WO2020003687A1 - 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質、非水電解質二次電池用負極及び非水電解質二次電池 - Google Patents

非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質、非水電解質二次電池用負極及び非水電解質二次電池 Download PDF

Info

Publication number
WO2020003687A1
WO2020003687A1 PCT/JP2019/015245 JP2019015245W WO2020003687A1 WO 2020003687 A1 WO2020003687 A1 WO 2020003687A1 JP 2019015245 W JP2019015245 W JP 2019015245W WO 2020003687 A1 WO2020003687 A1 WO 2020003687A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
secondary battery
electrolyte secondary
Prior art date
Application number
PCT/JP2019/015245
Other languages
English (en)
French (fr)
Inventor
粟野 英和
拓史 松野
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2020003687A1 publication Critical patent/WO2020003687A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery, a negative electrode active material for a non-aqueous electrolyte secondary battery, a negative electrode for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery.
  • lithium-ion secondary batteries are highly expected because they can be easily made smaller and have higher capacities, and can obtain higher energy density than lead batteries and nickel-cadmium batteries.
  • the above-mentioned lithium ion secondary battery is provided with an electrolytic solution together with a positive electrode, a negative electrode and a separator, and the negative electrode contains a negative electrode active material involved in a charge / discharge reaction.
  • the negative electrode active material expands and contracts during charge and discharge, and thus tends to be cracked mainly near the surface layer of the negative electrode active material.
  • an ionic substance is generated inside the active material, and the negative electrode active material becomes a substance that is easily broken.
  • the surface layer of the negative electrode active material is broken, a new surface is generated, and the reaction area of the active material increases.
  • a decomposition reaction of the electrolytic solution occurs on the new surface, and a film which is a decomposition product of the electrolytic solution is formed on the new surface, so that the electrolytic solution is consumed. For this reason, the cycle characteristics are likely to deteriorate.
  • silicon and amorphous silicon dioxide are simultaneously deposited using a gas phase method (for example, see Patent Document 1). Further, in order to obtain high battery capacity and safety, a carbon material (electron conductive material) is provided on the surface layer of the silicon oxide particles (for example, see Patent Document 2). Further, in order to improve cycle characteristics and obtain high input / output characteristics, an active material containing silicon and oxygen is produced, and an active material layer having a high oxygen ratio in the vicinity of the current collector is formed ( For example, see Patent Document 3). Further, in order to improve the cycle characteristics, oxygen is contained in the silicon active material, and is formed so that the average oxygen content is 40 at% or less and the oxygen content increases near the current collector. (For example, see Patent Document 4).
  • Si phase (for example, see Patent Document 5) by using a nanocomposite containing SiO 2, M y O metal oxide in order to improve the initial charge and discharge efficiency.
  • the molar ratio of oxygen to silicon in the negative electrode active material is set to 0.1 to 1.2, and the difference between the maximum value and the minimum value of the molar ratio near the interface between the active material and the current collector is determined. Is controlled to be 0.4 or less (for example, see Patent Document 7).
  • a metal oxide containing lithium is used (for example, see Patent Document 8).
  • a hydrophobic layer such as a silane compound is formed on the surface layer of the silicon material (for example, see Patent Document 9).
  • silicon oxide is used, and conductivity is imparted by forming a graphite coating on the surface layer thereof (for example, see Patent Document 10).
  • Patent Document 10 with respect to the shift value obtained from the Raman spectra for graphite coating, with broad peaks appearing at 1330 cm -1 and 1580 cm -1, their intensity ratio I 1330 / I 1580 is 1.5 ⁇ I 1330 / I 1580 ⁇ 3.
  • particles having a silicon microcrystalline phase dispersed in silicon dioxide are used for high battery capacity and improvement of cycle characteristics (for example, see Patent Document 11).
  • a silicon oxide in which the atomic ratio of silicon and oxygen is controlled to 1: y (0 ⁇ y ⁇ 2) is used (for example, see Patent Document 12).
  • a mixed electrode of silicon and carbon is prepared and the silicon ratio is designed to be 5 wt% or more and 13 wt% or less (for example, see Patent Document 13).
  • a lithium-ion secondary battery as a main power source has been required to have an increased battery capacity.
  • development of a lithium ion secondary battery including a negative electrode using a silicon material as a main material is desired.
  • the present invention has been made in view of the above-described problems, and has as its object to provide a method for producing a negative electrode active material for a nonaqueous electrolyte secondary battery having good initial efficiency. Another object is to provide a negative electrode active material for a non-aqueous electrolyte secondary battery, a negative electrode for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery having good initial efficiency.
  • the present invention is a method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery including silicon compound particles containing lithium, comprising a silicon compound (SiO x : 0.5 ⁇ x ⁇ 1.6) a step of preparing silicon compound particles containing the above, a step of mixing the silicon compound particles with a lithium compound containing lithium nitride to form a mixed raw material, and using the mixed raw material in an atmosphere containing an inert gas.
  • a silicon compound SiO x : 0.5 ⁇ x ⁇ 1.6
  • Calcining under the method the method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery, characterized by producing a negative electrode active material for a non-aqueous electrolyte secondary battery containing silicon compound particles containing lithium. provide.
  • lithium compound containing lithium nitride As the lithium compound containing lithium nitride, it is preferable to use lithium nitride having a BET specific surface area of 0.5 m 2 / g or more and 50 m 2 / g or less.
  • the atmosphere containing the inert gas is preferably an atmosphere containing hydrogen and having an oxygen content of 1 ppm or less.
  • the atmosphere containing an inert gas contains hydrogen and the content of oxygen is 1 ppm or less, oxidation of the silicon compound particles by oxygen can be suppressed, and a decrease in the initial efficiency of the negative electrode active material can be suppressed. Becomes possible.
  • the temperature of the mixed raw material is maintained at 300 ° C. or more and 700 ° C. or less for 30 minutes or more.
  • a composite comprising an amorphous metal oxide and a metal hydroxide on all or at least a part of the surface of the silicon compound particles or the surface of the carbon coating. It is preferable to include a step of forming a composite layer containing
  • the manufactured negative electrode active material has a composite layer composed of a metal oxide and a metal hydroxide
  • the water resistance to an aqueous slurry becomes high, and as a result, a negative electrode having such a composite layer
  • the active material particles have high cycle characteristics. If the complex is amorphous, transfer of Li is easily performed.
  • the composite layer including the composite including the amorphous metal oxide and the metal hydroxide having excellent conductivity is provided, the cycle characteristics are improved. For this reason, a non-aqueous electrolyte secondary battery having a high battery capacity and a good cycle maintenance ratio utilizing the inherent characteristics of silicon oxide can be manufactured to be superior in industrial production.
  • the amorphous metal oxide and the metal hydroxide include at least one element of aluminum, magnesium, titanium, and zirconium.
  • the metal oxide and the metal hydroxide contain the above-mentioned metal element, the slurry at the time of manufacturing the electrode is more stable.
  • the present invention is a negative electrode active material containing negative electrode active material particles, wherein the negative electrode active material particles contain silicon compound particles containing a silicon compound (SiOx: 0.5 ⁇ x ⁇ 1.6),
  • the silicon compound particles contain at least one of Li 2 SiO 3 and Li 2 Si 2 O 5
  • the negative electrode active material particles contain NO 3 ions on the surface thereof, and the content of the NO 3 ions Is not less than 1 mass ppm and not more than 200 mass ppm with respect to the mass of the negative electrode active material particles, and a negative electrode active material for a non-aqueous electrolyte secondary battery is provided.
  • Li silicates such as Li 2 SiO 3 and Li 2 Si 2 O 5 are relatively stable as Li compounds, so that better battery characteristics can be obtained.
  • the negative electrode active material particles include NO 3 ions on the surface thereof and the content of NO 3 ions is 1 mass ppm or more and 200 mass ppm or less based on the mass of the negative electrode active material particles, The dispersion of the active material particles takes a value close to neutrality, and the stability of the slurry at the time of forming the electrode can be improved.
  • a secondary battery manufactured using such negative electrode active material particles has a high battery capacity and a good initial efficiency, and can be industrially manufactured.
  • the negative electrode active material in which at least a part of the surface of the silicon compound particles is coated with the carbon film has excellent conductivity. Therefore, if such a negative electrode active material is used, a non-aqueous electrolyte secondary battery having a high battery capacity and a good cycle retention ratio utilizing the inherent characteristics of a silicon oxide modified using Li can be industrially manufactured. It can be manufactured with superior production.
  • the negative electrode active material particles have a peak intensity (A) derived from a Si region at 27.5 to 29.0 ° as a diffraction peak (2 ⁇ ) obtained from an X-ray diffraction spectrum using Cu-K ⁇ radiation.
  • A peak intensity
  • B intensity of the peak derived from Li 2 SiO 3 given at 26.5 to 27.5 °
  • C intensity of the peak derived from Li 2 Si 2 O 5 given at 24.5 to 25.5 °
  • the negative electrode active material particles satisfy the relationship of B> C where the strength B and the strength C are satisfied.
  • the negative electrode active material particles satisfy such a relationship, the negative electrode active material can more sufficiently obtain the effect of improving battery characteristics.
  • the negative electrode active material particles have a broad peak derived from an SiO 2 region given around 22 ° as a diffraction peak (2 ⁇ ) obtained from an X-ray diffraction spectrum using Cu-K ⁇ radiation. Is preferred.
  • the negative electrode active material particles have a half width (2 ⁇ ) of a diffraction peak due to a Si (111) crystal plane obtained by X-ray diffraction using Cu—K ⁇ radiation of 1.2 ° or more. .
  • the negative electrode active material particles having such a half-value width have low crystallinity and a small amount of Si crystals, the battery characteristics can be improved.
  • the silicon compound particles preferably have a median diameter of 0.5 ⁇ m or more and 15 ⁇ m or less.
  • the median diameter is 0.5 ⁇ m or more, the area where the side reaction occurs on the surface of the silicon compound particles is small, so that Li is not consumed excessively and the cycle maintenance rate of the battery can be maintained high. Further, when the median diameter is 15 ⁇ m or less, expansion at the time of Li insertion is small, cracking is difficult, and cracks are not easily generated. Furthermore, since the silicon compound particles have a small expansion, for example, a negative electrode active material layer in which a carbon active material is mixed with a generally used silicon-based active material is hardly broken.
  • the negative electrode active material particles have a BET specific surface area of not less than 3.0 m 2 / g and not more than 8.0 m 2 / g.
  • the specific surface area is 8.0 m 2 / g or less, the area where the side reaction occurs on the surface of the silicon compound particles is small, so that Li is not consumed excessively and the cycle maintenance ratio of the battery can be maintained high. Further, when the specific surface area is 3.0 m 2 / g or more, expansion at the time of Li insertion is small, cracking is difficult, and cracks are not easily generated. Furthermore, since the silicon compound particles have a small expansion, for example, a negative electrode active material layer in which a carbon active material is mixed with a generally used silicon-based active material is hardly broken.
  • the surface of the silicon compound particles or the surface of the carbon coating, or both or at least a part thereof includes a composite layer containing a composite composed of an amorphous metal oxide and a metal hydroxide. Is preferred.
  • ⁇ ⁇ Having such a composite layer provides a negative electrode active material having good cycle characteristics. If the complex is amorphous, transfer of Li is easily performed. As described above, when the composite layer including the composite including the amorphous metal oxide and the metal hydroxide having excellent conductivity is provided, the cycle characteristics are improved. For this reason, a non-aqueous electrolyte secondary battery having a high battery capacity and a good cycle maintenance ratio utilizing the inherent characteristics of silicon oxide can be manufactured to be superior in industrial production. In addition, metal oxides and metal hydroxides show equivalent performance.
  • the amorphous metal oxide and the metal hydroxide contain at least one element of aluminum, magnesium, titanium, and zirconium.
  • the slurry is more stable during electrode production.
  • a test cell comprising a negative electrode including a mixture of the negative electrode active material for a non-aqueous electrolyte secondary battery and a carbon-based active material and a counter electrode lithium was prepared, and in the test cell, lithium was inserted into the negative electrode active material.
  • Charge and discharge comprising a current flow to discharge lithium and a current flow to release lithium from the negative electrode active material, and a discharge capacity Q in the charge / discharge is determined with respect to the counter electrode lithium.
  • the potential V of the negative electrode has a peak in the range of 0.40 V to 0.55 V. Is preferred.
  • V-dQ / dV curve is similar to the peak of the silicon material, and the discharge curve on the higher potential side rises sharply, so that capacity is easily developed when designing a battery.
  • the present invention has a negative electrode active material layer containing a negative electrode active material for a non-aqueous electrolyte secondary battery, and a negative electrode current collector, wherein the negative electrode active material layer is formed on the negative electrode current collector And a negative electrode for a non-aqueous electrolyte secondary battery, wherein the negative electrode current collector contains carbon and sulfur, and the content thereof is 100 mass ppm or less.
  • the negative electrode current collector constituting the negative electrode contains carbon and sulfur in the above amounts, the deformation of the negative electrode including the current collector during charging can be suppressed.
  • a secondary battery manufactured using such a negative electrode has a high battery capacity and good initial efficiency, and can be manufactured industrially superiorly.
  • the present invention also provides a non-aqueous electrolyte secondary battery using a negative electrode containing a negative electrode active material for a non-aqueous electrolyte secondary battery as the negative electrode.
  • Such a secondary battery has a high battery capacity and a good initial efficiency, and can be manufactured with an industrial advantage.
  • the method for producing a negative electrode active material of the present invention can improve the charge / discharge efficiency, and can produce a negative electrode active material capable of substantially improving the initial charge / discharge characteristics.
  • the negative electrode active material of the present invention can improve charge / discharge efficiency, and can substantially improve initial charge / discharge characteristics.
  • the same effect can be obtained in a negative electrode and a secondary battery containing this negative electrode active material.
  • the secondary battery of the present invention containing this negative electrode active material can be produced industrially with superiority, and has good battery capacity, cycle characteristics, and initial charge / discharge characteristics. Further, the same effect can be obtained in an electronic device, a power tool, an electric vehicle, a power storage system, and the like using the secondary battery of the present invention.
  • FIG. 1 is an exploded view illustrating a configuration example (laminate film type) of a lithium ion secondary battery including a negative electrode active material of the present invention.
  • a lithium ion secondary battery using a silicon-based active material as a main material is expected to have cycle characteristics and initial efficiency close to those of a lithium ion secondary battery using a carbon material. Since silicate was generated, it was difficult to obtain an initial efficiency close to that of a lithium ion secondary battery using a carbon material.
  • the present inventors have conducted intensive studies in order to obtain a negative electrode active material capable of easily producing a nonaqueous electrolyte secondary battery having a high initial capacity and a high initial battery efficiency, and developed the present invention. Reached.
  • the negative electrode active material of the present invention includes silicon compound particles having a silicon compound (SiOx: 0.5 ⁇ x ⁇ 1.6).
  • the silicon compound particles contained in the negative electrode active material contain at least one of Li 2 SiO 3 and Li 2 Si 2 O 5 .
  • the negative electrode active material contains NO 3 ions on the surface of the negative electrode active material particles, and the content of NO 3 ions is 1 mass ppm or more and 200 mass ppm or less with respect to the mass of the negative electrode active material particles.
  • the negative electrode active material (silicon-based active material) containing these Li compounds is more Stable battery characteristics can be obtained. These Li compounds can be obtained by selectively changing a part of the SiO 2 component generated inside the silicon compound to the Li compound and modifying the silicon compound. If the negative electrode active material particles include NO 3 ions on the surface thereof and the content of NO 3 ions is 1 mass ppm or more and 200 mass ppm or less based on the mass of the negative electrode active material particles, The dispersion of the active material particles takes a value close to neutrality, and the stability of the slurry at the time of forming the electrode can be improved.
  • the NO 3 ion content on the surface of the negative electrode active material particles was determined by weighing 1 g of lithium-doped silicon compound particles, adding them to 50 g of ultrapure water, and stirring for 5 minutes to disperse them. The filtered product was measured by ion chromatography.
  • a carbon coating is formed on at least a part of the surface of the silicon compound particles.
  • the carbon coating is formed on at least a part of the surface of the silicon compound particles, but the carbon coating may be formed on the entire surface of the silicon compound particles.
  • Li The Li compound inside the negative electrode active material particles can be analyzed by XRD (X-ray diffraction).
  • XRD X-ray diffraction
  • the measurement of XRD can be performed using, for example, AXS D2 PHASER manufactured by Bruker.
  • the negative electrode active material particles originate from a Si region given as a diffraction peak (2 ⁇ ) obtained from an X-ray diffraction spectrum using Cu—K ⁇ ray at 27.5 to 29.0 °.
  • the peak intensity C satisfy the relationship of A> B and A> C.
