WO2017038320A1 - Li含有酸化珪素粉末及びその製造方法 - Google Patents

Li含有酸化珪素粉末及びその製造方法 Download PDF

Info

Publication number
WO2017038320A1
WO2017038320A1 PCT/JP2016/071981 JP2016071981W WO2017038320A1 WO 2017038320 A1 WO2017038320 A1 WO 2017038320A1 JP 2016071981 W JP2016071981 W JP 2016071981W WO 2017038320 A1 WO2017038320 A1 WO 2017038320A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon oxide
oxide powder
powder
containing silicon
lithium
Prior art date
Application number
PCT/JP2016/071981
Other languages
English (en)
French (fr)
Inventor
浩樹 竹下
木崎 信吾
悠介 柏谷
Original Assignee
株式会社大阪チタニウムテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪チタニウムテクノロジーズ filed Critical 株式会社大阪チタニウムテクノロジーズ
Priority to JP2017537661A priority Critical patent/JP6470418B2/ja
Priority to US15/753,038 priority patent/US10427943B2/en
Priority to EP16841352.4A priority patent/EP3343678B1/en
Priority to CN201680045512.7A priority patent/CN107851789B/zh
Priority to KR1020187003241A priority patent/KR102017470B1/ko
Publication of WO2017038320A1 publication Critical patent/WO2017038320A1/ja
Priority to US16/540,822 priority patent/US10875775B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • C01B33/325After-treatment, e.g. purification or stabilisation of solutions, granulation; Dissolution; Obtaining solid silicate, e.g. from a solution by spray-drying, flashing off water or adding a coagulant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a silicon oxide powder suitably used for a negative electrode material of a lithium ion secondary battery and a method for producing the same, and more specifically to a Li-containing silicon oxide powder doped with lithium and a method for producing the same.
  • silicon oxide powder has a large electric capacity and is an excellent negative electrode material for lithium ion secondary batteries.
  • silicon oxide powder as a negative electrode material for lithium ion secondary batteries has a problem that initial efficiency is low, and lithium doping (Li doping) is known as a technique for solving this problem. That is, by performing Li doping on the silicon oxide powder, generation of a lithium compound that does not contribute to charging / discharging during initial charging is suppressed, and initial efficiency is improved.
  • lithium silicate produces
  • the phase of the lithium silicate changes with Li doping amount. Specifically, as the Li doping amount increases, the lithium silicate phase changes in order of Li 2 Si 2 O 5 , Li 2 SiO 3 , and Li 4 SiO 4 .
  • the chemical formula here is as follows.
  • Lithium silicate reacts with water in an amorphous state, but by crystallizing, Li 2 Si 2 O 5 does not react with water in particular, which is advantageous from the viewpoint of handleability. Therefore, in the Li-containing silicon oxide powder subjected to Li doping, it is preferable to hold lithium silicate in the form of crystallized Li 2 Si 2 O 5 as much as possible. Incidentally, Li 2 SiO 3 and Li 4 SiO 4 among lithium silicates react with water even when crystallized, and elution in the handling process becomes a problem.
  • Si crystallization In the process of crystallization of lithium silicate in the Li-containing silicon oxide powder, Si crystallization also occurs. When Si crystallizes, the cycle characteristics as battery performance are adversely affected. Amorphous Si can be kept amorphous if heat is not applied. This is possible for example by electrochemical Li doping. However, with electrochemical Li doping, lithium silicate remains amorphous and it is difficult to obtain a powder.
  • Li-containing silicon oxide powder as a negative electrode material for a lithium ion secondary battery, Li-containing oxidation in which lithium silicate, particularly Li 2 Si 2 O 5 crystallizes and Si is amorphous. Silicon powder is desired.
  • Such a Li-containing silicon oxide powder is produced, for example, by a powder firing method in which silicon oxide powder is mixed with a powder lithium source and fired (Patent Documents 1 to 4).
  • the silicon oxide powder here is produced by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and silicon, and then finely crushing.
  • the silicon oxide powder produced by such a precipitation method is advantageous in that it contains many amorphous portions, reduces the thermal expansion coefficient, and improves cycle characteristics.
  • Li doping amount is further reduced, the production of lithium silicate itself is limited, so the meaning of Li doping is lost, and improvement in initial efficiency by Li doping cannot be expected.
  • the Li doping amount becomes excessive (for example, when Li / O (atomic ratio) ⁇ 1), the lithium silicate phase is only Li 4 SiO 4 and Li 2 SiO 3 does not exist, but the activity is high. Too much usability.
  • the applicant company keeps the heat treatment temperature low while keeping the amount of Li dope in the powder-fired Li dope low.
  • a temperature at which disproportionation of silicon oxide should not occur for example, 700 ° C. or less
  • the disproportionation of silicon oxide actually progresses and powder XRD measurement is performed. It has been confirmed that the peak due to crystalline Si becomes high, and as a result, there is a risk of deteriorating cycle characteristics.
  • the surface of particles (powder particles) constituting silicon oxide is subjected to carbon coating treatment (C coating) to improve cycle characteristics.
  • C coating is performed after Li doping
  • Patent Document 4 Li doping is performed after C coating.
  • An object of the present invention is to provide a Li-containing silicon oxide powder containing a crystallized lithium silicate, many of which are water-insoluble Li 2 Si 2 O 5 and having little crystalline Si, and a method for producing the same. There is.
  • the present inventor has earnestly studied the cause of Li 2 SiO 3 generation even when the Li doping amount is suppressed to a level at which Li 2 SiO 3 is not generated in equilibrium in powder-fired Li dope. did. As a result, the following facts were found.
  • Li 2 SiO 3 is generated even in Li doping amount where Li 2 SiO 3 should not be generated in equilibrium, which means that silicon oxide powder is formed in the firing process of silicon oxide powder and powdered lithium source. It is considered that the reaction in the particles (powder particles) does not proceed uniformly, and Li is locally concentrated on the surface or inside of the powder particles.
  • the particle size of the powder lithium source is too large with respect to the particle size of the silicon oxide powder.
  • the particle size of silicon oxide powder in Li dope is 5 to 10 ⁇ m in median diameter, while the particle size of powder lithium source is about 20 ⁇ m in median diameter. Therefore, in the Li doping process, as shown in FIG. 1A, the particles 2 of the powder lithium source locally contact the particles 1 of the silicon oxide powder, and the local reaction occurs at the contact point. It is considered that lithium is concentrated by causing the reaction temperature to rise.
  • the powdered lithium source was finely pulverized before the mixed firing of the silicon oxide powder and the powdered lithium source.
  • powder XRD measurement was performed on the Li-doped silicon oxide powder, the peak attributed to Li 2 SiO 3 was lowered, and the peak attributed to crystalline Si was lowered. From this result, when the particle size of the powder lithium source is made smaller than the particle size of the silicon oxide powder, in the Li doping step, as shown in FIG. Since the particles 2 of the silicon oxide layer are thinly covered, the reaction in the silicon oxide powder particles 1 is made uniform, and the local reaction is suppressed, thereby suppressing the phenomenon of local concentration of lithium. It is done.
  • the Li-containing silicon oxide powder of the present invention is based on such knowledge, and is a Li-containing silicon oxide powder used for a negative electrode material of a lithium ion secondary battery and subjected to Li doping, using CuK ⁇ rays.
  • the peak height P2 due to Li 2 SiO 3 appearing in the range of 2 ° and the peak height P3 due to crystalline Si appearing in the range of diffraction angle 2 ⁇ of 27.4 to 29.4 ° are as follows: The above condition (1) is satisfied.
  • the method for producing a Li-containing silicon oxide powder of the present invention is a method for producing a Li-containing silicon oxide powder used for a negative electrode material of a lithium ion secondary battery, wherein the composition formula SiO x (0.5 ⁇ x ⁇ 1.5), a mixing step of mixing the lower silicon oxide powder and the powdered lithium source, and a baking step of baking the mixed powder at 300 ° C. or higher and 800 ° C. or lower,
  • the median diameter D1 and the median diameter D2 of the powder lithium source satisfy the following condition (2).
  • Condition (2) 0.05 ⁇ D2 / D1 ⁇ 2
  • the peak height P1 due to Li 2 Si 2 O 5 is obtained by subtracting the background intensity from the peak intensity, and the peak intensity has a diffraction angle 2 ⁇ of 24.
  • the peak height P2 due to Li 2 SiO 3 appearing in the diffraction angle 2 ⁇ in the range of 18.6 to 19.2 ° is obtained by subtracting the background intensity from the peak intensity.
  • the diffraction intensity 2 ⁇ is the maximum value of the diffraction intensity in the range of 18.6 to 19.2 °.
  • the peak height P3 due to crystalline Si appearing in the diffraction angle 2 ⁇ in the range of 27.4 to 29.4 ° is obtained by subtracting the background intensity from the peak intensity.
  • the maximum value of the diffraction intensity when the diffraction angle 2 ⁇ is in the range of 27.4 to 29.4 °.
  • the data obtained by the X-ray diffraction measurement using the CuK ⁇ ray and the data at the diffraction angle interval of 0.02 ° are moved with the specified data number being 11. What was converted into an average approximate curve can be used. By using the moving average approximation curve, errors due to fluctuations in diffraction intensity are reduced.
