WO2021201229A1 - シリカ、塗料およびシリカの製造方法 - Google Patents

シリカ、塗料およびシリカの製造方法 Download PDF

Info

Publication number
WO2021201229A1
WO2021201229A1 PCT/JP2021/014165 JP2021014165W WO2021201229A1 WO 2021201229 A1 WO2021201229 A1 WO 2021201229A1 JP 2021014165 W JP2021014165 W JP 2021014165W WO 2021201229 A1 WO2021201229 A1 WO 2021201229A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
paint
particle size
measured
mass
Prior art date
Application number
PCT/JP2021/014165
Other languages
English (en)
French (fr)
Inventor
中村 正博
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN202180013576.XA priority Critical patent/CN115175872B/zh
Priority to JP2022511133A priority patent/JPWO2021201229A1/ja
Priority to US17/799,020 priority patent/US20230074494A1/en
Publication of WO2021201229A1 publication Critical patent/WO2021201229A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3009Physical treatment, e.g. grinding; treatment with ultrasonic vibrations
    • C09C1/3018Grinding
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3009Physical treatment, e.g. grinding; treatment with ultrasonic vibrations
    • C09C1/3027Drying, calcination
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/42Gloss-reducing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to silica, paints and methods for producing silica.
  • Silica produced by flame thermal decomposition of chlorosilane is fine silica having a specific surface area of about 50 m 2 / g to 500 m 2 / g, and is generally called fumed silica.
  • This fumed silica is mainly used as a filling / reinforcing material for transparent resins, a thickener, and a fluidizing agent for powders, and has excellent dispersibility. For this reason, fumed silica is often used as a filler for silicone rubber, a thickener for polyester resin, a fluidizing agent for toner, and the like.
  • fumed silica when fumed silica is applied as a paint matting agent, this good dispersibility is a disadvantage. That is, fumed silica disperses in the paint to a size equal to or less than the wavelength of visible light even if the dispersing power is weak. Therefore, in general, fumed silica cannot be used as it is as a matting agent for paints. Therefore, as a matting agent for paints, silica obtained by pulverizing and classifying wet silica having a large particle size (silica produced in a solvent such as water) is used as a matting agent for paints. There is. However, even when silica produced from wet silica as a raw material is used as a matting agent, it cannot be said that sufficient matting performance is always obtained.
  • Patent Document 1 describes a technique in which silicic acid having an airgel-like structure obtained by mixing 5 to 50% by weight of water with fumed silica and drying the obtained powdery mixture is used as a matting agent.
  • Patent Document 2 describes a technique in which silicic acid having an airgel-like structure obtained by mixing 5 to 50% by weight of water with fumed silica and drying the obtained powdery mixture is used as a matting agent.
  • Patent Document 2 a technique adopting an approach significantly different from the technique described in Patent Document 1 has also been proposed.
  • Patent Document 2 the texture-coated silica obtained by spraying water and a thermoplastic elastomer on fumed silica while mixing in a mixing vessel, then pulverizing the mixture, and then drying the mixture is used as a matting agent.
  • the technology to be used has been proposed.
  • the present inventor further examined the technique described in Patent Document 1 among the techniques described in Patent Documents 1 and 2 having significantly different technical approaches. As a result, it was confirmed that even if silica obtained by using the technique described in Patent Document 1 is used as a matting agent for a paint, sufficient matting property cannot always be obtained.
  • the present invention has been made in view of the above circumstances, and is silica that can exhibit high matting property and suppress the occurrence of cloudiness when used as a matting agent for paints, paints using the silica, and silica. It is an object to provide a manufacturing method of silica.
  • the silica of the present invention has an aggregated structure in which primary particles are aggregated, has a particle size ratio R represented by the following formula (1) of 4.3 to 5.2, and is an aqueous dispersion having a concentration of 1.48% by mass. It is characterized in that the absorbance with respect to light having a wavelength of 700 nm is 0.6 or less, and the particle density measured by a He pycnometer is 2.18 g / cm 3 or more.
  • R L D50 / C D50 [In the formula (1), L D50 represents a volume-based cumulative 50% particle size of said measured silica based on laser diffraction scattering method ([mu] m), C D50, the measured based on the Coulter counter method It represents the volume-based cumulative 50% particle size ( ⁇ m) of silica. ]
  • the volume-based cumulative 50% particle size L D50 is equal to or greater than 1.7 [mu] m.
  • silica of the present invention preferably has a bulk density of 35 g / L or more.
  • silica of the present invention are preferably used as a matting agent for paints.
  • the paint containing the silica of the present invention is any paint selected from the group consisting of clear paints and black paints.
  • the coating material of the present invention contains at least a matting agent and a resin, and the matting agent has a structure in which primary particles are aggregated, and the particle size ratio R represented by the following formula (1) is 4.3 to 5. It is .2, the absorbance of the aqueous dispersion having a concentration of 1.48% by mass with respect to light having a wavelength of 700 nm is 0.6 or less, and the particle density measured by the He pycnometer is 2.18 g / cm 3 or more. It is characterized by containing silica.
  • R L D50 / C D50 [In the formula (1), L D50 represents a volume-based cumulative 50% particle size of said measured silica based on laser diffraction scattering method ([mu] m), C D50, the measured based on the Coulter counter method It represents the volume-based cumulative 50% particle size ( ⁇ m) of silica. ]
  • One embodiment of the paint of the present invention is preferably any one selected from the group consisting of clear paint and black paint.
  • fumed silica 100 having a concentration of 1.48% by mass of an aqueous dispersion having an absorbance of 0.14 or less and a bulk density of 40 g / L to 110 g / L with respect to light having a wavelength of 700 nm is 0.14 or less.
  • a basic aqueous solution addition step of adding a basic aqueous solution containing a basic substance at a concentration of 5 specified parts or more in a range of 4 parts by mass to 13 parts by mass with respect to parts by mass, and the basic aqueous solution added to the fumed silica. It is characterized in that silica is produced through at least a drying step of heating and drying the added wet mixture at a temperature equal to or higher than the boiling point of the basic substance.
  • the basic aqueous solution is aqueous ammonia having a concentration of 5 or more.
  • Another embodiment of the method for producing silica of the present invention further comprises a pulverization step of pulverizing the silica obtained through the drying step using a pulverizer selected from the group consisting of a jet mill and a pin mill.
  • a pulverizer selected from the group consisting of a jet mill and a pin mill.
  • silica that can exhibit high matting property and suppress the occurrence of cloudiness when used as a matting agent for paints, a paint using the silica, and a method for producing the silica. ..
  • the silica of the present embodiment has an aggregated structure in which primary particles are aggregated, has a particle size ratio R represented by the following formula (1) of 4.3 to 5.2, and has a concentration of ⁇ 2> 1.
  • the absorbance of the 48% by mass aqueous dispersion with respect to light having a wavelength of 700 nm (hereinafter, the absorbance may be referred to as ⁇ 700) is 0.6 or less, and the particle density measured by ⁇ 3> He pycnometer is 2. It is characterized by being .18 g / cm 3 or more.
  • Equation (1) L D50 / C D50
  • L D50 represents a volume-based cumulative 50% particle size of the measured silica based on laser diffraction scattering method ([mu] m)
  • C D50 is the volume of the measured silica based on the Coulter counter method Represents a standard cumulative 50% particle size ( ⁇ m).
  • the silica of the present embodiment is used as a matting agent for a paint
  • the matting property is improved and / or cloudiness is suppressed by satisfying any of the conditions shown in ⁇ 1> to ⁇ 3> above. Becomes easier.
  • the conditions shown in ⁇ 1> to ⁇ 3> are satisfied at the same time, high matteness can be exhibited and the occurrence of cloudiness can be suppressed.
  • ⁇ 1> particle size ratio R, ⁇ 2> ⁇ 700, and ⁇ 3> particle density will be described in detail below.
  • the electrolytic solution used as a dispersion solvent to be used for measuring the gap portion in the particles (e.g., ISOTON II used for the measurement of particle size C D50 to be described later) is Fill up.
  • the particle size C D50 shows a significantly smaller value than the particle size measured by the laser diffraction / scattering method or SEM in the particles having a porous structure. It will be. Therefore, the particle size ratio R represented by the formula (1) can be said to be an index for evaluating the degree of voids contained in the particles to be measured.
  • the silica of the present embodiment has a particle size ratio R represented by the formula (1) of 4.3 to 5.2, so that the primary particles are loosely bonded and a bulky aggregated structure (high porosity). It has a porous structure). Therefore, since the silica of the present embodiment has a structure in which the surface of each silica particle has large irregularities, diffused reflection of light on the surface of the silica particles is likely to occur, and it becomes easy to improve the matte property of the paint. In addition to this, since the number of silica particles contained per unit weight is also larger, it is easy to exhibit an excellent matting effect even if the amount of silica added to the coating material is small.
  • the matte property is improved, it becomes easy to suppress the white turbidity of the coating film.
  • the clear paint or the black paint using silica of the present embodiment is applied to a base material having a dark color on the coated surface (dark base material) and used, the matting effect is exhibited. It also facilitates the formation of a coating film having excellent jet blackness.
  • the lower limit of the particle size ratio R is preferably 4.5 or more, and more preferably 4.7 or more.
  • the particle size ratio R becomes larger, the silica particles have a bulkier agglomerated structure. Therefore, if such an agglomerated structure can be maintained as it is even in the paint, further improvement in matting property is expected. ..
  • the particle size ratio R is too large, the bulky agglomerated structure tends to collapse due to the shearing force applied to the silica particles during stirring and mixing during the preparation of the paint, and as a result, the matte property deteriorates and the matteness becomes cloudy. Is also likely to occur. Therefore, the particle size ratio R needs to be 5.2 or less, and preferably 5.0 or less.
  • the oil absorption amount is generally used as an index for evaluating the porousness and bulkiness of the silica particles.
  • the amount of oil absorbed may include the amount of oil present in the gaps between the silica particles in addition to the amount of oil absorbed in the voids formed in the individual silica particles.
  • the voids formed in the silica particles are closely related to the matte property as described above, but the gaps between the silica particles are not related to the matte property. Therefore, the amount of oil absorbed does not exactly correspond to the size of the voids of the individual silica particles, and the correlation with the matteness is relatively lower than that of the particle size ratio R. be.
  • the absorbance ( ⁇ 700) of the aqueous dispersion having a concentration of 1.48% by mass with respect to light having a wavelength of 700 nm is 0.6 or less.
  • ⁇ 700 the absorbance of the silica particles in the coating material is improved, and the effective area of the surface of the silica particles that diffusely reflect light can be further increased. Therefore, it becomes easy to improve the matte property, and it becomes easy to suppress the white turbidity of the coating film as the matte property is improved.
  • the clear paint or the black paint using silica of the present embodiment is applied to a base material having a dark color on the coated surface (dark base material) and used, the matting effect is exhibited. It also facilitates the formation of a coating film having excellent jet blackness.
  • the silica of the present embodiment is used as the paint containing a solvent, by setting ⁇ 700 to 0.6 or less, it becomes easy to apply the paint to the base material and to obtain a paint that does not easily drip after the coating. .. ⁇ 700 is preferably 0.5 or less, more preferably 0.4 or less.
  • the lower limit of ⁇ 700 is not particularly limited, but the lower limit of ⁇ 700 is practically preferably 0.25 or more, and more preferably 0.30 or more.
  • the particle density measured by the He pycnometer is 2.18 g / cm 3 or more. This makes it easy to suppress the white turbidity of the coating film. Further, as the white turbidity is suppressed, the glossiness of the coating film is also reduced to a greater or lesser extent, and as a result, the matteness can be easily improved.
  • the reason why white turbidity can be easily suppressed by setting the particle density to 2.18 g / cm 3 or more is as follows.
  • the refractive index (theoretical refractive index) of pure amorphous silica is 1.46.
  • the refractive index of urethane resin which is widely used as a resin component used in paints, is about 1.5.
  • the refractive index of various resins for paints other than urethane resin is generally larger than 1.46.
  • the refractive index of the silica particles decreases in proportion to the presence of the voids.
  • the refractive index of the silica particles is preferably closer to the theoretical refractive index of 1.46, and for that purpose, it is preferable that the voids inside the individual primary particles constituting the aggregated structure of the silica particles are small.
  • the fact that the voids inside the primary particles are small means that the particle density of the primary particles is high. Therefore, in the silica of the present embodiment, the particle density is 2.18 g / cm 3 or more.
  • the particle density measured by the He pycnometer substantially corresponds to the density of the primary particles constituting the silica particles.
  • Particle density is preferably 2.185g / cm 3 or more, 2.19 g / cm 3 or more is more preferable. There is no particular upper limit value of the particle density limited, practically, 2.21 g / cm 3 or less is preferably close to the true density of the amorphous silica may be a 2.205g / cm 3 or less.
  • the silica of the present embodiment needs to have a size that does not transmit visible light at a minimum in order to exhibit matteness, its average particle size is at least in the wavelength range of visible light. It may be larger than (about 0.4 ⁇ m to 0.76 ⁇ m).
  • the matting property is exhibited by scattering the light incident from the outside on the portion of the silica particles partially embedded in the coating film surface in which the silica particles protrude from the coating film surface. .. That is, of the silica particles, only the portion slightly smaller than the portion corresponding to the actual particle size (the portion where the silica particles protrude from the coating film surface) contributes to light scattering.
  • the particle size of the silica of the present embodiment is preferably slightly larger than the wavelength range of visible light, and specifically, the particle size.
  • the LD50 is preferably 1.7 ⁇ m or more, more preferably 3.0 ⁇ m or more, and further preferably 5.0 ⁇ m or more. But not limit specifically limited in particle diameter L D50, practically preferably not more than 25.0.
  • the pH of the silica of the present embodiment is not particularly limited, but usually shows a pH of weakly acidic to near weakly basic, and the pH value when the silica of the present embodiment is dispersed in water and measured is 5.5 to. It is within the range of about 9.5. The details of the pH measuring method will be described later.
  • the bulk density of silica of the present embodiment is not particularly limited, but the lower limit thereof is preferably 35 g / L or more, more preferably 36 g / L or more, and further preferably 43 g / L or more.
  • the upper limit is not particularly limited, but practically, it is preferably 70 g / L or less, and more preferably 65 g / L or less.
  • the coating material of the present embodiment contains at least a matting agent (silica of the present embodiment) and a resin.
  • the paint of the present embodiment is a colored paint containing a coloring material such as a pigment or a dye, a clear paint containing no coloring material (colorless and transparent), or a trace amount within a range that does not impair the transparency of the coating film. It may be any clear paint containing a coloring material (slightly colored).
  • the coating material of the present embodiment is liquid, the coating material further contains a solvent such as water or an organic solvent.
  • the coating material of the present embodiment may contain various additives other than the silica of the present embodiment used as a matting agent.
  • the paint of this embodiment can be used in the form of solvent type paint, ultraviolet (UV) curable paint, powder paint and the like, and specifically, water-based paint, oil-based paint, nitrocellulose paint, alkyd resin paint, amino alkyd. It can be used in the form of paint, vinyl resin paint, acrylic resin paint, epoxy resin paint, polyester resin paint, rubber chloride paint, and the like. Among these, the paint of the present embodiment is preferably a vinyl chloride paint or a urethane paint used as a paint for synthetic leather.