  • a material that satisfies such a relationship is a negative electrode active material that can more sufficiently obtain the effect of improving battery characteristics.
  • the negative electrode active material particles have a broad peak derived from an SiO 2 region given at around 22 ° as a diffraction peak (2 ⁇ ) obtained from an X-ray diffraction spectrum using Cu-K ⁇ radiation. It is preferable to have a strong peak. In such a case, since the amount of the Li compound such as Li silicate in the silicon compound is not excessive and the SiO 2 component remains to some extent, the stability to the slurry at the time of preparing the electrode is further improved. .
  • the lower the crystallinity of the silicon compound the better.
  • the half width (2 ⁇ ) of the diffraction peak attributable to the Si (111) crystal plane obtained by X-ray diffraction using Cu—K ⁇ radiation of the negative electrode active material particles is preferably 1.2 ° or more. desirable.
  • the median diameter of the silicon compound particles is not particularly limited, it is preferably from 0.5 ⁇ m to 15 ⁇ m. This is because in this range, the lithium ions are easily inserted and discharged during charging and discharging, and the negative electrode active material particles are hardly broken.
  • the BET specific surface area of the negative electrode active material particles is from 3.0 m 2 / g to 8.0 m 2 / g.
  • the surface of the silicon compound particles or the surface of the carbon coating, or at least a part of both of them includes a complex composed of an amorphous metal oxide and a metal hydroxide. It is preferred to include a composite layer.
  • a composite layer for example, a composite layer including a composite including amorphous aluminum oxide and aluminum hydroxide can be formed. In this case, the composite layer has an aluminum oxide region and an aluminum hydroxide region.
  • a part of the metal oxide of the composite layer may be in a crystalline phase, but the above-described composite layer has a region including an amorphous metal oxide and a metal hydroxide. In some cases, a part may be in a crystal phase.
  • the composite is not limited to aluminum and may include other metal elements.
  • the amorphous metal oxide and the metal hydroxide preferably contain at least one element of aluminum, magnesium, titanium, and zirconium.
  • the outermost layer of the composite layer may contain chlorides, sulfates and phosphates of aluminum, magnesium, titanium and zirconium.
  • the thickness of the composite layer is preferably 10 nm or less, and more preferably 5 nm or less. If the thickness of the composite layer is 10 nm or less, the battery characteristics are improved because the electric resistance does not become too high depending on the composition of the mixture. Further, when the film thickness is about 2 to 3 nm, the stability to the slurry can be further improved while suppressing an increase in electric resistance. The thickness of the composite layer can be confirmed by a TEM (transmission electron microscope).
  • a test cell comprising a negative electrode including a mixture of the negative electrode active material of the present invention and a carbon-based active material and a counter electrode lithium was prepared.
  • a current was applied so that lithium was inserted into the negative electrode active material.
  • a discharge in which a current is passed to remove lithium from the negative electrode active material, and the discharge capacity Q in the charge / discharge was differentiated by the potential V of the negative electrode with respect to the counter electrode lithium.
  • the potential V of the negative electrode has a peak in the range of 0.40 V to 0.55 V.
  • the above-mentioned peak in the V-dQ / dV curve is similar to the peak of the silicon material, and the discharge curve on the higher potential side rises sharply.
  • the negative electrode active material of the present invention includes silicon compound particles composed of SiO x (0.5 ⁇ x ⁇ 1.6).
  • SiO x As the composition of the silicon compound (SiO x : 0.5 ⁇ x ⁇ 1.6), it is preferable that x is close to 1. This is because high cycle characteristics can be obtained.
  • the composition of the silicon oxide material in the present invention does not necessarily mean that the purity is 100%, and may include a trace amount of an impurity element or Li.
  • silicon compound particles containing a silicon compound SiO x : 0.5 ⁇ x ⁇ 1.6
  • a lithium compound containing lithium nitride is mixed with the silicon compound particles to obtain a mixed raw material.
  • Li is inserted into and desorbed from the silicon compound particles, thereby modifying the silicon compound particles.
  • a Li compound can be simultaneously generated inside or on the surface of the silicon compound particles.
  • the negative electrode material and the negative electrode can be manufactured by mixing the negative electrode active material particles thus manufactured with a conductive auxiliary agent and a binder.
  • a method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery by using a lithium compound containing lithium nitride as a lithium source, oxidation of a silicon compound by oxygen can be reduced, and a good initial A highly efficient negative electrode active material for a non-aqueous electrolyte secondary battery can be produced with superiority in industrial production. For this reason, a non-aqueous electrolyte secondary battery having a high battery capacity and a good cycle maintenance ratio utilizing the inherent characteristics of silicon oxide can be manufactured to be superior in industrial production.
  • the content of lithium nitride is preferably 80% or more in terms of the molar ratio of Li to all lithium. More preferably, the molar ratio of Li is 90% or more.
  • the method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention after the step of preparing silicon compound particles, before the step of forming a mixed raw material, at least a part of the surface of the silicon compound particles It is preferable to include a step of forming a carbon coating. By forming a carbon coating on at least a part of the surface of the silicon compound particles as described above, at least a part of the surface of the silicon compound is coated with the carbon coating, and the conductivity is excellent.
  • a nonaqueous electrolyte secondary battery having a high battery capacity and a good cycle retention ratio utilizing the inherent characteristics of a silicon oxide modified using Li can be industrially manufactured. It can be manufactured with superior production.
  • lithium nitride having a BET specific surface area of 0.5 m 2 / g or more and 50 m 2 / g or less is used as the lithium compound containing lithium nitride. Is preferred.
  • the reaction between lithium nitride and SiO x is an exothermic reaction. In order to prevent the temperature of the furnace from being exceeded by the temperature rise due to the exothermic reaction and causing damage to the firing furnace, the reaction is preferably performed milder.
  • the atmosphere containing the inert gas is an atmosphere containing hydrogen and having an oxygen content of 1 ppm or less. Is preferred.
  • the atmosphere containing an inert gas contains hydrogen and the content of oxygen is 1 ppm or less, oxidation of the silicon compound particles by oxygen can be suppressed, and a decrease in the initial efficiency of the negative electrode active material can be suppressed. Becomes possible.
  • the temperature of the mixed raw material is preferably maintained at 300 ° C. or more and 700 ° C. or less for 30 minutes or more.
  • the temperature is preferably maintained at 300 ° C. or more and 700 ° C. or less for 30 minutes or more.
  • the exothermic behavior of the reaction between lithium nitride and SiO x becomes mild, and safe firing becomes possible.
  • the final temperature is preferably 500 ° C. or more and 750 ° C. or less, and the optimum temperature is about 720 ° C.
  • the method includes a step of forming a composite layer including a composite including an amorphous metal oxide and a metal hydroxide.
  • a method of forming the composite layer any of surface coating with a liquid phase, mechanochemical coating with a dry method, wet coating with a spray, sol-gel reaction treatment of aluminum isopropoxide, and the like can be used.
  • wet coating by spraying and mechanochemical coating by dry method are more convenient and cost-competitive.
  • At least one element of aluminum, magnesium, titanium, and zirconium is used as an amorphous metal oxide and a metal hydroxide. It is preferred to include. When the metal oxide and the metal hydroxide contain the above metal elements, the slurry at the time of manufacturing the electrode is more stable.
  • the negative electrode active material is produced, for example, by the following procedure.
  • a silicon oxide gas-generating material is heated in the presence of an inert gas or under a reduced pressure in a temperature range of 900 ° C. to 1600 ° C. to generate a silicon oxide gas.
  • the raw material is a mixture of the metal silicon powder and the silicon dioxide powder, and considering the surface oxygen of the metal silicon powder and the presence of trace oxygen in the reaction furnace, the mixing molar ratio is 0.8 ⁇ metal silicon powder / It is desirable that the range of silicon dioxide powder is less than 1.3.
  • the Si crystallites in the particles are controlled by changing the charging range and vaporization temperature, and by heat treatment after generation.
  • the generated gas is deposited on the adsorption plate. The deposit is taken out while the temperature in the reactor is lowered to 100 ° C. or lower, and pulverized and powdered using a ball mill, a jet mill or the like.
  • a carbon film is formed on the surface layer of the obtained powder material (silicon compound).
  • the carbon coating is effective for further improving the battery characteristics of the negative electrode active material.
  • thermal decomposition CVD is desirable.
  • a silicon oxide powder is set in a furnace, a hydrocarbon gas is filled in the furnace, and the furnace temperature is raised.
  • the decomposition temperature is not particularly limited, but is preferably 1200 ° C. or lower. More preferably, the temperature is 950 ° C. or lower, and it is possible to suppress unintended disproportionation of silicon oxide.
  • the hydrocarbon gas is not particularly limited, but preferably 3 ⁇ n in the C n H m composition. This is because the low production cost and the physical properties of the decomposition product are good.
  • the powder material can be modified by mixing with lithium nitride (Li 3 N) and heating under an inert gas atmosphere.
  • the inert atmosphere gas for example, an argon atmosphere, a nitrogen atmosphere, a mixed gas of argon and hydrogen, a mixed gas of nitrogen and hydrogen, or the like can be used. More specifically, first, lithium nitride (Li 3 N) and silicon oxide powder are sufficiently mixed in an Ar atmosphere, sealed, and the whole sealed container is agitated by stirring. Thereafter, heating is performed in the range of 500 ° C. to 750 ° C. to perform reforming, and Li is inserted into the silicon compound.
  • the inert gas may be replaced in the system by 1% or more, and the effect is exhibited when the gas flows at 200 ° C. or more for 5 minutes or more.
  • Hydrogen may be generated during the firing by the decomposition of the mixed raw material and the like.
  • the negative electrode active material can be modified at low cost, and the battery characteristics are improved. This also improves the stability of the negative electrode active material with respect to the slurry, such as water resistance.
  • a composite layer including a composite including an amorphous metal oxide and a metal hydroxide is formed on the surface of the modified silicon oxide particles.
  • the negative electrode active material particles have a composite layer including a composite including an amorphous metal oxide and a metal hydroxide on the surface of the silicon compound particles and the surface of the carbon coating.
  • the method for synthesizing the composite layer include surface coating with a liquid phase, mechanochemical coating with a dry method, wet coating with a spray, and sol-gel reaction treatment of aluminum isopropoxide.
  • the manufactured negative electrode active material particles are mixed with a carbon-based active material as necessary, and then mixed with the negative electrode active material and other materials such as a binder and a conductive additive to form a negative electrode mixture, and then an organic solvent. Alternatively, water or the like is added to form a slurry.
  • the slurry of the negative electrode mixture is applied to the surface of the negative electrode current collector 11 and dried to form the negative electrode active material layer 12. At this time, a heating press or the like may be performed as necessary. As described above, the negative electrode of the nonaqueous electrolyte secondary battery of the present invention can be manufactured.
  • FIG. 1 is a cross-sectional view of a negative electrode including the negative electrode active material of the present invention.
  • the negative electrode 10 has a configuration in which a negative electrode active material layer 12 is provided on a negative electrode current collector 11.
  • the negative electrode active material layer 12 may be provided on both sides of the negative electrode current collector 11 or only on one side. Further, in the negative electrode of the nonaqueous electrolyte secondary battery of the present invention, the negative electrode current collector 11 may not be provided.
  • the negative electrode current collector 11 is an excellent conductive material and is made of a material having excellent mechanical strength.
  • Examples of the conductive material that can be used for the negative electrode current collector 11 include copper (Cu) and nickel (Ni). This conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).
  • the negative electrode current collector 11 preferably contains carbon (C) and sulfur (S) in addition to the main element. This is because the physical strength of the negative electrode current collector is improved.
  • C carbon
  • S sulfur
  • the current collector contains the above element, there is an effect of suppressing deformation of an electrode including the current collector.
  • the content of the above-mentioned contained elements is not particularly limited, but among them, each is preferably 100 ppm or less. This is because a higher deformation suppressing effect can be obtained.
  • the surface of the negative electrode current collector 11 may or may not be roughened.
  • the roughened negative electrode current collector is, for example, a metal foil that has been subjected to electrolytic treatment, emboss treatment, or chemical etching.
  • the non-roughened negative electrode current collector is, for example, a rolled metal foil.
  • the negative electrode active material layer 12 may include a plurality of types of negative electrode active materials such as a carbon-based active material in addition to the negative electrode active material particles. Further, other materials such as a thickener (also referred to as a “binder” or a “binder”) or a conductive aid may be included in the battery design. Further, the shape of the negative electrode active material may be a particle shape.
  • the nonaqueous electrolyte secondary battery of the present invention contains the negative electrode active material of the present invention.
  • a laminated film type lithium ion secondary battery will be described as a specific example of the nonaqueous electrolyte secondary battery of the present invention.
  • the laminated film type lithium ion secondary battery 30 shown in FIG. 3 has a wound electrode body 31 housed inside a sheet-shaped exterior member 35.
  • the wound electrode body 31 has a separator between a positive electrode and a negative electrode, and is wound. Further, there is a case where a laminate is housed with a separator between the positive electrode and the negative electrode.
  • a positive electrode lead 32 is attached to the positive electrode
  • a negative electrode lead 33 is attached to the negative electrode.
  • the outermost periphery of the electrode body is protected by a protective tape.
  • the positive and negative electrode leads 32 and 33 are, for example, led in one direction from the inside of the exterior member 35 to the outside.
  • the positive electrode lead 32 is formed of a conductive material such as aluminum
  • the negative electrode lead 33 is formed of a conductive material such as nickel and copper.
  • the package member 35 is, for example, a laminated film in which a fusion layer, a metal layer, and a surface protection layer are laminated in this order.
  • the laminate film is formed by two sheets so that the fusion layer faces the wound electrode body 31.
  • the outer peripheral edges of the fusion layer of the film are fused or adhered with an adhesive or the like.
  • the fusion portion is, for example, a film such as polyethylene or polypropylene, and the metal portion is aluminum foil.
  • the protective layer is, for example, nylon.
  • An adhesive film 34 is inserted between the exterior member 35 and the positive and negative electrode leads to prevent outside air from entering.
  • This material is, for example, polyethylene, polypropylene, or polyolefin resin.
  • the positive electrode has a positive electrode active material layer on both surfaces or one surface of the positive electrode current collector, for example, similarly to the negative electrode 10 in FIG.
  • the positive electrode current collector is formed of, for example, a conductive material such as aluminum.
  • the positive electrode active material layer contains one or more of positive electrode materials capable of inserting and extracting lithium ions, and other materials such as a positive electrode binder, a positive electrode conductive auxiliary agent, and a dispersant depending on the design. May be included.
  • positive electrode binder a positive electrode binder
  • positive electrode conductive auxiliary agent a positive electrode conductive auxiliary agent
  • dispersant depending on the design. May be included.
  • the details of the positive electrode binder and the positive electrode conduction aid are the same as, for example, the already described negative electrode binder and the negative electrode conduction aid.
  • a lithium-containing compound is desirable.
  • the lithium-containing compound include a composite oxide composed of lithium and a transition metal element, and a phosphate compound having lithium and a transition metal element.
  • these cathode materials compounds having at least one of nickel, iron, manganese and cobalt are preferred.
  • These chemical formulas are represented, for example, by Li x M 1 O 2 or Li y M 2 PO 4 .
  • M 1 and M 2 represent at least one or more transition metal elements.
  • the values of x and y vary depending on the state of charge and discharge of the battery, but are generally represented by 0.05 ⁇ x ⁇ 1.10 and 0.05 ⁇ y ⁇ 1.10.
  • Examples of the composite oxide containing lithium and a transition metal element include a lithium cobalt composite oxide (Li x CoO 2 ), a lithium nickel composite oxide (Li x NiO 2 ), and a lithium nickel cobalt composite oxide.
  • Examples of the lithium nickel cobalt composite oxide include lithium nickel cobalt aluminum composite oxide (NCA) and lithium nickel cobalt manganese composite oxide (NCM).
  • Examples of the phosphate compound having lithium and a transition metal element include a lithium iron phosphate compound (LiFePO 4 ) and a lithium iron manganese phosphate compound (LiFe 1- uMn u PO 4 (0 ⁇ u ⁇ 1)). Is mentioned. By using these positive electrode materials, a high battery capacity can be obtained and excellent cycle characteristics can be obtained.
  • the negative electrode has the same configuration as the above-described negative electrode 10 for a lithium ion secondary battery in FIG. 1, and has, for example, a negative electrode active material layer on both surfaces of a current collector. It is preferable that the negative electrode has a larger negative charge capacity than the electric capacity (charge capacity as a battery) obtained from the positive electrode active material agent. Thereby, precipitation of lithium metal on the negative electrode can be suppressed.
  • the positive electrode active material layer is provided on a part of both surfaces of the positive electrode current collector.
  • the negative electrode active material layer is provided on a part of both surfaces of the negative electrode current collector.
  • the negative electrode active material layer provided on the negative electrode current collector is provided with a region where the opposed positive electrode active material layer does not exist. This is for performing stable battery design.