  • the heights P1, P2 and P3 of these peaks satisfy the condition (1), that is, P2 / P1 ⁇ 1 and P3 / P1 ⁇ 0.5,
  • the object is achieved. That is, when P2 / P1 is 1 or more, a large amount of Li 2 SiO 3 is generated in the Li dope, the pH is increased due to elution of lithium in the slurrying process, the binder characteristics are deteriorated, and the initial A decrease in efficiency becomes a problem.
  • P3 / P1 When P3 / P1 is 0.5 or more, a large amount of crystalline Si is generated in the Li doping step, and deterioration of cycle characteristics due to the generation becomes a problem.
  • the Li doping amount (Li content) in the Li-containing silicon oxide powder of the present invention is 0.2 ⁇ Li / O ⁇ 0 in terms of element ratio in order to optimize the amount of Li 2 Si 2 O 5 in lithium silicate. .6 is preferred.
  • Li / O ⁇ 0.2 the lithium silicate itself is insufficient.
  • Li 2 Si 2 O 5 is also insufficient when Li / O> 0.6. That is, when Li / O> 0.67, Li 2 Si 2 O 5 is not generated even in terms of equilibrium, and even if Li / O ⁇ 0.67, local reaction is likely to occur if there is a large amount of Li. When it is assembled, it will react with the binder and sufficient battery performance will not be obtained.
  • the particle size of the powder is preferably 0.5 to 30 ⁇ m in terms of median diameter.
  • Median diameter is D 50, a particle size of cumulative 50% cumulative particle size distribution fine side of (or coarse side) of the volume-based, can be measured by a laser diffraction particle size distribution measuring apparatus.
  • the median diameter is 0.5 to 30 ⁇ m, the dispersibility of the powder is good, and when used as a negative electrode of a lithium ion secondary battery, a viscosity suitable for coating can be imparted to the slurry when it is slurried.
  • a particularly desirable median diameter is 0.5 to 15 ⁇ m.
  • a conductive carbon film is formed on at least a part of particles (that is, powder particles) constituting the powder. Due to the formation of the conductive carbon film, the electrical conductivity between the powder particles constituting the negative electrode and the electrical conductivity between the negative electrode and the current collector as the base are improved, and the cycle characteristics of the lithium secondary battery are improved. Improvement is possible.
  • the formation of the conductive carbon film here is called C coat.
  • the amount of the conductive carbon film formed on the particles constituting the Li-containing silicon oxide powder is preferably 0.5 to 20 wt% in terms of the weight ratio of carbon to the total mass of the silicon oxide powder. If the amount formed is less than 0.5 wt%, the meaning of forming a conductive carbon film on the powder particles becomes thin. Conversely, if the amount formed exceeds 20 wt%, the ratio of the silicon oxide powder to the whole active material is reduced. The effect of increasing the capacity by using silicon oxide powder is reduced.
  • a particularly preferable formation amount is 0.5 to 7 wt%. More preferably, it is 0.5 to 5 wt%.
  • the silicon oxide powder (that is, the raw silicon oxide powder) used in the mixing step is represented by the composition formula SiO x (0.5 ⁇ x ⁇ 1.5).
  • SiO x 0.5 ⁇ x ⁇ 1.5
  • the lower silicon oxide powder causes deterioration of the cycle characteristics of the lithium ion secondary battery.
  • x ⁇ 1.5 the initial efficiency decreases and This is because the capacity is reduced.
  • Particularly desirable is 0.7 ⁇ x ⁇ 1.3.
  • lithium hydride, lithium oxide, lithium hydroxide, lithium carbonate, and the like can be raised. It is desirable because there is little decrease in capacity.
  • the firing step after the mixing step the production of water-insoluble Li 2 Si 2 O 5 is promoted to produce water-soluble Li 2 SiO 3 .
  • the element ratio of O in the lower silicon oxide powder and Li in the powder lithium source is 0.2 ⁇ Li / O ⁇ 0.6 is preferred. That is, when Li / O> 0.67, Li 2 Si 2 O 5 is not generated even in terms of equilibrium, and even if Li / O ⁇ 0.67, local reaction is likely to occur if there is a large amount of Li. This is because sufficient battery performance cannot be obtained due to reaction with the binder.
  • the ratio of the median diameter D1 of the lower silicon oxide powder, which is the raw silicon oxide powder, to the median diameter D2 of the powdered lithium source mixed therewith is 0.05 or more and 2 or less. This is because the median diameter of the silicon oxide powder used as the negative electrode material of the lithium ion secondary battery is often 0.5 ⁇ m or more and 30 ⁇ m or less, so the powder lithium source becomes too small at D2 / D1 ⁇ 0.05. In the case of D2 / D1> 2, on the contrary, the powder lithium source is too large for the silicon oxide powder, so that the local concentration of lithium during the reaction is not obtained.
  • preferred D2 / D1 is 0.05 or more and 1 or less, and particularly preferred D2 / D1 is 0.05 or more and 0.5 or less. As described above, by suppressing lithium concentration during the reaction of the silicon oxide powder, the generation of Li 2 SiO 3 is suppressed and the generation of crystalline Si is also suppressed.
  • the median diameter ratio D2 / D1 of the raw material silicon oxide powder and the powdered lithium source mixed therein to 0.05 or more and 2 or less, or before mixing the powdered lithium source with the silicon oxide powder, or the silicon oxide powder And then pulverized.
  • a pulverization method there are a method in which a powdered lithium source is pulverized by hand in a mortar and then passed through a sieve having a small opening, or a method using a ball mill or bead mill.
  • the powder lithium source can be selectively pulverized by pulverization after mixing the silicon oxide powder and the powder lithium source. Further, since mixing can be performed at the same time, productivity can be improved.
  • the firing temperature in the firing step is set to 300 ° C. or more and 800 ° C. or less. If the firing temperature is too high, crystalline Si is precipitated due to disproportionation of silicon oxide, and the cycle characteristics are deteriorated. If it is too low, the Li-doping reaction will not proceed easily, resulting in problems such as insufficient generation of lithium silicate or excessively long reaction time.
  • a preferable firing temperature is not less than 300 ° C and not more than 700 ° C.
  • a particularly preferable firing temperature is 400 ° C. or higher and 700 ° C. or lower. More preferably, it is 500 degreeC or more and 650 degrees C or less.
  • the firing atmosphere is preferably an inert gas atmosphere, particularly an argon gas atmosphere.
  • a carbon coating treatment for forming a conductive carbon film on the silicon oxide powder to be subjected to the mixing step.
  • a known heat treatment such as a thermal CVD method using a hydrocarbon gas can be used.
  • a conductive carbon film is formed on at least a part of the particles constituting the silicon oxide powder (that is, the powder particles), and thereby the electrical conductivity between the powder particles constituting the negative electrode, and the negative electrode and its base Therefore, the electrical conductivity between the current collector and the current collector is improved, and the cycle characteristics of the lithium secondary battery can be improved.
  • the C coating is performed on the silicon oxide powder to be subjected to the mixing step (that is, the C coating is performed on the silicon oxide powder before the Li doping), and thus the disproportionation temperature is lowered by the Li doping. Can be avoided. That is, the C coating temperature is often higher than the Li doping temperature. In addition, the disproportionation temperature tends to decrease due to Li doping. For this reason, when C coating is performed after Li doping, there is a great concern that disproportionation will proceed in the C coating. However, if C coating is performed before Li doping, this concern is removed, and the crystallinity due to disproportionation occurs. Generation of Si is suppressed.
  • the carbon film formed on the particles constituting the silicon oxide powder in Li doping intervenes between the particles and the particles constituting the particulate lithium source. Since it becomes a buffer layer (buffer), a phenomenon in which lithium is locally concentrated is suppressed, and it can also be expected that generation of Li 2 SiO 3 and crystalline Si is suppressed.
  • the method for producing the Li-containing silicon oxide powder of the present invention is not limited to the powder firing method in which the silicon oxide powder described above is mixed with a powder lithium source and fired.
  • a thermal Li doping method with heating other than this is also possible, and a method other than the thermal Li doping method is also possible.
  • the Li-containing silicon oxide powder of the present invention contains crystallized lithium silicate, the main component is water-insoluble Li 2 Si 2 O 5 and the amount of water-soluble Li 2 SiO 3 is small. In this step, it is possible to suppress an increase in pH due to elution of lithium, a deterioration in binder characteristics and a decrease in initial efficiency due to this. Moreover, since there is little crystalline Si, the fall of the cycling characteristics by this can be suppressed.
  • the method for producing Li-containing silicon oxide powder of the present invention includes crystallized lithium silicate, but the main component is water-insoluble Li 2 Si 2 O 5 , and the amount of water-soluble Li 2 SiO 3 is small. Since Li-containing silicon oxide powder can be produced, it is effective in suppressing an increase in pH due to elution of lithium in the slurrying process, a deterioration in binder characteristics and a decrease in initial efficiency due to this. Moreover, since the production amount of crystalline Si in the produced silicon oxide powder can be suppressed, it is effective for suppressing a decrease in cycle characteristics due to the production.
