WO2017007159A1 - L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법 - Google Patents

L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법 Download PDF

Info

Publication number
WO2017007159A1
WO2017007159A1 PCT/KR2016/006833 KR2016006833W WO2017007159A1 WO 2017007159 A1 WO2017007159 A1 WO 2017007159A1 KR 2016006833 W KR2016006833 W KR 2016006833W WO 2017007159 A1 WO2017007159 A1 WO 2017007159A1
Authority
WO
WIPO (PCT)
Prior art keywords
lysine
microorganism
cell wall
corynebacterium
activity
Prior art date
Application number
PCT/KR2016/006833
Other languages
English (en)
French (fr)
Inventor
이베드로
김형준
최향
유송기
이상목
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to ES16821565T priority Critical patent/ES2790382T3/es
Priority to EP16821565.5A priority patent/EP3318637B1/en
Priority to US15/741,392 priority patent/US11104925B2/en
Priority to RU2018101385A priority patent/RU2683551C1/ru
Priority to JP2017568121A priority patent/JP6646075B2/ja
Priority to CN201680040171.4A priority patent/CN107922954B/zh
Priority to BR112018000074-4A priority patent/BR112018000074B1/pt
Priority to PL16821565T priority patent/PL3318637T3/pl
Publication of WO2017007159A1 publication Critical patent/WO2017007159A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Definitions