  • any resin used for the paint can be used without particular limitation.
  • rosin, ester gum, pentaresin, kumaron inden resin phenol-based resin, modified phenol-based resin, malein-based resin.
  • Arcido resin amino resin, vinyl resin, petroleum resin, epoxy resin, polyester resin, styrene resin, acrylic resin, silicone resin, rubber base resin, chlorinated resin, urethane resin, Examples thereof include one or more types such as polyamide-based resin, polyimide-based resin, fluorine-based resin, and natural or synthetic lacquer.
  • high solid resin for example, UV curable acrylic resin, epoxy resin, vinyl urethane resin, acrylic urethane resin, polyester resin and the like are usually used alone or in combination of two or more kinds.
  • thermoplastic resins such as polyamide, polyester, acrylic resin, olefin resin, cellulose derivative, polyether, vinyl chloride resin, epoxy resin, epoxy / novolak resin, isocyanate or epoxy curable polyester resin. Etc. are mixed.
  • an organic solvent is used as the solvent.
  • the organic solvent include aromatic hydrocarbon solvents such as toluene and xylene; aliphatic hydrocarbon solvents such as n-heptane, n-hexane and isoper; alicyclic solvents such as cyclohexane; acetone, Ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; alcohol solvents such as ethanol, propanol, butanol and diacetone alcohol; ether solvents such as tetrahydrofuran and dioxane; cellosolvent solvents such as ethyl cellosolve and butyl cellosolve; ethyl acetate, Ester-based solvents such as butyl acetate; aprotonic polar solvents such as dimethylformamide, dimethylacetamide, and dimethylsulfox
  • the blending amount is appropriately set in consideration of various physical properties required for the paint, but usually, with respect to 100 parts by mass of the solid content contained in the paint. 5 parts by mass to 33 parts by mass is preferable, and 10 parts by mass to 30 parts by mass is more preferable.
  • the blending amount is 5 parts by mass or more, the matting property can be more easily exhibited, and when the blending amount is 33 parts by mass or less, the strength of the coating film can be ensured and white turbidity can be easily suppressed.
  • the paint of this embodiment can be used as various kinds of paints as described above, but it is particularly preferable to use it as a clear paint or a black paint.
  • a coating film is formed on a base material (dark base material) having a dark coating surface using the paint of the present embodiment as a clear paint or a black paint, a coating film having a high jet-blackness can also be obtained. can.
  • the dark base material is not particularly limited as long as the coated surface is a dark base material such as black, dark blue, crimson, and dark green, but for example, a base material made of synthetic leather is preferable. be.
  • a black pigment such as carbon black or aniline black
  • the jet blackness of the coating film can be further increased.
  • the paint of the present embodiment used as the clear paint or the black paint is preferably a vinyl chloride paint or a urethane paint as described above.
  • aromatic urethane paints are relatively cheaper and have higher weather resistance as urethane paints, but aliphatic urethane paints are usually more effective in terms of appearance such as jet blackness. in use.
  • a urethane paint containing an aromatic urethane resin to which silica of the present embodiment is added as a matting agent is used, it is as jet-black as a urethane paint containing an aliphatic urethane resin to which silica is added as a matting agent. It is also easy to obtain a highly resistant coating film.
  • the silica of the present embodiment is not particularly limited as long as it is produced through a process of aggregating raw material particles. These raw material particles are particles corresponding to the primary particles forming an aggregated structure in the silica of the present embodiment.
  • fumed silica is usually used as the raw material particles. Fumed silica is produced by hydrolyzing a silica precursor such as a silane compound in a flame. Fumed silica is treated at an extremely high temperature during its formation, which distinguishes it from wet silica, which forms silica in an aqueous medium. As the fumed silica, any fumed silica can be used, but it is preferable to use fumed silica that has not been surface-treated with a surface treatment agent such as a hydrophobizing agent.
  • the method for producing silica of the present embodiment has an absorbance of an aqueous dispersion having a concentration of 1.48% by mass with respect to light having a wavelength of 700 nm of 0.14 or less.
  • the silica is produced through at least a step of adding a sex aqueous solution and a drying step of heating and drying a wet mixture obtained by adding a basic aqueous solution to fumed silica at a temperature equal to or higher than the boiling point of the basic substance. Is particularly preferable.
  • After the drying step it is usually preferable to carry out a pulverization step and a classification step in a timely manner in order to obtain silica having a desired particle size and particle size distribution. The details of each step will be described below.
  • the absorbance ( ⁇ 700) of the aqueous dispersion having a concentration of 1.48% by mass with respect to light at a wavelength of 700 nm is 0.14 or less, and the bulk density is 40 g / L to 110 g / L.
  • the silica of the present embodiment can be easily produced.
  • the particle density (measured by a He pycnometer) of fumed silica used as a raw material particle is usually 2.20 g / cm 3 to 2.21 g / cm 3 . Therefore, it is easy to control the particle density of silica (aggregate of primary particles) produced by using fumed silica as a raw material particle to 2.18 g / cm 3 or more.
  • the bulk density of fumed silica is preferably 40 g / L to 110 g / L, it becomes easier to control the particle size ratio R of the obtained silica within the range of 4.3 to 5.2.
  • the bulk density is preferably 50 g / L to 100 g / L.
  • the fumed silica ⁇ 700 to 0.14 or less it becomes easy to control the obtained silica ⁇ 700 to 0.6 or less.
  • ⁇ 700 is preferably 0.13 or less, and the lower limit is not particularly limited, but practically, it is preferably 0.06 or more.
  • ⁇ 700 is 0.14 or less. Since such silica has a small particle size and good dispersibility in an aqueous medium, the value of ⁇ 700 is considerably smaller than that of the silica of the present embodiment.
  • the bulk density of the produced silica is also low.
  • silica having a low bulk density is used as a matting agent, when the silica is dispersed in the resin composition for coating, the silica is dispersed in the resin composition in a state of being suspended on the resin composition. It is significantly inhibited, and it may take time to uniformly disperse in the resin composition, or it may not be dispersed in the resin composition at all.
  • fumed silica having a bulk density of less than 40 g / L as the raw material particles the cost of the manufacturing apparatus is increased, the filling weight when packing the manufactured silica is reduced, and the transportation cost is also reduced. It becomes easy to increase.
  • fumed silica has an extremely low bulk density, so if a fumed silica having a low bulk density is to be treated with a basic aqueous solution, a large amount of the basic aqueous solution is required.
  • the silica produced is significantly shrunk when the basic aqueous solution is evaporated and dried in the next drying step, resulting in bulky aggregation. It tends to be difficult to obtain silica having a structure. Therefore, from such a viewpoint, it is preferable that the bulk density is 40 g / L or more.
  • the fumed silica is compressed using a degassing press or the like to adjust the bulk density within the range of 40 g / L to 110 g / L.
  • the product may be used in the basic aqueous solution adjusting step.
  • fumed silica is used as a raw material particles is preferably usually a specific surface area of 190m 2 / g ⁇ 500m 2 / g approximately, and particularly preferably 220m 2 / g ⁇ 400m 2 / g.
  • the specific surface area of the silica of the present embodiment tends to be smaller than that of fumed silica used as the raw material particles because the surface of the raw material particles is dissolved by the action of the added basic aqueous solution, and is usually 180 m 2 / g. It is ⁇ 350 m 2 / g.
  • the fumed silica used as the raw material particles preferably has a small amount of coarse particles, and it is particularly preferable that the sieve residue having a mesh size of 45 ⁇ m by the mokka sieving method is 0.01% by weight or less.
  • the basic substance was added at a concentration of 5 or more to 100 parts by mass of fumed silica having the above-mentioned ⁇ 700 of 0.14 or less and a bulk density of 40 g / L to 110 g / L.
  • the containing basic aqueous solution is added in the range of 4 parts by mass to 13 parts by mass.
  • the preferred amount of the basic aqueous solution added is 4.5 parts by mass to 8 parts by mass.
  • the addition amount of the basic aqueous solution By setting the addition amount of the basic aqueous solution to 4 parts by mass or more, it becomes easy to uniformly treat the fumed silica used as the raw material particles, so that the silica of the present embodiment can be stably obtained. In addition to this, it becomes easy to control the particle size ratio R to 4.3 or more. Further, by setting the addition amount of the basic aqueous solution to 13 parts by mass or less, the energy required for the drying process can be saved and / or the drying time can be shortened in the drying step which is the next step. Therefore, it is possible to prevent the raw material particles treated with the basic aqueous solution from strongly agglutinating with each other, and as a result, the silica of the present embodiment can be stably obtained.
  • the particle density of silica of the present embodiment tends to be slightly lower than the particle density of fumed silica used as the raw material particles, and in particular, when a large amount of a high-concentration basic aqueous solution is used.
  • the decrease in particle density tends to be remarkable. Therefore, from such a viewpoint, it is preferable that the amount of the basic aqueous solution added is 13 parts by mass or less.
  • the raw material particles whose structure is slightly denatured due to the dissolution of the surface of fumed silica by the action of a base are the primary particles of silica (aggregate). It is presumed that the composition is one of the causes.
  • the surface of the raw material particles to which the basic aqueous solution is added dissolves due to the action of the base, and a part of the surface where the dissolution occurs further combines with other raw material particles to form an agglomerate. Since such agglomeration is not so strong, silica having a bulky and loose agglomeration structure can be obtained.
  • the heat treatment may be performed at a temperature lower than the boiling point of water.
  • the basic aqueous solution a solution containing a basic substance at a concentration of 5 or more is used.
  • concentration is preferably 7 or more, and more preferably 10 or more.
  • the upper limit of the concentration is preferably 20 or less from a practical point of view.
  • ammonia or methylamine, dimethylamine, ethylenediamine, tetramethylammonium, or tetraethylammonium can be easily removed from the surface of agglomerates of raw material particles by heat treatment in the drying step, which is the next step.
  • water-soluble amines are preferable, and ammonia is particularly preferable.
  • the concentration of ammonia, which is a basic substance is about 5.6 specified.
  • the basic aqueous solution is preferably ammonia water having a concentration of 5 specified or more, and in terms of the concentration in terms of ammonia content (mass%), it is 9.8% by mass or more.
  • Ammonia water of 10% by mass or more is more preferable, and 20% by mass or more of ammonia water is further preferable.
  • the raw material particles in the container may be agitated with a stirring blade, or the basic aqueous solution may be sprayed in a state of gas flow, and the basic aqueous solution may be uniformly contacted with the raw material particles.
  • spraying it is convenient and preferable to add with a one-fluid nozzle, a two-fluid nozzle, or an ultrasonic spray. At this time, it is more preferable to select the spray liquid so that the average particle size is 100 ⁇ m or less.
  • the basic aqueous solution may be intermittently supplied into the reactor vessel containing the raw material particles, or may be continuously supplied.
  • the reaction temperature needs to be in the range in which the basic aqueous solution exhibits a liquid, and therefore, it is generally 15 ° C. to 85 ° C. The degree is preferable. Further, if the reaction time is too short, dissolution and the like are unlikely to occur, and if it is too long, aggregation tends to proceed too much. Therefore, it is preferable to carry out the reaction in the range of 0.4 hours to 3 hours.
  • the reaction time referred to here is the time from the time when the basic aqueous solution is added to the raw material particles to the time when heating is started to carry out the drying step which is the next step.
  • the pressure at which the contact treatment between the basic aqueous solution and the raw material particles is carried out is not particularly limited, and can be appropriately selected in the range from negative pressure to pressurized. Further, the contact treatment may be performed by a batch method or a continuous method.
  • a drying step is carried out.
  • a wet mixture obtained by adding a basic aqueous solution to fumed silica is heated to a temperature equal to or higher than the boiling point of the basic substance and dried.
  • the boiling point of the basic substance contained in the basic aqueous solution to be used is lower than the boiling point of water, it is necessary to heat the substance at a temperature equal to or higher than the boiling point of water in the drying step.
  • the basic substance is ammonia (boiling point under atmospheric pressure is about -33 ° C), and when the drying step is performed under atmospheric pressure, the temperature is up to the boiling point of water (100 ° C under atmospheric pressure) or higher.
  • the drying process is carried out by heating.
  • the basic substance can be quickly and sufficiently removed from the surface of the aggregate of the raw material particles. Further, since this can suppress the progress of excessive aggregation in the drying step, the silica obtained even when the basic aqueous solution addition step using the basic aqueous solution containing a basic substance having a high concentration of 5N or more is carried out.
  • the particle size ratio R is 4.3 to 5.2, ⁇ 700 is 0.6 or less, and the particle density is 2.18 g / cm 3 or more, which makes it easier to control. As a result, it becomes easy to stably obtain the silica of the present embodiment.
  • the heating temperature may be 100 ° C. or higher. It is preferably 150 ° C. or higher. By setting the heating temperature to 100 ° C. or higher, the drying time can be reduced and basic substances can be sufficiently removed.
  • the heating temperature may be equal to or higher than the boiling point of water under the pressure, preferably + 50 ° C. or higher.
  • the upper limit of the heating temperature during the drying treatment is not particularly limited, but is preferably 300 ° C. or lower in consideration of the physical heat resistance of the heating device used for the drying treatment.
  • the temperature rise to the target heating temperature is preferably carried out at a heating rate of 100 ° C./hr or less, and during the drying treatment, an inert gas such as nitrogen gas is supplied. Therefore, it is preferable to carry out the drying treatment in an atmosphere of an inert gas.
  • silica aggregates in which primary particles corresponding to raw material particles are aggregated
  • a pulverization step in order to adjust the particle size and particle size distribution.
  • the crushing device it is preferable to use a crushing device such as a jet mill or a pin mill in which compression of the powder to be crushed is unlikely to occur, and a jet mill is particularly preferable.
  • the pulverization treatment is carried out until the particle size C D50 is approximately 4.0 ⁇ m or less, it becomes easy to control the particle size ratio R to 4.3 or more.
  • the pulverization treatment is carried out until the particle diameter C D50 at the end of the pulverization treatment becomes 3.5 ⁇ m or less. It is more preferable to carry out until it becomes 1.6 ⁇ m or less, and it is particularly preferable to carry out until it becomes 1.8 ⁇ m or less.
  • the crushing treatment is carried out within a range in which the particle size C D50 at the end of the crushing treatment is 0.8 ⁇ m or more. It is preferably carried out, more preferably carried out in a range of 1.1 ⁇ m or more, and further preferably carried out in a range of 1.2 ⁇ m or more.
  • the particle diameter C D50 of the silica of the present embodiment is preferably 1.1 ⁇ m ⁇ 3.5 ⁇ m, 1.2 ⁇ m ⁇ 2. It is more preferably 6 ⁇ m, and even more preferably 1.2 ⁇ m to 1.8 ⁇ m.
  • a classification step may be carried out as necessary in order to remove the coarse particles contained in the silica. good.
  • a stirring and mixing step of stirring and mixing the raw material particles using a Henschel mixer or the like may be carried out prior to the step of adding the basic aqueous solution.
  • the specific surface area was measured by the nitrogen adsorption BET 1-point method using a specific surface area measuring device (SA-1000) manufactured by Shibata Rikagaku Co., Ltd.