  • FIG. 3 is an X-ray diffraction chart of Li-containing silicon oxide powder of the present invention. It is an X-ray diffraction chart of conventional Li-containing silicon oxide powder. It is an X-ray diffraction chart of silicon oxide powder before Li doping.
  • a raw material silicon oxide powder to be provided for the production method and a powder lithium source to be mixed therewith are prepared.
  • the particle diameter of the silicon oxide powder is 0.5 to 30 ⁇ m in terms of median diameter.
  • the lithium powder source is lithium hydride (LiH), lithium oxide (Li 2 O), lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), or the like.
  • lithium hydride (LiH) is used.
  • the C coating for carbon film formation is applied to the raw material silicon oxide powder.
  • the C coating is performed by a thermal CVD method using a hydrocarbon gas, for example, at 850 ° C. in a mixed gas atmosphere of propane and argon.
  • the C coating amount is 0.5 to 20 wt% in terms of the weight ratio of carbon to the total mass of the silicon oxide powder.
  • the powder lithium source is pulverized. This pulverization is performed using, for example, a mortar, and the particle size after pulverization is adjusted so that the median diameter ratio (D2 / D1) to the silicon oxide powder is 0.05 to 2, preferably 0.05 to 1. .
  • the mixing ratio is 0.2 to 0.6 in terms of Li / O molar ratio so that the production of Li 2 Si 2 O 5 is promoted in an equilibrium manner while the production of Li 2 SiO 3 is suppressed. To do.
  • a mixed powder of silicon oxide powder and powdered lithium source is fired in an inert gas atmosphere.
  • the firing temperature is in the range of 300 to 800 ° C., more specifically, a temperature range in which disproportionation of the silicon oxide powder does not occur.
  • the silicon oxide powder is Li-doped to become a Li-containing silicon oxide powder.
  • the mixing ratio of the powdered lithium source to the silicon oxide powder is balanced to a low level where the formation of Li 2 SiO 3 is suppressed in equilibrium, and the powdered lithium source is finely crushed so that the median diameter of both powders is reduced.
  • the ratio (D2 / D1) is limited to 0.05 or more and 2 or less, particularly 0.05 or more and 1 or less, local reaction in the particles constituting the silicon oxide powder, resulting in lithium concentration. Therefore, the lithium silicate phase of the Li-containing silicon oxide is mainly composed of Li 2 Si 2 O 5 . At the same time, the formation of crystalline Si in Li-containing silicon oxide is also suppressed.
  • Li 2 Si 2 appears with a diffraction angle 2 ⁇ in the range of 24.4 to 25.0 °.
  • the peak height P1 due to O 5 the peak height P2 due to Li 2 SiO 3 appearing in the range of the diffraction angle 2 ⁇ of 18.6 to 19.2 °, and the diffraction angle 2 ⁇ of 27.4 to 29
  • the height P3 of the peak due to the crystalline Si appearing in the range of .4 ° satisfies P2 / P1 ⁇ 1 and P3 / P1 ⁇ 0.5.
  • Li-containing silicon oxide powder is used as a negative electrode material for a lithium ion secondary battery.
  • Li-containing silicon oxide powder is mixed with a water-based binder to form a slurry, which is applied onto a current collector made of copper foil or the like and dried to obtain a thin film working electrode.
  • Lithium silicate phase in Li-containing silicon oxide powder is mainly composed of water-insoluble Li 2 Si 2 O 5 and contains almost no water-soluble Li 2 SiO 3 , so there is no elution of lithium from silicon oxide and battery performance The initial efficiency is improved as expected. Moreover, a situation where crystalline Si is generated in silicon oxide is avoided, and deterioration of cycle characteristics as battery performance is prevented.
  • Example 1 As silicon oxide powder that is a raw material for producing Li-containing silicon oxide powder, amorphous SiO powder produced by a precipitation method was prepared. The median diameter of this raw material SiO powder was 8.0 ⁇ m.
  • a carbonized gas in which argon and propane are mixed at a weight ratio of 1: 1 is supplied into a furnace at a flow rate of 1 liter per minute, The SiO powder was heat-treated at 850 ° C. for 30 minutes.
  • LiH powder was selected as the powder lithium source to be mixed with the raw material SiO. Its original median diameter is 20.8 ⁇ m, which is considerably larger than the median diameter of the SiO powder after C coating. Therefore, this LiH powder was pulverized using a mortar in a glove box under an argon atmosphere, and classified by a test sieve having an opening of 16 ⁇ m.
  • Dry particle size distribution measurement was performed on the finely pulverized LiH powder using a laser diffraction particle size distribution measuring device HELOS manufactured by Sympatec.
  • the median diameter D2 of the finely ground LiH powder is 5.1 ⁇ m smaller than the median diameter D1 (8.2 ⁇ m) of the SiO powder after C coating, and the median diameter ratio D2 / D1 is 0.62.
  • the negative electrode of the lithium ion secondary battery was produced using SiO powder which received C coat and Li dope. Specifically, SiO powder, ketjen black, and a polyimide precursor that is a non-aqueous solvent binder are mixed at a mass ratio of 85: 5: 10, and NMP (n-methylpyrrolidone) is further added and kneaded. The slurry prepared in (1) was applied onto a copper foil having a thickness of 40 ⁇ m and pre-dried at 80 ° C. for 15 minutes. Further, after punching out to a diameter of 11 mm, an imidization treatment was performed to obtain a negative electrode.
  • a lithium ion secondary battery was produced using the produced negative electrode.
  • Lithium foil was used for the counter electrode.
  • As the electrolyte a solution obtained by dissolving LiPF 6 (phosphoryllium hexafluoride) at a ratio of 1 mol / L in a solution in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used. And the coin cell was produced using the 30-micrometer-thick polyethylene porous film for a separator.
  • LiPF 6 phosphoryllium hexafluoride
  • the charging / discharging test was done with respect to the produced lithium ion secondary battery using the secondary battery charging / discharging test apparatus (made by Nagano Co., Ltd.).
  • the charge / discharge conditions are as shown in Table 1.
  • initial efficiency the ratio of the initial discharge capacity to the initial charge capacity
  • discharge after 50 cycles the ratio of the 50th discharge capacity to the initial discharge capacity
  • Example 2 In Example 1, a raw material SiO powder having a median diameter of 5.6 ⁇ m smaller than that in Example 1 was used. Along with this, the heat treatment time for C coating was shortened from 30 minutes to 27 minutes. The amount of C coating in the SiO powder after C coating is 0.94 wt%, the median diameter D1 is 5.8 ⁇ m, and the median diameter ratio D2 / D1 is 0.88. The rest is the same as in Example 1.
  • Example 3 In Example 1, during the Li doping, the mixing ratio (Li / O molar ratio) of the SiO powder after C coating and the LiH powder after pulverization was set to 0.2. Other than this, the second embodiment is the same as the first embodiment.
  • Example 4 In Example 2, at the time of Li doping, the mixing ratio (Li / O molar ratio) of the SiO powder after C coating and the LiH powder after pulverization was set to 0.2. Other than this, the second embodiment is the same as the second embodiment.
  • Example 2 LiH powder having a median diameter of 20.8 ⁇ m that was not finely pulverized was used as the Li dope of the SiO powder (median diameter 8.2 ⁇ m) after C coating.
  • the median diameter ratio D2 / D1 is 2.54. The rest is the same as the second embodiment.
  • Example 2 LiH powder having a median diameter of 20.8 ⁇ m that was not finely pulverized was used as the Li dope of the C-coated SiO powder (median diameter of 8.2 ⁇ m). The rest is the same as in Example 4.
  • an X-ray diffraction chart of the Li-containing SiO powder produced in Example 2 is shown in FIG. 2
  • an X-ray diffraction chart of the Li-containing SiO powder produced in Comparative Example 1 is shown in FIG.
  • an X-ray diffraction chart of the SiO powder before Li doping is shown in FIG.
  • FIG. 4 is an X-ray diffraction chart of the SiO powder before Li doping and before C coating, and it has been confirmed that no crystal peak occurs after C coating when the current C coating temperature is 850 ° C. .
  • Li doping is performed on this SiO powder after C-coating, in Comparative Examples 1 and 2, it is caused by Li 2 Si 2 O 5 even though the Li doping temperature is as low as 600 ° C. as can be seen from FIG.
  • a peak due to Li 2 SiO 3 and a peak due to crystalline Si appear remarkably.
  • Examples 1 to 4 as can be seen from FIG. 2, when SiO powder is C-coated and then Li-doped, a high peak appears due to Li 2 Si 2 O 5 , but Li 2 SiO 2 The peak due to 3 and the peak due to crystalline Si are kept low. This is because, prior to Li doping, LiH powder, which is a Li-doped raw material, is finely pulverized, and the median diameter ratio D2 / D1 with respect to the SiO powder is suppressed to a small level. This is because the formation of Li 2 SiO 3 was suppressed while the generation of crystalline Si was suppressed at the same time.
  • Example 1 and Example 3 When comparing Example 1 and Example 3, Example 2 and Example 4, the former has a larger P2 / P1 than the latter, and the initial efficiency is higher. This is because the Li doping amount (Li / O) in Li doping is large. Moreover, when Example 1 and Example 2, Example 3 and Example 4 are compared, respectively, P2 / P1 is larger in the latter than the former. This is considered to be due to the large median diameter ratio D2 / D1 of the LiH powder to the SiO powder.

