WO2017026388A1 - 透明多孔質徐放体とその製造方法、徐放体キット、徐放装置、及び、徐放方法 - Google Patents

透明多孔質徐放体とその製造方法、徐放体キット、徐放装置、及び、徐放方法 Download PDF

Info

Publication number
WO2017026388A1
WO2017026388A1 PCT/JP2016/073076 JP2016073076W WO2017026388A1 WO 2017026388 A1 WO2017026388 A1 WO 2017026388A1 JP 2016073076 W JP2016073076 W JP 2016073076W WO 2017026388 A1 WO2017026388 A1 WO 2017026388A1
Authority
WO
WIPO (PCT)
Prior art keywords
sustained
release
porous
transparent
skeleton
Prior art date
Application number
PCT/JP2016/073076
Other languages
English (en)
French (fr)
Inventor
利一 宮本
鴻志 白
Original Assignee
株式会社エスエヌジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エスエヌジー filed Critical 株式会社エスエヌジー
Priority to US15/748,983 priority Critical patent/US10499629B2/en
Priority to SG11201800677UA priority patent/SG11201800677UA/en
Priority to EP16835085.8A priority patent/EP3336156A4/en
Priority to CN201680045144.6A priority patent/CN107922818B/zh
Priority to JP2017534407A priority patent/JP6323928B2/ja
Priority to KR1020187006888A priority patent/KR20180039689A/ko
Publication of WO2017026388A1 publication Critical patent/WO2017026388A1/ja
Priority to HK18107347.5A priority patent/HK1247950B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/20Poisoning, narcotising, or burning insects
    • A01M1/2022Poisoning or narcotising insects by vaporising an insecticide
    • A01M1/2027Poisoning or narcotising insects by vaporising an insecticide without heating
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/20Poisoning, narcotising, or burning insects
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/20Poisoning, narcotising, or burning insects
    • A01M1/2022Poisoning or narcotising insects by vaporising an insecticide
    • A01M1/2027Poisoning or narcotising insects by vaporising an insecticide without heating
    • A01M1/2055Holders or dispensers for solid, gelified or impregnated insecticide, e.g. volatile blocks or impregnated pads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • A61L9/013Deodorant compositions containing animal or plant extracts, or vegetable material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • A61L9/046Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating with the help of a non-organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • A61L9/12Apparatus, e.g. holders, therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/152Preparation of hydrogels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/12Lighting means

