WO2017026422A1 - 水除去方法 - Google Patents

水除去方法 Download PDF

Info

Publication number
WO2017026422A1
WO2017026422A1 PCT/JP2016/073207 JP2016073207W WO2017026422A1 WO 2017026422 A1 WO2017026422 A1 WO 2017026422A1 JP 2016073207 W JP2016073207 W JP 2016073207W WO 2017026422 A1 WO2017026422 A1 WO 2017026422A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
water
carbon atoms
alkyl group
hydrogen atom
Prior art date
Application number
PCT/JP2016/073207
Other languages
English (en)
French (fr)
Inventor
誠 松浦
洋介 岸川
麻子 吉山
寿美 石原
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US15/750,291 priority Critical patent/US10526272B2/en
Priority to EP16835119.5A priority patent/EP3333151B1/en
Priority to CN201680045791.7A priority patent/CN107848944B/zh
Priority to RU2018108104A priority patent/RU2723560C2/ru
Publication of WO2017026422A1 publication Critical patent/WO2017026422A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/56Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/58Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond

Definitions

  • the present invention relates to a method for removing water, particularly a method for removing water from a composition containing an acrylic acid derivative and water.
  • Acrylic acid derivatives are used as raw materials for water-absorbing polymers and as substitutes for inorganic glass for building and vehicle window materials, lighting equipment covers, lantern signs, road signs, daily necessities, office supplies, crafts, and windshields for watches. It is also widely used as a raw material for acrylic resins and acrylic resin paints.
  • fluorine-containing acrylic derivatives are synthetic intermediates for pharmaceuticals (for example, antibiotics), synthetic intermediates for optical fiber sheath materials, synthetic intermediates for coating materials, synthetic intermediates for semiconductor resist materials, and high functionality. It is useful as a molecular monomer.
  • Patent Document 1 discloses a method of reacting 2-fluoropropionic acid ester with a brominating agent having a nitrogen-bromine bond in the presence of a radical initiator.
  • Patent Document 2 a 3-halo-2-fluoropropionic acid derivative is converted into a substituted 2-fluoroacrylic acid derivative in the presence of at least one base and in the presence of at least one polymerization inhibitor. A method of conversion is disclosed.
  • an acrylic acid derivative water may be mixed in the composition containing the target acrylic acid derivative. Since the acrylic acid derivative is hydrolyzed by water, the water may adversely affect the stability of the acrylic acid derivative. Therefore, specifically, even if the water is in a trace amount, the acrylic acid derivative is added to the above-described synthetic intermediate for pharmaceuticals (for example, antibiotics), synthetic intermediate for optical fiber sheaths, and paints. When used for applications such as synthetic intermediates of materials, synthetic intermediates of semiconductor resist materials, and monomers of functional polymers, there is a risk of adversely affecting the desired reaction. Moreover, even if the said water is trace amount, there exists a possibility of having a bad influence on the preservability of an acrylic acid derivative. Accordingly, it is desired to develop a method for highly removing water from a composition containing an acrylic acid derivative and water. An object of the present invention is to provide a method for highly removing water from a composition containing an acrylic acid derivative and water.
  • the present invention includes the following aspects.
  • R 1 and R 2 are the same or different and each represents an alkyl group, a fluoroalkyl group, an aryl group optionally having one or more substituents, a halogen atom, or a hydrogen atom;
  • R 3 represents an alkyl group, a fluoroalkyl group, an aryl group optionally having one or more substituents, or a hydrogen atom, and
  • X represents an alkyl group, a fluoroalkyl group, a halogen atom, or a hydrogen atom Represents.
  • B a method for removing water from the composition A containing water, Step A of contacting the composition A with zeolite Including methods.
  • Item 2. The method according to Item 1, wherein R 1 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a fluoroalkyl group having 1 to 20 carbon atoms.
  • Item 3. Item 3. The method according to Item 1 or 2, wherein R 2 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a fluoroalkyl group having 1 to 20 carbon atoms.
  • Item 4. Item 4. The method according to any one of Items 1 to 3, wherein R 3 is a linear alkyl group having 1 to 20 carbon atoms.
  • Item 5. Item 5.
  • composition A is (A) An organic phase obtained by washing the composition B containing the acrylic acid derivative represented by the formula (I) and water-soluble impurities with water, and removing the aqueous phase generated by the washing. 8.
  • Item 9 The method according to any one of items 1 to 7.
  • Item 9. The method according to Item 8, wherein the water-soluble impurity is at least one selected from the group consisting of alcohol and aldehyde.
  • Item 10. (A) Formula (I): [Where: R 1 and R 2 are the same or different and each represents an alkyl group, a fluoroalkyl group, an aryl group optionally having one or more substituents, a halogen atom, or a hydrogen atom; R 3 represents an alkyl group, a fluoroalkyl group, an aryl group optionally having one or more substituents, or a hydrogen atom, and X represents an alkyl group, a fluoroalkyl group, a halogen atom, or a hydrogen atom Represents.
  • R 1 and R 2 are the same or different and each represents an alkyl group, a fluoroalkyl group, an aryl group optionally having one or more substituents, a halogen atom, or a hydrogen atom;
  • R 3 represents an alkyl group, a fluoroalkyl group, an aryl group optionally having one or more substituents, or a hydrogen atom, and
  • X represents an alkyl group, a fluoroalkyl group, a halogen atom, or a hydrogen atom Represents.
  • a method for producing a composition containing an acrylic acid derivative represented by Item 10. A method comprising the method according to any one of Items 1 to 9. Item 12.
  • a method for producing an acrylic acid derivative represented by Item 10. A method comprising the method according to any one of Items 1 to 9.
  • room temperature herein can be a temperature in the range of 10-40 ° C.
  • symbols and abbreviations in the present specification are understood to have meanings commonly used in the technical field to which the present invention belongs in accordance with the context of the present specification.
  • the phrase “containing” is intended to encompass the phrase “consisting essentially of” and the phrase “consisting of”.
  • the “alkyl group” can be a cyclic, linear, or branched alkyl group.
  • the “alkyl group” is, for example, an alkyl group having 1 to 20 carbon atoms, 1 to 12 carbon atoms, 1 to 6 carbon atoms, 1 to 4 carbon atoms, or 1 to 3 carbon atoms. it can.
  • alkyl group specifically includes, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a neopentyl group.
  • linear or branched alkyl groups such as a hexyl group.
  • alkyl group specifically includes, for example, a cyclic alkyl group having 3 to 6 carbon atoms (cycloalkyl group) such as cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
  • cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
  • the “fluoroalkyl group” is an alkyl group in which at least one hydrogen atom is substituted with a fluorine atom.
  • the number of fluorine atoms of the “fluoroalkyl group” is 1 or more (eg, 1 to 3, 1 to 6, 1 to 12, or the maximum number that can be substituted from one). be able to.