  • the separator separates the positive electrode and the negative electrode, and allows lithium ions to pass therethrough while preventing a current short circuit caused by contact between the two electrodes.
  • This separator is formed of a porous film made of, for example, a synthetic resin or ceramic, and may have a laminated structure in which two or more types of porous films are laminated.
  • the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.
  • Electrode At least a part of the active material layer or the separator is impregnated with a liquid electrolyte (electrolyte solution).
  • electrolyte solution has an electrolyte salt dissolved in a solvent, and may contain other materials such as additives.
  • a non-aqueous solvent for example, a non-aqueous solvent can be used.
  • the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, 1,2-dimethoxyethane, and tetrahydrofuran.
  • a high-viscosity solvent such as ethylene carbonate and propylene carbonate
  • a low-viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate. This is because the dissociation property and ion mobility of the electrolyte salt are improved.
  • an unsaturated carbon-bonded cyclic carbonate is contained as a solvent additive. This is because a stable film is formed on the surface of the negative electrode during charge and discharge, and the decomposition reaction of the electrolytic solution can be suppressed.
  • the unsaturated carbon-bonded cyclic carbonate include vinylene carbonate and vinyl ethylene carbonate.
  • sultone cyclic sulfonic acid ester
  • examples of the sultone include propane sultone and propene sultone.
  • the solvent preferably contains an acid anhydride. This is because the chemical stability of the electrolytic solution is improved.
  • the acid anhydride include propane disulfonic anhydride.
  • the electrolyte salt may include, for example, one or more light metal salts such as a lithium salt.
  • the lithium salt include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).
  • the content of the electrolyte salt is preferably 0.5 mol / kg or more and 2.5 mol / kg or less with respect to the solvent. This is because high ionic conductivity is obtained.
  • a positive electrode is manufactured using the above-described positive electrode material.
  • a positive electrode active material and, if necessary, a positive electrode binder and a positive electrode conduction aid are mixed to form a positive electrode mixture, and then dispersed in an organic solvent to obtain a positive electrode mixture slurry.
  • the mixture slurry is applied to the positive electrode current collector by a coating device such as a knife roll or a die coater having a die head, and dried with hot air to obtain a positive electrode active material layer.
  • the positive electrode active material layer is compression-molded by a roll press or the like. At this time, heating may be performed, and compression may be repeated a plurality of times.
  • a negative electrode is formed by forming a negative electrode active material layer on a negative electrode current collector by using the same operation procedure as that for manufacturing the negative electrode 10 for a lithium ion secondary battery described above.
  • the cathode lead 32 is attached to the cathode current collector by ultrasonic welding or the like, and the anode lead 33 is attached to the anode current collector.
  • the positive electrode and the negative electrode are laminated or wound with a separator interposed therebetween to produce a wound electrode body 31, and a protective tape is adhered to the outermost peripheral portion thereof.
  • the wound body is formed into a flat shape.
  • the insulating portions of the exterior members are bonded to each other by a heat fusion method, and the wound electrode body is opened in only one direction. Is enclosed.
  • the laminate film type secondary battery 30 can be manufactured.
  • the negative electrode utilization rate during charging and discharging is 93% or more and 99% or less.
  • the negative electrode utilization rate is in the range of 93% or more, the initial charging efficiency does not decrease, and the improvement in battery capacity can be increased.
  • the negative electrode utilization rate is in the range of 99% or less, safety can be secured without precipitation of Li.
  • negative electrode active material particles were prepared as follows.
  • a raw material (a vaporization starting material) in which metal silicon and silicon dioxide are mixed is set in a reaction furnace, and a material vaporized in an atmosphere of a vacuum of 10 Pa is deposited on an adsorption plate, sufficiently cooled, and then deposited.
  • the material was taken out and pulverized with a ball mill.
  • the carbon film was coated by performing thermal CVD.
  • a lithium compound having a mass equivalent to 4% by mass with respect to the silicon compound coated with the carbon film was mixed under a nitrogen atmosphere, and stirred with a shaker. Thereafter, the stirred powder was reformed by firing at 740 ° C.
  • the lithium compound contained 75% of lithium nitride and 25% of lithium carbonate in a molar ratio of Li.
  • the BET specific surface area of the lithium nitride was 65 m 2 / g.
  • the oxygen content in the argon atmosphere was 1 ppm or less.
  • the NO 3 ion content on the surface of the negative electrode active material particles was 25 ppm by mass.
  • the prepared negative electrode active material conductive aid 1 (Denka Black), conductive aid 2 (KS6), styrene butadiene rubber (styrene butadiene copolymer, hereinafter referred to as SBR), carboxymethyl cellulose (hereinafter referred to as CMC) was mixed at a dry mass ratio of 81: 2.7: 11.3: 3.3: 1.7, and then diluted with pure water to obtain a negative electrode mixture slurry.
  • SBR and CMC are negative electrode binders (negative electrode binders).
  • an electrolytic copper foil (thickness: 15 ⁇ m) was used as a negative electrode current collector.
  • the negative electrode mixture slurry was applied to the negative electrode current collector, and dried at 100 ° C. for 3 hours in a vacuum atmosphere.
  • the amount of the negative electrode active material layer deposited on one surface of the negative electrode per unit area after drying (also referred to as area density) was 2.0 mg / cm 2 .
  • the negative electrode mixture slurry was applied only on one side of the negative electrode current collector, and the negative electrode active material layer was provided on only one side.
  • a 2032 type coin battery was assembled as a test cell to examine the initial charge / discharge characteristics.
  • the negative electrode a negative electrode produced by the same procedure as the electrode including the negative electrode active material (silicon-based active material) of the above-mentioned laminated film type secondary battery was used.
  • the electrolytic solution a solution obtained by dissolving 1 mol of LiPF 6 in 1 liter of a kneading solution of 2: 7: 1 of ethylene carbonate, didiethyl carbonate and fluoroethylene carbonate was used.
  • the counter electrode a metal lithium foil having a thickness of 0.5 mm was used.
  • polyethylene having a thickness of 20 ⁇ m was used as a separator.
  • the bottom pig of the 2032 type coin battery, the lithium foil, and the separator are stacked, and 150 mL of the electrolyte is injected.
  • the negative electrode and the spacer (1.0 mm in thickness) are stacked, and 150 mL of the electrolyte is injected.
  • a spring and a coin battery were swaged up in this order, and swaged with an automatic coin cell caulking machine, to produce a 2032 type coin battery.
  • a laminated film type secondary battery as shown in FIG. No. 30 was produced as follows.
  • the positive electrode active material is 95 parts by mass of LiCoO 2 which is a lithium-cobalt composite oxide, 2.5 parts by mass of a positive electrode conduction aid (acetylene black), and 2.5 parts by mass of a positive electrode binder (polyvinylidene fluoride: Pvdf).
  • a positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone: NMP) to obtain a paste slurry.
  • NMP N-methyl-2-pyrrolidone
  • the slurry was applied to both surfaces of the positive electrode current collector by a coating device having a die head, and dried by a hot-air drying device. At this time, a cathode collector having a thickness of 15 ⁇ m was used.
  • compression molding was performed by a roll press.
  • the negative electrode a negative electrode produced by the same procedure as the electrode containing the silicon-based active material of the test cell was used.
  • a laminated film type lithium ion secondary battery was assembled as follows. First, an aluminum lead was ultrasonically welded to one end of the positive electrode current collector, and a nickel lead was welded to the negative electrode current collector. Subsequently, a positive electrode, a separator, a negative electrode, and a separator were laminated in this order and wound in the longitudinal direction to obtain a wound electrode body. The end of the winding was fixed with PET protective tape.
  • the separator used was a laminated film 12 ⁇ m in which a film mainly composed of porous polyethylene was sandwiched between films composed mainly of porous polypropylene.
  • the outer peripheral edges except one side were thermally fused to each other, and the electrode body was housed inside.
  • the exterior member used an aluminum laminated film in which a nylon film, an aluminum foil, and a polypropylene film were laminated.
  • an electrolytic solution prepared from the opening was injected, impregnated in a vacuum atmosphere, and then heat-sealed and sealed.
  • Example 1-2 and 1-3 were carried out in the same manner as in Example 1-1, except that the lithium compound during firing was changed and the BET specific surface area of lithium nitride was changed.
  • the lithium compound contained 75% of lithium nitride and 25% of lithium hydroxide in a molar ratio of Li.
  • the BET specific surface area of the lithium nitride of Example 1-2 was 64 m 2 / g.
  • the lithium compound was 100% lithium nitride.
  • the BET specific surface area of the lithium nitride of Example 1-3 was 48 m 2 / g.
  • the NO 3 ion content on the surfaces of the negative electrode active material particles of Examples 1-2 and 1-3 was 21, 31 ppm by mass, respectively.
  • Example 1-3 was different from Example 1-3 in that the atmosphere for firing was a mixed gas of argon and hydrogen (partial pressure of hydrogen: 3%) and the BET specific surface area of lithium nitride was changed. The same procedure was followed.
  • the BET specific surface area of the lithium nitride was 46 m 2 / g.
  • the NO 3 ion content on the surface of the negative electrode active material particles was 15 ppm by mass.
  • Example 1-5 to 1-8 were carried out in the same manner as in Example 1-3 except that the firing atmosphere, whether or not a holding temperature zone was provided, and the BET specific surface area of lithium nitride were changed.
  • the atmosphere at the time of firing was argon and hydrogen (hydrogen partial pressure: 3%) as in Example 1-4.
  • the BET specific surface area of the lithium nitride of Example 1-5 was 32 m 2 / g.
  • the atmosphere for firing was argon.
  • the BET specific surface area of the lithium nitride of Example 1-6 was 15 m 2 / g.
  • Example 1-7 the atmosphere for firing was nitrogen.
  • the BET specific surface area of the lithium nitride of Example 1-7 was 10 m 2 / g.
  • the atmosphere for firing was nitrogen and hydrogen (partial pressure of hydrogen: 3%).
  • the BET specific surface area of the lithium nitride of Example 1-8 was 19 m 2 / g.
  • the NO 3 ion content on the surfaces of the negative electrode active material particles of Examples 1-5, 1-6, 1-7, and 1-8 was 21, 12, 15, and 18 ppm by mass, respectively.
  • Example 1-9 in particular, the modified silicon compound particles were put into a mixed solution of dehydrated ethanol and aluminum isopropoxide, stirred, filtered, and dried to remove ethanol. Thus, a composite layer containing a composite of aluminum oxide and aluminum hydroxide was formed. The thickness of the composite layer was 3 nm. Here, the film thickness was calculated from the amount of aluminum remaining in the filtrate after filtration.
  • the procedure was performed in the same manner as in Example 1-8, except that a composite layer was formed on at least a part of the surface of the modified negative electrode active material particles, and the BET specific surface area of lithium nitride was changed. The BET specific surface area of lithium nitride was 15 m 2 / g.
  • the NO 3 ion content on the surface of the negative electrode active material particles was 8.0 ppm by mass.
  • Examples 1-10, 1-11 The operation was performed in the same manner as in Example 1-8, except that the BET specific surface area of lithium nitride was changed.
  • the BET specific surface area of the lithium nitride of Example 1-10 was 0.8 m 2 / g.
  • the BET specific surface area of the lithium nitride of Example 1-11 was 0.1 m 2 / g.
  • the NO 3 ion content on the surfaces of the negative electrode active material particles of Examples 1-10 and 1-11 was 2.0 and 3.5 ppm by mass, respectively.
  • Example 1-12 was performed in the same manner as in Example 1-3 except that the BET specific surface area of lithium nitride was changed.
  • the BET specific surface area of the lithium nitride of Example 1-12 was 78 m 2 / g.
  • the NO 3 ion content on the surface of the negative electrode active material particles of Example 1-12 was 20 ppm by mass.
  • the crystallization was advanced by setting the temperature of the reforming by firing higher than in Examples 1-1 to 1-11. That is, the half width (2 ⁇ ) of the diffraction peak due to the Si (111) crystal plane was made smaller.
  • Comparative Examples 1-1 and 1-2 In Comparative Examples 1-1 and 1-2, the synthesis was carried out in the same manner as in Example 1-3 except that the Li compound used when baking after producing the silicon compound was changed. In Comparative Example 1-1, the lithium compound was 100% lithium carbonate. In Comparative Example 1-2, the lithium compound was 100% lithium hydroxide. The NO 3 ion content on the surfaces of the negative electrode active material particles of Comparative Examples 1-1 and 1-2 was 0.3 and 0.1 mass ppm, respectively.
  • Comparative Example 1-3 In Comparative Example 1-3, a holding temperature zone was provided at the time of firing.
  • the lithium compound at the time of firing contained 50% of lithium carbonate and 50% of lithium hydroxide in a molar ratio of Li. The procedure was performed in the same manner as in Example 1-3 except that the presence or absence of the holding temperature zone and the lithium compound were changed.
  • the NO 3 ion content on the surface of the negative electrode active material particles of Comparative Example 1-3 was 0.5 ppm by mass.
  • Comparative Example 1-4 Comparative Example 1-4 was carried out in the same manner as Comparative Example 1-3, except that no holding temperature zone was provided during firing.
  • the NO 3 ion content on the surface of the negative electrode active material particles was 0.4 mass ppm.
  • Comparative Example 1-5 was carried out in the same manner as in Example 1-4, except that x of the silicon compound (SiO x ) was changed to 0.4 and the BET specific surface area of lithium nitride was changed.
  • the NO 3 ion content on the surface of the negative electrode active material particles was 16 ppm by mass.
  • Comparative Example 1-6 Comparative Example 1-6 was performed in the same manner as in Example 1-4, except that x in the silicon compound (SiO x ) was set to 1.6 and the BET specific surface area of lithium nitride was changed. The NO 3 ion content on the surface of the negative electrode active material particles was 18 ppm by mass.
  • the physical properties of the silicon compounds in the above Examples and Comparative Examples are as follows. In all the above Examples and Comparative Examples except Comparative Examples 1-5 and 1-6, the value of x of the silicon compound represented by SiO x was 1.0, and the median diameter D 50 of the silicon compound was 4 ⁇ m. Met. Further, as in Comparative Example 1-1 and Comparative Example 1-2, the half width (2 ⁇ ) of the diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction of the unmodified silicon compound is 2. 593 °. Further, in Example 1-12, the half value width (2 ⁇ ) of the diffraction peak attributable to the Si (111) crystal plane obtained by X-ray diffraction of the modified silicon compound was 1.066 °.
  • the half of the diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction of the modified silicon compound other than Comparative Examples 1-1 and 1-2 and Example 1-12.
  • the value range (2 ⁇ ) was 2.257 °.
  • the modified silicon compound contained Li 2 SiO 3 and Li 2 Si 2 O 5 .
  • a 2032 type coin-type lithium battery was manufactured from the manufactured negative electrode and the counter electrode lithium as described above, and the discharge behavior was evaluated. More specifically, first, constant-current constant-voltage charging was performed to 0 V at the counter electrode Li, and the charging was stopped when the current density reached 0.05 mA / cm 2 . Thereafter, constant current discharge was performed up to 1.2V. The current density at this time was 0.2 mA / cm 2 . The ambient temperature was 25 ° C. From the data obtained by such charge and discharge, a graph is drawn with the vertical axis representing the rate of change of capacity (dQ / dV) and the horizontal axis representing voltage (V), where V is 0.4 to 0.55 (V). It was confirmed whether a peak was obtained in the range. As a result, peaks were confirmed in Examples 1-3, 1-4, 1-5, 1-6, 1-7, 1-8 and 1-9.
  • initial efficiency (initial discharge capacity / initial charge capacity) ⁇ 100.
  • the cycle characteristics were examined as follows. First, charge and discharge were performed for two cycles in an atmosphere at 25 ° C. for stabilizing the battery, and the discharge capacity at the second cycle was measured. Subsequently, charging and discharging were performed until the total number of cycles reached 100, and the discharge capacity was measured each time. Finally, the discharge capacity at the 100th cycle was divided by the discharge capacity at the second cycle ( ⁇ 100 for% display), and the capacity retention rate was calculated. As cycling conditions, a constant current density until reaching 4.3V, and charged at 2.5 mA / cm 2, current density reached 0.25 mA / cm 2 at 4.3V constant voltage at the stage of reaching the voltage 4.3V Charged up to. During discharging, the battery was discharged at a constant current density of 2.5 mA / cm 2 until the voltage reached 3.0 V.
  • the measurement of the BET specific surface area was performed using a Macsorb 1208 type (HM @ model-1208, manufactured by MOUNTEC).
  • Table 1 shows the evaluation results of Examples 1-1 to 1-12 and Comparative examples 1-1 to 1-6.
  • the intensity A of a peak derived from a Si region which is given as a diffraction peak (2 ⁇ ) obtained from an X-ray diffraction spectrum using Cu—K ⁇ rays of the negative electrode active material particles at 27.5 to 29.0 °
  • 26 Relationship between the intensity B of the peak derived from Li 2 SiO 3 given at 0.5 to 27.5 ° and the intensity C of the peak derived from Li 2 Si 2 O 5 given at 24.5 to 25.5 ° was A> B, A> C, and C> B in Examples 1-1 and 1-2.
  • Examples 1-3 to 1-11 and Comparative Example 1-4 A> B, A> C, and B> C.
  • Comparative Example 1-1 B> A, C> A, and C> B.
  • Table 2 shows the results obtained from the XRD spectra of Examples 1-1 to 1-9 and Comparative Examples 1-1 to 1-4.
  • Examples 1-3 to 1-10 using a lithium compound containing lithium nitride having a BET specific surface area of 0.5 m 2 / g or more and 50 m 2 / g or less have better initial times than those of the other examples. Efficiency was shown.
  • the diffraction peak (2 ⁇ ) obtained from the X-ray diffraction spectrum satisfied the relations of A> B and A> C.
  • Examples 1-3 to 1-11 satisfying the relationship of B> C showed better initial efficiency.
  • the half width (2 ⁇ ) of the diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction using Cu-K ⁇ ray is 1.066 °, which is larger than the half width (Example 1-12).
  • High charge / discharge efficiency was obtained with a low crystalline material having a 2 ⁇ ) of 1.2 ° or more (Examples 1-1 to 1-11).
  • Example 1-9 in which a composite layer was formed on at least a part of the surface of the negative electrode active material particles was described in Examples 1-1 to 1-8 and Example in which no composite layer was formed on the surface of the negative electrode active material particles.
  • the cycle maintenance ratio was improved as compared with 1-10 to 1-12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Silicon Compounds (AREA)