Abstract

結晶化された珪酸リチウムを含みながら、その多くが非水溶性のLi2Si25であり、しかも結晶性Siが少ないLi含有酸化珪素粉末を製造する。このために、組成式SiOx(0.5<x<1.5)で表される低級酸化珪素粉末と粉末リチウム源とを混合する際に、粉末リチウム源を微粉砕する。低級酸化珪素粉末のメディアン径D1、及び粉末リチウム源のメディアン径D2が0.05≦D2/D1≦2を満足する。混合粉末を300℃以上800℃以下で焼成する。

Description

Li含有酸化珪素粉末及びその製造方法
 本発明は、リチウムイオン二次電池の負極材に好適に使用される酸化珪素粉末及びその製造方法に関し、より詳しくは、リチウムをドープされたLi含有酸化珪素粉末及びその製造方法に関する。
 酸化珪素粉末は電気容量が大きく、優れたリチウムイオン二次電池用負極材であることが知られている。しかし、リチウムイオン二次電池用負極材としての酸化珪素粉末には、初期効率が低いという問題があり、この問題を解消する手法として、リチウムドープ(Liドープ)が知られている。すなわち、酸化珪素粉末にLiドープを行うことにより、初回充電時に、充放電に寄与しないリチウム化合物が生成されるのが抑制されて、初期効率の向上が図られるのである。
 また、酸化珪素粉末に対するLiドープにより、珪酸リチウムが生成するが、その珪酸リチウムは、Liドープ量により相が変化する。具体的には、Liドープ量が多くなるにつれて、珪酸リチウム相がLi2Si25、Li2SiO3、Li4SiO4と順に変化する。ここにおける化学式は以下のとおりである。
Figure JPOXMLDOC01-appb-C000001
 珪酸リチウムは、非晶質の状態では水と反応するが、結晶化することにより、特にLi2Si25は水と反応しなくなり、取り扱い性等の観点から好都合となる。したがって、Liドープを受けたLi含有酸化珪素粉末においては、珪酸リチウムを、なるべく結晶化されたLi2Si25の形で保持するのが好ましいということになる。ちなみに、珪酸リチウムのうちのLi2SiO3及びLi4SiO4については、結晶化しても水と反応し、取り扱い過程での溶出等が問題となる。
 Li含有酸化珪素粉末中の珪酸リチウムが結晶化する過程では、Siの結晶化も起こる。Siが結晶化すると、電池性能としてのサイクル特性に悪影響が及ぶようになる。非晶質のSiは、熱を加えなければ、非晶質のまま保持できる。例えば電気化学的なLiドープにより、それが可能である。しかし、電気化学的なLiドープでは、珪酸リチウムも非晶質のまま残る上に、粉末を得ることが難しい。
 このようなことから、リチウムイオン二次電池用負極材としてのLi含有酸化珪素粉末においては、珪酸リチウム、特にLi2Si25が結晶化し、Siが非晶質であるようなLi含有酸化珪素粉末が望まれる。
 このようなLi含有酸化珪素粉末は、例えば、酸化珪素粉末を粉末リチウム源と混合し、焼成する粉末焼成法により製造される(特許文献1~4)。ここにおける酸化珪素粉末は、二酸化珪素と珪素との混合物を加熱して生成した一酸化珪素ガスを冷却し、析出させた後、細かく破砕することにより製造される。このような析出法で製造される酸化珪素粉末は、非晶質の部分を多く含み、熱膨張係数を小さくして、サイクル特性を向上させることなどから有利とされている。
 しかしながら、このような粉末焼成Liドープによると、珪酸リチウムとして、非水溶性のLi2Si25ばかりでなく、水溶性のLi2SiO3、更には同じく水溶性のLi4SiO4が生じる問題がある。この問題のため、LiドープにおけるLiドープ量を増やさないことが行われるが、平衡論的にはLi2SiO3が生じるはずのない例えばLi/O(原子比)=0.2までLiドープ量を少なくしても、実際に粉末のXRD測定を行うと、Li2SiO3のピークも現れるという問題のあることが、本発明者による実験研究から判明している。
 Liドープ量を更に少なくすると、珪酸リチウム自体の生成が制限されることから、Liドープの意味がなくなり、Liドープによる初期効率の向上を望めなくなる。反対に、Liドープ量が過大になると(例えばLi/O(原子比)≧1の場合)、珪酸リチウム相はLi4SiO4ばかりとなり、Li2SiO3は存在しなくなるが、活性度が高すぎて使用性が悪化する。
 粉末焼成Liドープでは、加熱を伴うことから、酸化珪素の不均化により、結晶性Siを生じる懸念があることに加えて、酸化珪素の不均化温度が低下する傾向のあることを、本発明者は確認している。また、前述の化学式から分かるように、Liドープでのドープ量が多くなるほど、金属Si量が増加する傾向がある。
 これらのことから、出願人会社では、粉末焼成LiドープでのLiドープ量を低く抑えつつ、熱処理温度を低く抑えている。しかし、本来、酸化珪素の不均化が起こらないはずの温度(例えば700℃以下)で熱処理を行ったとしても、実際には酸化珪素の不均化が進み、粉末XRD測定を行った場合に、結晶性Siに起因するピークが高くなること、その結果、サイクル特性の低下を招く危険性のあることが確認されている。
 以上の結果、結晶化された珪酸リチウムを含みながら、その多くが非水溶性のLi2Si25であり、しかも結晶性Siが少ないLi含有酸化珪素粉末は、出願人の知る限り存在しない。
 また、Liドープとは別に、酸化珪素を構成する粒子(粉末粒子)の表面にカーボン被覆処理(Cコート)を実施して、サイクル特性の向上を図ることも行われており、特許文献3ではLiドープ後にCコートが実施され、特許文献4ではCコート後にLiドープが実施されている。
特許第2997741号公報 特許第4702510号公報 特許第4985949号公報 特開2011-222153号公報
 本発明の目的は、結晶化された珪酸リチウムを含みながら、その多くが非水溶性のLi2Si25であり、しかも結晶性Siが少ないLi含有酸化珪素粉末及びその製造方法を提供することにある。
 上記目的を達成するために、本発明者は粉末焼成Liドープにおいて平衡論的にLi2SiO3が生じないレベルまでLiドープ量を抑制してもなおLi2SiO3が発生する原因について鋭意研究した。その結果、以下の事実が判明した。
 Liドープにおいて平衡論的にLi2SiO3が生じないはずのLiドープ量でもLi2SiO3が生成するということは、酸化珪素粉末と粉末リチウム源との焼成過程において、酸化珪素粉末を構成する粒子(粉末粒子)での反応が均一に進まず、その粉末粒子の表面或いは内部にLiが局所的に濃化していると考えられる。
 そして、その原因としては、酸化珪素粉末の粒子径に対して粉末リチウム源の粒子径が大きすぎることが考えられる。一例を挙げると、Liドープにおける酸化珪素粉末の粒径はメディアン径で5~10μmであるのに対し、粉末リチウム源の粒径はメディアン径で20μm程度であり、粉末リチウム源の粒径の方が大きいために、Liドープ工程では、図1(a)に示すように、酸化珪素粉末の粒子1に対して粉末リチウム源の粒子2が局所的に接触し、その接触点で局所的な反応を起こして反応温度が上昇することにより、リチウムが濃化することが考えられるのである。
 そこで、酸化珪素粉末と粉末リチウム源との混合焼成前の段階で粉末リチウム源を微粉砕した。Liドープ後の酸化珪素粉末に対して粉末XRD測定を行ったところ、Li2SiO3に起因するピークが低くなり、合わせて結晶性Siに起因するピークが低くなった。この結果から、酸化珪素粉末の粒子径に対して粉末リチウム源の粒子径を小さくすると、Liドープ工程では、図1(b)に示すように、酸化珪素粉末の粒子1の周囲を粉末リチウム源の粒子2が薄く覆うことから、酸化珪素粉末の粒子1での反応が均一化され、局所的な反応が抑制されることにより、局所的にリチウムが濃化する現象が抑制されることが考えられる。
 本発明のLi含有酸化珪素粉末はかかる知見を基礎とするものであり、リチウムイオン二次電池の負極材に使用され且つLiドープを受けたLi含有酸化珪素粉末であって、CuKα線を用いたX線回折測定を行ったときの、回折角2θが24.4~25.0°の範囲に表れるLi2Si25に起因するピークの高さP1、回折角2θが18.6~19.2°の範囲に表れるLi2SiO3に起因するピークの高さP2、及び回折角2θが27.4~29.4°の範囲に表れる結晶性Siに起因するピークの高さP3が次の条件(1)を満足するものである。
 条件(1) P2/P1<1 且つP3/P1<0.5
 また、本発明のLi含有酸化珪素粉末の製造方法は、リチウムイオン二次電池の負極材に使用されるLi含有酸化珪素粉末の製造方法であって、組成式SiOx(0.5<x<1.5)で表される低級酸化珪素粉末と粉末リチウム源とを混合する混合工程と、その混合粉末を300℃以上800℃以下で焼成する焼成工程とを含み、且つ前記低級酸化珪素粉末のメディアン径D1、及び粉末リチウム源のメディアン径D2が次の条件(2)を満足するものである。
 条件(2) 0.05≦D2/D1≦2
 本発明のLi含有酸化珪素粉末において、Li2Si25に起因するピークの高さP1は、そのピーク強度からバックグラウンド強度を差し引いたものであり、ピーク強度は、回折角2θが24.4~25.0°の範囲における回折強度の最大値とする。また、バックグラウンド強度は、回折角2θが24.4°における回折強度と、回折角2θが25.0°における回折強度とを結ぶ直線上で、2θ=24.7°における強度とする。
 同様に、回折角2θが18.6~19.2°の範囲に表れるLi2SiO3に起因するピークの高さP2は、そのピーク強度からバックグラウンド強度を差し引いたものであり、ピーク強度は、回折角2θが18.6~19.2°の範囲における回折強度の最大値とする。また、バックグラウンド強度は、回折角2θが18.6°における回折強度と、回折角2θが19.2°における回折強度とを結ぶ直線上で、2θ=19.9°における強度とする。
 同様に、回折角2θが27.4~29.4°の範囲に表れる結晶性Siに起因するピークの高さP3は、そのピーク強度からバックグラウンド強度を差し引いたものであり、ピーク強度は、回折角2θが27.4~29.4°の範囲における回折強度の最大値とする。また、バックグラウンド強度は、回折角2θが27.4°における回折強度と、回折角2θが29.4°における回折強度とを結ぶ直線上で、2θ=28.4°における強度とする。
 いずれにおいても、ピーク強度を算出する際には、CuKα線を用いたX線回折測定により得られたデータで、回折角の間隔が0.02°毎のデータを、データ特定数を11として移動平均近似曲線に変換したものを使用することができる。移動平均近似曲線を用いることにより、回折強度のゆらぎによる誤差が低減される。
