いて光輝焼鈍による仕上げ焼鈍や、必要に応じてデスケ-リングした冷延焼鈍板を対象としている。仕上げ焼鈍温度は、700~1100℃とするのが好ましい。700℃未満では鋼の軟質化と再結晶が不十分となり、所定の材料特性が得られないこともある。他方、1100℃超では粗大粒となり、鋼の靭性・延性を阻害することもある。
 本発明が目標とするAl、更にSi及び/又はTiを濃縮させた表面皮膜の形成には、冷間加工後に、水素ガスを含む低露点雰囲気中で光輝焼鈍を行うことが有効である。光輝焼鈍の雰囲気ガスは、FeやCrの酸化を抑制して、Al、更にSi及び/又はTiを選択的に表面に濃化させるために、水素ガスを50体積%以上含み残部は不活性ガスとする。雰囲気ガスの露点は、-40℃以下が好ましく、水素ガスは80体積%以上が好ましく、より好ましくは90体積%以上とする。残部の不活性ガスは、工業的には安価な窒素ガスが好ましいが、ArガスやHeガスでも良い。また、本発明が目標とする表面皮膜の形成を促進、または支障ない範囲で、雰囲気ガス中に酸素やその他のガスが5体積%未満の範囲で混入しても構わない。光輝焼鈍の温度は、鋼の再結晶温度である700℃以上とし、雰囲気ガスの露点を下げるために800℃以上とすることが好ましく、より好ましくは850℃以上とする。他方、1100℃超では粗大粒となり、前記した通り、鋼の靭性・延性低下などを生じて、材質上好ましくない。鋼材の加熱温度は、850~1000℃の範囲とすることが好ましい。上記温度に滞留する加熱時間は、光輝焼鈍を工業的な連続焼鈍ラインで実施することを想定して、10分以内とすることが好ましい。より好ましくは5分以内とする。これら光輝焼鈍をバッチ炉で実施する場合においては、加熱温度の下限や、加熱時間の上限は特に規定するものでなく、例えば、700℃、24時間としても構わない。ここで、本発明が目標とする表面皮膜の形成と、耐ガス腐食性を達成できる本発明のステンレス鋼において、当該光輝焼鈍条件に限定されるものでないことは言うまでもない。
(IV)化合物系薄膜太陽電池について以下に説明する。
 本発明は、(I)項及び(II)項に記載したステンレス基板を用いた化合物系薄膜太陽電池を提供する。
 以下、CIS系の化合物系薄膜太陽電池を例にとして説明するが、CIS系以外の化合物系薄膜太陽電池にも適用可能である。例えば、CIS系以外の化合物系薄膜太陽電池として、光吸収層が銅(Cu)、亜鉛(Zn)、錫(Sn)及びカルコゲン元素(セレン(Se)又は硫黄(S))を含有する化合物からなるCZTS系、光吸収層がカドミウム(Cd)及びテルル(Te)を含有する化合物からなるCdTe系等が挙げられる。
 CIS系太陽電池は、素子形成面において、前記ステンレス鋼を基板とし、絶縁層、第一の電極層、化合物系光吸収層、及び第二の電極層を形成するものとする。絶縁層は、SiO2、CaO、B23、SrO、BaO、Al23、ZnO、ZrO2、MgO、Na2O、K2Oの少なくとも一つを成分とするガラスや低融点ガラスであることが好ましい。 絶縁層の厚さは、密着性や平坦性を考慮して10μm以上、50μm以下とすることが好ましい。第一の電極層は、Moを用いることが好ましく、H2Se及びH2S雰囲気中の耐ガス腐食性の視点から、TiやW等を使用しても良い。電極層の厚さは数10nm~数μmとすることが好ましい。