Abstract

本発明は、リチウムを含むケイ素化合物粒子を含む非水電解質二次電池用負極活物質の製造方法であって、ケイ素化合物(SiOx:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する工程と、該ケイ素化合物粒子に、窒化リチウムを含むリチウム化合物を混合することにより混合原料とする工程と、前記混合原料を、不活性ガスを含む雰囲気下で焼成する工程とを含み、前記リチウムを含むケイ素化合物粒子を含む非水電解質二次電池用負極活物質を製造することを特徴とする非水電解質二次電池用負極活物質の製造方法である。これにより、初回効率が良好な非水電解質二次電池用負極活物質の製造方法が提供される。

Description

非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質、非水電解質二次電池用負極及び非水電解質二次電池
 本発明は、非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質、非水電解質二次電池用負極及び非水電解質二次電池に関する。
 近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化及び長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。
 その中でも、リチウムイオン二次電池は小型かつ高容量化が行いやすく、また、鉛電池、ニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。
 上記のリチウムイオン二次電池は、正極および負極、セパレータと共に電解液を備えており、負極は充放電反応に関わる負極活物質を含んでいる。
 この負極活物質としては、炭素材料が広く使用されている一方で、最近の市場要求から電池容量のさらなる向上が求められている。電池容量向上のために、負極活物質材としてケイ素を用いることが検討されている。なぜならば、ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。負極活物質材としてのケイ素材の開発はケイ素単体だけではなく、合金、酸化物に代表される化合物などについても検討されている。また、活物質形状は、炭素材では標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。
 しかしながら、負極活物質としてケイ素を主原料として用いると、充放電時に負極活物質が膨張及び収縮するため、主に負極活物質表層近傍で割れやすくなる。また、活物質内部にイオン性物質が生成し、負極活物質が割れやすい物質となる。負極活物質表層が割れると、それによって新表面が生じ、活物質の反応面積が増加する。この時、新表面において電解液の分解反応が生じるとともに、新表面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。
 これまでに、電池初期効率やサイクル特性を向上させるために、ケイ素材を主材としたリチウムイオン二次電池用負極材料、電極構成についてさまざまな検討がなされている。
 具体的には、良好なサイクル特性や高い安全性を得る目的で、気相法を用いケイ素及びアモルファス二酸化ケイ素を同時に堆積させている(例えば特許文献1参照)。また、高い電池容量や安全性を得るために、ケイ素酸化物粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。さらに、サイクル特性を改善するとともに高入出力特性を得るために、ケイ素及び酸素を含有する活物質を作製し、かつ、集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。また、サイクル特性を向上させるために、ケイ素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば特許文献4参照)。
 また、初回充放電効率を改善するためにSi相、SiO、MO金属酸化物を含有するナノ複合体を用いている(例えば特許文献5参照)。また、サイクル特性改善のため、SiO(0.8≦x≦1.5、粒径範囲=1μm~50μm)と炭素材を混合して高温焼成している(例えば特許文献6参照)。また、サイクル特性改善のために、負極活物質中におけるケイ素に対する酸素のモル比を0.1~1.2とし、活物質、集電体界面近傍におけるモル比の最大値、最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば特許文献7参照)。また、電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献8参照)。また、サイクル特性を改善させるために、ケイ素材表層にシラン化合物などの疎水層を形成している(例えば特許文献9参照)。
 また、サイクル特性改善のため、酸化ケイ素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば特許文献10参照)。特許文献10において、黒鉛被膜に関するラマンスペクトルから得られるシフト値に関して、1330cm-1及び1580cm-1にブロードなピークが現れるとともに、それらの強度比I1330/I1580が1.5<I1330/I1580<3となっている。また、高い電池容量、サイクル特性の改善のため、二酸化ケイ素中に分散されたケイ素微結晶相を有する粒子を用いている(例えば、特許文献11参照)。また、過充電、過放電特性を向上させるために、ケイ素と酸素の原子数比を1:y(0<y<2)に制御したケイ素酸化物を用いている(例えば特許文献12参照)。また、高い電池容量、サイクル特性の改善のため、ケイ素と炭素の混合電極を作成しケイ素比率を5wt%以上13wt%以下で設計している(例えば、特許文献13参照)。
特開2001-185127号公報 特開2002-042806号公報 特開2006-164954号公報 特開2006-114454号公報 特開2009-070825号公報 特開2008-282819号公報 特開2008-251369号公報 特開2008-177346号公報 特開2007-234255号公報 特開2009-212074号公報 特開2009-205950号公報 特許第2997741号明細書 特開2010-092830号公報
 上述したように、近年、モバイル端末などに代表される小型の電子機器は高性能化、多機能化がすすめられており、その主電源であるリチウムイオン二次電池は電池容量の増加が求められている。この問題を解決する1つの手法として、ケイ素材を主材として用いた負極からなるリチウムイオン二次電池の開発が望まれている。
 酸化珪素をリチウムイオン二次電池用負極活物質として用い、高容量の電極を得ているが、未だ初回充放電時における不可逆容量が大きく、改良する余地があり、リチウムイオン二次電池用負極活物質としてはまだ不十分である。特許文献5では、初回充放電効率を改善するためにSi相、SiO、MO金属酸化物を含有するナノ複合体を用いているが、十分に電池特性を向上できる良好な負極活物質(負極材)は得られていなかった。
 本発明は前述のような問題に鑑みてなされたもので、初回効率が良好な非水電解質二次電池用負極活物質の製造方法を提供することを目的とする。また、初回効率が良好な非水電解質二次電池用負極活物質、非水電解質二次電池用負極及び非水電解質二次電池を提供することも目的とする。
 上記の課題を解決するために、本発明は、リチウムを含むケイ素化合物粒子を含む非水電解質二次電池用負極活物質の製造方法であって、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する工程と、該ケイ素化合物粒子に、窒化リチウムを含むリチウム化合物を混合することにより混合原料とする工程と、前記混合原料を、不活性ガスを含む雰囲気下で焼成する工程とを含み、前記リチウムを含むケイ素化合物粒子を含む非水電解質二次電池用負極活物質を製造することを特徴とする非水電解質二次電池用負極活物質の製造方法を提供する。
 このような非水電解質二次電池用負極活物質の製造方法であれば、リチウム源として窒化リチウムを含むリチウム化合物を用いることで、酸素によるケイ素化合物の酸化を低減することができ、良好な初回効率を有する非水電解質二次電池用負極活物質を工業的な生産において優位に製造可能となる。
 このとき、前記ケイ素化合物粒子を作製する工程の後、前記混合原料とする工程よりも前に、前記ケイ素化合物粒子の表面の少なくとも一部に炭素被膜を形成する工程を含むことが好ましい。
 上記のようにケイ素化合物粒子の表面の少なくとも一部に炭素被膜を形成することにより、ケイ素化合物の表面の少なくとも一部が炭素被膜で被覆されたものとなり、導電性に優れるものとなる。
 また、前記窒化リチウムを含むリチウム化合物として、BET比表面積が0.5m/g以上50m/g以下の窒化リチウムを用いることが好ましい。
 BET比表面積が0.5m/g以上50m/g以下であれば、窒化リチウムとSiOの反応性を適度にすることができるため、よりマイルドに窒化リチウムとSiOの反応を行うことができる。
 また、前記焼成する工程において、前記不活性ガスを含む雰囲気を、水素を含有し酸素の含有量が1ppm以下である雰囲気とすることが好ましい。
 不活性ガスを含む雰囲気を、水素を含有し酸素の含有量が1ppm以下とすることで、酸素によるケイ素化合物粒子の酸化を抑制することができ、負極活物質の初回効率の低下を抑制することが可能となる。
 また、前記焼成する工程において、前記混合原料の温度を300℃以上700℃以下で30分以上保持することが好ましい。
 混合原料の温度を300℃以上700℃以下で30分以上保持することにより、発熱挙動がマイルドになり、安全な焼成が可能となる。
 また、前記焼成する工程の後、前記ケイ素化合物粒子の表面若しくは前記炭素被膜の表面、又はこれらの両方の全部又は少なくとも一部に、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層を形成する工程を含むことが好ましい。
 製造された負極活物質が金属酸化物及び金属水酸化物から成る複合層を有していると、水系スラリーに対しての耐水性が高いものとなり、その結果、このような複合層を有する負極活物質粒子は、サイクル性が高いものとなる。また、上記複合体が非晶質であれば、Liの授受が行われやすい。このように、導電性に優れ、かつ非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層を有していると、サイクル特性が良好なものとなる。そのため、ケイ素酸化物本来の特性を生かした高い電池容量及び良好なサイクル維持率を有する非水電解質二次電池を工業的な生産において優位に製造可能となる。
 また、このとき、前記非晶質の金属酸化物及び金属水酸化物を、アルミニウム、マグネシウム、チタニウム、及びジルコニウムのうち少なくとも1種の元素を含むものとすることが好ましい。
 金属酸化物及び金属水酸化物が上記のような金属元素を含むことで、電極作製時のスラリーがより安定する。
 また、本発明は、負極活物質粒子を含む負極活物質であって、前記負極活物質粒子は、ケイ素化合物(SiOx:0.5≦x≦1.6)を含むケイ素化合物粒子を含有し、前記ケイ素化合物粒子は、LiSiO及びLiSiのうち少なくとも1種以上を含有し、前記負極活物質粒子は、その表面にNOイオンを含み、前記NOイオンの含有量が前記負極活物質粒子の質量に対して1質量ppm以上200質量ppm以下であるものであることを特徴とする非水電解質二次電池用負極活物質を提供する。
 LiSiO3、LiSiのようなLiシリケートは、Li化合物として比較的安定しているため、より良好な電池特性が得られる。また、負極活物質粒子が、その表面にNOイオンを含み、NOイオンの含有量が前記負極活物質粒子の質量に対して1質量ppm以上200質量ppm以下であるものであれば、負極活物質粒子の分散液が中性に近い値を取り、電極作成の際のスラリーの安定性を向上させることができる。また、このような負極活物質粒子を用いて製造された二次電池は、高い電池容量及び良好な初回効率を有するとともに、工業的に優位に製造することが可能なものとなる。
 また、このとき、前記ケイ素化合物粒子の表面の少なくとも一部が炭素被膜で被覆されたものであることが好ましい。
 このように、ケイ素化合物粒子の表面の少なくとも一部が炭素被膜で被覆された負極活物質は、導電性に優れる。そのため、このような負極活物質を使用すれば、Liを用いて改質されたケイ素酸化物本来の特性を生かした高い電池容量及び良好なサイクル維持率を有する非水電解質二次電池を工業的な生産において優位に製造可能となる。
 また、前記負極活物質粒子が、Cu-Kα線を用いたX線回折スペクトルから得られる回折ピーク(2θ)として、27.5~29.0°で与えられるSi領域に由来するピークの強度Aと、26.5~27.5°で与えられるLiSiOに由来するピークの強度Bと、24.5~25.5°で与えられるLiSiに由来するピークの強度Cとが、A>B及びA>Cという関係を満たすものであることが好ましい。
 理由は明らかではないが、A、B、Cがこれらの関係を満たすようにすると、電池特性の向上効果を十分に得られる負極活物質となる。
 また、前記負極活物質粒子が、前記強度Bと、前記強度Cとが、B>Cという関係を満たすものであることが好ましい。
 負極活物質粒子が、このような関係を満たすものであれば、電池特性の向上効果をさらに十分に得られる負極活物質となる。
 また、前記負極活物質粒子が、Cu-Kα線を用いたX線回折スペクトルから得られる回折ピーク(2θ)として、22°付近で与えられるSiO領域に由来するブロードなピークを有するものであることが好ましい。
 このようなものであれば、ケイ素化合物中のLiシリケート等のLi化合物の量が過多となっておらず、SiO成分がある程度残っているため、電極作製時のスラリーに対する安定性がより向上する。
 また、前記負極活物質粒子は、Cu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であることが好ましい。
 このような半値幅を有する負極活物質粒子は、結晶性が低くSi結晶の存在量が少ないため、電池特性を向上させることができる。
 また、前記ケイ素化合物粒子はメディアン径が0.5μm以上15μm以下であることが好ましい。
 メディアン径が0.5μm以上であれば、ケイ素化合物粒子の表面における副反応が起きる面積が小さいため、Liを余分に消費せず、電池のサイクル維持率を高く維持できる。また、メディアン径が15μm以下であれば、Li挿入時の膨張が小さく、割れ難くなり、かつ、亀裂が生じにくい。さらに、ケイ素化合物粒子の膨張が小さいため、例えば一般的に使用されているケイ素系活物質に炭素活物質を混合した負極活物質層などが破壊され難い。
 また、前記負極活物質粒子はBET比表面積が3.0m/g以上8.0m/g以下であることが好ましい。
 比表面積が8.0m/g以下であれば、ケイ素化合物粒子の表面における副反応が起きる面積が小さいため、Liを余分に消費せず、電池のサイクル維持率を高く維持できる。また、比表面積が3.0m/g以上であれば、Li挿入時の膨張が小さく、割れ難くなり、かつ、亀裂が生じにくい。さらに、ケイ素化合物粒子の膨張が小さいため、例えば一般的に使用されているケイ素系活物質に炭素活物質を混合した負極活物質層などが破壊され難い。
 また、前記ケイ素化合物粒子の表面若しくは前記炭素被膜の表面、又はこれらの両方の全部又は少なくとも一部が、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層を含むものであることが好ましい。
 このような複合層を有していれば、サイクル特性が良好な負極活物質となる。また、上記複合体が非晶質であれば、Liの授受が行われやすい。このように、導電性に優れ、かつ非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層を有していると、サイクル特性が良好なものとなる。そのため、ケイ素酸化物本来の特性を生かした高い電池容量及び良好なサイクル維持率を有する非水電解質二次電池を工業的な生産において優位に製造可能となる。また、金属酸化物、金属水酸化物は同等の性能を示す。
 また、このとき、前記非晶質の金属酸化物及び金属水酸化物は、アルミニウム、マグネシウム、チタニウム、及びジルコニウムのうち少なくとも1種の元素を含むものであることが好ましい。
 金属酸化物及び金属水酸化物が上記のような金属元素を含むことで、電極作製時にスラリーがより安定する。
 また、前記非水電解質二次電池用負極活物質と炭素系活物質との混合物を含む負極電極と対極リチウムとから成る試験セルを作製し、該試験セルにおいて、前記負極活物質にリチウムを挿入するよう電流を流す充電と、前記負極活物質からリチウムを脱離するよう電流を流す放電とから成る充放電を実施し、該充放電における放電容量Qを前記対極リチウムを基準とする前記負極電極の電位Vで微分した微分値dQ/dVと前記電位Vとの関係を示すグラフを描いた場合に、前記負極電極の電位Vが0.40V~0.55Vの範囲にピークを有するものであることが好ましい。
 V-dQ/dV曲線における上記のピークはケイ素材のピークと類似しており、より高電位側における放電カーブが鋭く立ち上がるため、電池設計を行う際、容量発現しやすくなる。
 また、本発明は、非水電解質二次電池用負極活物質を含む負極活物質層と、負極集電体とを有し、前記負極活物質層は前記負極集電体上に形成されており、前記負極集電体は炭素及び硫黄を含むとともに、それらの含有量がいずれも100質量ppm以下であることを特徴とする非水電解質二次電池用負極を提供する。
 このように、負極電極を構成する負極集電体が、炭素及び硫黄を上記のような量で含むことで、充電時の集電体を含む負極電極の変形を抑制することができる。また、このような負極を用いて製造された二次電池は、高い電池容量及び良好な初回効率を有するとともに、工業的に優位に製造することが可能なものとなる。
 また、本発明は、負極として、非水電解質二次電池用負極活物質を含む負極を用いたものであることを特徴とする非水電解質二次電池を提供する。
 このような二次電池は、高い電池容量及び良好な初回効率を有するとともに、工業的に優位に製造することが可能なものとなる。
 本発明の負極活物質の製造方法は、充放電効率を向上させることができ、実質的に初回充放電特性を向上させることができる負極活物質を製造できる。
 また、本発明の負極活物質は、充放電効率を向上させることができ、実質的に初回充放電特性を向上させることができる。また、この負極活物質を含む負極及び二次電池においても同様の効果が得られる。また、この負極活物質を含む本発明の二次電池は、工業的に優位に生産可能であり、電池容量、サイクル特性、及び初回充放電特性が良好なものとなる。また、本発明の二次電池を用いた電子機器、電動工具、電気自動車及び電力貯蔵システム等でも同様の効果を得ることができる。
本発明の負極活物質を含む負極の構成を示す断面図である。 実施例1-1において負極活物質粒子から測定されたX線回折スペクトルである。 本発明の負極活物質を含むリチウムイオン二次電池の構成例(ラミネートフィルム型)を表す分解図である。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 前述のように、リチウムイオン二次電池の電池容量を増加させる1つの手法として、ケイ素系活物質を主材として用いた負極をリチウムイオン二次電池の負極として用いることが検討されている。ケイ素系活物質を主材として用いたリチウムイオン二次電池は、炭素材を用いたリチウムイオン二次電池と同等に近いサイクル特性、初回効率が望まれているが、初回充放電時に不可逆なリチウムシリケートが生成されてしまい、炭素材を用いたリチウムイオン二次電池と同等に近い初回効率を得る事は困難であった。
 そこで、本発明者らは、高電池容量であるとともに、初回効率が良好な非水電解質二次電池を容易に製造することが可能な負極活物質を得るために鋭意検討を重ね、本発明に至った。
 本発明の負極活物質は、ケイ素化合物(SiOx:0.5≦x≦1.6)を有するケイ素化合物粒子を含む。また、この負極活物質に含まれるケイ素化合物粒子は、LiSiO及びLiSiのうち少なくとも1種以上が含有している。さらに、この負極活物質は、負極活物質粒子の表面にNOイオンを含み、NOイオンの含有量が負極活物質粒子の質量に対して1質量ppm以上200質量ppm以下である。