  • the “fluoroalkyl group” is, for example, a fluoroalkyl group having 1 to 20 carbon atoms, 1 to 12 carbon atoms, 1 to 6 carbon atoms, 1 to 4 carbon atoms, or 1 to 3 carbon atoms. be able to.
  • the “fluoroalkyl group” may be a linear or branched fluoroalkyl group.
  • the “fluoroalkyl group” specifically includes, for example, a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a pentafluoroethyl group, a tetrafluoro group.
  • Propyl group eg, HCF 2 CF 2 CH 2 —
  • Hexafluoropropyl group eg, (CF 3 ) 2 CH—
  • Nonafluorobutyl group e.g., HCF 2 CF 2 CF 2 CF 2) CH 2-
  • Octafluoropentyl group eg, HCF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 ) CH 2-
  • a tridecafluorohexyl group eg, HCF 2 CF 2 CH 2 —
  • examples of the “aryl group” include a phenyl group and a naphthyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the water removal method of the present invention comprises: (A) Formula (I): [Where: R 1 and R 2 are the same or different and each represents an alkyl group, a fluoroalkyl group, an aryl group optionally having one or more substituents, a halogen atom, or a hydrogen atom; R 3 represents an alkyl group, a fluoroalkyl group, an aryl group optionally having one or more substituents, or a hydrogen atom, and X represents an alkyl group, a fluoroalkyl group, a halogen atom, or a hydrogen atom Represents. ] And (B) a method of removing water from the composition A containing water, which is hereinafter referred to as an acrylic acid derivative (A). Step A of contacting the composition A with zeolite including.
  • the composition A subjected to the water removal method of the present invention can be an acrylic acid derivative (A) containing water as an impurity.
  • one embodiment of the present invention is a method for purifying an acrylic acid derivative (A), which comprises contacting a crude purified product of an acrylic acid derivative (A) containing water as an impurity with zeolite to remove the water.
  • the crudely purified product of the acrylic acid derivative (A) is the composition A.
  • the acrylic acid derivative (A) can be a compound purified by a purification method including the method of the present invention.
  • R 1 is preferably a hydrogen atom, 1 to 20 carbon atoms (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 1 carbon atoms). 4, more preferably an alkyl group having 1 to 3 carbon atoms, particularly preferably 1 or 2 carbon atoms, or a fluoroalkyl group having 1 to 20 carbon atoms (preferably 1 to 12 carbon atoms, more preferably Has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, still more preferably 1 to 3 carbon atoms, particularly preferably 1 or 2 carbon atoms, and more preferably a hydrogen atom. .
  • R 2 is preferably a hydrogen atom, 1 to 20 carbon atoms (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to carbon atoms). 4, more preferably an alkyl group having 1 to 3 carbon atoms, particularly preferably 1 or 2 carbon atoms, or a fluoroalkyl group having 1 to 20 carbon atoms (preferably 1 to 12 carbon atoms, more preferably Has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, still more preferably 1 to 3 carbon atoms, particularly preferably 1 or 2 carbon atoms, and more preferably a hydrogen atom. is there.
  • R 3 preferably has 1 to 20 carbon atoms (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 4 carbon atoms, or more). More preferably, it is a linear alkyl group having 1 to 3 carbon atoms, particularly preferably 1 or 2 carbon atoms, more preferably a methyl group or an ethyl group, and further preferably a methyl group. .
  • X preferably has 1 to 20 carbon atoms (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 4 carbon atoms, still more Preferably, it is an alkyl group having 1 to 3 carbon atoms, particularly preferably 1 or 2 carbon atoms, a fluorine atom, a chlorine atom, or a hydrogen atom, and more preferably a methyl group, a fluorine atom, or a hydrogen atom. Yes, and more preferably a fluorine atom.
  • R 3 has 1 to 20 carbon atoms (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 4 carbon atoms, still more preferably 1 to 2 carbon atoms). 3, particularly preferably a linear alkyl group having 1 or 2 carbon atoms, and X is preferably a methyl group or a fluorine atom; More preferably, R 3 is a methyl group or an ethyl group (more preferably a methyl group), and X is a methyl group or a fluorine atom.
  • R 1 is a hydrogen atom
  • R 2 is a hydrogen atom
  • R 3 is a methyl group or an ethyl group (more preferably a methyl group)
  • X is a methyl group, a fluorine atom, or a hydrogen atom (more preferably a fluorine atom). It is.
  • the acrylic acid derivative (A) can be produced by a known production method or a method analogous thereto, or is commercially available.
  • the acrylic acid derivative (A) can be produced, for example, by the production method described in International Publication No. 2014/034906 or a method analogous thereto.
  • composition A to be used in the method of the present invention is preferably a liquid.
  • composition A used in the method of the present invention it is preferable that the acrylic acid derivative (A) and water are mixed. That is, the composition A used in the method of the present invention is preferably a single layer in which the layer containing the acrylic acid derivative (A) and the layer containing water are not separated.
  • the lower limit of the water content in the composition A subjected to the method of the present invention is preferably 1000 ppm (w / w), more preferably 2000 ppm (w / w), and even more preferably 3000 ppm (w / w). is there.
  • the upper limit of the water content in the composition A subjected to the method of the present invention is preferably 20000 ppm (w / w), more preferably 15000 ppm (w / w), and still more preferably 10,000 ppm (w / w). is there.
  • the water content in the composition A subjected to the method of the present invention is preferably in the range of 1000 to 20000 ppm (w / w), more preferably in the range of 2000 to 15000 ppm (w / w), still more preferably. Within the range of 3000 to 10000 ppm (w / w).
  • the minimum of the content rate of acrylic acid derivative (A) in the composition A provided to the method of the present invention is not particularly limited, for example, 85% (w / w), 90% (w / w), 95% (W / w) is exemplified.
  • the upper limit of the content rate of the acrylic acid derivative (A) in the composition A used for the method of the present invention is not particularly limited, for example, 90% (w / w), 95% (w / w), 99% (W / w) is exemplified.
  • the lower limit of the amount ratio of the water / acrylic acid derivative (A) in the composition A subjected to the method of the present invention is preferably 1000 ppm (w / w), more preferably 1050 ppm (w / w), and still more preferably. 1100 ppm (w / w).
  • the upper limit of the amount ratio of the water / acrylic acid derivative (A) in the composition A subjected to the method of the present invention is preferably 25000 ppm (w / w), more preferably 18000 ppm (w / w), and still more preferably. 11000 ppm (w / w).
  • the amount ratio of the water / acrylic acid derivative (A) in the composition A subjected to the method of the present invention is preferably in the range of 1000 to 25000 ppm (w / w), more preferably 1050 to 18000 ppm (w / w). Within the range, and more preferably within the range of 1100 to 11000 ppm (w / w).
  • composition A subjected to the method of the present invention may contain one or more other substances in addition to the acrylic acid derivative (A) and water.