 次いで、化合物系光吸収層は、照射された太陽光等を光電変換する部分であり、IB-
IIIB-VIB族元素からなるCIS系化合物薄膜で形成することができる。CIS系化合物薄膜の材料は、Cu及びAgからなる群より選択された少なくとも1種類のIB族元素と、Al、Ga及びInからなる群から選択された少なくとも1種類のIIIB族元素と、S及びSeからなる群から選択された少なくとも1種類のVIB族元素とを含む、少なくとも1種類の化合物半導体とすることができる。具体的な化合物の一例として、2セレン化銅インジウム(CuInSe2)、2硫化銅インジウム(CuInS2)、2セレン硫化銅インジウム(CuIn(SSe)2)、2セレン化銅ガリウム(CuGaSe2)、2硫化銅ガリウム(CuGaS2)、2セレン化銅インジウム・ガリウム(Cu(InGa)Se2)、2硫化銅インジウム・ガリウム(Cu(InGa)S2)、2セレン硫化銅インジウム・ガリウム(Cu(InGa)(SSe)2)等が挙げられるものの、光電変換効率を高めるために、実際には、構成元素の組成が、化合物光吸収層の深さ方向でそれぞれ分布(プロファイル)を形成しており、単一の化合物層ではないことを言及しておく。これら化合物光吸収層の厚さは、光電変換の効率を考慮して0.数μm~数10μmとすることが好ましい。
 P型半導体からなるCIS系化合物光吸収層の上には、化学溶液成長法(Chemical Bath Deposition法)により、極めて薄い、n型高抵抗ZnO系バッファー層が形成され、CIS系化合物光吸収層との間でpnヘテロ接合を形成する。
 第二の電極層は透明導電膜からなり、例えば、ホウ素またはアルミニウムまたはガリウムを高濃度ドープした酸化亜鉛系薄膜(ZnO)、または酸化インジウム錫(ITO)等を用いることができる。電極層の厚さは、例えば、0.5μm~2.5μmとすることが好ましい。
 なお、上述したCIS系太陽電池薄膜は、複数のセルが直列に接続された集積構造としてもよい。
 以下、本発明の実施例を説明する。
 表1の成分を有するフェライト系ステンレス鋼を溶製し、熱間圧延と焼鈍を実施した後、冷間圧延を経て、板厚0.05~0.5mmの箔又は薄板とした。ここで、鋼の成分は、本発明で規定する範囲と、それ以外とした。冷延鋼板は、いずれも再結晶が完了する800~1000℃の範囲で光輝焼鈍(BA:Bright Annealing)による仕上げ焼鈍を行った。得られた鋼板は、表面皮膜の分析と、CIS系太陽電池の製膜工程である400~600℃のH2Se及びH2S中、0.5~1時間の熱処理を施して、耐ガス腐食性を評価した。更に、耐ガス腐食性が良好な鋼板については、CIS系太陽電池を形成して変換効率を測定した。
Figure JPOXMLDOC01-appb-T000001
 光輝焼鈍は、水素ガスを80~100体積%含み残部を窒素ガスとする雰囲気中で700~1050℃、雰囲気ガス露点は-45~-65℃の範囲で実施した。加熱時間は1~3分、一部はバッチ炉で600分とした。作製した鋼板の表面皮膜は、GDS分析法により、検出元素について、表面からの各元素プロファイルを測定し、膜厚と組成を求めることができる。前記した通り、皮膜厚さはOの半値幅とし、カチオンイオン分率に換算した元素プロファイルから、Feは表面から2nm深さの濃度とし、Al、Si、Tiは表面皮膜中の極大値である。これら試験片については、H2Se及びH2S中の熱処理に先立ち、太陽電池の製膜工程中に実施される600~800℃、乾燥空気中、1時間の酸化を行った。
 鋼板表面の耐ガス腐食性は、目視判定にて、腐食が観察されない状態を「◎」、メタルの脱落には至っていない軽微な腐食を「○」、メタルが脱落する程度の腐食に至ったものを「×」とした。本発明が目的とする耐ガス腐食性は、「◎」ないし「○」に該当する場合とする。
 表2に、表面皮膜と耐ガス腐食性の評価結果をまとめて示す。
 No.1~8は、本発明で規定する成分と表面皮膜を有し、CIS系薄膜太陽電池の製膜工程であるH2Se及びH2S雰囲気中での腐食抑制を達成したものである。特に、No.3、4、6、7、8は、微量元素Mg+Gaを含み、表面皮膜中の好適なAl濃度とFe濃度を満たし、更にSi及びTiを表面皮膜中に好適な範囲で含有するものであり、顕著な耐ガス腐食性を発現し、評価は「◎」となった。No.1、2、5は、本発明の目標とする皮膜組成と耐ガス腐食性が得られ、評価は「○」となった。
 鋼No.9~15は、本発明で規定する鋼成分から外れるものであり、本発明で規定する光輝焼鈍を実施しても、本発明で規定する条件を満足する表面皮膜を形成できず、本発明の目標とする耐ガス腐食性が得られず、評価は「×」となった。
 上述した「○」ないし「◎」であるステンレス鋼を基板としたCIS系太陽電池を作製した。具体的には945mm×1239mmサイズのステンレス鋼基板に168直列の太陽電池を作製した。開口部面積は約1.12m2である。電池特性として変換効率(開口部面積による)は13%を超えるものであり、ガラス基板と比較して同等以上もしくは遜色ないことを確認した。
Figure JPOXMLDOC01-appb-T000002
 以上の結果から、フェライト系ステンレス鋼において、化合物系薄膜太陽電池基板に好適な耐ガス腐食性を付与するためには、本発明で規定する(i)Al濃度の極大値が30質量以上、(ii)表面から2nm深さにおけるFe濃度が30質量%以下である表面皮膜とすることが必要である。ここで、耐ガス腐食性を高めるには、前記したAl濃度を60質量%以上に高めて、Fe濃度を10質量%以下に低減し、Si:0.3%以上、Ti:0.05~0.5%、Mg+Ga>0.001%を満たし、Si及び又はTiの極大値が2質量%以上を含む表面皮膜を形成させることが効果的である。さらに、本発明の表面皮膜は光輝焼鈍により製造可能であり、それを基板とした化合物系薄膜太陽電池はガラス基板と同等以上、もしくは遜色ない電池特性が得られる。
 本発明によれば、コーティングやメッキ等の表面処理に頼らなくても、化合物系薄膜太陽電池の基板に好適な耐ガス腐食性に優れた表面皮膜を有するステンレス鋼、ならびにそれを基板とした化合物系薄膜太陽電池を得ることができる。