 LiSiO、LiSiのようなLiシリケートは、他のLi化合物よりも比較的安定しているため、これらのLi化合物を含む負極活物質(ケイ素系活物質)は、より安定した電池特性を得ることができる。これらのLi化合物は、ケイ素化合物の内部に生成するSiO成分の一部をLi化合物へ選択的に変更し、ケイ素化合物を改質することにより得ることができる。また、負極活物質粒子が、その表面にNOイオンを含み、NOイオンの含有量が前記負極活物質粒子の質量に対して1質量ppm以上200質量ppm以下であるものであれば、負極活物質粒子の分散液が中性に近い値を取り、電極作成の際のスラリーの安定性を向上させることができる。
 また負極活物質粒子の表面のNOイオン含有量は、リチウムドープされたケイ素化合物粒子を1gを秤量して、50gの超純水に加え、5分撹拌して分散させた後、メンブレンフィルターでろ過したものをイオンクロマトグラフィーで測定した。
 また、本発明の負極活物質は、ケイ素化合物粒子の表面の少なくとも一部に炭素被膜が形成されている事が望ましい。ここで、本発明の負極活物質は、ケイ素化合物粒子の表面の少なくとも一部に炭素被膜が形成されているが、炭素被膜はケイ素化合物粒子の全面に形成されていても良い。
 負極活物質粒子の内部のLi化合物はXRD(X線回折)にて分析可能である。XRDの測定は、例えば、Bruker社製 AXS D2 PHASERを用いて行うことができる。
 本発明の負極活物質では、負極活物質粒子が、Cu-Kα線を用いたX線回折スペクトルから得られる回折ピーク(2θ)として、27.5~29.0°で与えられるSi領域に由来するピークの強度Aと、26.5~27.5°で与えられるLiSiOに由来するピークの強度Bと、24.5~25.5°で与えられるLiSiに由来するピークの強度Cとが、A>B及びA>Cという関係を満たすことが好ましい。理由は明らかではないが、A、B、Cがこれらの関係を満たすようにすると、電池特性の向上効果を十分に得られる負極活物質となる。また、B>Cの関係を満たすことがより好ましい。このような関係を満たすものであれば、電池特性の向上効果をさらに十分に得られる負極活物質となる。
 また、本発明の負極活物質では、負極活物質粒子が、Cu-Kα線を用いたX線回折スペクトルから得られる回折ピーク(2θ)として、22°付近で与えられるSiO領域に由来するブロードなピークを持つことが好ましい。このようなものであれば、ケイ素化合物中のLiシリケート等のLi化合物の量が過多となっておらず、SiO成分がある程度残っているため、電極作製時のスラリーに対する安定性がより向上する。
 また、本発明において、ケイ素化合物の結晶性は低いほどよい。具体的には、負極活物質粒子のCu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であることが望ましい。このように、特に結晶性が低くSi結晶の存在量が少ないことにより、電池特性を向上させるだけでなく、安定的な負極活物質となる。
 また、ケイ素化合物粒子のメディアン径は特に限定されないが、中でも0.5μm以上15μm以下であることが好ましい。この範囲であれば、充放電時においてリチウムイオンの吸蔵放出がされやすくなるとともに、負極活物質粒子が割れにくくなるからである。
 また、本発明の負極活物質は、負極活物質粒子のBET比表面積が3.0m/g以上8.0m/g以下であることが好ましい。
 また、本発明の負極活物質では、ケイ素化合物粒子の表面若しくは前記炭素被膜の表面、又はこれらの両方の少なくとも一部が、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層を含むことが好ましい。複合層としては、例えば、非晶質のアルミニウム酸化物及びアルミニウム水酸化物から成る複合体を含む複合層を形成させることができる。この場合、複合層は、アルミニウム酸化物領域とアルミニウム水酸化物領域を有する。また、複合層の金属酸化物は、その一部が結晶相となる場合があるが、上記の複合層は、非晶質の金属酸化物及び金属水酸化物から成る領域を有していればよく、一部が結晶相となっていてもかまわない。また、複合体はアルミニウムに限定されることは無く、他の金属元素を含んでいても良い。
 また、本発明において、非晶質の金属酸化物及び金属水酸化物は、アルミニウム、マグネシウム、チタニウム、及びジルコニウムのうち少なくとも1種の元素を含むものであることが好ましい。
 また、複合層の最表層部には、アルミニウム、マグネシウム、チタニウム、及びジルコニウムの塩化物、硫酸塩、リン酸塩を含んでいてもかまわない。
 また、複合層の厚さは10nm以下であることが好ましく、さらに、5nm以下であることがより好ましい。複合層の厚さが10nm以下であれば、合剤組成にもよるが、電気抵抗が高くなり過ぎないため、電池特性が向上する。また、膜厚が2~3nm程度であると、電気抵抗の増加を抑制しつつ、スラリーに対する安定性をより向上させることができる。なお、複合層の膜厚はTEM(透過型電子顕微鏡)により確認可能である。
 また、このとき、本発明の負極活物質と炭素系活物質との混合物を含む負極電極と対極リチウムとから成る試験セルを作製し、該試験セルにおいて、負極活物質にリチウムを挿入するよう電流を流す充電と、負極活物質からリチウムを脱離するよう電流を流す放電とから成る充放電を実施し、該充放電における放電容量Qを対極リチウムを基準とする負極電極の電位Vで微分した微分値dQ/dVと電位Vとの関係を示すグラフを描いた場合に、負極電極の電位Vが0.40V~0.55Vの範囲にピークを有するものであることが好ましい。V-dQ/dV曲線における上記のピークはケイ素材のピークと類似しており、より高電位側における放電カーブが鋭く立ち上がるため、電池設計を行う際、容量発現しやすくなる。
 上述のように、本発明の負極活物質は、SiO(0.5≦x≦1.6)からなるケイ素化合物粒子を含む。ケイ素化合物(SiO:0.5≦x≦1.6)の組成としてはxが1に近い方が好ましい。これは、高いサイクル特性が得られるからである。なお、本発明における酸化ケイ素材の組成は必ずしも純度100%を意味しているわけではなく、微量の不純物元素やLiを含んでいても良い。
[負極活物質の製造方法]
 続いて、本発明の非水電解質二次電池用負極活物質の製造方法を説明する。
 まず、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する。次に、このケイ素化合物粒子に、窒化リチウムを含むリチウム化合物を混合することにより混合原料とする。次に、この混合原料を、不活性ガスを含む雰囲気下で焼成することで、ケイ素化合物粒子にLiを挿入、脱離することにより、ケイ素化合物粒子を改質する。このとき、同時にケイ素化合物粒子の内部や表面にLi化合物を生成させることができる。そして、このようにして製造された負極活物質粒子を用いて、導電助剤やバインダと混合するなどして、負極材及び負極電極を製造できる。このような非水電解質二次電池用負極活物質の製造方法であれば、リチウム源として窒化リチウムを含むリチウム化合物を用いることで、酸素によるケイ素化合物の酸化を低減することができ、良好な初回効率を有する非水電解質二次電池用負極活物質を工業的な生産において優位に製造可能となる。そのため、ケイ素酸化物本来の特性を生かした高い電池容量及び良好なサイクル維持率を有する非水電解質二次電池を工業的な生産において優位に製造可能となる。
 このとき、窒化リチウムの含有量は総てのリチウムに対して、Liのモル比で80%以上が好ましい。より好ましくはLiのモル比で90%以上である。
 また、本発明の非水電解質二次電池用負極活物質の製造方法では、ケイ素化合物粒子を作製する工程の後、混合原料とする工程よりも前に、ケイ素化合物粒子の表面の少なくとも一部に炭素被膜を形成する工程を含むことが好ましい。このようにケイ素化合物粒子の表面の少なくとも一部に炭素被膜を形成することにより、ケイ素化合物の表面の少なくとも一部が炭素被膜で被覆されたものとなり、導電性に優れるものとなる。そのため、本発明の負極活物質を使用すれば、Liを用いて改質されたケイ素酸化物本来の特性を生かした高い電池容量及び良好なサイクル維持率を有する非水電解質二次電池を工業的な生産において優位に製造可能となる。
 また、本発明の非水電解質二次電池用負極活物質の製造方法では、窒化リチウムを含むリチウム化合物として、BET比表面積が0.5m/g以上50m/g以下の窒化リチウムを用いることが好ましい。
 窒化リチウムとSiOの反応は発熱反応である。その発熱反応による温度上昇により、炉の耐熱温度を超えて、焼成炉を傷めることを防止するため、よりマイルドに反応させることが好ましい。BET比表面積が0.5m/g以上50m/g以下であれば、窒化リチウムとSiOの反応性を適度にすることができるため、よりマイルドに窒化リチウムとSiOの反応を行うことができる。
 また、本発明の非水電解質二次電池用負極活物質の製造方法では、焼成する工程において、前記不活性ガスを含む雰囲気を、水素を含有し酸素の含有量が1ppm以下である雰囲気とすることが好ましい。不活性ガスを含む雰囲気を、水素を含有し酸素の含有量が1ppm以下とすることで、酸素によるケイ素化合物粒子の酸化を抑制することができ、負極活物質の初回効率の低下を抑制することが可能となる。
 また、本発明の非水電解質二次電池用負極活物質の製造方法では、前記焼成する工程において、前記混合原料の温度を300℃以上700℃以下で30分以上保持することが好ましい。300℃以上700℃以下で30分以上保持してから最高温度に上昇させることで、窒化リチウムとSiOの反応の発熱挙動がマイルドになり、安全な焼成が可能となる。また、より安全に合成するために、400~600℃の範囲で保持する方が好ましい。また、最終温度は500℃以上750℃以下が好ましく、最適温度は720℃程度である。
 また、本発明の非水電解質二次電池用負極活物質の製造方法では、前記焼成する工程の後、前記ケイ素化合物粒子の表面若しくは前記炭素被膜の表面、又はこれらの両方の全部又は少なくとも一部が、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層を形成する工程を含むことが好ましい。複合層を形成する方法は、液相による表面コート、乾式方法によるメカノケミカルコート、スプレーによる湿式コート、アルミニウムイソプロポキシドのゾルゲル反応処理などのいずれかを用いる事が可能である。
 特に、金属酸化物及び金属水酸化物からなる複合体は、スプレーによる湿式コート、乾式方法によるメカノケミカルコートがより簡便な方法でコスト競争力があり望ましい。
 また、本発明の非水電解質二次電池用負極活物質の製造方法では、非晶質の金属酸化物及び金属水酸化物として、アルミニウム、マグネシウム、チタニウム、及びジルコニウムのうち少なくとも1種の元素を含むことが好ましい。金属酸化物及び金属水酸化物が上記のような金属元素を含むことで、電極作製時のスラリーがより安定する。
 より具体的には、負極活物質は、例えば、以下の手順により製造される。
 まず、酸化ケイ素ガスを発生する原料を不活性ガスの存在下もしくは減圧下900℃~1600℃の温度範囲で加熱し、酸化ケイ素ガスを発生させる。この場合、原料は金属珪素粉末と二酸化珪素粉末との混合であり、金属珪素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.8<金属珪素粉末/二酸化珪素粉末<1.3の範囲であることが望ましい。粒子中のSi結晶子は仕込み範囲や気化温度の変更、また生成後の熱処理で制御される。発生したガスは吸着板に堆積される。反応炉内温度を100℃以下に下げた状態で堆積物を取出し、ボールミル、ジェットミルなどを用いて粉砕、粉末化を行う。
 次に、得られた粉末材料(ケイ素化合物)の表層に炭素被膜を形成する。炭素被膜は、負極活物質の電池特性をより向上させるには効果的である。
 粉末材料の表層に炭素被膜を形成する手法としては、熱分解CVDが望ましい。熱分解CVDは炉内に酸化ケイ素粉末をセットし、炉内に炭化水素ガスを充満させ炉内温度を昇温させる。分解温度は特に限定しないが特に1200℃以下が望ましい。より望ましいのは950℃以下であり、意図しないケイ素酸化物の不均化を抑制することが可能である。炭化水素ガスは特に限定することはないが、C組成のうち3≧nが望ましい。低製造コスト及び分解生成物の物性が良いからである。
 改質は熱ドープ法を使用して行う。この場合、例えば、粉末材料を窒化リチウム(LiN)と混合し、不活性雰囲気ガス雰囲気下で加熱をすることで改質可能である。不活性雰囲気ガスとしては、例えば、アルゴン雰囲気、もしくは窒素雰囲気、アルゴン+水素混合ガス、窒素+水素混合ガスなどが使用できる。より具体的には、まず、Ar雰囲気下で窒化リチウム(LiN)と酸化珪素粉末を十分に混ぜ、封止を行い、封止した容器ごと撹拌することで均一化する。その後、500℃~750℃の範囲で加熱し改質を行い、Liをケイ素化合物に挿入する。好ましくは窒素雰囲気、より好ましくは窒素と水素の混合ガス雰囲気である。この方が、ケイ素化合物の酸化による充放電効率の低下を抑制することができるため好ましい。水素を用いる場合、系内に1%以上不活性ガスを置換していればよく、200℃以上で5分以上流れていれば、効果が発現する。水素は混合原料などが分解して焼成中に発生するものでも構わない。
 また、Liをケイ素化合物から脱離するには、加熱後の粉末を十分に冷却し、その後アルコールやアルカリ水、弱酸や純水で洗浄する方法などを使用できる。
 熱ドープ手法を用いてケイ素化合物を改質した場合、負極活物質が安価に改質でき、電池特性が向上する。また、これにより、負極活物質の耐水性などといったスラリーに対する安定性がより向上する。
 続いて、改質後の酸化珪素粒子の表面に、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層を形成する。また、上述のように、負極活物質粒子はケイ素化合物粒子の表面や炭素被膜の表面に、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層を有した方が好ましい。複合層の合成方法は液相による表面コート、乾式方法によるメカノケミカルコート、スプレーによる湿式コート、アルミニウムイソプロポキシドのゾルゲル反応処理等が挙げられる。
 製造された負極活物質粒子は、必要に応じて炭素系活物質を混合するとともに、これらの負極活物質とバインダ、導電助剤など他の材料とを混合し負極合剤としたのち、有機溶剤又は水などを加えてスラリーとする。
 次に、図1に示したように、負極集電体11の表面に、この負極合剤のスラリーを塗布し、乾燥させて、負極活物質層12を形成する。この時、必要に応じて加熱プレスなどを行っても良い。以上のようにして、本発明の非水電解質二次電池の負極を製造することができる。
[負極の構成]
 続いて、本発明の非水電解質二次電池用負極活物質を含む負極の構成について説明する。
 図1は、本発明の負極活物質を含む負極の断面図を表している。図1に示すように、負極10は、負極集電体11の上に負極活物質層12を有する構成になっている。この負極活物質層12は負極集電体11の両面、又は、片面だけに設けられていても良い。さらに、本発明の非水電解質二次電池の負極においては、負極集電体11はなくてもよい。
[負極集電体]
 負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)があげられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
 負極集電体11は、主元素以外に炭素(C)や硫黄(S)を含んでいることが好ましい。負極集電体の物理的強度が向上するためである。特に、充電時に膨張する活物質層を有する場合、集電体が上記の元素を含んでいれば、集電体を含む電極変形を抑制する効果があるからである。上記の含有元素の含有量は、特に限定されないが、中でも、それぞれ100ppm以下であることが好ましい。これは、より高い変形抑制効果が得られるからである。
 負極集電体11の表面は、粗化されていても良いし、粗化されていなくても良い。粗化されている負極集電体は、例えば、電解処理、エンボス処理、又は化学エッチングされた金属箔などである。粗化されていない負極集電体は例えば、圧延金属箔などである。
[負極活物質層]
 負極活物質層12は、負極活物質粒子の他に炭素系活物質などの複数の種類の負極活物質を含んでいて良い。さらに、電池設計上、増粘剤(「結着剤」、「バインダー」とも呼称する)や導電助剤等の他の材料を含んでいても良い。また、負極活物質の形状は粒子状であって良い。
<リチウムイオン二次電池>
 次に、本発明の非水電解質二次電池について説明する。本発明の非水電解質二次電池は本発明の負極活物質を含むものである。ここでは本発明の非水電解質二次電池の具体例として、ラミネートフィルム型のリチウムイオン二次電池について説明する。
[ラミネートフィルム型二次電池の構成]
 図3に示すラミネートフィルム型のリチウムイオン二次電池30は、主にシート状の外装部材35の内部に巻回電極体31が収納されたものである。この巻回電極体31は正極、負極間にセパレータを有し、巻回されたものである。また正極、負極間にセパレータを有し積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リード32が取り付けられ、負極に負極リード33が取り付けられている。電極体の最外周部は保護テープにより保護されている。
 正負極リード32、33は、例えば、外装部材35の内部から外部に向かって一方向で導出されている。正極リード32は、例えば、アルミニウムなどの導電性材料により形成され、負極リード33は、例えば、ニッケル、銅などの導電性材料により形成される。
 外装部材35は、例えば、融着層、金属層、表面保護層がこの順に積層されたラミネートフィルムであり、このラミネートフィルムは融着層が巻回電極体31と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、又は、接着剤などで張り合わされている。融着部は、例えばポリエチレンやポリプロピレンなどのフィルムであり、金属部はアルミ箔などである。保護層は例えば、ナイロンなどである。
 外装部材35と正負極リードとの間には、外気侵入防止のため密着フィルム34が挿入されている。この材料は、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン樹脂である。
 正極は、例えば、図1の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
 正極集電体は、例えば、アルミニウムなどの導電性材により形成されている。
 正極活物質層は、リチウムイオンの吸蔵放出可能な正極材のいずれか1種又は2種以上を含んでおり、設計に応じて正極結着剤、正極導電助剤、分散剤などの他の材料を含んでいても良い。この場合、正極結着剤、正極導電助剤に関する詳細は、例えば既に記述した負極結着剤、負極導電助剤と同様である。
 正極材料としては、リチウム含有化合物が望ましい。このリチウム含有化合物は、例えばリチウムと遷移金属元素からなる複合酸化物、又はリチウムと遷移金属元素を有するリン酸化合物があげられる。これらの正極材の中でもニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。これらの化学式として、例えば、LiあるいはLiPOで表される。式中、M、Mは少なくとも1種以上の遷移金属元素を示す。x、yの値は電池充放電状態によって異なる値を示すが、一般的に0.05≦x≦1.10、0.05≦y≦1.10で示される。
 リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルト複合酸化物などが挙げられる。リチウムニッケルコバルト複合酸化物としては、例えばリチウムニッケルコバルトアルミニウム複合酸化物(NCA)やリチウムニッケルコバルトマンガン複合酸化物(NCM)などが挙げられる。
 リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO)あるいはリチウム鉄マンガンリン酸化合物(LiFe1-uMnPO(0<u<1))などが挙げられる。これらの正極材を用いれば、高い電池容量を得ることができるとともに、優れたサイクル特性も得ることができる。
[負極]
 負極は、上記した図1のリチウムイオン二次電池用負極10と同様の構成を有し、例えば、集電体の両面に負極活物質層を有している。この負極は、正極活物質剤から得られる電気容量(電池としての充電容量)に対して、負極充電容量が大きくなることが好ましい。これにより、負極上でのリチウム金属の析出を抑制することができる。
 正極活物質層は、正極集電体の両面の一部に設けられており、同様に負極活物質層も負極集電体の両面の一部に設けられている。この場合、例えば、負極集電体上に設けられた負極活物質層は対向する正極活物質層が存在しない領域が設けられている。これは、安定した電池設計を行うためである。