  • the present invention relates to a microorganism having L-lysine production capacity and a method for producing L-lysine using the same.
  • L-amino acids particularly L-lysine, which are used in animal feed, human medicine, or cosmetics industry, are mainly produced by fermentation using Corynebacterium spp. Or Escherichia spp. Accordingly, various studies for the development of high-efficiency strains and fermentation process technology for producing L-lysine have been conducted, but studies on the control of cell lysis, which may cause a decrease in late fermentation capacity, are insufficient.
  • cell wall hydrolases are known as enzymes that break down cell walls of bacteria and are present in all microorganisms with peptidoglycan (Rice KC & Bayles KW.Microbiol Mol Biol Rev. 2008 72: 85-109). Such studies of cell wall hydrolase have been conducted in various bacteria, but their exact mechanism of activity regulation is unknown.
  • the present inventors have made intensive efforts to continuously search for an effective trait that can increase L-lysine production in a microorganism of the genus Corynebacterium, a representative L-lysine producing strain. It was confirmed that L-lysine production capacity increased when the defect. In addition, the present invention was completed by confirming that there is an effect on the increase in lysine production capacity when a gene defect encoding a protein having a similar function.
  • One object of the present invention is to provide a microorganism of the genus Corynebacterium having the ability to produce L- lysine.
  • Another object of the present invention is to provide a method for producing L-lysine using a microorganism of the genus Corynebacterium having the L- lysine production capacity.
  • the microorganism according to the present invention is a microorganism of the genus Corynebacterium which is reduced or inactivated compared to the intrinsic activity of proteins related to cell wall hydrolysis. It can be applied as a new paradigm to the microorganisms of the Nebacterium, providing microorganisms capable of producing L-lysine in high yield. Accordingly, the prepared L-lysine may be applied to various products such as human food or food additives, pharmaceuticals as well as animal feed or animal feed additives.
  • the present invention provides a microorganism of the genus Corynebacterium having L- lysine production capacity, which is mutated to inactivate the activity of the cell wall hydrolysis-related protein relative to the intrinsic activity as one embodiment.
  • cell wall hydrolysis related protein means a related protein capable of hydrolyzing a cell wall in a microorganism of the genus Corynebacterium.
  • the cell wall hydrolysis-related protein may be a cell wall-associated hydrolase or N-acetylmuramoyl-L-alanine amidase protein, but is not limited thereto. It is not.
  • the protein and gene sequence can be obtained from a known database, as long as it has related protein activity capable of hydrolyzing the cell wall in the microorganism, for example, but not limited to GenBank of NCBI. .
  • the cell wall-associated hydrolase is not particularly limited, but may be a microorganism of the genus Corynebacterium, specifically, NCgl1480 gene coding protein, NCgl2107 gene coding protein or NCgl2108 gene coding protein derived from Corynebacterium glutamicum. .
  • the cell wall-associated hydrolase may have an amino acid sequence of SEQ ID NO: 1, an amino acid sequence of SEQ ID NO: 2 or an amino acid sequence of SEQ ID NO: 3, but a protein sequence having the above activity may be included without limitation.
  • nucleotide sequence encoding a protein having cell wall-associated hydrolase activity may be included without limitation, and specific examples thereof include a nucleotide sequence of SEQ ID NO: 5, a nucleotide sequence of SEQ ID NO: 6, or a nucleotide sequence of SEQ ID NO: 7 Protein, but is not limited thereto.
  • the N-acetylmuramoyl-L-alanine amidase may be a microorganism of the genus Corynebacterium, specifically NCgl2986 gene coding protein derived from Corynebacterium glutamicum. .
  • the N-acetylmuramoyl-L-alanine amidase may have an amino acid sequence of SEQ ID NO: 4, but if the protein having the activity, its amino acid sequence may be included without limitation.
  • any nucleotide sequence encoding a protein having the N-acetylmuramoyl-L-alanine amidase enzyme activity may be included without limitation, and in particular, may be a protein encoded by the nucleotide sequence of SEQ ID NO: 8, but It is not limited.
  • Each protein of the present invention is at least 80%, preferably at least 90%, more preferably at least 95%, particularly preferably at least 97% homology with the sequence, as well as the amino acid sequence described by each SEQ ID NO: It may include an amino acid sequence having a.
  • sequence having such homology any amino acid sequence representing a protein exhibiting the same or corresponding efficacy as that of each of the above proteins is included without limitation.
  • it is an amino acid sequence having such homology it is obvious that an amino acid sequence in which some sequences are deleted, modified, substituted or added is also included in the scope of the present invention.
  • each of the proteins of the present invention is not only a base sequence encoding the amino acid described by each sequence number, but also at least 80%, preferably at least 90%, more preferably at least 95% of the sequence. More preferably at least 98%, most preferably at least 99%, as long as it is a gene sequence encoding a protein that exhibits substantially the same or equivalent potency as each of said proteins.
  • the base sequence having such homology it is obvious that the base sequence in which some sequences are deleted, modified, substituted or added is also included in the scope of the present invention.
  • homology refers to a similar degree of a nucleotide sequence or amino acid sequence of a gene encoding a protein. When homology is sufficiently high, expression products of the gene may have the same or similar activity. have. That is, the percentage of identity between two polynucleotide or polypeptide moieties. Homology between sequences from one moiety to another may be determined by known techniques. For example, homology can be determined by aligning sequence information and directly aligning sequence information between two polynucleotide molecules or two polypeptide molecules using readily available computer programs. The computer program may be BLAST (NCBI), CLC Main Workbench (CLC bio), MegAlign TM (DNASTAR Inc), or the like.
  • homology between polynucleotides can be determined by hybridizing polynucleotides under conditions of stable double stranding between homologous regions, followed by digestion with single-strand-specific nucleases to determine the size of the digested fragments.
  • intrinsic activity refers to the active state of a protein possessed in a state before the microorganism is modified or in its natural state.
  • the "mutated enzyme activity is inactivated relative to the intrinsic activity" is that when the expression of the gene encoding the enzyme is not expressed at all or compared to the native strain or the strain before modification or even if the activity is not or reduced Means that.
  • the inactivation of activity relative to the intrinsic activity means that the activity of the microorganism is reduced or not, as compared with the activity of the enzyme that the original microorganism has in its natural state or before transformation.
  • the decrease is due to mutation of the gene encoding the enzyme, such that the activity of the enzyme itself is reduced compared to the activity of the enzyme originally possessed by the microorganism, and the inhibition of expression or translation of the gene encoding the same in the cell. If the overall degree of enzymatic activity is low compared to the native strain or the strain before modification, the concept also includes a combination thereof.
  • no activity refers to a case in which the expression of the gene encoding the enzyme is not expressed at all as compared to the native strain or the strain before modification and / or the activity is removed even if expressed.
  • Methods for mutating such enzyme activity to be inactivated can be accomplished by the application of various methods well known in the art.
  • the method include a method of replacing a gene encoding the enzyme on a chromosome with a mutated gene such that the activity of the enzyme is reduced, including when the activity of the enzyme is removed; Introducing a mutation into an expression control sequence of a gene on a chromosome encoding said enzyme; Replacing the expression control sequence of the gene encoding the enzyme with a sequence having weak or no activity; Deleting all or part of a gene on a chromosome that encodes the enzyme; Introducing an antisense oligonucleotide (eg, antisense RNA) that complementarily binds to a transcript of a gene on the chromosome to inhibit translation from the mRNA to an enzyme; The method of artificially adding a sequence complementary to the SD sequence in front of the SD sequence of the gene encoding the enzyme to form a secondary structure to make the attachment of rib
  • a method for deleting part or all of a gene encoding an enzyme replaces a polynucleotide encoding an endogenous target protein in a chromosome with a polynucleotide or marker gene in which some nucleic acid sequences are deleted through a bacterial chromosome insertion vector. This can be done by.
  • a method of deleting part or all of such genes a method of deleting genes by homologous recombination may be used.
  • part may vary depending on the type of polynucleotide, but may be specifically 1 to 300, specifically 1 to 100, and more specifically 1 to 50, but is not particularly limited thereto.
  • homologous recombination refers to genetic recombination occurring through linkage exchange at the locus of gene chains having homology with each other.
  • the proteins were inactivated by homologous recombination.
  • the method of modifying an expression control sequence is carried out by inducing a mutation in the expression control sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof, in the nucleic acid sequence of the expression control sequence, or by replacement with a weaker promoter. It may be carried out by a method such as.
  • the expression control sequence includes a promoter, an operator sequence, a sequence encoding a ribosomal binding site, and a sequence that controls the termination of transcription and translation.
  • a method of modifying a gene sequence on a chromosome may be performed by inducing a mutation in the sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof, or further weakening the activity so that the activity of the enzyme is further reduced. It can be carried out by replacing with a gene sequence that has been improved to have or a gene sequence that has been improved so that there is no activity.
  • microorganism having L-lysine producing ability means a microorganism strain capable of producing L-lysine by fermentation.
  • the activity of cell wall hydrolysis-related proteins is mutated to be inactivated relative to endogenous activity, thereby controlling cell lysis that occurs during fermentation for lysine production, thereby increasing L-lysine production capacity. Including but not limited to strains.
  • the microorganism having the L- lysine production ability may include all of the Corynebacterium genus microorganisms that can be mutated so that the activity of the cell wall hydrolysis-related protein of the present invention compared to the intrinsic activity.
  • Corynebacterium glutamicum Corynebacterium glutamicum
  • Corynebacterium ammoniagenes to Ness Corynebacterium ammoniagenes
  • Corynebacterium thermo amino to Ness Corynebacterium thermoaminogenes
  • Brevibacterium Plastic boom Brevibacterium flavum
  • Brevibacterium lactofermentum Brevibacterium fermentum
  • the microorganism of the genus Corynebacterium is Corynebacterium glutamicum ( Corynebacterium glutamicum ) can be used.
  • the mutated Corynebacterium genus microorganisms are characterized in that L-lysine production capacity is increased compared to microorganisms that are not mutated such that cell wall hydrolysis-related protein activity is inactivated compared to intrinsic activity.
  • microorganisms of the genus Corynebacterium having increased L-lysine production capacity are as described above.
  • culture in the present invention means to grow microorganisms under environmental conditions that are appropriately artificially controlled.
  • a method of culturing L-lysine using a microorganism of the genus Corynebacteria may be performed using a method well known in the art.
  • the culture may be continuously cultured in a batch process, an injection batch or a repeated fed batch process, but is not limited thereto.
  • the medium used for cultivation must meet the requirements of the particular strain in an appropriate manner.
  • Culture media for Corynebacteria strains are known (e.g., Manual of Methods for General Bacteriology. American Society for Bacteriology.Washington D.C., USA, 1981).
  • Sugar sources that may be used include sugars and carbohydrates such as glucose, sucrose, lactose, fructose, maltose, starch, cellulose, oils and fats such as soybean oil, sunflower oil, castor oil, coconut oil, palmitic acid, stearic acid Fatty acids, such as linoleic acid, glycerol, alcohols such as ethanol, gluconic acid, acetic acid, organic acids such as pyruvic acid may be included, but are not limited thereto. These materials can be used individually or as a mixture.
  • Nitrogen sources that may be used may include peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean wheat and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate, It is not limited to this. Nitrogen sources can also be used individually or as a mixture. Personnel that may be used may include, but are not limited to, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts. In addition, the culture medium may contain a metal salt such as magnesium sulfate or iron sulfate required for growth. Finally, in addition to the above substances, essential growth substances such as amino acids and vitamins can be used.
  • suitable precursors to the culture medium may be used.
  • the above-mentioned raw materials may be added batchwise or continuously by a suitable method to the culture medium during the culturing process.
  • suitable method are disclosed, for example, in "Biochemical Engineering” by James M. Lee, Prentice-Hall International Editions, pp 138-176.
  • Basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or acid compounds such as phosphoric acid or sulfuric acid can be used in an appropriate manner to adjust the pH of the culture.
  • antifoaming agents such as fatty acid polyglycol esters can be used to inhibit bubble generation.
  • Oxygen or an oxygen-containing gas eg, air
  • the temperature of the culture medium is usually 20 °C to 45 °C, preferably 25 °C to 40 °C, but can be changed depending on the conditions. Incubation can continue until the desired amount of L-amino acid production is achieved. For this purpose it can usually be achieved in 10 to 160 hours.
  • L-lysine may be excreted in culture medium or contained in cells.
  • the method for producing L-lysine of the present invention may include recovering lysine from the microorganism or the medium.
  • Methods for recovering L-lysine from microorganisms or cultures include, but are not limited to, methods known in the art, such as centrifugation, filtration, anion exchange chromatography, crystallization, and HPLC.
  • the recovery step may comprise a purification process.
  • a vector library was prepared by the following method for the purpose of obtaining a gene that increases lysine production capacity.
  • the plasmid obtained using the EZ-Tn5 TM ⁇ R6K ⁇ ori / KAN-2> Tnp Transposome TM Kit (Epicentre) was KCCM11016P (the microorganism was released as KFCC10881, then re-deposited to the International Depository under the Budapest Treaty and deposited as KCCM11016P. Received, Korea Patent Registration No. 10-0159812) strain was transformed into a parent strain and plated on a complex plate medium containing kanamycin (25 mg / l) to secure about 20,000 colonies.
  • Glucose 10 g Peptone 10 g, Beef extract 5 g, Yeast extract 5 g, Brain Heart Infusion 18.5 g, NaCl 2.5 g, Urea 2 g, Sorbitol 91 g, Agar 20 g (based on 1 liter of distilled water)
  • Example 1 About 20,000 colonies secured in Example 1 were inoculated into 300 ⁇ l of selection medium, respectively, and incubated at 96 ° C. at 32 ° C. and 1000 rpm for about 24 hours.
  • the ninhydrin method was used to analyze the production of L-lysine in culture (Moore, S., Stein, WH, Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem. 1948, 176, 367-388).
  • the selected 60 strains were repeatedly cultured in the same manner as described above, followed by repeated ninhydrin reactions, resulting in the selection of the top 10 strains with improved L-lysine production capacity compared to the KCCM11016P strain.
  • Glucose 10 g 5.5 g ammonium sulfate, MgSO4 ⁇ 7H2O 1.2 g, KH2PO4 0.8 g, K2HPO4 16.4 g, biotin 100 ⁇ g, thiamine HCl 1000 ⁇ g, calcium-pantothenic acid 2000 ⁇ g, nicotinamide 2000 ⁇ g (based on 1 liter of distilled water)
  • Reproducibility test was carried out in a flask using the following medium to finally select strains with increased L-lysine production capacity against the 10 strains selected in Example 2 above.
  • the 10 strains and the control group were inoculated into a 250 ml corner-baffle flask containing 25 ml of the following seed medium and shake-cultured at 200 rpm for 20 hours at 30 ° C. Thereafter, 1 ml of the seed culture solution was inoculated into a 250 ml corner-baffle flask containing 24 ml of the following production medium, followed by shaking culture at 200 rpm for 96 hours at 37 ° C.
  • the composition of the seed medium and the production medium is as follows. After the incubation was completed, the concentration of L-lysine in the culture medium was analyzed using HPLC, and the L-lysine production concentrations of the respective mutants are shown in Table 1 below.
  • Glucose 20 g Peptone 10 g, Yeast extract 5 g, Urea 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4 7H2O 0.5 g, Biotin 100 ⁇ g, Thiamine HCl 1000 ⁇ g, Calcium-pantothenic acid 2000 ⁇ g, Nicotinamide 2000 ⁇ g ( 1 liter of distilled water)
  • KCCM11016P / mt-1 and KCCM11016P / mt-8 were finally screened as strains with significantly improved L-lysine production among the 10 selected strains.
  • Example 4 final In select states L- Lysine Productivity Identify related genes and select additional candidate genes
  • NCgl2108 and NCgl2986 genes identified as missing in the mutant strain selected in Example 3 were genes that are inherently present in Corynebacterium and were identified as proteins related to cell wall hydrolysis.
  • NCBI National Center for Biological Information
  • NCgl1480 and NCgl2107 genes inherent in Corynebacterium were additionally selected as proteins involved in cell wall hydrolysis. Accordingly, the two genes were selected as additional deletion candidate genes in order to confirm whether L-lysine production ability was affected even in the NCgl1480 and NCgl2107 gene deletions.
  • the Corynebacterium L-lysine was selected from the NCgl1480, NCgl2107, NCgl2108, and NCgl2986 genes selected in Example 4.
  • Recombinant plasmids were constructed for deletion on the production strain chromosome.
  • PCR [Sambrook et al, Molecular Cloning, a Laboratory Manual (1989), Cold Spring using SEQ ID NO: 20, SEQ ID NO: 21 and SEQ ID NO: 22, SEQ ID NO: 23 and SEQ ID NO: 24, SEQ ID NO: 25, and SEQ ID NO: 26 as primers Harbor Laboratories].
  • PCR conditions were denatured 95 °C, 30 seconds; Annealing 50 ° C., 30 seconds; And the polymerization reaction was repeated 30 times at 72 °C, 1 minute.
  • NCgl1480-A and NCgl1480-B two pairs of DNA fragments containing the front and back of the NCgl1480 gene of 319 and 410 bp, and two pairs of DNA fragments containing the front and back of the NCgl2107 gene of 324 and 300 bp ( NCgl2107-A and NCgl2107-B), two pairs of DNA fragments (NCgl2108-A and NCgl2108-B) containing the front and back of the NCgl2108 gene at 381 and 377 bp, and the front and back of the NCgl2986 gene at 356 and 374 bp, respectively.
  • NCgl2986-A and NCgl2986-B Two pairs of DNA fragments (NCgl2986-A and NCgl2986-B) were obtained.
  • the DNA fragments amplified by PCR were conjugated to pDZ plasmid (Korean Patent No. 10-0924065) using Infusion Cloning Kit (Invitrogen) and transformed into E. coli DH5 ⁇ , and LB containing 25 mg / L kanamycin. It was plated on a solid medium. After the colonies transformed with the plasmid into which the gene of interest was inserted by PCR, the plasmid was obtained by using a commonly known plasmid extraction method.
  • the plasmids were named pDZ- ⁇ NCgl1480, pDZ- ⁇ NCgl2107, pDZ- ⁇ NCgl2108, pDZ- ⁇ NCgl2986, respectively.
  • pDZ- ⁇ NCgl1480 lost 1672bp of NCgl1480 gene
  • pDZ- ⁇ NCgl2107 lost 1026bp of NCgl2107
  • pDZ- ⁇ NCgl2108 lost 576bp of NCgl2108, and
  • pDZ- ⁇ NCgl2986 lost 1092bp of NCgl2986.
  • Example 6 Lysine Production strain KCCM11016P Preparation and Evaluation of Protein Gene Inactivation Strains Related to Derived Cell Wall Hydrolysis
  • KCCM11016P Based on the KCCM11016P strain, a representative strain of L-lysine-producing Corynebacterium, a cell wall hydrolysis-related protein gene inactivation strain selected above was prepared and evaluated for its lysine production ability.
  • Example 5 Four recombinant plasmids prepared in Example 5 (pDZ- ⁇ NCgl1480, pDZ- ⁇ NCgl2107, pDZ- ⁇ NCgl2108, pDZ- ⁇ NCgl2986) were each transformed into Corynebacterium glutamicum KCCM11016P using an electric pulse method. Strains whose target genes were inactivated on the chromosome by homologous recombination were prepared by PCR.
  • the prepared inactivated strains were named KCCM11016P :: ⁇ NCgl1480, KCCM11016P :: ⁇ NCgl2107, KCCM11016P :: ⁇ NCgl2108, KCCM11016P :: ⁇ NCgl2986, respectively.
  • the four strains and the control group were inoculated into a 250 ml corner-baffle flask containing 25 ml of the following seed medium and shake-cultured at 200 rpm for 20 hours at 30 ° C. Thereafter, 1 ml of the seed culture solution was inoculated into a 250 ml corner-baffle flask containing 24 ml of the following production medium, followed by shaking culture at 200 rpm for 96 hours at 37 ° C.
  • the composition of the seed medium and the production medium is as follows.
  • Glucose 20 g (NH4) 2SO4 10 g, peptone 10 g, yeast extract 5 g, urea 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4H2O 0.5 g, biotin 100 ⁇ g, thiamine HCl 1000 ⁇ g, calcium-pantothenic acid 2000 ⁇ g, nicotinamide 2000 ⁇ g (based on 1 liter of distilled water)
  • Example 7 L- Lysine Production strain KCCM10770P Preparation and Evaluation of Protein Inactivated Strains Related to Derived Cell Wall Hydrolysis
  • the lysine production capacity increased 2.2%, 4.3%, 12.1%, 14.2% in strains in which NCgl1480, NCgl2107, NCgl2108, NCgl2986 genes were inactivated from the parent strain KCCM10770P, respectively.
  • Corynebacterium glutamicum KCCM10770P (Korean Patent No. 10-0924065) can improve L-lysine production ability by inactivating proteins related to cell wall hydrolysis similarly to Example 6 above. It was.
  • Example 8 L- Lysine Production strain KCCM11347P Preparation and Evaluation of Protein Inactivated Strains Related to Derived Cell Wall Hydrolysis
  • Corynebacterium glutamicum L-lysine producing strain KCCM11347P produced by artificial mutant method (The microorganism was released as KFCC10750 and re-deposited by the International Depository under the Treaty of Budapest, and was granted KCCM11347P.)
  • KCCM11347P was prepared in the same manner as in Example 6, in which strains in which proteins related to cell wall hydrolysis were inactivated were prepared.
  • KCCM11347P ⁇ NCgl2107
  • KCCM11347P :: ⁇ NCgl2108, KCCM11347P: ⁇ NCgl2986, and L-lysine production capacity was compared.
  • Corynebacterium glutamicum KCCM11347P (Korean Patent No. 10-0073610) can improve L-lysine production capacity by inactivating proteins related to cell wall hydrolysis similarly to Examples 6 and 7. It was confirmed.
  • Corynebacterium glutamicum CJ3P (L-lysine-producing ability) by introducing three mutations (pyc (P458S), hom (V59A), lysC (T311I)] in the wild line of Corynebacterium glutamicum In Binder et al. Genome Biology 2012, 13: R40), in order to examine the effect of inactivation of the protein involved in cell wall hydrolysis, the four proteins involved in cell wall hydrolysis were inactivated as in Examples 6, 7, and 8.
  • strains were prepared in the same manner as in Example 6 and named CJ3P :: ⁇ NCgl1480, CJ3P :: ⁇ NCgl2107, CJ3P :: ⁇ NCgl2108, CJ3P :: ⁇ NCgl2986, and L-lysine production was compared.
  • Corynebacterium glutamicum CJ3P can improve L-lysine production ability by inactivating proteins related to cell wall hydrolysis similarly to the experimental results of Examples 6, 7, and 8.
  • Example 10 L- Lysine Production strain KCCM11016P Preparation and Evaluation of Protein Simultaneous Inactivation Strains Related to Derived Cell Wall Hydrolysis
  • KCCM11016P A strain obtained by preparing a strain in which protein genes related to cell wall hydrolysis (NCgl2108 and NCgl2986), which are highly effective at improving L-lysine production capacity at the same time, was inactivated at the same time, was prepared in the same manner as in Example 6. : ⁇ NCgl2108 / ⁇ NCgl2986 and L-lysine production was compared.
  • the lysine production capacity increased about 21.6% in the strains in which NCgl2108 and NCgl2986 genes were simultaneously inactivated from the parent strain KCCM11016P.
  • KCCM11016P- ⁇ NCgl2986 is named as CA01-2292, CA01-2292 was deposited internationally to the Korea Microorganism Conservation Center (KCCM), an international depository organization under the Treaty of Budapest on 5 December 2014, and assigned a deposit number to KCCM11627P. received.
  • KCCM Microorganism Conservation Center