  • ⁇ 700 Absorbance ( ⁇ 700) of an aqueous dispersion having a concentration of 1.48% by mass with respect to light having a wavelength of 700 nm.
  • the measurement of ⁇ 700 was carried out by the measuring method disclosed in Jounal of Ceramic Socirty of Japan 101 [6], 707-712 (1993). Specifically, a glass sample tube bottle (manufactured by AS ONE, content volume 30 ml, outer diameter about 28 mm) was filled with 0.3 g of a powder sample and 20 ml of distilled water.
  • the probe tip of an ultrasonic cell crusher (Digital Sonifier Model 250 manufactured by BRANSON, probe: 1/4 inch microchip) was filled in a sample tube bottle, and a mixture of 0.3 g of a powder sample and distilled water was filled. It was installed at a position 10 mm below the surface of the water.
  • an aqueous dispersion liquid (powder sample 0.3 g concentration) in which 0.3 g of the powder sample was finely dispersed in distilled water by ultrasonically stirring under the condition of an output of 39% (30 W) and a dispersion time of 180 seconds. : 1.48% by mass) was obtained.
  • the absorbance of the obtained aqueous dispersion with respect to light having a wavelength of 700 nm was measured using a spectrophotometer (V-530, manufactured by JASCO Corporation).
  • V-530 spectrophotometer
  • a quartz cell having a side surface made of frosted glass and having an optical path length of 10 mm was used.
  • LA950V2 volume-reduced cumulative 50% diameter measured by a laser diffraction scattering method (L D50) Particle size L D50 a laser diffraction scattering particle size distribution analyzer (Horiba Ltd., LA950V2) was used for the measurement.
  • the internal setting values of LA950V2 were set to Circulation 5, Agitaion 7, and UltraSonic 4 minutes. Further, in the measurement, 0.1 g of the dried silica powder was directly put into the apparatus for the measurement.
  • volume-reduced cumulative 50% particle diameter measured by a Coulter counter method (C D50)
  • the particle size C D50 was measured according to the following procedure. First, an alcohol dispersion was prepared by dispersing a mixture of 50 g of methanol and 0.2 g of silica powder for 3 minutes using an ultrasonic cleaner (B1510J-MT, manufactured by Emerson Japan, Ltd.). Next, the particle size of the silica particles dispersed in the alcohol dispersion was measured using a particle size distribution measuring device (manufactured by Coulter, TA II type) using an aperture tube of 50 ⁇ m. Isoton II was used as the electrolytic solution of the particle size distribution measuring device.
  • a particle size distribution measuring device manufactured by Coulter, TA II type
  • Particle Density Using a He Pycnometer The particle density was measured by the following procedure. First, a powder sample to be measured is filled in a cemented carbide press die (diameter 50 mm x height 75 mm), and then a press device (MASADASEISAKUSHO, MH-15TON press (ram diameter 55 mm)) is used. , The powder sample to be measured was compression-molded (uniaxial press) under a pressure of 15 tons. After applying pressure for about 2 seconds, the compressed powder sample was taken out from the mold. Next, the compressed silica is dried in a vacuum dryer at a temperature of 200 ° C. and a pressure of ⁇ 0.095 PaG or less for 8 hours, and then allowed to cool to room temperature under reduced pressure in a vacuum dryer. As a result, a measurement sample was obtained.
  • the obtained measurement sample was measured using a dry automatic densitometer (manufactured by Shimadzu Corporation, AccuPyc 1330 type) using a 10 ml sample insert and a He gas having a pressure of 0.16 Pa.
  • the measurement temperature of the density meter at the time of density measurement was maintained at 25 ° C. by constant temperature water circulation.
  • pH The pH was measured by the following procedure. First, 100 ml of degassed pure water was added to 5 g of a powder sample and stirred with a stirrer for 10 minutes to prepare a slurry for pH measurement. Next, the pH of this slurry was measured using a PH meter F-52 manufactured by HORIBA, Ltd. Standard solutions of pH 4 and pH 9 were used for calibrating the pH meter.
  • DBP Dibutyl phthalate
  • paints and coating films were prepared by the following procedure.
  • Resin composition for paint (manufactured by Dainichiseika Co., Ltd., Leatherroid LU-1500 (aromatic urethane paint resin solid content 20%)) 50 g, MEK (methyl ethyl ketone) 33.3 g, DMF (dimethylformamide)
  • a paint (clear paint) is obtained by dispersing 16.7 g and 2.5 g of silica powder of each example and comparative example with a homomixer at 8000 rpm (peripheral speed 11.7 m / S) for 6 minutes. Was prepared.
  • the above paint was applied to urethane synthetic leather having a black painted surface using bar coater No. 14. Subsequently, after painting, it was dried at 60 ° C. for 1 hour and then left at room temperature for 12 hours to obtain a urethane synthetic leather having a coating film formed on the painted surface.
  • the L * value of the coated surface of the urethane synthetic leather used for forming the coating film is 25.0, and the gloss value (incident angle: gloss value of 60 degrees) is 3.5%.
  • the L * value and the gloss value of the coated surface of urethane synthetic leather are values measured by the measuring method described below.
  • Grain gauge value The grain gauge value was measured using a 100 ⁇ m grain gauge based on JIS K 5600-2-5.
  • Viscosity and TI The viscosity of the paint after being left in a constant temperature water bath at 25 ° C. for 2 hours was measured at 25 ° C. under the conditions of 60 rpm and 6 rpm using a BL type rotational viscometer. Tables 3 and 4 show the viscosities measured at 60 rpm. Further, the value obtained by dividing the viscosity at 6 rpm by the viscosity at 60 rpm was determined as TI (thixotropy index).
  • L * value The L * value was measured with a spectrophotometer (manufactured by Konica Minolta, CM-5 type) on the surface on which the coating film of urethane synthetic leather was formed.
  • L * a * b * (CIE1976) was used as the color system, and the L * value was measured with SCI (value including specularly reflected light) having a measurement diameter of 8 mm. This L * value is an index of jet blackness.
  • the gloss value was measured according to JIS Z 8741 on the surface on which the coating film of urethane synthetic leather was formed. At the time of measurement, a gloss meter (manufactured by RHOPINT, IQ3 type) was used to evaluate the gloss (gloss value) at an incident angle of 60 degrees.
  • Example 1 As raw material particles, fumed silica having a specific surface area of 300 m 2 / g, ⁇ 700 of 0.084, a bulk density of 75 g / L, and a particle density of 2.209 g / cm 3 was used. After 5 kg of the raw material particles were put into a hensyl type mixer having an internal volume of 300 L and stirred and mixed, the atmospheric gas in the mixer was replaced with nitrogen gas by introducing nitrogen gas into the mixer.
  • the temperature was raised to 180 ° C. at 100 ° C./hr while supplying nitrogen into the mixer at 40 L / hr. Then, the inside of the mixer was kept at 180 ° C. for 1 hour to obtain a dried silica powder.
  • the silica powder after the drying treatment was pulverized by a jet mill (manufactured by Seishin Enterprise Co., Ltd., STJ315 type) and adjusted so that the particle size C D50 was 1.4 ⁇ m to obtain the silica powder of Example 1. rice field. Unless otherwise specified, STJ315 type manufactured by Seishin Enterprise Co., Ltd. is used for the jet mills used in the examples and comparative examples described below.
  • Example 2 In grinding process, except that the particle diameter C D50 was pulverized by a jet mill so as to 2.6 [mu] m, by carrying out the same process as in Example 1 to obtain a silica powder of Example 2.
  • Example 3 Fumed silica having a specific surface area of 300 m 2 / g, ⁇ 700 of 0.084, bulk density of 61 g / L, and particle density of 2.209 g / cm 3 is used as the raw material particles, and the concentration is 18% by mass as a basic aqueous solution.
  • the silica powder of Example 3 was obtained by carrying out the same process as in Example 1 except that 340 ml of aqueous ammonia was added to the raw material particles.
  • Example 4 Using fumed silica having a specific surface area of 250 m 2 / g, ⁇ 700 of 0.114, bulk density of 85 g / L, and particle density of 2.205 g / cm 3 as raw material particles, ammonia having a concentration of 25% by mass as a basic aqueous solution.
  • the silica powder of Example 4 was obtained by carrying out the same process as in Example 1 except that 223 ml of water was added to the raw material particles.
  • Example 5 The basic aqueous solution addition step and the same as in Example 1 except that the concentration of the ammonia water used as the basic aqueous solution to be added to the raw material particles was 9.8% by mass and the amount of the ammonia water added to the raw material particles was 600 ml.
  • a drying step was carried out. Thereafter, the silica after drying, by grinding by a jet mill to a particle size C D50 becomes 1.3 .mu.m, to obtain a silica powder of Example 5.
  • Example 6 Bases in the same manner as in Example 1 except that fumed silica having a specific surface area of 300 m 2 / g, ⁇ 700 of 0.084, bulk density of 100 g / L, and particle density of 2.209 g / cm 3 was used as the raw material particles. A sex aqueous solution addition step and a drying step were carried out. Thereafter, the silica after drying, the particle diameter C D50 by pulverizing by a jet mill so as to 1.1 .mu.m, to obtain a silica powder of Example 6.
  • Example 7 Basic as in Example 1 except that fumed silica having a specific surface area of 380 m 2 / g, ⁇ 700 of 0.067, bulk density of 55 g / L, and particle density of 2.210 g / cm 3 was used as the raw material particles. An aqueous solution addition step and a drying step were carried out. Thereafter, the silica after drying, by grinding by a jet mill to a particle size C D50 becomes 1.2 [mu] m, to obtain a silica powder of Example 7.
  • Example 8 Silica after drying, by except that the particle diameter C D50 was pulverized by a jet mill so as to 3.5 ⁇ m to process similar to that in Example 1, to obtain a silica powder of Example 8.
  • Example 9 Using fumed silica having a specific surface area of 225 m 2 / g, ⁇ 700 of 0.128, bulk density of 110 g / L, and particle density of 2.203 g / cm 3 as raw material particles, ammonia having a concentration of 14% by mass as a basic aqueous solution.
  • the basic aqueous solution addition step and the drying step were carried out in the same manner as in Example 1 except that 500 ml of water was added to the raw material particles. Then, the silica after the drying treatment was pulverized by a jet mill so that the particle size C D50 was 3.3 ⁇ m to obtain the silica powder of Example 9.
  • Example 10 Using fumed silica having a specific surface area of 220 m 2 / g, ⁇ 700 of 0.130, bulk density of 40 g / L, and particle density of 2.203 g / cm 3 as raw material particles, ammonia having a concentration of 10% by mass as a basic aqueous solution.
  • the basic aqueous solution addition step and the drying step were carried out in the same manner as in Example 1 except that 650 ml of water was added to the raw material particles. Thereafter, the silica after drying, by grinding by a jet mill to a particle size C D50 becomes 3.0 [mu] m, to obtain a silica powder of Example 10.
  • Example 11 In Example 1, the silica powder of Example 11 was carried out by carrying out the same process as in Example 1 except that the temperature inside the mixer was replaced with nitrogen and the temperature after the nitrogen replacement was maintained at room temperature (20 ° C.). Got
  • Comparative Example 1 By carrying out the same process as in Example 1 except that the concentration of the ammonia water used as the basic aqueous solution was 2% by mass and the amount of the ammonia water added to the raw material particles was 400 ml, the silica powder of Comparative Example 1 was obtained. Obtained.
  • Example 2 Humed silica with a specific surface area of 300 m 2 / g, ⁇ 700 of 0.084, bulk density of 25 g / L, and particle density of 2.209 g / cm 3 is used as the raw material particles, and the concentration is 0.15 mass as a basic aqueous solution.
  • the basic aqueous solution addition step and the drying step were carried out in the same manner as in Example 1 except that 1000 ml of% ammonia water was added to the raw material particles. Then, the silica after the drying treatment was pulverized by a jet mill so that the particle size C D50 was 2.2 ⁇ m to obtain the silica powder of Comparative Example 2.
  • Example 3 The same process as in Example 1 was carried out except that fumed silica having a specific surface area of 200 m 2 / g, ⁇ 700 of 0.157, bulk density of 75 g / L and particle density of 2.200 g / cm 3 was used as the raw material particles. By carrying out, the silica powder of Comparative Example 3 was obtained.
  • Example 4 The same as in Example 1 except that 1500 ml of a basic aqueous solution (pH 10.8) obtained by diluting sodium No. 3 silicate defined by JIS K 1408 as a basic aqueous solution to a concentration of 1% by mass was added to the raw material particles. A basic aqueous solution addition step and a drying step were carried out. Then, the silica after the drying treatment was pulverized by a jet mill so that the particle size C D50 was 2.3 ⁇ m to obtain the silica powder of Comparative Example 4.
  • Comparative Example 5 As the silica powder of Comparative Example 5, a commercially available pulverized wet silica product ( Fine Seal E-50 manufactured by Tokuyama Corporation with a specific surface area of 200 m 2 / g) was used as it was.
  • Comparative Example 6 As the silica powder of Comparative Example 6, commercially available gel method silica (manufactured by Beijing Koten Satoku Co., Ltd., gel method silica SD-450) was used as it was.
  • Comparative Example 8 The silica powder of Comparative Example 7 was pulverized by a jet mill so that the particle size C D50 was 2.6 ⁇ m to obtain the silica powder of Comparative Example 8.
  • Comparative Example 9 The silica powder of Comparative Example 7 was pulverized by a jet mill so that the particle size C D50 was 1.1 ⁇ m to obtain the silica powder of Comparative Example 9.
  • Comparative Example 10 By carrying out the step of adding the basic aqueous solution in the same manner as in Comparative Example 7, a wet mixture in which the raw material particles were moistened with aqueous ammonia was obtained. Subsequently, the wet mixture was pulverized using a single track jet mill (manufactured by Seishin Enterprise Co., Ltd., FS4 type). Then, the obtained pulverized product was placed in a stationary shelf dryer and dried at a temperature of 120 ° C. until the water content in the pulverized product reached 3%, whereby the silica powder of Comparative Example 10 was obtained. Obtained.
  • Comparative Example 11 By carrying out the step of adding the basic aqueous solution in the same manner as in Comparative Example 7, a wet mixture in which the raw material particles were moistened with aqueous ammonia was obtained. Subsequently, the wet mixture was pulverized using a disc mill free crusher with a pin (manufactured by Nara Machinery Co., Ltd., M-3 type). Then, the obtained crushed product was placed in a 1 L metal wide-mouthed bottle and dried at a temperature of 55 ° C. for 20 minutes, and then placed in a stationary shelf dryer and placed in the crushed product at a temperature of 120 ° C. The silica powder of Comparative Example 11 was obtained by drying until the water content became 3%.
  • Comparative Example 12 The silica powder of Comparative Example 11 was again pulverized using a disc mill free crusher with a pin (manufactured by Nara Machinery Co., Ltd., M-3 type) to obtain the silica powder of Comparative Example 12.
  • the wet mixture was pulverized using a single track jet mill (manufactured by Seishin Enterprise Co., Ltd., FS4 type). Then, the obtained pulverized product is placed in a stationary shelf dryer and dried at a temperature of 127 ° C. until the water content in the pulverized product reaches 4.2%, whereby the silica of Comparative Example 13 is used. Obtained powder.
  • Comparative Example 15 Humed silica having the same specific surface area, particle density and ⁇ 700 as the fumed silica used in Example 1 except that the bulk density was set to 120 g / L was used as the raw material particles, except that the raw material particles used were different. By carrying out the same process as in Example 1, the silica powder of Comparative Example 15 was obtained.
  • Example 16 A dried silica powder was obtained by carrying out the basic aqueous solution addition step and the drying step in the same manner as in Example 1 except that the amount of ammonia water added to the raw material particles was 780 ml. Then silica after drying was pulverized by a jet mill, by adjusting so that the particle diameter C D50 becomes 1.4 [mu] m, to obtain a silica powder of Comparative Example 16.
  • Example 17 A dried silica powder was obtained by carrying out the basic aqueous solution addition step and the drying step in the same manner as in Example 1 except that the amount of ammonia water added to the raw material particles was 165 ml. Then silica after drying was pulverized by a jet mill, by adjusting so that the particle diameter C D50 becomes 1.4 [mu] m, to obtain a silica powder of Comparative Example 17.
  • Tables 1 and 2 show the production conditions of the silica powders of each Example and Comparative Example.
  • Tables 3 and 4 show the physical characteristic values of the paints prepared using the silica powders of each Example and Comparative Examples, and the evaluation results of the coating film formed by using the paints.
  • 3.75 g of silica powder was added to the upper part of 100 g (solvent content: 85%).
  • the mixture was stirred with a 40 mm outer diameter disperser blade stirrer at 2500 rpm (peripheral speed 5.2 m / S). At this time, silica. Stirring was continued until the powder was evenly and evenly dispersed in the resin composition. Whether or not the silica powder was evenly and evenly dispersed in the resin composition was visually confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