 上記の負極活物質層と正極活物質層とが対向しない領域では、充放電の影響をほとんど受けることが無い。そのため、負極活物質層の状態が形成直後のまま維持され、これによって負極活物質の組成などを、充放電の有無に依存せずに再現性良く正確に調べることができる。
[セパレータ]
 セパレータは正極と負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有しても良い。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
[電解液]
 活物質層の少なくとも一部、又は、セパレータには、液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
 溶媒は、例えば、非水溶媒を用いることができる。非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2-ジメトキシエタン、又はテトラヒドロフランなどが挙げられる。この中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上を用いることが望ましい。より良い特性が得られるからである。またこの場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒を組み合わせることにより、より優位な特性を得ることができる。これは、電解質塩の解離性やイオン移動度が向上するためである。
 溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとして、例えば炭酸ビニレン又は炭酸ビニルエチレンなどが挙げられる。
 また溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電池の化学的安定性が向上するからである。スルトンとしては、例えばプロパンスルトン、プロペンスルトンが挙げられる。
 さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物としては、例えば、プロパンジスルホン酸無水物が挙げられる。
 電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類以上含むことができる。リチウム塩として、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)などが挙げられる。
 電解質塩の含有量は、溶媒に対して0.5mol/kg以上2.5mol/kg以下であることが好ましい。これは、高いイオン伝導性が得られるからである。
[ラミネートフィルム型二次電池の製造方法]
 最初に上記した正極材を用い正極電極を作製する。まず、正極活物質と、必要に応じて正極結着剤、正極導電助剤などを混合し正極合剤としたのち、有機溶剤に分散させ正極合剤スラリーとする。続いて、ナイフロール又はダイヘッドを有するダイコーターなどのコーティング装置で正極集電体に合剤スラリーを塗布し、熱風乾燥させて正極活物質層を得る。最後に、ロールプレス機などで正極活物質層を圧縮成型する。この時、加熱しても良く、また圧縮を複数回繰り返しても良い。
 次に、上記したリチウムイオン二次電池用負極10の作製と同様の作業手順を用い、負極集電体に負極活物質層を形成し負極を作製する。
 正極及び負極を作製する際に、正極及び負極集電体の両面にそれぞれの活物質層を形成する。この時、どちらの電極においても両面部の活物質塗布長がずれていても良い(図1を参照)。
 続いて、電解液を調製する。続いて、超音波溶接などにより、正極集電体に正極リード32を取り付けると共に、負極集電体に負極リード33を取り付ける。続いて、正極と負極とをセパレータを介して積層、又は巻回させて巻回電極体31を作製し、その最外周部に保護テープを接着させる。次に、扁平な形状となるように巻回体を成型する。続いて、折りたたんだフィルム状の外装部材35の間に巻回電極体を挟み込んだ後、熱融着法により外装部材の絶縁部同士を接着させ、一方向のみ開放状態にて、巻回電極体を封入する。続いて、正極リード、及び負極リードと外装部材の間に密着フィルムを挿入する。続いて、開放部から上記調製した電解液を所定量投入し、真空含浸を行う。含浸後、開放部を真空熱融着法により接着させる。以上のようにして、ラミネートフィルム型二次電池30を製造することができる。
 上記作製したラミネートフィルム型二次電池30等の本発明の非水電解質二次電池において、充放電時の負極利用率が93%以上99%以下であることが好ましい。負極利用率を93%以上の範囲とすれば、初回充電効率が低下せず、電池容量の向上を大きくできる。また、負極利用率を99%以下の範囲とすれば、Liが析出してしまうことがなく安全性を確保できる。
 以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらに制限されるものではない。
(実施例1-1)
 最初に、負極活物質粒子を以下のように作製した。
 まず、金属ケイ素と二酸化ケイ素を混合した原料(気化出発材)を反応炉へ設置し、10Paの真空度の雰囲気中で気化させたものを吸着板上に堆積させ、十分に冷却した後、堆積物を取出しボールミルで粉砕した。粒径を調整した後、熱CVDを行うことで炭素被膜を被覆した。続いて、炭素被膜を被覆したケイ素化合物に対して4質量%に相当する質量のリチウム化合物を窒素雰囲気下で混合し、シェイカーで撹拌した。その後、雰囲気制御炉で、攪拌した粉末をアルゴン雰囲気下で、保持温度帯を設けずに、740℃の焼成することで改質を行い、負極活物質粒子とした。リチウム化合物は、Liのモル比で、窒化リチウムを75%、炭酸リチウムを25%含有させた。窒化リチウムのBET比表面積は65m/gであった。また、アルゴン雰囲気中の酸素の含有量は1ppm以下であった。また、負極活物質粒子の表面のNOイオン含有量は25質量ppmであった。
 次に、作製した負極活物質、導電助剤1(デンカブラック)、導電助剤2(KS6)、スチレンブタジエンゴム(スチレンブタジエンコポリマー、以下、SBRと称する)、カルボキシメチルセルロース(以下、CMCと称する)を81:2.7:11.3:3.3:1.7の乾燥質量比で混合した後、純水で希釈し負極合剤スラリーとした。尚、上記のSBR、CMCは負極バインダー(負極結着剤)である。
 また、負極集電体としては、電解銅箔(厚さ15μm)を用いた。最後に、負極合剤スラリーを負極集電体に塗布し真空雰囲気中で100℃×3時間の乾燥を行った。乾燥後の、負極の片面における単位面積あたりの負極活物質層の堆積量(面積密度とも称する)は2.0mg/cmであった。負極合剤スラリーは負極集電体の片面だけに塗布し、負極活物質層を片面だけに設けた。
 初回充放電特性を調べるために、試験セルとして2032型コイン電池を組み立てた。
 負極としては、上記のラミネートフィルム型の二次電池の負極活物質(ケイ素系活物質)を含む電極と同様の手順で作製したものを使用した。電解液としては、エチレンカーボネートとジジエチルカーボネートとフルオロエチレンカーボネイトの2:7:1混練液1リットルにLiPF1モルを溶解したものを使用した。対極としては、厚さ0.5mmの金属リチウム箔を使用した。また、セパレータとして、厚さ20μmのポリエチレンを用いた。続いて、2032型コイン電池の底ブタ、リチウム箔、セパレータを重ねて、電解液150mLを注液し、続けて負極、スペーサ(厚さ1.0mm)を重ねて、電解液150mLを注液し、続けてスプリング、コイン電池の上ブタの順にくみ上げ、自動コインセルカシメ機でかしめることで、2032型コイン電池を作製した。
 続いて、本発明の負極活物質の製造方法で製造された負極活物質を用いた非水電解質二次電池のサイクル特性を評価するために、図3に示したようなラミネートフィルム型二次電池30を、以下のように作製した。
 最初にラミネートフィルム型の二次電池に使用する正極を作製した。正極活物質はリチウムコバルト複合酸化物であるLiCoOを95質量部と、正極導電助剤(アセチレンブラック)2.5質量部と、正極結着剤(ポリフッ化ビニリデン:Pvdf)2.5質量部とを混合し正極合剤とした。続いて正極合剤を有機溶剤(N-メチル-2-ピロリドン:NMP)に分散させてペースト状のスラリーとした。続いてダイヘッドを有するコーティング装置で正極集電体の両面にスラリーを塗布し、熱風式乾燥装置で乾燥した。この時正極集電体としては、厚み15μmのものを用いた。最後にロールプレスで圧縮成型を行った。
 負極としては、上記の試験セルのケイ素系活物質を含む電極と同様の手順で作製したものを使用した。
 電解液としては、上記の試験セルの電解液と同様の手順で作製したものを使用した。
 次に、以下のようにしてラミネートフィルム型のリチウムイオン二次電池を組み立てた。最初に、正極集電体の一端にアルミリードを超音波溶接し、負極集電体にはニッケルリードを溶接した。続いて、正極、セパレータ、負極、セパレータをこの順に積層し、長手方向に巻回させ巻回電極体を得た。その捲き終わり部分をPET保護テープで固定した。セパレータは多孔性ポリプロピレンを主成分とするフィルムにより多孔性ポリエチレンを主成分とするフィルムが挟まれた積層フィルム12μmを用いた。続いて、外装部材間に電極体を挟んだのち、一辺を除く外周縁部同士を熱融着し、内部に電極体を収納した。外装部材はナイロンフィルム、アルミ箔及び、ポリプロピレンフィルムが積層されたアルミラミネートフィルムを用いた。続いて、開口部から調製した電解液を注入し、真空雰囲気下で含浸した後、熱融着し封止した。
 このようにして作製したラミネートフィルム型のリチウムイオン二次電池のサイクル特性(維持率%)を調べた。
(実施例1-2、1-3)
 実施例1-2、1-3は、焼成時におけるリチウム化合物を変更した事、窒化リチウムのBET比表面積を変化させた事以外、実施例1-1と同様に行った。実施例1-2において、リチウム化合物は、Liのモル比で、窒化リチウムを75%、水酸化リチウムを25%含有させたものとした。また、実施例1-2の窒化リチウムのBET比表面積は64m/gであった。実施例1-3において、リチウム化合物は、窒化リチウムを100%とした。また、実施例1-3の窒化リチウムのBET比表面積は48m/gであった。また、実施例1-2、1-3の負極活物質粒子の表面のNOイオン含有量はそれぞれ21、31質量ppmであった。
(実施例1-4)
 実施例1-4は、焼成する際の雰囲気を、アルゴンと水素(水素の分圧3%)の混合気体とした事、窒化リチウムのBET比表面積を変化させた事以外、実施例1-3と同様に行った。窒化リチウムのBET比表面積は46m/gであった。また、負極活物質粒子の表面のNOイオン含有量は15質量ppmであった。
(実施例1-5~実施例1-8)
 実施例1-5~実施例1-8は、焼成する際の雰囲気、保持温度帯を設ける事の有無、窒化リチウムのBET比表面積を変化させた事以外は実施例1-3と同様に行った。実施例1-5において、焼成する際の雰囲気は、実施例1-4と同様、アルゴンと水素(水素の分圧3%)とした。また、実施例1-5の窒化リチウムのBET比表面積は32m/gであった。実施例1-6において、焼成する際の雰囲気は、アルゴンとした。また、実施例1-6の窒化リチウムのBET比表面積は15m/gであった。実施例1-7において、焼成する際の雰囲気は、窒素とした。また、実施例1-7の窒化リチウムのBET比表面積は10m/gであった。実施例1-8において、焼成する際の雰囲気は、窒素と水素(水素の分圧3%)とした。また、実施例1-8の窒化リチウムのBET比表面積は19m/gであった。また、実施例1-5、1-6、1-7、1-8の負極活物質粒子の表面のNOイオン含有量はそれぞれ21、12、15、18質量ppmであった。
(実施例1-9)
 実施例1-9は、特に、改質後のケイ素化合物粒子を脱水エタノールとアルミニウムイソプロポキシドの混合溶液に投入し、撹拌、濾過、乾燥しエタノールを除去した。これにより、酸化アルミニウム及び水酸化アルミニウムの複合体を含む複合層を形成した。複合層の膜厚は3nmであった。ここでは濾過後の濾過液に残ったアルミニウム量から、膜厚を計算した。改質後の負極活物質粒子の表面の少なくとも一部に複合層を形成させた事、窒化リチウムのBET比表面積を変化させた事以外、実施例1-8と同様に行った。窒化リチウムのBET比表面積は15m/gであった。また、負極活物質粒子の表面のNOイオン含有量は8.0質量ppmであった。
(実施例1-10、1-11)
 窒化リチウムのBET比表面積を変化させたこと以外、実施例1-8と同様に行った。実施例1-10の窒化リチウムのBET比表面積は0.8m/gであった。また、実施例1-11の窒化リチウムのBET比表面積は0.1m/gであった。また、実施例1-10、1-11の負極活物質粒子の表面のNOイオン含有量はそれぞれ2.0、3.5質量ppmであった。
(実施例1-12)
 実施例1-12は、窒化リチウムのBET比表面積を変化させた事以外、実施例1-3と同様に行った。実施例1-12の窒化リチウムのBET比表面積は78m/gであった。また、実施例1-12の負極活物質粒子の表面のNOイオン含有量は20質量ppmであった。また、実施例1-12は、焼成による改質の温度を実施例1-1~1-11よりも高くすることで、結晶化を進行させた。すなわち、Si(111)結晶面に起因する回折ピークの半値幅(2θ)をより小さくした。
(比較例1-1、1-2)
 比較例1-1、1-2においては、ケイ素化合物の作製後に焼成する際のLi化合物を変更した以外、実施例1-3と同様に合成を行った。比較例1-1において、リチウム化合物は、炭酸リチウムを100%とした。比較例1-2において、リチウム化合物は、水酸化リチウムを100%とした。また、比較例1-1、1-2の負極活物質粒子の表面のNOイオン含有量はそれぞれ0.3、0.1質量ppmであった。
(比較例1-3)
 比較例1-3は、焼成の際に保持温度帯を設けた。また、焼成時におけるリチウム化合物は、Liのモル比で、炭酸リチウムを50%、水酸化リチウムを50%含有させたものとした。保持温度帯の有無、リチウム化合物を変更したこと以外は実施例1-3と同様に行った。また、比較例1-3の負極活物質粒子の表面のNOイオン含有量は0.5質量ppmであった。
(比較例1-4)
 比較例1-4は、焼成の際に保持温度帯を設けなかったこと以外、比較例1-3と同様に行った。また、負極活物質粒子の表面のNOイオン含有量は0.4質量ppmであった。
(比較例1-5)
 比較例1-5は、ケイ素化合物(SiO)のxを0.4としたこと、窒化リチウムのBET比表面積を変化させた事以外、実施例1-4と同様に行った。また、負極活物質粒子の表面のNOイオン含有量は16質量ppmであった。
(比較例1-6)
 比較例1-6はケイ素化合物(SiO)のxを1.6としたこと、窒化リチウムのBET比表面積を変化させた事以外、実施例1-4と同様に行った。また、負極活物質粒子の表面のNOイオン含有量は18質量ppmであった。
 上記実施例及び比較例において、保持温度帯を設けた場合、保持温度は400℃とし、保持時間は30分とした。
 上記実施例及び比較例におけるケイ素化合物の物性は以下のとおりである。比較例1-5及び比較例1-6を除く上記全ての実施例及び比較例においてSiOで表されるケイ素化合物のxの値が1.0であり、ケイ素化合物のメディアン径D50は4μmであった。また、比較例1-1及び比較例1-2のような、未改質のケイ素化合物のX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)は2.593°であった。また、実施例1-12における、改質後のケイ素化合物のX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)は1.066°であった。また、これらの比較例1-1、1-2、及び、実施例1-12以外における、改質後のケイ素化合物のX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)は2.257°であった。改質後のケイ素化合物はLiSiO、LiSiを含んでいた。
 また、作製した負極と対極リチウムとから、前述のように、2032型コイン型リチウム電池を作製し、その放電挙動を評価した。より具体的には、まず、対極Liで0Vまで定電流定電圧充電を行い、電流密度が0.05mA/cmに達した時点で充電を終止させた。その後、1.2Vまで定電流放電を行った。この時の電流密度は0.2mA/cmであった。雰囲気温度は、25℃とした。このような充放電により得られたデータから、縦軸を容量の変化率(dQ/dV)、横軸を電圧(V)としてグラフを描き、Vが0.4~0.55(V)の範囲にピークが得られるかを確認した。その結果、実施例1-3、1-4,1-5,1-6,1-7,1-8、1-9の実施例にてピークが確認された。
 初回充放電特性を調べる場合には、初回効率(初期効率)を算出した。初回効率は、初回効率(%)=(初回放電容量/初回充電容量)×100で表される式から算出した。
 サイクル特性については、以下のようにして調べた。最初に電池安定化のため25℃の雰囲気下、2サイクル充放電を行い、2サイクル目の放電容量を測定した。続いて総サイクル数が100サイクルとなるまで充放電を行い、その都度放電容量を測定した。最後に100サイクル目の放電容量を2サイクル目の放電容量で割り(%表示のため×100)、容量維持率を算出した。サイクル条件として、4.3Vに達するまで定電流密度、2.5mA/cmで充電し、電圧4.3Vに達した段階で4.3V定電圧で電流密度が0.25mA/cmに達するまで充電した。また、放電時は2.5mA/cmの定電流密度で電圧が3.0Vに達するまで放電した。
 BET比表面積の測定は、Macsorb1208型(MOUNTEC社製、HM model-1208)を用いて行った。
 実施例1-1~1-12、比較例1-1~1-6の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 また、負極活物質粒子のCu-Kα線を用いたX線回折スペクトルから得られる回折ピーク(2θ)として27.5~29.0°で与えられるSi領域に由来するピークの強度Aと、26.5~27.5°で与えられるLiSiOに由来するピークの強度Bと、24.5~25.5°で与えられるLiSiに由来するピークの強度Cとの関係は、実施例1-1、1-2において、A>B、A>C、C>Bであった。また、実施例1-3~1-11、及び、比較例1-4においては、A>B、A>C、B>Cであった。また、比較例1-1においては、B>A、C>A、C>Bであった。また、比較例1-2、1-3においては、B>A、C>A、B>Cであった。また、実施例1-1~1-9、比較例1-1~1-4において、2θとして22°付近に与えられるSiO領域に由来するブロードなピークを持つことが確認された。実施例1-1において得られたX線回折スペクトルを図2に示す。
 実施例1-1~1-9、比較例1-1~1-4のXRDスペクトルから得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1の実施例1-1~実施例1-11のように、本発明の負極活物質を使用した二次電池では、窒化リチウムを用いた改質による、初回効率向上といった電池特性の向上効果が得られた。
 特に、BET比表面積が0.5m/g以上50m/g以下の窒化リチウムを含むリチウム化合物を用いた実施例1-3~1-10は、その他の実施例と比べて、より良い初回効率を示した。
 また、実施例においては、X線回折スペクトルから得られる回折ピーク(2θ)がA>B、A>Cの関係を満たしていた。特に、B>Cの関係を満たす実施例1-3~1-11はより良い初期効率を示した。
 また、Cu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.066°である実施例1-12よりも、半値幅(2θ)が1.2°以上の低結晶性材料で高い充放電効率が得られた(実施例1-1~1-11)。
 一方、窒化リチウムを用いなかった比較例1-1~比較例1-4では、十分な充放電効率が得られなかった。
 負極活物質粒子の表面の少なくとも一部に複合層を形成させた実施例1-9は、負極活物質粒子の表面に複合層を形成させなかった実施例1-1~1-8、実施例1-10~1-12よりもサイクル維持率が向上した。
 ケイ素化合物中の酸素量が減る、すなわち比較例1-5のようにx<0.5となると、Siリッチとなり、サイクル維持率が大幅に低下した。また酸素リッチの場合、すなわち比較例1-6のようにx>1.6となる場合、ケイ素酸化物の抵抗が高くなり、サイクル維持率が大幅に低下した。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (20)