Definitions

  • the present invention relates to a porous sustained-release body in which a sustained-release solution containing a sustained-release component is absorbed by a porous carrier, and the sustained-release solution is evaporated or volatilized to be gradually released from the porous carrier.
  • the present invention relates to a transparent porous sustained-release body in which a porous carrier is an inorganic monolithic porous body and the carrier becomes transparent or translucent in a state where the sustained-release liquid is absorbed.
  • porous sustained-release bodies have been developed and put into practical use in the past (for example, the following patents) as the sustained-release liquid containing the sustained-release component is absorbed into the porous carrier and then gradually released.
  • Literature 1, 2 etc. a sustained-release body in which the sustained-release solution is absorbed by a fibrous carrier (for example, Patent Document 1 below), a sustained-release body formed by gelling the sustained-release solution without being absorbed by the porous carrier (for example, The following patent documents 1, 3 etc.), or a sustained-release body gelled in the voids of the porous carrier (for example, the following patent documents 4 etc.).
  • examples of sustained release components for general consumers include fragrance components, deodorant components, insecticide components, and the like.
  • examples of the porous carrier include dried plant materials such as wood chips and potpourri, inorganic porous materials such as silica gel, zeolite or unglazed ceramics, and organic porous materials such as cellulose beads.
  • the shape of an inorganic porous body and an organic porous body uses the granular thing except for unglazed earthenware.
  • JP 2000-254217 A Japanese Patent Laid-Open No. 2015-116334 JP 2000-70352 A JP 2007-111121 A
  • the porous carrier can be easily reused as a sustained-release body, the initial shape is maintained unchanged before and after use, is opaque in the initial state before absorbing the sustained-release solution, and the portion that has absorbed the sustained-release solution is As far as the inventors of the present application know, no porous sustained-release body that is transparent or translucent and whose transparency of the porous carrier changes is not present in the past.
  • sustained-release bodies in which the sustained-release liquid is gelled and molded or filled into a container, but the sustained-release components are volatilized because they are not supported on a porous carrier. Then the volume becomes smaller.
  • transparent or translucent sustained-release bodies in which the sustained-release liquid is absorbed by a porous carrier called soft gel, but when the sustained-release liquid is absorbed, it swells and the sustained-release liquid volatilizes. Then, it contracts and the volume and shape change. Any of the transparent or translucent sustained-release bodies can be used only once.
  • porous sustained-release bodies are opaque. This is because the porous carrier itself is made of an opaque material, and even when the porous carrier is a transparent material, the sustained-release liquid absorbed in the pores irregularly present in the porous carrier. When the porous carrier is viewed from the outside because the refractive index difference between them is so large that light is irregularly reflected and transmitted at the interface between the sustained-release liquid in the pores and the porous carrier. Because there is.
  • the granular silica gel is transparent with a refractive index of the porous carrier of about 1.5, some oils containing aroma components such as essential oils have a refractive index of around 1.5. When combined with the like, it can be transparent or translucent.
  • silica gels having a particle size of several ⁇ m to several mm. When the particle size is large, the porosity is as low as 10 to 20%, the surface area as particles is large, and volatilization of sustained-release liquids such as essential oils or the like. Evaporation is accelerated, and sustained release performance is poor. On the other hand, when the particle size is small, the porosity can be improved to about 40 to 50%.
  • the particle size is as small as 200 ⁇ m or less, it is easy to be scattered in the air, and handling is extremely difficult, and reusability. There is a problem. Moreover, since it is granular, a separate container is required. In addition, granulated and compression-molded silica gel has a low porosity and has a poor absorption amount and absorption rate of sustained-release liquids such as essential oils, which causes a problem when reused.
  • sustained-release solution may volatilize or evaporate faster than the sustained-release solution absorbed in the particles.
  • porous carriers with a high porosity exist in addition to silica gel with a small particle size, but have low affinity with, for example, essential oils, and the rate of absorption of the sustained-release liquid into the porous carrier is slow, especially for reuse. Sometimes it is hard to use.
  • the present invention is difficult to realize with the above-described conventional sustained-release body, and the porous carrier can be easily reused as a sustained-release body, and the initial shape is maintained unchanged before and after use, and before the sustained-release liquid is absorbed.
  • the initial state it is opaque, the portion where the sustained-release solution is absorbed becomes transparent or translucent, and the porous carrier is a porous sustained-release body in which the transparency of the porous carrier changes. It aims at providing the porous sustained release body which can pursue functionality and design other than.
  • the present invention comprises an inorganic monolith porous body having a skeleton of an inorganic compound and voids having a three-dimensional continuous network structure, and a sustained-release solution absorbed in the voids.
  • the porous body is opaque in an initial state where air exists in the gap before absorbing the sustained-release liquid, and the refractive index of the sustained-release liquid and the refractive index of the skeleton are in the gap.
  • a transparent porous sustained-release body having a first feature that a portion in which the liquid discharge is absorbed is equal within an error range that is transparent or translucent.
  • “transparent” means a state in which letters and figures on the background of the inorganic monolith porous body can be seen through the inorganic monolith porous body.
  • “translucent” means that the transparency of the monolithic porous material is lower than that of “transparent” due to white turbidity, etc., but the state in which characters and figures on the background of the inorganic monolithic porous material can be recognized. means.
  • “Opaque” means a state in which characters, graphics, and the like behind the porous inorganic monolith cannot be recognized through the porous porous monolith.
  • the monolithic porous body is not in a form in which a large number is accommodated in a container and used like a granular or powdery porous body, but has a single arbitrary shape and is a single body. It is a usable porous body.
  • an inorganic monolith porous body having an inorganic compound skeleton and voids having a three-dimensional continuous network structure, which is opaque in an initial state where air exists in the voids is provided.
  • the inorganic monolith porous body is changed from the opaque state in the initial state to a state in which the portion in which the sustained-release solution is absorbed is transparent or translucent in the voids, and then the sustained-release solution is used.
  • a sustained release method characterized in that a part of the inorganic monolith is gradually diffused to return the portion where the sustained release liquid is diffused from the void to an opaque state.
  • the three-dimensional continuous network in which the skeleton has a three-dimensional continuous network structure and the voids are formed in the gaps of the skeleton. It has a two-stage hierarchical porous structure consisting of through-holes having a structure and pores dispersed and formed on the surface extending from the surface of the skeleton to the inside, and the mode of pore size distribution of the pores
  • the pore diameter is in the range of 2 nm or more and 200 nm or less
  • the most frequent pore diameter of the pore diameter distribution of the through hole is 5 times or more of the most frequent pore diameter of the pore and in the range of 0.1 ⁇ m or more and 100 ⁇ m or less. It is a second feature.
  • the skeleton body has a three-dimensional continuous network structure, and the voids penetrate through the three-dimensional continuous network structure formed in the gaps of the skeleton body.
  • a third feature is that it has a one-layer porous structure composed of holes, and the most frequent hole diameter in the hole diameter distribution of the through holes is in the range of 2 nm to 100 ⁇ m.
  • the most frequent pore size in the pore size distribution of the through-holes is 0.6 ⁇ m or less.
  • the most frequent pore diameter of the pore diameter distribution of the through-hole is 0.3 ⁇ m or less.
  • the inorganic compound is preferably a silica or a silicon oxide composite mainly containing silicon oxide.
  • the sustained-release liquid has a refractive index in the range of 1.4 to 1.6, and the refractive index of the skeleton body And the same essential oil within the above error range.
  • the inorganic monolith porous body and the sustained-release liquid constituting the transparent porous sustained-release body having any of the above characteristics are placed in the voids of the inorganic monolith porous body.
  • a sustained release kit characterized by being individually provided in a state where the sustained release solution is not absorbed.
  • the present invention includes the transparent porous sustained-release body having any of the above characteristics or the sustained-release body kit having the above characteristics, and a light source for irradiating the inorganic monolith porous body with light.
  • a sustained release device is provided.
  • the sustained release method of any one of the above features it is preferable to irradiate the inorganic monolith porous body with light in the process of releasing the sustained release liquid from the inorganic monolith porous body.
  • a step of separately preparing the inorganic monolith porous body and the sustained release liquid constituting the transparent porous sustained release body having any of the above characteristics, and the sustained release Infiltrating the liquid into the gap, and changing the inorganic monolith porous body from the opaque state in the initial state to a state in which the portion in which the sustained-release liquid is absorbed is transparent or translucent in the gap. And providing a method for producing a transparent porous sustained-release body.
  • the porous monolithic porous carrier can be easily reused as a sustained-release body, and the initial shape is maintained without change before and after use.
  • the initial state before absorbing the sustained-release solution is opaque, the portion where the sustained-release solution is absorbed becomes transparent or translucent, and the transparency of the porous carrier changes.
  • a transparent porous sustained release body having the above excellent characteristics can be easily produced.
  • the use of enjoying the visual effect or the optical effect by the light irradiated from the light source is added using the transparency of the porous inorganic monolith.
  • the change of the visual effect or the optical effect by the change of the transparency of the inorganic monolith porous body accompanying evaporation or volatilization of the sustained release liquid can be enjoyed.
  • Embodiments of a transparent porous sustained-release body, a sustained-release body kit, a sustained-release method, a sustained-release apparatus, and a method for producing a transparent porous sustained-release body according to the present invention will be described with reference to the drawings.
  • the transparent porous sustained-release body is constituted by absorbing the sustained-release liquid in the voids of the inorganic monolith porous body 1.
  • the inorganic monolith porous body 1 has a skeleton body 2 made of an inorganic compound having a three-dimensional continuous network structure as shown schematically and planarly in FIG. It has a two-stage hierarchical porous structure composed of the formed through-holes 3 and pores 4 that are dispersed and formed on the surface extending from the surface of the skeleton body 2 toward the inside.
  • the voids of the inorganic monolith porous body 1 are a combination of the through holes 3 and the pores 4.
  • the “surface of the skeleton body” indicates the surface of the skeleton body exposed toward the through hole, and does not include the inner wall surface of the pore formed in the skeleton body.
  • total surface of the skeleton body When the inner wall surface of the pore is included, it is referred to as “total surface of the skeleton body”. Further, the surface exposed toward the outside of the inorganic monolith porous body 1 is simply referred to as “exposed surface”. Note that the through hole and the fine hole may be referred to as a macropore and a mesopore, respectively.
  • silica gel or silica glass (SiO 2 ) is assumed as the inorganic compound that forms the skeleton body 2.
  • the inorganic monolithic porous body 1 (hereinafter referred to as “silica monolith” as appropriate) has a mode diameter ⁇ 0m of the pore diameter distribution of the pores 4 in the range of 2 nm to 200 nm, and the pore diameter distribution of the through holes 3
  • the most frequent pore diameter ⁇ 1 m is not less than 5 times the most frequent pore diameter ⁇ 0 m of the pores 4 and is in the range of 0.1 ⁇ m to 100 ⁇ m.
  • the ranges of the most frequent pore diameter ⁇ 1 m of the through-hole 3 and the most frequent hole diameter ⁇ 0 m of the pores 4 are obtained when the inorganic monolith porous body 1 having a two-stage hierarchical porous structure is synthesized by the spinodal decomposition sol-gel method described later. It is a possible range. That is, it means that the most frequent hole diameter ⁇ 0 m and the most frequent hole diameter ⁇ 1 m are not limited to specific values. However, as will be described later, by limiting the most frequent hole diameter ⁇ 1 m of the through-hole 3 to 0.6 ⁇ m or less, more preferably 0.3 ⁇ m or less, the degree of freedom in selecting the sustained-release liquid to be used can be expanded.
  • the restriction that the most frequent hole diameter ⁇ 1m is 5 times or more than the most frequent hole diameter ⁇ 0m is that the through hole 3 is formed in the gap of the skeleton body 2 and the pore 4 is formed from the surface of the skeleton body 2 toward the inside. Since the difference and the diameter of the through hole 3 are equal to or larger than the diameter of the skeleton body 2, it is provided from experience.
  • the mode diameters of the through holes 3 and the pores 4 are mode values (mode values) of the hole diameter distribution measured by a well-known mercury intrusion method.
  • the pore diameter distribution of the pores 4 may be one derived by the well-known nitrogen adsorption measurement BJH method.
  • the most frequent hole diameter ⁇ 1 m of the through hole 3 is not greatly different from the average hole diameter derived as an average value obtained by measuring the through hole diameter of any 20 to 30 dispersed portions from the electron micrograph of the skeleton 2.
  • FIG. 2 shows an example of the pore size distribution of the through holes 3 and the pores 4 measured by the mercury intrusion method.
  • the horizontal axis is the pore diameter (unit: ⁇ m) of the through-holes 3 and pores 4, and the vertical axis is the differential pore volume (unit: cm 3 / g).
  • the differential pore volume includes the differential through-hole volume.
  • the left peak indicates the modest hole diameter ⁇ 0 m of the pore 4, and the right peak indicates the modest hole diameter ⁇ 1 m of the through hole 3.
  • the most frequent pore diameters of the through hole 3 and the pore 4 are about 1.77 ⁇ m and about 17 nm, and the half widths are about 0.34 ⁇ m and about 3.4 nm.
  • the mode diameter of the hole diameter distribution of the through hole 3 is simply referred to as “through hole diameter”
  • the mode diameter of the hole diameter distribution of the pore 4 is simply referred to as “pore diameter” as appropriate.
  • the silica monolith is synthesized by the spinodal decomposition sol-gel method described in detail below.
  • FIG. 3 shows an example of a SEM (scanning electron microscope) photograph showing a three-dimensional continuous network structure of silica monolith.
  • a method for producing the inorganic monolith porous body 1 will be described. The production method is divided into a sol preparation step, a gelation step, and a removal step.
  • a silica precursor as a raw material of silica gel or silica glass and a coexisting substance having a function of inducing sol-gel transition and phase separation in parallel are added to an acid or alkaline aqueous solution, for example, 5 ° C. or less.
  • a uniform precursor sol is prepared by stirring at a low temperature at which the sol-gel transition hardly proceeds to cause a hydrolysis reaction.
  • water glass sodium silicate aqueous solution
  • an inorganic or organic silane compound can be used as the main component of the silica precursor.
  • the inorganic silane compound include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra-isopropoxysilane, tetra-n-butoxysilane, and tetra-t-butoxysilane.
  • organic silane compounds include methyl, ethyl, propyl, butyl, hexyl, octyl, decyl, hexadecyl, octadecyl, dodecyl, phenyl, vinyl, hydroxyl, ether, epoxy, aldehyde, carboxyl, ester, thionyl, thio, amino Trialkoxysilanes such as trimethoxysilane, triethoxysilane, triisopropoxysilane, and triphenoxysilane having a substituent such as dialkoxy such as methyldiethoxysilane, methyldimethoxysilane, ethyldiethoxysilane, and ethyldimethoxysilane Examples thereof include monoalkoxysilanes such as silanes, dimethylethoxysilane, and dimethylmethoxysilane.
  • alkoxysilicates containing a cross-linking reaction rate controlling group substituent such as monoalkyl, dialkyl, and phenyltriethoxy, disilanes that are dimers thereof, and oligomers such as trisilane that are trimers are also assumed as silica precursors.
  • hydrolyzable silane various compounds are commercially available and can be obtained easily and inexpensively, and it is also easy to control the sol-gel reaction for forming a three-dimensional crosslinked body composed of silicon-oxygen bonds.
  • the acid or alkaline aqueous solution is an aqueous solution in which an acid or base functioning as a catalyst for promoting the hydrolysis reaction of the silica precursor is dissolved in water as a solvent.
  • an acid or base functioning as a catalyst for promoting the hydrolysis reaction of the silica precursor is dissolved in water as a solvent.
  • the acid include acetic acid, hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, and citric acid.
  • Specific examples of the base include sodium hydroxide, potassium hydroxide, aqueous ammonia, sodium carbonate, Amines such as sodium hydrogen carbonate and trimethylammonium, ammonium hydroxides such as tert-butylammonium hydroxide, and alkali metal alkoxides such as sodium methoxide are envisaged.
  • coexisting substances include polyethylene oxide, polypropylene oxide, polyacrylic acid, block copolymers such as polyethylene oxide polypropylene oxide block copolymers, cationic surfactants such as cetyltrimethylammonium chloride, dodecyl sulfate.
  • Anionic surfactants such as sodium and nonionic surfactants such as polyoxyethylene alkyl ether are envisaged.
  • water is used as a solvent, alcohols such as methanol and ethanol may be used.
  • the precursor sol prepared in the sol preparation step is injected into a gelation vessel and gelled at a temperature at which sol-gel transition at about 40 ° C. is likely to proceed.
  • a coexisting substance having a function of inducing sol-gel transition and phase separation in parallel is added to the precursor sol, spinodal decomposition is induced and a silica hydrogel having a three-dimensional continuous network structure ( A co-continuous structure of the (wet gel) phase and the solvent phase is gradually formed.
  • the heat treatment is not necessarily performed in a pressurized container or a sealed container, but an ammonia component or the like may be generated or volatilized by heating. Therefore, the heat treatment may be performed in a sealed container or a pressure resistant container. Processing in a pressure vessel is preferred.
  • the progress of the dissolution and reprecipitation reaction of the silica fine particles that form the skeleton of the silica hydrogel phase enlarges the pore diameter formed in the skeleton. Furthermore, by repeating the dissolution reprecipitation reaction by hydrothermal treatment, it is possible to control to further enlarge the pore diameter.
  • the control of the pore diameter can also be realized by adding urea to the precursor sol in addition to the catalyst and the coexisting substance. Urea hydrolyzes at a temperature of 60 ° C. or higher to produce ammonia, and the ammonia expands the pore diameter of the pores formed in the skeleton of the wet gel synthesized in the gelation process.
  • the pore diameter can be controlled by addition.
  • the structure of the through-hole and the pore diameter can be controlled by adjusting the amount of water or silica precursor added to the precursor sol in the sol preparation step, or the composition and addition amount of coexisting substances.
  • the cleaning liquid is preferably a liquid such as an organic solvent or an aqueous solution.
  • a liquid in which an organic compound or an inorganic compound is dissolved can also be used. Furthermore, even if a solution having a pH different from the isoelectric point of the gel such as acid or alkali is used as the cleaning liquid, the additive remaining in the gel can be easily removed.
  • various acids including hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, acetic acid, formic acid, carbonic acid, citric acid, phosphoric acid, sodium hydroxide, potassium hydroxide, ammonia, water-soluble amine, carbonic acid
  • bases including sodium and sodium bicarbonate
  • Drying of the wet gel may employ natural drying, and in order to eliminate distortion and cracks that occur when the wet gel is dried, the solvent in the wet gel may be isopropanol, acetone, hexane, hydrofluorocarbon, etc.
  • the obtained dried gel can be sintered by firing to form silica glass.
  • a calcination temperature is lower than the glass transition temperature (about 1000 degreeC) of a silica, it does not become a silica glass.
  • the skeleton 2 is silica gel or silica glass having a refractive index of about 1.45 to 1.5, a refractive index difference of about 0.45 to 0.5 is generated on the total surface of the skeleton 2.
  • the through holes 3 are formed in a three-dimensional continuous network in the gaps of the skeleton body 2 as in the skeleton body 2, and innumerable pores are formed on the surface of the skeleton body 2.
  • the silica monolith in the initial state is It looks cloudy and opaque from the outside.
  • the silica monolith produced in the above manner can have a porosity of 50% or more, and in Examples described later, the porosity is as high as 85% to 90%.
  • the sustained release liquid absorbed in the voids of the silica monolith is limited to a specific liquid as long as the silica monolith after absorbing the sustained release liquid changes from an opaque state to a transparent or translucent state. It is not something. That is, the refractive index of the sustained-release liquid and the refractive index of the skeleton body 2 may be equal to each other within an error range such that the portion where the sustained-release liquid is absorbed in the gap is transparent or translucent. However, since the silica monolith after absorption of the sustained-release solution is more transparent than the translucent because the visual effect and the optical effect are more remarkable, the sustained-release solution changes to a transparent state of the silica monolith. More preferred.
  • the reason why the part where the sustained-release liquid is absorbed in the gap is transparent or translucent is that the difference in refractive index at the interface between the skeleton 2 and the sustained-release liquid in the gap is smaller than the difference in refractive index in the initial state. This is because the degree of reflection and refraction due to the difference in refractive index at the interface is relaxed compared to the case of the initial state. However, if the difference in refractive index between the sustained-release liquid and the skeleton 2 is not sufficiently small, that is, if it is not within the above error range, the degree of reflection and refraction at the interface is not sufficiently relaxed and becomes cloudy and opaque. Become.
  • an aroma oil (essential oil) having a refractive index equal to the refractive index of the skeleton body 2 within the above error range can be used as the sustained-release liquid.
  • aroma oils have a refractive index in the range of 1.4 to 1.6, which is close to the refractive index of silica of about 1.45 to 1.5, and is within the above error range.
  • an error range in which the portion where the sustained-release liquid is absorbed in the gap is transparent or translucent is referred to as a “first error range”, and the portion where the sustained-release solution is absorbed in the gap.
  • An error range that is transparent is defined as a “second error range”.
  • the “second error range” is narrower than the “first error range”.
  • the refractive index difference is represented by a difference (positive value) obtained by subtracting the smaller refractive index from the larger refractive index.
  • the first and second error ranges are not constant as will be described later, and change depending on the distribution range of the through-holes 3 and slightly change depending on the presence or absence of pores.
  • FIG. 4 shows an initial state of a flat cylindrical silica monolith (diameter 10 mm, thickness 5 mm) and a total of 4 states in which three kinds of liquids having different refractive indexes are absorbed to be transparent, translucent and opaque. It is a photograph which shows the state of a street.
  • FIG. 4A shows a state in which the silica monolith in the initial state is placed on a transparent glass petri dish, which is completely clouded and opaque.
  • FIG. 4 (B) shows a state in which the silica monolith is placed on a transparent glass petri dish and aroma oil is absorbed to make it transparent, and the letter “A” on the lower side of the glass petri dish is silica.
  • Figure 4 (C) shows a state in which the silica monolith has been placed on a transparent glass petri dish to absorb another aroma oil and changed to translucent. Although it is slightly cloudy, the letter “A” on the lower background of the glass petri dish can be recognized through the silica monolith and the glass petri dish.
  • FIG. 4 (D) shows another case where the silica monolith is placed on the glass petri dish. The silica monolith is more turbid than the translucent state of FIG. 4 (C). The letter “A” on the lower side of the petri dish cannot be recognized through the silica monolith and the glass petri dish, however, the opaque state in FIG.
  • the degree of white turbidity is weak.
  • the difference in the degree of white turbidity in Fig. 4 (A) and Fig. 4 (D) is the difference in refractive index between the skeleton and air in the initial state and the difference in refractive index between the skeleton and aroma oil.
  • the latter refractive index difference is smaller than the former refractive index difference.
  • the silica monolith having a two-step hierarchical porous structure with different through-hole diameters synthesized by the above-mentioned spinodal decomposition sol-gel method is combined with various sustained-release liquids having different refractive indexes, so that the sustained-release liquid is absorbed in the voids.
  • the experimental results of examining the permissible range of the difference in refractive index (the above error range) for the skeleton and the sustained-release solution in which the portion is transparent or translucent will be described.
  • the through-hole diameter is 15 ⁇ m, 0.1 ⁇ m, 0.3 ⁇ m, 0.6 ⁇ m, 1 ⁇ m, 2 ⁇ m for 6 types of aroma oils (essential oils), 8 types of organic solvents and 15 types of water used as sustained release solutions.
  • aroma oils essential oils
  • organic solvents 15 types of water used as sustained release solutions.
  • the seven cases of 5 ⁇ m and 10 ⁇ m the result of visual confirmation of the transparency after absorbing the above-mentioned sustained-release solution in the silica monolith in the initial state having the same shape and size as the silica monolith shown in FIG. 5 and the scatter diagram of FIG. 6 are shown together.
  • the above-mentioned silica monolith having seven through-hole diameters can be prepared by the above-described production method. Specifically, in a 0.01 mol / L acetic acid aqueous solution 10 mL (milliliter), a coexisting substance polyethylene glycol (molecular weight 10000) 0 .6 to 1.1 g are dissolved, 5 mL of tetramethoxysilane (TMOS, silica precursor) is added, and the mixture is stirred to obtain a uniform solution, which is then gelled at 40 ° C. After that, the gel is mixed with 0.1 M aqueous ammonia. It was soaked in a sealed container and heated at 80 ° C.
  • TMOS tetramethoxysilane
  • each silica monolith has a pore diameter of 12 nm.
  • the porosity of each silica monolith was 85% at 10 ⁇ m and 2 ⁇ m, 87% at 5 ⁇ m and 1 ⁇ m, 88% at 0.6 ⁇ m, 89% at 0.3 ⁇ m, and 90% at 0.1 ⁇ m.
  • the porosity was derived by calculating the bulk density from the weight and volume of the silica monolith and converting the value obtained by dividing the silica monolith by the true density of 2.2 g / mL into a percentage value.
  • FIG. 5 is a graph in which the results shown in FIG. 5 are plotted with symbols ⁇ , ⁇ , and X in the same manner as in FIG. 5 on a scatter diagram in which the horizontal axis is the logarithmic scale through-hole diameter and the vertical axis is the refractive index of the linear scale. is there.
  • the controlled release liquid has a refractive index of 1.442 or more and 1.473 or less, and the controlled release liquid has a refractive index of 1.4305 and 1.48 and is translucent.
  • the refractive index of the sustained-release liquid is opaque at 1.424 or less and 1.49 or more. From this, it is inferred that the refractive index of the skeleton 2 is between 1.424 and 1.49, between 1.4305 and 1.48, and between 1.442 and 1.473. Is done.
  • the refractive index of the skeleton 2 is N
  • the upper limit value of the first error range is D1
  • the upper limit value of the second error range is D2
  • the refractive index becomes transparent, translucent, or opaque. From the refractive index in the vicinity of the boundary, the following inequalities 1 to 6 are obtained.
  • the refractive index N of the silica monolith skeleton 2 of the present embodiment is between 1.452 and 1.46025, and the upper limit D1 of the first error range is 0.02475. It can be seen that the upper limit value D2 of the second error range is between 0.0155 and 0.033.
  • the through hole diameter is 0.6 ⁇ m, 1.442 to 1.49, when the through hole diameter is 0.3 ⁇ m, 1.424 to 1.528, and when the through hole diameter is 0.1 ⁇ m, It has expanded to 1.375 to 1.528, respectively.
  • the range of the refractive index determined to be transparent or translucent is vertically expanded from the range (1.4305 to 1.48) in the case where the through-hole diameter is 2 ⁇ m.
  • the through hole diameter is 0.6 ⁇ m, it is 1.424 to 1.50012, when the through hole diameter is 0.3 ⁇ m, when it is 1.375 to more than 1.528, and when the through hole diameter is 0.1 ⁇ m. , 1.33 to over 1.528, respectively. That is, it can be seen that the upper limit value D1 of the first error range and the upper limit value D2 of the second error range increase as the through-hole diameter decreases to 0.6 ⁇ m, 0.3 ⁇ m, and 0.1 ⁇ m.
  • the refractive index of the sustained-release liquid is the first error shown in Formula 8 with respect to the refractive index of the skeleton 2.
  • the refractive index of the sustained-release solution is limited to the refractive index of the skeleton body 2 as shown in Equation 9. It is necessary to limit to the second error range determined by the upper limit value D2 of the second error range. This point is clear from FIGS. 5 and 6 because there is no difference in the refractive index of the sustained-release solution in which the silica monolith is transparent, translucent, or opaque when the through-hole diameter is 1.0 ⁇ m or more.
  • the through-hole diameter is 0.6 ⁇ m or less
  • the first error range and the second error range are expanded, so that the refractive index range of the sustained-release liquid that can make the silica monolith transparent or translucent and the silica monolith transparent
  • the degree of freedom of selection of the sustained release liquid is greatly expanded.
  • the effect of increasing the degree of freedom in selecting the sustained-release solution becomes more remarkable when the through-hole diameter is 0.3 ⁇ m or less.
  • ylang-ylang essential oil
  • the silica monolith remains opaque when the through-hole diameter is 1 ⁇ m or more, but becomes translucent when the through-hole diameter is 0.6 ⁇ m. Is 0.3 ⁇ m or less, it becomes transparent.
  • An integrated porous body such as silica monolith has a periodic structure composed of a skeleton and through-holes.
  • the period of the periodic structure is approximately twice the diameter of the through hole because the diameter of the through hole and the skeleton body diameter are substantially equal.
  • the through-hole diameter has a hole diameter distribution as measured by the mercury intrusion method shown in FIG. 2, the period has a distribution as well. Therefore, when the period becomes comparable to the visible light wavelength range (0.38 ⁇ m to 0.78 ⁇ m), the geometric optical approximation does not hold, and the wave optical phenomenon or the quantum optical phenomenon occurs. It is thought to be manifested.
  • the influence of the difference between the refractive index of the skeleton and the refractive index of the sustained-release liquid in the voids is also considered to be different from the influence of the refractive index difference under geometric optical approximation. Is apparently mitigated.
  • a silica monolith void produced by the above-described synthesis method is prepared by preparing a sustained-release liquid such as aroma oil whose refractive index is equal to the refractive index of the skeleton body 2 and the first or second error range according to the through-hole diameter.
  • the transparent porous sustained-release body is obtained by absorbing the sustained-release liquid inside and changing the portion where the sustained-release liquid is absorbed in the gap from the initial opaque state to the transparent or translucent state.
  • the sustained-release solution gradually evaporates from the open portion, Dissipated out of the silica monolith. Since the outside air is exchanged and invades into the space where the silica monolith sustained-release solution has evaporated, it partially becomes cloudy and returns to an opaque state. Accordingly, the transparent porous sustained-release body gradually turns cloudy and becomes opaque as the sustained-release solution diffuses, and finally the transparent porous sustained-release body changes to the initial state. Return to the same opaque state.
  • the remaining state of the sustained-release liquid can be easily confirmed. Also, since the transparent state of the silica monolith changes depending on the remaining state of the sustained-release solution, in addition to the above-described confirmation of the remaining state of the sustained-release solution, enjoy the visual effect or optical effect due to the change in the transparent state. Furthermore, by applying the effect, it is possible to add a function other than the function of the sustained-release solution such as aroma and enjoy the release of the sustained-release solution with the added value.
  • FIG. 7 shows a sample # 1 of a cylindrical silica monolith, a sample # 2 in which the cylindrical side surface of the exposed surface of the silica monolith is covered with a glass tube and the upper and lower end surfaces are opened, and a granular silica gel as a comparative example.
  • the results of measuring the residual ratio (%) of aroma oil at a plurality of elapsed times immediately after each sample was absorbed with aroma oil in the following manner for three types of comparative samples are shown.
  • the silica monoliths of sample # 1 and # 2 have a diameter of 4 mm, a length of 30 mm, a through-hole diameter of 2 ⁇ m, a pore diameter of 12 nm, and a porosity of 85%.
  • the glass tube of sample # 2 has an outer diameter of 6 mm, an inner diameter of 4 mm, And the length is 30 mm, and the comparative sample has a particle diameter of 0.6 mm, a pore diameter of 2 nm, and a porosity of 20%.
  • Lemon essential oil with a refractive index of 1.472 was used as the aroma oil.
  • the lemon essential oil was dropped from the exposed exposed surface of the silica monolith, and the lemon essential oil was absorbed until the whole became transparent.
  • granular silica gel was put in a test tube and dried.
  • Lemon essential oil was put in the test tube and allowed to penetrate into the granular silica gel, and then the silica gel completely infiltrated with the lemon essential oil was taken out to a watch glass.
  • Calculate the amount of lemon essential oil absorbed at the time of measurement divide the amount of lemon essential oil absorbed at the time of each measurement by the amount of lemon essential oil absorbed at the residual rate of 100%, and convert it to a percentage value.
  • lemon essential oil was diffused under two temperature conditions of normal temperature and 60 ° C.
  • lemon essential oil was diffused only at room temperature.
  • the aroma oil absorbed in the silica monolith is dissipated to a residual rate of about 2.5% or less regardless of the temperature condition.
  • the aroma oil absorbed can only be dissipated to a residual rate of 90% at room temperature, and even when heated to 60 ° C, it can be dissipated only to a residual rate of 63%, and more than half of the absorbed aroma oil is not dissipated.
  • silica monolith is suitable as a carrier for sustained release and can be reused after almost all of the aroma oil has evaporated.
  • granular silica gel is unsuitable as a sustained-release carrier and cannot be reused even if it is used as a sustained-release carrier.
  • the residual rate was not measured to 0% because the evaporation rate decreased as the residual rate approached 0%, and the elapsed time was extremely long to decrease to near 0%. Therefore, the measurement was omitted.
  • the area of the exposed exposed surface of sample # 2 is 1/16 of the exposed surface area of sample # 1. Therefore, when the exposed surface of the silica monolith is covered to reduce the open area to 1 / M, it is possible to maintain the diffusion time of the aroma oil longer than M times.
  • the diffusion time of the aroma oil can be extended by reducing the area of the exposed surface per volume of the silica monolith. For example, if the diameter of sample # 1 is doubled and the length is 1 ⁇ 4, the exposed surface area is reduced to about 48% with the same volume, so the aroma oil dissipation time is increased more than twice. be able to.
  • the inorganic monolith porous body 1 has a two-stage hierarchical porous structure including the through holes 3 and the pores 4, but in the second embodiment, the inorganic monolith porous body 1 is A material having a one-level porous structure comprising a skeleton body 2 and through-holes 3 formed in a gap between the skeleton body 2 is used.
  • silica gel or silica glass (SiO 2 ) is assumed as the inorganic compound forming the skeleton body 2.
  • the most frequent hole diameter ⁇ 1m of the hole diameter distribution of the through hole 3 is a range obtained by combining the ranges of the most frequent hole diameter ⁇ 1m of the through hole 3 and the most frequent hole diameter ⁇ 0m of the pore 4 of the two-stage hierarchical porous structure of the first embodiment. It is in the same range of 2 nm to 100 ⁇ m.
  • the selection of the sustained-release liquid to be used can be expanded.
  • the single layer porous monolithic silica monolith is synthesized by the spinodal decomposition sol-gel method in the same manner as the two-step hierarchical porous monolithic silica monolith of the first embodiment. Since the details of the method for producing a silica monolith using the spinodal decomposition sol-gel method have been described in the first embodiment, overlapping descriptions are omitted. However, in order to obtain a one-layer porous structure, one of the following three processes is performed.
  • a silica monolith having a two-stage hierarchical porous structure with as small a pore size as possible is prepared, and the resulting dried gel is sintered at a temperature of 1000 ° C. or more, and the skeleton is approximately 2 minutes at the time of sintering.
  • the pores formed in the skeleton body are extinguished by contracting to 1.
  • the range of the through hole diameter is 50 ⁇ m or less.
  • the structure of the through-hole and the pore diameter are controlled by the amount of water or silica precursor added to the precursor sol in the sol preparation step, or the amount of coexisting substances. Since it is possible to adjust the composition and amount of addition, for example, by adjusting the amount of polyethylene glycol that is a coexisting substance, the through-hole diameter is controlled to 0.1 ⁇ m or less, and the pore size distribution between the through-holes and the pores is adjusted. By overlapping within the same range, it is impossible to distinguish between the through hole and the pore, and the pore is apparently eliminated.
  • the skeleton is a kind of three-dimensional continuous network structure, but has a structure like a particle aggregate in which granular silica gel is aggregated three-dimensionally continuously.
  • the through holes and the pores are integrated and referred to as a through hole.
  • the pore diameter can be controlled by adjusting the temperature and time of heating with 0.1 M ammonia water, so that the formation of pores is suppressed by omitting the treatment.
  • the pore size is set to 0 ⁇ m.
  • the first treatment method may be added.
  • a method for producing a silica monolith employing the second treatment method 1.2 g of polyethylene glycol (molecular weight 10,000), which is a coexisting substance, is dissolved in 10 mL (milliliter) of 0.01 mol / L acetic acid aqueous solution. Then, 5 mL of tetramethoxysilane (TMOS, silica precursor) was added and stirred to obtain a uniform solution, which was then gelled at 40 ° C., and then the gel was immersed in 0.1 M ammonia water at 80 ° C. in a sealed container. After heating for 24 hours at 600.degree. C., sintering is performed at 600.degree. C. for 5 hours, thereby producing a one-layered multi-structure silica monolith with a through-hole diameter of 0.1 .mu.m or less.
  • TMOS tetramethoxysilane
  • a method for producing a silica monolith employing the third treatment method 0.9 g of polyethylene glycol (molecular weight 10,000), which is a coexisting substance, is dissolved in 10 mL (milliliter) of 0.01 mol / L acetic acid aqueous solution. After adding 5 mL of tetramethoxysilane (TMOS, silica precursor) and stirring to obtain a uniform solution, the solution is gelled at 40 ° C., and then the gel is dried and then sintered at 600 ° C. for 5 hours. Thus, a monolayer silica monolith having a through hole diameter of 1 ⁇ m is produced.
  • TMOS tetramethoxysilane
  • a third processing method to the second processing method.
  • 1.2 g of coexisting polyethylene glycol molecular weight 10,000
  • 10 mL milliliter
  • 0.01 mol / L acetic acid aqueous solution 0.01 mol / L acetic acid aqueous solution
  • TMOS tetramethoxysilane
  • gelation is performed at 40 ° C., and then the gel is dried and then sintered at 600 ° C. for 5 hours, whereby one layer having a through-hole diameter of 0.1 ⁇ m or less
  • a monolithic silica monolith is produced.
  • FIG. 8 shows two examples (pore size distributions 1 and 2) of the pore size distribution of the through holes measured by the nitrogen adsorption / desorption method of the silica monolith produced by the second processing method.
  • the horizontal axis is the pore diameter (unit: ⁇ m), and the vertical axis is the differential pore volume (unit: cm 3 / g).
  • the porosity of the pore size distribution 1 (moderate pore size is about 4 nm) is 77%
  • the porosity of the pore size distribution 2 moderate pore size is about 40 nm) is 79%.
  • the pore size distributions of the through holes and the pores cannot be distinguished.
  • the sustained-release solution that is absorbed into the voids of the silica monolith is any silica monolith after absorbing the sustained-release solution, as long as it changes from an opaque state to a transparent or translucent state. It is not limited to a specific liquid. That is, the refractive index of the sustained-release liquid and the refractive index of the skeleton body 2 may be equal to each other within an error range such that the portion where the sustained-release liquid is absorbed in the gap is transparent or translucent. However, since the silica monolith after absorption of the sustained-release solution is more transparent than the translucent because the visual effect and the optical effect are more remarkable, the sustained-release solution changes to a transparent state of the silica monolith. More preferred. Regarding the refractive index of the sustained-release liquid, the explanation given in the first embodiment is basically valid as it is, and therefore the duplicate explanation is omitted.
  • FIG. 9 is a table and a diagram showing the results of visual confirmation of the transparency after absorbing the above-mentioned sustained-release liquid in the initial state of the silica monolith having the same shape and size as the silica monolith shown in FIG. It is shown collectively in 10 scatter diagrams.
  • Samples having through-hole diameters (modes) of 4 nm and 40 nm are samples of the hole diameter distribution 1 and the hole diameter distribution 2 shown in FIG. 8 prepared by the second processing method.
  • Each sample with a through-hole diameter (mode) of 0.1 ⁇ m, 0.3 ⁇ m, and 0.6 ⁇ m is a sample prepared by the third processing method.
  • FIG. 10 is a graph in which the results shown in FIG. 9 are plotted with symbols ⁇ , ⁇ , and X in the same manner as in FIG. 9 on a scatter diagram in which the horizontal axis is the logarithmic scale through-hole diameter and the vertical axis is the refractive index of the linear scale. is there.
  • the sustained-release solution is glycerin having a refractive index of 1.473
  • it is transparent regardless of the through-hole diameter of the silica monolith.
  • the refractive index of the skeleton of silica monolith is equal to the refractive index of 1.473 of glycerin within the second error range.
  • the refractive index of the skeleton of silica monolith is between 1.452 and 1.46025, as in the first embodiment (see Equation 7).
  • the through-hole diameter is 0.6 ⁇ m, only glycerin having a refractive index of 1.473 is transparent and the others are opaque, whereas when the through-hole diameter is 0.3 ⁇ m, 1.424.
  • the diameter of the through hole is 0.1 ⁇ m, it is enlarged to 1.375 to 1.528.
  • the range of the refractive index determined to be transparent or translucent is expanded vertically as compared with the case where the through-hole diameter is 0.6 ⁇ m.
  • the diameter of the through hole when the diameter of the through hole is 0.3 ⁇ m, it expands to 1.375 to 1.528, and when the diameter of the through hole is 0.1 ⁇ m, it expands to 1.333 to more than 1.528. That is, it can be seen that when the through-hole diameter is reduced to 0.3 ⁇ m and 0.1 ⁇ m, the upper limit value D1 of the first error range and the upper limit value D2 of the second error range are increased. Furthermore, when the through-hole diameter is 40 nm, the silica monolith becomes transparent even with water having a refractive index of 1.333. Conversely, when the through-hole diameter is 4 nm, the silica monolith becomes translucent in the case of water. Is the same as in the case of 0.1 ⁇ m.
  • the through hole diameter is 4 nm and 40 nm
  • the through-hole diameter is 0.1 ⁇ m or less
  • the range of refractive index determined to be transparent and the refraction determined to be transparent or translucent.
  • the range of rates is expanding. That is, it can be seen that the upper limit value D1 of the first error range and the upper limit value D2 of the second error range increase as the through-hole diameter decreases to 0.3 ⁇ m, 0.1 ⁇ m, and 40 nm.
  • the silica monolith having a two-stage hierarchical porous structure of the first embodiment has a through-hole diameter of 0.
  • dichloromethane with a refractive index of 1.424 and benzene with a refractive index of 1.50112 were absorbed, it was translucent, but in the monolithic silica monolith of the first layer of the second embodiment, Is also opaque.
  • the silica monolith having the two-stage hierarchical porous structure of the first embodiment was transparent, but the second embodiment The monolayer silica monolith having a single layer is translucent. Therefore, the first error range and the second error range tend to be slightly reduced when the through-hole diameters are 0.6 ⁇ m and 0.3 ⁇ m by changing the silica monolith having a two-stage hierarchical structure to a one-layer porous structure. You can see that However, in the case of a one-layer porous structure, the through hole diameter can be made smaller than 0.1 ⁇ m, and conversely, it can be seen that there is room for slightly expanding the first error range and the second error range.
  • the through hole diameter is 0.6 ⁇ m and 0.3 ⁇ m
  • the reason why there is a slight difference between the first error range and the second error range depending on the presence or absence of the pores is that in the first embodiment, the through hole diameter is 0.
  • the manufacturing method of the transparent porous sustained-release body, the sustained-release method using the transparent porous sustained-release body, the evaporation rate of the silica monolith, and the control method thereof are basically the same as those in the first embodiment, and thus overlap. I will omit the explanation.
  • the first and second embodiments have been described on the assumption that the user uses the completed transparent porous sustained-release body. However, the initial inorganic state of the transparent porous sustained-release body for the user is described. It is also possible to provide a sustained release kit comprising a monolith porous body (silica monolith) and the above-mentioned sustained release solution separately. In this case, the user drops the sustained-release liquid from the exposed surface of the provided inorganic monolith porous body in the initial state and absorbs it into the void, and changes the inorganic monolith porous body from an opaque state to a transparent or translucent state. By doing so, the transparent porous sustained-release body described in the first and second embodiments can be completed.
  • sustained-release solution contained in the sustained-release kit is not limited to one type, and multiple types of sustained-release solutions may be attached.
  • one type of sustained-release liquid evaporates to a residual rate of 0% or in the vicinity thereof
  • another type of sustained-release liquid is absorbed into the voids of the same inorganic monolith porous material to create another new transparent material.
  • a porous sustained-release body can be completed.
  • different types of aroma oils with different types of sustained-release liquids it is possible to enjoy by exchanging multiple types of scents.
  • the degree of freedom of selection of the aroma oil is preferably increased.
  • the transparent porous sustained-release body of the first or second embodiment and the inorganic monolith porous body of the sustained-release body kit of the third embodiment are not limited to the elemental body, but the inorganic monolith porous body A part of the exposed surface may be provided in a form covered with a transparent glass tube or the like as described in the first embodiment.
  • the covering may be fixed to the porous inorganic monolith so as not to be detachable, may be detachably fixed, or may be attached by the user.
  • a plurality of different coverings having at least any one of shape, color, material, etc. may be included in the transparent porous sustained release kit or sustained release kit as accessories.
  • a base 10 such as a ring or brooch is used as the covering, and the base 10 is placed at a place where a gemstone or the like is placed. It is also a preferred embodiment to attach the inorganic monolith porous body 1 processed into a shape suitable for mounting on the substrate.
  • the sustained release liquid is absorbed to make the inorganic monolith porous body 1 transparent. Then, the visual effect that the said character, a figure, etc. can be seen through can be enjoyed.
  • molten glass is attached to the side surface of the columnar inorganic monolith porous body 1 to form an arbitrary shape, for example, a spherical shape, and cooled to be made of glass.
  • the covering 11 may be used.
  • molten glass may be used as an adhesive and the coating, and a plurality of porous inorganic monoliths 1 may be combined to form an arbitrary shape.
  • the surface of the skeleton of the inorganic monolith porous body of each of the above embodiments is not surface-modified, but even if some surface modification is made, it does not affect the first and second error ranges. Even if the transparent state when absorbing the sustained-release solution does not change as compared with the case where the surface modification is not performed, or even if the first and second error ranges are affected, the sustained-release solution is absorbed. If the inorganic monolith porous body changes to a transparent state as in the case where the surface modification is not performed, an inorganic monolith porous body with a surface modification may be used.
  • the octadecylated silica monolith is dried at 150 ° C. and then immersed in a toluene solution containing 10% octadecyltrimethoxysilane, heated to reflux for 12 hours, and the resulting silica monolith is immersed in ethanol.
  • the solvent can be exchanged and dried.
  • a phenylated silica monolith can be prepared by using phenyltrimethoxysilane instead of octadecyltrimethoxysilane.
  • a functional group is chemically fixed to the surface of the skeleton through a covalent bond, or a physical interaction such as an ionic bond or a hydrophobic interaction is used.
  • the method of fixing to is mentioned.
  • a method for chemically introducing a functional group there is a method in which a functional group is immobilized via a hydroxyl group on the surface of the skeleton (SiO 2 ) by reacting a silane coupling agent having a functional group.
  • the surface modification of the inorganic monolith porous body is performed by attaching a metal salt of a transition metal element to the surface of the skeleton body, and then oxidizing it to convert the inorganic monolith porous body to the transition metal.
  • a metal salt of a transition metal element to the surface of the skeleton body
  • oxidizing it to convert the inorganic monolith porous body to the transition metal is also included.
  • an inorganic monolith porous body is impregnated with a solution of a transition metal element compound, a metal salt of the transition metal element is adsorbed on the surface of the skeleton, and air-dried at 900 ° C.
  • the metal salt can be oxidized and colored.
  • the solution is an iron (II) chloride ethanol solution
  • the inorganic monolith porous body is colored orange
  • the solution is a cobalt ethanol solution
  • the inorganic monolith porous body is colored blue.
  • a solution containing a cation such as cobalt is adsorbed on the surface of the skeleton body.
  • an inorganic monolith porous body when immersed using a diluted solution, it is strongly adsorbed near the outer periphery of the inorganic monolith porous body. Since it does not penetrate into the inside, the exposed surface of the inorganic monolith porous body is exclusively covered, and the exposed surface of the inorganic monolith porous body appears bluish.
  • the transparent state of the inorganic monolithic porous body changes depending on the remaining state of the sustained release solution, and therefore the visual effect or optical effect due to the change in the transparent state.
  • visible light is incident on a transparent inorganic monolith porous body, and the incident light is converted into an inorganic monolith porous material.
  • a part or the whole of the inorganic monolith porous body can be illuminated with the color of incident light.
  • one end of a hexagonal columnar silica monolith is processed into a conical shape to form a pencil shape, impregnated with a sustained-release solution, and then transparent from the flat end surface of the pencil-shaped silica monolith.
  • a photograph (A) showing a state in which light is incident and a photograph (B) showing a state in which red laser light is incident from the conical end face of the same pencil-shaped silica monolith are shown. Since the two photographs are monochrome, it is difficult to understand, but in (A), the entire silica monolith is reddish, and the conical tip is shining with high brightness. In (B), the entire silica monolith is illuminated. Shines reddish.
  • the positional relationship between the silica monolith and the light source May be configured as a sustained release device.
  • a light source such as a laser or a light-emitting diode may be attached to a pedestal or frame on which the silica monolith is placed or fixed, and the silica monolith may be attached to a location that has a predetermined positional relationship with the light source.
  • the positional relationship between the silica monolith and the light source may be configured so that the user can appropriately change it.
  • phosphor particles it is also preferable to fix phosphor particles to the exposed surface of the porous inorganic monolith or the surface of the skeleton.
  • various fluorescent substances such as well-known blue, green, red, orange, yellow, etc. can be utilized, However, It is necessary to be a fluorescent substance excited by the wavelength of the light source to be used.
  • the phosphor is not limited to one type, and a plurality of phosphors having different emission wavelengths may be used.
  • the light source it is preferable to use an ultraviolet ray or blue light source having a relatively short wavelength.
  • an inorganic monolith porous body containing one or more kinds of phosphor particles the phosphor is excited by light incident on the inorganic monolith porous body, and light emission of a color corresponding to the phosphor occurs.
  • the inorganic monolith porous body is mixed with the emission color of the phosphor and the color of the light source light.
  • the light source light is ultraviolet light, the color of the light source light is not mixed.
  • the following method can be adopted as a method for fixing the phosphor particles to the surface of the skeleton of the inorganic monolith porous body.
  • the phosphor is finely pulverized to about 0.1 to 0.5 ⁇ m, and a suspension in which the phosphor fine powder is dispersed in ethanol is prepared.
  • the inorganic monolith porous body is immersed in the phosphor fine powder suspension, it is immediately taken out and dried to allow the phosphor fine powder to adhere to the surface of the skeleton. Thereafter, heat treatment is performed at 800 ° C. to fix the phosphor fine powder on the surface of the skeleton.
  • the following method can be adopted.
  • the phosphor powder obtained by pulverizing the phosphor to, for example, about 5 ⁇ m using a mill is dispersed in glycerin, applied to the exposed surface of the inorganic monolith porous body, and then heat-treated at 800 ° C. so that the phosphor powder is treated with the inorganic monolith porous body. Secure to the exposed surface. It should be noted that the phosphor powder is not applied to the entire exposed surface of the inorganic monolithic porous body, but a part of the exposed surface is opened for the incidence of light source light or the injection of the sustained release liquid. preferable.
  • the phosphor powder is weakly fixed simply by heat treatment at 800 ° C.
  • the phosphor powder dispersed in glycerin is applied to the exposed surface of the inorganic monolith porous body and then covered with a transparent glass tube. Then, it is also preferable that the glass bottle is melted at 900 ° C., and the phosphor powder fixed to the exposed surface of the inorganic monolith porous body is bonded with molten glass and firmly fixed.
  • molten glass may be attached to the exposed surface and cooled.
  • an aromatic liquid such as aroma oil is assumed as an example of the sustained-release liquid.
  • the sustained-release liquid is not limited to the aromatic liquid, and includes a deodorant component, an insecticidal component, and the like. It may be a liquid containing the liquid or simply a liquid for the purpose of changing the transparency of the inorganic monolith porous body 1 from the initial opaque state to the transparent or translucent state.
  • silica (silica gel or silica glass) is assumed as the inorganic compound constituting the skeleton body 2 of the inorganic monolith porous body 1, but the inorganic compound is not limited to silica.
  • a silicon oxide composite mainly containing silicon oxide may be used.
  • typical metal elements such as aluminum, phosphorus, germanium, and tin, titanium, zirconium, vanadium, chromium, iron, cobalt, nickel, palladium
  • An oxide porous body containing a transition metal element such as platinum, copper, silver, gold, or zinc can also be used.
  • inorganic oxide porous bodies composed of composites containing alkali metal elements such as lithium and sodium, alkaline earth metal elements such as magnesium and calcium, and lanthanum elements such as lanthanum and cerium are also available. is there.
  • the refractive index of the skeleton body 2 is also different from that of the silica monolith, and the refractive index of the sustained-release liquid that is equal to the refractive index of the skeleton body 2 is also different within the first or second error range. Therefore, there may be a case where a sustained release solution suitable for the purpose of use cannot be selected.
  • the porous sustained-release body, the sustained-release body kit, the sustained-release method, the sustained-release apparatus, and the method for producing the transparent porous sustained-release body according to the present invention are capable of gradually releasing a predetermined liquid and transparent of the porous carrier. It can be used for a porous sustained-release body whose properties change.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Dispersion Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Insects & Arthropods (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Botany (AREA)
  • Structural Engineering (AREA)
  • Silicon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

多孔質担体の透明性が変化する多孔質徐放体を提供する。多孔質徐放体は、無機化合物の骨格体2と骨格体2内に形成された3次元連続網目構造の空隙3,4とを有する無機モノリス多孔体1、及び、空隙内2,3に吸収された徐放液を備えてなり、無機モノリス多孔体1が、徐放液を吸収する前の空隙内に空気が存在する初期状態では不透明であり、徐放液の屈折率と骨格体の屈折率が、空隙内に徐放液が吸収された部分が透明または半透明となる程度の誤差範囲内で等しい。

Description

透明多孔質徐放体とその製造方法、徐放体キット、徐放装置、及び、徐放方法
 本発明は、徐放成分を含む徐放液を多孔質の担体に吸収させて、徐放液を蒸発または揮発させて多孔質の担体から徐々に放散させる多孔質徐放体に関し、特に、多孔質の担体が無機モノリス多孔体であって徐放液を吸収した状態で当該担体が透明または半透明になる透明多孔質徐放体に関する。
 徐放成分を含む徐放液を多孔質担体に吸収させた後に徐々に放散させる多孔質徐放体としては、過去に多数の種類のものが開発され実用化されている(例えば、下記の特許文献1,2等)。また、徐放液を繊維質の担体に吸収させた徐放体(例えば、下記の特許文献1等)、徐放液をゲル化して多孔質担体に吸収させずに成形した徐放体(例えば、下記の特許文献1,3等)、或いは、多孔質担体の空隙内でゲル化させた徐放体等も存在する(例えば、下記の特許文献4等)。
 また、一般の消費者向けの徐放成分としては、芳香成分、消臭成分、殺虫成分等が挙げられる。更に、多孔質担体として、木片、ポプリ等の植物乾燥物、シリカゲル、ゼオライトまたは素焼き陶器等の無機多孔質体、セルロースビーズ等の有機多孔質体等が挙げられる。また、無機多孔質体及び有機多孔質体の形状は、素焼き陶器を除き、粒状のものが多用されている。
特開2000-254217号公報 特開2015-116334号公報 特開2000-70352号公報 特開2007-111281号公報
 上記従来の徐放体では、徐放成分の持続性、或いは、即効性に重点を置いた商品開発がなされており、多孔質担体の再利用性、及び、多孔質担体の徐放液を保持する以外の機能性やデザイン性に重点が置かれた商品開発はなされていなかった。特に、多孔質担体が徐放体として再利用容易で、初期の形状が使用前後で変化せず維持され、徐放液を吸収する前の初期状態では不透明で、徐放液を吸収した箇所が透明または半透明となり、多孔質担体の透明性が変化する多孔質徐放体は、本願発明者の知る限りでは過去に存在しない。
 徐放液をゲル化して成形或いは容器内に充填した徐放体の中には、透明または半透明な徐放体が存在するが、多孔質担体に担持されていないため、徐放成分が揮発すると体積が小さくなる。また、ソフトゲルと呼ばれる多孔質担体に徐放液を吸収させた徐放体にも、透明または半透明な徐放体が存在するが、徐放液を吸収すると膨潤し、徐放液が揮発すると収縮して体積及び形状が変化する。当該透明または半透明な徐放体は何れも使用回数が1回に限られる。
 殆どの多孔質徐放体は不透明である。これは、多孔質担体自体が不透明な材質である場合と、多孔質担体は透明な材質であっても、多孔質担体内に不規則に存在する細孔内に吸収される徐放液との間の屈折率差が大きいため、細孔内の徐放液と多孔質担体との界面で、光が不規則に反射及び透過するため、外部から多孔質担体を見た場合に不透明となる場合があることによる。
 粒状のシリカゲルは、多孔質担体の屈折率が約1.5で透明であるため、精油等の芳香成分を含むオイルの中には屈折率が1.5付近のものが存在するため、当該精油等と組み合わせた場合、透明または半透明になり得る。シリカゲルは、粒径が数μmから数mmまでのものが存在するが、粒径が大きいと空隙率が10~20%と低く、粒子としての表面積が大きく、精油等の徐放液の揮発または蒸発が早まり、徐放性能である持続性が悪い。一方、粒径が小さいと空隙率が40~50%程度まで向上できるが、例えば、粒径が200μm以下と微小になると、空気中に飛散し易くなり、取り扱いが極めて困難であり、再利用性に問題がある。また、粒状であるので収容する容器が別途必要となる。また、造粒し圧縮成型したシリカゲルは、空隙率が低くなり精油等の徐放液の吸収量及び吸収速度が悪く、再利用する場合に問題となる。
 また、透明な容器等に充填された粒状のシリカゲル全体を透明または半透明に維持するには、シリカゲルの粒子間の間隙にも精油等の徐放液を充填する必要があるが、粒子間の徐放液は、粒子内に吸収された徐放液より早く揮発または蒸発する虞がある。この結果、微小な粒子間に空気が存在して、各粒子が透明または半透明であっても、粒子と空気の界面で光が不規則に反射及び透過するため、外部から粒状のシリカゲル全体を見ると、粒子内に多くの徐放液が残存しているにも拘わらず不透明になる場合がある。
 一方、空隙率の高い多孔質担体は、粒径の小さいシリカゲル以外にも存在するが、例えば精油等との親和性が低く、徐放液の多孔質担体への吸収速度が遅く、特に再利用時に使い辛いものが多い。
 本発明は、上述の従来の徐放体では実現が困難な、多孔質担体が徐放体として再利用容易で、初期の形状が使用前後で変化せず維持され、徐放液を吸収する前の初期状態では不透明で、徐放液を吸収した箇所が透明または半透明となり、多孔質担体の透明性が変化する多孔質徐放体であって、高い持続性を維持するとともに、当該持続性以外の機能性やデザイン性を追求可能な多孔質徐放体を提供することを目的とする。
 本発明では、上記目的を達成するため、無機化合物の骨格体と3次元連続網目構造の空隙とを有する無機モノリス多孔体、及び、前記空隙内に吸収された徐放液を備え、前記無機モノリス多孔体が、前記徐放液を吸収する前の前記空隙内に空気が存在する初期状態では不透明であり、前記徐放液の屈折率と前記骨格体の屈折率が、前記空隙内に前記徐放液が吸収された部分が透明または半透明となる程度の誤差範囲内で等しいことを第1の特徴とする透明多孔質徐放体を提供する。
 尚、本発明において、「透明」とは、無機モノリス多孔体を通して、無機モノリス多孔体の背景にある文字や図形等が透けて認識できる状態を意味する。また、「半透明」とは、無機モノリス多孔体を通して、白濁等により透明度が「透明」と比較して低下しているが、無機モノリス多孔体の背景にある文字や図形等が認識できる状態を意味する。「不透明」とは、無機モノリス多孔体を通して、無機モノリス多孔体の背景にある文字や図形等が認識できない状態を意味する。
 更に、本発明では、モノリス多孔体は、粒状或いは粉状体の多孔質体のように多数を容器内に収容して使用する形態のものではなく、一塊の任意の形状を有し、単体で使用可能な多孔質体である。
 更に、本発明では、上記目的を達成するため、無機化合物の骨格体と3次元連続網目構造の空隙とを有し、前記空隙内に空気が存在する初期状態では不透明である無機モノリス多孔体を使用して、屈折率が前記空隙内に前記徐放液が吸収された部分が透明または半透明となる程度の誤差範囲内で前記骨格体の屈折率と等しい徐放液を前記空隙内に浸透させて、前記無機モノリス多孔体を、前記初期状態の不透明な状態から、前記空隙内に前記徐放液を吸収した部分が透明または半透明となる状態に変化させた後、前記徐放液を前記無機モノリス多孔体から徐々に放散させて、前記空隙内から前記徐放液が放散した部分を不透明な状態に戻すことを第1の特徴とする徐放方法を提供する。
 更に、上記第1の特徴の透明多孔質徐放体及び徐放方法は、前記骨格体が3次元連続網目構造を有し、前記空隙が、前記骨格体の間隙に形成された3次元連続網目構造の貫通孔と、前記骨格体の表面から内部に向けて延伸する前記表面に分散して形成された細孔からなる2段階階層的多孔構造を有し、前記細孔の孔径分布の最頻孔径が、2nm以上200nm以下の範囲内にあり、前記貫通孔の孔径分布の最頻孔径が、前記細孔の最頻孔径の5倍以上で、且つ、0.1μm以上100μm以下の範囲内にあることを第2の特徴とする。
 更に、上記特徴の透明多孔質徐放体及び徐放方法は、前記骨格体が3次元連続網目構造を有し、前記空隙が、前記骨格体の間隙に形成された3次元連続網目構造の貫通孔からなる1階層の多孔構造を有し、前記貫通孔の孔径分布の最頻孔径が、2nm以上100μm以下の範囲内にあることを第3の特徴とする。
 更に、上記第2の特徴の透明多孔質徐放体及び徐放方法は、前記貫通孔の孔径分布の最頻孔径が0.6μm以下であることが好ましい。
 更に、上記第2または第3の特徴の透明多孔質徐放体及び徐放方法は、前記貫通孔の孔径分布の最頻孔径が0.3μm以下であることが好ましい。
 更に、上記何れかの特徴の透明多孔質徐放体及び徐放方法は、前記無機化合物が、シリカ、または、ケイ素酸化物を主として含むケイ素酸化物複合体であることが好ましい。
 更に、上記何れかの特徴の透明多孔質徐放体及び徐放方法は、前記徐放液が、屈折率が1.4~1.6の範囲内にあり、且つ、前記骨格体の屈折率と前記誤差範囲内で等しい精油であることが好ましい。
 更に、本発明では、上記目的を達成するため、上記何れかの特徴の透明多孔質徐放体を構成する前記無機モノリス多孔体と前記徐放液を、前記無機モノリス多孔体の前記空隙内に前記徐放液が吸収されていない状態で個別に備えてなることを特徴とする徐放体キットを提供する。
 更に好ましくは、本発明では、上記何れかの特徴の透明多孔質徐放体または上記特徴の徐放体キットと、前記無機モノリス多孔体に対して光を照射する光源と、を備えていることを特徴とする徐放装置を提供する。
 更に、上記何れかの特徴の徐放方法は、前記徐放液を前記無機モノリス多孔体から放散させている過程で、前記無機モノリス多孔体に対して、光を照射することが好ましい。
 更に、本発明では、上記目的を達成するため、上記何れかの特徴の透明多孔質徐放体を構成する前記無機モノリス多孔体と前記徐放液を、各別に準備する工程と、前記徐放液を前記空隙内に浸透させて、前記無機モノリス多孔体を、前記初期状態の不透明な状態から、前記空隙内に前記徐放液を吸収した部分が透明または半透明となる状態に変化させる工程と、を有することを特徴とする透明多孔質徐放体の製造方法を提供する。
 上記何れかの特徴の透明多孔質徐放体及び徐放方法によれば、多孔質担体である無機モノリス多孔体が徐放体として再利用容易で、初期の形状が使用前後で変化せず維持され、徐放液を吸収する前の初期状態では不透明で、徐放液を吸収した箇所が透明または半透明となり、多孔質担体の透明性が変化する多孔質徐放体及び徐放方法であって、高い持続性を維持するとともに、当該透明性の変化に伴う視覚的効果または光学的効果を付加価値として備え、デザイン性に優れた多孔質徐放体及び徐放方法を実現できる。
 更に、上記特徴の徐放体キット及び透明多孔質徐放体の製造方法によれば、上記優れた特性を備えた透明多孔質徐放体を容易に作製できる。
 更に、上記特徴の徐放装置によれば、無機モノリス多孔体の透明性を利用して、光源から照射される光による視覚的効果または光学的効果を楽しむ用途が付加される。また、徐放液の蒸発或いは揮発に伴う無機モノリス多孔体の透明性の変化による視覚的効果または光学的効果の変化も楽しむことができる。
第1実施形態の無機モノリス多孔体の構造的特徴を模式的且つ平面的に示す断面図である。 第1実施形態のシリカモノリスの貫通孔及び細孔の孔径分布の一例を示す図である。 第1実施形態のシリカモノリスの3次元連続網目状構造の一例を示すSEM写真である。 第1実施形態のシリカモノリスの透明性の変化(初期状態、透明、半透明、不透明)を説明する写真である。 第1実施形態のシリカモノリスの透明性の評価結果を示す一覧表 図5の透明性の評価結果を示す散布図である。 第1実施形態のシリカモノリスと粒状シリカゲルの蒸発速度の測定結果を示す図である。 第2実施形態のシリカモノリスの貫通孔の孔径分布の一例を示す図である。 第2実施形態のシリカモノリスの透明性の評価結果を示す一覧表である。 図9の透明性の評価結果を示す散布図である。 無機モノリス多孔体をブローチ等に応用した一実施例を模式的に示す図である。 無機モノリス多孔体の露出面の一部をガラスで被覆した一実施例を模式的に示す図である。 シリカモノリスにレーザ光を入射させた場合の視覚的効果の一例を示す写真である。
 本発明に係る透明多孔質徐放体、徐放体キット、徐放方法、徐放装置、及び、透明多孔質徐放体の製造方法の実施の形態につき、図面に基づいて説明する。
 〈第1実施形態〉
 先ず、透明多孔質徐放体の一実施形態における構造的特徴について説明する。透明多孔質徐放体は、無機モノリス多孔体1の空隙内に徐放液を吸収させて構成される。
 本実施形態では、無機モノリス多孔体1は、図1に模式的且つ平面的に示すように、3次元連続網目構造の無機化合物からなる骨格体2を有し、更に、骨格体2の間隙に形成された貫通孔3と、骨格体2の表面から内部に向けて延伸する該表面に分散して形成された細孔4からなる2段階階層的多孔構造を有する。無機モノリス多孔体1の空隙は、当該貫通孔3と細孔4を合わせたものである。ところで、本明細書では、「骨格体の表面」は、貫通孔に向けて露出した骨格体の面を指し示し、骨格体に形成された細孔の内壁面は含まない。細孔の内壁面を含める場合には、「骨格体の総表面」と称する。また、無機モノリス多孔体1の外部に向けて露出した面を、単に「露出面」と称する。尚、貫通孔と細孔は、夫々、マクロポア、メソポアと呼ばれることもある。
 本実施形態では、骨格体2を形成する無機化合物として、シリカゲルまたはシリカガラス(SiO)を想定する。無機モノリス多孔体1(以下、適宜、「シリカモノリス」と称す。)は、細孔4の孔径分布の最頻孔径φ0mが、2nm以上200nm以下の範囲内にあり、貫通孔3の孔径分布の最頻孔径φ1mが、細孔4の最頻孔径φ0mの5倍以上で、且つ、0.1μm以上100μm以下の範囲内にある。尚、上記の貫通孔3の最頻孔径φ1m及び細孔4の最頻孔径φ0mの各範囲は、2段階階層的多孔構造の無機モノリス多孔体1を後述するスピノーダル分解ゾルゲル法で合成した場合に取り得る範囲である。つまり、最頻孔径φ0m及び最頻孔径φ1mは、特定の値に限定されないことを意味している。但し、後述するように、貫通孔3の最頻孔径φ1mを、0.6μm以下、より好ましくは0.3μm以下に制限することで、使用する徐放液の選択自由度を広げることができる。ところで、最頻孔径φ1mが最頻孔径φ0mの5倍以上という制約は、貫通孔3が骨格体2の間隙に形成され、細孔4が骨格体2の表面から内部に向けて形成されるという違い、及び、貫通孔3の孔径が骨格体2の直径と同等或いはそれ以上であることから、経験上設けられたものである。
 貫通孔3及び細孔4の各最頻孔径は、周知の水銀圧入法で測定した孔径分布の最頻値(モード値)である。尚、細孔4の孔径分布は、周知の窒素吸着測定によるBJH法により導出されたものを使用しても良い。また、貫通孔3の最頻孔径φ1mは、骨格体2の電子顕微鏡写真から任意の20乃至30程度の分散した箇所の貫通孔径の計測し、その平均値として導出される平均孔径と大差はない。図2に、水銀圧入法で測定した貫通孔3及び細孔4の孔径分布の一例を示す。横軸が貫通孔3及び細孔4の孔径(単位:μm)で、縦軸が微分細孔容積(単位:cm/g)である。但し、微分細孔容積は微分貫通孔容積も含む。左側のピークが細孔4の最頻孔径φ0mを示し、右側のピークが貫通孔3の最頻孔径φ1mを示している。図2の例では、貫通孔3及び細孔4の各最頻孔径は、約1.77μmと約17nmで、各半値幅は、約0.34μmと約3.4nmとなっている。以下、特に断らない限り、貫通孔3の孔径分布の最頻孔径を単に「貫通孔径」と、細孔4の孔径分布の最頻孔径を単に「細孔径」と適宜称する。
 本実施形態では、シリカモノリスは、以下で詳細に説明するスピノーダル分解ゾルゲル法で合成される。図3に、尚、シリカモノリスの3次元連続網目状構造を示すSEM(走査型電子顕微鏡)写真の一例を示す。次に、無機モノリス多孔体1の作製方法について説明する。当該作製方法は、ゾル調製工程、ゲル化工程、及び、除去工程に区分される。
 ゾル調製工程では、酸またはアルカリ性水溶液中に、シリカゲルまたはシリカガラスの原料となるシリカ前駆体と、ゾルゲル転移と相分離を並行して誘起する働きを有する共存物質を添加して、例えば5℃以下のゾルゲル転移が進行し難い低温下で攪拌し、加水分解反応を起こさせて、均一な前駆体ゾルを調製する。
 シリカ前駆体の主成分として、水ガラス(ケイ酸ナトリウム水溶液)、或いは、無機または有機シラン化合物が使用できる。無機シラン化合物の一例として、テトラメトキシシラン、テトラエトキシシラン、テトラ-イソプロポキシシラン、テトラ-n-ブトキシシラン、テトラ-t-ブトキシシラン等のテトラアルコキシシラン類が挙げられる。また、有機シラン化合物の一例として、メチル、エチル、プロピル、ブチル、ヘキシル、オクチル、デシル、ヘキサデシル、オクタデシル、ドデシル、フェニル、ビニル、ヒドロキシル、エーテル、エポキシ、アルデヒド、カルボキシル、エステル、チオニル、チオ、アミノ等の置換基を有するトリメトキシシラン、トリエトキシシラン、トリイソプロポキシシラン、トリフェノキシシラン等のトリアルコキシシラン類、メチルジエトキシシラン、メチルジメトキシシラン、エチルジエトキシシラン、エチルジメトキシシラン等のジアルコキシシラン類、ジメチルエトキシシラン、ジメチルメトキシシラン等のモノアルコキシシラン類等が挙げられる。また、モノアルキル、ジアルキル、フェニルトリエトキシ等の架橋反応速度制御基置換体を含むアルコキシシリケートやその二量体であるジシラン、三量体であるトリシランといったオリゴマー等もシリカ前駆体として想定される。上述の加水分解性シランは、種々の化合物が市販されており、容易且つ安価に入手可能であり、ケイ素-酸素結合からなる3次元架橋体を形成するゾルゲル反応を制御することも容易である。
 酸またはアルカリ性水溶液は、溶媒である水にシリカ前駆体の加水分解反応を促進する触媒として機能する酸または塩基が溶解した水溶液である。上記酸の具体例として、酢酸、塩酸、硫酸、硝酸、ギ酸、シュウ酸、及び、クエン酸等が、また、上記塩基の具体例として、水酸化ナトリウム、水酸化カリウム、アンモニア水、炭酸ナトリウム、炭酸水素ナトリウム、トリメチルアンモニウム等のアミン類、tert-ブチルアンモニウムヒドロキシド等のアンモニウムヒドロキシド類、及び、ソディウムメトキシド等のアルカリ金属アルコキシド類等が想定される。また、上記共存物質の具体例として、ポリエチレンオキシド、ポリプロピレンオキシド、ポリアクリル酸、ポリエチレンオキシドポリプロピレンオキシドブロック共重合体等のブロック共重合体、セチルトリメチルアンモニウムクロリド等の陽イオン性界面活性剤、ドデシル硫酸ナトリウム等の陰イオン性界面活性剤、及び、ポリオキシエチレンアルキルエーテル等のノニオン系界面活性剤等が想定される。尚、溶媒として水を使用するが、メタノールやエタノール等のアルコール類としても良い。
 ゲル化工程では、ゾル調製工程で調製された前駆体ゾルを、ゲル化容器内に注入し、例えば40℃程度のゾルゲル転移が進行し易い温度下でゲル化させる。ここで、前駆体ゾル内には、ゾルゲル転移と相分離を並行して誘起する働きを有する共存物質が添加されているため、スピノーダル分解が誘起され、3次元連続網目状構造を有するシリカヒドロゲル(湿潤ゲル)相と溶媒相の共連続構造体が徐々に形成される。
 ゲル化工程において、シリカヒドロゲル層が形成された後も、当該湿潤ゲルの重縮合反応が緩やかに進行して、ゲルの収縮が起こるため、ゲル化工程の後工程として、ゲル化工程でゾル収容体の空孔内に形成されたシリカヒドロゲル相と溶媒相の共連続構造体を、アンモニア水等の塩基性水溶液に浸漬し、加圧容器内で加熱処理することにより、シリカヒドロゲル相の加水分解反応、重縮合反応、及び、溶解再析出反応を更に進行させ、シリカヒドロゲル相の骨格構造をより強固なものにすることが可能となる。尚、当該ゲル化工程の後工程は、必要に応じて行えば良い。尚、当該加熱処理は、必ずしも加圧容器や密閉容器内で行わなくても差し支えないが、加熱によりアンモニア成分等が生成または揮発する場合があるので、密閉容器内、或いは、耐圧性を有する加圧容器内で処理するのが好ましい。
 シリカヒドロゲル相の骨格体を形成するシリカ微粒子の溶解再析出反応の進行により、当該骨格体に形成される細孔径が拡大される。更に、水熱処理により、当該溶解再析出反応を繰り返すことにより、細孔径を更に拡大する制御が可能となる。尚、細孔径の制御は、前駆体ゾル内に上記触媒及び共存物質以外に尿素を添加することによっても実現できる。尿素は60℃以上の温度下で加水分解してアンモニアを生成し、当該アンモニアにより、ゲル化工程で合成された湿潤ゲルの骨格体に形成される細孔の孔径が拡張されるため、尿素の添加により当該細孔径の制御が可能となる。一方、貫通孔の構造及び孔径の制御は、ゾル調製工程で前駆体ゾルに添加する水やシリカ前駆体の量、或いは、共存物質の組成及び添加量等の調整により可能となる。
 引き続き、除去工程において、湿潤ゲルの洗浄と乾燥或いは乾燥のみを行い、添加剤や未反応物等を含む溶媒相を除去する。溶媒相除去後の空間が貫通孔となる。洗浄により、溶媒相内に残留した添加剤や未反応物等によって生ずる乾燥時の表面張力を解消し、乾燥時にゲルに歪みや割れが生じるのを抑制できる。洗浄液は、有機溶剤や水溶液等の液体が望ましい。また、有機化合物や無機化合物を溶解させた液体を用いることもできる。更に、洗浄液として酸やアルカリ等のゲルの等電点と異なるpHの溶液を用いても、ゲル内に残留した添加材等を容易に除去することができる。具体的には、塩酸、硫酸、硝酸、フッ酸、酢酸、ギ酸、炭酸、クエン酸、リン酸を始めとする各種の酸、及び、水酸化ナトリウム、水酸化カリウム、アンモニア、水溶性アミン、炭酸ナトリウム、炭酸水素ナトリウムを始めとする各種の塩基を用いることができる。湿潤ゲルの乾燥は、自然乾燥を採用しても良く、更に湿潤ゲルを乾燥させる際に生ずる歪みや割れを解消するために、湿潤ゲル内の溶媒を、イソプロパノール、アセトン、ヘキサン、ハイドロフルオロカーボン等の水より表面張力が低い低表面張力溶媒に置換してから行う乾燥、凍結昇華による乾燥、更に、湿潤ゲル内の溶媒を超臨界状態の二酸化炭素に交換してから無表面張力状態で行う超臨界乾燥等を採用するのも好ましい。
 引き続き、得られた乾燥ゲルは焼成により焼結させシリカガラスとすることが可能である。尚、焼成温度が、シリカのガラス転移温度(約1000℃)より低温の場合は、シリカガラスには成らない。
 以上のゾル調製工程、ゲル化工程、及び、除去工程を経て、2段階の階層的多孔構造を有する3次元連続網目状構造の乾燥シリカゲルまたはシリカガラスの無機モノリス多孔体1が得られる。
 上記要領で作製されたシリカモノリスは、作製後の初期状態では、空隙(貫通孔3及び細孔4)内には、徐放液ではなく、屈折率が1.000293の空気が存在している。一方、骨格体2は屈折率が約1.45~1.5のシリカゲルまたはシリカガラスであるので、骨格体2の総表面において、約0.45~0.5の屈折率差が生じている。更に、貫通孔3は、骨格体2と同様に、骨格体2の間隙に3次元連続網目状に形成されており、また、骨格体2の表面には無数の細孔が形成されているため、外部からシリカモノリス内に入射した光は、骨格体2と空隙内の空気との界面において、上記屈折率差による反射及び屈折を不規則且つ多重的に繰り返すため、初期状態のシリカモノリスは、外部からは白濁して不透明に見える。また、上記要領で作製されたシリカモノリスは、空隙率を50%以上とすることができ、後述する実施例では、85%~90%と高い空隙率となっている。
 シリカモノリスの空隙内に吸収させる徐放液は、徐放液を吸収した後のシリカモノリスが、不透明な状態から、透明または半透明な状態に変化するものであれば、特定の液体に限定されるものではない。つまり、徐放液の屈折率と骨格体2の屈折率が、空隙内に徐放液が吸収された部分が透明または半透明となる程度の誤差範囲内で等しければ良い。但し、徐放液を吸収後のシリカモノリスは、半透明より透明である方が、視覚的効果及び光学的効果がより顕著となり好ましいため、徐放液は、シリカモノリスが透明な状態に変化するものがより好ましい。
 空隙内に徐放液が吸収された部分が透明または半透明となる理由は、骨格体2と空隙内の徐放液との界面における屈折率差が、上記初期状態における屈折率差より小さくなり、界面での当該屈折率差による反射及び屈折の程度が、上記初期状態の場合に比べて緩和されるためである。但し、徐放液と骨格体2の屈折率差が十分に小さくなければ、つまり、上記誤差範囲内になければ、界面での反射及び屈折の程度が十分に緩和されず、白濁して不透明となる。
 尚、徐放液は、当該徐放液の徐放によって期待される効果に応じて、上記屈折率の条件下で、適宜好適なものを選択すればよい。例えば、透明多孔質徐放体を芳香体として使用する場合では、徐放液として、屈折率が骨格体2の屈折率と上記誤差範囲内で等しいアロマオイル(精油)が使用できる。アロマオイルは、屈折率が1.4~1.6の範囲内のものが多く存在しており、シリカの屈折率である約1.45~1.5に近似しており、上記誤差範囲内で等しくなるものが多く、種々選択できる。以下の説明では、便宜的に、空隙内に徐放液が吸収された部分が透明または半透明となる程度の誤差範囲を「第1誤差範囲」、空隙内に徐放液が吸収された部分が透明となる程度の誤差範囲を「第2誤差範囲」と定義する。当然に、「第2誤差範囲」の方が、「第1誤差範囲」より狭くなる。また、屈折率差は大きい方の屈折率から小さい方の屈折率を引いた差(正値)で表す。尚、上記第1及び第2誤差範囲は、後述するように、一定ではなく、貫通孔3の分布範囲に依存して変化し、また、細孔の有無によっても僅かに変化する。
 図4は、扁平な円柱形のシリカモノリス(直径10mm、厚み5mm)の初期状態、屈折率の異なる3種類の液体を夫々吸収して、透明、半透明、不透明となっている状態の合計4通りの状態を示す写真である。図4(A)は、初期状態のシリカモノリスを透明なガラスシャーレ上に置いた様子を示しており、完全に白濁して不透明である。図4(B)は、シリカモノリスを透明なガラスシャーレ上に置いてアロマオイルを吸収させて透明に変化した状態を示しており、ガラスシャーレの下側の背景にある文字「A]が、シリカモノリスとガラスシャーレを通してはっきりと認識できる。図4(C)は、シリカモノリスを透明なガラスシャーレ上に置いて別のアロマオイルを吸収させて半透明に変化した状態を示しており、シリカモノリスは僅かに白濁しているが、ガラスシャーレの下側の背景にある文字「A]が、シリカモノリスとガラスシャーレを通して認識できる。図4(D)は、シリカモノリスをガラスシャーレ上に置いて更に別のアロマオイルを吸収させた後も不透明な状態であることを示しており、シリカモノリスは、図4(C)の半透明状態より白濁しており、ガラスシャーレの下側の背景にある文字「A]が、シリカモノリスとガラスシャーレを通して認識できない。但し、図4(D)の不透明な状態は、図4(A)の初期状態の不透明な状態より、白濁の程度は弱いことが分かる。図4(A)と図4(D)の当該白濁の程度の差は、初期状態における骨格体と空気の屈折率差と骨格体とアロマオイルの屈折率差が、何れも上記第1誤差範囲より大きいものの、後者の屈折率差の方が、前者の屈折率差より小さいためである。
 次に、上述のスピノーダル分解ゾルゲル法で合成した貫通孔径の異なる2段階階層的多孔構造のシリカモノリスと、屈折率の異なる種々の徐放液とを組み合わせて、空隙内に徐放液が吸収された部分が透明または半透明となる骨格体と徐放液に屈折率差の許容範囲(上記誤差範囲)を調査した実験結果について説明する。
 徐放液として使用した6種類のアロマオイル(精油)と8種類の有機溶剤と水の15種類の液体に対して、貫通孔径が、0.1μm、0.3μm、0.6μm、1μm、2μm、5μm、10μmの7通りの場合について、図4に示すシリカモノリスと同じ形状及び大きさの初期状態のシリカモノリスに、上記徐放液を吸収させた後の透明性について目視で確認した結果を、図5の一覧表と図6の散布図にまとめて示す。
 尚、上記7通りの貫通孔径のシリカモノリスは、上述の作製方法により、具体的には、0.01mol/Lの酢酸水溶液10mL(ミリリットル)中に、共存物質であるポリエチレングリコール(分子量10000)0.6~1.1gを溶解させ、テトラメトキシシラン(TMOS、シリカ前駆体)5mLを加え、攪拌して均一溶液とした後、40℃でゲル化させ、その後、当該ゲルを0.1Mアンモニア水に浸して密閉容器内で80℃にて24時間加熱した後、600℃で5時間焼結して作製した。貫通孔径は、添加するポリエチレングリコールの量を増減させて制御した。各シリカモノリスの細孔径は何れも12nmである。各シリカモノリスの空隙率は、貫通孔径が、10μmと2μmで85%、5μmと1μmで87%、0.6μmで88%、0.3μmで89%、0.1μmで90%であった。但し、空隙率は、シリカモノリスの重量及び体積から、かさ密度を算出し、シリカモノリスの真密度2.2g/mLで除した値をパーセント値に換算して導出した。
 図5では、透明性の評価結果の「透明」、「半透明」、「不透明」を順番に記号○、△、×で表記し、上記15種類の徐放液と7通りの貫通孔径の組み合わせの内、透明性を評価していない組み合わせについては、空欄で表示している。図6は、図5に示す結果を、横軸が対数スケールの貫通孔径、縦軸が線形スケールの屈折率の散布図上に、図5と同様に記号○、△、×でプロットした図である。
 図5及び図6の結果より、徐放液が屈折率1.473のグリセリンの場合、シリカモノリスの貫通孔径に関係なく、透明となっている。これより、シリカモノリスの骨格体の屈折率が、グリセリンの屈折率1.473と上記第2誤差範囲内で等しいことが分かる。
 次に、貫通孔径が2μmの場合、徐放液の屈折率が1.442以上1.473以下で透明となっており、徐放液の屈折率が1.4305と1.48で半透明となっており、徐放液の屈折率が1.424以下及び1.49以上で不透明となっている。このことから、骨格体2の屈折率が、1.424と1.49の間、且つ、1.4305と1.48の間、且つ、1.442と1.473の間にあることが推察される。ここで、骨格体2の屈折率をNとし、上記第1誤差範囲の上限値をD1とし、上記第2誤差範囲の上限値をD2とした場合、透明、半透明、不透明となる屈折率の上記の境界付近の屈折率より、下記の数1~数6の不等式が得られる。
 (数1) 1.49-N>D1
 (数2) N-1.424>D1
 (数3) 1.48-N≦D1
 (数4) N-1.4305≦D1
 (数5) 1.473-N≦D2<D1
 (数6) N-1.442≦D2<D1
 更に、上記数1と数4からD1を消去し、上記数2と数3からD1を消去すると、下記の数7に示す不等式が得られる。更に、上記数1と数2からNを消去し、上記数3と数4からNを消去すると、下記の数8に示す不等式が得られる。また、上記数1と数2からNを消去し、上記数5と数6からNを消去すると、下記の数9に示す不等式が得られる。
 (数7) 1.452<N<1.46025
 (数8) 0.02475≦D1<0.033
 (数9) 0.0155≦D2<D1<0.033
 数7~数9より、本実施形態のシリカモノリスの骨格体2の屈折率Nは、1.452と1.46025の間に存在すること、第1誤差範囲の上限値D1は、0.02475と0.033の間に存在すること、第2誤差範囲の上限値D2は、0.0155と0.033の間に存在することが分かる。
 図5及び図6より、貫通孔径が0.1μm~0.6μmの範囲内において小さくなるほど、透明と判定される屈折率の範囲が、貫通孔径が2μmの場合の範囲(1.442~1.473)より、上下に拡大していることが分かる。具体的には、貫通孔径が0.6μmの場合、1.442~1.49に、貫通孔径が0.3μmの場合、1.424~1.528に、貫通孔径が0.1μmの場合、1.375~1.528に、夫々拡大している。同様に、透明または半透明と判定される屈折率の範囲も、貫通孔径が2μmの場合の範囲(1.4305~1.48)より、上下に拡大していることが分かる。具体的には、貫通孔径が0.6μmの場合、1.424~1.5012に、貫通孔径が0.3μmの場合、1.375~1.528超に、貫通孔径が0.1μmの場合、1.333~1.528超に、夫々拡大している。つまり、貫通孔径が0.6μm、0.3μm、0.1μmと小さくなると、第1誤差範囲の上限値D1及び第2誤差範囲の上限値D2が大きくなることが分かる。
 逆に、貫通孔径が0.6μmより大きいと、シリカモノリスを透明または半透明にするには、徐放液の屈折率は、骨格体2の屈折率に対して、数8に示す第1誤差範囲の上限値D1で定まる第1誤差範囲内に制限する必要があり、シリカモノリスを透明にするには、徐放液の屈折率は、骨格体2の屈折率に対して、数9に示す第2誤差範囲の上限値D2で定まる第2誤差範囲内に制限する必要がある。この点は、図5及び図6より、貫通孔径が1.0μm以上において、シリカモノリスが透明、半透明、または、不透明となる徐放液の屈折率に差がないことから明らかである。
 しかし、貫通孔径が0.6μm以下になると、第1誤差範囲及び第2誤差範囲が夫々拡大するので、シリカモノリスを透明または半透明にできる徐放液の屈折率範囲、及び、シリカモノリスを透明にできる徐放液の屈折率範囲が、夫々拡大するため、徐放液の選択自由度が大幅に広がる。尚、当該徐放液の選択自由度は拡大する効果は、貫通孔径が0.3μm以下でより顕著となる。一例として、徐放液としてイランイラン(精油)を使用する場合、貫通孔径が1μm以上の場合では、シリカモノリスは不透明のままであるが、貫通孔径が0.6μmで半透明になり、貫通孔径が0.3μm以下では透明となる。
 既に、空隙内に徐放液が吸収された部分が透明または半透明となる理由について、反射、屈折等の幾何光学的な現象に基づいて簡単に説明したが、貫通孔径が0.6μm以下の範囲で小さくなるほど、透明または半透明となる屈折率の範囲が拡大する一因としては、以下のことが考えられる。
 シリカモノリスのような一体型の多孔質体は骨格体と貫通孔からなる周期構造を持つ。また、当該周期構造の周期は、貫通孔径と骨格体径が略等しいため、貫通孔径の約2倍となる。但し、貫通孔径は、図2に示す水銀圧入法で測定されるような孔径分布を有するため、当該周期も同様に分布を有する。従って、当該周期が、可視光の波長範囲(0.38μm~0.78μm)に対して同等程度になると、幾何光学近似が成り立たずに、波動光学的な現象、或いは、量子光学的な現象が顕在化するものと考えられる。その結果、骨格体の屈折率と空隙内の徐放液の屈折率の差の影響も、幾何光学近似下での屈折率差の影響とは相違するものと考えられ、結果として、屈折率差が見かけ上緩和されるものと推察される。
 屈折率が骨格体2の屈折率と、貫通孔径に応じた上記第1または第2誤差範囲内で等しいアロマオイル等の徐放液を準備し、上述の合成方法で作製されたシリカモノリスの空隙内に当該徐放液を吸収させて、空隙内に徐放液が吸収された部分を、初期状態の不透明な状態から透明または半透明の状態に変化させることで、透明多孔質徐放体が製造される。
 透明多孔質徐放体を用いた徐放方法では、製造された透明多孔質徐放体のシリカモノリスの露出面が開放されていると、当該開放箇所から徐放液が徐々に蒸発して、シリカモノリス外に放散される。シリカモノリスの徐放液が蒸発した箇所の空隙内には、外部の空気が入れ替わり侵入するため、部分的に白濁して不透明状態に戻る。従って、透明多孔質徐放体は徐放液が放散するに従い、透明または半透明部分が徐々に白濁して不透明状態に変化し、最終的に、透明多孔質徐放体の全体が初期状態と同じ不透明状態に戻る。つまり、透明多孔質徐放体の透明または半透明部分と不透明部分を割合が外部から目視により確認できるため、徐放液の残存状態が容易に確認できる。また、徐放液の残存状態に応じて、シリカモノリスの透明状態が変化するため、上述の徐放液の残存状態の確認以外に、透明状態の変化による視覚的効果或いは光学的効果を楽しむこと、更に、当該効果を応用して、芳香等の徐放液による機能以外の機能を付加して、徐放液の放散を当該付加価値とともに楽しむことが可能である。
 次に、シリカモノリスの蒸発速度及びその制御方法につき検討した結果を説明する。図7に、円柱状のシリカモノリスのサンプル#1と、当該シリカモノリスの露出面の内の円柱側面をガラス管で被覆し上下の端面を開放したサンプル#2と、比較例としての粒状シリカゲルの比較サンプルの3種類について、以下の要領で、各サンプルにアロマオイルを吸収させた直後からの複数の経過時間におけるアロマオイルの残存率(%)を測定した結果を示す。サンプル#1及び#2のシリカモノリスは、直径4mm、長さ30mm、貫通孔径2μm、細孔径12nm、及び、空隙率85%であり、サンプル#2のガラス管は、外径6mm、内径4mm、及び、長さ30mmであり、比較サンプルは、粒径0.6mm、細孔径2nm、及び空隙率20%である。
 アロマオイルとして、屈折率1.472のレモン精油を使用した。サンプル#1及び#2に対しては、シリカモノリスの開放されている露出面からレモン精油を滴下して、全体が透明になるまでレモン精油を吸収させた。比較サンプルに対しては、試験管に粒状シリカゲルを入れ乾燥させ、レモン精油を試験管内に入れて粒状シリカゲルに浸透させた後、レモン精油が完全に浸透したシリカゲルを時計皿に取り出した。レモン精油の吸収前と吸収直後の各サンプルの重量変化から残存率100%でのレモン精油の吸収量を算出し、レモン精油の各測定時とレモン精油の吸収前の各サンプルの重量差から各測定時のレモン精油の吸収量を算出し、各測定時のレモン精油の吸収量を上記残存率100%でのレモン精油の吸収量で除してパーセント値に換算して、レモン精油の残存率を算出した。
 サンプル#1と比較サンプルについては、常温と60℃の2通りの温度条件でレモン精油を放散させた。サンプル#2については常温下でのみレモン精油を放散させた。
 図7に示すサンプル#1及び比較サンプルの測定結果より、シリカモノリスに吸収されたアロマオイルは、温度条件に拘わらず、残存率2.5%程度以下まで放散されるのに対して、粒状シリカゲルに吸収されたアロマオイルは、常温では残存率90%までしか放散できず、60℃に加温しても、残存率63%までしか放散できず、吸収したアロマオイルの半分以上が放散されないことが分かった。これより、シリカモノリスは徐放体の担体として好適であり、アロマオイルがほぼ全て蒸発した後に再利用可能であることが分かる。一方、粒状シリカゲルは徐放体の担体として不適であり、仮に徐放体の担体として使用しても再利用できないことが分かる。尚、サンプル#1の測定で、残存率0%まで測定していないのは、残存率が0%に近付くに従い蒸発速度が低下し、0%近傍まで低下するには、経過時間が極端に長くなるため、測定を割愛したためである。
 次に、図7に示すサンプル#1及び#2の常温での測定結果より、シリカモノリスの露出面を一部被覆することで、アロマオイルの蒸発速度を制御できることが分かる。アロマオイルが約70%と約25%の残存率まで蒸発するのに要した経過時間は、シリカモノリスの露出面を被覆していないサンプル#1では、約1.4時間と約4時間であったのに対して、シリカモノリスの円柱側面をガラス管で被覆したサンプル#2では、約26時間と約90時間(図7には図示せず)であった。サンプル#2は、サンプル#1より、アロマオイルが約70%と約25%の残存率まで蒸発するのに、約18.6倍と約22.5倍の経過時間を要している。一方、サンプル#2の開放されている露出面の面積は、サンプル#1の露出面の面積の16分の1である。従って、シリカモノリスの露出面を被覆して開放面積をM分の1に減少させると、アロマオイルの放散時間をM倍より長く持続させることが可能となる。尚、シリカモノリスの体積当たりの露出面の面積を小さくすることでも、アロマオイルの放散時間を長くすることができる。例えば、サンプル#1の直径を2倍にし、長さを4分の1にすると、同じ体積で露出面の面積は約48%に減少するため、アロマオイルの放散時間を2倍以上に長くすることができる。
 〈第2実施形態〉
 上記第1実施形態では、無機モノリス多孔体1は、貫通孔3と細孔4からなる2段階階層的多孔構造を有する場合を想定したが、第2実施形態では、無機モノリス多孔体1は、骨格体2と、骨格体2の間隙に形成された貫通孔3からなる1階層の多孔構造を有するものを使用する。
 第2実施形態においても、骨格体2を形成する無機化合物として、シリカゲルまたはシリカガラス(SiO)を想定する。貫通孔3の孔径分布の最頻孔径φ1mは、第1実施形態の2段階階層的多孔構造の貫通孔3の最頻孔径φ1mと細孔4の最頻孔径φ0mの各範囲を合わせた範囲と同じ、2nm以上100μm以下の範囲内にある。但し、後述するように、第1実施形態と同様に、貫通孔3の最頻孔径φ1mを、0.6μm以下、より好ましくは0.3μm以下に制限することで、使用する徐放液の選択自由度を広げることができる。
 1階層の多孔構造のシリカモノリスは、第1実施形態の2段階階層的多孔構造のシリカモノリスと同様に、スピノーダル分解ゾルゲル法で合成される。スピノーダル分解ゾルゲル法を用いたシリカモノリスの作製方法の詳細は、第1実施形態で説明したので、重複する説明は割愛する。但し、1階層の多孔構造とするために、以下の3通りの何れかの処理を行う。
 第1の処理方法は、なるべく小さい細孔径で2段階階層的多孔構造のシリカモノリスを作製し、得られた乾燥ゲルを1000℃以上の温度で焼結させ、焼結時に骨格体を約2分の1に収縮させて骨格体に形成された細孔を消滅させる。この場合、貫通孔径も約2分の1に収縮するため、貫通孔径の範囲は50μm以下となる。
 第2の処理方法は、第1実施形態で説明したように、貫通孔の構造及び孔径の制御は、ゾル調製工程で前駆体ゾルに添加する水やシリカ前駆体の量、或いは、共存物質の組成及び添加量等の調整により可能であるので、例えば、共存物質であるポリエチレングリコールの量を調整することで、貫通孔径を0.1μm以下に制御して、貫通孔と細孔の孔径分布を同じ範囲内に重ねることで、貫通孔と細孔を区別できなくして、見かけ上、細孔を消滅させる。この場合、骨格体は、3次元連続網目状構造の一種ではあるが、粒状シリカゲルが3次元的に連続して凝集した粒子凝集体のような構造となる。第2実施形態では、当該貫通孔と細孔を統合して貫通孔と称する。
 第3の処理方法は、細孔径は、例えば、0.1Mアンモニア水で加熱する温度と時間を調整して制御可能であるので、当該処理を省略することで細孔の形成を抑制し、細孔径を0μmにする。但し、骨格体の表面の一部に微細な細孔が形成される可能性があるため、上記第1の処理方法を追加しても良い。
 第2の処理方法を採用したシリカモノリスの作製方法の一具体例として、0.01mol/Lの酢酸水溶液10mL(ミリリットル)中に、共存物質であるポリエチレングリコール(分子量10000)1.2gを溶解させ、テトラメトキシシラン(TMOS、シリカ前駆体)5mLを加え、攪拌して均一溶液とした後、40℃でゲル化させ、その後、当該ゲルを0.1Mアンモニア水に浸して密閉容器内で80℃にて24時間加熱した後、600℃で5時間焼結することで、貫通孔径0.1μm以下の1階層の多項構造のシリカモノリスが作製される。
 第3の処理方法を採用したシリカモノリスの作製方法の一具体例として、0.01mol/Lの酢酸水溶液10mL(ミリリットル)中に、共存物質であるポリエチレングリコール(分子量10000)0.9gを溶解させ、テトラメトキシシラン(TMOS、シリカ前駆体)5mLを加え、攪拌して均一溶液とした後、40℃でゲル化させ、その後、当該ゲルを乾燥させた後、600℃で5時間焼結することで、貫通孔径1μmの1階層の多項構造のシリカモノリスが作製される。
 第2の処理方法に、第3の処理方法を追加することも可能である。この場合の一具体例として、0.01mol/Lの酢酸水溶液10mL(ミリリットル)中に、共存物質であるポリエチレングリコール(分子量10000)1.2gを溶解させ、テトラメトキシシラン(TMOS、シリカ前駆体)5mLを加え、攪拌して均一溶液とした後、40℃でゲル化させ、その後、当該ゲルを乾燥させた後、600℃で5時間焼結することで、貫通孔径0.1μm以下の1階層の多項構造のシリカモノリスが作製される。
 図8に、上記第2の処理方法で作製されたシリカモノリスの窒素吸脱着法で測定した貫通孔の孔径分布の2種類の例(孔径分布1及び2)を示す。横軸が貫通孔の孔径(単位:μm)で、縦軸が微分細孔容積(単位:cm/g)である。尚、孔径分布1(最頻孔径が約4nm)の空隙率は77%で、孔径分布2(最頻孔径が約40nm)の空隙率は79%である。図8より明らかなように、貫通孔及び細孔の各孔径分布は区別できない。
 第2実施形態においても、シリカモノリスの空隙内に吸収させる徐放液は、徐放液を吸収した後のシリカモノリスが、不透明な状態から、透明または半透明な状態に変化するものであれば、特定の液体に限定されるものではない。つまり、徐放液の屈折率と骨格体2の屈折率が、空隙内に徐放液が吸収された部分が透明または半透明となる程度の誤差範囲内で等しければ良い。但し、徐放液を吸収後のシリカモノリスは、半透明より透明である方が、視覚的効果及び光学的効果がより顕著となり好ましいため、徐放液は、シリカモノリスが透明な状態に変化するものがより好ましい。徐放液の屈折率に関しては、第1実施形態で行った説明が、基本的にそのまま妥当するので、重複する説明は割愛する。
 次に、貫通孔径の異なる1階層の多孔構造のシリカモノリスと、屈折率の異なる種々の徐放液とを組み合わせて、空隙内に徐放液が吸収された部分が透明または半透明となる骨格体と徐放液に屈折率差の許容範囲(上記誤差範囲)を調査した実験結果について説明する。
 徐放液として使用した5種類の有機溶剤と水の6種類の液体に対して、貫通孔径(最頻値)が、4nm、40nm、0.1μm、0.3μm、0.6μmの5通りの場合について、図4に示すシリカモノリスと同じ形状及び大きさの初期状態のシリカモノリスに、上記徐放液を吸収させた後の透明性について目視で確認した結果を、図9の一覧表と図10の散布図にまとめて示す。
 貫通孔径(最頻値)が4nmと40nmのサンプルは、上記第2の処理方法で作製した図8に示す孔径分布1と孔径分布2のサンプルである。貫通孔径(最頻値)が0.1μm、0.3μm、0.6μmの各サンプルは、上記第3の処理方法で作製したサンプルである。
 図9では、透明性の評価結果の「透明」、「半透明」、「不透明」を順番に記号○、△、×で表記し、上記6種類の徐放液と5通りの貫通孔径の組み合わせの内、透明性を評価していない組み合わせについては、空欄で表示している。図10は、図9に示す結果を、横軸が対数スケールの貫通孔径、縦軸が線形スケールの屈折率の散布図上に、図9と同様に記号○、△、×でプロットした図である。
 図9及び図10の結果より、徐放液が屈折率1.473のグリセリンの場合、シリカモノリスの貫通孔径に関係なく、透明となっている。これより、シリカモノリスの骨格体の屈折率が、グリセリンの屈折率1.473と上記第2誤差範囲内で等しいことが分かる。尚、シリカモノリスの骨格体の屈折率は、第1実施形態の場合と同様、1.452と1.46025の間に存在する(数7参照)。
 図9及び図10より、貫通孔径が0.6μm以下の範囲内において小さくなるほど、透明と判定される屈折率の範囲が、貫通孔径が0.6μmの場合より、上下に拡大していることが分かる。具体的には、貫通孔径が0.6μmの場合、屈折率1.473のグリセリンだけが透明で、それ以外は不透明であったのに対して、貫通孔径が0.3μmの場合、1.424~1.5012に、貫通孔径が0.1μmの場合、1.375~1.528に、夫々拡大している。同様に、透明または半透明と判定される屈折率の範囲も、貫通孔径が0.6μmの場合より、上下に拡大していることが分かる。具体的には、貫通孔径が0.3μmの場合、1.375~1.528に、貫通孔径が0.1μmの場合、1.333~1.528超に、夫々拡大している。つまり、貫通孔径が0.3μm、0.1μmと小さくなると、第1誤差範囲の上限値D1及び第2誤差範囲の上限値D2が大きくなることが分かる。更に、貫通孔径が40nmになると、屈折率が1.333の水でもシリカモノリスが透明になるが、逆に、貫通孔径が4nmになると、水の場合にシリカモノリスが半透明になり、貫通孔径が0.1μmの場合と同様になる。貫通孔径が4nmと40nmの場合は、孔径分布の幅及び形状に差があるため、単純に貫通孔径の差だけで比較するのは困難である。しかし、貫通孔径が0.1μm以下の場合は、明らかに、貫通孔径が0.3μmの場合と比較して、透明と判定される屈折率の範囲、及び、透明または半透明と判定される屈折率の範囲が拡大している。つまり、貫通孔径が0.3μm、0.1μm、40nmと小さくなると、第1誤差範囲の上限値D1及び第2誤差範囲の上限値D2が大きくなることが分かる。
 次に、図9及び図10の測定結果と、第1実施形態の図5及び図6の測定結果を比較すると、第1実施形態の2段階階層的多孔構造のシリカモノリスでは、貫通孔径0.6μmにおいて、屈折率が1.424のジクロロメタンと屈折率が1.5012のベンゼンを吸収させた場合、半透明になっていたが、第2実施形態の1階層の多孔構造のシリカモノリスでは、何れも不透明である。また、貫通孔径0.3μmにおいて、屈折率が1.528のベンゾニトリルを吸収させた場合、第1実施形態の2段階階層的多孔構造のシリカモノリスでは、透明であったが、第2実施形態の1階層の多孔構造のシリカモノリスでは、半透明になっている。従って、2段階階層的多孔構造のシリカモノリスを1階層の多孔構造に変更することで、貫通孔径が0.6μm及び0.3μmでは、第1誤差範囲及び第2誤差範囲が僅かに縮小する傾向にあることが分かる。しかし、1階層の多孔構造の場合、貫通孔径を0.1μmより更に小さくできるため、逆に、第1誤差範囲及び第2誤差範囲を僅かに拡大できる余地があることが分かる。
 貫通孔径が0.6μm及び0.3μmの場合に、細孔の有無によって、第1誤差範囲及び第2誤差範囲に僅かに差が生じる理由としては、第1実施形態において、貫通孔径が0.6μm以下の範囲で小さくなるほど、透明または半透明となる屈折率の範囲が拡大する一因として説明した内容と基本的には同じと考えられる。つまり、骨格体の表面に、可視光の波長範囲(0.38μm~0.78μm)より短い孔径の細孔が分散して形成されることで、骨格体の屈折率と空隙内の徐放液の屈折率の差が、見かけ上、更に緩和されており、細孔が無い場合には、当該緩和効果が薄れて、第1誤差範囲及び第2誤差範囲に僅かに狭まるものと推察される。
 透明多孔質徐放体の製造方法、透明多孔質徐放体を用いた徐放方法、シリカモノリスの蒸発速度及びその制御方法については、第1実施形態と基本的に同じであるので、重複する説明は割愛する。
 〈第3実施形態〉
 上記第1及び第2実施形態では、ユーザが完成された透明多孔質徐放体を使用することを前提として説明したが、ユーザに対して、透明多孔質徐放体を構成する初期状態の無機モノリス多孔体(シリカモノリス)と上述の徐放液を個別に備えてなる徐放体キットを提供することも可能である。この場合、ユーザは、提供された初期状態の無機モノリス多孔体の露出面から、徐放液を滴下して空隙内に吸収させ、無機モノリス多孔体を不透明状態から透明または半透明の状態に変化させることで、上記第1及び第2実施形態で説明した透明多孔質徐放体を完成することができる。
 尚、当該徐放体キットに含まれる徐放液は1種類に限定されるものではなく、複数種の徐放液が付属していても良い。この場合、ユーザは、1種類の徐放液が残存率0%またはその近傍まで蒸発した後、別の種類の徐放液を同じ無機モノリス多孔体の空隙内に吸収させて別の新たな透明多孔質徐放体を完成させることができる。複数種の徐放液が異なる種類のアロマオイルの場合は、複数種の香りを取り換えて楽しむことができる。この場合、無機モノリス多孔体の貫通孔径が0.3μm以下であると、第1実施形態で説明したように、アロマオイルの選択自由度が広がり好ましい。
 〈別実施形態〉
 次に、上記第1乃至第3実施形態の変形例につき説明する。
 〈1〉 上記第1または第2実施形態の透明多孔質徐放体、上記第3実施形態の徐放体キットの無機モノリス多孔体は素体に限定されるものではなく、無機モノリス多孔体の露出面の一部が、第1実施形態で説明したような透明なガラス管等で被覆されている形態で提供されても良い。当該被覆物は、無機モノリス多孔体に着脱不能に固定されていても良く、着脱自在に固定されていても良く、また、ユーザが取り付ける形態であっても良い。
 更に、当該被覆物として形状、色、材質等の少なくとも何れか1つが異なる複数のものを付属品として、透明多孔質徐放体または徐放体キットに含めても良い。
 無機モノリス多孔体にデザイン性を付与するために、例えば、図11に示すように、上記被覆物として、指輪、ブローチ等の台座10を用い、宝石等が載置される箇所に、当該台座10に載置するのに適した形状に加工された無機モノリス多孔体1を、取り付けるのも好ましい実施の形態である。上述の徐放方法の視覚的効果を楽しむ一例として、無機モノリス多孔体1を取り付ける箇所に、文字や図形等を設けておくと、徐放液を吸収させて無機モノリス多孔体1を透明状態にすると、当該文字や図形等が透けて見えるという視覚的効果が楽しめる。
 更に、別の実施態様として、例えば、図12に例示するように、柱状の無機モノリス多孔体1の側面に溶融ガラスを付着させて任意の形状、例えば、球形に成形して冷却させてガラス製の被覆物11としても良い。更に、溶融ガラスを接着剤兼上記被覆物として用い、複数の無機モノリス多孔体1を組み合わせて任意の形状に形成しても良い。
 〈2〉上記各実施形態の無機モノリス多孔体の骨格体の表面は、表面修飾されていないが、仮に、何らかの表面修飾がなされていても、上記第1及び第2誤差範囲に影響を与えず、徐放液を吸収した際の透明状態が、表面修飾されていない場合と比較して変わらなければ、或いは、上記第1及び第2誤差範囲に影響を与えたとしても、徐放液を吸収した際に、表面修飾されていない場合と同様に、無機モノリス多孔体が透明状態に変化するのであれば、表面修飾がなされた無機モノリス多孔体を用いても良い。
 第1実施形態の図5及び図6の透明性の評価結果で用いた貫通孔径が2μm、細孔径が12nmのシリカモノリスに対して、2種類の官能基(オクタデシル基とフェニル基)を夫々表面修飾した2種類のサンプル(オクタデシル化シリカモノリス、フェニル化シリカモノリス)を用意し、図5及び図6の透明性評価で使用した6種類のアロマオイル(精油)の内の椰子油を除く5種類のアロマオイルで、透明性の評価した結果、表面修飾されていないシリカモノリスと全く同じ結果となった。
 尚、オクタデシル化シリカモノリスは、一例として、シリカモノリスを150℃で乾燥させたのちオクタデシルトリメトキシシランを10%含有するトルエン溶液に浸し、12時間加熱還流し、得られたシリカモノリスをエタノールに浸して溶媒交換し、乾燥させて作製できる。オクタデシルトリメトキシシランの代わりにフェニルトリメトキシシランを用いることによりフェニル化シリカモノリスが作製できる。
 官能基を導入する方法として、一般的に、骨格体表面に共有結合を介し官能基を化学的に固定する方法、または、イオン結合や疎水性相互作用等の物理的相互作用を介して物理的に固定する方法が挙げられる。例えば、官能基を化学的に導入する方法として、官能基を有するシランカップリング剤を反応させて骨格体(SiO)表面の水酸基を介して官能基を固定化する方法がある。
 無機モノリス多孔体の表面修飾は、上述の官能基の表面修飾の他に、骨格体の表面に遷移金属元素の金属塩を付着させた後、酸化して、無機モノリス多孔体を当該遷移金属に固有の色に、着色する場合も含まれる。当該酸化膜は、可視光の波長より薄く形成することで、上述の徐放液を空隙内に吸収させた場合には、上記固有の色に染まった透明または半透明状態となる。当該酸化膜の形成方法の一例として、無機モノリス多孔体に遷移金属元素化合物の溶液を含浸させ、遷移金属元素の金属塩を骨格体の表面に吸着させ、自然乾燥させた後に900℃の電気炉にて焼結を施すことで、上記金属塩を酸化させて着色することが可能となる。例えば、上記溶液が塩化鉄(II)のエタノール溶液の場合、無機モノリス多孔体は橙色に着色され、上記溶液がコバルトのエタノール溶液の場合、無機モノリス多孔体は青色に着色される。尚、コバルトのような陽イオンを含む溶液は骨格体の表面に吸着されるが、特に、希釈溶液を用いて無機モノリス多孔体を浸漬させた場合は、無機モノリス多孔体の外周近傍に強く吸着され内部には浸透しないので、無機モノリス多孔体の露出面が専ら被覆されることになり、無機モノリス多孔体の露出面が青み掛って見える。
 〈3〉上記第1実施形態で説明した徐放方法では、徐放液の残存状態に応じて、無機モノリス多孔体の透明状態が変化するため、透明状態の変化による視覚的効果或いは光学的効果を楽しむこと、更に、当該効果を応用することを簡単に説明したが、当該効果の応用として、透明状態の無機モノリス多孔体に向けて可視光を入射させて、入射した光を、無機モノリス多孔体内を通過させて、無機モノリス多孔体外に出射させることで、例えば、入射光の色に無機モノリス多孔体の一部或いは全体を光らせることができる。
 図13に、六角柱状のシリカモノリスの一端を円錐状に加工して鉛筆形状とし、徐放液を含浸させて後の透明な状態において、当該鉛筆形状のシリカモノリスの平坦な端面から赤色のレーザ光を入射した様子を示す写真(A)と、同じ鉛筆形状のシリカモノリスの円錐状の端面から赤色のレーザ光を入射した様子を示す写真(B)を示す。2枚の写真はモノクローム化しているので、分かりづらいが、(A)では、シリカモノリス全体が赤みを帯びて、円錐状の先端部分が高輝度で輝いており、(B)では、シリカモノリス全体が赤みを帯びて輝いている。
 図13に示す実施例では、シリカモノリスに入射する光の光源として、ハンディタイプのレーザポインターを利用して、ユーザがマニュアルで入射位置を調整する場合を例示したが、シリカモノリスと光源の位置関係を固定して、徐放装置として構成しても良い。例えば、レーザや発光ダイオード等の光源を、シリカモノリスを載置或いは固定する台座やフレーム等に取り付け、当該光源と所定の位置関係となる箇所に、シリカモノリスを取り付けても良い。一例として、上記〈1〉で上述した指輪、ブローチ等の台座10の文字や図形等を設けておく箇所に、上記光源を取り付けるのも好ましい。尚、シリカモノリスと光源の位置関係はユーザが適宜変更可能なように構成しても良い。
 更に、無機モノリス多孔体の露出面或いは骨格体の表面に蛍光体の粒子を固定するのも好ましい。但し、蛍光体の粒子によって、徐放液を吸収した無機モノリス多孔体が透明または半透明になるのが阻害されないように、蛍光体粒子の添加量や粒径を調整する必要がある。尚、利用可能な蛍光体としては、周知の青色、緑色、赤色、橙色、黄色等の各種蛍光体が利用できるが、使用する光源の波長によって励起される蛍光体である必要がある。尚、蛍光体は1種類に限定されるものではなく、複数の発光波長の異なる蛍光体を使用しても良い。光源としては、紫外線或いは青色の比較的短波長の光源を使用するのが好ましい。斯かる1または複数種類の蛍光体粒子を含む無機モノリス多孔体を使用することで、無機モノリス多孔体内に入射した光によって、当該蛍光体が励起され、当該蛍光体に応じた色の発光が生じ、無機モノリス多孔体が当該蛍光体の発光色と光源光の色で混色される。但し、光源光が紫外線の場合、光源光の色は混色されない。
 無機モノリス多孔体の骨格体の表面に蛍光体の粒子を固定する方法として、例えば、以下に示す方法が採用できる。遊星ミルを用いて蛍光体を0.1~0.5μm程度に微細粉化し、当該蛍光体微細粉をエタノールに分散させた懸濁液を作製する。当該蛍光体微細粉懸濁液に無機モノリス多孔体を浸漬させた後、直ぐに取り出して乾燥させ、蛍光体微細粉を骨格体の表面に付着させる。その後、800℃で熱処理して当該蛍光体微細粉を骨格体の表面に固定する。
 無機モノリス多孔体の露出面に蛍光体の粒子を固定する方法として、例えば、以下に示す方法が採用できる。ミルを用いて蛍光体を例えば5μm程度に粉砕した蛍光体粉末をグリセリンに分散させ、無機モノリス多孔体の露出面に塗付した後に、800℃で熱処理して当該蛍光体粉末を無機モノリス多孔体の露出面に固定する。尚、無機モノリス多孔体の露出面の全面に蛍光体粉末を塗布するのではなく、一部の露出面は、光源光の入射用、或いは、徐放液の注入用に開放しておくのが好ましい。また、単に800℃で熱処理しただけでは蛍光体粉末の固定が軟弱であるので、グリセリンに分散させた蛍光体粉末を無機モノリス多孔体の露出面に塗付した後に、透明なガラス管で被覆し、その後に、900℃で当該ガラス菅を溶融して、無機モノリス多孔体の露出面に固着した蛍光体粉末を溶融ガラスで接着して、強固に固定するのも好ましい。尚、透明なガラス管等で被覆するのに代えて、当該露出面に溶融ガラスを付着させ冷却するようにしても良い。
 〈4〉 上記各実施形態では、徐放液の一例として、アロマオイル等の芳香液を想定したが、徐放液は、芳香液に限定されるものではなく、消臭成分や殺虫成分等を含む液体であっても良く、或いは、単に、無機モノリス多孔体1の透明性を初期状態の不透明状態から透明または半透明な状態に変化させる目的だけの液体であっても良い。
〈5〉 上記各実施形態では、無機モノリス多孔体1の骨格体2を構成する無機化合物として、シリカ(シリカゲルまたはシリカガラス)を想定したが、当該無機化合物は、シリカに限定されるものではなく、ケイ素酸化物を主として含むケイ素酸化物複合体であっても良く、更には、アルミニウム、リン、ゲルマニウム、スズ等の典型金属元素や、チタン、ジルコニウム、バナジウム、クロム、鉄、コバルト、ニッケル、パラジウム、白金、銅、銀、金、亜鉛等を始めとする遷移金属元素を含む酸化物多孔体も、利用可能である。更に、これらに、リチウム、ナトリウム等のアルカリ金属元素や、マグネシウム、カルシウム等のアルカリ土類金属元素、ランタン、セリウム等のランタン系元素を含む複合体からなる無機酸化物多孔体も、利用可能である。
 但し、無機化合物が異なれば、骨格体2の屈折率もシリカモノリスの場合とは異なり、上記第1または第2誤差範囲内で当該骨格体2の屈折率と等しい徐放液の屈折率も異なるため、使用目的に適合した徐放液が選択できない場合もあり得る。
 〈6〉 上記各実施形態では、無機モノリス多孔体の合成方法に関して、具体的な数値(分量、温度、時間等)を明示した実施例を説明したが、当該合成方法は、当該実施例で例示された数値条件に限定されるものではない。
 本発明に係る多孔質徐放体、徐放体キット、徐放方法、徐放装置、及び、透明多孔質徐放体の製造方法は、所定の液体を徐々に放散可能で多孔質担体の透明性が変化する多孔質徐放体に利用可能である。
 1:   無機モノリス多孔体
 2:   骨格体
 3:   貫通孔
 4:   細孔
 10:  台座
 11:  ガラス製の被覆物
 

Claims (18)

  1.  無機化合物の骨格体と3次元連続網目構造の空隙とを有する無機モノリス多孔体、及び、前記空隙内に吸収された徐放液とを備え、
     前記無機モノリス多孔体が、前記徐放液を吸収する前の前記空隙内に空気が存在する初期状態では不透明であり、
     前記徐放液の屈折率と前記骨格体の屈折率が、前記空隙内に前記徐放液が吸収された部分が透明または半透明となる程度の誤差範囲内で等しいことを特徴とする透明多孔質徐放体。
  2.  前記骨格体が3次元連続網目構造を有し、
     前記空隙が、前記骨格体の間隙に形成された3次元連続網目構造の貫通孔と、前記骨格体の表面から内部に向けて延伸する前記表面に分散して形成された細孔からなる2段階階層的多孔構造を有し、
     前記細孔の孔径分布の最頻孔径が、2nm以上200nm以下の範囲内にあり、
     前記貫通孔の孔径分布の最頻孔径が、前記細孔の最頻孔径の5倍以上で、且つ、0.1μm以上100μm以下の範囲内にあることを特徴とする請求項1に記載の透明多孔質徐放体。
  3.  前記骨格体が3次元連続網目構造を有し、
     前記空隙が、前記骨格体の間隙に形成された3次元連続網目構造の貫通孔からなる1階層の多孔構造を有し、
     前記貫通孔の孔径分布の最頻孔径が、2nm以上100μm以下の範囲内にあることを特徴とする請求項1に記載の透明多孔質徐放体。
  4.  前記貫通孔の孔径分布の最頻孔径が0.6μm以下であることを特徴とする請求項2に記載の透明多孔質徐放体。
  5.  前記貫通孔の孔径分布の最頻孔径が0.3μm以下であることを特徴とする請求項2または3に記載の透明多孔質徐放体。
  6.  前記無機化合物が、シリカ、または、ケイ素酸化物を主として含むケイ素酸化物複合体であることを特徴とする請求項1~5の何れか1項に記載の透明多孔質徐放体。
  7.  前記徐放液が、屈折率が1.4~1.6の範囲内にあり、且つ、前記骨格体の屈折率と前記誤差範囲内で等しい精油であることを特徴とする請求項1~6の何れか1項に記載の透明多孔質徐放体。
  8.  請求項1~7の何れか1項に記載の透明多孔質徐放体を構成する前記無機モノリス多孔体と前記徐放液を、前記無機モノリス多孔体の前記空隙内に前記徐放液が吸収されていない状態で個別に備えてなることを特徴とする徐放体キット。
  9.  請求項1~7の何れか1項に記載の透明多孔質徐放体、または、請求項8に記載の徐放体キットと、
     前記無機モノリス多孔体に対して光を照射する光源と、を備えていることを特徴とする徐放装置。
  10.  無機化合物の骨格体と3次元連続網目構造の空隙とを有し、前記空隙内に空気が存在する初期状態では不透明である無機モノリス多孔体を使用して、
     屈折率が前記空隙内に前記徐放液が吸収された部分が透明または半透明となる程度の誤差範囲内で前記骨格体の屈折率と等しい徐放液を前記空隙内に浸透させて、前記無機モノリス多孔体を、前記初期状態の不透明な状態から、前記空隙内に前記徐放液を吸収した部分が透明または半透明となる状態に変化させた後、前記徐放液を前記無機モノリス多孔体から徐々に放散させて、前記空隙内から前記徐放液が放散した部分を不透明な状態に戻すことを特徴とする徐放方法。
  11.  前記骨格体が3次元連続網目構造を有し、
     前記空隙が、前記骨格体の間隙に形成された3次元連続網目構造の貫通孔と、骨格体の表面から内部に向けて延伸する前記表面に分散して形成された細孔からなる2段階階層的多孔構造を有し、
     前記細孔の孔径分布の最頻孔径が、2nm以上200nm以下の範囲内にあり、
     前記貫通孔の孔径分布の最頻孔径が、前記細孔の最頻孔径の5倍以上で、且つ、0.1μm以上100μm以下の範囲内にあることを特徴とする請求項10に記載の徐放方法。
  12.  前記骨格体が3次元連続網目構造を有し、
     前記空隙が、前記骨格体の間隙に形成された3次元連続網目構造の貫通孔からなる1階層の多孔構造を有し、
     前記貫通孔の孔径分布の最頻孔径が、2nm以上100μm以下の範囲内にあることを特徴とする請求項10に記載の徐放方法。
  13.  前記貫通孔の孔径分布の最頻孔径が0.6μm以下であることを特徴とする請求項11に記載の徐放方法。
  14.  前記貫通孔の孔径分布の最頻孔径が0.3μm以下であることを特徴とする請求項11または12に記載の徐放方法。
  15.  前記無機化合物が、シリカ、または、ケイ素酸化物を主として含むケイ素酸化物複合体であることを特徴とする請求項10~14の何れか1項に記載の徐放方法。
  16.  前記徐放液が、屈折率が1.4~1.6の範囲内にあり、且つ、前記骨格体の屈折率と前記誤差範囲内で等しい精油であることを特徴とする請求項10~15の何れか1項に記載の徐放方法。
  17.  前記徐放液を前記無機モノリス多孔体から放散させている過程で、前記無機モノリス多孔体に対して、光を照射することを特徴とする請求項10~16の何れか1項に記載の徐放方法。
  18.  請求項1~7の何れか1項に記載の透明多孔質徐放体を構成する前記無機モノリス多孔体と前記徐放液を、各別に準備する工程と、
     前記徐放液を前記無機モノリス多孔体の前記空隙内に浸透させて、前記無機モノリス多孔体を、前記初期状態の不透明な状態から、前記空隙内に前記徐放液を吸収した部分が透明または半透明となる状態に変化させる工程と、を有することを特徴とする透明多孔質徐放体の製造方法。
PCT/JP2016/073076 2015-08-11 2016-08-05 透明多孔質徐放体とその製造方法、徐放体キット、徐放装置、及び、徐放方法 WO2017026388A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/748,983 US10499629B2 (en) 2015-08-11 2016-08-05 Transparent porous sustained-release body and method for producing the same, and kit of sustained-release body, sustained-release apparatus, and sustained-release method
SG11201800677UA SG11201800677UA (en) 2015-08-11 2016-08-05 Transparent porous sustained-release body and method for producing the same, and kit of sustained-release body, sustained-release apparatus, and sustained-release method
EP16835085.8A EP3336156A4 (en) 2015-08-11 2016-08-05 Transparent porous sustained-release body, method for manufacturing same, sustained-release body kit, sustained-release device, and sustained-release method
CN201680045144.6A CN107922818B (zh) 2015-08-11 2016-08-05 透明多孔缓释体和其制造方法、缓释体套件、缓释装置以及缓释方法
JP2017534407A JP6323928B2 (ja) 2015-08-11 2016-08-05 透明多孔質徐放体とその製造方法、徐放体キット、徐放装置、及び、徐放方法
KR1020187006888A KR20180039689A (ko) 2015-08-11 2016-08-05 투명 다공질 서방체와 그 제조 방법, 서방체 키트, 서방 장치, 및 서방 방법
HK18107347.5A HK1247950B (zh) 2015-08-11 2018-06-05 透明多孔緩釋體和其製造方法、緩釋體套件、緩釋裝置以及緩釋方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-158934 2015-08-11
JP2015158934 2015-08-11

Publications (1)

Publication Number Publication Date
WO2017026388A1 true WO2017026388A1 (ja) 2017-02-16

Family

ID=57983720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073076 WO2017026388A1 (ja) 2015-08-11 2016-08-05 透明多孔質徐放体とその製造方法、徐放体キット、徐放装置、及び、徐放方法

Country Status (8)

Country Link
US (1) US10499629B2 (ja)
EP (1) EP3336156A4 (ja)
JP (1) JP6323928B2 (ja)
KR (1) KR20180039689A (ja)
CN (1) CN107922818B (ja)
HK (1) HK1247950B (ja)
SG (1) SG11201800677UA (ja)
WO (1) WO2017026388A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560679A (zh) * 2019-08-08 2019-12-13 安徽师范大学 三维多面体结构的Ni-Co合金材料及其制备方法和应用
CN113338102A (zh) * 2021-07-02 2021-09-03 西安建筑科技大学 一种应用于海绵城市建设的生态透水砖及其制备方法
WO2021201229A1 (ja) * 2020-04-02 2021-10-07 株式会社トクヤマ シリカ、塗料およびシリカの製造方法
WO2022163834A1 (ja) * 2021-01-29 2022-08-04 三井金属鉱業株式会社 多孔質体、該多孔質体を含む吸着材並びに該吸着材を使用した金属及び/又は金属イオンの除去方法
JP7129692B2 (ja) 2018-06-05 2022-09-02 国立研究開発法人産業技術総合研究所 リン酸化合物内包ケイ素系中空粒子によるリン酸の徐放
JP7452998B2 (ja) 2017-05-30 2024-03-19 フイルメニツヒ ソシエテ アノニム 悪臭中和および芳香デリバリーシステム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10933154B2 (en) * 2016-05-27 2021-03-02 University-Industry Cooperation Group Of Kyung Hee University Aroma diffusion module and aroma diffusion container including the same
CN111943710A (zh) * 2020-07-29 2020-11-17 景德镇市瓷海瓷业有限公司 一种吸附缓释功能陶瓷生产工艺
WO2022136743A1 (fr) * 2020-12-23 2022-06-30 Ab7 Innovation S.A.S.U Dispositif d'aide a la capture de moustiques
CN114772605B (zh) * 2022-03-29 2023-06-23 桂林理工大学 气凝胶及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741374A (ja) * 1993-07-30 1995-02-10 Naohiro Soga 無機系多孔質体の製造方法
JPH1071193A (ja) * 1996-06-27 1998-03-17 Kobe Steel Ltd 空気浄化剤および脱臭フィルター
JPH11292528A (ja) * 1998-01-23 1999-10-26 Naohiro Soga 無機多孔質材料の製造法
JP2002085543A (ja) * 2000-09-12 2002-03-26 Toto Ltd 消臭剤
JP2005307120A (ja) * 2004-04-26 2005-11-04 Mitsubishi Chemicals Corp 徐放剤及びそれを用いた徐放材
WO2007021037A1 (ja) * 2005-08-19 2007-02-22 Kyoto University 無機系多孔質体及びその製造方法
JP2012111655A (ja) * 2010-11-24 2012-06-14 Rei Medical Co Ltd モノリス多孔体の製造方法
JP2013003065A (ja) * 2011-06-20 2013-01-07 Gl Sciences Inc 多孔質体およびその製造方法
JP2014061457A (ja) * 2012-09-19 2014-04-10 Kyoto Univ シリコーン製モノリス体及びそれを用いた分離、精製、濃縮方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788164A (en) * 1987-01-28 1988-11-29 Hoechst Celanese Corporation Inorganic-organic composite compositions with sustained release properties
US5624875A (en) 1993-07-19 1997-04-29 Merck Patent Gesellschaft Mit Beschrankter Haftung Inorganic porous material and process for making same
JPH1059742A (ja) 1996-08-16 1998-03-03 Miyazaki Pref Gov 多孔質ガラス複合体及びその製造方法
DE69841079D1 (de) 1998-01-23 2009-10-01 Merck Patent Gmbh Verfahren zur herstellung von inorganischem material in einer kapillare
JP3978287B2 (ja) 1998-09-01 2007-09-19 小林製薬株式会社 ゲル状芳香剤
JP2000254217A (ja) 1999-03-08 2000-09-19 Kao Corp 芳香器
DE10049803A1 (de) * 2000-10-09 2002-04-18 Bayer Ag Kompositpartikel
JP2007111281A (ja) 2005-10-21 2007-05-10 Aromajikku Service Kk 固形芳香剤および容器入り芳香剤
CN101264985B (zh) * 2008-04-18 2011-07-27 昆山工研院华科生物高分子材料研究所有限公司 微生物净水缓释体及其制备方法
JP2010106007A (ja) * 2008-08-14 2010-05-13 Sony Corp 薬剤徐放剤、吸着剤、機能性食品、マスク及び吸着シート
US20100221207A1 (en) 2009-03-02 2010-09-02 The Dial Corporation Fragrance coated salt crystals
JP6310692B2 (ja) 2013-12-18 2018-04-11 花王株式会社 賦香剤

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741374A (ja) * 1993-07-30 1995-02-10 Naohiro Soga 無機系多孔質体の製造方法
JPH1071193A (ja) * 1996-06-27 1998-03-17 Kobe Steel Ltd 空気浄化剤および脱臭フィルター
JPH11292528A (ja) * 1998-01-23 1999-10-26 Naohiro Soga 無機多孔質材料の製造法
JP2002085543A (ja) * 2000-09-12 2002-03-26 Toto Ltd 消臭剤
JP2005307120A (ja) * 2004-04-26 2005-11-04 Mitsubishi Chemicals Corp 徐放剤及びそれを用いた徐放材
WO2007021037A1 (ja) * 2005-08-19 2007-02-22 Kyoto University 無機系多孔質体及びその製造方法
JP2012111655A (ja) * 2010-11-24 2012-06-14 Rei Medical Co Ltd モノリス多孔体の製造方法
JP2013003065A (ja) * 2011-06-20 2013-01-07 Gl Sciences Inc 多孔質体およびその製造方法
JP2014061457A (ja) * 2012-09-19 2014-04-10 Kyoto Univ シリコーン製モノリス体及びそれを用いた分離、精製、濃縮方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIYAMOTO,RIICHI. ET AL.: "Fabrication of large- sized silica monolith exceeding 1000 mL with high structural homogeneity", JOURNAL OF SEPARATION SCIENCE, vol. 36, no. 12, 2013, pages 1890 - 1896, XP055363738, ISSN: 1615-9314 *
See also references of EP3336156A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7452998B2 (ja) 2017-05-30 2024-03-19 フイルメニツヒ ソシエテ アノニム 悪臭中和および芳香デリバリーシステム
JP7129692B2 (ja) 2018-06-05 2022-09-02 国立研究開発法人産業技術総合研究所 リン酸化合物内包ケイ素系中空粒子によるリン酸の徐放
CN110560679A (zh) * 2019-08-08 2019-12-13 安徽师范大学 三维多面体结构的Ni-Co合金材料及其制备方法和应用
WO2021201229A1 (ja) * 2020-04-02 2021-10-07 株式会社トクヤマ シリカ、塗料およびシリカの製造方法
WO2022163834A1 (ja) * 2021-01-29 2022-08-04 三井金属鉱業株式会社 多孔質体、該多孔質体を含む吸着材並びに該吸着材を使用した金属及び/又は金属イオンの除去方法
WO2022163832A1 (ja) * 2021-01-29 2022-08-04 三井金属鉱業株式会社 柱状体、該柱状体を含む吸着材並びに該吸着材を使用した金属及び/又は金属イオンの除去方法
JP7186335B1 (ja) * 2021-01-29 2022-12-08 三井金属鉱業株式会社 多孔質体、該多孔質体を含む吸着材並びに該吸着材を使用した金属及び/又は金属イオンの除去方法
CN113338102A (zh) * 2021-07-02 2021-09-03 西安建筑科技大学 一种应用于海绵城市建设的生态透水砖及其制备方法
CN113338102B (zh) * 2021-07-02 2023-03-17 西安建筑科技大学 一种应用于海绵城市建设的生态透水砖及其制备方法

Also Published As

Publication number Publication date
US20190008134A1 (en) 2019-01-10
EP3336156A4 (en) 2018-07-11
HK1247950B (zh) 2019-11-22
JPWO2017026388A1 (ja) 2018-06-21
CN107922818A (zh) 2018-04-17
EP3336156A1 (en) 2018-06-20
CN107922818B (zh) 2019-02-19
US10499629B2 (en) 2019-12-10
JP6323928B2 (ja) 2018-05-16
SG11201800677UA (en) 2018-02-27
KR20180039689A (ko) 2018-04-18

Similar Documents

Publication Publication Date Title
JP6323928B2 (ja) 透明多孔質徐放体とその製造方法、徐放体キット、徐放装置、及び、徐放方法
US20220002554A1 (en) Structurally colored materials with spectrally selective absorbing components and methods for making the same
CN104624125B (zh) 一种光致变色双壳微胶囊及其制备方法和应用
JP5499442B2 (ja) 金属酸化物内包メソポーラスシリカカプセル
KR102207095B1 (ko) 열적으로 경화가능한 코팅 시스템
CN106414661A (zh) 具有量子点的颗粒及其制备方法
CN101633505A (zh) 微波反应制得的具有气凝胶特性的SiO2纳米级多孔材料及其制备方法
JP2007217258A (ja) ナノ炭素粒子分散液及びその製造方法とコア・シェル型ナノ炭素粒子及びその製造方法
TW200835648A (en) Porous material and method for preparing the same
Rocha et al. Luminescence properties of Eu-complex formations into ordered mesoporous silica particles obtained by the spray pyrolysis process
KR101467836B1 (ko) 다공성 복합화합물을 함유하는 페인트 조성물
Nguyen et al. Preparation and characterization of hollow silica nanocomposite functionalized with UV absorbable molybdenum cluster
Takai-Yamashita et al. Preparation and formation mechanism of ZnO supported hollow SiO2 nanoparticle by an interfacial reaction through micropores
EP4054978A1 (en) Additive manufacturing of silica aerogel objects
WO2015023716A1 (en) Method of making nanoporous structures
Boudot et al. Engineering of silica thin-film nanoporosity via alkali-ion-assisted reconstruction
Moreno et al. Correlating the morphological properties and structural organization of monodisperse spherical silica nanoparticles grown on a commercial silica surface
Lai et al. Investigation on existing states and photoluminescence property of silver in the SiO 2 three-dimensionally ordered macroporous materials
JP2007075660A (ja) 中空粒子の製造方法
JP2006092968A (ja) 光触媒膜付蛍光ランプの製造方法及び光触媒膜付蛍光ランプ
JP5487928B2 (ja) 高輝度発光体
US20160236993A1 (en) Method of Making Functionalized Nanoporous Structures
JP5498077B2 (ja) 発光体、発光体の製造方法、照明装置および化粧品用紫外線遮蔽材
JP5189779B2 (ja) 演色性ガラス粒子およびその製造方法
Islama et al. STRUCTURAL AND OPTICAL PROPERTIES OF SURFACTANT ASSISTED SiO2-TiO2 HYBRID MATRIX FOR PH SENSING: SOL-GEL APPROACH

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835085

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534407

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201800677U

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187006888

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016835085

Country of ref document: EP