 そして、本発明のLi含有酸化珪素粉末においては、これらのピークの高さP1、P2及びP3が条件(1)、すなわちP2/P1<1且つP3/P1<0.5を満足することにより、前記目的が達成される。すなわち、P2/P1については、これが1以上だと、LiドープでのLi2SiO3の生成量が多く、スラリー化の工程でのリチウムの溶出によるpHの上昇、これによるバインダー特性の悪化及び初期効率の低下が問題となる。このP2/P1は小さいほどよく、0.8以下が望ましく、0.3以下が特に望ましい。P3/P1については、これが0.5以上だと、Liドープ工程での結晶性Siの生成量が多く、その生成によるサイクル特性の低下が問題となる。このP3/P1も小さいほどよく、0.3以下が望ましく、0.1以下が特に望ましい。
 本発明のLi含有酸化珪素粉末におけるLiドープ量(Li含有量)は、珪酸リチウムのなかのLi2Si25量の適正化のために、元素比で0.2≦Li/O≦0.6が好ましい。Li/O<0.2だと珪酸リチウムそのものが不足する。Li/O>0.6の場合もLi2Si25が不足する。すなわち、Li/O>0.67では平衡論的にもLi2Si25が生成せず、Li/O≦0.67であってもLiが多いと局所的な反応が起きやすく、電池を組んだときにバインダーと反応して十分な電池性能が得られなくなるのである。
 本発明のLi含有酸化珪素粉末においては、当該粉末を構成する粒子(すなわち粉末粒子)の粒径がメディアン径で0.5~30μmが好ましい。メディアン径はD50で、体積基準の累積粒度分布の微粒側(または粗粒側)から累積50%の粒径であり、レーザ回折式粒度分布測定装置により測定できる。このメディアン径が0.5~30μmであると、粉末の分散性がよく、リチウムイオン二次電池の負極に用いるにあたり、スラリー化したときにそのスラリーに塗布に適した粘度を付与できる。また、リチウムイオン二次電池の負極に用いたときに、電解液が負極を構成する粒子の表面と反応して電池寿命が短くなるのを抑制できる。特に望ましいメディアン径は0.5~15μmである。
 本発明のLi含有酸化珪素粉末においては又、当該粉末を構成する粒子(すなわち粉末粒子)の少なくとも一部に、導電性炭素皮膜が形成されているのがよい。その導電性炭素皮膜の形成により、負極を構成する粉末粒子間の電気伝導性、及び負極とそのベースである集電体との間の電気伝導性が良好となり、リチウム二次電池のサイクル特性の向上が可能となる。ここにおける導電性炭素皮膜の形成をCコートと呼ぶ。
 Li含有酸化珪素粉末を構成する粒子(すなわち粉末粒子)に対する導電性炭素皮膜の形成量は、酸化珪素粉末全体の質量に対する炭素の重量比率で表して0.5~20wt%が好ましい。この形成量が0.5wt%未満であると、粉末粒子に導電性炭素皮膜を形成する意味が薄くなり、反対にこの形成量が20wt%を超えると、活物質全体に対する酸化珪素粉末の割合が減少し、酸化珪素粉末を用いることによる容量増の効果が薄くなる。特に好ましい形成量は0.5~7wt%である。さらに好ましくは0.5~5wt%である。
 また、本発明のLi含有酸化珪素粉末の製造方法において、混合工程に供する酸化珪素粉末(すなわち原料の酸化珪素粉末)を、組成式SiOx(0.5<x<1.5)で表される低級酸化珪素粉末としたのは、x≦0.5の場合だと、リチウムイオン二次電池のサイクル特性の劣化を招き、反対にx≧1.5の場合だと、初期効率の低下及び容量低下を招くからである。特に望ましいのは0.7≦x≦1.3である。
 混合工程において酸化珪素粉末と混合する粉末リチウム源としては、水素化リチウムや酸化リチウム、水酸化リチウム、炭酸リチウムなどを上げることができるが、なかでも水素化リチウムが、副生物が少なく、電池の容量低下も少ないことから望ましい。
 酸化珪素粉末と粉末リチウム源との混合比については、混合工程の後の焼成工程において、非水溶性であるLi2Si25の生成を促進し、水溶性であるLi2SiO3の生成を抑制する観点、及び結晶性Siの生成を抑制する観点から、元素比、より正確には、低級酸化珪素粉末中のOと粉末リチウム源中のLiとの元素比で0.2≦Li/O≦0.6が好ましい。すなわち、Li/O>0.67では平衡論的にもLi2Si25が生成せず、Li/O≦0.67であってもLiが多いと局所的な反応が起きやすく、電池を組んだときにバインダーと反応して十分な電池性能が得られなくなるからである。
 ちなみに、平衡論的には、Li/Oが0.4未満ではLi2Si25のみが生成し、Li/Oが0.4に達するとLi2SiO3が生成し始め、Li/Oが0.67に達するとLi2Si25の生成が停止すると共に、Li4SiO4が生成し始める(化学式1参照)。
 本発明のLi含有酸化珪素粉末の製造方法で特に重要なのは、原料の酸化珪素粉末である低級酸化珪素粉末のメディアン径D1と、これに混合される粉末リチウム源のメディアン径D2の比(メディアン径比D2/D1)を0.05以上、2以下とすることである。なぜなら、リチウムイオン二次電池の負極材として使用される酸化珪素粉末のメディアン径は0.5μm以上、30μm以下であることが多いため、D2/D1<0.05では粉末リチウム源が小さくなり過ぎて二次粒子化してしまうために、均一混合の効果が得られず、反対にD2/D1>2では粉末リチウム源が酸化珪素粉末に対して大きくなり過ぎるために、反応時にリチウムの局所的な濃化が生じやすくなるからである。反応時のリチウム濃化を抑制する観点から、好ましいD2/D1は0.05以上、1以下であり、特に好ましいD2/D1は0.05以上、0.5以下である。酸化珪素粉末の反応時におけるリチウム濃化を抑制することにより、Li2SiO3の生成が抑制され、合わせて結晶性Siの生成が抑制されることは前述したとおりである。
 原料の酸化珪素粉末とこれに混合される粉末リチウム源のメディアン径比D2/D1を0.05以上、2以下とするために、粉末リチウム源を酸化珪素粉末と混合する前、又は酸化珪素粉末と混合した後に粉砕する。粉砕方法としては、粉末リチウム源を乳鉢で手粉砕した後に目開きの小さい篩にかける方法や、ボールミル・ビーズミルを用いる方法がある。また、モース硬度が酸化珪素粉末より柔らかく、粉末リチウム源より硬い粉砕メディアを用いるならば、酸化珪素粉末と粉末リチウム源を混合した後の粉砕により、粉末リチウム源を選択的に粉砕することができ、同時に混合も行うことができるため、生産性の向上を図ることができる。
 焼成工程での焼成温度を300℃以上、800℃以下とするのは、焼成温度が高すぎると酸化珪素の不均化により結晶性Siが析出してサイクル特性が悪化し、反対に焼成温度が低すぎるとLiドープ反応が進み難くなり、珪酸リチウムの生成が不足するとか、反応時間が長くなり過ぎるといった弊害が生じるからである。好ましい焼成温度は300℃以上700℃以下である。特に好ましい焼成温度は400℃以上700℃以下である。さらに好ましくは500℃以上650℃以下である。焼成雰囲気は不活性ガス雰囲気、特にアルゴンガス雰囲気が好ましい。
 本発明のLi含有酸化珪素粉末の製造方法においては、混合工程に供する酸化珪素粉末に対して、導電性炭素皮膜形成のためのカーボン被覆処理(Cコート)を行うのがよい。Cコートには、例えば炭化水素ガスを用いた熱CVD法などの周知の熱処理を用いることができる。
 かかる熱処理により、酸化珪素粉末を構成する粒子(すなわち粉末粒子)の少なくとも一部に、導電性炭素皮膜が形成され、これにより、負極を構成する粉末粒子間の電気伝導性、及び負極とそのベースである集電体との間の電気伝導性が良好となり、リチウム二次電池のサイクル特性の向上が可能となる。
 特に、混合工程に供する酸化珪素粉末に対してCコートを行う(すなわち、酸化珪素粉末に対してLiドープより前にCコートを行う)ことにより、Liドープで不均化温度が下がることによる悪影響を回避できる。すなわち、Cコート温度はLiドープ温度より高いことが多い。加えて、Liドープにより不均化温度が下がる傾向がある。このため、Liドープの後にCコートを行うと、そのCコートで不均化が進む懸念が大きいが、Liドープの前にCコートを行うと、この懸念が取り除かれ、不均化による結晶性Siの生成が抑制される。
 加えて、Liドープ前にCコートが行われると、Liドープでは酸化珪素粉末を構成する粒子に形成された炭素皮膜が、その粒子と粒子状リチウム源を構成する粒子との間に介在して緩衝層(バッファ)となることから、リチウムが局所的に濃化する現象が抑制され、これによりLi2SiO3及び結晶性Siの生成が抑制されることも期待できる。
 なお、本発明のLi含有酸化珪素粉末を製造する方法としては、前述した酸化珪素粉末を粉末リチウム源と混合し、焼成する粉末焼成法に限定されない。これ以外の加熱を伴う熱的なLiドープ法でも可能であり、熱的なLiドープ法以外の方法でも可能である。具体的には、電気化学的にLiドープをした後に適切な温度で熱処理する方法などがある。
 本発明のLi含有酸化珪素粉末は、結晶化された珪酸リチウムを含みながら、その主体が非水溶性のLi2Si25であり、水溶性のLi2SiO3が少ないので、薄膜電極化の工程でのリチウムの溶出によるpHの上昇、これによるバインダー特性の悪化及び初期効率の低下を抑制することができる。また、結晶性Siが少ないことから、これによるサイクル特性の低下を抑制することができる。
 また、本発明のLi含有酸化珪素粉末の製造方法は、結晶化された珪酸リチウムを含みながら、その主体が非水溶性のLi2Si25であり、水溶性のLi2SiO3が少ないLi含有酸化珪素粉末を製造できるので、スラリー化工程でのリチウムの溶出によるpHの上昇、これによるバインダー特性の悪化及び初期効率の低下を抑制するのに有効である。また、製造した酸化珪素粉末中の結晶性Siの生成量を抑制できるので、その生成によるサイクル特性の低下を抑制するのに有効である。
本発明のLi含有酸化珪素粉末の製造方法における粉末粒子の形態を従来方法と比較して示す模式図であり、(a)が従来方法、(b)が本発明方法を示す。 本発明のLi含有酸化珪素粉末のX線回折チャートである。 従来のLi含有酸化珪素粉末のX線回折チャートである。 Liドープ前の酸化珪素粉末のX線回折チャートである。
 以下に本発明の実施形態を説明する。本実施形態のLi含有酸化珪素粉末の製造方法では、まず、当該製造方法に供する原料の酸化珪素粉末と、これに混合する粉末リチウム源とを準備する。
 原料の酸化珪素粉末は、組成式SiOx(0.5<x<1.5)で表される低級酸化珪素粉末であり、ここでは析出法により製造された非晶質のSiO、すなわちSiOx(x=1)を用いる。その酸化珪素粉末の粒径はメディアン径で0.5~30μmである。