  1.  リチウムを含むケイ素化合物粒子を含む非水電解質二次電池用負極活物質の製造方法であって、
     ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する工程と、
     該ケイ素化合物粒子に、窒化リチウムを含むリチウム化合物を混合することにより混合原料とする工程と、
     前記混合原料を、不活性ガスを含む雰囲気下で焼成する工程と
    を含み、前記リチウムを含むケイ素化合物粒子を含む非水電解質二次電池用負極活物質を製造することを特徴とする非水電解質二次電池用負極活物質の製造方法。
  2.  前記ケイ素化合物粒子を作製する工程の後、前記混合原料とする工程よりも前に、前記ケイ素化合物粒子の表面の少なくとも一部に炭素被膜を形成する工程を含むことを特徴とする請求項1に記載の非水電解質二次電池用負極活物質の製造方法。
  3.  前記窒化リチウムを含むリチウム化合物として、BET比表面積が0.5m/g以上50m/g以下の窒化リチウムを用いることを特徴とする請求項1又は請求項2に記載の非水電解質二次電池用負極活物質の製造方法。
  4.  前記焼成する工程において、前記不活性ガスを含む雰囲気を、水素を含有し酸素の含有量が1ppm以下である雰囲気とすることを特徴とする請求項1から請求項3のいずれか1項に記載の非水電解質二次電池用負極活物質の製造方法。
  5.  前記焼成する工程において、前記混合原料の温度を300℃以上700℃以下で30分以上保持することを特徴とする請求項1から請求項4のいずれか1項に記載の非水電解質二次電池用負極活物質の製造方法。
  6.  前記焼成する工程の後、前記ケイ素化合物粒子の表面若しくは前記炭素被膜の表面、又はこれらの両方の全部又は少なくとも一部に、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層を形成する工程を含むことを特徴とする請求項1から請求項5のいずれか1項に記載の非水電解質二次電池用負極活物質の製造方法。
  7.  前記非晶質の金属酸化物及び金属水酸化物を、アルミニウム、マグネシウム、チタニウム、及びジルコニウムのうち少なくとも1種の元素を含むものとすることを特徴とする請求項6に記載の非水電解質二次電池用負極活物質の製造方法。
  8.  負極活物質粒子を含む負極活物質であって、
     前記負極活物質粒子は、ケイ素化合物(SiOx:0.5≦x≦1.6)を含むケイ素化合物粒子を含有し、
     前記ケイ素化合物粒子は、LiSiO及びLiSiのうち少なくとも1種以上を含有し、
     前記負極活物質粒子は、その表面にNOイオンを含み、前記NOイオンの含有量が前記負極活物質粒子の質量に対して1質量ppm以上200質量ppm以下であるものであることを特徴とする非水電解質二次電池用負極活物質。
  9.  前記ケイ素化合物粒子の表面の少なくとも一部が炭素被膜で被覆されたものであることを特徴とする請求項8に記載の非水電解質二次電池用負極活物質。
  10.  前記負極活物質粒子が、Cu-Kα線を用いたX線回折スペクトルから得られる回折ピーク(2θ)として、
     27.5~29.0°で与えられるSi領域に由来するピークの強度Aと、
     26.5~27.5°で与えられるLiSiOに由来するピークの強度Bと、
     24.5~25.5°で与えられるLiSiに由来するピークの強度Cとが、
     A>B及びA>Cという関係を満たすものであることを特徴とする請求項8又は請求項9に記載の非水電解質二次電池用負極活物質。
  11.  前記負極活物質粒子が、前記強度Bと、前記強度Cとが、B>Cという関係を満たすものであることを特徴とする請求項10に記載の非水電解質二次電池用負極活物質。
  12.  前記負極活物質粒子が、Cu-Kα線を用いたX線回折スペクトルから得られる回折ピーク(2θ)として、22°付近で与えられるSiO領域に由来するブロードなピークを有するものであることを特徴とする請求項8から請求項11のいずれか1項に記載の非水電解質二次電池用負極活物質。
  13.  前記負極活物質粒子は、Cu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であることを特徴とする請求項8から請求項12のいずれか1項に記載の非水電解質二次電池用負極活物質。
  14.  前記ケイ素化合物粒子はメディアン径が0.5μm以上15μm以下であることを特徴とする請求項8から請求項13のいずれか1項に記載の非水電解質二次電池用負極活物質。
  15.  前記負極活物質粒子はBET比表面積が3.0m/g以上8.0m/g以下であることを特徴とする請求項8から請求項14のいずれか1項に記載の非水電解質二次電池用負極活物質。
  16.  前記ケイ素化合物粒子の表面若しくは前記炭素被膜の表面、又はこれらの両方の全部又は少なくとも一部が、非晶質の金属酸化物及び金属水酸化物から成る複合体を含む複合層を含むものであることを特徴とする請求項8から請求項15のいずれか1項に記載の非水電解質二次電池用負極活物質。
  17.  前記非晶質の金属酸化物及び金属水酸化物は、アルミニウム、マグネシウム、チタニウム、及びジルコニウムのうち少なくとも1種の元素を含むものであることを特徴とする請求項16に記載の非水電解質二次電池用負極活物質。
  18.  前記非水電解質二次電池用負極活物質と炭素系活物質との混合物を含む負極電極と対極リチウムとから成る試験セルを作製し、該試験セルにおいて、前記負極活物質にリチウムを挿入するよう電流を流す充電と、前記負極活物質からリチウムを脱離するよう電流を流す放電とから成る充放電を実施し、該充放電における放電容量Qを前記対極リチウムを基準とする前記負極電極の電位Vで微分した微分値dQ/dVと前記電位Vとの関係を示すグラフを描いた場合に、前記負極電極の電位Vが0.40V~0.55Vの範囲にピークを有するものであることを特徴とする請求項8から請求項17のいずれか1項に記載の非水電解質二次電池用負極活物質。
  19.  請求項8から請求項18のいずれか1項に記載の非水電解質二次電池用負極活物質を含む負極活物質層と、
     負極集電体とを有し、
     前記負極活物質層は前記負極集電体上に形成されており、
     前記負極集電体は炭素及び硫黄を含むとともに、それらの含有量がいずれも100質量ppm以下であることを特徴とする非水電解質二次電池用負極。
  20.  負極として、請求項8から請求項18のいずれか1項に記載の非水電解質二次電池用負極活物質を含む負極を用いたものであることを特徴とする非水電解質二次電池。
PCT/JP2019/015245 2018-06-25 2019-04-08 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質、非水電解質二次電池用負極及び非水電解質二次電池 WO2020003687A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-119578 2018-06-25
JP2018119578A JP6934453B2 (ja) 2018-06-25 2018-06-25 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質