塗料の艶消し剤として利用した場合に高い艶消し性を発揮すると共に白濁の発生も抑制できること。一次粒子が凝集した凝集構造を有し、下式(1)に示す粒径比Rが4.3~5.2であり、濃度1.48質量%の水分散液の波長700nmの光に対する吸光度が0.6以下であり、かつ、Heピクノメーターにより測定した粒子密度が2.18g/cm3以上であることを特徴とするシリカ。 ・式(1) R=LD50/CD50 〔前記式(1)中、LD50は、レーザー回折散乱法に基づき測定された前記シリカの体積基準累積50%粒子径(μm)を表し、CD50は、コールターカウンター法に基づき測定された前記シリカの体積基準累積50%粒子径(μm)を表す。〕

Description

シリカ、塗料およびシリカの製造方法
 本発明は、シリカ、塗料およびシリカの製造方法に関するものである。
 クロロシランの火炎熱分解によって製造されるシリカは、比表面積が50m/g~500m/g程度の微細なシリカであり、一般にはフュームドシリカと呼ばれている。このヒュームドシリカは主に透明樹脂の充填・補強材や増粘剤、また、粉末の流動化剤として用いられており、分散性に優れる。このため、ヒュームドシリカは、特にシリコーンゴムの充填剤や、ポリエステル樹脂の増粘剤、トナー用流動化剤などとして良く利用されている。
 しかしながらヒュームドシリカを塗料の艶消し剤として適用する場合、この分散性の良さがデメリットとなる。すなわち、ヒュームドシリカは、分散力が弱くても、塗料中において可視光の波長以下の大きさまで分散してしまう。このため、一般的に、ヒュームドシリカをそのまま塗料の艶消し剤として使用することが出来ない。従って、塗料用の艶消し剤としては、もっぱら粒子径の大きな湿式シリカ(水などの溶媒中で製造されたシリカ)を粉砕分級して得られたシリカが塗料用の艶消し剤として使用されている。しかしながら湿式シリカを原料として製造されたシリカを艶消し剤として用いた場合でも必ずしも十分な艶消し性能が得られているとは言い難い。
 一方、そのままでは艶消し剤として利用できないヒュームドシリカを艶消し剤として利用する技術が提案されている。たとえば、特許文献1には、ヒュームドシリカに5~50重量%の水を配合し、得られる粉末状混合物を乾燥させることで得られたエーロゲル状組織のケイ酸を艶消し剤として利用する技術が提案されている。また、特許文献1記載の技術とは大きく異なるアプローチを採用した技術も提案されている。たとえば、特許文献2には、混合容器中で混合しながらヒュームドシリカに水及び熱可塑性エラストマーを吹き付け、次いで粉砕し、引き続きこの混合物を乾燥することで得られたテクスチャー被覆シリカを艶消し剤として利用する技術が提案されている。
特公昭56-44012号公報 特許第4440114号公報
 本発明者は、技術的アプローチが大きく異なる特許文献1,2に記載の技術のうち、特許文献1記載の技術についてさらに検討した。その結果、特許文献1記載の技術を利用して得られたシリカを塗料の艶消し剤として利用しても、必ずしも十分な艶消し性が得られないことを確認した。
 本発明は、上記事情に鑑みてなされたものであり、塗料の艶消し剤として利用した場合に高い艶消し性を発揮すると共に白濁の発生も抑制できるシリカ、当該シリカを用いた塗料および当該シリカの製造方法を提供することを課題とする。
 上記課題は以下の本発明により達成される。すなわち、
 本発明のシリカは、一次粒子が凝集した凝集構造を有し、下式(1)に示す粒径比Rが4.3~5.2であり、濃度1.48質量%の水分散液の波長700nmの光に対する吸光度が0.6以下であり、かつ、Heピクノメーターにより測定した粒子密度が2.18g/cm以上であることを特徴とする。
・式(1) R=D50/D50
〔前記式(1)中、D50は、レーザー回折散乱法に基づき測定された前記シリカの体積基準累積50%粒子径(μm)を表し、D50は、コールターカウンター法に基づき測定された前記シリカの体積基準累積50%粒子径(μm)を表す。〕
 本発明のシリカの一実施形態は、前記体積基準累積50%粒子径D50が1.7μm以上であることが好ましい。
 本発明のシリカの他の実施形態は、嵩密度が35g/L以上であることが好ましい。
 本発明のシリカの他の実施形態は、塗料の艶消し剤として用いられることが好ましい。
 本発明のシリカの他の実施形態は、本発明のシリカを含む塗料が、クリアー塗料および黒色系塗料からなる群より選択されるいずれかの塗料であることが好ましい。
 本発明の塗料は、艶消し剤と、樹脂とを少なくとも含み、前記艶消し剤が、一次粒子が凝集した構造を有し、下式(1)に示す粒径比Rが4.3~5.2であり、濃度1.48質量%の水分散液の波長700nmの光に対する吸光度が0.6以下であり、かつ、Heピクノメーターにより測定した粒子密度が2.18g/cm以上であるシリカを含むことを特徴とする。
・式(1) R=D50/D50
〔前記式(1)中、D50は、レーザー回折散乱法に基づき測定された前記シリカの体積基準累積50%粒子径(μm)を表し、D50は、コールターカウンター法に基づき測定された前記シリカの体積基準累積50%粒子径(μm)を表す。〕
 本発明の塗料の一実施形態は、クリアー塗料および黒色系塗料からなる群より選択されるいずれかであることが好ましい。
 本発明のシリカの製造方法は、濃度1.48質量%の水分散液の波長700nmの光に対する吸光度が0.14以下であり、嵩密度が40g/L~110g/Lであるヒュームドシリカ100質量部に対して、塩基性物質を5規定以上の濃度で含む塩基性水溶液を4質量部~13質量部の範囲で添加する塩基性水溶液添加工程と、前記ヒュームドシリカに前記塩基性水溶液が添加された湿潤混合物を、前記塩基性物質沸点以上の温度で加熱して乾燥させる乾燥工程と、を少なくとも経て、シリカを製造することを特徴とする。
 本発明のシリカの製造方法の一実施形態は、前記塩基性水溶液が5規定以上の濃度を有するアンモニア水であることが好ましい。
 本発明のシリカの製造方法の他の実施形態は、前記乾燥工程を経て得られたシリカを、ジェットミルおよびピンミルからなる群より選択される粉砕装置を用いて粉砕する粉砕工程をさらに含み、前記粉砕工程において、粉砕処理終了後のシリカのコールターカウンター法に基づき測定された体積基準累積50%粒子径D50が3.5μm以下となるまで粉砕処理を実施することが好ましい。
 本発明によれば、塗料の艶消し剤として利用した場合に高い艶消し性を発揮すると共に白濁の発生も抑制できるシリカ、当該シリカを用いた塗料および当該シリカの製造方法を提供することができる。
1.シリカ
 本実施形態のシリカは、一次粒子が凝集した凝集構造を有し、<1>下式(1)に示す粒径比Rが4.3~5.2であり、<2>濃度1.48質量%の水分散液の波長700nmの光に対する吸光度(以下、当該吸光度をτ700と称す場合がある)が0.6以下であり、かつ、<3>Heピクノメーターにより測定した粒子密度が2.18g/cm以上であることを特徴とする。
・式(1) R=D50/D50
〔式(1)中、D50は、レーザー回折散乱法に基づき測定されたシリカの体積基準累積50%粒子径(μm)を表し、D50は、コールターカウンター法に基づき測定されたシリカの体積基準累積50%粒子径(μm)を表す。〕
 本実施形態のシリカでは、塗料の艶消し剤として用いた場合に、上記<1>~<3>に示すいずれかの条件を満たすことにより、艶消し性の改善および/または白濁を抑制することが容易となる。そして、<1>~<3>に示す条件を同時に満たす場合、高い艶消し性を発揮すると共に白濁の発生も抑制できる。以下に<1>粒径比R、<2>τ700、<3>粒子密度の各々について詳述する。
<1>粒径比R
 式(1)に示す粒子径D50の測定に用いるレーザー回折散乱法では、測定対象となる個々の粒子の最外面で散乱が起こる。このため、レーザー回折散乱法で測定された粒子径は、例えば、SEM(走査型電子顕微鏡)等により観察された粒子の粒子径と極めて近い値が得られる。これに対して、式(1)に示す粒子径D50の測定に用いるコールターカウンター法では、粒子がアパーチャーを通過する際の電気抵抗の変化に基づいて粒子の大きさを測定する。このため測定対象となる粒子がポーラスな構造を有する場合、粒子中の空隙部分に測定に利用する分散溶媒として用いられる電解液(たとえば、後述する粒子径D50の測定に用いたアイソトンII)が充満する。この際、空隙部分に電流が流れることになるため、ポーラスな構造を有する粒子においては、レーザー回折散乱法やSEMにより測定される粒子径と比べて、粒子径D50は大幅に小さい値を示すことになる。従って、式(1)に示す粒径比Rは、測定対象となる粒子が有する空隙の程度を評価する指標と言える。
 本実施形態のシリカは、上述したように式(1)に示す粒径比Rが4.3~5.2であるため、一次粒子が緩やかに結合すると共に嵩高い凝集構造(空隙率の高いポーラスな構造)を有する。それゆえ、本実施形態のシリカは、個々のシリカ粒子表面の凹凸が大きい構造を有するため、シリカ粒子表面における光の乱反射が生じやすく、塗料の艶消し性を改善することが容易となる。これに加えて、単位重量当たりに含まれるシリカ粒子の個数もより大きくなるため、塗料に対する本実施形態のシリカの添加量が少なくても、優れた艶消し効果を発揮することも容易である。また、艶消し性の改善に伴い、塗膜の白濁を抑制することも容易となる。さらに、本実施形態のシリカを用いたクリアー塗料あるいは黒色系塗料を、塗布面が濃色の基材(濃色基材)に塗布して使用する場合には、艶消し効果の発揮に伴い、優れた漆黒性を有する塗膜の形成も容易となる。
 なお、艶消し性の改善効果をより高める観点からは、粒径比Rの下限値は、4.5以上が好ましく、4.7以上がさらに好ましい。一方、粒径比Rが大きくなるほど、シリカ粒子はより嵩高い凝集構造を有することになるため、塗料中でもこのような凝集構造がそのまま維持できるのであれば、さらなる艶消し性の改善が期待される。しかしながら、粒径比Rが大きすぎる場合、塗料調製時に攪拌混合する際にシリカ粒子に対して加わるせん断力によって嵩高い凝集構造が崩れやすくなるため、結果的に、艶消し性が劣化すると共に白濁も生じ易くなる。それゆえ、粒径比Rは、5.2以下であることが必要であり、5.0以下であることが好ましい。
 なお、参考までに述べれば、一次粒子が凝集した凝集構造を有するシリカ粒子において、当該シリカ粒子のポーラスさ、嵩高さを評価する指標としては、一般的に吸油量が使用されている。しかしながら、吸油量には、個々のシリカ粒子内に形成された空隙に吸収された油の量に加えて、シリカ粒子間の隙間に存在する油の量も含まれ得る。また、シリカ粒子内に形成された空隙は、上述したように、艶消し性と密接に関係するが、シリカ粒子間の隙間は、艶消し性とは関係していない。このため、吸油量は、個々のシリカ粒子の空隙の大きさとは正確には対応しておらず、また、粒径比Rと比べると、艶消し性との相関性が相対的により低いパラメーターである。
<2>τ700
 また、本実施形態のシリカでは、濃度1.48質量%の水分散液の波長700nmの光に対する吸光度(τ700)が0.6以下である。τ700を0.6以下とすることにより、塗料中でのシリカ粒子の分散性が向上し、光を乱反射するシリカ粒子表面の実効面積をより大きくできる。それゆえ、艶消し性を改善することが容易となる上に、艶消し性の改善に伴い、塗膜の白濁を抑制することも容易となる。さらに、本実施形態のシリカを用いたクリアー塗料あるいは黒色系塗料を、塗布面が濃色の基材(濃色基材)に塗布して使用する場合には、艶消し効果の発揮に伴い、優れた漆黒性を有する塗膜の形成も容易となる。また、溶媒を含む塗料に本実施形態のシリカを用いた場合、τ700を0.6以下とすることにより、基材に対して塗布し易く、塗布後は垂れにくい塗料を得ることも容易になる。なお、τ700は0.5以下が好ましく、0.4以下がより好ましい。また、τ700の下限値は特に限定されるものでは無いが、τ700の下限値は、実用上、0.25以上であることが好ましく、0.30以上であることがより好ましい。
<3>粒子密度
 また、本実施形態のシリカでは、Heピクノメーターで測定した粒子密度が2.18g/cm以上である。これにより塗膜の白濁を抑制することが容易となる。さらに、白濁の抑制に伴い塗膜の光沢感も大なり小なり減少するため、結果的に艶消し性の改善も容易となる。粒子密度を2.18g/cm以上とすることにより、白濁の抑制等が容易となる理由は以下の通りである。
 まず、純粋な非晶質シリカの屈折率(理論上の屈折率)は1.46である。これに対して、塗料に用いられる樹脂成分として広く利用されているウレタン樹脂の屈折率は1.5程度である。また、ウレタン樹脂以外の塗料用の各種樹脂の屈折率は一般的には1.46よりも大きい。ここで、シリカ粒子の凝集構造を構成する個々の一次粒子の内部に微細な空隙が存在する場合、空隙の存在に比例してシリカ粒子の屈折率が低下していく。それゆえ、このようなシリカ粒子を用いた塗料により塗膜を形成した場合、塗料を構成する樹脂とシリカ粒子との屈折率差が大きくなり、このような屈折率差に起因して塗膜が白濁してしまう。したがって、シリカ粒子の屈折率は理論上の屈折率である1.46に近い程好ましく、そのためには、シリカ粒子の凝集構造を構成する個々の一次粒子内部の空隙は少ない方がよい。ここで、一次粒子内部の空隙が少ないということは、一次粒子の粒子密度が高いことを意味する。それゆえ、本実施形態のシリカでは、粒子密度を2.18g/cm以上としている。
 なお、参考までに述べれば、Heピクノメーターにより粒子密度を測定する場合、測定用サンプルとしては、シリカ粒子を高圧で圧縮することで凝集構造を破壊した圧縮物を用いる。このため、Heピクノメーターにより測定した粒子密度は、実質的には、シリカ粒子を構成する一次粒子の密度にほぼ対応する。