 粉末リチウム源は、水素化リチウム(LiH)、酸化リチウム(Li2O)、水酸化リチウム(LiOH)、炭酸リチウム(Li2CO3)などであり、ここでは水素化リチウム(LiH)を用いる。
 原料の酸化珪素粉末に対しては炭素皮膜形成のためのCコートを行う。このCコートは炭化水素ガスを用いた熱CVD法、例えばプロパンとアルゴンの混合ガス雰囲気中で850℃により行う。Cコート量は、酸化珪素粉末全体の質量に対する炭素の重量比率で表して0.5~20wt%である。
 また、粉末リチウム源に対しては粉砕処理を行う。この粉砕処理は、例えば乳鉢により行い、粉砕後の粒度を、酸化珪素粉末に対するメディアン径比(D2/D1)が0.05以上2以下、望ましくは0.05以上1以下となるように調整する。
 次いで、Cコート後の酸化珪素粉末と粉砕処理後の粉末リチウム源とを混合する。混合比は、平衡論的にLi2Si25の生成が促進される一方で、Li2SiO3の生成が抑制されるように、Li/Oモル比で0.2~0.6とする。
 そして、酸化珪素粉末と粉末リチウム源との混合粉末を不活性ガス雰囲気下で焼成する。焼成温度は300~800℃の範囲内であり、より具体的には酸化珪素粉末の不均化が起こらない温度域とする。この焼成により、酸化珪素粉末がLiドープされてLi含有酸化珪素粉末となる。
 このとき、酸化珪素粉末に対する粉末リチウム源の混合比が平衡論的にLi2SiO3の生成の抑制される低位に制限されることに加え、粉末リチウム源が細かく粉砕されて両粉末のメディアン径比(D2/D1)が0.05以上2以下、特に0.05以上1以下に制限されていることにより、酸化珪素粉末を構成する粒子での局所的な反応、これによるリチウムの濃化が抑制されるので、Li含有酸化珪素の珪酸リチウム相はLi2Si25が主体となる。同時にLi含有酸化珪素中での結晶性Siの生成も抑制される。
 具体的には、製造されたLi含有酸化珪素粉末に対してCuKα線を用いたX線回折測定を行ったとき、回折角2θが24.4~25.0°の範囲に表れるLi2Si25に起因するピークの高さP1、回折角2θが18.6~19.2°の範囲に表れるLi2SiO3に起因するピークの高さP2、及び回折角2θが27.4~29.4°の範囲に表れる結晶性Siに起因するピークの高さP3が、P2/P1<1且つP3/P1<0.5を満足することになる。
 製造されたLi含有酸化珪素粉末は、リチウムイオン二次電池の負極材として用いられる。具体的には、Li含有酸化珪素粉末を水系バインダーと混合してスラリー化して、銅箔等からなる集電体上に塗布し、乾燥させて薄膜の作用極とする。Li含有酸化珪素粉末中の珪酸リチウム相が非水溶性のLi2Si25を主体とし、水溶性のLi2SiO3を殆ど含まないので、酸化珪素からのリチウムの溶出がなく、電池性能としての初期効率が所期のとおり改善される。また、酸化珪素中に結晶性Siが生成する事態が回避され、電池性能としてのサイクル特性の低下が阻止される。また、水系バインダーに代えて、有機溶剤を溶媒とする溶剤系バインダーを用いた場合においても、ポリイミドを始めとして高分子成分の多くはリチウムと反応するため、LiリッチなLi2SiO3の生成を抑制することで、水系バインダーと同じような改善効果が得られる。
(実施例1)
 Li含有酸化珪素粉末の製造原料である酸化珪素粉末として、析出法で製造された非晶質のSiO粉末を準備した。この原料SiO粉末のメディアン径は8.0μmであった。この原料SiO粉末に対して、Cコートのための熱処理として、アルゴンとプロパンを1:1の重量比で混合した炭化ガスを炉中に毎分1リットルの流量で供給し、その炉中で前記SiO粉末を850℃で30分間熱処理した。
 Cコート後のSiO粉末を燃焼赤外線吸収法に供したところ、Si粉末を構成する粒子に重量比で1.00%の導電性炭素皮膜が形成されていることが確認できた。Cコート後のSiO粉末のメディアン径D1は8.2μmであった。
 原料SiOに混合する粉末リチウム源として、LiH粉末を選択した。その元々のメディアン径は20.8μmであり、Cコート後のSiO粉末のメディアン径より相当に大きい。そこで、このLiH粉末をアルゴン雰囲気のグローブボックス内で乳鉢を用いて微粉砕し、目開き16μmの試験用篩により分級した。
 微粉砕されたLiH粉末に対して、Sympatec社製レーザ回折式粒度分布測定装置HELOSを用いて乾式粒度分布測定を行った。微粉砕後のLiH粉末のメディアン径D2は、Cコート後のSiO粉末のメディアン径D1(8.2μm)より小さい5.1μmであり、メディアン径比D2/D1は0.62である。
 Cコート後のSiO粉末(メディアン径8.2μm)を、Liドープ処理のために、微粉砕後のLiH粉末とLi/Oモル比が0.5となるように混合した後、雰囲気炉内のアルゴン雰囲気(1atm、600℃)中で72時間焼成した。
 製造されたLi含有SiO粉末にCuKα線を用いたX線回折測定を行ったときの、回折角2θが24.4~25.0°の範囲に表れるLi2Si25に起因するピークの高さP1、回折角2θが18.6~19.2°の範囲に表れるLi2SiO3に起因するピークの高さP2、及び回折角2θが27.4~29.4°の範囲に表れる結晶性Siに起因するピークの高さP3を調査し、P2/P1及びP3/P1を算出した。
 Cコート及びLiドープを受けたSiO粉末を用いてリチウイオン二次電池の負極を作製した。具体的には、SiO粉、ケッチェンブラック、及び非水溶剤系バインダーであるポリイミド前駆体を85:5:10の質量比で混合し、更にNMP(n-メチルピロリドン)を加えて混練することで作製したスラリーを、厚さ40μmの銅箔上に塗布し、80℃で15分間予備乾燥した。更に直径11mmに打ち抜いた後、イミド化処理を行って負極とした。
 作製された負極を用いてリチウムイオン二次電池を作製した。対極にはリチウム箔を用いた。電解質にはエチレンカーボネート、及びジエチルカーボネートを1:1の体積比で混合した溶液に、LiPF6(六フッ化リンチリウム)を1mol/Lの割合になるように溶解させた溶液を用いた。そして、セパレータに厚さ30μmのポリエチレン製多孔質フィルムを用いて、コインセルを作製した。
 作製されたリチウムイオン二次電池に対して、二次電池充放電試験装置(株式会社ナガノ製)を用いて充放電試験を行った。充放電の条件は表1に記載の通りである。このような充放電試験により、初回充電容量、初回放電容量、初回充電容量に対する初回放電容量の比(以下、初期効率)、初回の放電容量に対する50回目の放電容量の比(以下、50cycle後放電容量維持率)をそれぞれ求めた。
Figure JPOXMLDOC01-appb-T000002
(実施例2)
 実施例1において、原料SiO粉末として、メディアン径が実施例1のときより小さい5.6μmのものを用いた。これに伴い、Cコートのための熱処理時間を30分から27分に短縮した。Cコート後のSiO粉末におけるCコート量は0.94wt%であり、メディアン径D1は5.8μm、メディアン径比D2/D1は0.88である。これら以外は実施例1と同じである。
(実施例3)
 実施例1において、Liドープの際に、Cコート後のSiO粉末と微粉砕後のLiH粉末との混合比(Li/Oモル比)を0.2とした。これ以外は、実施例1と同じである。
(実施例4)
 実施例2において、Liドープの際に、Cコート後のSiO粉末と微粉砕後のLiH粉末との混合比(Li/Oモル比)を0.2とした。これ以外は、実施例2と同じである。
(比較例1)
 実施例2において、Cコート後のSiO粉末(メディアン径8.2μm)のLiドープに、微粉砕しないメディアン径が20.8μmのLiH粉末を用いた。メディアン径比D2/D1は2.54である。これ以外は実施例2と同じである。
(比較例2)
 実施例4において、Cコート後のSiO粉末(メディアン径8.2μm)のLiドープに、微粉砕しないメディアン径が20.8μmのLiH粉末を用いた。これ以外は実施例4と同じである。
 実施例1~4及び比較例1,2において製造されたLi含有SiO粉末のX線回折測定結果(P2/P1及びP3/P1)、並びに充放電試験の結果(初回充電容量、初回放電容量、初期効率、及び50cycle後放電容量維持率)を、LiドープにおけるSiO粉末とLiH粉末の混合比(Li/Oモル比)及びメディアン径比D2/D1と共に表2に示す。
 また、実施例2において製造されたLi含有SiO粉末のX線回折チャートを図2に示し、比較例1において製造されたLi含有SiO粉末のX線回折チャートを図3に示す。参考までに、Liドープ前のSiO粉末のX線回折チャートを図4に示す。
Figure JPOXMLDOC01-appb-T000003
 Liドープ前のSiO粉末は、図4から分かるように、結晶ピークを生じておらず、実質的に非晶質である。図4はLiドープ前で且つCコート前のSiO粉末のX線回折チャートであるが、今回のCコート温度である850℃だと、Cコート後も結晶ピークが生じないことを確認している。このSiO粉末にCコート後、Liドープを行うと、比較例1~2では、図3から分かるように、Liドープ温度が600℃と低いにもかかわらず、Li2Si25に起因するピークと共に、Li2SiO3に起因するピーク及び結晶性Siに起因するピークが顕著に現れる。
 これに対し、実施例1~4では、図2から分かるように、SiO粉末にCコート後、Liドープを行うと、Li2Si25に起因して高いピークが現れるが、Li2SiO3に起因するピーク、及び結晶性Siに起因するピークは低く抑えられる。これは、Liドープ前に、Liドープ原料であるLiH粉末を微粉砕して、SiO粉末に対するメディアン径比D2/D1を小さく抑制することにより、SiO粉末粒子の局所的な反応、及びこれによるリチウムの濃化を抑えて、Li2SiO3の生成を抑制し、同時に結晶性Siの生成を抑制したことによる。
 実際、表2から分かるように、実施例1~4では、比較例1,2に比して、Li2Si25に起因するピークの高さP1に対するLi2SiO3に起因するピークの高さP2の比P2/P1が1以下と小さく抑制され、Li2Si25に起因するピークの高さP1に対する結晶性Siに起因するピークの高さP3の比P3/P1も0と小さく抑制されている。そして、その結果として、電池性能としての初期効率、50cycle後放電容量維持率が共に高い値を示している。
 実施例1と実施例3、実施例2と実施例4を比較した場合は、前者の方が後者よりP2/P1が大きく、初期効率が高い。これはLiドープでのLiドープ量(Li/O)が多いためである。また、実施例1と実施例2、実施例3と実施例4をそれぞれ比較した場合は、後者の方が前者よりP2/P1が大きい。これは、SiO粉末に対するLiH粉末のメディアン径比D2/D1が大きいことによると考えられる。