Publications (1)

Publication Number Publication Date
WO2020003687A1 true WO2020003687A1 (ja) 2020-01-02

Family

ID=68986993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015245 WO2020003687A1 (ja) 2018-06-25 2019-04-08 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質、非水電解質二次電池用負極及び非水電解質二次電池

Country Status (2)

Country Link
JP (1) JP6934453B2 (ja)
WO (1) WO2020003687A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054181A (zh) * 2020-09-28 2020-12-08 珠海冠宇电池股份有限公司 一种补锂剂及其应用
CN113130872A (zh) * 2021-04-14 2021-07-16 贝特瑞新材料集团股份有限公司 一种复合材料及其制备方法、负极材料、负极片和锂离子电池
WO2024198631A1 (zh) * 2023-03-31 2024-10-03 宁德新能源科技有限公司 一种二次电池和电子装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114005974B (zh) * 2021-12-30 2022-03-22 常州硅源新能材料有限公司 硅氧负极材料、硅氧负极材料的制备方法及锂离子电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160328A (ja) * 2001-09-05 2003-06-03 Shin Etsu Chem Co Ltd リチウム含有酸化珪素粉末及びその製造方法
JP2009252705A (ja) * 2008-04-11 2009-10-29 Nec Tokin Corp 非水電解質二次電池
WO2014188654A1 (ja) * 2013-05-24 2014-11-27 株式会社大阪チタニウムテクノロジーズ リチウム含有酸化珪素粉末
JP2017010645A (ja) * 2015-06-17 2017-01-12 信越化学工業株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
WO2017038320A1 (ja) * 2015-08-28 2017-03-09 株式会社大阪チタニウムテクノロジーズ Li含有酸化珪素粉末及びその製造方法
WO2017047030A1 (ja) * 2015-09-16 2017-03-23 信越化学工業株式会社 非水電解質二次電池用負極活物質の製造方法、及び非水電解質二次電池の製造方法
JP2017091683A (ja) * 2015-11-05 2017-05-25 信越化学工業株式会社 非水電解質二次電池用負極活物質の製造方法及び非水電解質二次電池の製造方法
WO2017141661A1 (ja) * 2016-02-15 2017-08-24 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法
JP2017174803A (ja) * 2016-03-16 2017-09-28 信越化学工業株式会社 非水電解質二次電池用負極活物質の製造方法及び非水電解質二次電池用負極の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101747034B1 (ko) * 2016-04-28 2017-06-14 주식회사 포스코 항복비가 우수한 초고강도 고연성 강판 및 이의 제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160328A (ja) * 2001-09-05 2003-06-03 Shin Etsu Chem Co Ltd リチウム含有酸化珪素粉末及びその製造方法
JP2009252705A (ja) * 2008-04-11 2009-10-29 Nec Tokin Corp 非水電解質二次電池
WO2014188654A1 (ja) * 2013-05-24 2014-11-27 株式会社大阪チタニウムテクノロジーズ リチウム含有酸化珪素粉末
JP2017010645A (ja) * 2015-06-17 2017-01-12 信越化学工業株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
WO2017038320A1 (ja) * 2015-08-28 2017-03-09 株式会社大阪チタニウムテクノロジーズ Li含有酸化珪素粉末及びその製造方法
WO2017047030A1 (ja) * 2015-09-16 2017-03-23 信越化学工業株式会社 非水電解質二次電池用負極活物質の製造方法、及び非水電解質二次電池の製造方法
JP2017091683A (ja) * 2015-11-05 2017-05-25 信越化学工業株式会社 非水電解質二次電池用負極活物質の製造方法及び非水電解質二次電池の製造方法
WO2017141661A1 (ja) * 2016-02-15 2017-08-24 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法
JP2017174803A (ja) * 2016-03-16 2017-09-28 信越化学工業株式会社 非水電解質二次電池用負極活物質の製造方法及び非水電解質二次電池用負極の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054181A (zh) * 2020-09-28 2020-12-08 珠海冠宇电池股份有限公司 一种补锂剂及其应用
CN113130872A (zh) * 2021-04-14 2021-07-16 贝特瑞新材料集团股份有限公司 一种复合材料及其制备方法、负极材料、负极片和锂离子电池
CN113130872B (zh) * 2021-04-14 2022-12-13 贝特瑞新材料集团股份有限公司 一种复合材料及其制备方法、负极材料、负极片和锂离子电池
WO2024198631A1 (zh) * 2023-03-31 2024-10-03 宁德新能源科技有限公司 一种二次电池和电子装置

Also Published As

Publication number Publication date
JP2020004482A (ja) 2020-01-09
JP6934453B2 (ja) 2021-09-15

Similar Documents

Publication Publication Date Title
CN107710466B (zh) 负极活性物质及二次电池、以及负极材料的制造方法
TWI708422B (zh) 非水電解質二次電池用負極活性物質、非水電解質二次電池、非水電解質二次電池用負極材料的製造方法、以及非水電解質二次電池的製造方法
JP7265668B2 (ja) リチウムイオン二次電池、モバイル端末、自動車及び電力貯蔵システム
JP7186099B2 (ja) 非水電解質二次電池用負極活物質及びその製造方法
JP6082355B2 (ja) 非水電解質二次電池の負極材用の負極活物質、及び非水電解質二次電池用負極電極、並びに非水電解質二次電池
CN109155407B (zh) 负极活性物质、混合负极活性物质材料、及负极活性物质的制备方法
JP6239476B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
WO2020003687A1 (ja) 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極活物質、非水電解質二次電池用負極及び非水電解質二次電池
JP7019284B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
CN109155406B (zh) 负极活性物质、负极、锂离子二次电池、锂离子二次电池的使用方法、负极活性物质的制备方法、及锂离子二次电池的制造方法
JP6530071B2 (ja) 非水電解質二次電池用負極活物質の製造方法、非水電解質二次電池用負極の製造方法、及び非水電解質二次電池の製造方法
JP6719262B2 (ja) 負極活物質、混合負極活物質材料、負極活物質の製造方法
CN113659109B (zh) 负极活性物质、混合负极活性物质材料、及负极活性物质的制备方法
JP6448510B2 (ja) 非水電解質二次電池用負極活物質の製造方法及び非水電解質二次電池の製造方法
JP6448462B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池並びに非水電解質二次電池用負極活物質の製造方法
JP6802111B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
JP7285991B2 (ja) 非水電解質二次電池用負極及びその製造方法
WO2022239676A1 (ja) 負極活物質及びその製造方法
WO2020003692A1 (ja) 非水電解質二次電池用負極活物質の製造方法
JP2023105614A (ja) 非水電解質二次電池用負極活物質及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825257

Country of ref document: EP

Kind code of ref document: A1