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 L-라이신 생산능을 갖는 미생물 및 이를 이용한 L-라이신 생산 방법에 관한 것이다. 보다 구체적으로, 본 발명은 세포벽 가수분해 관련 단백질이 내재적 활성에 비해 불활성되도록 변이된 코리네박테리움 속 미생물 및 이를 이용한 L-라이신 제조 방법에 관한 것이다.

Description

L-라이신 생산능을 갖는 미생물 및 이를 이용한 L-라이신 생산 방법
본 발명은 L-라이신 생산능을 갖는 미생물 및 이를 이용한 L-라이신 생산 방법에 관한 것이다.
동물사료나 사람의 의약품, 또는 화장품 산업에 이용되고 있는 L-아미노산, 특히 L-라이신은 주로 코리네박테리움 속 균주나 에세케리키아 속 균주를 이용한 발효에 의해 생산되고 있다. 이에 따라 L-라이신을 생산하기 위한 고효율 생산 균주 및 발효공정기술 개발을 위한 다양한 연구들이 수행되고 있지만, 아직까지 발효 후반 생산능 감소의 원인이 될 수 있는 세포 용해 제어에 대한 연구는 미흡한 실정이다.
한편, 세포벽 가수분해효소 (cell wall hydrolases)는 박테리아의 세포벽을 분해하는 효소로 알려져 있으며, 펩티도글리칸 (peptidoglycan)을 갖는 모든 미생물에 존재한다 (Rice KC & Bayles KW. Microbiol Mol Biol Rev. 2008. 72:85-109). 이와 같은 세포벽 가수분해효소에 대한 연구가 다양한 박테리아에서 진행되고 있지만, 이의 정확한 활성 조절 기작에 대해서는 알려져 있지 않다.
최근 미생물의 배양 시 발생되는 세포 용해 기작에 대한 모델이 폐렴 쌍구균 (Pneumococcal)에서 제시된 바 있다 (Mellroth P et al. J Biol Chem. 2012. 287:11018-29). 구체적으로, 먼저 세포가 다양한 스트레스에 노출되면, 세포 외부 벽에 존재하는 세포벽 가수분해효소의 활성이 증가하여 세포벽 분해가 시작된다. 이와 같은 세포벽 가수분해효소의 지속적인 작용으로 세포가 용해되면, 세포질에 존재하는 세포벽 가수분해효소가 세포 외부에 노출된다. 일련의 과정이 지속적으로 일어나 세포벽 가수분해효소의 양이 세포 외부의 역치 (threshold)를 넘게 되면 주변 세포들이 용해되는 기작이 보고된 바 있다. 그러나 발효 배양 과정 중 발생되는 세포 용해와 아미노산 생산과의 연관성에 대하여 공지된 바 없다.
본 발명자들은 대표적인 L-라이신 생산 균주인 코리네박테리움 속 미생물에서 L-라이신 생산능을 증가시킬 수 있는 유효 형질을 지속적으로 탐색하기 위해 예의 노력한 결과, 세포벽 가수분해에 관련된 단백질을 코딩하는 유전자가 결손 될 경우 L-라이신 생산능이 증가한다는 사실을 확인하였다. 또한, 추가로 유사한 기능을 하는 단백질을 코딩하는 유전자 결손 시 라이신 생산능 증가에 영향이 있음을 확인함으로써 본 발명을 완성하였다.
본 발명의 하나의 목적은 L-라이신 생산능을 갖는 코리네박테리움 속 미생물을 제공하는 것이다.
본 발명의 또 하나의 목적은 상기 L-라이신 생산능을 갖는 코리네박테리움 속 미생물을 이용하여 L-라이신을 제조하는 방법을 제공하는 것이다.
본 발명에 따른 미생물은 세포벽 가수분해에 관련된 단백질들의 내재적 활성에 비해 감소 또는 불활성화된 코리네박테리움 속 미생물은 발효 후반 생산능의 증가를 이끄는 새로운 균주로, L-라이신 생산능을 갖고 있는 코리네박테리움 속 미생물에 새로운 패러다임으로 적용되어, 높은 수율로 L-라이신을 생산할 수 있는 미생물을 제공할 수 있다. 이에 따라, 제조된 L-라이신을 동물 사료 또는 동물 사료 첨가제뿐만 아니라 인간의 식품 또는 식품 첨가제, 의약품 등 다양한 제품에 응용될 수 있다.
상기 목적을 달성하기 위하여, 본 발명은 하나의 양태로서 세포벽 가수분해 관련 단백질의 활성이 내재적 활성에 비해 불활성화되도록 변이된, L-라이신 생산능을 갖는 코리네박테리움 속 미생물을 제공한다.
본 발명에서 용어, "세포벽 가수분해 관련 단백질"은 코리네박테리움 속 미생물에서 세포벽을 가수분해시킬 수 있는 관련 단백질을 의미한다. 상기 세포벽 가수분해 관련 단백질은 세포벽-관련 가수분해 효소 (cell wall-associated hydrolase 또는 N-아세틸뮤라모일-L-알라닌 아미다제 (N-acetylmuramoyl-L-alanine amidase) 단백질일 수 있으나, 이에 제한되는 것은 아니다.
상기에 기술된 바와 같이 미생물에서 세포벽을 가수분해시킬 수 있는 관련 단백질 활성을 가진다면, 당해 단백질 및 유전자 서열은 공지의 데이터 베이스에서 얻을 수 있으며, 그 예로 NCBI의 GenBank 등이 있으나, 이에 제한되지 않는다.
상기 세포벽-관련 가수분해 효소는 특별히 이에 제한되지 않으나, 코리네박테리움 속 미생물, 구체적으로는 코리네박테리움 글루타미쿰 유래의 NCgl1480 유전자 코딩 단백질, NCgl2107 유전자 코딩 단백질 또는 NCgl2108 유전자 코딩 단백질일 수 있다. 구체적인 예로 세포벽-관련 가수분해 효소는 서열번호 1의 아미노산 서열, 서열번호 2의 아미노산 서열 또는 서열번호 3의 아미노산 서열을 가질 수 있으나, 상기 활성을 갖는 단백질 서열은 제한 없이 포함될 수 있다. 또한, 세포벽-관련 가수분해 효소 활성을 가지는 단백질을 코딩하는 염기서열이라면 제한없이 포함될 수 있으며, 구체적인 예로 서열번호 5의 염기서열, 서열번호 6의 염기서열 또는 서열번호 7의 염기서열에 의해 코딩되는 단백질일 수 있으나, 이에 제한되지 않는다.
상기 N-아세틸뮤라모일-L-알라닌 아미다제 (N-acetylmuramoyl-L-alanine amidase)는 코리네박테리움 속 미생물, 구체적으로는 코리네박테리움 글루타미쿰 유래의 NCgl2986 유전자 코딩 단백질일 수 있다. 구체적은 예로 상기 N-아세틸뮤라모일-L-알라닌 아미다제는 서열번호 4의 아미노산 서열을 가질 수 있으나, 상기 활성을 가지는 단백질이라면 이의 아미노산 서열은 제한 없이 포함될 수 있다. 또한, 상기 N-아세틸뮤라모일-L-알라닌 아미다제 효소 활성을 가지는 단백질을 코딩하는 염기서열이라면 제한없이 포함될 수 있으며, 구체적인 예로 서열번호 8의 염기서열에 의해 코딩되는 단백질일 수 있으나, 이에 제한되지 않는다.
본 발명의 상기 각 단백질은 상기 각 서열번호로 기재한 아미노산 서열뿐만 아니라, 상기 서열과 80% 이상, 바람직하게는 90% 이상, 보다 바람직하게는 95% 이상, 특히 바람직하게는 97% 이상의 상동성을 갖는 아미노산 서열을 포함할 수 있다. 이러한 상동성을 갖는 서열로서 실질적으로 상기 각 단백질과 동일하거나 상응하는 효능을 나타내는 단백질을 나타내는 아미노산 서열이라면 제한없이 포함한다. 또한 이러한 상동성을 갖는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열도 본 발명의 범위 내에 포함됨은 자명하다.
아울러, 본 발명의 상기 각 단백질을 코딩하는 유전자는 상기 각 서열번호로 기재한 아미노산을 코딩하는 염기서열뿐만 아니라, 상기 서열과 80% 이상, 바람직하게는 90% 이상, 보다 바람직하게는 95% 이상, 더욱 바람직하게는 98% 이상, 가장 바람직하게는 99% 이상의 상동성을 나타내는 염기 서열로서 실질적으로 상기 각 단백질과 동일하거나 상응하는 효능을 나타내는 단백질을 코딩하는 유전자 서열이라면 제한없이 포함한다. 또한 이러한 상동성을 갖는 염기서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 염기서열도 본 발명의 범위 내에 포함됨은 자명하다.
본 발명에서 사용되는 용어, "상동성"이란, 단백질을 코딩하는 유전자의 염기서열이나 아미노산 서열의 유사한 정도를 의미하는데, 상동성이 충분히 높은 경우 해당 유전자의 발현 산물은 동일하거나 유사한 활성을 가질 수 있다. 즉, 두 개의 폴리뉴클레오티드 또는 폴리펩티드 모이티 사이의 동일성의 퍼센트를 말한다. 하나의 모이티로부터 다른 하나의 모이티까지의 서열 간 상동성은 알려진 당해 기술에 의해 결정될 수 있다. 예를 들면, 상동성을 서열정보를 정렬하고 용이하게 입수 가능한 컴퓨터 프로그램을 이용하여 두 개의 폴리뉴클레오티드 분자 또는 두 개의 폴리펩티드 분자 간의 서열 정보를 직접 정렬하여 결정될 수 있다. 상기 컴퓨터 프로그램은 BLAST(NCBI), CLC Main Workbench (CLC bio), MegAlignTM(DNASTAR Inc) 등 일 수 있다. 또한, 폴리뉴클레오티드 간 상동성은 상동 영역 간의 안정된 이중가닥을 이루는 조건하에서 폴리뉴클레오티드를 혼성화한 후, 단일-가닥-특이적 뉴클레아제로 분해시켜 분해된 단편의 크기를 결정함으로써 결정할 수 있다.
본 발명에서 용어, "내재적 활성"은 본래 미생물이 변형되기 전 상태 또는 천연의 상태에서 가지고 있는 단백질의 활성 상태를 의미한다.
상기 "효소의 활성이 내재적 활성에 비해 불활성화되도록 변이된"은 효소를 코딩하는 유전자의 발현이 천연형 균주 또는 변형 전의 균주에 비하여 전혀 발현이 되지 않는 경우 또는 발현이 되더라도 그 활성이 없거나 감소된 것을 의미한다.
이와 같이 활성이 내재적 활성에 비해 불활성화되는 것은 본래 미생물이 천연의 상태 또는 변형 전의 상태에서 가지고 있는 효소의 활성과 비교하였을 때, 그 활성이 없거나 감소된 것을 의미한다. 상기 감소는 상기 효소를 코딩하는 유전자의 변이 등으로 효소 자체의 활성이 본래 미생물이 가지고 있는 효소의 활성에 비해 감소한 경우와, 이를 코딩하는 유전자의 발현 저해 또는 번역(translation) 저해 등으로 세포 내에서 전체적인 효소 활성 정도가 천연형 균주 또는 변형전의 균주에 비하여 낮은 경우, 이들의 조합 역시 포함하는 개념이다.
상기 "활성이 없는 경우"는 효소를 코딩하는 유전자의 발현이 천연형 균주 또는 변형전의 균주에 비하여 전혀 발현이 되지 않는 경우 및/또는 발현이 되더라도 그 활성이 제거된 경우를 의미한다.
이러한 효소 활성의 불활성화되도록 변이시키는 방법은, 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다. 상기 방법의 예로, 상기 효소의 활성이 제거된 경우를 포함하여 상기 효소의 활성이 감소되도록 돌연변이된 유전자로, 염색체상의 상기 효소를 코딩하는 유전자를 대체하는 방법; 상기 효소를 코딩하는 염색체상의 유전자의 발현 조절 서열에 변이를 도입하는 방법; 상기 효소를 코딩하는 유전자의 발현 조절 서열을 활성이 약하거나 없는 서열로 교체하는 방법; 상기 효소를 코딩하는 염색체상의 유전자의 전체 또는 일부를 결실시키는 방법; 상기 염색체상의 유전자의 전사체에 상보적으로 결합하여 상기 mRNA로부터 효소로의 번역을 저해하는 안티센스 올리고뉴클레오티드 (예컨대, 안티센스 RNA)를 도입하는 방법; 상기 효소를 코딩하는 유전자의 SD 서열 앞단에 SD 서열과 상보적인 서열을 인위적으로 부가하여 2차 구조물을 형성시켜 리보솜 (ribosome)의 부착이 불가능하게 만드는 법 및 해당 서열의 ORF (open reading frame)의 3' 말단에 역전사되도록 프로모터를 부가하는 RTE (Reverse transcription engineering) 방법 등이 있으며, 이들의 조합으로도 달성할 수 있으나, 상기 예에 의해 특별히 제한되는 것은 아니다.