  • the zeolite used in the method of the present invention can be natural zeolite or synthetic zeolite.
  • the zeolite used in the method of the present invention is preferably, for example, a synthetic zeolite.
  • Zeolite used in the process of the invention preferably have the general formula: M 2 / n O ⁇ Al 2 O 3 ⁇ xSiO 2 ⁇ yH 2 O (M represents a metal cation, n represents the valence, x Represents a coefficient, and y represents a coefficient.).
  • M is preferably one or more metal cations selected from the group consisting of a sodium cation and a potassium cation.
  • the zeolite used in the method of the present invention is preferably a zeolite represented by the chemical formula: Na 12 [(AlO 2 ) 12 (SiO 2 ) 12 ] ⁇ 27H 2 O.
  • the zeolite used in the method of the present invention is preferably porous.
  • the zeolite used in the method of the present invention preferably has an average pore diameter of 3 to 5 mm (preferably 3 to 4 mm).
  • Such zeolites are commercially available. Specific examples thereof include molecular sieves 3A, 4A, and 5A (Union Showa), Zeorum 3A and 4A (Tosoh Corp.), and the like.
  • the zeolite used in the method of the present invention is preferably, for example, molecular sieve 3A or molecular sieve 4A, and more preferably, for example, molecular sieve 4A.
  • the form of the zeolite used in the method of the present invention can be, for example, a powder, a granule, or a pellet, and is preferably a powder or a granule.
  • the weight average particle size of the zeolite used in the method of the present invention is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the particle size means the major axis.
  • the term “weight average particle size” means the particle size of the secondary particles.
  • the zeolite may be used alone or in combination of two or more.
  • the zeolite used in the method of the present invention may be activated before use.
  • the conditions for the activation treatment include a drying treatment such as heating in a vacuum (10 ⁇ 1 to 10 ⁇ 3 mmHg) overnight at a temperature in the range of 300 to 350 ° C.
  • zeolite that has not been subjected to such activation treatment can also be suitably used.
  • the amount of zeolite used in the method of the present invention is, for example, preferably in the range of 0.1 to 50 parts by mass, more preferably 0.3 to 40 parts by mass, per 100 parts by mass of water contained in the composition A. More preferably, it can be in the range of 0.5 to 30 parts by mass.
  • the method of bringing the composition A into contact with the zeolite is not particularly limited as long as the composition A can be brought into contact with the zeolite.
  • the method may be a batch method or a continuous method.
  • the batch method include a method in which zeolite is charged into the composition A contained in a container, stirred as desired, and after a certain period of time, the zeolite is removed by filtration or the like.
  • the continuous method include a method of passing the composition A through a column packed with zeolite.
  • the temperature at which the composition A is brought into contact with the zeolite can be, for example, in the range of ⁇ 10 to 50 ° C., or in the range of 0 to 40 ° C. In the method of the present invention, the temperature at which the composition A is brought into contact with the zeolite can be room temperature.
  • the time during which the composition A is brought into contact with the zeolite may be appropriately set to a necessary and sufficient length so that the desired water can be removed.
  • the time can usually be 1 minute or more, and, for example, in the range of 0.1 to 5 hours, or 0.3 to 2.5 hours Can be within the range of
  • composition A subjected to the method of the present invention is, for example, (A) Formula (I): [Where: R 1 and R 2 are the same or different and each represents an alkyl group, a fluoroalkyl group, an aryl group optionally having one or more substituents, a halogen atom, or a hydrogen atom; R 3 represents an alkyl group, a fluoroalkyl group, an aryl group optionally having one or more substituents, or a hydrogen atom, and X represents an alkyl group, a fluoroalkyl group, a halogen atom, or a hydrogen atom Represents.
  • water-soluble impurities may be any substance having a solubility in water that can be removed by water washing under conditions that can be usually employed.
  • water-soluble impurities include alcohols such as methanol, ethanol, and propanol, and aldehydes such as formaldehyde.
  • the impurity may be one type or two or more types.
  • the total content of such water-soluble impurities in the composition A, which is an organic phase obtained by such water washing, is preferably 3% (w / w) or less, and more preferably 1% ( w / w) or less.
  • composition A ′ The upper limit of the water content of the composition A (which may be referred to as composition A ′) from which all or part of the water has been removed by the method of the present invention is, for example, 2000 ppm (w / w), 1800 ppm ( w / w), 1600 ppm (w / w), 1400 ppm (w / w), 1200 ppm (w / w), 1000 ppm (w / w), or 800 ppm (w / w).
  • the lower limit of the water content of the composition A ′ is, for example, 100 ppm (w / w), 200 ppm (w / w), 300 ppm, 400 ppm (w / w), 500 ppm (w / w), or 600 ppm (w / w). ).
  • the water content value may be a water / composition A ′ ratio.
  • the numerical value of the water content may be a water / acrylic acid derivative (A) quantitative ratio.
  • the water content was measured with a Karl Fischer moisture meter.
  • the amount of methanol was measured by gas chromatography.
  • the amount of methyl methacrylate and 2-fluoroacrylic acid methyl ester was measured by gas chromatography.
  • Example A A sample of methyl methacrylate containing 5100 ppm (w / w) water was prepared. 5 wt% of molecular sieve (MS4A (powder), Union Showa) was added to the sample and stirred for 0.5 h. The water content of the sample after the stirring was 1350 ppm (w / w) (that is, the water removal rate was 73.5%).
  • MS4A molecular sieve
  • Union Showa molecular sieve
  • Example B Washing with water (removing methanol from a sample containing methanol [preparing a sample containing water])
  • the sample (sample before washing with water) was washed with 2.0 times mass of water.
  • the methanol content in the sample after washing with water was 0.53% (w / w) as the amount ratio of methanol / 2-fluoroacrylic acid methyl ester.
  • the recovery rate of 2-fluoroacrylic acid methyl ester was 67.8%.
  • the water content in the sample after the water washing was 4900 ppm (w / w).
  • Comparative Example B1, Comparative Example B2, Example B1, and Example B2 (removal of water) Samples of 2-fluoroacrylic acid methyl ester each containing water having the contents shown in Table 1 were prepared by a method according to the water washing. Here, as shown in Table 1, there is a difference in water content among the samples, but this is within the range of the normal difference that can be caused by the difference in the preparation lot. In addition, the content of methanol in each sample was 0.53% (w / w) as a quantitative ratio of methanol / 2-fluoroacrylic acid methyl ester.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、アクリル酸誘導体、及び水を含有する組成物から水を高度に除去する方法の提供を目的とする。 前記課題は、 (A) 式(I): [式中、 R、及びRは、同一又は異なって、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、ハロゲン原子、又は水素原子を表し、 Rは、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、又は水素原子を表し、及び Xは、アルキル基、フルオロアルキル基、ハロゲン原子、又は水素原子を表す。] で表されるアクリル酸誘導体、及び (B)水 を含有する組成物Aから、水を除去する方法であって、 前記組成物Aをゼオライトと接触させる工程A を含む方法 によって解決される。

Description

水除去方法
 本発明は水除去方法、特にアクリル酸誘導体、及び水を含有する組成物から水を除去する方法に関する。
 アクリル酸誘導体は、吸水性ポリマーの原料、無機ガラスの代用品として建築や乗物の窓材、照明器具のカバー、提灯看板、道路標識、日用品、事務用品、工芸品、腕時計の風防などに利用されるアクリル樹脂の原料、アクリル樹脂塗料の原料としても広く使用されている。また、含フッ素アクリル誘導体は医薬(例えば、抗生物質)の合成中間体、光学繊維のさや材料用の合成中間体、塗料用材料の合成中間体、半導体レジスト材料の合成中間体、及び機能性高分子の単量体等として有用である。
 アクリル酸誘導体の製造方法としては、イソブチレンやプロピレンを酸化することでアクリル酸誘導体を製造する方法やエチレンやプロピン等を原料として遷移金属触媒を用いて製造する方法が知られている。
 また、フッ素を含有するアクリル酸誘導体は、例えば、特許文献1には、2-フルオロプロピオン酸エステルをラジカル開始剤の存在下に、窒素-臭素結合を有する臭素化剤と反応させる方法が開示され、及び特許文献2には、3-ハロ-2-フルオロプロピオン酸誘導体を、少なくとも一種の塩基の存在下、及び少なくとも一種の重合禁止剤の存在下で、置換された2-フルオロアクリル酸誘導体へ転化させる方法が開示されている。
特開2011-001340号公報 特表2012-530756号公報
 アクリル酸誘導体の製造において、目的物であるアクリル酸誘導体を含有する組成物中に、水が混在する場合がある。
 アクリル酸誘導体は、水によって加水分解されるので、当該水は、アクリル酸誘導体の安定性に悪影響を与える虞がある。
 従って、具体的には、当該水は、微量であっても、アクリル酸誘導体を、前述した、医薬(例えば、抗生物質)の合成中間体、光学繊維のさや材料用の合成中間体、塗料用材料の合成中間体、半導体レジスト材料の合成中間体、及び機能性高分子の単量体等の用途に用いる場合、所望する反応に悪影響を与える虞がある。
 また、当該水は、微量であっても、アクリル酸誘導体の保存性に悪影響を与える虞がある。
 従って、アクリル酸誘導体、及び水を含有する組成物から水を高度に除去する方法の開発が望まれている。
 本発明は、アクリル酸誘導体、及び水を含有する組成物から水を高度に除去する方法の提供を目的とする。
 本発明者らは、鋭意検討の結果、
(A)
式(I):
Figure JPOXMLDOC01-appb-C000003
[式中、
、及びRは、同一又は異なって、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、ハロゲン原子、又は水素原子を表し、
は、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、又は水素原子を表し、及び
Xは、アルキル基、フルオロアルキル基、ハロゲン原子、又は水素原子を表す。]
で表されるアクリル酸誘導体、及び
(B)水
を含有する組成物Aから、水を除去する方法であって、
前記組成物Aをゼオライトと接触させる工程A
を含む方法。
によって、前記課題が解決できることを見出し、本発明を完成するに至った。
 本発明は、次の態様を含む。
項1.
(A)
式(I):
Figure JPOXMLDOC01-appb-C000004
[式中、
、及びRは、同一又は異なって、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、ハロゲン原子、又は水素原子を表し、
は、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、又は水素原子を表し、及び
Xは、アルキル基、フルオロアルキル基、ハロゲン原子、又は水素原子を表す。]
で表されるアクリル酸誘導体、及び
(B)水
を含有する組成物Aから、水を除去する方法であって、
前記組成物Aをゼオライトと接触させる工程A
を含む方法。
項2.
が、水素原子、炭素数1~20のアルキル基、又は炭素数1~20のフルオロアルキル基である項1に記載の方法。
項3.
が、水素原子、炭素数1~20のアルキル基、又は炭素数1~20のフルオロアルキル基である項1又は2に記載の方法。
項4.
が、炭素数1~20の直鎖状アルキル基である項1~3のいずれか1項に記載の方法。
項5.
Xが、炭素数1~20のアルキル基、フッ素原子、塩素原子、又は水素原子である項1~4のいずれか1項に記載の方法。
項6.
前記ゼオライトが合成ゼオライトである項1~5のいずれか1項に記載の方法。
項7.
前記ゼオライトが3~5Åの平均細孔径を有する合成ゼオライトである項6に記載の方法。
項8.
組成物Aが、
(A)
前記式(I)で表されるアクリル酸誘導体、及び水溶性の不純物を含有する組成物Bを水で洗浄すること、及び
当該洗浄により生じた水相を除去すること
によって得られた有機相である
項1~7のいずれか1項に記載の方法。
項9.
前記水溶性の不純物が、アルコール、及びアルデヒドからなる群より選択される1種以上である項8に記載の方法。
項10.
(A)
式(I):
Figure JPOXMLDOC01-appb-C000005
[式中、
、及びRは、同一又は異なって、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、ハロゲン原子、又は水素原子を表し、
は、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、又は水素原子を表し、及び
Xは、アルキル基、フルオロアルキル基、ハロゲン原子、又は水素原子を表す。]
で表されるアクリル酸誘導体、及び
(B)水
含有し、水の含有量が1000~20000ppm(w/w)の範囲内である組成物。
項11.
式(I):
Figure JPOXMLDOC01-appb-C000006
[式中、
、及びRは、同一又は異なって、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、ハロゲン原子、又は水素原子を表し、
は、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、又は水素原子を表し、及び
Xは、アルキル基、フルオロアルキル基、ハロゲン原子、又は水素原子を表す。]
で表されるアクリル酸誘導体を含有する組成物を製造する方法であって、
項1~9のいずれか1項に記載の方法を含む方法。
項12.
式(I):
Figure JPOXMLDOC01-appb-C000007
[式中、
、及びRは、同一又は異なって、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、ハロゲン原子、又は水素原子を表し、
は、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、又は水素原子を表し、及び
Xは、アルキル基、フルオロアルキル基、ハロゲン原子、又は水素原子を表す。]
で表されるアクリル酸誘導体を製造する方法であって、
項1~9のいずれか1項に記載の方法を含む方法。
 本発明によれば、アクリル酸誘導体、及び水を含有する組成物から水を高度に除去する方法が提供される。
 用語
 本明細書中、室温は、10~40℃の範囲内の温度であることができる。
 本明細書中の記号及び略号は、特に限定のない限り、本明細書の文脈に沿い、本発明が属する技術分野において通常用いられる意味に解される。
 本明細書中、語句「含有する」は、語句「から本質的になる」、及び語句「からなる」を包含することを意図して用いられる。
 本明細書中、「アルキル基」は、環状、直鎖状、又は分枝鎖状のアルキル基であることができる。
 本明細書中、「アルキル基」は、例えば、炭素数1~20、炭素数1~12、炭素数1~6、炭素数1~4、又は炭素数1~3のアルキル基であることができる。
 本明細書中、「アルキル基」として、具体的には、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、及びヘキシル基等の直鎖状、又は分枝鎖状のアルキル基が挙げられる。
 本明細書中、「アルキル基」として、具体的には、また、例えば、シクロプロピル、シクロブチル、シクロペンチル、及びシクロヘキシル等の炭素数3~6の環状のアルキル基(シクロアルキル基)が挙げられる。
 本明細書中、「フルオロアルキル基」は、少なくとも1個の水素原子がフッ素原子で置換されたアルキル基である。
 本明細書中、「フルオロアルキル基」が有するフッ素原子の数は、1個以上(例、1~3個、1~6個、1~12個、1個から置換可能な最大数)であることができる。
 本明細書中、「フルオロアルキル基」は、例えば、炭素数1~20、炭素数1~12、炭素数1~6、炭素数1~4、又は炭素数1~3のフルオロアルキル基であることができる。
 本明細書中、「フルオロアルキル基」は、直鎖状、又は分枝鎖状のフルオロアルキル基であることができる。
 本明細書中、「フルオロアルキル基」として、具体的には、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、テトラフルオロプロピル基(例、HCFCFCH-)、ヘキサフルオロプロピル基(例、(CFCH-)、ノナフルオロブチル基、オクタフルオロペンチル基(例、HCFCFCFCFCH-)、及びトリデカフルオロヘキシル基等が挙げられる。
 本明細書中、「アリール基」としては、例えば、フェニル基、及びナフチル基等が挙げられる。
 本明細書中、「ハロゲン原子」としては、例えば、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられる。
 水分除去方法
 本発明の水分除去方法は、
(A)
式(I):
Figure JPOXMLDOC01-appb-C000008
[式中、
、及びRは、同一又は異なって、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、ハロゲン原子、又は水素原子を表し、
は、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、又は水素原子を表し、及び
Xは、アルキル基、フルオロアルキル基、ハロゲン原子、又は水素原子を表す。]
で表されるアクリル酸誘導体(以下、アクリル酸誘導体(A)と称する場合がある。)、及び
(B)水
を含有する組成物Aから、水を除去する方法であって、
前記組成物Aをゼオライトと接触させる工程A
を含む。
 本発明の水分除去方法に供される組成物Aは、不純物として水を含有するアクリル酸誘導体(A)であることができる。
 すなわち、本発明の一態様は、不純物として水を含有するアクリル酸誘導体(A)の粗精製物をゼオライトと接触させて当該水を除去することを含むアクリル酸誘導体(A)の精製方法である。ここで、アクリル酸誘導体(A)の粗精製物は、組成物Aである。
 当該アクリル酸誘導体(A)は、本発明の方法を含む精製方法によって精製される化合物であることができる。
 前記式(I)において、Rは、好ましくは、水素原子、炭素数1~20(好ましくは、炭素数1~12、より好ましくは、炭素数1~6、更に好ましくは、炭素数1~4、より更に好ましくは、炭素数1~3、特に好ましくは、炭素数1、又は2)のアルキル基、又は炭素数1~20のフルオロアルキル基(好ましくは、炭素数1~12、より好ましくは、炭素数1~6、更に好ましくは、炭素数1~4、より更に好ましくは、炭素数1~3、特に好ましくは、炭素数1、又は2)であり、更に好ましくは水素原子である。
 前記式(I)において、Rは、好ましくは、水素原子、炭素数1~20(好ましくは、炭素数1~12、より好ましくは、炭素数1~6、更に好ましくは、炭素数1~4、より更に好ましくは、炭素数1~3、特に好ましくは、炭素数1、又は2)のアルキル基、又は炭素数1~20のフルオロアルキル基(好ましくは、炭素数1~12、より好ましくは、炭素数1~6、更に好ましくは、炭素数1~4、より更に好ましくは、炭素数1~3、特に好ましくは、炭素数1、又は2)であり、及び更に好ましくは水素原子である。
 前記式(I)において、Rは、好ましくは、炭素数1~20(好ましくは、炭素数1~12、より好ましくは、炭素数1~6、更に好ましくは、炭素数1~4、より更に好ましくは、炭素数1~3、特に好ましくは、炭素数1、又は2)の直鎖状アルキル基であ、より好ましくはメチル基、又はエチル基であり、及び更に好ましくはメチル基である。
 前記式(I)において、好ましくは、Xが、炭素数1~20(好ましくは、炭素数1~12、より好ましくは、炭素数1~6、更に好ましくは、炭素数1~4、より更に好ましくは、炭素数1~3、特に好ましくは、炭素数1、又は2)のアルキル基、フッ素原子、塩素原子、又は水素原子であり、及びより好ましくはメチル基、フッ素原子、又は水素原子であり、及び更にり好ましくはフッ素原子である。
 前記式(I)において、
好ましくは、Rが炭素数1~20(好ましくは、炭素数1~12、より好ましくは、炭素数1~6、更に好ましくは、炭素数1~4、より更に好ましくは、炭素数1~3、特に好ましくは、炭素数1、又は2)の直鎖状アルキル基であり、且つXは、好ましくはメチル基、又はフッ素原子であり;
より好ましくはRがメチル基、又はエチル基(更に好ましくはメチル基)であり、且つXは、メチル基、又はフッ素原子である。
 前記式(I)において、
好ましくは、
は、水素原子であり、
は、水素原子であり、
は、メチル基、又はエチル基(より好ましくはメチル基)であり、且つ
Xは、メチル基、フッ素原子、又は水素原子(より好ましくはフッ素原子)
である。
 アクリル酸誘導体(A)は、公知の製造方法又はこれに準じる方法により製造することができ、或いは商業的に入手可能である。
 アクリル酸誘導体(A)は、例えば、国際公開第2014/034906号に記載の製造方法、又はこれに準じる方法により製造することができる。
 本発明の方法に供される組成物Aは、液体であることが好ましい。
 本発明の方法に供される組成物Aにおいては、アクリル酸誘導体(A)と水とが混和していることが好ましい。すなわち、本発明の方法に供される組成物Aは、アクリル酸誘導体(A)を含有する層と、水を含有する層とが分離していない、単一層であることが好ましい。
 本発明の方法に供される組成物Aにおける水の含有量の下限は、好ましくは1000ppm(w/w)、より好ましくは2000ppm(w/w)、及び更に好ましくは3000ppm(w/w)である。
 本発明の方法に供される組成物Aにおける水の含有量の上限は、好ましくは20000ppm(w/w)、より好ましくは15000ppm(w/w)、更に好ましくは10000ppm(w/w)、である。
 本発明の方法に供される組成物Aにおける水の含有量は、好ましくは1000~20000ppm(w/w)の範囲内、より好ましくは2000~15000ppm(w/w)の範囲内、更に好ましくは3000~10000ppm(w/w)の範囲内、の範囲内である。
 本発明の方法に供される組成物Aにおけるアクリル酸誘導体(A)の含有率の下限は、特に限定されないが、例えば、85%(w/w)、90%(w/w)、95%(w/w)、が例示される。
 本発明の方法に供される組成物Aにおけるアクリル酸誘導体(A)の含有率の上限は、特に限定されないが、例えば、90%(w/w)、95%(w/w)、99%(w/w)が例示される。
 本発明の方法に供される組成物Aにおける水/アクリル酸誘導体(A)の量比の下限は、好ましくは1000ppm(w/w)、より好ましくは1050ppm(w/w)、及び更に好ましくは1100ppm(w/w)、である。
 本発明の方法に供される組成物Aにおける水/アクリル酸誘導体(A)の量比の上限は、好ましくは25000ppm(w/w)、より好ましくは18000ppm(w/w)、及び更に好ましくは11000ppm(w/w)、である。
 本発明の方法に供される組成物Aにおける水/アクリル酸誘導体(A)量比は、好ましくは1000~25000ppm(w/w)の範囲内、より好ましくは1050~18000ppm(w/w)の範囲内、及び更に好ましくは1100~11000ppm(w/w)の範囲内である。
 本発明の方法に供される組成物Aは、アクリル酸誘導体(A)、及び水以外に、1種以上のその他の物質を含有していてもよい。
 本発明の方法で用いられるゼオライトは、天然ゼオライト、又は合成ゼオライトあることができる。
 本発明の方法で用いられるゼオライトは、好ましくは、例えば、合成ゼオライトである。
 本発明の方法で用いられるゼオライトは、好ましくは、一般式:M2/nO・Al・xSiO・yHO(Mは金属カチオンを表し、nはその原子価を表し、xは係数を表し、及びyは係数を表す。)で示されるゼオライトである。Mは、好ましくは、ナトリウムカチオン、及びカリウムカチオンからなる群より選択される1種以上の金属カチオンである。
 本発明の方法で用いられるゼオライトは、好ましくは、化学式:Na12[(AlO12(SiO12]・27HOで表されるゼオライトである。
 本発明の方法で用いられるゼオライトは、好ましくは多孔質である。
 本発明の方法で用いられるゼオライトは、好ましくは3~5Å(好ましくは3~4Å)の平均細孔径を有する。
 このようなゼオライトは、商業的に入手可能である。その具体例としては、モレキュラーシーブ3A、4A、及び5A(ユニオン昭和社)、並びにゼオラム3Aおよび4A(東ソー社)等が挙げられる。
 本発明の方法で用いられるゼオライトは、好ましくは、例えば、モレキュラーシーブ3A、又はモレキュラーシーブ4Aであり、及びより好ましくは、例えば、モレキュラーシーブ4Aである。
 本発明の方法で用いられるゼオライトの形態は、例えば、粉末、顆粒、又はペレットであることができ、好ましくは粉末、又は顆粒である。
 本発明の方法で用いられるゼオライトの重量平均粒径は、好ましくは10μm以下、及びより好ましくは5μm以下である。ここで、粒径は、長径を意味する。本明細書中、ゼオライトの一次粒子が二次粒子を構成している場合、用語「重量平均粒径」は二次粒子の粒径を意味する。
 本発明の方法においては、ゼオライトは、1種単独で、又は2種以上を組み合わせて用いられ得る。
 本発明の方法において用いられるゼオライトを、その使用前に、活性化処理してもよい。
 当該活性化処理の条件としては、例えば、真空中(10-1~10-3mmHg)、300~350℃の範囲内の温度で一晩加熱する等の乾燥処理が挙げられる。
 本発明の方法においては、このような活性化処理を施していないゼオライトも、好適に使用できる。
 本発明の方法におけるゼオライトの使用量は、例えば、組成物Aが含有する水の100質量部当たり、好ましくは0.1~50質量部の範囲内、より好ましくは0.3~40質量部、更に好ましくは0.5~30質量部の範囲内であることができる。
 本発明の方法において、組成物Aをゼオライトと接触させる方法は、組成物Aをゼオライトと接触させることができる限り、特に制限されない。当該方法は、バッチ式の方法であってもよく、又は連続式の方法であってもよい。バッチ式の方法としては、例えば、容器内に収容した組成物A内へゼオライトを投入し、所望により撹拌し、一定時間経過後、濾過等によりゼオライトを除去する方法が例示される。連続式の方法のとしては、例えば、ゼオライトを充填したカラムに組成物Aを通液する方法が例示される。
 本発明の方法において、組成物Aをゼオライトと接触させるときの温度は、例えば、-10~50℃の範囲内、又は0~40℃の範囲内であることができる。
 本発明の方法において、組成物Aをゼオライトと接触させるときの温度は、室温であることができる。
 本発明の方法において、組成物Aをゼオライトと接触させる時間は、所望する水の除去が可能である必要十分な長さに適宜設定すればよい。具体的には、当該時間は、例えば、バッチ式の場合、通常、1分間以上であることができ、及び、例えば、0.1~5時間の範囲内、又は0.3~2.5時間の範囲内であることができる。
 本発明の方法に供される組成物Aは、例えば、
(A)
式(I):
Figure JPOXMLDOC01-appb-C000009
[式中、
、及びRは、同一又は異なって、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、ハロゲン原子、又は水素原子を表し、
は、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、又は水素原子を表し、及び
Xは、アルキル基、フルオロアルキル基、ハロゲン原子、又は水素原子を表す。]
で表されるアクリル酸誘導体、及び水溶性の不純物を含有する組成物Bを水で洗浄すること、及び当該洗浄により生じた水相を除去することにより得られた有機相であることができる。
 ここで、「水溶性の不純物」は、通常採用し得る条件の水洗浄における除去が可能な程度の水への溶解度を有する物質であればよい。
 このような水溶性の不純物としては、例えば、メタノール、エタノール、及びプロパノール等のアルコール、並びにホルムアルデヒド等のアルデヒド等が挙げられる。当該不純物は、1種、又は2種以上であることができる。
 このような水洗浄により得られた有機相である組成物Aにおける、このような水溶性の不純物の含有量の合計は、好ましくは3%(w/w)以下、及びより好ましくは1%(w/w)以下であることができる。
 本発明の方法で水の全部又は一部を除去された組成物A(これを組成物A’を称する場合がある。)の水含量の上限は、例えば、2000ppm(w/w)、1800ppm(w/w)、1600ppm(w/w)、1400ppm(w/w)、1200ppm(w/w)、1000ppm(w/w)、又は800ppm(w/w)であることができる。
 当該組成物A’の水含量の下限は、例えば、100ppm(w/w)、200ppm(w/w)、300ppm、400ppm(w/w)、500ppm(w/w)、又は600ppm(w/w)であることができる。
 本発明の一態様においては、当該水含量の数値は、水/組成物A’の量比であることができる。
 本発明の一態様においては、当該水含量の数値は、水/アクリル酸誘導体(A)の量比であることができる。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。
 実施例中の記号及び略号の意味を以下に示す。この他にも、本明細書中、本発明が属する技術分野において、通常用いられる記号及び略号が用いられ得る。
 以下の実施例において、水含有量の測定はカールフィッシャー水分計により行った。
 以下の実施例において、メタノール量の測定は、ガスクロマトグラフィーにより行った。
 以下の実施例において、メタクリル酸メチル、及び2-フルオロアクリル酸メチルエステルの量の測定は、ガスクロマトグラフィーにより行った。
 例A
 実施例A1
 5100ppm(w/w)の水を含有するメタクリル酸メチルの試料を用意した。当該試料にモレキュラーシーブ(MS4A(粉末)、ユニオン昭和社)を5wt%添加し、0.5h撹拌した。当該撹拌後の試料の水含有量は、1350ppm(w/w)(すなわち、水除去率73.5%)であった。
 例B
 水洗(メタノールを含有する試料からのメタノールの除去[水を含有する試料の用意])
 メタノール/2-フルオロアクリル酸メチルエステルの量比が41.5%(w/w)である試料(水洗前の試料)を用意した。
 当該試料(水洗前の試料)を、2.0倍質量の水で洗浄した。
 当該水洗後の試料におけるメタノールの含有量は、メタノール/2-フルオロアクリル酸メチルエステルの量比として、0.53%(w/w)であった。
 2-フルオロアクリル酸メチルエステルの回収率は、67.8%であった。
 当該水洗後の試料における水含有量は、4900ppm(w/w)であった。
 比較例B1、比較例B2、実施例B1、及び実施例B2(水の除去)
 前記水洗に準じた方法により、それぞれ表1に示す含有量の水を含有する2-フルオロアクリル酸メチルエステルの試料を用意した。ここで、表1に示すように、各試料間で水含有量に差があるが、これは、調製ロットの違いによって生じ得る通常の差の範囲内である。なお、各試料のメタノールの含有量は、メタノール/2-フルオロアクリル酸メチルエステルの量比として、0.53%(w/w)であった。
 当該試料のそれぞれへ、5%(w/w)の量比で、乾燥剤としてMgSO4、モレキュラーシーブ4A(MS-4A(粉末)、ユニオン昭和社)、又はモレキュラーシーブ3A(MS-3A(粉末)、ユニオン昭和社)に添加し、5時間、又は2時間の間、緩やかに撹拌した。その後、濾過により乾燥剤を除去した試料を採取し、その水含有量を測定し、及び水減少率を算出した。表1に結果を示した。
Figure JPOXMLDOC01-appb-T000010
 表1に示した結果から明らかなように、モレキュラーシーブスを使用した場合、水を含有する2-フルオロアクリル酸メチルエステルの粗精製物から、高度に水を除去できた。一方、MgSO4は優れた脱水剤として汎用されているが、これを使用した場合、ある程度の効果はあったが、高度に水を除去することはできなかった。

Claims (10)

  1. (A)
    式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式中、
    、及びRは、同一又は異なって、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、ハロゲン原子、又は水素原子を表し、
    は、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、又は水素原子を表し、及び
    Xは、アルキル基、フルオロアルキル基、ハロゲン原子、又は水素原子を表す。]
    で表されるアクリル酸誘導体、及び
    (B)水
    を含有する組成物Aから、水を除去する方法であって、
    前記組成物Aをゼオライトと接触させる工程A
    を含む方法。
  2. が、水素原子、炭素数1~20のアルキル基、又は炭素数1~20のフルオロアルキル基である請求項1に記載の方法。
  3. が、水素原子、炭素数1~20のアルキル基、又は炭素数1~20のフルオロアルキル基である請求項1又は2に記載の方法。
  4. が、炭素数1~20の直鎖状アルキル基である請求項1~3のいずれか1項に記載の方法。
  5. Xが、炭素数1~20のアルキル基、フッ素原子、塩素原子、又は水素原子である請求項1~4のいずれか1項に記載の方法。
  6. 前記ゼオライトが合成ゼオライトである請求項1~5のいずれか1項に記載の方法。
  7. 前記ゼオライトが3~5Åの平均細孔径を有する合成ゼオライトである請求項6に記載の方法。
  8. 組成物Aが、
    (A)
    前記式(I)で表されるアクリル酸誘導体、及び水溶性の不純物を含有する組成物Bを水で洗浄すること、及び
    当該洗浄により生じた水相を除去すること
    によって得られた有機相である
    請求項1~7のいずれか1項に記載の方法。
  9. 前記水溶性の不純物が、アルコール、及びアルデヒドからなる群より選択される1種以上である請求項8に記載の方法。
  10. (A)
    式(I):
    Figure JPOXMLDOC01-appb-C000002
    [式中、
    、及びRは、同一又は異なって、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、ハロゲン原子、又は水素原子を表し、
    は、アルキル基、フルオロアルキル基、1個以上の置換基を有していてもよいアリール基、又は水素原子を表し、及び
    Xは、アルキル基、フルオロアルキル基、ハロゲン原子、又は水素原子を表す。]
    で表されるアクリル酸誘導体、及び
    (B)水
    含有し、水の含有量が1000~20000ppm(w/w)の範囲内である組成物。
PCT/JP2016/073207 2015-08-07 2016-08-05 水除去方法 WO2017026422A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/750,291 US10526272B2 (en) 2015-08-07 2016-08-05 Water elimination method
EP16835119.5A EP3333151B1 (en) 2015-08-07 2016-08-05 Water elimination method
CN201680045791.7A CN107848944B (zh) 2015-08-07 2016-08-05 水除去方法
RU2018108104A RU2723560C2 (ru) 2015-08-07 2016-08-05 Способ удаления воды

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-157786 2015-08-07
JP2015157786 2015-08-07

Publications (1)

Publication Number Publication Date
WO2017026422A1 true WO2017026422A1 (ja) 2017-02-16

Family

ID=57984313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073207 WO2017026422A1 (ja) 2015-08-07 2016-08-05 水除去方法

Country Status (7)

Country Link
US (1) US10526272B2 (ja)
EP (1) EP3333151B1 (ja)
JP (1) JP6168214B2 (ja)
CN (2) CN107848944B (ja)
HU (1) HUE054524T2 (ja)
RU (1) RU2723560C2 (ja)
WO (1) WO2017026422A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111892502A (zh) * 2020-09-11 2020-11-06 安徽灵达高新材料有限公司 一种丙烯酸酯与甲醇混合物的高效分离方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133252A (ja) * 1993-10-21 1995-05-23 Nippon Oil & Fats Co Ltd 第三級アルコールのメタクリル酸エステルの製造法
JP2002251009A (ja) * 2001-02-23 2002-09-06 Daicel Chem Ind Ltd フォトレジスト用重合性不飽和化合物
JP2004307586A (ja) * 2003-04-03 2004-11-04 Kuraray Co Ltd (メタ)アクリレート、硬化性組成物および硬化物
JP2006151923A (ja) * 2004-12-01 2006-06-15 Kyoeisha Chem Co Ltd (メタ)アクリル酸エステルの製造方法
JP2011001340A (ja) * 2009-05-19 2011-01-06 Central Glass Co Ltd 2−フルオロアクリル酸エステルの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2882243A (en) * 1953-12-24 1959-04-14 Union Carbide Corp Molecular sieve adsorbents
US5364553A (en) * 1990-04-13 1994-11-15 Colgate-Palmolive Company Stabilized built aqueous liquid softergent compositions
TW524796B (en) * 1997-11-17 2003-03-21 Sumitomo Chemical Co Method for producing acrylic acid
WO2005102984A1 (ja) * 2004-04-26 2005-11-03 Daikin Industries, Ltd. 含フッ素アクリル酸エステルの製造方法
JP4239009B2 (ja) * 2004-07-09 2009-03-18 信越化学工業株式会社 含フッ素重合性エステル化合物、その製造方法、重合体、フォトレジスト組成物、及びパターン形成方法
MX2009002810A (es) * 2006-09-15 2009-03-31 Dow Global Technologies Inc Proceso para producir acido acrilico.
WO2009104728A1 (ja) * 2008-02-22 2009-08-27 ダイキン工業株式会社 水性重合体分散組成物および撥水撥油剤
DE102008043609A1 (de) * 2008-11-10 2010-05-12 Evonik Röhm Gmbh Verfahren zur Reduzierung des Wassergehalts in (Meth)acrylsäure
DE102009030681A1 (de) 2009-06-26 2010-12-30 Saltigo Gmbh Herstellung von substituierten 2-Fluoracrylsäurederivaten
DE102010040923A1 (de) * 2010-09-16 2012-03-22 Basf Se Verfahren zur Herstellung von Acrylsäure aus Ethanol und Formaldehyd
US9388117B2 (en) * 2012-08-30 2016-07-12 Daikin Industries, Ltd. Method for producing α-fluoroacrylic acid ester
JP6237223B2 (ja) * 2012-12-28 2017-11-29 ダイキン工業株式会社 α−フルオロアクリル酸エステルの製造方法
US9487469B2 (en) * 2013-08-09 2016-11-08 Gas Technology Institute Process for purification of methyl methacrylate using molecular sieve membranes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133252A (ja) * 1993-10-21 1995-05-23 Nippon Oil & Fats Co Ltd 第三級アルコールのメタクリル酸エステルの製造法
JP2002251009A (ja) * 2001-02-23 2002-09-06 Daicel Chem Ind Ltd フォトレジスト用重合性不飽和化合物
JP2004307586A (ja) * 2003-04-03 2004-11-04 Kuraray Co Ltd (メタ)アクリレート、硬化性組成物および硬化物
JP2006151923A (ja) * 2004-12-01 2006-06-15 Kyoeisha Chem Co Ltd (メタ)アクリル酸エステルの製造方法
JP2011001340A (ja) * 2009-05-19 2011-01-06 Central Glass Co Ltd 2−フルオロアクリル酸エステルの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Acrylic acid(EHC 191", IPCS INCHEM, IPCS, 1997, XP009508718, ISSN: 0250-863X, Retrieved from the Internet <URL:http://www.inchem.org/documents/ ehc/ehc191.htm> *
KOBUNSHI KAGAKU: "CSJ: The Chemical Society of Japan", FIFTH EDITION JIKKEN KAGAKU KOZA 26, 2005, pages 67 - 68, XP009508717 *

Also Published As

Publication number Publication date
CN112645818A (zh) 2021-04-13
JP2017036272A (ja) 2017-02-16
EP3333151B1 (en) 2021-03-17
RU2723560C2 (ru) 2020-06-16
US20180222842A1 (en) 2018-08-09
RU2018108104A (ru) 2019-09-09
EP3333151A1 (en) 2018-06-13
JP6168214B2 (ja) 2017-07-26
EP3333151A4 (en) 2019-03-13
CN107848944A (zh) 2018-03-27
RU2018108104A3 (ja) 2019-09-09
US10526272B2 (en) 2020-01-07
HUE054524T2 (hu) 2021-09-28
CN107848944B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
JP3363968B2 (ja) 硫黄含有のポリ(メタ)アクリレート、およびその製造方法
JP5666467B2 (ja) メチルメタクリレート精製方法
JP5845196B2 (ja) 2,2−ジメトキシ−1,2−ジ−[4−(メタ)アクリロイルオキシ]フェニルエタン−1−オン、その製造方法及びラジカル重合開始剤並びに光硬化性組成物
JP5356243B2 (ja) シロキサニルモノマーの精製方法
JP5666429B2 (ja) エチレン性不飽和酸またはそのエステルの製造
JP6168214B2 (ja) 水除去方法
JP2023036679A (ja) シラノール組成物、硬化物、及び接着剤
EP3107889A1 (de) Verfahren zur herstellung von hochreinem glycerindimethacrylat
JP2000309558A (ja) 2−アダマンチル(メタ)アクリレート類の製造方法
JP6168227B2 (ja) アクリル酸誘導体の精製方法
JP2017078038A (ja) アクリル酸誘導体の精製方法
JP7025674B2 (ja) アクリル酸誘導体含有組成物、及びアクリル酸誘導体の安定化方法
TWI511948B (zh) 用於製備α-甲基苯乙烯二聚物之α-羥羰基衍生物的結晶混合物之製程
JP4507580B2 (ja) シリコーン化合物の製造方法およびシリコーン剤
JP5739600B2 (ja) ヒドロキシエチルメタクリレートの製造方法
JP2006169140A (ja) シリコーン化合物の製造方法およびシリコーン剤
JP6160651B2 (ja) アクリル酸誘導体含有組成物、及びアクリル酸誘導体の安定化方法
JP2007131582A (ja) アダマンチルエステル化合物
JP2007230874A (ja) グリセロールモノ(メタ)アクリレートの製造方法
WO2016163551A1 (ja) アクリル酸誘導体含有組成物、及びアクリル酸誘導体の安定化方法
WO2016163552A1 (ja) 組成物
JP2005220114A (ja) 多環芳香族ビニル化合物の製造方法
JP2005325059A (ja) 2,3−ジヒドロキシプロピル−(メタ)アクリルアミドの製造方法
JP2003064024A (ja) 2−フェニルエチル(メタ)アクリレートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835119

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15750291

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018108104

Country of ref document: RU

Ref document number: 2016835119

Country of ref document: EP