 粒子密度は、2.185g/cm以上が好ましく、2.19g/cm以上がより好ましい。粒子密度の上限値は特に限定されないが、実用上は、非晶質シリカの真密度に近い値である2.21g/cm以下が好ましく、2.205g/cm以下でもよい。
 なお、本実施形態のシリカは、艶消し性を発揮するために、最低限、可視光を透過しないサイズを有していることが必要であるため、その平均粒径は少なくとも可視光の波長域(約0.4μm~0.76μm)よりも大きければよい。なお、艶消し性は、塗膜表面に部分的に埋没しているシリカ粒子のうち、塗膜表面に対してシリカ粒子が突出している部分が外部から入射した光を散乱することで発揮される。すなわち、シリカ粒子のうち、実際の粒径に対応する部分よりも多少小さい部分(塗膜表面に対してシリカ粒子が突出している部分)のみが光散乱に寄与している。よって、この点も踏まえると、艶消し性をより確実に発揮するためには本実施形態のシリカの粒子サイズは、可視光の波長域よりも多少大きいことが好ましく、具体的には、粒子径D50で1.7μm以上であることが好ましく、3.0μm以上であることがより好ましく、5.0μm以上であることがさらに好ましい。粒子径D50の上限値は特に限定されないが、実用上は25.0μm以下が好ましい。
 本実施形態のシリカのpHは特に限定されないが、通常、弱酸性から弱塩基性近傍のpHを示し、本実施形態のシリカを水に分散させて測定した場合のpH値は、5.5~9.5程度の範囲内である。なお、pHの測定方法の詳細については後述する。
 本実施形態のシリカの嵩密度は特に限定されないが、その下限値は、35g/L以上が好ましく、36g/Lを超えることがより好ましく、43g/L以上であることがさらに好ましい。一方、上限値は特に限定されるものではないが、実用上は70g/L以下が好ましく、65g/L以下がより好ましい。嵩密度を35g/L以上とすることにより、塗料用の樹脂組成物中へ本実施形態のシリカからなる艶消し剤を分散させる場合に、シリカが均一に分散できなくなることを防いだり、あるいは、シリカが均一に分散するのに要する時間を短縮することが容易となる。
2.塗料
 本実施形態のシリカは、種々の用途に利用することができるが、特に塗料の艶消し剤として用いることが好適である。この場合、本実施形態の塗料は、艶消し剤(本実施形態のシリカ)と樹脂とを少なくとも含む。また、本実施形態の塗料は、顔料や染料などの色材を含む有色の塗料、色材を全く含まない(無色透明な)クリアー塗料、あるいは、塗膜の透明性を損なわない範囲で微量の色材を含む(若干着色した)クリアー塗料のいずれであってもよい。さらに、本実施形態の塗料が液状である場合、塗料には水や有機溶媒などの溶媒がさらに含まれる。また、本実施形態の塗料には、艶消し剤として用いられる本実施形態のシリカ以外の各種の添加剤が含まれていてもよい。
 本実施形態の塗料は、溶剤型塗料、紫外線(UV)硬化型塗料、粉体塗料等の形態で利用でき、具体的には、水性塗料、油性塗料、ニトロセルロース塗料、アルキッド樹脂塗料、アミノアルキッド塗料、ビニル樹脂塗料、アクリル樹脂塗料、エポキシ樹脂塗料、ポリエステル樹脂塗料、塩化ゴム系塗料等の形態で利用できる。これらの中でも、本実施形態の塗料は、合成皮革用塗料として使用される塩化ビニル塗料やウレタン塗料が好ましい。
 塗料を構成する樹脂としては、塗料に使用される樹脂であれば特に制限無く利用できるが、たとえば、ロジン、エステルガム、ペンタレジン、クマロン・インデンレジン、フェノール系レジン、変性フェノール系レジン、マレイン系レジン、アルキド系レジン、アミノ系レジン、ビニル系レジン、石油レジン、エポキシ系レジン、ポリエステル系レジン、スチレン系レジン、アクリル系レジン、シリコーン系レジン、ゴムベース系レジン、塩素化物系レジン、ウレタン系レジン、ポリアミド系レジン、ポリイミド系レジン、フッ素系レジン、天然或いは合成の漆等の1種或いは2種以上が挙げられる。
 なお、紫外線硬化型塗料においては、通常、ハイソリッドレジン、例えばUV硬化型のアクリル樹脂、エポキシ樹脂、ビニルウレタン樹脂、アクリルウレタン樹脂、ポリエステル樹脂等が単独或いは2種以上の組み合わせで使用される。また、粉体塗料においては、ポリアミド、ポリエステル、アクリル樹脂、オレフィン樹脂、セルロース誘導体、ポリエーテル、塩化ビニル樹脂等の熱可塑性樹脂の他、エポキシ樹脂、エポキシ/ノボラック樹脂、イソシアネート或いはエポキシ硬化型ポリエステル樹脂等が配合される。
 また、本実施形態の塗料が溶剤型塗料である場合は、溶媒として有機溶媒が用いられる。有機溶媒としては、たとえば、トルエン、キシレン等の芳香族炭化水素系溶媒;n-ヘプタン、n-ヘキサン、アイソパー等の脂肪族炭化水素系溶媒;シクロヘキサン等の脂環族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;エタノール、プロパノール、ブタノール、ダイアセトンアルコール等のアルコール系溶媒;テトラヒドロフラン、ジオキサン等のエーテル系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶媒等が挙げられる。
 本実施形態のシリカを艶消し剤として塗料に配合する場合、その配合量は、塗料として要求される各種物性を踏まえて適宜設定されるが、通常、塗料に含まれる固形分100質量部に対して、5質量部~33質量部が好ましく、10質量部~30質量部がより好ましい。配合量を5質量部以上とすることにより艶消し性をより容易に発揮し易くなり、33質量部以下とすることにより、塗膜の強度を確保すると共に白濁を抑制することが容易となる。
 本実施形態の塗料は、上述したように様々な種類の塗料として利用できるが、特に、クリアー塗料あるいは黒色系塗料として用いることが好適である。塗料の塗布面が濃色の基材(濃色基材)に、クリアー塗料あるいは黒色系塗料として本実施形態の塗料を用いて塗膜を形成した場合、漆黒性の高い塗膜も得ることができる。
 なお、濃色基材としては、塗布面が黒色、紺色、深紅色、深緑色等の濃色の基材であればその素材は特に限定されないが、たとえば、合成皮革からなる基材が好適である。また、クリアー塗料として本実施形態の塗料を用いる場合、本実施形態の塗料には、塗膜の透明性を損なわない範囲で、カーボンブラックやアニリンブラックのなどの黒色顔料を微量添加することもできる。この場合は、塗膜の漆黒度をより一層高めることもできる。
 濃色基材が合成皮革製である場合は、クリアー塗料あるいは黒色系塗料として用いる本実施形態の塗料は、上述したように塩化ビニル塗料や、ウレタン塗料であることが好適である。なお、一般的に、ウレタン塗料としては芳香族系のウレタン塗料の方が相対的に安価でかつ耐候性も高いが、漆黒性などの外観の点では、脂肪族系のウレタン塗料の方が通常使用されている。しかしながら、本実施形態のシリカを艶消し剤として添加した芳香族ウレタン樹脂を含むウレタン塗料を使用すれば、従来のシリカを艶消し剤として添加した脂肪族ウレタン樹脂を含むウレタン塗料と同程度の漆黒性の高い塗膜を得ることも容易である。
3.シリカの製造方法
 本実施形態のシリカは、原料粒子を凝集させるプロセスを経て製造されるものであれば特に制限されない。この原料粒子は、本実施形態のシリカにおいて、凝集構造を形成する一次粒子に対応する粒子である。ここで、原料粒子としては通常、フュームドシリカが用いられる。ヒュームドシリカは、シラン化合物等のシリカ前駆体を、火炎中で加水分解することで製造されたものである。ヒュームドシリカはその生成時に極めて高い温度で処理されるため、水性媒体中でシリカを形成せしめる湿式シリカとは区別されるものである。フュームドシリカとしては、如何様なフュームドシリカでも用いることができるが、疎水化処理剤等の表面処理剤で表面処理されていないフュームドシリカを用いることが好適である。
 しかしながら、本実施形態のシリカが容易に得られる観点では、本実施形態のシリカの製造方法は、濃度1.48質量%の水分散液の波長700nmの光に対する吸光度が0.14以下であり、嵩密度が40g/L~110g/Lであるヒュームドシリカ100質量部に対して、塩基性物質を5規定以上の濃度で含む塩基性水溶液を4質量部~13質量部の範囲で添加する塩基性水溶液添加工程と、ヒュームドシリカに塩基性水溶液が添加された湿潤混合物を、塩基性物質の沸点以上の温度で加熱して乾燥させる乾燥工程と、を少なくとも経てシリカを製造するものであることが特に好ましい。なお、乾燥工程を経た後は、通常、所望の粒径および粒度分布からなるシリカを得るために、粉砕工程や、分級工程を適時実施することが好ましい。以下に各工程の詳細について説明する。
 塩基性水溶液添加工程では、原料粒子として、濃度1.48質量%の水分散液の波長700nmの光に対する吸光度(τ700)が0.14以下であり、嵩密度が40g/L~110g/Lであるヒュームドシリカを用いる。上記条件を満たすヒュームドシリカを用いることで、本実施形態のシリカを容易に製造することができる。
 なお、原料粒子として用いるヒュームドシリカの粒子密度(Heピクノメーターによる測定値)は、通常、2.20g/cm~2.21g/cmである。このため、ヒュームドシリカを原料粒子として用いて製造されるシリカ(一次粒子の凝集体)の粒子密度を2.18g/cm以上に制御することが容易である。
 また、ヒュームドシリカの嵩密度を40g/L~110g/Lとすることにより、得られるシリカの粒径比Rを4.3~5.2の範囲内に制御することがより容易となる。なお、嵩密度は、50g/L~100g/Lが好ましい。また、ヒュームドシリカのτ700を0.14以下とすることにより、得られるシリカのτ700を0.6以下に制御することが容易となる。なお、τ700は0.13以下が好ましく、下限値は特に限定されないが実用上は、0.06以上であることが好ましい。
 なお、一般的に市販されている多くのヒュームドシリカでは、τ700は0.14以下である。このようなシリカは、粒子径が小さく、水系媒体に対する分散性が良好であるため、本実施形態のシリカと比べるとτ700の値はかなり小さい。
 また、原料粒子として、嵩密度が40g/L未満のヒュームドシリカを使用する場合、塩基性溶液を添加することで原料粒子を凝集処理する際に、容積の大きな処理装置を使用する必要がある。これに加えて、製造されたシリカの嵩密度も低くなる。そして、嵩密度の低いシリカを艶消し剤として使用する場合、塗料用の樹脂組成物中への分散時に、シリカが、樹脂組成物上に浮遊したままの状態で樹脂組成物中への分散が著しく阻害され、樹脂組成物中に均一に分散するのに時間を要したり、あるいは、全く樹脂組成物中に全く分散していかない場合もある。さらに、原料粒子として、嵩密度が40g/L未満のヒュームドシリカを使用することで、製造装置のコストが増大すると共に、製造されたシリカを梱包する際の充填重量が少なくなり、輸送コストも増大し易くなる。
 一般にヒュームドシリカは極めて嵩密度が低いため、嵩密度の低いヒュームドシリカを塩基性水溶液で処理しようとすると、多量の塩基性水溶液が必要となる。そして、ヒュームドシリカに対して多量の塩基性水溶液を添加した場合、次工程である乾燥工程において、塩基性水溶液が蒸発乾燥する際に、製造されるシリカが著しい収縮を起こして、嵩高い凝集構造を有するシリカを得ることが困難となり易い。したがって、このような観点からも嵩密度を40g/L以上とすることが好適である。なお、入手したヒュームドシリカの嵩密度が40g/L未満の場合には、脱気プレス機等を用いてヒュームドシリカを圧縮し、嵩密度が40g/L~110g/Lの範囲内に調整したものを塩基性水溶液調整工程に用いればよい。
 また、原料粒子として用いるヒュームドシリカは、通常は比表面積が190m/g~500m/g程度であることが好ましく、220m/g~400m/gであることが特に好ましい。一方、本実施形態のシリカの比表面積は、添加した塩基性水溶液の作用により原料粒子表面の溶解が起こるため、原料粒子として用いるヒュームドシリカよりも小さくなる傾向があり、通常は180m/g~350m/gである。さらに原料粒子として用いるヒュームドシリカは粗粒の少ないものであることが好ましく、モッカの篩法による目開き45μmの篩残が0.01重量%以下であることが特に好ましい。
 塩基性水溶液添加工程では、上述したτ700が0.14以下であり、嵩密度が40g/L~110g/Lであるヒュームドシリカ100質量部に対して、塩基性物質を5規定以上の濃度で含む塩基性水溶液を4質量部~13質量部の範囲で添加する。なお、塩基性水溶液の好適な添加量は4.5質量部~8質量部である。
 塩基性水溶液の添加量を4質量部以上とすることにより原料粒子として用いたヒュームドシリカを均一に処理することが容易となるため、本実施形態のシリカを安定して得ることができる。これに加えて、粒径比Rを4.3以上に制御することも容易となる。また、塩基性水溶液の添加量を13質量部以下とすることにより次工程である乾燥工程において、乾燥処理する際に必要なエネルギーを節約したり、および/または、乾燥時間を短くできる。このため、塩基性水溶液により処理された原料粒子同士が強く凝集することを抑制でき、結果的に本実施形態のシリカを安定して得ることができる。また、本実施形態のシリカの粒子密度は、経験的に、原料粒子として用いたヒュームドシリカの粒子密度よりも若干低下する傾向にあり、特に、高濃度の塩基性水溶液を多量に用いた場合に粒子密度の低下が顕著となる傾向にある。よって、このような観点からも塩基性水溶液の添加量を13質量部以下とすることが好適である。なお、粒子密度が低下する理由の詳細は不明であるが、塩基の作用によりヒュームドシリカの表面が溶解等することでその構造が若干変性した原料粒子が、シリカ(凝集体)の一次粒子を構成していることが一因であると推定される。