Claims (9)

  1.  リチウムイオン二次電池の負極材に使用され且つLiドープを受けたLi含有酸化珪素粉末であって、CuKα線を用いたX線回折測定を行ったときの、回折角2θが24.4~25.0°の範囲に表れるLi2Si25に起因するピークの高さP1、回折角2θが18.6~19.2°の範囲に表れるLi2SiO3に起因するピークの高さP2、及び回折角2θが27.4~29.4°の範囲に表れる結晶性Siに起因するピークの高さP3が次の条件(1)を満足するLi含有酸化珪素粉末。
     条件(1) P2/P1<1 且つP3/P1<0.5
  2.  請求項1に記載のLi含有酸化珪素粉末において、当該粉末におけるLi含有量が元素比で0.2≦Li/O≦0.6であるLi含有酸化珪素粉末。
  3.  請求項1又は2に記載のLi含有酸化珪素粉末において、当該粉末を構成する粒子の粒径がメディアン径で0.5~30μmであるLi含有酸化珪素粉末。
  4.  請求項1~3の何れかに記載のLi含有酸化珪素粉末において、当該粉末を構成する粒子の少なくとも一部に、導電性炭素皮膜が形成されたLi含有酸化珪素粉末。
  5.  請求項4に記載のLi含有酸化珪素粉末において、導電性炭素皮膜の形成量は、酸化珪素粉末全体の質量に対する炭素の重量比率で表して0.5~20wt%であるLi含有酸化珪素粉末。
  6.  リチウムイオン二次電池の負極材に使用されるLi含有酸化珪素粉末の製造方法であって、組成式SiOx(0.5<x<1.5)で表される低級酸化珪素粉末と粉末リチウム源とを混合する混合工程と、その混合粉末を300℃以上800℃以下で焼成する焼成工程とを含み、且つ前記低級酸化珪素粉末のメディアン径D1、及び粉末リチウム源のメディアン径D2が次の条件(2)を満足するLi含有酸化珪素粉末の製造方法。
     条件(2) 0.05≦D2/D1≦2
  7.  請求項6に記載のLi含有酸化珪素粉末の製造方法において、低級酸化珪素粉末と混合される粉末リチウム源を粉砕することにより、前記条件(2)を満足させるLi含有酸化珪素粉末の製造方法。
  8.  請求項6又は7に記載のLi含有酸化珪素粉末の製造方法において、前記混合工程での低級酸化珪素粉末と粉末リチウム源との混合比が、低級酸化珪素粉末中のOと粉末リチウム源中のLiとの元素比で0.2≦Li/O≦0.6であるLi含有酸化珪素粉末の製造方法。
  9.  請求項6~8の何れかに記載のLi含有酸化珪素粉末の製造方法において、前記混合工程に供する酸化珪素粉末に対して、導電性炭素皮膜形成のためのカーボン被覆処理を行うLi含有酸化珪素粉末の製造方法。
PCT/JP2016/071981 2015-08-28 2016-07-27 Li含有酸化珪素粉末及びその製造方法 WO2017038320A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017537661A JP6470418B2 (ja) 2015-08-28 2016-07-27 Li含有酸化珪素粉末及びその製造方法
US15/753,038 US10427943B2 (en) 2015-08-28 2016-07-27 Li-containing silicon oxide powder and production method thereof
EP16841352.4A EP3343678B1 (en) 2015-08-28 2016-07-27 Li containing silicon oxide power and method for producing same
CN201680045512.7A CN107851789B (zh) 2015-08-28 2016-07-27 含Li氧化硅粉末及其制造方法
KR1020187003241A KR102017470B1 (ko) 2015-08-28 2016-07-27 Li 함유 산화 규소 분말 및 그 제조 방법
US16/540,822 US10875775B2 (en) 2015-08-28 2019-08-14 Li-containing silicon oxide powder and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-168973 2015-08-28
JP2015168973 2015-08-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/753,038 A-371-Of-International US10427943B2 (en) 2015-08-28 2016-07-27 Li-containing silicon oxide powder and production method thereof
US16/540,822 Division US10875775B2 (en) 2015-08-28 2019-08-14 Li-containing silicon oxide powder and production method thereof

Publications (1)

Publication Number Publication Date
WO2017038320A1 true WO2017038320A1 (ja) 2017-03-09

Family

ID=58187174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071981 WO2017038320A1 (ja) 2015-08-28 2016-07-27 Li含有酸化珪素粉末及びその製造方法

Country Status (6)

Country Link
US (2) US10427943B2 (ja)
EP (1) EP3343678B1 (ja)
JP (1) JP6470418B2 (ja)
KR (1) KR102017470B1 (ja)
CN (1) CN107851789B (ja)
WO (1) WO2017038320A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189747A1 (ja) * 2018-03-30 2019-10-03 株式会社大阪チタニウムテクノロジーズ 酸化珪素粉末の製造方法及び負極材
WO2020003687A1 (ja) * 2018-06-25 2020-01-02 信越化学工業株式会社 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質、非水電解質二次電池用負極及び非水電解質二次電池
US10804530B2 (en) 2017-08-03 2020-10-13 Nanograf Corporation Composite anode material including surface-stabilized active material particles and methods of making same
JP2021521622A (ja) * 2018-09-28 2021-08-26 貝特瑞新材料集団股▲ふん▼有限公司Btr New Material Group Co., Ltd. リチウムイオン二次電池用負極材料、その製造方法及び使用
JP2022515463A (ja) * 2019-10-30 2022-02-18 貝特瑞新材料集団股▲ふん▼有限公司 シリコン酸素複合負極材料、その調製方法及びリチウムイオン電池
JP2022517793A (ja) * 2019-11-14 2022-03-10 貝特瑞新材料集団股▲ふん▼有限公司 負極材料、その調製方法及びリチウムイオン電池
WO2023032845A1 (ja) * 2021-09-02 2023-03-09 信越化学工業株式会社 一酸化珪素粉末及びリチウムイオン二次電池用負極活物質
JP2023039387A (ja) * 2021-09-08 2023-03-20 広東▲凱▼金新能源科技股▲フン▼有限公司 リチウム含有珪素酸化物複合負極材料、その調製方法及びリチウムイオン電池
US11670763B2 (en) 2019-11-06 2023-06-06 Nanograf Corporation Thermally disproportionated anode active material including turbostratic carbon coating