구체적으로, 효소를 코딩하는 유전자의 일부 또는 전체를 결실하는 방법은, 세균 내 염색체 삽입용 벡터를 통해 염색체 내 내재적 목적 단백질을 암호화하는 폴리뉴클레오티드를 일부 핵산 서열이 결실된 폴리뉴클레오티드 또는 마커 유전자로 교체함으로써 수행될 수 있다. 이러한 유전자의 일부 또는 전체를 결실하는 방법의 일례로 상동 재조합에 의하여 유전자를 결실시키는 방법을 사용할 수 있다.
상기에서 "일부"란, 폴리뉴클레오티드의 종류에 따라서 상이하지만, 구체적으로는 1 내지 300개, 구체적으로는 1 내지 100개, 더욱 구체적으로는 1 내지 50개일 수 있으나, 특별히 이에 제한되는 것은 아니다.
상기에서 "상동 재조합(homologous recombination)"이란, 서로 상동성을 지닌 유전자 사슬의 좌위에서 연결 교환을 통해 일어나는 유전자 재조합을 의미한다.
본 발명의 구체적인 실시예에 따르면 상동재조합에 의해 상기 단백질들을 불활성화시켰다.
구체적으로, 발현 조절 서열을 변형하는 방법은 상기 발현 조절 서열의 핵산 서열에 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현 조절 서열상의 변이를 유도하여 수행하거나, 더욱 약한 프로모터로 교체하는 등의 방법으로써 수행할 수 있다. 상기 발현 조절서열에는 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함한다.
아울러, 염색체상의 유전자 서열을 변형하는 방법은 상기 효소의 활성이 더욱 감소되도록 유전자 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖도록 개량된 유전자 서열 또는 활성이 없도록 개량된 유전자 서열로 교체함으로써 수행할 수 있다.
본 발명에서 용어, "L-라이신 생산능을 갖는 미생물"은 발효에 의해 L-라이신을 생산할 수 있는 미생물 균주를 의미한다. 그 예로, 본 발명에 따른 조작에 의해 세포벽 가수분해 관련된 단백질의 활성이 내재적 활성에 비해 불활성화되도록 변이시켜, 라이신 생산을 위한 발효 중 발생하는 세포 용해를 제어하여, L-라이신 생산능을 증가시킬 수 있는 균주를 포함하나 이에 한정되지 않는다.
본 발명에서, 상기 L-라이신 생산능을 갖는 미생물은 본 발명의 세포벽 가수분해 관련 단백질의 활성이 내재적 활성에 비해 불활성화되도록 변이될 수 있는 모든 코리네박테리움 속 미생물을 포함할 수 있다. 그 예로 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum), 코리네박테리움 암모니아게네스 (Corynebacterium ammoniagenes ), 코리네박테리움 써모아미노게네스 (Corynebacterium thermoaminogenes), 브레비박테리움 플라붐 (Brevibacterium flavum), 또는 브레비박테리움 락토페르멘툼 (Brevibacterium fermentum) 등이 사용될 수 있으나, 이에 제한되지는 않는다. 그 한 예로, 상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)을 사용할 수 있다. 상기 변이된 코리네박테리움 속 미생물은 세포벽 가수분해 관련 단백질의 활성이 내재적 활성에 비해 불활성화되도록 변이되지 않은 미생물에 비하여 L-라이신 생산능이 증대된 특징을 갖는다.
본 발명은 또 하나의 양태로서 (i) 본 발명의 상기 세포벽 가수분해 관련 단백질의 활성이 내재적 활성에 비해 불활성화되도록 변이된, L-라이신 생산능을 갖는 코리네박테리움 속 미생물을 배양하는 단계; 및 (ii) 상기 배양에 따른 배양물 또는 상기 미생물로부터 L-라이신을 회수하는 단계를 포함하는, L-라이신의 제조 방법을 제공한다.
상기 L-라이신 생산능이 증가된 코리네박테리움 속 미생물은 상기에서 설명한 바와 같다.
본 발명에서 용어 "배양"은 미생물을 적당히 인공적으로 조절한 환경조건에서 생육시키는 것을 의미한다. 본 발명에서 코리네박테리아 속 미생물을 이용하여 L-라이신을 배양하는 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로, 상기 배양은 배치 공정, 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있으나, 이에 제한되는 것은 아니다.
배양에 사용되는 배지는 적절한 방식으로 특정 균주의 요건을 충족해야 한다. 코리네박테리아 균주에 대한 배양 배지는 공지되어 있다 (예를 들면, Manual of Methods for General Bacteriology. American Society for Bacteriology. Washington D.C., USA, 1981). 사용될 수 있는 당원으로는 글루코즈, 수크로즈, 락토즈, 프락토즈, 말토즈, 전분, 셀룰로즈와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 글루콘산, 아세트산, 피루브산과 같은 유기산이 포함될 수 있으나, 이에 제한되는 것은 아니다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 사용될 수 있는 질소원으로는 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 대두밀 및 요소 또는 무기 화합물, 예를 들면 황산 암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄이 포함될 수 있으나, 이에 제한되는 것은 아니다. 질소원 또한 개별적으로 또는 혼합물로서 사용할 수 있다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함될 수 있으나, 이에 제한되는 것은 아니다. 또한, 배양 배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 함유할 수 있다. 마지막으로, 상기 물질에 더하여 아미노산 및 비타민과 같은 필수 성장 물질이 사용될 수 있다. 또한, 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기된 원료들은 배양과정에서 배양 배지에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있다. 이러한 다양한 배양 방법은 예를 들어 문헌 ("Biochemical Engineering" by James M. Lee, Prentice-Hall International Editions, pp 138-176)에 개시되어 있다.
수산화나트륨, 수산화칼륨, 암모니아와 같은 기초 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배양물의 pH를 조절할 수 있다. 또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 호기 상태를 유지하기 위해 배양 배지 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입할 수 있다. 배양 배지의 온도는 보통 20℃ 내지 45℃, 바람직하게는 25℃ 내지 40℃일 수 있으나, 조건에 따라 변경이 가능하다. 배양은 원하는 L-아미노산의 생성량이 최대로 얻어질 때까지 계속할 수 있다. 이러한 목적으로 보통 10 내지 160 시간에서 달성될 수 있다. L-라이신은 배양 배지 중으로 배출되거나, 세포 중에 포함되어 있을 수 있다.
본 발명의 L-라이신을 생산하는 방법은, 상기 미생물 또는 배지로부터 라이신을 회수하는 단계를 포함할 수 있다. 미생물 또는 배양물로부터 L-라이신을 회수하는 방법은 당업계에 알려진 방법, 예컨대 원심분리, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등이 사용될 수 있으나, 이들 예에 한정되는 것은 아니다.
상기 회수 단계는 정제 공정을 포함할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
실시예 1: 트랜스포존을 이용한 무작위적 돌연변이 라이브러리 제작
라이신 생산능을 증가시키는 유전자를 획득하기 위한 목적으로 아래의 방법으로 벡터 라이브러리를 제작하였다. 먼저 EZ-Tn5™<R6Kγori/KAN-2>Tnp Transposome™ Kit(Epicentre)를 사용하여 얻은 플라스미드를 KCCM11016P (상기 미생물은 KFCC10881로 공개되었다가, 부다페스트 조약하인 국제기탁기관에 재기탁되어 KCCM11016P로 기탁번호를 부여받음, 대한민국 특허 등록번호 제10-0159812호) 균주를 모균주로 하여 형질전환하고 카나마이신 (25 mg/l)이 포함된 복합 평판배지에 도말하여 약 20,000 개의 콜로니를 확보하였다.
<복합평판배지 (pH 7.0)>
포도당 10 g, 펩톤 10 g, Beef extract 5 g, 효모추출물 5 g, Brain Heart Infusion 18.5 g, NaCl 2.5 g, 요소 2 g, Sorbitol 91 g, 한천 20 g (증류수 1 리터 기준)
실시예 2: 트랜스포존을 이용한 무작위적 돌연변이 라이브러리 스크리닝
상기 실시예 1에서 확보된 약 20,000개의 콜로니를 각각 300 ㎕의 선별 배지에 접종하여 96 deep well plate 에서 32℃, 1000 rpm으로 약 24시간 동안 배양하였다. 배양액에 생산된 L-라이신의 생산량을 분석하기 위하여 닌하이드린 방법을 이용하였다 (Moore, S., Stein, W. H., Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem.1948, 176, 367-388). 배양이 완료된 후 배양 상층액 10 ㎕와 닌하드린 반응용액 190 ㎕를 65℃에서 30분간 반응시킨 후, 파장 570 nm에서 spectrophotometer로 흡광도를 측정하고 대조구인 KCCM11016P와 비교해 높은 흡광도를 보이는 변이 균주들로서 약 60여 종의 콜로니를 선별하였다. 그 외 콜로니들은 대조구로 이용된 KCCM11016P 균주와 유사하거나 감소한 흡광도를 보였다.
상기 선별된 60여 종의 균주들은 상기와 동일한 방법으로 배양 후 닌하이드린 반응을 반복 수행하여 결과적으로 KCCM11016P 균주 대비 L-라이신 생산능이 향상된 상위 10 종의 균주를 선발하였다.
<선별배지 (pH 8.0)>
포도당 10 g, 5.5 g ammonium sulfate, MgSO4·7H2O 1.2 g, KH2PO4 0.8 g, K2HPO4 16.4 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍ (증류수 1 리터 기준)
실시예 3: 선별된 무작위적 돌연변이주들의 L- 라이신 생산능 분석
상기 실시예 2에서 선발된 10 종의 균주들을 대상으로 L-라이신 생산능이 증가된 균주들을 최종 선별하기 위하여 하기의 배지를 이용해 플라스크에서 재현성 테스트를 실시하였다. 상기 10종의 균주들과 대조군을 하기의 종배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 접종하고, 30℃에서 20시간 동안, 200 rpm으로 진탕 배양하였다. 그 후, 1 ㎖의 종배양액을 하기의 생산배지 24 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 접종하고, 37℃에서 96시간 동안, 200 rpm에서 진탕 배양하였다. 상기 종 배지와 생산 배지의 조성은 각각 하기와 같다. 배양이 완료된 후 HPLC를 이용하여 배양액 내 L-라이신 농도를 분석하였고, 각 돌연변이주들의 L-라이신 생산 농도를 하기 표 1에 나타내었다.