Claims (6)

  1.  質量%で、C:0.03%以下、Si:2%以下、Mn:2%以下、Cr:10~25%、P:0.05%以下、S:0.01%以下、N:0.03%以下、Al:0.5~5%を含み、残部がFeおよび不可避的不純物からなるステンレス鋼の表面に、膜厚15nm以下、OとCを除いたカチオンイオン分率のプロファイルにおいて、Al濃度の極大値が30質量%以上、かつ表面から2nm深さにおけるFe濃度が30質量%以下であるFe-Cr-Al系酸化皮膜を形成していることを特徴とする化合物系薄膜太陽電池基板用ステンレス鋼。
  2.  前記ステンレス鋼の表面のカチオンイオン分率において、更に、少なくともSi又はTiの極大値が2質量%以上であるFe-Cr-Al系酸化皮膜を形成していることを特徴とする請求項1に記載の化合物系薄膜太陽電池基板用ステンレス鋼。
  3.  前記ステンレス鋼が、質量%で、Si:0.3%以上、Ti:0.03~0.5%、Mg:0.05%以下、Ga:0.1%以下の1種または2種以上を含み、Mg+Ga>0.001%を満たすことを特徴とする請求項1または2に記載する化合物系薄膜太陽電池基板用ステンレス鋼。
  4.  前記ステンレス鋼が、更に、質量%で、Ni:1%以下、Cu:1%以下、Mo:2%以下、V:0.5%以下、Nb:0.5%以下、Sn:0.2%以下、Sb:0.2%、W:1%以下、Zr:0.2%以下、Co:0.2%以下、B:0.005%以下、Ca:0.005%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下、の1種または2種以上を含有していることを特徴とする請求項1~3のいずれか1項に記載する化合物系薄膜太陽電池基板用ステンレス鋼。
  5.  請求項1、3、4のいずれか1項に記載する組成を有するステンレス鋼を、水素ガスを含む雰囲気中で700~1100℃の温度範囲で熱処理することにより、前記ステンレス鋼の表面に請求項1または2に記載するFe-Cr-Al系酸化皮膜を形成させることを特徴とする化合物系薄膜太陽電池基板用ステンレス鋼の製造方法。
  6.  請求項1~4のいずれか1項に記載するステンレス鋼を基板として、前記基板上に形成された絶縁層と、前記絶縁層上に製膜された第一の電極層と、前記第一の電極層上に製膜された化合物系光吸収層と、前記化合物系光吸収層上に製膜された第2の電極層を有する化合物系薄膜太陽電池。
PCT/JP2016/075720 2015-09-08 2016-09-01 化合物系薄膜太陽電池基板用ステンレス鋼およびその製造方法並びに化合物系薄膜太陽電池 WO2017043417A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/758,296 US20180265953A1 (en) 2015-09-08 2016-09-01 Stainless steel for compound thin film solar cell substrates, method for producing same, and compound thin film solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015176438A JP2017054874A (ja) 2015-09-08 2015-09-08 化合物系薄膜太陽電池基板用ステンレス鋼およびその製造方法並びに化合物系薄膜太陽電池
JP2015-176438 2015-09-08

Publications (1)

Publication Number Publication Date
WO2017043417A1 true WO2017043417A1 (ja) 2017-03-16

Family

ID=58239706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075720 WO2017043417A1 (ja) 2015-09-08 2016-09-01 化合物系薄膜太陽電池基板用ステンレス鋼およびその製造方法並びに化合物系薄膜太陽電池

Country Status (3)

Country Link
US (1) US20180265953A1 (ja)
JP (1) JP2017054874A (ja)
WO (1) WO2017043417A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3783119A1 (de) * 2019-08-20 2021-02-24 ThyssenKrupp Steel Europe AG Stahlflachprodukt mit ausgezeichneter oxidations- und heissgas-korrosionsbeständigkeit sowie verfahren zur herstellung eines solchen stahlflachprodukts

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185962A (ja) * 1989-01-13 1990-07-20 Nippon Yakin Kogyo Co Ltd 高温での耐変色性に優れるフェライト系ステンレス鋼の製造方法
JPH062075A (ja) * 1992-06-19 1994-01-11 Kawasaki Steel Corp 耐酸化性に優れた高Al含有フェライト系ステンレス鋼板
JPH07216447A (ja) * 1994-02-04 1995-08-15 Sumitomo Metal Ind Ltd 加工性に優れた外装用高耐銹性フェライトステンレス鋼板の製造方法
JPH08325674A (ja) * 1995-03-29 1996-12-10 Nisshin Steel Co Ltd 拡散接合性に優れたフェライト系ステンレス鋼板及びその製造方法
JP2014110349A (ja) * 2012-12-03 2014-06-12 Showa Shell Sekiyu Kk 薄膜太陽電池の製造方法
JP2014203936A (ja) * 2013-04-03 2014-10-27 昭和シェル石油株式会社 薄膜太陽電池
JP2014218728A (ja) * 2013-05-10 2014-11-20 新日鐵住金ステンレス株式会社 絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板およびその製造方法
JP2014218727A (ja) * 2013-05-10 2014-11-20 新日鐵住金ステンレス株式会社 絶縁性に優れた熱膨張係数の小さい太陽電池基板用ステンレス鋼材
JP2015071513A (ja) * 2013-10-04 2015-04-16 日新製鋼株式会社 Cigs太陽電池用絶縁基板およびcigs太陽電池
JP2016030854A (ja) * 2014-07-29 2016-03-07 新日鐵住金ステンレス株式会社 燃料電池用フェライト系ステンレス鋼およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185962A (ja) * 1989-01-13 1990-07-20 Nippon Yakin Kogyo Co Ltd 高温での耐変色性に優れるフェライト系ステンレス鋼の製造方法
JPH062075A (ja) * 1992-06-19 1994-01-11 Kawasaki Steel Corp 耐酸化性に優れた高Al含有フェライト系ステンレス鋼板
JPH07216447A (ja) * 1994-02-04 1995-08-15 Sumitomo Metal Ind Ltd 加工性に優れた外装用高耐銹性フェライトステンレス鋼板の製造方法
JPH08325674A (ja) * 1995-03-29 1996-12-10 Nisshin Steel Co Ltd 拡散接合性に優れたフェライト系ステンレス鋼板及びその製造方法
JP2014110349A (ja) * 2012-12-03 2014-06-12 Showa Shell Sekiyu Kk 薄膜太陽電池の製造方法
JP2014203936A (ja) * 2013-04-03 2014-10-27 昭和シェル石油株式会社 薄膜太陽電池
JP2014218728A (ja) * 2013-05-10 2014-11-20 新日鐵住金ステンレス株式会社 絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板およびその製造方法
JP2014218727A (ja) * 2013-05-10 2014-11-20 新日鐵住金ステンレス株式会社 絶縁性に優れた熱膨張係数の小さい太陽電池基板用ステンレス鋼材
JP2015071513A (ja) * 2013-10-04 2015-04-16 日新製鋼株式会社 Cigs太陽電池用絶縁基板およびcigs太陽電池
JP2016030854A (ja) * 2014-07-29 2016-03-07 新日鐵住金ステンレス株式会社 燃料電池用フェライト系ステンレス鋼およびその製造方法

Also Published As

Publication number Publication date
JP2017054874A (ja) 2017-03-16
US20180265953A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
KR101773277B1 (ko) 절연성이 우수한 열팽창 계수가 작은 스테인리스제 태양 전지용 기판 및 그 제조 방법
JP2017172027A (ja) Al含有フェライト系ステンレス鋼およびその製造方法
JP6313428B2 (ja) 光電池又は光電池モジュール用のバックコンタクト基材
TWI526546B (zh) Solar cell substrate with fat iron stainless steel foil
WO2017043417A1 (ja) 化合物系薄膜太陽電池基板用ステンレス鋼およびその製造方法並びに化合物系薄膜太陽電池
JP5652568B1 (ja) 太陽電池基板用フェライト系ステンレス箔の製造方法
KR20150119219A (ko) 태양 전지 기판용 페라이트계 스테인리스 박
JP5883663B2 (ja) 絶縁層付フレキシブル金属基板およびその製造方法並びに半導体素子
JP6159571B2 (ja) 絶縁性に優れた熱膨張係数の小さい太陽電池基板用ステンレス鋼材
JP6504973B6 (ja) 耐硫化腐食性に優れたAl含有フェライト系ステンレス鋼およびその製造方法
JP7133917B2 (ja) 表面性状と耐硫化腐食性に優れたAl含有フェライト系ステンレス鋼板およびその製造方法
JP2021147682A (ja) フェライト系ステンレス鋼板およびその製造方法ならびに基板
KR101756761B1 (ko) 스테인리스박제 태양전지 기판재의 제조 방법
JP5772806B2 (ja) 太陽電池部材用フェライト系ステンレス鋼板およびその製造方法
JP5652567B1 (ja) 太陽電池基板用フェライト系ステンレス箔の製造方法
TWI469379B (zh) Stainless steel foil solar cell substrate and manufacturing method thereof
JP2021147683A (ja) フェライト系ステンレス鋼板およびその製造方法ならびに基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844278

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15758296

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844278

Country of ref document: EP

Kind code of ref document: A1