 塩基性水溶液が添加された原料粒子は、塩基の作用によりその表面が溶解し、さらに溶解が生じた表面の一部は他の原料粒子と結合して凝集体を形成する。このような凝集はさほど強固なものではないため、嵩高くかつルーズな凝集構造を持つシリカが得られる。
 なお、原料粒子に対して塩基性水溶液を添加することで、塩基性水溶液により原料粒子を湿潤させる場合、水の沸点未満の温度で加熱処理を実施してもよい。
 また、塩基性水溶液としては塩基性物質を5規定以上の濃度で含む溶液が用いられる。濃度を5規定以上とすることにより、上述した溶解や凝集体の形成が十分に促進され、結果的に本実施形態のシリカを安定して得ることができる。これに加えて、特にτ700を0.6以下に制御することが容易となる。なお、濃度は、7規定以上が好ましく、10規定以上がより好ましい。一方、濃度の上限値は、実用上の観点から20規定以下が好ましい。
 塩基性物質としては、次工程である乾燥工程における加熱処理により、原料粒子の凝集体の表面から容易に除去できる観点で、アンモニア、あるいは、メチルアミン、ジメチルアミン、エチレンジアミン、テトラメチルアンモニウム、テトラエチルアンモニウム等の水溶性アミンが好ましく、アンモニアが特に好ましい。例えば、塩基性水溶液が10質量%アンモニア水であれば、塩基性物質であるアンモニアの濃度は5.6規定程度となる。入手や調製のし易さなどを考慮すると、塩基性水溶液としては、5規定以上の濃度を有するアンモニア水が好ましく、アンモニア含有量(質量%)換算の濃度で言えば、9.8質量%以上のアンモニア水が好ましく、10質量%以上のアンモニア水がより好ましく、20質量%以上のアンモニア水がさらに好ましい。
 塩基性水溶液の添加に際しては、容器中の原料粒子を撹拌羽根で攪拌させたり、気体流動などさせた状態で塩基性水溶液を噴霧し、原料粒子に対して均一に塩基性水溶液を接触させることが好ましい。噴霧に際しては、一流体ノズルや二流体ノズルもしくは超音波式スプレーでの添加が簡便で好ましい。この時、噴霧液の平均粒子径は100μm以下になるように選択することがより好ましい。さらに塩基性水溶液は、原料粒子を入れた反応器容器中に間欠的に供給してもよく、また、連続的に供給しても良い。
 原料粒子表面の溶解と原料粒子同士の凝集を適度に生じさせることを考慮すると、反応温度は塩基性水溶液が液体を呈する範囲であることが必要であるため、一般的には15℃~85℃程度であることが好ましい。また、反応時間は短すぎると溶解などが起こり難く、長すぎると凝集が進みすぎる傾向にあるため、0.4時間~3時間の範囲で行うのが好ましい。なお、ここで言う反応時間とは、原料粒子に対して塩基性水溶液を添加した時点から次工程である乾燥工程を実施するために加熱を開始し始めた時点までの時間である。塩基性水溶液と原料粒子との接触処理を実施する際の圧力は特に限定されず、負圧下から加圧下までの範囲で適宜選択できる。また、接触処理は、バッチ式で行っても連続式で行ってもよい。
 塩基性水溶液添加工程において、塩基性水溶液と原料粒子として用いたヒュームドシリカとの接触処理を終えた後は、乾燥工程を実施する。乾燥工程では、ヒュームドシリカに塩基性水溶液が添加された湿潤混合物を、塩基性物質の沸点以上の温度で加熱して乾燥させる。但し、使用する塩基性水溶液に含まれる塩基性物質の沸点が水の沸点を下回る場合には、乾燥工程では水の沸点以上の温度で加熱することが必要である。たとえば、塩基性物質がアンモニア(大気圧下における沸点は約-33℃)であり、大気圧下において乾燥工程を実施する場合には、水の沸点(大気圧下では100℃)以上の温度まで加熱することで乾燥工程を実施する。このように加熱処理を行うことで、原料粒子の凝集体の表面から塩基性物質を速やかかつ十分に除去できる。また、これにより乾燥工程において過剰な凝集が進行することを抑制できるため、5N以上の高濃度の塩基性物質を含む塩基性水溶液を用いた塩基性水溶液添加工程を実施した場合でも得られるシリカの粒径比Rを4.3~5.2、τ700を0.6以下、かつ、粒子密度を2.18g/cm以上の範囲内により制御し易くなる。そして、結果的に、本実施形態のシリカを安定して得ることが容易となる。
 なお、使用する塩基性水溶液に含まれる塩基性物質の沸点が水の沸点よりも低い場合において、乾燥工程が大気圧下で実施されるときは、加熱温度は100℃以上であればよいが、150℃以上が好ましい。加熱温度を100℃以上とすることにより、乾燥時間を削減でき、かつ、塩基性物質の除去も十分に行える。なお、乾燥工程が大気圧下以外の圧力下で実施される場合、加熱温度は当該圧力下における水の沸点以上であればよく、当該圧力下における水の沸点+50℃以上が好ましい。また、乾燥処理時の加熱温度の上限値は特に限定されるものではないが、乾燥処理に用いる加熱装置の物理的耐熱性を考慮すると、300℃以下であることが好ましい。また、乾燥処理に際して、目的とする加熱温度までの昇温は、100℃/hr以下の昇温速度で実施することが好ましく、また、乾燥処理時には、窒素ガスなどの不活性ガスを供給するなどして不活性ガス雰囲気下で乾燥処理を行うことが好適である。
 乾燥工程を経て得られたシリカ(原料粒子に対応する一次粒子が凝集した凝集体)に対しては、粒径や粒度分布を調整するために、通常、粉砕工程を実施することが好ましい。粉砕装置としては、ジェットミル、ピンミルなどの粉砕対象となる粉体の圧縮が生じにくい粉砕装置を使用することが好ましく、特にジェットミルが好ましい。また、このような粉砕装置を用いて乾燥処理後のシリカを粉砕した場合、粒子径D50と粒子径Rとの間には緩い相関関係が観察され、粒子径D50が小さくなるに従い粒径比Rは大きくなる傾向にある。
 この場合、概ね粒子径D50が4.0μm以下となるまで粉砕処理を実施すれば、粒径比Rを4.3以上に制御することが容易になる。なお、粒径比Rをより確実に4.3以上に制御するためには、粉砕処理は、粉砕処理終了時の粒子径D50が3.5μm以下となるまで実施することがより好ましく、2.6μm以下となるまで実施することがさらに好ましく1.8μm以下となるまで実施することが特に好ましい。一方、粉砕処理時間が長時間になり生産性が低下することを回避するなどの実用上の観点からは、粉砕処理は、粉砕処理終了時の粒子径D50が0.8μm以上となる範囲で実施することが好ましく、1.1μm以上となる範囲で実施することがより好ましく、1.2μm以上となる範囲で実施することがさらに好ましい。なお、上述したような製造プロセス上の事情を勘案すると、結果的に、本実施形態のシリカの粒子径D50は、1.1μm~3.5μmであることが好ましく、1.2μm~2.6μmであることがより好ましく、1.2μm~1.8μmであることがさらに好ましい。
 また、乾燥工程を経て得られたシリカ、あるいは、粉砕工程を経て得られたシリカに対しては、シリカ中に含まれる粗大粒子を除去するために、必要に応じて分級工程を実施してもよい。また、塩基性水溶液添加工程に先立ち、ヘンシェルミキサーなどを用いて原料粒子を攪拌混合する攪拌混合工程を実施してもよい。
 以下に実施例を掲げて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、後述する実施例および比較例における各種の物性値・特性値の測定方法は以下のとおりである。
I.各種物性値の評価
 各実施例、比較例において原料粒子として用いたヒュームドシリカ、および、塗料に配合したシリカの各種物性は以下のようにして測定した。
1.比表面積
 比表面積は、柴田理化学社製比表面積測定装置(SA-1000)を用いて、窒素吸着BET1点法により測定した。
2.濃度1.48質量%の水分散液の波長700nmの光に対する吸光度(τ700)
 τ700の測定は、Jounal of Ceramic Socirty of Japan 101[6]、707-712(1993)に開示された測定方法により行った。具体的には、ガラス製のサンプル管瓶(アズワン社製、内容量30ml、外径約28mm)に粉末サンプル0.3gと蒸留水20mlとを充填した。次に、超音波細胞破砕器(BRANSON社製Digital Sonifier Model 250、プローブ:1/4インチマイクロチップ)のプローブチップを、サンプル管瓶内に充填した粉末サンプル0.3gと蒸留水との混合物の水面下10mmの位置に設置した。この状態で、出力39%で(30W)、分散時間180秒の条件にて超音波攪拌することにより、粉末サンプル0.3gを蒸留水に微分散させた水分散液(粉末サンプル0.3g濃度:1.48質量%)を得た。続いて、得られた水分散液の波長700nmの光に対する吸光度を分光光度計(日本分光社製、V-530)を用いて測定した。なお、吸光度の測定に用いた測定セルとしては、側面が摺りガラスからなり、かつ、光路長10mmの石英セルを使用した。
3.嵩密度(ρ)
 嵩密度の測定は以下の手順で実施した。まず、容量が1Lの樹脂性メスシリンダーを電子天秤の上に設置した後に風袋引きをし、次に、樹脂性メスシリンダーに粉末サンプル0.3gを約1L充填し重量M(g)を記録する。ついで、タッピング高さ(落下距離)を10cmとして、手で三十回タッピングを行った後の容積V(ml)を測定し、下式(2)に基づき嵩密度ρを計算した。
・式(2)   嵩密度ρ=1000×M/V(g/L)
4.レーザー回折散乱法による体積基準累積50%径(D50)
 粒子径D50は、レーザー回折散乱式粒度分布測定装置(堀場製作所社製、LA950V2)を用いて測定した。なお、LA950V2の内部設定値としてはCirculation 5、Agitaion 7、UltraSonic 4分の条件に設定した。また、測定に際しては、乾燥したシリカ粉末0.1gを直接装置に入れて測定を行った。
5.コールターカウンター法による体積基準累積50%粒子径(D50)
 粒子径D50の測定は以下の手順で実施した。まず、メタノール50gとシリカ粉末0.2gとの混合物を、超音波洗浄機(日本エマソン株式会社製、B1510J‐MT)を用いて3分間分散処理することでアルコール分散液を準備した。次に、アルコール分散液中に分散したシリカ粒子の粒径を、粒度分布測定装置(コールター社製、TA II型)により、アパーチャーチューブ50μmを使用して測定した。なお、粒度分布測定装置の電解液としてはアイソトンIIを使用した。
6.Heピクノメーターによる粒子密度
 粒子密度の測定は、以下の手順により実施した。まず、超硬合金製プレス金型(直径50mm×高さ75mm)内に測定対象となる粉末サンプルを充填した後、プレス装置(MASADASEISAKUSHO社製、MH-15TONプレス(ラム径55mm))を用いて、測定対象となる粉末サンプルを15トンの圧力下で圧縮成形(一軸プレス)した。約2秒間、圧力を加えた後に、金型内から圧縮処理された粉末サンプルを取り出した。次に、圧縮処理されたシリカを真空乾燥器中にて、温度:200℃、-0.095PaG以下の圧力下で8時間乾燥処理し、真空乾燥器中にて減圧下において室温まで放冷することにより、測定サンプルを得た。
 得られた測定サンプルを、乾式自動密度計(島津製作所製、AccuPyc1330型)を用いて、10mlサンプルインサートおよび圧力0.16PaのHeガスを用いて測定した。なお、密度測定時における密度計の測定温度は恒温水循環により25℃に保持した。
 7.pH
 pHの測定は以下の手順により実施した。まず、粉末サンプル5gに、脱気された純水100mlを加えてスターラーで10分間撹拌することで、pH測定用のスラリーを調製した。次に、このスラリーのpHを堀場社製PHメーターF-52型を使用して測定した。pH計の校正にはpH4およびpH9の標準液を使用した。
8.ジブチルフタレート(DBP)吸油量
 シリカ粉末のDBP吸油量は、あさひ総研社製給油量測定装置H5000型を使用して、JISK6217-4に基づき測定した。
II.塗料および塗膜の各種物性値・特性値の評価
 塗料および塗膜の各種物性値・特性値の評価を行うために、以下の手順により塗料および塗膜を準備した。
<塗料の調製>
 塗料用の樹脂組成物(大日精化社製、Leatherroid(レザロイド) LU-1500(芳香族系ウレタン塗料樹脂固形分20%))50gと、MEK(メチルエチルケトン)33.3gと、DMF(ジメチルホルムアミド)16.7gと、各実施例および比較例のシリカ粉末2.5gとを混合した混合物を、ホモミキサーで8000rpm(周速11.7m/S)6分間分散処理することで、塗料(クリアー塗料)を調製した。
<塗膜の調製>
 上記の塗料を、塗装面が黒色のウレタン合皮に対して、バーコーターNo14を用いて塗装を行った。続いて、塗装後に、60℃で1時間乾燥処理し、さらに室温にて12時間放置することにより、塗装面に塗膜が形成されたウレタン合皮を得た。なお、塗膜の形成に用いたウレタン合皮の塗装面のL値は25.0であり、グロス値(入射角:60度のグロス値)は3.5%である。なお、ウレタン合皮の塗装面のL値およびグロス値は、下記に説明する測定方法により測定した値である。
9.粒ゲージ値
 粒ゲージ値は、塗料をJIS K 5600-2-5に基づき100μmの粒ゲージを使用して測定した。
10.粘度およびTI
 粘度は、25℃の恒温水槽中に2時間放置した後の塗料について、BL型回転粘度計を用いて25℃で60rpmおよび6rpmの条件で測定した。なお、表3および表4には、60rpmで測定した粘度を示した。また、6rpmにおける粘度を、60rpmにおける粘度で除した値を、TI(チキソトロピーインデックス)として求めた。
11.L
 L値は、塗膜が形成されたウレタン合皮の塗膜が形成された面について、分光測色計(コニカミノルタ社製、CM-5型)で測定した。表色系としてはLb(CIE1976)を使用し、測定径8mmのSCI(正反射光を含んだ値)でL値を測定した。このL値は漆黒度の指標である。
12.グロス値
 グロス値は、塗膜が形成されたウレタン合皮の塗膜が形成された面について、JIS Z 8741に準じて測定した。測定に際しては光沢度計(RHOPINT社製、IQ3型)を用い、入射角60度の光沢度(グロス値)を評価した。 
13.目視評価
 塗膜が形成されたウレタン合皮の塗膜が形成された面について、目視により観察し評価した。評価基準は以下の通りである。
A:下記B評価の場合と比べて、さらに漆黒性に優れる。
B:全体に白い部分は確認されず、十分な艶消し性、漆黒性をもつ。
C:部分的に白濁などが観察される。
D:全体に白濁などが観察される。
(実施例1)
 原料粒子として比表面積が300m/g、τ700が0.084、嵩密度が75g/L、粒子密度が2.209g/cmのヒュームドシリカを用いた。この原料粒子5Kgを内容積300Lのヘンシル型ミキサー中に投入して攪拌混合した後、ミキサー内に窒素ガスを導入することによりミキサー内の雰囲気ガスを窒素ガスに置換した。続いて、ミキサー内の温度を80℃に加熱した状態で、濃度25質量%のアンモニア水250mlを一流体ノズルを使用して流量500ml/hrにてミキサー内に供給することで、原料粒子をアンモニア水により湿潤させた湿潤混合物を得た。なお、実施例1において原料粒子として用いたヒュームドシリカは、何らの表面処理もなされていないものである。この点は、他の実施例および比較例において原料粒子として用いたヒュームドシリカも同様である。
 続いて、湿潤混合物の撹拌を続けつつミキサー内に40L/hrで窒素を供給しながら180℃まで100℃/hrで昇温した。そして、ミキサー内を180℃で1時間保持することにより、乾燥処理されたシリカ粉末を得た。次に乾燥処理後のシリカ粉末を、ジェットミル(セイシン企業社製、STJ315型)により粉砕し、粒子径D50が1.4μmとなるように調整することで、実施例1のシリカ粉末を得た。なお、以下に説明する実施例および比較例において使用したジェットミルに関して、特に説明が無い場合は、セイシン企業社製、STJ315型を用いている。
(実施例2)
 粉砕工程において、粒子径D50が2.6μmとなるようにジェットミルにより粉砕した以外は、実施例1と同様のプロセスを実施することで、実施例2のシリカ粉末を得た。
(実施例3)
 原料粒子として比表面積が300m/g、τ700が0.084、嵩密度が61g/L、粒子密度が2.209g/cmのヒュームドシリカを使用し、塩基性水溶液として濃度18質量%のアンモニア水340mlを原料粒子に添加した以外は実施例1と同様のプロセスを実施することで、実施例3のシリカ粉末を得た。
(実施例4)
 原料粒子として比表面積が250m/g、τ700が0.114、嵩密度85g/L、粒子密度が2.205g/cmのヒュームドシリカを使用し、塩基性水溶液として濃度25質量%のアンモニア水223mlを原料粒子に添加した以外は実施例1と同様のプロセスを実施することで、実施例4のシリカ粉末を得た。
(実施例5)
 原料粒子に添加する塩基性水溶液として用いたアンモニア水の濃度を9.8質量%とし、原料粒子に対するアンモニア水の添加量を600mlとした以外は実施例1と同様にして塩基性水溶液添加工程および乾燥工程を実施した。その後、乾燥処理後のシリカを、粒子径D50が1.3μmとなるようにジェットミルにより粉砕することで、実施例5のシリカ粉末を得た。
(実施例6)
 原料粒子として比表面積が300m/g、τ700が0.084、嵩密度が100g/L、粒子密度が2.209g/cmのヒュームドシリカを使用した以外は実施例1と同様にして塩基性水溶液添加工程および乾燥工程を実施した。その後、乾燥処理後のシリカを、粒子径D50が1.1μmとなるようにジェットミルにより粉砕することで、実施例6のシリカ粉末を得た。
(実施例7)
 原料粒子として比表面積380m/g、τ700が0.067、嵩密度が55g/L、粒子密度が2.210g/cmのヒュームドシリカを使用した以外は実施例1と同様にして塩基性水溶液添加工程および乾燥工程を実施した。その後、乾燥処理後のシリカを、粒子径D50が1.2μmとなるようにジェットミルにより粉砕することで、実施例7のシリカ粉末を得た。
(実施例8)
 乾燥処理後のシリカを、粒子径D50が3.5μmとなるようにジェットミルにより粉砕した以外は実施例1と同様のプロセスを実施することで、実施例8のシリカ粉末を得た。
(実施例9)
 原料粒子として比表面積が225m/g、τ700が0.128、嵩密度が110g/L、粒子密度が2.203g/cmのヒュームドシリカを用い、塩基性水溶液として濃度14質量%のアンモニア水500mlを原料粒子に添加した以外は実施例1と同様にして塩基性水溶液添加工程と乾燥工程とを実施した。その後、乾燥処理後のシリカを、粒子径D50が3.3μmとなるようにジェットミルにより粉砕することで、実施例9のシリカ粉末を得た。
(実施例10) 
 原料粒子として比表面積が220m/g、τ700が0.130、嵩密度が40g/L、粒子密度が2.203g/cmのヒュームドシリカを用い、塩基性水溶液として濃度10質量%のアンモニア水650mlを原料粒子に対して添加した以外は実施例1と同様にして塩基性水溶液添加工程と乾燥工程とを実施した。その後、乾燥処理後のシリカを、粒子径D50が3.0μmとなるようにジェットミルにより粉砕することで、実施例10のシリカ粉末を得た。
(実施例11)
 実施例1において、ミキサー内を窒素置換する際および窒素置換した後の温度を室温(20℃)に保持した以外は、実施例1と同様のプロセスを実施することで、実施例11のシリカ粉末を得た。
(比較例1)
 塩基性水溶液として用いたアンモニア水の濃度を2質量%とし、原料粒子に対するアンモニア水の添加量を400mlとした以外は実施例1と同様のプロセスを実施することで、比較例1のシリカ粉末を得た。
(比較例2)
 原料粒子として比表面積が300m/g、τ700が0.084、嵩密度が25g/L、粒子密度が2.209g/cmのヒュームドシリカを使用し、塩基性水溶液として濃度0.15質量%のアンモニア水1000mlを原料粒子に添加した以外は実施例1と同様にして塩基性水溶液添加工程および乾燥工程を実施した。その後、乾燥処理後のシリカを、粒子径D50が2.2μmとなるようにジェットミルにより粉砕することで、比較例2のシリカ粉末を得た。
(比較例3)
 原料粒子として比表面積が200m/g、τ700が0.157、嵩密度が75g/L、粒子密度が2.200g/cmのヒュームドシリカを使用した以外は実施例1と同様のプロセスを実施することで、比較例3のシリカ粉末を得た。
(比較例4)
 塩基性水溶液としてJIS K 1408で規定される3号ケイ酸ナトリウムを濃度1質量%に希釈した塩基性水溶液(pH10.8)1500mlを原料粒子に対して添加した以外は実施例1と同様にして塩基性水溶液添加工程および乾燥工程を実施した。その後、乾燥処理後のシリカを、粒子径D50が2.3μmとなるようにジェットミルにより粉砕することで、比較例4のシリカ粉末を得た。
(比較例5)
 比較例5のシリカ粉末として、市販の湿式シリカ粉砕品(トクヤマ社製、比表面積200m/gのファインシールE-50)をそのまま用いた。
(比較例6)
 比較例6のシリカ粉末として、市販のゲル法シリカ(北京航天賽徳社製、ゲル法シリカSD-450)をそのまま用いた。
(比較例7)
 原料粒子として比表面積が297m/g、τ700が0.084、嵩密度が27g/L、粒子密度が2.208g/cmのヒュームドシリカを用いた。この原料粒子5Kgを内容積300Lのヘンシル型ミキサー中に投入して攪拌混合した後、ミキサー内に窒素ガスを導入することによりミキサー内の雰囲気ガスを窒素ガスに置換した。続いて、ミキサー内の温度を常温(25℃)に保持した状態で、濃度10ppmのアンモニア水(pH=10.2)750mlを一流体ノズルを使用して流量500ml/hrにてミキサー内に供給することで、原料粒子をアンモニア水により湿潤させた湿潤混合物を得た。
 続いて、湿潤混合物の撹拌を続けつつミキサー内に40L/hrで窒素を供給しながら180℃まで100℃/hrで昇温した。そして、ミキサー内を180℃で1時間保持することにより、乾燥処理された比較例7のシリカ粉末を得た。 
(比較例8)
 比較例7のシリカ粉末を、粒子径D50が2.6μmとなるようにジェットミルにより粉砕することで、比較例8のシリカ粉末を得た。
(比較例9)
 比較例7のシリカ粉末を、粒子径D50が1.1μmとなるようにジェットミルにより粉砕することで、比較例9のシリカ粉末を得た。
(比較例10)
 比較例7と同様にして塩基性水溶液添加工程を実施することにより原料粒子をアンモニア水により湿潤させた湿潤混合物を得た。続いて、湿潤混合物を、シングルトラックジェットミル(セイシン企業社製、FS4型)を使用して粉砕した。その後、得られた粉砕物を、整置式の棚段乾燥器内に設置して、温度120℃で粉砕物中の含水率が3%となるまで乾燥させることにより、比較例10のシリカ粉末を得た。
(比較例11)
 比較例7と同様にして塩基性水溶液添加工程を実施することにより原料粒子をアンモニア水により湿潤させた湿潤混合物を得た。続いて、湿潤混合物を、ピン付ディスクミル自由粉砕器(奈良機械製作所製、M-3型)を使用して粉砕した。その後、得られた粉砕物を、1Lの金属広口瓶内に設置して温度55℃で20分間乾燥した後、整置式の棚段乾燥器内に設置して、温度120℃で粉砕物中の含水率が3%となるまで乾燥させることにより、比較例11のシリカ粉末を得た。
(比較例12)
 比較例11のシリカ粉末を、再度、ピン付ディスクミル自由粉砕器(奈良機械製作所製、M-3型)を使用して粉砕することにより、比較例12のシリカ粉末を得た。
(比較例13)
 原料粒子として比表面積が297m/g、τ700が0.084、嵩密度が54g/L、粒子密度が2.208g/cmのヒュームドシリカを用いた。この原料粒子5Kgを内容積300Lのヘンシル型ミキサー中に投入して攪拌混合した後、ミキサー内に窒素ガスを導入することによりミキサー内の雰囲気ガスを窒素ガスに置換した。続いて、ミキサー内の温度を70℃に加熱した状態で、JIS K 1408で規定される3号ケイ酸ナトリウムを濃度1質量%に希釈したケイ酸ナトリウム水溶液(pH10.8)3000mlをミキサー内に供給することで、原料粒子をケイ酸ナトリウム水溶液により湿潤させた湿潤混合物を得た。
 続いて、湿潤混合物をシングルトラックジェットミル(セイシン企業社製、FS4型)を使用して粉砕した。そして、得られた粉砕物を、整置式の棚段乾燥器内に設置して、温度127℃で粉砕物中の含水率が4.2%となるまで乾燥させることにより、比較例13のシリカ粉末を得た。
(比較例14)
 嵩密度を25g/Lとした以外は実施例1で用いたヒュームドシリカと同一の比表面積、粒子密度およびτ700を有するヒュームドシリカを原料粒子として使用し、使用した原料粒子が異なる以外は実施例1と同様にして、塩基性水溶液添加工程および乾燥工程を実施した。その後、乾燥処理後のシリカを、粒子径D50が1.1μmとなるようにジェットミルにより粉砕することで、比較例14のシリカ粉末を得た。
(比較例15)
 嵩密度を120g/Lとした以外は実施例1で用いたヒュームドシリカと同一の比表面積、粒子密度およびτ700を有するヒュームドシリカを原料粒子として使用し、使用した原料粒子が異なる以外は実施例1と同様のプロセスを実施することにより、比較例15のシリカ粉末を得た。 
(比較例16)
 原料粒子に対するアンモニア水の添加量を780mlとした以外は、実施例1と同様にして塩基性水溶液添加工程および乾燥工程を実施することにより、乾燥処理されたシリカ粉末を得た。次に乾燥処理後のシリカを、ジェットミルにより粉砕し、粒子径D50が1.4μmとなるように調整することで、比較例16のシリカ粉末を得た。
(比較例17)
 原料粒子に対するアンモニア水の添加量を165mlとした以外は、実施例1と同様にして塩基性水溶液添加工程および乾燥工程を実施することにより、乾燥処理されたシリカ粉末を得た。次に乾燥処理後のシリカを、ジェットミルにより粉砕し、粒子径D50が1.4μmとなるように調整することで、比較例17のシリカ粉末を得た。
 各実施例および比較例のシリカ粉末の製造条件を表1および表2に示す。また、各実施例および比較例のシリカ粉末を用いて調製された塗料の物性値、および、この塗料を用いて形成された塗膜の評価結果を表3および表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
<塗料用の樹脂組成物に対する分散性の評価>
 実施例6および実施例10のシリカ粉末と比較例14のシリカ粉末について、塗料の調製に用いる樹脂組成物(脂肪族系ウレタン樹脂を主成分とする樹脂組成物)に対する分散性を以下の手順で評価した。    
 まず、容器内に満たされた樹脂組成物(深藍科技社製、BLLK-2000(脂肪族ウレタン塗料;固形分含有量15%、トルエン/IPA(イソプロピルアルコール)=9/1(質量比)からなる溶媒含有量:85%)100gの上部に、シリカ粉末3.75gを添加した。次に、外径40mmディスパー翼撹拌機で2500rpm(周速5.2m/S)で撹拌した。この際、シリカ粉末が樹脂組成物中に満遍なく均一に分散し終えるまで攪拌を継続した。シリカ粉末が樹脂組成物中に満遍なく均一に分散し終えたか否かは目視で確認した。そして、攪拌開始から攪拌終了までの時間を計測した。その結果、シリカ粉末が樹脂組成物中に満遍なく均一に分散し終えるまでの時間は、実施例6のシリカ粉末では4分、実施例10のシリカ粉末では5.3分であるのに対し、比較例14のシリカ粉末では8分であることが確認された。

Claims (10)

  1.  一次粒子が凝集した凝集構造を有し、
     下式(1)に示す粒径比Rが4.3~5.2であり、
     濃度1.48質量%の水分散液の波長700nmの光に対する吸光度が0.6以下であり、かつ、
     Heピクノメーターにより測定した粒子密度が2.18g/cm以上であることを特徴とするシリカ。
    ・式(1) R=D50/D50
    〔前記式(1)中、D50は、レーザー回折散乱法に基づき測定された前記シリカの体積基準累積50%粒子径(μm)を表し、D50は、コールターカウンター法に基づき測定された前記シリカの体積基準累積50%粒子径(μm)を表す。〕
  2.  前記体積基準累積50%粒子径D50が1.7μm以上であることを特徴とする請求項1に記載のシリカ。
  3.  嵩密度が35g/L以上であることを特徴とする請求項1または2のいずれかに記載のシリカ。
  4.  塗料の艶消し剤として用いられることを特徴とする請求項1~3のいずれか1つに記載のシリカ。
  5.  前記塗料が、クリアー塗料および黒色系塗料からなる群より選択されるいずれかの塗料であることを特徴とする請求項4に記載のシリカ。
  6.  艶消し剤と、樹脂とを少なくとも含み、
     前記艶消し剤が、一次粒子が凝集した構造を有し、下式(1)に示す粒径比Rが4.3~5.2であり、濃度1.48質量%の水分散液の波長700nmの光に対する吸光度が0.6以下であり、かつ、Heピクノメーターにより測定した粒子密度が2.18g/cm以上であるシリカを含むことを特徴とする塗料。
    ・式(1) R=D50/D50
    〔前記式(1)中、D50は、レーザー回折散乱法に基づき測定された前記シリカの体積基準累積50%粒子径(μm)を表し、D50は、コールターカウンター法に基づき測定された前記シリカの体積基準累積50%粒子径(μm)を表す。〕
  7.  クリアー塗料および黒色系塗料からなる群より選択されるいずれかであることを特徴とする請求項6に記載の塗料。
  8.  濃度1.48質量%の水分散液の波長700nmの光に対する吸光度が0.14以下であり、嵩密度が40g/L~110g/Lであるヒュームドシリカ100質量部に対して、塩基性物質を5規定以上の濃度で含む塩基性水溶液を4質量部~13質量部の範囲で添加する塩基性水溶液添加工程と、
     前記ヒュームドシリカに前記塩基性水溶液が添加された湿潤混合物を、前記塩基性物質の沸点以上の温度で加熱して乾燥させる乾燥工程と、を少なくとも経て、シリカを製造することを特徴とするシリカの製造方法。
  9.  前記塩基性水溶液が5規定以上の濃度を有するアンモニア水であることを特徴とする請求項8に記載のシリカの製造方法。
  10.  前記乾燥工程を経て得られたシリカを、ジェットミルおよびピンミルからなる群より選択される粉砕装置を用いて粉砕する粉砕工程をさらに含み、
     前記粉砕工程において、粉砕処理終了後のシリカのコールターカウンター法に基づき測定された体積基準累積50%粒子径D50が3.5μm以下となるまで粉砕処理を実施することを特徴とする請求項8または9に記載のシリカの製造方法。

     
PCT/JP2021/014165 2020-04-02 2021-04-01 シリカ、塗料およびシリカの製造方法 WO2021201229A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180013576.XA CN115175872B (zh) 2020-04-02 2021-04-01 二氧化硅、涂料以及二氧化硅的制造方法
JP2022511133A JPWO2021201229A1 (ja) 2020-04-02 2021-04-01
US17/799,020 US20230074494A1 (en) 2020-04-02 2021-04-01 Silica, paint and silica manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-066586 2020-04-02
JP2020066586 2020-04-02

Publications (1)

Publication Number Publication Date
WO2021201229A1 true WO2021201229A1 (ja) 2021-10-07

Family

ID=77929218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014165 WO2021201229A1 (ja) 2020-04-02 2021-04-01 シリカ、塗料およびシリカの製造方法

Country Status (4)

Country Link
US (1) US20230074494A1 (ja)
JP (1) JPWO2021201229A1 (ja)
CN (1) CN115175872B (ja)
WO (1) WO2021201229A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099435A (ja) * 2002-09-06 2004-04-02 Degussa Ag 沈降ケイ酸をベースとする効果的艶消し剤
JP2005126281A (ja) * 2003-10-23 2005-05-19 Tosoh Silica Corp 非晶質シリカ
JP2015113276A (ja) * 2013-12-16 2015-06-22 旭硝子株式会社 球状シリカ及びその製造方法
JP2017020041A (ja) * 2016-08-26 2017-01-26 株式会社トクヤマ エアロゲル及び該エアロゲルからなる艶消し剤
JP2017025275A (ja) * 2014-12-26 2017-02-02 日東電工株式会社 シリコーン多孔体およびその製造方法
WO2017026388A1 (ja) * 2015-08-11 2017-02-16 株式会社エスエヌジー 透明多孔質徐放体とその製造方法、徐放体キット、徐放装置、及び、徐放方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0127220D0 (en) * 2001-11-13 2002-01-02 Ineos Silicas Ltd Silica matting agents
DE10330221A1 (de) * 2002-08-03 2004-02-12 Degussa Ag Hochdispersible Fällungskieselsäure
CN101481115B (zh) * 2009-01-22 2012-07-04 北京航天赛德科技发展有限公司 一种二氧化硅、其制备方法以及其应用
DE102009045104A1 (de) * 2009-09-29 2011-03-31 Evonik Degussa Gmbh Neuartige Mattierungsmittel für UV-Lacke
CN106634149B (zh) * 2016-11-15 2019-09-20 浙江富士特硅材料有限公司 一种消光涂料用气相二氧化硅的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099435A (ja) * 2002-09-06 2004-04-02 Degussa Ag 沈降ケイ酸をベースとする効果的艶消し剤
JP2005126281A (ja) * 2003-10-23 2005-05-19 Tosoh Silica Corp 非晶質シリカ
JP2015113276A (ja) * 2013-12-16 2015-06-22 旭硝子株式会社 球状シリカ及びその製造方法
JP2017025275A (ja) * 2014-12-26 2017-02-02 日東電工株式会社 シリコーン多孔体およびその製造方法
WO2017026388A1 (ja) * 2015-08-11 2017-02-16 株式会社エスエヌジー 透明多孔質徐放体とその製造方法、徐放体キット、徐放装置、及び、徐放方法
JP2017020041A (ja) * 2016-08-26 2017-01-26 株式会社トクヤマ エアロゲル及び該エアロゲルからなる艶消し剤

Also Published As

Publication number Publication date
JPWO2021201229A1 (ja) 2021-10-07
CN115175872A (zh) 2022-10-11
CN115175872B (zh) 2023-11-14
US20230074494A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
CN101730725B (zh) 硅烷化的研磨热解法二氧化硅
US7816442B2 (en) Surface-modified precipitated silicas
JP4886222B2 (ja) 表面変性シリカゲル
JP5583138B2 (ja) 顔料粒状物、その製造方法及び使用
EP2678396B1 (en) Coating compositions comprising spheroid silica or silicate
KR20110008199A (ko) 알루미나 분말, 그의 제조 방법 및 그것을 사용한 수지 조성물
JP2009107857A (ja) 分散性シリカナノ中空粒子及びシリカナノ中空粒子の分散液の製造方法
JP2010528135A (ja) シラン処理され且つ粉砕されたフュームドシリカ
EP3549985A1 (en) An anti-dust and easily dispersible pigment
JPH09142827A (ja) シリカ分散液及びその製造方法
JP2007197655A (ja) 微小粒子含有組成物及びその製造方法
WO2021201229A1 (ja) シリカ、塗料およびシリカの製造方法
JP4959201B2 (ja) カチオン性樹脂変性シリカ分散液
JP2019210483A (ja) アルミニウム顔料、アルミニウム顔料の製造方法、アルミニウム顔料を含む塗料組成物、塗膜、当該塗膜を有する物品、インキ組成物、及び印刷物
EP4005979B1 (en) Printing ink and method for producing same
JP4093822B2 (ja) 変性シリカ分散液及びその製造方法
JP3894295B2 (ja) 複合粒子粉末及び該複合粒子粉末を含有する塗料及び樹脂組成物
JP3894292B2 (ja) 黒色複合粒子粉末及び該黒色複合粒子粉末を含有する塗料及び樹脂組成物
JP2004300350A (ja) 黒色複合粒子粉末及びその製造法、並びに該黒色複合粒子粉末を用いた塗料及び樹脂組成物
JP7546177B1 (ja) カーボンブラック分散液及びその製造方法
JP2011084444A (ja) フッ素化炭素微粒子分散液
WO2009074438A1 (en) Coating systems
TWI394714B (zh) 經表面處理之沉澱矽石
JP2005290059A (ja) 赤色酸化鉄顔料並びに該顔料を用いた塗料及び樹脂組成物
WO2024029631A1 (ja) 黒色着色組成物及び黒色顔料分散液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511133

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780479

Country of ref document: EP

Kind code of ref document: A1