<종배지 (pH 7.0)>
포도당 20 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4 7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍ (증류수 1 리터 기준)
<생산배지 (pH 7.0)>
포도당 100 g, (NH4)2SO4 40 g, 대두 단백질 2.5 g, 옥수수 침지 고형분(Corn Steep Solids) 5 g, 요소 3 g, KH2PO4 1 g, MgSO4·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 3000 ㎍, CaCO3 30 g (증류수 1리터 기준).
선별된 돌연변이주 10종의 L-라이신 생산 농도
균주 L-라이신(g/l)
배치 1 배치 2 배치 3 평균
대조군 KCCM11016P 42.5 42.8 42.7 42.7
1 KCCM11016P/mt-1 48.8 48.9 48.5 48.7
2 KCCM11016P/mt-2 43.0 43.1 43.4 43.2
3 KCCM11016P/mt-3 42.7 43.1 42.9 42.9
4 KCCM11016P/mt-4 44.9 45.1 45.3 45.1
5 KCCM11016P/mt-5 44.3 44.1 44.0 44.1
6 KCCM11016P/mt-6 42.4 42.9 42.8 42.7
7 KCCM11016P/mt-7 43.8 43.2 43.7 43.6
8 KCCM11016P/mt-8 47.2 46.9 47.1 47.1
9 KCCM11016P/mt-9 44.1 44.4 44.2 44.2
10 KCCM11016P/mt-10 43.1 43.7 43.2 43.3
상기 선발된 10 종의 변이주들 중 L-라이신 생산능이 의미있게 향상된 균주로서 KCCM11016P/mt-1 및 KCCM11016P/mt-8 이 최종 선별되었다.
실시예 4: 최종 선별주들에서의 L- 라이신 생산능 관련 유전자 확인 및 추가 후보 유전자 선별
본 실시예에서는 상기 실시예 3에서 최종 선별된 균주를 대상으로 트랜스포존의 무작위적인 삽입에 의해 결손 된 유전자를 동정하고자 하였다. KCCM11016P/mt-1과 KCCM11016P/mt-8의 Genomic DNA를 추출하여 digest한 후 ligation하여 대장균 DH5α에 형질전환하고, 카나마이신 (25 mg/l)이 포함된 LB 고체배지에 도말하였다. 형질 전환된 콜로니 20종을 각각 선별한 후 미지의 유전자 일부가 포함된 플라스미드를 획득하였고, EZ-Tn5™ <R6Kγori/KAN-2>Tnp Transposome™ Kit에 있는 서열번호 9 및 서열번호 10의 서열을 사용하여 염기서열을 분석한 결과 (표 2), 돌연변이주에서 각각 NCgl2108, NCgl2986 유전자가 불활성화되어 있음을 알게 되었다.
서열 서열번호
Kit 프라이머 ACCTACAACAAAGCTCTCATCAACC 9
Kit 프라이머 CTACCCTGTGGAACACCTACATCT 10
상기 실시예 3에서 선별된 변이주에 결손된 것으로 동정된 NCgl2108, NCgl2986 유전자는 코리네박테리움에 내재적으로 존재하는 유전자로, 세포벽 가수분해에 관련된 단백질로 동정되었다.
이와 같은, 트랜스포존을 이용한 무작위적 돌연변이주들에서 2 종의 세포벽 가수분해에 관련된 단백질이 선별된 결과를 바탕으로, 세포벽 가수분해에 관련된 유전자의 결손은 L-라이신 생산능 증가에 효과적일 것이라 판단하였다. 따라서 NCgl2108 과 NCgl2986 이외의 세포벽 가수분해에 관련된 유전자를 미국국립생물정보센터(NCBI)에서 탐색하였다.
탐색 결과, 코리네박테리움에 내재적으로 존재하는 NCgl1480 과 NCgl2107 유전자가 추가적으로 세포벽 가수분해에 관련된 단백질로서 선별되었다. 이에 따라, NCgl1480 과 NCgl2107 유전자 결손 시에도, L-라이신 생산능에 영향이 있는지 확인하기 위하여, 상기 두 유전자를 추가 결손 후보 유전자로 선별하였다.
실시예 5: NCgl1480 , NCgl2107 , NCgl2108 , NCgl2986 유전자의 불활성화를 위한 재조합 플라스미드 제작
본 실시예에서는 NCgl1480, NCgl2107, NCgl2108, NCgl2986 유전자의 불활성화와 L-라이신 생산의 영향을 확인하기 위해서, 상기 실시예 4에서 선별된 NCgl1480, NCgl2107, NCgl2108, NCgl2986 유전자를 코리네박테리움 L-라이신 생산균주 염색체 상에서 결손시키기 위한 재조합 플라스미드를 제작하였다.
미국 국립보건원의 유전자은행(NIH Genbank)에 보고된 염기서열에 근거하여 NCgl1480, NCgl2107, NCgl2108, 및 NCgl2986의 서열번호 1, 2, 3, 및 4의 아미노산 및 이를 각각 코딩하는 서열번호 5, 6, 7 및 8의 뉴클레오티드의 서열을 확보하였다. 각 NCgl1480, NCgl2107, NCgl2108, NCgl2986의 오픈 리딩 프레임(open reading frame)이 내부적으로 소실된 유전자 단편을 만들기 위해, 상기 서열번호 5, 6, 7, 및 8를 바탕으로, 각각 서열번호 11 내지 14, 15 내지 18, 19 내지 22, 및 23 내지 26의 프라이머를 제작하였다. 이의 서열을 하기 표 3에 표시하였다.
프라이머 서열 서열번호
NCgl1480 프라이머 CCGGGGATCCTCTAGAACCTTGAAACTTCCACTC 11
NCgl1480 프라이머 CTCCTGACGAACTATTTCAAATCCCCTATCAACCTC 12
NCgl1480 프라이머 CACCGAGGTAAATTGCCATGCAAGCGCAATCAACGC 13
NCgl1480 프라이머 GCAGGTCGACTCTAGAAACCACACATTATCGATC 14
NCgl2107 프라이머 CCGGGGATCCTCTAGAGCACAGGGCACCCCTGTTG 15
NCgl2107 프라이머 CTCCTGACGAACTATTTCAAATCCCCTATCAACCTC 16
NCgl2107 프라이머 GAGGTTGATAGGGGATTTGAAATAGTTCGTCAGGAG 17
NCgl2107 프라이머 GCAGGTCGACTCTAGAAACCACACATTATCGATC 18
NCgl2108 프라이머 CCGGGGATCCTCTAGAGAACCCTTAGTAGTTGGG 19
NCgl2108 프라이머 GTAATCCAAGGAGTGCTCACCCACTGATGAAACTCC 20
NCgl2108 프라이머 GGAGTTTCATCAGTGGGTGAGCACTCCTTGGATTAC 21
NCgl2108 프라이머 GCAGGTCGACTCTAGACGAGCCTCAATATCAATC 22
NCgl2986 프라이머 CCGGGGATCCTCTAGATTAGGAGAAACCATGAGC 23
NCgl2986 프라이머 ATCAGTCAGAACTGCCAGGACTGCAGTAAGAATACC 24
NCgl2986 프라이머 GGTATTCTTACTGCAGTCCTGGCAGTTCTGACTGAT 25
NCgl2986 프라이머 GCAGGTCGACTCTAGAGTTGAGGCGTTTGGATAC 26
코리네박테리움 글루타미쿰 ATCC13032 게놈 DNA를 주형으로 하여 서열번호 11 및 서열번호 12, 서열번호 13 및 서열번호 14, 서열번호 15 및 서열번호 16, 서열번호 17 및 서열번호 18, 서열번호 19 및 서열번호 20, 서열번호 21 및 서열번호 22, 서열번호 23 및 서열번호 24, 서열번호 25 및 서열번호 26 을 프라이머로 이용하여 PCR[Sambrook et al, Molecular Cloning, a Laboratory Manual (1989), Cold Spring Harbor Laboratories]을 수행하였다. PCR 조건은 변성 95℃, 30초; 어닐링 50℃, 30초; 및 중합반응 72℃, 1분을 30회 반복하였다.
그 결과, 319bp와 410bp 의 NCgl1480 유전자 앞부분과 뒤부분이 포함된 두 쌍의 DNA 단편 (NCgl1480-A 및 NCgl1480-B), 324bp와 300bp의 NCgl2107 유전자 앞부분과 뒤부분이 포함된 두 쌍의 DNA 단편 (NCgl2107-A 및 NCgl2107-B), 381bp와 377bp의 NCgl2108 유전자 앞부분과 뒤부분이 포함된 두 쌍의 DNA 단편 (NCgl2108-A 및 NCgl2108-B), 그리고 356bp와 374bp의 NCgl2986 유전자 앞부분과 뒤부분이 포함된 두 쌍의 DNA 단편 (NCgl2986-A 및 NCgl2986-B)을 얻었다. PCR로 증폭된 상기 DNA 단편은 Infusion 클로닝 키트 (Invitrogen)를 사용하여 pDZ플라스미드(대한민국 등록특허 제10-0924065호)에 접합한 후 대장균 DH5α에 형질전환하고, 25 mg/L의 카나마이신이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적한 유전자가 삽입된 플라스미드로 형질 전환된 콜로니를 선별한 후, 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 획득하였다. 상기 플라스미드를 각각 pDZ-ΔNCgl1480, pDZ-ΔNCgl2107, pDZ-ΔNCgl2108, pDZ-ΔNCgl2986 라 명명하였다. pDZ-ΔNCgl1480는 NCgl1480의 유전자 1672bp가, pDZ-ΔNCgl2107은 NCgl2107의 유전자 1026bp가, pDZ-ΔNCgl2108은 NCgl2108의 유전자 576bp가, pDZ-ΔNCgl2986는 NCgl2986의 유전자 1092bp가 소실되었다.
실시예 6: 라이신 생산 균주 KCCM11016P 유래 세포벽 가수분해에 관련된 단백질 유전자 불활성화 균주 제작 및 평가
대표적인 L-라이신 생산 코리네박테리움 속 균주인 KCCM11016P 균주를 기반으로 상기에서 선별한 세포벽 가수분해 관련 단백질 유전자 불활성화 균주를 제작하고 이의 라이신 생산능을 평가하고자 하였다.
상기 실시예 5에서 제작한 4 종의 재조합 플라스미드(pDZ-ΔNCgl1480, pDZ-ΔNCgl2107, pDZ-ΔNCgl2108, pDZ-ΔNCgl2986)들을 전기펄스법을 이용하여 코리네박테리움 글루타미쿰 KCCM11016P에 각각 형질전환시키고, 상동 재조합에 의해 염색체 상에서 목적 유전자가 불활성화된 균주들을 PCR 방법으로 제조하였다. 제조된 불활성화 균주들을 각각 KCCM11016P:: ΔNCgl1480, KCCM11016P:: ΔNCgl2107, KCCM11016P:: ΔNCgl2108, KCCM11016P:: ΔNCgl2986 라 명명하였다.
상기 4 종의 균주들과 대조군을 하기의 종배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 접종하고, 30℃에서 20시간 동안, 200 rpm으로 진탕 배양하였다. 그 후, 1 ㎖의 종배양액을 하기의 생산배지 24 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 접종하고, 37℃에서 96시간 동안, 200 rpm에서 진탕 배양하였다. 상기 종 배지와 생산 배지의 조성은 각각 하기와 같다.
<종배지 (pH 7.0)>
포도당 20 g, (NH4)2SO4 10 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4·H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍(증류수 1리터 기준)
<생산배지 (pH 7.0)>
포도당 100 g, (NH4)2SO4 40 g, 대두 단백질 2.5 g, 옥수수 침지 고형분 (cornsteep solid) 5 g, 요소 3 g, KH2PO4 1 g, MgSO4·H2O 0.5 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 3000 ㎍, CaCO3 30 g (증류수 1리터 기준)
배양을 종료한 후, HPLC를 이용하여 분석한 L-라이신 농도를 하기 표 4에 나타내었다. 표 4의 결과는 3회 반복 실험 결과값이며, 평균치로 생산능을 평가하였다.
  라이신 g/L
배치 1 배치 2 배치 3 평균
KCCM11016P 42.7 42.6 43.0 42.8
KCCM11016P-ΔNCgl1480 44.3 44.1 44.0 44.1
KCCM11016P-ΔNCgl2107 45.1 44.9 45.2 45.1
KCCM11016P-ΔNCgl2108 48.1 48.3 48.0 48.1
KCCM11016P-ΔNCgl2986 49.3 49.1 49.2 49.2
그 결과, 상기 표 4에서 나타낸 바와 같이, 모균주 KCCM11016P로부터 NCgl1480, NCgl2107, NCgl2108, NCgl2986 유전자가 불활성화된 균주에서 라이신 생산능이 각각 3.2%, 5.4%, 13%, 15% 증가하였다.
이와 같은 결과들은, 코리네박테리움 속 미생물에서 세포 융해를 일으킬 수 있는 세포벽 가수분해에 관련된 단백질들을 불활성화시킴으로써 L-라이신 생산능을 향상시킬 수 있음을 시사하는 것이다.
이에, 추가적인 다양한 코리네박테리움 속 미생물에서 상기 세포벽 가수분해 관련 단백질들을 불활성화시킬 경우에도 유사한 효과가 있는지를 하기에서 실험하였다.
실시예 7: L- 라이신 생산균주 KCCM10770P 유래 세포벽 가수분해에 관련된 단백질 불활성화 균주들의 제작 및 평가
라이신 생합성 경로가 강화된 L-라이신 생산 균주인 코리네박테리움 글루타미쿰 KCCM10770P (한국 등록특허 제10-0924065호)에서 세포벽 가수분해에 관련된 단백질 불활성화 효과가 상기 실시예 6의 실험결과와 유사한지 비교하기 위하여, 4종의 세포벽 가수분해에 관련된 단백질들이 불활성화된 균주들을 상기 실시예 6과 동일한 방법으로 제조하여 KCCM10770P::ΔNCgl1480, KCM10770P::ΔNCgl2107, KCCM10770P::ΔNCgl2108, KCM10770P::ΔNCgl2986으로 명명하였고, L-라이신 생산능을 비교하였다.
상기 균주들의 라이신 생산능을 비교하기 위하여 각 대조군과 함께 실시예 6과 동일한 방법으로 배양하고, 배양을 종료한 후, HPLC를 이용하여 분석한 L-라이신 농도는 하기 표 5에 나타내었다. 표 5의 결과는 3회 반복 실험 결과값이며, 평균치로 생산능을 평가하였다.
  라이신 g/L
배치 1 배치 2 배치 3 평균
KCCM10770P 46.0 46.3 46.1 46.1
KCCM10770P-ΔNCgl1480 47.3 47.1 47.0 47.1
KCCM10770P-ΔNCgl2107 48.0 48.2 48.1 48.1
KCCM10770P-ΔNCgl2108 51.7 51.9 51.6 51.7
KCCM10770P-ΔNCgl2986 53.1 52.9 52.1 52.7
그 결과, 상기 표 5에서 나타낸 바와 같이, 모균주 KCCM10770P로부터 NCgl1480, NCgl2107, NCgl2108, NCgl2986 유전자가 각각 불활성화된 균주에서 라이신 생산능이 각각 2.2%, 4.3%, 12.1%, 14.2% 증가하였다.
따라서, 코리네박테리움 글루타미쿰 KCCM10770P (대한민국 등록특허 제10-0924065호)에서도 상기 실시예 6과 유사하게 세포벽 가수분해에 관련된 단백질들을 불활성화 시킴으로써 L-라이신 생산능을 향상시킬 수 있음을 확인하였다.
실시예 8: L- 라이신 생산균주 KCCM11347P 유래 세포벽 가수분해에 관련된 단백질 불활성화 균주들의 제작 및 평가
인공변이법에 의하여 제작된 코리네박테리움 글루타미쿰 L-라이신 생산균주 KCCM11347P (상기 미생물은 KFCC10750으로 공개되었다가 부다페스트 조약 하의 국제기탁기관에 재기탁되어, KCCM11347P를 부여받았음. 한국 등록특허 제10-0073610호)에서도 세포벽 가수분해에 관련된 단백질의 불활성화의 효과를 확인하기 위하여, 4 종의 세포벽 가수분해에 관련된 단백질들이 불활성화된 균주들을 상기 실시예 6과 동일한 방법으로 제조하여 KCCM11347P::ΔNCgl1480, KCCM11347P:ΔNCgl2107, KCCM11347P::ΔNCgl2108, KCCM11347P:ΔNCgl2986라 명명하였고, L-라이신 생산능을 비교하였다.
상기 균주들의 라이신 생산능을 비교하기 위하여 각 대조군과 함께 실시예 6과 동일한 방법으로 배양하고, 배양을 종료한 후, HPLC를 이용하여 분석한 L-라이신 농도는 하기 표 6에 나타내었다. 표 6의 결과는 3회 반복 실험 결과값이며, 평균치로 생산능을 평가하였다.
  라이신 g/L
배치 1 배치 2 배치 3 평균
KCCM11347P 38.2 38.6 38.3 38.4
KCCM11347P-ΔNCgl1480 39.0 39.4 39.1 39.2
KCCM11347P-ΔNCgl2107 39.1 39.5 39.3 39.3
KCCM11347P-ΔNCgl2108 39.8 40.2 39.9 42.9
KCCM11347P-ΔNCgl2986 39.9 40.3 40.1 43.9
그 결과, 상기 표 6에서 나타낸 바와 같이, 모균주 KCCM11347P로부터 NCgl1480, NCgl2107, NCgl2108, NCgl2986 유전자가 불활성화된 균주에서 라이신 생산능이 각각 2%, 2.4%, 11.7%, 14.4% 증가하였다.
따라서, 코리네박테리움 글루타미쿰 KCCM11347P (대한민국 등록특허 제10-0073610호)에서도 상기 실시예 6 및 7과 유사하게 세포벽 가수분해에 관련된 단백질들을 불활성화 시킴으로써 L-라이신 생산능을 향상시킬 수 있음을 확인하였다.
실시예 9: L- 라이신 생산균주 CJ3P 유래 세포벽 가수분해에 관련된 단백질 불활성화 균주들의 제작 및 평가
코리네박테리움 글루타미쿰 야생주에 3종의 변이[pyc(P458S), hom(V59A), lysC(T311I)]를 도입하여 L-라이신 생산능을 갖게된 코리네박테리움 글루타미쿰 CJ3P (Binder et al. Genome Biology 2012, 13:R40)에서도 상기 실시예 6, 7, 8과 마찬가지로 세포벽 가수분해에 관련된 단백질의 불활성화의 효과를 알아보기 위하여 4 종의 세포벽 가수분해에 관련된 단백질들이 불활성화된 균주들을 상기 실시예 6과 동일한 방법으로 제조하여 CJ3P::ΔNCgl1480, CJ3P::ΔNCgl2107, CJ3P::ΔNCgl2108, CJ3P::ΔNCgl2986 라 명명하였고, L-라이신 생산능을 비교하였다.
상기 균주들의 라이신 생산능을 비교하기 위하여 각 대조군과 함께 실시예 6과 동일한 방법으로 배양하고, 배양을 종료한 후, HPLC를 이용하여 분석한 L-라이신 농도는 하기 표 7에 나타내었다. 표 7의 결과는 3회 반복 실험 결과값이며, 평균치로 생산능을 평가하였다.
  라이신 g/L
배치 1 배치 2 배치 3 평균
CJ3P 7.8 8.0 7.9 7.9
CJ3P-ΔNCgl1480 8.3 8.0 8.1 8.1
CJ3P-ΔNCgl2107 8.0 7.9 8.1 8.0
CJ3P-ΔNCgl2108 8.8 8.9 9.0 8.9
CJ3P-ΔNCgl2986 9.1 9.2 9.2 9.2
그 결과, 상기 표 8에서 나타낸 바와 같이, 모균주 CJ3P로부터 NCgl1480, NCgl2107, NCgl2108, NCgl2986 유전자가 불활성화된 균주에서 라이신 생산능이 각각 3%, 1.3%, 12.7% 16% 증가하였다.
따라서, 코리네박테리움 글루타미쿰 CJ3P에서도 상기 실시예 6, 7, 8의 실험 결과와 유사하게 세포벽 가수분해에 관련된 단백질들을 불활성화시킴으로써 L-라이신 생산능을 향상시킬 수 있음을 확인하였다.
실시예 10: L- 라이신 생산균주 KCCM11016P 유래 세포벽 가수분해에 관련된 단백질 동시 불활성화 균주의 제작 및 평가
상기 실시예들로부터 L-라이신 생산 균주인 코리네박테리움 속에서 세포벽 가수분해 관련 단백질을 각각 불활성화시킬 경우 L-라이신 생산능이 증가됨을 확인한 후, 관련 단백질들을 2종 이상 동시 불활성화시킬 경우에도 L-라이신 생산능이 증가되는지를 확인하고자 하였다.
이에, L-라이신 생산 균주 코리네박테리움 글루타미쿰 KCCM11016P에서 세포벽 가수분해에 관련된 단백질들의 동시 불활성화에 따른 효과를 확인하기 위하여 다음의 실험을 진행하였다. 단독 결손 시 L-라이신 생산능 향상에 효과가 높은 2 종의 세포벽 가수분해에 관련된 단백질 유전자 (NCgl2108과 NCgl2986)들이 동시에 불활성화된 균주를 상기 실시예 6과 동일한 방법으로 제조하여 얻은 균주를 KCCM11016P::ΔNCgl2108/ΔNCgl2986라 명명하였고, L-라이신 생산능을 비교하였다.
상기 균주의 라이신 생산능을 비교하기 위하여 대조군과 함께 실시예 6과 동일한 방법으로 배양하고, 배양을 종료한 후, HPLC를 이용하여 분석한 L-라이신 농도는 하기 표 8에 나타내었다. 표 8의 결과는 3회 반복 실험 결과값이며, 평균치로 생산능을 평가하였다.
  라이신 g/L
배치 1 배치 2 배치 3 평균
KCCM11016P 43.4 43.1 43.2 43.2
KCCM11016P-ΔNCgl2108/ ΔNCgl2986 52.6 52.4 52.7 52.6
그 결과, 상기 표 8에서 나타낸 바와 같이, 모균주 KCCM11016P로부터 NCgl2108 및 NCgl2986 유전자가 동시 불활성화된 균주에서 라이신 생산능이 약 21.6% 증가하였다.
이와 같은 결과는 세포벽 가수분해에 관련된 단백질을 1종 뿐 아니라, 2종 이상 동시에 코리네박테리움 속 미생물에서 불활성화시키는 경우에도 L-라이신 생산능을 향상시킬 수 있음을 시사하는 것이다.
이에, 상기 균주, KCCM11016P-ΔNCgl2986를 CA01-2292로 명명하고, CA01-2292는 2014년 12월 5일자로 부다페스트 조약 하에 국제기탁 기관인 한국미생물보존센터(KCCM)에 국제기탁하여 KCCM11627P로 기탁번호를 부여받았다.
상기의 결과들로부터, L-라이신 생산균주에서 세포벽 가수분해에 관련된 단백질들의 내재적 활성에 비해 불활성화는 발효 중 발생하는 세포 용해를 제어함으로써 L-라이신 생산능을 증가시키는데 효과가 있음을 확인하였다. 또한, 이와 같은 세포벽 가수분해에 관련된 단백질들은 1종 뿐 아니라 2종 이상의 동시 활성 불활성화 역시 L-라이신 생산능을 증가시킬 수 있음을 확인하여, 신규한 L-라이신 생산 균주를 제공할 수 있었다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2016006833-appb-I000001

Claims (4)

  1. 세포벽 가수분해 관련 단백질의 활성이 내재적 활성에 비해 불활성화되도록 변이된, L-라이신 생산능을 갖는 코리네박테리움 속 미생물.
  2. 제1항에 있어서, 상기 세포벽 가수분해 관련 단백질은 서열번호 1 내지 4로 표시되는 아미노산 서열을 가지는 단백질로 이루어진 군에서 선택된 1종 이상의 단백질인 것인, L-라이신 생산능을 갖는 코리네박테리움 속 미생물.
  3. 제1항에 있어서, 상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)인, L-라이신 생산능을 갖는 코리네박테리움 속 미생물.
  4. (i) 제1항 내지 제3항 중 어느 한 항의 코리네박테리움 속 미생물을 배지에서 배양하는 단계; 및
    (ii) 상기 배양에 따른 배지 또는 상기 미생물로부터 L-라이신을 회수하는 단계를 포함하는, L-라이신의 제조 방법.
PCT/KR2016/006833 2015-07-03 2016-06-27 L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법 WO2017007159A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES16821565T ES2790382T3 (es) 2015-07-03 2016-06-27 Microorganismo que produce L-lisina y método para producir L-lisina usando el mismo
EP16821565.5A EP3318637B1 (en) 2015-07-03 2016-06-27 Microorganism producing l-lysine and method for producing l-lysine using the same
US15/741,392 US11104925B2 (en) 2015-07-03 2016-06-27 Microorganism producing L-lysine and method for producing L-lysine using the same
RU2018101385A RU2683551C1 (ru) 2015-07-03 2016-06-27 Микроорганизм, обладающий продуктивностью по L-лизину, и способ получения L-лизина с использованием этого микроорганизма
JP2017568121A JP6646075B2 (ja) 2015-07-03 2016-06-27 L−リジンを生産する微生物及びそれを用いたl−リジン生産方法
CN201680040171.4A CN107922954B (zh) 2015-07-03 2016-06-27 具有l-赖氨酸生产力的微生物和使用其生产l-赖氨酸的方法
BR112018000074-4A BR112018000074B1 (pt) 2015-07-03 2016-06-27 Micro-organismo que produz l-lisina e método para produzir l-lisina com o uso do mesmo
PL16821565T PL3318637T3 (pl) 2015-07-03 2016-06-27 Mikroorganizm wytwarzający l-lizynę oraz sposób wytwarzania l-lizyny przy użyciu tego mikoorganizmu

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0095528 2015-07-03
KR1020150095528A KR101793328B1 (ko) 2015-07-03 2015-07-03 L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법

Publications (1)

Publication Number Publication Date
WO2017007159A1 true WO2017007159A1 (ko) 2017-01-12

Family

ID=57685743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006833 WO2017007159A1 (ko) 2015-07-03 2016-06-27 L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법

Country Status (12)

Country Link
US (1) US11104925B2 (ko)
EP (1) EP3318637B1 (ko)
JP (1) JP6646075B2 (ko)
KR (1) KR101793328B1 (ko)
CN (1) CN107922954B (ko)
BR (1) BR112018000074B1 (ko)
ES (1) ES2790382T3 (ko)
HU (1) HUE048882T2 (ko)
MY (1) MY171648A (ko)
PL (1) PL3318637T3 (ko)
RU (1) RU2683551C1 (ko)
WO (1) WO2017007159A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107922954A (zh) * 2015-07-03 2018-04-17 Cj第制糖株式会社 具有l‑赖氨酸生产力的微生物和使用其生产l‑赖氨酸的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101947945B1 (ko) 2018-01-25 2019-02-13 씨제이제일제당 (주) L-아미노산을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아미노산의 생산방법
EP3599282B1 (en) 2018-07-24 2021-03-17 Evonik Operations GmbH Method for the fermentative production of l-lysine
CN110106206B (zh) * 2019-05-14 2023-05-02 诸城东晓生物科技有限公司 一种提高l-赖氨酸产量及稳定性的谷氨酸棒状杆菌构建方法
CN112877269B (zh) * 2020-01-15 2021-12-24 中国科学院天津工业生物技术研究所 生产赖氨酸的微生物以及赖氨酸的生产方法
CN114107158B (zh) * 2021-12-22 2022-07-26 广东省科学院生物与医学工程研究所 一种高产高纯度异麦芽酮糖的重组谷氨酸棒杆菌及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070254345A1 (en) * 2004-11-25 2007-11-01 Keita Fukui L-Amino Acid-Producing Bacterium and a Method for Producing L-Amino Acid
KR100838035B1 (ko) * 2006-12-29 2008-06-12 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용한 l-라이신 생산 방법

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940001307B1 (ko) 1991-12-27 1994-02-19 제일제당 주식회사 L-라이신을 생산하는 신규 미생물
KR0159812B1 (ko) 1995-12-20 1998-11-16 손경식 코리네박테리움 글루타미컴 씨에이치 77 및 이 균주를 이용한 l-라이신의 제조 방법
US20050153402A1 (en) * 1999-06-25 2005-07-14 Basf Ag Corynebacterium glutamicum genes encoding regulatory proteins
US20050191732A1 (en) * 1999-06-25 2005-09-01 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding proteins involved in homeostasis and adaptation
KR100789271B1 (ko) * 2005-11-30 2008-01-02 씨제이 주식회사 L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용하여 l-라이신을 생산하는 방법
KR100789270B1 (ko) 2005-11-30 2008-01-02 씨제이 주식회사 L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용하여 l-라이신을 생산하는 방법
BRPI0715354A2 (pt) * 2006-08-07 2015-06-23 Univ Missouri Quinases semelhantes a receptor lysm para melhora da resposta de defesa de plantas contra fungos patogênicos
WO2008033001A1 (en) 2006-09-15 2008-03-20 Cj Cheiljedang Corporation A corynebacteria having enhanced l-lysine productivity and a method of producing l-lysine using the same
JP2010226956A (ja) * 2007-07-23 2010-10-14 Ajinomoto Co Inc L−リジンの製造法
KR100987281B1 (ko) * 2008-01-31 2010-10-12 씨제이제일제당 (주) 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
NZ606047A (en) * 2008-04-30 2015-03-27 Xyleco Inc Processing biomass
RU2582266C2 (ru) * 2009-07-02 2016-04-20 Мерц Фарма Гмбх Унд Ко. Кгаа Нейротоксины, проявляющие сокращенную биологическую активность
KR101182033B1 (ko) * 2009-07-08 2012-09-11 씨제이제일제당 (주) 외래종 유래의 글리세르알데하이드-3-포스페이트 디하이드로지나제의 활성을 획득한 코리네박테리움 속의 l-라이신 생산방법
KR101512432B1 (ko) * 2010-06-15 2015-04-16 백광산업 주식회사 미생물을 이용한 아스파테이트 계열 아미노산의 생산방법
KR101269810B1 (ko) 2010-07-15 2013-05-30 씨제이제일제당 (주) L-라이신 생산능이 향상된 미생물 및 이를 이용한 l-라이신 생산방법
WO2012008810A2 (en) * 2010-07-15 2012-01-19 Cj Cheiljedang Corporation Microorganism with enhanced l-lysine productivity and method for producing l-lysine using the same
WO2012127373A1 (en) * 2011-03-18 2012-09-27 Basf Plant Science Company Gmbh Promoters for regulating expression in plants
KR101335853B1 (ko) * 2011-12-01 2013-12-02 씨제이제일제당 (주) L-아미노산 및 리보플라빈을 동시에 생산하는 미생물 및 이를 이용한 l-아미노산 및 리보플라빈을 생산하는 방법
BR122021015693B1 (pt) * 2011-12-21 2022-05-03 Cj Cheiljedang Corporation Microrganismo produtor de lisina e método para a produção de l-lisina
DK2803722T3 (en) * 2012-01-10 2018-01-08 Cj Cheiljedang Corp Corynebacterium microorganisms capable of utilizing xylose, and method for producing L-lysine using the same
KR101594156B1 (ko) * 2013-06-25 2016-02-15 씨제이제일제당 주식회사 L-라이신 생산능이 향상된 미생물 및 그를 이용하여 l-라이신을 생산하는 방법
MA41020A (fr) * 2014-11-25 2017-10-03 Evelo Biosciences Inc Compositions probiotiques et prébiotiques, et leurs procédés d'utilisation pour la modulation du microbiome
CN104946668A (zh) * 2015-06-29 2015-09-30 湖南省植物保护研究所 cry1Ia基因及应用、由其编码的Cry1Ia蛋白及制备方法和应用
KR101793328B1 (ko) * 2015-07-03 2017-11-03 씨제이제일제당 (주) L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법
US10662448B2 (en) * 2016-10-17 2020-05-26 Xylome Corporation Compositions and methods for producing lipids and other biomaterials from grain ethanol stillage and stillage derivatives
CA3047431A1 (en) * 2017-01-24 2018-08-02 Flagship Pioneering Innovations V, Inc. Methods and related compositions for manufacturing food and feed
AU2018213284B2 (en) * 2017-01-24 2024-03-28 Flagship Pioneering Innovations V, Inc. Compositions and related methods for agriculture
KR101947945B1 (ko) * 2018-01-25 2019-02-13 씨제이제일제당 (주) L-아미노산을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아미노산의 생산방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070254345A1 (en) * 2004-11-25 2007-11-01 Keita Fukui L-Amino Acid-Producing Bacterium and a Method for Producing L-Amino Acid
KR100838035B1 (ko) * 2006-12-29 2008-06-12 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용한 l-라이신 생산 방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NAKAMURA, JUN ET AL.: "Mutations of the Corynebacterium Glutamicum NCg11221 Gene , Encoding a Mechanosensitive Channel Homolog, Induce L-glutamic Acid Production", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 73, no. 14, July 2007 (2007-07-01), pages 4491 - 4498, XP002691368 *
OLRICHS, NICK KENJI ET AL.: "Bugging the Cell Wall of Bacteria: Novel Insights into Peptidoglycan Biosynthesis and Its Inhibition", PHD THESIS FOR UNIVERSITY OF UTRECHT, 2010, pages 1 - 136, XP055346116 *
See also references of EP3318637A4 *
XU, JIANZHONG ET AL.: "Metabolic Engineering Corynebacterium Glutamicum for the L-lysine Production by Increasing the Flux into L-lysine Biosynthetic Pathway", AMINO ACIDS, vol. 46, no. 9, 31 May 2014 (2014-05-31), pages 2165 - 2175, XP055346112 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107922954A (zh) * 2015-07-03 2018-04-17 Cj第制糖株式会社 具有l‑赖氨酸生产力的微生物和使用其生产l‑赖氨酸的方法
CN107922954B (zh) * 2015-07-03 2022-01-11 Cj第一制糖株式会社 具有l-赖氨酸生产力的微生物和使用其生产l-赖氨酸的方法

Also Published As

Publication number Publication date
EP3318637A1 (en) 2018-05-09
BR112018000074B1 (pt) 2024-03-05
EP3318637B1 (en) 2020-04-01
ES2790382T3 (es) 2020-10-27
BR112018000074A2 (ko) 2018-09-11
CN107922954A (zh) 2018-04-17
JP2018518977A (ja) 2018-07-19
HUE048882T2 (hu) 2020-08-28
US11104925B2 (en) 2021-08-31
RU2683551C1 (ru) 2019-03-28
JP6646075B2 (ja) 2020-02-14
KR20170005350A (ko) 2017-01-12
PL3318637T3 (pl) 2020-08-24
KR101793328B1 (ko) 2017-11-03
CN107922954B (zh) 2022-01-11
US20180195097A1 (en) 2018-07-12
EP3318637A4 (en) 2018-12-12
MY171648A (en) 2019-10-22

Similar Documents

Publication Publication Date Title
WO2018043856A1 (ko) 신규 프로모터 및 이의 용도
WO2013095071A2 (ko) L-라이신 생산능을 갖는 미생물을 이용하여 l-라이신을 생산하는 방법
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2017007159A1 (ko) L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법
WO2018124440A2 (ko) 신규한 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법
WO2019147078A1 (ko) 퓨린 뉴클레오티드를 생산하는 코리네박테리움 속 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
WO2014142463A1 (ko) L-발린 생산능이 향상된 균주 및 이를 이용한 l-발린 생산방법
WO2019117398A1 (ko) 5&#39;-이노신산을 생산하는 미생물 및 이를 이용한 5&#39;-이노신산의 생산 방법
WO2013105802A2 (ko) 자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
WO2014208981A1 (ko) L-라이신 생산능이 향상된 미생물 및 그를 이용하여 l-라이신을 생산하는 방법
WO2016024771A1 (ko) O-포스포세린 생산 미생물 및 이를 이용한 o-포스포세린 또는 l-시스테인 생산 방법
WO2020022547A1 (ko) 신규 5&#39;-이노신산 디하이드로게나아제 및 이를 이용한 5&#39;-이노신산 제조방법
WO2019164346A1 (ko) L-트립토판을 생산하는 재조합 코리네형 미생물 및 이를 이용한 l-트립토판을 생산하는 방법
WO2019190193A1 (ko) 글라이신 생산능이 증가된 미생물 및 이를 이용한 발효 조성물 생산 방법
WO2016148490A1 (ko) 피루브산 디하이드로게나아제 변이체, 이를 포함하는 미생물 및 이를 이용한 l-아미노산 생산 방법
WO2017034165A1 (ko) L-라이신 생산능을 가지는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법
WO2015064917A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법
WO2015170907A1 (ko) L-라이신 생산능이 향상된 미생물 및 이를 이용한 l-라이신 생산방법
WO2021112469A1 (ko) 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
WO2017034164A1 (ko) L-라이신 생산능을 가지는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법
WO2013103246A2 (ko) 퀴놀린산을 생산하는 재조합 미생물 및 이를 이용한 퀴놀린산의 생산 방법
WO2015122569A1 (ko) L-쓰레오닌 생산능을 가지는 재조합 에스케리키아 속 미생물 및 이를 이용한 l-쓰레오닌의 생산방법
WO2014126384A1 (ko) L-쓰레오닌 생산능을 가지는 재조합 에스케리키아 속 미생물 및 이를 이용한 l-쓰레오닌의 생산방법
WO2018093033A1 (ko) L-라이신을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
WO2015156583A1 (ko) L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017568121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018101385

Country of ref document: RU

Ref document number: 2016821565

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018000074

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018000074

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180102