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101902071B1 (ko) 2015-10-26 2018-11-02 주식회사 엘지화학 음극 활물질 입자 및 이의 제조방법
US20210309528A1 (en) * 2018-08-27 2021-10-07 Osaka Titanium Technologies Co.,Ltd.. SiO POWDER PRODUCTION METHOD AND SPHERICAL PARTICULATE SiO POWDER
CN112018338B (zh) * 2019-05-31 2021-07-09 台南大学 制备硅基电极材料的方法、硅基电极材料及锂离子电池
KR102397296B1 (ko) * 2019-10-10 2022-05-13 한국에너지기술연구원 리튬 프리도핑 된 SiOx 입자의 제조 방법
JP2023526384A (ja) * 2020-05-18 2023-06-21 ナノグラフ コーポレイション グラフェン含有金属化酸化ケイ素複合材料
KR102286231B1 (ko) * 2020-07-29 2021-08-06 에스케이이노베이션 주식회사 리튬이 도핑된 규소계 산화물 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
CN114079050A (zh) * 2020-08-31 2022-02-22 贝特瑞新材料集团股份有限公司 硅氧复合材料、其制备方法、负极材料及锂离子电池
CN116802847A (zh) * 2023-03-02 2023-09-22 宁德时代新能源科技股份有限公司 硅基负极活性材料及其制备方法、二次电池及用电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114820A (ja) * 2011-11-25 2013-06-10 National Institute Of Advanced Industrial & Technology 珪素酸化物粉末及びこれを用いたリチウムイオン二次電池用負極材料、この材料を用いたリチウムイオン二次電池、並びにリチウムイオン二次電池負極材用の珪素酸化物粉末の製造方法
JP2014071948A (ja) * 2012-09-27 2014-04-21 Sanyo Electric Co Ltd 負極活物質の製造方法
JP2015153520A (ja) * 2014-02-12 2015-08-24 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池の負極用粉末、およびその製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2997741A (en) 1959-01-20 1961-08-29 John Holroyd & Company Ltd Rotary compacting machines
US4702510A (en) 1987-02-20 1987-10-27 Davis Danny J Demountable flat bed for a fifth wheel tractor
US4985949A (en) 1989-09-01 1991-01-22 Jantz Robert F Infant carrier seat rocker
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP4702510B2 (ja) 2001-09-05 2011-06-15 信越化学工業株式会社 リチウム含有酸化珪素粉末及びその製造方法
TW200724506A (en) * 2005-10-07 2007-07-01 Ohara Kk Inorganic composition
JP4985949B2 (ja) 2006-03-27 2012-07-25 信越化学工業株式会社 珪素−珪素酸化物−リチウム系複合体の製造方法、並びに非水電解質二次電池用負極材
US7776473B2 (en) * 2006-03-27 2010-08-17 Shin-Etsu Chemical Co., Ltd. Silicon-silicon oxide-lithium composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
JP5411780B2 (ja) * 2010-04-05 2014-02-12 信越化学工業株式会社 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
JP5411781B2 (ja) * 2010-04-05 2014-02-12 信越化学工業株式会社 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
JP2015512130A (ja) * 2012-02-28 2015-04-23 エルジー・ケム・リミテッド リチウム二次電池用電極活物質及びその製造方法
KR102344143B1 (ko) * 2012-05-09 2021-12-30 신에쓰 가가꾸 고교 가부시끼가이샤 리튬의 프리도핑 방법, 리튬 프리도핑 전극 및 축전 디바이스
US9893353B2 (en) * 2013-05-23 2018-02-13 Shin-Etsu Chemical Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
WO2014188654A1 (ja) * 2013-05-24 2014-11-27 株式会社大阪チタニウムテクノロジーズ リチウム含有酸化珪素粉末
JP6153198B2 (ja) * 2013-08-05 2017-06-28 株式会社豊田自動織機 全固体二次電池
JP6397262B2 (ja) * 2014-02-07 2018-09-26 信越化学工業株式会社 非水電解質二次電池
JP6201797B2 (ja) 2014-02-12 2017-09-27 株式会社豊田自動織機 蓄電装置
WO2016098306A1 (ja) * 2014-12-15 2016-06-23 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池の負極用粉末、およびその製造方法
US10516153B2 (en) * 2015-01-28 2019-12-24 Sanyo Electric Co., Ltd. Negative-electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR101902071B1 (ko) * 2015-10-26 2018-11-02 주식회사 엘지화학 음극 활물질 입자 및 이의 제조방법
TWI795328B (zh) * 2016-05-30 2023-03-01 日商信越化學工業股份有限公司 負極活性物質、混合負極活性物質材料、及負極活性物質的製造方法
US20190117543A1 (en) * 2017-10-20 2019-04-25 The Procter & Gamble Company Stable Hair Care Compositions Comprising Soluble Salt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114820A (ja) * 2011-11-25 2013-06-10 National Institute Of Advanced Industrial & Technology 珪素酸化物粉末及びこれを用いたリチウムイオン二次電池用負極材料、この材料を用いたリチウムイオン二次電池、並びにリチウムイオン二次電池負極材用の珪素酸化物粉末の製造方法
JP2014071948A (ja) * 2012-09-27 2014-04-21 Sanyo Electric Co Ltd 負極活物質の製造方法
JP2015153520A (ja) * 2014-02-12 2015-08-24 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池の負極用粉末、およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3343678A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10804530B2 (en) 2017-08-03 2020-10-13 Nanograf Corporation Composite anode material including surface-stabilized active material particles and methods of making same
US11916221B2 (en) 2017-08-03 2024-02-27 Nanograf Corporation Composite anode material including surface-stabilized active material particles and methods of making same
US20220352518A1 (en) * 2018-03-30 2022-11-03 Osaka Titanium Technologies Co.,Ltd. Method for producing silicon oxide powder and negative electrode material
JPWO2019189747A1 (ja) * 2018-03-30 2021-04-01 株式会社大阪チタニウムテクノロジーズ 酸化珪素粉末の製造方法及び負極材
US11817581B2 (en) * 2018-03-30 2023-11-14 Osaka Titanium Technologies Co., Ltd. Method for producing silicon oxide powder and negative electrode material
JP7030185B2 (ja) 2018-03-30 2022-03-04 株式会社大阪チタニウムテクノロジーズ 酸化珪素粉末の製造方法及び負極材
WO2019189747A1 (ja) * 2018-03-30 2019-10-03 株式会社大阪チタニウムテクノロジーズ 酸化珪素粉末の製造方法及び負極材
WO2020003687A1 (ja) * 2018-06-25 2020-01-02 信越化学工業株式会社 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質、非水電解質二次電池用負極及び非水電解質二次電池
JP2020004482A (ja) * 2018-06-25 2020-01-09 信越化学工業株式会社 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質、非水電解質二次電池用負極及び非水電解質二次電池
JP7061229B2 (ja) 2018-09-28 2022-04-27 貝特瑞新材料集団股▲ふん▼有限公司 リチウムイオン二次電池用負極材料、その製造方法及び使用
JP2021521622A (ja) * 2018-09-28 2021-08-26 貝特瑞新材料集団股▲ふん▼有限公司Btr New Material Group Co., Ltd. リチウムイオン二次電池用負極材料、その製造方法及び使用
JP2022515463A (ja) * 2019-10-30 2022-02-18 貝特瑞新材料集団股▲ふん▼有限公司 シリコン酸素複合負極材料、その調製方法及びリチウムイオン電池
JP7288059B2 (ja) 2019-10-30 2023-06-06 貝特瑞新材料集団股▲ふん▼有限公司 シリコン酸素複合負極材料、その調製方法及びリチウムイオン電池
US11670763B2 (en) 2019-11-06 2023-06-06 Nanograf Corporation Thermally disproportionated anode active material including turbostratic carbon coating
JP2022517793A (ja) * 2019-11-14 2022-03-10 貝特瑞新材料集団股▲ふん▼有限公司 負極材料、その調製方法及びリチウムイオン電池
JP7236547B2 (ja) 2019-11-14 2023-03-09 貝特瑞新材料集団股▲ふん▼有限公司 負極材料、その調製方法及びリチウムイオン電池
WO2023032845A1 (ja) * 2021-09-02 2023-03-09 信越化学工業株式会社 一酸化珪素粉末及びリチウムイオン二次電池用負極活物質
JP2023039387A (ja) * 2021-09-08 2023-03-20 広東▲凱▼金新能源科技股▲フン▼有限公司 リチウム含有珪素酸化物複合負極材料、その調製方法及びリチウムイオン電池
JP7342159B2 (ja) 2021-09-08 2023-09-11 広東▲凱▼金新能源科技股▲フン▼有限公司 リチウム含有珪素酸化物複合負極材料、その調製方法及びリチウムイオン電池

Also Published As

Publication number Publication date
KR102017470B1 (ko) 2019-09-04
EP3343678B1 (en) 2020-05-13
EP3343678A4 (en) 2019-01-09
US20180257942A1 (en) 2018-09-13
JP6470418B2 (ja) 2019-02-13
JPWO2017038320A1 (ja) 2018-06-14
KR20180024004A (ko) 2018-03-07
CN107851789A (zh) 2018-03-27
US20200002179A1 (en) 2020-01-02
US10427943B2 (en) 2019-10-01
CN107851789B (zh) 2021-03-12
EP3343678A1 (en) 2018-07-04
US10875775B2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
JP6470418B2 (ja) Li含有酸化珪素粉末及びその製造方法
JP5229472B2 (ja) 非水電解液二次電池用マンガン酸リチウム粒子粉末及びその製造方法、並びに非水電解液二次電池
JP4702510B2 (ja) リチウム含有酸化珪素粉末及びその製造方法
JP5344111B2 (ja) 非水電解液二次電池用マンガン酸リチウムの製造方法、並びに非水電解液二次電池
WO2012141258A1 (ja) Li-Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP5472602B2 (ja) マンガン酸リチウム粒子粉末の製造方法及び非水電解質二次電池
CN107408689B (zh) 非水电解质二次电池用正极活性物质及二次电池
JP2011222153A (ja) 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
WO2009119104A1 (ja) オキシ水酸化コバルト粒子粉末及びその製造法ならびにコバルト酸リチウム粒子粉末、その製造法、およびそれを使用した非水電解質二次電池
JP2017204374A (ja) 酸化珪素系粉末負極材
JP2016076470A (ja) リチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2014123529A (ja) リチウム二次電池用正極材料
JP6688663B2 (ja) Li含有酸化珪素粉末及びその製造方法
JP5997087B2 (ja) リチウム二次電池用正極材料の製造方法
JP6341095B2 (ja) 非水電解質二次電池用マンガン酸リチウム粒子粉末及びその製造方法、並びに非水電解質二次電池
JP6195936B2 (ja) リチウムイオン二次電池の負極用粉末
WO2013125668A1 (ja) 非水電解質二次電池用正極活物質粒子粉末並びにその製造方法、及び非水電解質二次電池
JP6749884B2 (ja) リチウム二次電池用正極材料
JP4553095B2 (ja) コバルト酸化物粒子粉末及びその製造法、非水電解質二次電池用正極活物質及びその製造法並びに非水電解質二次電池
JP5594500B2 (ja) 非水電解液二次電池用マンガン酸リチウム、並びに非水電解液二次電池
JP2004051471A (ja) コバルト酸化物粒子粉末及びその製造法、非水電解質二次電池用正極活物質及びその製造法並びに非水電解質二次電池
JP2003187795A (ja) 非水電解質二次電池用の正極活物質
JP2001216964A (ja) リチウム二次電池負極用黒鉛とその製造方法並びにリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187003241

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15753038

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017537661

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE