WO2013105802A2 - 자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법 - Google Patents

자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법 Download PDF

Info

Publication number
WO2013105802A2
WO2013105802A2 PCT/KR2013/000221 KR2013000221W WO2013105802A2 WO 2013105802 A2 WO2013105802 A2 WO 2013105802A2 KR 2013000221 W KR2013000221 W KR 2013000221W WO 2013105802 A2 WO2013105802 A2 WO 2013105802A2
Authority
WO
WIPO (PCT)
Prior art keywords
lysine
xylose
xylab
pcj7
corynebacterium
Prior art date
Application number
PCT/KR2013/000221
Other languages
English (en)
French (fr)
Other versions
WO2013105802A3 (ko
Inventor
나소연
허란
김창겸
이광호
문준옥
이경한
성진석
김형준
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112014017088-6A priority Critical patent/BR112014017088B1/pt
Priority to DK13736186.1T priority patent/DK2803722T3/en
Priority to EP13736186.1A priority patent/EP2803722B1/en
Priority to RU2014130234/10A priority patent/RU2584593C2/ru
Priority to JP2014552129A priority patent/JP5945336B2/ja
Priority to US14/371,653 priority patent/US9200300B2/en
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to CN201380013346.9A priority patent/CN104245921B/zh
Priority to ES13736186.1T priority patent/ES2654809T3/es
Priority to PL13736186T priority patent/PL2803722T3/pl
Publication of WO2013105802A2 publication Critical patent/WO2013105802A2/ko
Publication of WO2013105802A3 publication Critical patent/WO2013105802A3/ko
Priority to US14/923,825 priority patent/US9399784B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • C12N9/92Glucose isomerase (5.3.1.5; 5.3.1.9; 5.3.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01017Xylulokinase (2.7.1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • C12Y503/01005Xylose isomerase (5.3.1.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a microorganism of the genus Corynebacterium endowed with xylose capacity and a method for producing L-lysine using the same.
  • hexose such as glucose, fructose and sucrose
  • Crops are mainly used as feedstocks to obtain this carbon source, but their costs are high and they have more monetary value as food.
  • cellulosic biomass including agricultural residues, waste paper, industrial wastes, etc. has been attracting attention as a sugar feedstock for an ideal fermentation having an inexpensive and rich supply quantity.
  • xylose is the second most abundant wood-based carbohydrate in the natural world, a representative material of the cellulosic biomass, using a method of producing a useful material from industrial microorganisms using it.
  • xylosidase an enzyme that hydrolyzes the xylose glycoside xyloside in a medium containing a mixture of glucose and xylose pentose sugar.
  • a production method of L-amino acid is known which cultures a strain of genus Kia and recovers L-amino acid from the medium (Japanese Patent No. 4665567).
  • Corynebacterium glutamicum is known as a Gram-positive strain utilized for the production of various L-amino acids.
  • xylose is the second most abundant wood-based carbohydrate in nature, using it to produce L-amino acids such as L-lysine from Corynebacterium glutamicum would be more economical. It is expected to be possible.
  • an important gene on the metabolic pathway of xylose which is a type of pentose sugar, is not included in Corynebacterium glutamicum, it is not possible to produce L-amino acid from Corynebacterium glutamicum using xylose. There is.
  • the reporter introduced xylose isomerase (xylose) and xylulokinase (XylB) derived from Escherichia coli to Corynebacterium glutamicum. (Kawaguchi et al ., AEM 72: 3418-3428, 2006).
  • One object of the present invention is to provide a variant Corynebacterium microorganism capable of producing L-lysine using xylose.
  • L-lysine can be produced using xylose, which is the second-rich wood-based carbohydrate in nature. It can be widely used for efficient and economic production.
  • 1 is a cleavage map of the expression vector pECCG122-pcj7- xylAB (Er) of the present invention.
  • Figure 2 is a graph showing the proliferative characteristics of the transformant introduced the parent strain and the expression vector according to the carbon source contained in the medium.
  • Figure 3 is a graph showing the proliferative characteristics of the transformant is inserted into the parent strain and pcj7- xylAB (Er) chromosome according to the carbon source contained in the medium.
  • the present invention is capable of producing L-lysine using xylose, characterized in that the activity of xylose isomerase and xylulokinase derived from Erwinia carotovora is introduced.
  • xylose isomerase and xylulokinase derived from Erwinia carotovora is introduced.
  • xylose isomerase means an enzyme involved in xylose metabolism that catalyzes the isomerization of xylose to xylulose, and is intended for purposes of the present invention. It may be an enzyme derived from Caroto Bora.
  • the XylA is xylois isomerase derived from Erwinia carotobora, and the activity of the enzyme is associated with the activity of xyllinokinase derived from Erwinia carotobora derived from Corynebacterium microorganisms without the activity of the enzyme.
  • Sequences that can be introduced and endowed with xylose availability can be included without limitation.
  • a sequence having an activity equivalent to the above sequence, even if it is not derived from Erwinia carotobora is included in the scope of the present invention.
  • amino acids may include amino acid sequences substituted, deleted, inserted, added or inverted.
  • homology refers to an identity between two different amino acid sequences or nucleotide sequences, which is a BLAST that calculates parameters such as score, identity, similarity, and the like. It can be determined by methods well known to those skilled in the art using 2.0, but is not particularly limited thereto.
  • xylulokinase refers to an enzyme involved in xylose metabolism that catalyzes the reaction of xylulose to generate xylul-5-phosphate, and for the purposes of the present invention, Erwinia carotobora. May be an enzyme of origin.
  • XylB is a xylolokinase derived from Erwinia carotobora, and the activity of the enzyme is introduced together with the activity of xylose isomerase derived from Erwinia carotobora from the Corynebacterium microorganism without the activity of the enzyme. Sequences that can be endowed with xylose capacity can be included without limitation. In addition, it is apparent that a sequence having an activity equivalent to the above sequence, even if it is not derived from Erwinia carotobora, is included in the scope of the present invention.
  • Amino acid sequences having the same identity can be included, and substitution, deletion, insertion, addition, or inversion of the amino acid is naturally occurring in the microorganism containing the activity of the XylB. It may also include the resulting mutant sequences or artificial variant sequences.
  • XylA xylose isomerase
  • the gene comprises the nucleotide sequence of SEQ ID NO: 3, or comprises a nucleotide sequence capable of hybridizing under "strict conditions" with a probe derived from the nucleotide sequence of SEQ ID NO: 3, or the nucleotide sequence of SEQ ID NO:
  • One or more nucleotides at one or more positions of may include a nucleotide sequence substituted, deleted, inserted or added, so long as it can express XylA whose activity is maintained or enhanced, Relative to at least 80%, preferably at least 90%, more preferably at least 95%, particularly preferably at least 97%, and may be substituted with codons that are easy to use in host cells.
  • the nucleotide sequence may be included, the N terminus or C terminus may be extended or deleted, and the start codon may be changed to control the expression level. It is not.
  • XylB xylulokinase
  • the gene comprises a nucleotide sequence of SEQ ID NO: 4, or a base sequence that can hybridize under "strict conditions" with a probe derived from the nucleotide sequence of SEQ ID NO: 4, or the nucleotide sequence of SEQ ID NO: 4
  • One or a plurality of nucleotides at one or more positions of may include a nucleotide sequence substituted, deleted, inserted or added, so long as it can express XylB whose activity is maintained or enhanced, Relative to at least 80%, preferably at least 90%, more preferably at least 95%, particularly preferably at least 97%, and may be substituted with codons that are easy to use in host cells.
  • the nucleotide sequence may be included, the N terminus or C terminus may be extended or deleted, and the start codon may be changed to control the expression level. It is not.
  • stringent conditions means conditions that enable specific hybridization between polynucleotides, for example, hybridization buffer (3.5 x SSC (0.15 M NaCl / 0.15 M citric acid) at 65 ° C. Sodium, pH 7.0), 0.02% Ficoll, 0.02% polyvinylpyrrolidone, 0.02% bovine serum albumin, 0.5% SDS, 2 mM EDTA, 2.5 mM NaH 2 PO 4 , pH7.0), and the like. And details are already known in the art (Molecular Cloning (A Laboratory Manual, J.
  • the introduction of the activity of XylA and XylB to the Corynebacterium microorganism can be carried out by a variety of methods well known in the art, for example, a polynucleotide containing a base sequence encoding XylA and XylB A method of inserting a nucleotide into a chromosome, a method of introducing the polynucleotide into a vector system and introducing it into a microorganism, XylA and XylB having a promoter exhibiting improved activity upstream of a nucleotide sequence encoding XylA and XylB or having a promoter mutated.
  • a method of introducing a nucleotide sequence a method of introducing a variant of a nucleotide sequence encoding XylA and XylB, and the like, and more preferably, when introducing the nucleotide sequence encoding the XylA and XylB, a promoter for controlling its expression As a pcj7 promoter (Korean Patent No. 10-0620092) derived from Corynebacterium ammonia genes can be used as There.
  • a promoter for controlling its expression As a pcj7 promoter (Korean Patent No. 10-0620092) derived from Corynebacterium ammonia genes can be used as There.
  • a promoter for controlling its expression As a pcj7 promoter (Korean Patent No. 10-0620092) derived from Corynebacterium ammonia genes can be used as There.
  • a promoter for controlling its expression As a pcj7 promoter (K
  • the term "vector” refers to a DNA product containing a nucleotide sequence of a polynucleotide encoding the target protein operably linked to a suitable regulatory sequence to allow expression of the target protein in a suitable host.
  • the regulatory sequence includes a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence regulating termination of transcription and translation.
  • the vector used in the present invention is not particularly limited as long as it is replicable in the host, and any vector known in the art may be used.
  • Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages.
  • pWE15, M13, ⁇ MBL3, ⁇ MBL4, ⁇ IXII, ⁇ ASHII, ⁇ APII, ⁇ t10, ⁇ t11, Charon4A, Charon21A, etc. can be used as a phage vector or cosmid vector
  • pBR, pUC, and pBluescriptII systems are used as plasmid vectors.
  • pGEM-based, pTZ-based, pCL-based and pET-based and the like can be used.
  • the vector usable in the present invention is not particularly limited and known expression vectors can be used.
  • pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vector and the like can be used.
  • the vector used in the present invention may be a vector capable of transforming the host cell to express the gene by inserting the gene into the chromosome by inserting the gene into the host cell.
  • E. coli and coryneform bacteria are used.
  • a shuttle vector pECCG122 vector capable of self-replicating in both directions may be exemplified, but is not particularly limited thereto.
  • the term "transformation” refers to a series of operations for introducing a vector containing a polynucleotide encoding a target protein into a host cell so that the protein encoded by the polynucleotide can be expressed in the host cell.
  • the polynucleotide to be introduced into the host cell may be in any form as long as it can be introduced into and expressed in the host cell.
  • the polynucleotide is a structure that includes all elements necessary for self-expression (promoter, transcription termination signal, ribosomal binding site, translation termination signal, etc. operably linked to the polynucleotide).
  • the expression cassette may be introduced into a host cell in the form of an expression cassette, which may be in the form of an expression vector capable of self-replicating.
  • the polynucleotide may be introduced into the host cell in its own form and operably linked with a sequence required for expression in the host cell.
  • the host cell includes any prokaryotic microorganism as long as it can produce L-lysine.
  • microorganisms of the genus Providencia, Corynebacterium and Brevibacterium can be used as host cells.
  • it is a microorganism belonging to the genus Corynebacterium, more preferably Corynebacterium glutamicum.
  • Microorganisms of the genus Corynebacterium that can have L-lysine production capacity may be mutants resistant to L-lysine analogs.
  • L-lysine analogs inhibit the growth of Coryne microorganisms, but this inhibition is completely or partially released when L-lysine coexists in the medium.
  • Examples of the L-lysine analogue include oxa L-lysine, L-lysine hydroxamate, S- (2-aminoethyl) -L-cysteine (AEC), ⁇ -methyl L-lysine, ⁇ -chlorocaprolactam, and the like. Although it is possible, it is not limited to these.
  • Mutants that are resistant to these L-lysine analogs can be obtained by treating coryne microorganisms with conventional artificial mutants.
  • genetic manipulation for inducing L-lysine producing bacteria it is possible to achieve the purpose by improving the expression of one or more genes encoding the L-lysine biosynthetic enzyme.
  • genes include: dihydrodipicolinic acid synthase gene (dapA), asparto kinase gene (lysC), dihydrodipicolinic acid reductase gene (dapB), diaminopimelic acid decarboxylase gene (lysA), Diaminopimelic acid dehydrogenase gene (ddh), phosphoenolpyruvic acid carboxylase gene (ppc), aspartate semialdehyde dehydrogenase gene (asd) and aspartase gene (aspA).
  • dapA dihydrodipicolinic acid synthase gene
  • lysC asparto kinase gene
  • dapB dihydrodipicolinic acid reductase gene
  • lysA diaminopimelic acid decarboxylase gene
  • ppc phosphoenolpyruvic acid carboxylase gene
  • L-lysine refers to a kind of L-amino acid, which is an essential amino acid that is not synthesized in the body as one of the basic ⁇ -amino acids, and the chemical formula is NH 2 (CH 2 ) 4 CH (NH 2 ) COOH.
  • the L-lysine is biosynthesized from oxal acetic acid via L-lysine biosynthesis pathway, and NADPH dependent reductase catalyzes the intermediate process for L-lysine biosynthesis. In one molecule of L-lysine biosynthesis, three molecules of NADPH are consumed directly by sugar enzymes and one molecule of NADPH is indirectly used.
  • corynebacterium microorganism capable of producing L-lysine means that a gene encoding an enzyme that is involved in xylose metabolism that does not exist in the corynebacterium microorganism is introduced into a host cell, thereby Corynebacterium microorganisms mutated to produce L-lysine from rose, the Corynebacterium microorganisms are not particularly limited, but may be Corynebacterium glutamicum, the xylose Enzymes involved in metabolism are not particularly limited, but may be xylA and xylB.
  • the host cell may be a corynebacterium microorganism with improved expression of one or more genes of the gene encoding the L- lysine biosynthetic enzyme, genes encoding the L- lysine biosynthetic enzyme is not particularly limited thereto.
  • Dihydrodipicolinic acid synthase gene (dapA), asparto kinase gene (lysC), dihydrodipicolinic acid reductase gene (dapB), diaminopimelic acid decarboxylase gene (lysA), diaminopi Methalic acid dehydrogenase gene (ddh), phosphoenolpyruvic acid carboxylase gene (ppc), aspartate semialdehyde dehydrogenase gene (asd), aspartase gene (aspA) and the like.
  • the host cell may be a mutant strain that is resistant to L-lysine analogues, which may be obtained by mutating Corynebacterium microorganisms.
  • the L-lysine analog inhibits the growth of Coryne microorganisms, but this inhibition is completely or partially released when L-lysine coexists in the medium.
  • the L-lysine analogue is not particularly limited, but is preferably oxa L-lysine, L-lysine hydroxamate, S- (2-aminoethyl) -L-cysteine (AEC), ⁇ -methylL-lysine, ⁇ -chlorocaprolactam and the like.
  • the activity of known enzymes related to the biosynthesis of L-lysine can be further regulated.
  • the present invention further provides asd, dapB, and ddh encoding the enzyme to modulate the activity of aspartate semialdehyde dehydrogenase, dihydropicolinate reductase and diaminopimelate dehydrogenase enzyme. Genes can be overexpressed to increase L-lysine production.
  • the inventors of the present invention are ECA0097 ( xylA ) derived from Erwinia carotovora SCRI1043 as a gene encoding XylA and XylB suitable for introduction into Corynebacterium microorganisms (SEQ ID NO: 1). ) And ECA0096 ( xylB ) (SEQ ID NO: 2) (Example 1), and the expression vector pECCG122 expressing xylA and xylB (hereinafter xylAB (Er)) simultaneously by cloning the genes encoding the selected xylA and xylB .
  • pECCG122-pcj7- xylAB (Er) was prepared.
  • the expression vector was KCCM11016P in Corynebacterium glutamicum (the microorganism was published as KFCC10881 and re-deposited to an international depository organization under the Budapest Treaty to receive KCCM11016P. Korea Patent No. 10-0159812, No. 10- 0397322) to prepare a transformant overexpressing xylAB (Er), it was confirmed that the transformant can be grown using xylose as a carbon source (Fig.
  • xylAB coli-derived xylAB
  • Ec xylAB
  • Er xylAB
  • KCCM11016P-pcj7- xylAB (Ec) introduced the xylAB (Ec) to KCCM11016P comparing the production of xylene capacity using rose and L- lysine-producing property with KCCM11016P-pcj7- xylAB (Er) in order to As a result, it was confirmed that the fermentation productivity of L-lysine was improved by significantly increasing the xylose consumption rate of KCCM11016P-pcj7- xylAB (Er) compared to KCCM11016P-pcj7- xylAB (Ec) (Table 3).
  • KFCC10750 the microorganism was published as KFCC10750 and re-deposited to an international depository under the Budapest Treaty, and was granted KCCM11347P.
  • a transformant of KFCC10750-pcj7- xylAB (Er) was prepared and confirmed that the transformant can produce L-lysine using glucose or xylose, respectively or simultaneously (Table 5). ).
  • the present inventors have been found to be able to proliferate using xylose in the medium, as well as to produce L-lysine using xylose and glucose in the medium, "CA01-2195". It was deposited in the Korean Culture Center of Microorganisms (KCCM) in Hongje 1-dong, Seodaemun-gu, Seoul under the Treaty of Budapest under the accession number KCCM11242P. That is, the deposit has been deposited with the International Depositary Organization under the Budapest Treaty.
  • KCCM Korean Culture Center of Microorganisms
  • the present invention is (i) culturing by culturing a modified Corynebacterium microorganism capable of producing L- lysine using the xylose of the present invention in a culture medium containing xylose as a carbon source Obtaining water; And, (ii) provides a method for producing L- lysine comprising recovering L- lysine from the culture.
  • culture in the present invention means to grow microorganisms under environmental conditions that are appropriately artificially controlled.
  • the method of culturing Corynebacterium sp. Microorganisms may be performed using a method well known in the art. Specifically, the culture may be continuously cultured in a batch process or in a fed batch or repeated fed batch process, but is not limited thereto.
  • the medium used for culturing should meet the requirements of the particular strain in an appropriate manner while controlling the temperature, pH, etc. under aerobic conditions in a conventional medium containing a suitable carbon source, nitrogen source, amino acids, vitamins and the like.
  • Culture media for Corynebacteria strains are known (eg, Manual of Methods for General Bacteriology. American Society for Bacteriology.Washington D.C., USA, 1981).
  • Carbon sources that can be used include mixed sugars of glucose and xylose as the main carbon source, and sugars and carbohydrates such as sucrose, lactose, fructose, maltose, starch and cellulose, soybean oil, sunflower oil, castor oil, coconut Oils such as oils and fats, fatty acids such as palmitic acid, stearic acid, linoleic acid, alcohols such as glycerol, ethanol, organic acids such as acetic acid. These materials can be used individually or as a mixture.
  • sugars and carbohydrates such as sucrose, lactose, fructose, maltose, starch and cellulose, soybean oil, sunflower oil, castor oil, coconut Oils such as oils and fats, fatty acids such as palmitic acid, stearic acid, linoleic acid, alcohols such as glycerol, ethanol, organic acids such as acetic acid.
  • sugars and carbohydrates such as sucrose, lactose, fructose, maltos
  • Nitrogen sources that can be used include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its degradation product, skim soy cake or its degradation product Can be. These nitrogen sources may be used alone or in combination.
  • the medium may include, as personnel, monopotassium phosphate, dipotassium phosphate and corresponding sodium-containing salts.
  • Personnel that may be used include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts.
  • potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts.
  • sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate and calcium carbonate may be used.
  • essential growth substances such as amino acids and vitamins can be used.
  • suitable precursors to the culture medium may be used.
  • the raw materials described above may be added batchwise, fed-batch or continuous in a suitable manner to the culture in the culture process, but is not particularly limited thereto.
  • Basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or acid compounds such as phosphoric acid or sulfuric acid can be used in an appropriate manner to adjust the pH of the culture.
  • antifoaming agents such as fatty acid polyglycol esters can be used to inhibit bubble generation.
  • the temperature of the culture is usually 27 ° C to 37 ° C, preferably 30 ° C to 35 ° C.
  • Incubation is continued until the maximum amount of L-lysine is obtained. For this purpose it is usually achieved in 10 to 100 hours.
  • L-lysine may be excreted in culture medium or contained in cells.
  • the step of recovering L-lysine from the culture can be carried out by methods known in the art.
  • the known L-lysine recovery method is not particularly limited, but centrifugation, filtration, extraction, spraying, drying, thickening, precipitation, crystallization, electrophoresis, fractional dissolution (e.g. ammonium sulfate precipitation), chromatography Preference is given to using methods such as (eg ion exchange, affinity, hydrophobicity and size exclusion).
  • ECA0097 ( xylA ) (amino acid: SEQ ID NO: 1, nucleic acid: SEQ ID NO: 3) and ECA0096 ( xylB ) (amino acid: SEQ ID NO: 2, nucleic acid: SEQ ID NO: 4) from Erwinia carotovora SCRI1043 It was selected as a foreign gene for producing microorganisms of the genus mutated Corynebacterium.
  • Example 2 derived from Erwinia carotobora xylAB Expression vector production
  • XylAB (Er) and XylB derived from Erwinia carotobora selected in Example 1 are linked side by side.
  • XylAB (Er) and surrounding sequencing information were obtained from NIH GenBank and amplified xylAB (Er) derived from Erwinia carotobora based on the obtained sequencing. Primers were synthesized.
  • PCR was carried out using SEQ ID NO: 5 and SEQ ID NO: 6 with chromosomal DNA of the Erwinia Cartoboro SCRI1043 strain as a template to secure xylAB (Er) fragments.
  • PfuUltra TM high-reliability DNA polymerase (Stratagene) was used as polymerase, and PCR amplification conditions were performed at 94 ° C. for 5 minutes, followed by 94 ° C. 30 seconds denaturation, 56 ° C. 30 seconds annealing, and 72 ° C. 3-minute polymerization. After repeating, polymerization was performed at 72 ° C. for 7 minutes.
  • a 3122 bp gene fragment containing 2844 bp of xylAB (Er) (SEQ ID NO: 17) was obtained (SEQ ID NO: 18).
  • PCR was performed using SEQ ID NO: 15 and SEQ ID NO: 16 using the Corynebacterium ammonia genes CJHB100 (KR0620092) genomic DNA as a template. .
  • PfuUltra TM high-reliability DNA polymerase (Stratagene) was used as a polymerase, and PCR amplification conditions were performed at 94 ° C for 5 minutes, followed by 94 ° C 30 seconds denaturation, 56 ° C 30 seconds annealing, and 72 ° C 1 minute polymerization. After repeating, polymerization was performed at 72 ° C. for 7 minutes. As a result, a polynucleotide of 318 bp could be obtained (SEQ ID NO: 14).
  • the pECCG122-pcj7- xylAB (Er) vector was obtained by cloning xylAB (Er) using NdeI and SpeI ( 1). 1 is a cleavage map of the expression vector pECCG122-pcj7- xylAB (Er) of the present invention.
  • Example 3 Derived from Erwinia Carotovora xylAB Development of L-Lysine Producing Strains and Confirmation of Xylose Utilization
  • Each expression vector pECCG122-pcj7- xylAB (Er) obtained in Example 2 was introduced into Corynebacterium glutamicum KCCM11016P (Korean Patent Nos. 10-0159812, 10-0397322) to xylAB (Er).
  • Corynebacterium glutamicum CA01-2195 was prepared as a transformant.
  • the growth characteristics of the strains were compared by culturing in a medium containing glucose or xylose as a carbon source, and in a production medium containing glucose or xylose as a carbon source. Cultures were compared to L-lysine production characteristics.
  • 25 ml seed medium [carbon source (glucose or xylose) 10 g / l, peptone 10 g / l, yeast extract 10 g / l, urea 5 g / l, KH 2 PO 4 4 g / l, K 2 HPO 4 8 g / l, MgSO 4 7H 2 O 0.5 g / l, biotin 100 ⁇ g / l, thiamine HCl 1 mg / l, pH 7.0], and the strains were inoculated respectively, While incubating for a time, the absorbance of the culture (OD600) was measured and compared with each other (Fig. 2).
  • Figure 2 is a graph showing the proliferation characteristics of KCCM11016P and CA01-2195 according to the carbon source included in the medium, ( ⁇ ) represents KCCM11016P cultured in a medium containing glucose, ( ⁇ ) in a medium containing xylose KCCM11016P is incubated, ( ⁇ ) represents CA01-2195 incubated in a medium containing glucose, and (x) represents CA01-2195 incubated in a medium containing xylose.
  • KCCM11016P and CA01-2195 showed no difference in proliferation characteristics in the seed medium using glucose as a carbon source, but in the seed medium using xylose as a carbon source, KCCM11016P hardly proliferated while CA01-2195 was constant. It was confirmed that it can proliferate to a level. Therefore, it can be seen that CA01-2195 can be grown by using xylose included in the medium as a single carbon source.
  • 24 ml production medium [carbon source, (NH 4 ) 2 SO 4 40 g / L, soy protein 2.5 g / L, corn soaked 5 g / l, urea 3 g / l, KH 2 PO 4 1 g / l, MgSO 4 7H 2 O 0.5 g / l, biotin 100 ⁇ g / l, thiamine hydrochloride 1 mg / l, CaCO 3 30 g / l, pH 7.0] was inoculated with 1 ml of the above-mentioned seed culture, and incubated for 72 hours at 35 ° C.
  • carbon source (NH 4 ) 2 SO 4 40 g / L, soy protein 2.5 g / L, corn soaked 5 g / l, urea 3 g / l, KH 2 PO 4 1 g / l, MgSO 4 7H 2 O 0.5 g / l, biotin 100 ⁇ g / l
  • the carbon source was set to 100 g / l glucose, 50 g / l glucose 50 g / l and 70 g / l glucose 30 g / l. Then, the concentration of L-lysine, residual xylose concentration and residual glucose concentration in each culture were measured and compared, respectively (Table 1).
  • Example 4 Derived from Erwinia Carotovora xylAB Recombinant vector for chromosome insertion (pDZTn-pcj7- xylAB (Er)) and E. coli derived xylAB Recombinant vector for chromosome insertion (pDZTn-pcj7- xylAB (Ec)) production
  • a recombinant vector pDZTn-pcj7- xylAB (Er) for chromosome insertion was prepared .
  • PCR was performed by synthesizing SEQ ID NO: 7 and SEQ ID NO: 8 using pECCG122-pcj7- xylAB (Er) obtained in Example 2 as a template.
  • PfuUltra TM high-reliability DNA polymerase (Stratagene) was used as polymerase, and PCR amplification conditions were performed at 94 ° C. for 5 minutes, followed by 94 ° C.
  • Ec E. coli-derived xylAB
  • a recombinant vector pDZTn-pcj7- xylAB (Ec) for chromosome insertion was prepared .
  • PCR was performed using SEQ ID NO: 7 and SEQ ID NO: 10 using the pcj7 fragment obtained in Example 2 as a template to secure the pcj7 promoter.
  • PfuUltra TM high-reliability DNA polymerase (Stratagene) was used as a polymerase, and PCR amplification conditions were performed at 94 ° C for 5 minutes, followed by 94 ° C 30 seconds denaturation, 56 ° C 30 seconds annealing, and 72 ° C 1 minute polymerization. After repeating, polymerization was performed at 72 ° C. for 7 minutes. As a result, a gene fragment of 318 bp was obtained. PCR was performed using E. coli K12 chromosome DNA as a template to secure xylAB (Ec) fragments using SEQ ID NO: 11 and SEQ ID NO: 12.
  • PfuUltra TM high-reliability DNA polymerase (Stratagene) was used as polymerase, and PCR amplification conditions were performed at 94 ° C. for 5 minutes, followed by 94 ° C. 30 seconds denaturation, 56 ° C. 30 seconds annealing, and 72 ° C. 3-minute polymerization. After repeating, polymerization was performed at 72 ° C. for 7 minutes. As a result, an xylAB (Ec) fragment of 3145bp could be obtained (SEQ ID NO: 13).
  • the amplified product of the pcj7 region 318bp and xylAB (Ec) 3145bp was cloned into the pDZTn vector treated with the restriction enzyme SpeI using the BD In-Fusion kit to finally obtain a pDZTn-pcj7- xylAB (Ec) recombinant vector. .
  • Figure 3 is a graph showing the growth characteristics of the strains according to the carbon source contained in the medium,
  • ( ⁇ ) represents KCCM11016P cultured in a medium containing glucose
  • ( ⁇ ) is KCCM11016P cultured in a medium containing xylose
  • ( ⁇ ) represents KCCM11016P-pcj7- xylAB (Er) cultivated in a medium containing glucose
  • (x) represents KCCM11016P-pcj7- xylAB (Er) cultivated in a medium containing xylose.
  • xylAB (Ec) In order to compare the effect of xylAB (Ec) with the introduction of E. coli-derived xylAB (Ec), and xylAB (Ec) with the introduction of xylAB (Er) derived from Erwinia carotobora of the present invention, xylAB (Ec) ) was prepared, and the prepared KCCM11016P-pcj7- xylAB (Er) and xylose availability and L-lysine production characteristics were compared.
  • pDZTn-pcj7- xylAB (Ec) recombinant vector prepared in Example 4 was transformed to KCCM11016P to prepare a strain into which xylAB (Ec) was introduced, and subjected to a second crossover process with a pcj7 promoter inside the transposon gene on the chromosome.
  • a is xylAB (Ec) connected operably introduced strain KCCM11016P-pcj7- obtain a xylAB (Ec).
  • KCCM11016P above In other L-lysine producing strains xylAB PDZTn-pcj7- to see if the same effect of (Er) introduction is seen.
  • xylAB (Er) was introduced into KCCM 10770P (Korean Patent No. 10-0924065) deposited in a depository institution under the Budapest Treaty, an L-lysine producing strain. After introduction using the electropulse method, a second crossover process was performed to replace one copy of the pcj7 promoter between transposon genes on the chromosome.
  • xylAB (Er) introduced strain was obtained, Corynebacterium glutamicum KCCM10770P-pcj7- xylAB It was named (Er).
  • KCCM11016P above PDZTn-pcj7- in order to confirm that other L-lysine producing strains show the same effect of xylAB (Er) introduction.
  • xylAB (Er) was introduced into L-lysine producing strain KFCC10750 (Korean Patent No. 10-0073610). After introduction using the electropulse method, a second crossover process was performed to replace one copy of the pcj7 promoter between transposon genes on the chromosome.
  • xylAB (Er) was introduced strain, which was corynebacterium glutamicum KFCC10750-pcj7- xylAB It was named (Er).
  • Corynebacterium glutamicum prepared in the same manner as in Example 3 KFCC10750 and invention strain Corynebacterium glutamicum KFCC10750-pcj7- xylAB Xylose availability and L-lysine production of (Er) were measured (Table 5).
  • KCCM11016P above PDZTn-pcj7- in order to confirm that other L-lysine producing strains show the same effect of xylAB (Er) introduction.
  • xylAB (Er) was introduced into L-lysine producing strain CJ3P.
  • CJ3P strain has L-lysine production ability by introducing mutations of P458S, V59A, and T311I into three pyc, hom, and lysC genes, respectively, based on the technology reported by Binder (Genome Biology 2102, 13: R40). Corynebacterium glutamicum strain.
  • Corynebacterium microorganisms expressing the xylAB (Er) can not only proliferate with xylose in the medium, but also produce L-lysine using xylose and glucose in the medium. I could see that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 L-라이신의 생산방법에 관한 것으로, 구체적으로 본 발명은 자일로즈 합성효소인 자일로즈 이소머라제 및 자일룰로키나제를 코딩하는 유전자가 도입되어 상기 효소를 발현하도록 변이된 코리네박테리움 속 미생물 및 상기 변이된 코리네박테리움 속 미생물을 자일로즈를 탄소원으로 사용하여 배양하고, 상기 배양물로부터 L-라이신을 회수하는 단계를 포함하는 L-라이신의 생산방법에 관한 것이다.

Description

자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 L-라이신의 생산방법
본 발명은 자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 L-라이신의 생산방법에 관한 것이다.
산업용 미생물들은 탄소원으로 글루코즈, 프록토즈, 수크로즈와 같은 육탄당을 사용하고 있다. 이 탄소원을 얻기 위해 주로 농작물을 공급 원료로써 사용하고 있지만 이들의 원가는 고가이며, 식품으로써 더 금전적 가치를 띄고 있다. 최근 전통적 공급 원료였던 농작물 대신, 농산 잔류물이나 폐지, 산업폐기물 등을 포함하는 셀룰로직 바이오매스(cellulosic biomass)가 저렴하고, 공급양이 풍부한 장점을 가진 이상적인 발효를 위한 당원료로서 주목받고 있다.
그 중, 자일로즈는 자연계에서 두 번째로 풍부한 목질계 탄수화물로, 셀룰로직 바이오매스의 대표적 물질로서, 이를 이용하여 산업용 미생물로부터 유용한 물질을 생산하는 방법이 사용되고 있다. 예를 들어, 글루코즈 및 자일로즈를 포함하는 오탄당의 혼합물을 함유하는 배지에서 자일로즈의 배당체인 자일로시드를 가수분해하는 효소(xylosidase)를 코딩하는 xylABFGHR 유전자군의 발현량이 증가하도록 변이된 에셰리키아 속 균주를 배양하고, 상기 배지로부터 L-아미노산을 회수하는, L-아미노산의 생산 방법이 알려져 있다(일본등록특허 제4665567호).
한편, 코리네형 세균 중 하나인 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)은 다양한 L-아미노산의 생산에 활용되는 그람양성의 균주로 알려져 있다. 상술한 바와 같이, 자일로즈는 자연계에서 두번째로 풍부한 목질계 탄수화물이기 때문에, 이를 이용하여 코리네박테리움 글루타미쿰으로부터 L-라이신과 같은 L-아미노산을 생산한다면, 더욱 경제적으로 L-아미노산을 생산할 수 있을 것으로 예상되고 있다. 그러나, 상기 오탄당의 일종인 자일로즈의 대사 경로상의 중요한 유전자가 코리네박테리움 글루타미쿰에 포함되어 있지 않아, 자일로즈를 사용하여 코리네박테리움 글루타미쿰으로부터 L-아미노산을 생산할 수 없다는 문제가 있다. 이를 해결하기 위해 코리네박테리움 글루타미쿰에 에셰리키아 콜라이 유래의 자일로즈 이소머라제(xylose isomerase, XylA) 및 자일룰로키나제(xylulokinase, XylB)를 도입하여 자일로즈 이용능을 부여한 보고가 있다(Kawaguchi et al.,AEM 72:3418-3428, 2006).
본 발명자들은 보다 경제적으로 L-아미노산을 생산하기 위하여 예의 노력한 결과, 어위니아 카로토보라(Erwinia carotovora) 유래의 XylA 및 XylB를 코딩하는 유전자들을 코리네박테리움 글루타미쿰에 도입한 경우 당 변이주가 자일로즈를 이용하여 L-라이신을 생산할 수 있음은 물론, 기 보고된 에셰리키아 콜라이 유래의 XylA 및 XylB가 도입된 코리네형 미생물보다 자일로즈 이용능이 향상됨을 확인함으로써 본 발명을 완성하였다.
본 발명의 하나의 목적은 자일로즈를 이용하여 L-라이신을 생산할 수 있는 변이형 코리네박테리움속 미생물을 제공하는 것이다.
본 발명의 다른 목적은 상기 변이형 코리네박테리움속 미생물을 이용하여 L-라이신을 생산하는 방법을 제공하는 것이다.
본 발명의 자일로즈를 이용하여 L-라이신을 생산할 수 있는 코리네박테리움속 미생물을 이용하면, 자연계에서 두번째로 풍부한 목질계 탄수화물인 자일로즈를 이용하여 L-라이신을 생산할 수 있으므로, L-라이신의 효율적이고 경제적인 생산에 널리 활용될 수 있을 것이다.
도 1은 본 발명의 발현벡터 pECCG122-pcj7-xylAB(Er)의 개열지도이다.
도 2는 배지에 포함된 탄소원에 따른 모균주와 발현벡터가 도입된 형질전환체의 증식특성을 나타내는 그래프이다.
도 3은 배지에 포함된 탄소원에 따른 모균주와 pcj7-xylAB(Er)이 염색체상에 삽입된 형질전환체의 증식 특성을 나타내는 그래프이다.
하나의 양태로, 본 발명은 어위니아 카로토보라(Erwinia carotovora) 유래의 자일로즈 이소머라제 및 자일룰로키나제의 활성이 도입된 것을 특징으로 하는, 자일로즈를 이용하여 L-라이신을 생산할 수 있는 변이형 코리네박테리움속 미생물을 제공한다.
본 발명의 용어 "자일로즈 이소머라제(xylose isomerase, XylA)"란, 자일로즈에서 자일룰로즈로의 이성질화반응을 촉매하는 자일로즈 대사경로 관여 효소를 의미하며, 본 발명의 목적상 어위니아 카로토보라 유래의 효소일 수 있다.
상기 XylA는 어위니아 카로토보라 유래의 자일로즈 이소머라제로서, 상기 효소의 활성이 없는 코리네박테리움속 미생물에 상기 효소의 활성이 어위니아 카로토보라 유래의 자일룰로키나제 효소 활성과 함께 도입되어 자일로즈 이용 능이 부여될 수 있는 서열은 제한 없이 포함될 수 있다. 또한, 어위니아 카로토보라 유래가 아니라도 상기 서열과 동등한 활성을 갖는 서열도 본 발명의 범위에 포함됨은 자명하다.
그 예로, 서열번호 1의 아미노산 서열을 포함하거나 또는 상기 서열번호 1의 아미노산 서열의 보존서열을 포함하고 하나 이상의 위치에서의 1개 또는 다수개(단백질의 아미노산 잔기의 입체 구조에 있어서의 위치나 종류에 따라서 상이하지만, 구체적으로는 2 내지 20개, 바람직하게는 2 내지 10개, 보다 바람직하게는 2 내지 5개)의 아미노산이 치환, 결실, 삽입, 첨가 또는 역위된 아미노산 서열을 포함할 수 있는데, 상기 XylA의 활성을 유지 또는 강화시킬 수 있는 한, 서열번호 1의 아미노산 서열에 대하여, 80% 이상, 바람직하게는 90% 이상, 보다 바람직하게는 95% 이상, 특히 바람직하게는 97% 이상의 상동성을 갖는 아미노산 서열을 포함할 수 있고, 상기 아미노산의 치환, 결실, 삽입, 첨가 또는 역위 등에는 상기 XylA의 활성을 함유하는 미생물에서 천연적으로 생기는 돌연변이 서열 또는 인위적인 변이 서열까지도 포함할 수 있다.
본 발명의 용어 "상동성"이란, 서로 다른 두 아미노산 서열 또는 염기서열 사이의 동일성을 의미하는데, 점수(score), 동일성(identity), 유사도(similarity) 등의 매개 변수(parameter)들을 계산하는 BLAST 2.0를 이용하는, 당업자에게 잘 알려진 방법으로 결정될 수 있으나, 특별히 이에 제한되지는 않는다.
본 발명의 용어 "자일룰로키나제"란, 자일룰로즈에서 자일룰로-5-인산을 생성하는 반응을 촉매하는 자일로즈 대사경로 관여 효소를 의미하며, 본 발명의 목적상 어위니아 카로토보라 유래의 효소일 수 있다.
상기 XylB는 어위니아 카로토보라 유래의 자일롤로키나제로서, 상기 효소의 활성이 없는 코리네박테리움속 미생물에 상기 효소의 활성이 어위니아 카로토보라 유래의 자일로즈 이소머라제 효소 활성과 함께 도입되어 자일로즈 이용능이 부여될 수 있는 서열은 제한 없이 포함될 수 있다. 또한, 어위니아 카로토보라 유래가 아니라도 상기 서열과 동등한 활성을 갖는 서열도 본 발명의 범위에 포함됨은 자명하다.
그 예로, 서열번호 2의 아미노산 서열을 포함하거나 또는 상기 서열번호 2의 아미노산 서열의 보존서열을 포함하고 하나 이상의 위치에서의 1개 또는 다수개(단백질의 아미노산 잔기의 입체 구조에 있어서의 위치나 종류에 따라서 상이하지만, 구체적으로는 2 내지 20개, 바람직하게는 2 내지 10개, 보다 바람직하게는 2 내지 5개)의 아미노산이 치환, 결실, 삽입, 첨가 또는 역위된 아미노산 서열을 포함할 수 있는데, 상기 XylB의 활성을 유지 또는 강화시킬 수 있는 한, 서열번호 2의 아미노산 서열에 대하여, 80% 이상, 바람직하게는 90% 이상, 보다 바람직하게는 95% 이상, 특히 바람직하게는 97% 이상의 상동성을 갖는 아미노산 서열을 포함할 수 있고, 상기 아미노산의 치환, 결실, 삽입, 첨가 또는 역위 등에는 상기 XylB의 활성을 함유하는 미생물에서 천연적으로 생기는 돌연변이 서열 또는 인위적인 변이 서열까지도 포함할 수 있다.
본 발명의 용어 "자일로즈 이소머라제(xylose isomerase, XylA)를 코딩하는 유전자"란, 상술한 XylA를 코딩하는 폴리뉴클레오티드를 의미한다.
상기 유전자는 서열번호 3의 염기서열을 포함하거나, 상기 서열번호 3의 염기서열로부터 유래된 프로브(probe)와 "엄격한 조건"에서 혼성화될 수 있는 염기서열을 포함하거나 또는 상기 서열번호 3의 염기서열의 하나 이상의 위치에서의 1개 또는 다수개의 뉴클레오티드가 치환, 결실, 삽입 또는 첨가된 염기서열을 포함할 수 있는데, 활성이 유지 또는 강화된 XylA를 발현시킬 수 있는 한, 서열번호 3의 염기서열에 대하여, 80% 이상, 바람직하게는 90% 이상, 보다 바람직하게는 95% 이상, 특히 바람직하게는 97% 이상의 상동성을 갖는 염기서열을 포함할 수 있고, 숙주세포에서 사용하기 쉬운 코돈으로 치환된 염기서열을 포함할 수도 있으며, N 말단 또는 C 말단이 연장 또는 삭제될 수 있고, 발현량 조절을 위해 개시코돈이 변경될 수 있기 때문에, 특별히 이에 제한되지는 않는다.
본 발명의 용어 "자일룰로키나제(xylulokinase, XylB)를 코딩하는 유전자"란, 상술한 XylB를 코딩하는 폴리뉴클레오티드를 의미한다.
상기 유전자는 서열번호 4의 염기서열을 포함하거나, 상기 서열번호 4의 염기서열로부터 유래된 프로브(probe)와 "엄격한 조건"에서 혼성화될 수 있는 염기서열을 포함하거나 또는 상기 서열번호 4의 염기서열의 하나 이상의 위치에서의 1개 또는 다수개의 뉴클레오티드가 치환, 결실, 삽입 또는 첨가된 염기서열을 포함할 수 있는데, 활성이 유지 또는 강화된 XylB를 발현시킬 수 있는 한, 서열번호 4의 염기서열에 대하여, 80% 이상, 바람직하게는 90% 이상, 보다 바람직하게는 95% 이상, 특히 바람직하게는 97% 이상의 상동성을 갖는 염기서열을 포함할 수 있고, 숙주세포에서 사용하기 쉬운 코돈으로 치환된 염기서열을 포함할 수도 있으며, N 말단 또는 C 말단이 연장 또는 삭제될 수 있고, 발현량 조절을 위해 개시코돈이 변경될 수 있기 때문에, 특별히 이에 제한되지는 않는다.
본 발명의 용어 "엄격한 조건(stringent conditions)"이란, 폴리뉴클레오타이드 간의 특이적 혼성화를 가능하게 하는 조건을 의미하는데, 예를 들어, 65 ℃의 혼성화 완충액(3.5 × SSC(0.15M NaCl/0.15M 시트르산나트륨, pH7.0), 0.02% Ficoll, 0.02% 폴리비닐피롤리돈, 0.02% 소 혈청 알부민, 0.5% SDS, 2mM EDTA, 2.5mM NaH2PO4, pH7.0)에서의 혼성화 등이 될 수 있고, 구체적인 사항은 당업계에 이미 공지되어 있다(Molecular Cloning (A Laboratory Manual, J. Sambrook et al., Editors, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989) 또는 Current Protocols in Molecular Biology (F.M. Ausubel et al., Editors, John Wiley & Sons, Inc., New York)).
상술한 바와 같이, 코리네박테리움속 미생물에 XylA 및 XylB의 활성을 도입하는 것은 당해 분야에서 잘 알려진 다양한 방법으로 수행될 수 있는데, 예를 들어, XylA 및 XylB를 코딩하는 염기서열을 포함하는 폴리뉴클레오티드를 염색체에 삽입하는 방법, 상기 폴리뉴클레오티드를 벡터 시스템에 도입하여 미생물에 도입하는 방법, XylA 및 XylB를 코딩하는 염기서열의 상류에 개량된 활성을 나타내는 프로모터를 도입하거나 프로모터가 변이된 XylA 및 XylB를 도입하는 방법, XylA 및 XylB를 코딩하는 염기서열의 변이체를 도입하는 방법 등을 사용할 수 있고, 보다 바람직하게는 상기 XylA 및 XylB를 코딩하는 염기서열을 도입할 경우, 이의 발현을 조절하기 위한 프로모터로서 코리네박테리움 암모니아게네스 유래의 pcj7 프로모터(한국등록특허 제 10-0620092호)를 사용할 수 있다. 본 발명의 일 실시예에서는 발현 벡터의 도입, 또는 염색체에 삽입하는 등의 방법으로 모균주에 존재하지 않았던 상기 외래 유전자의 활성이 나타날 경우 자일로즈 이용능을 갖게 됨을 확인하였다.
본 발명의 용어 "벡터"란, 적합한 숙주 내에서 목적 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 암호화하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 생산물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함한다. 벡터는 적당한 숙주 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.
본 발명에서 사용되는 벡터는 숙주 중에서 복제 가능한 것이면 특별히 한정되지 않으며 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, λMBL3, λMBL4, λIXII, λASHII, λAPII, λt10, λt11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다.
본 발명에서 사용 가능한 벡터는 특별히 제한되는 것이 아니며 공지된 발현 벡터를 사용할 수 있다. 바람직하게는 pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.
아울러, 본 발명에서 사용되는 벡터는 숙주세포에 삽입되어 상기 유전자를 염색체 내로 삽입시킴으로써, 상기 유전자를 발현시키도록 숙주세포를 형질전환시킬 수 있는 벡터가 될 수 있는데, 바람직하게는 대장균과 코리네형 세균에서 양방으로 자가복제가 가능한 셔틀벡터 pECCG122 벡터(한국등록특허 제10-0057684호)를 예로 들 수 있으나, 특별히 이에 제한되는 것은 아니다.
본 발명의 용어 "형질전환"이란, 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포에 도입하여 숙주 세포 내에서 상기 폴리뉴클레오티드가 암호화하는 단백질이 발현할 수 있도록 하는 일련의 작업을 의미한다. 상기 숙주세포에 도입되는 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 한, 어떠한 형태라도 무방하다. 예를 들면, 상기 폴리뉴클레오티드는, 자체적으로 발현되는데 필요한 모든 요소(상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터(promoter), 전사 종결 신호, 리보좀 결합부위, 번역 종결신호 등)를 포함하는 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있는데, 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어, 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있다.
상기 숙주세포는 L-라이신을 생산할 수 있는 한, 원핵 미생물 어느 것이나 포함된다. 예를 들면, 프로비덴시아(Providencia) 속, 코리네박테리움(Corynebacterium) 속 및 브레비박테리움(Brevibacterium) 속 미생물이 숙주세포로서 사용될 수 있다. 바람직하게는, 코리네박테리움 속에 속하는 미생물이고, 더욱 바람직하게는 코리네박테리움 글루타미쿰이 될 수 있다. 본 발명의 일 실시예에서는 상기 자일로즈 이용능이 없는 다양한 코리네박테리움 속 미생물들로써 KCCM11016P, KCCM10770P, KFCC10750, CJ3P에 상기 어위니아 카로토보라 유래의 XlyA 및 XlyB를 도입할 경우, 자일로즈 이용능이 부여되고 그 결과 자일로즈를 탄소원으로 이용하여 L-라이신 등의 L-아미노산을 생산할 수 있음을 확인하였다 (표 1 내지 6).
L-라이신 생산능을 가질 수 있는 코리네박테리움 속 미생물은 L-라이신 유사체에 내성을 갖는 변이주가 될 수도 있다. L-라이신 유사체는 코리네 미생물의 생육을 저해하지만, 이러한 저해는 L-라이신이 배지에 공존할 때에는 완전히 또는 부분적으로 해제된다. L-라이신 유사체의 예로서는, 옥사L-라이신, L-라이신하이드록사메이트, S-(2-아미노에틸)-L-시스테인(AEC), γ-메틸L-라이신, α-클로로카프로락탐 등을 들 수 있지만, 이들에 한정되지 않는다. 이러한 L-라이신 유사체에 대하여 내성을 갖는 변이주는, 코리네 미생물에 통상의 인공변이처리로 처리함으로써 수득할 수 있다. 또한 L-라이신 생산균을 유도하기 위한 유전자 조작을 하는 경우에는 L-라이신 생합성계 효소를 암호화하는 유전자의 1종 이상의 발현을 향상시킴으로써 목적한 바를 이를 수 있다. 이러한 유전자의 예로서는, 디하이드로디피콜린산 신타제 유전자(dapA), 아스파르토 키나제 유전자(lysC), 디하이드로디피콜린산 리덕타제 유전자(dapB), 디아미노피멜산 데카르복실라제 유전자(lysA), 디아미노피멜산 데하이드로게나제 유전자(ddh), 포스포에놀피루브산 카르복실라제 유전자(ppc), 아스파르테이트 세미알데히드 데하이드로게나제 유전자(asd) 및 아스파르타제 유전자(aspA)를 들 수 있지만, 이들에 한정되지 않는다.
본 발명의 용어 "L-라이신"이란, 염기성 α-아미노산의 하나로 체내에서 합성되지 않는 필수 아미노산이며 화학식은 NH2(CH2)4CH(NH2)COOH인, L-아미노산의 일종을 의미하는데, 상기 L-라이신은 옥살아세트산으로부터 L-라이신 생합성 경로를 통해 생합성 되며, NADPH 의존성 환원효소가 L-라이신 생합성을 위한 중간과정을 촉매한다. 1 분자의 L-라이신 생합성 과정에서 3 분자의 NADPH가 당 효소들에 의해 직접적으로 소모되며 1 분자의 NADPH가 간접적으로 이용된다.
본 발명의 용어 "L-라이신을 생산할 수 있는 코리네박테리움속 미생물"이란, 숙주세포에 코리네박테리움속 미생물에는 존재하지 않는 자일로즈 대사에 관여하는 효소를 코딩하는 유전자가 도입되어, 자일로즈로부터 L-라이신을 생산할 수 있도록 변이된 코리네박테리움속 미생물을 의미하는데, 상기 코리네박테리움속 미생물은 특별히 이에 제한되지 않으나, 코리네박테리움 글루타미쿰이 될 수 있고, 상기 자일로즈 대사에 관여하는 효소는 특별히 이에 제한되지 않으나, xylA 및 xylB가 될 수 있다.
이때, 상기 숙주세포는 L-라이신 생합성계 효소를 암호화하는 유전자의 1종 이상의 발현이 향상된 코리네박테리움속 미생물이 될 수 있으며, 상기 L-라이신 생합성계 효소를 암호화하는 유전자는 특별히 이에 제한되지 않으나, 디하이드로디피콜린산 신타제 유전자(dapA), 아스파르토 키나제 유전자(lysC), 디하이드로디피콜린산 리덕타제 유전자(dapB), 디아미노피멜산 데카르복실라제 유전자(lysA), 디아미노피멜산 데하이드로게나제 유전자(ddh), 포스포에놀피루브산 카르복실라제 유전자(ppc), 아스파르테이트 세미알데히드 데하이드로게나제 유전자(asd), 아스파르타제 유전자(aspA) 등이 될 수 있다.
또한, 상기 숙주세포는 L-라이신 유사체에 대하여 내성을 갖는 변이주가 될 수도 있는데, 상기 변이주는 코리네박테리움속 미생물을 돌연변이시켜서 수득할 수 있다. 상기 L-라이신 유사체는 코리네 미생물의 생육을 저해하지만, 이러한 저해는 L-라이신이 배지에 공존할 때에는 완전히 또는 부분적으로 해제된다. 상기 L-라이신 유사체는 특별히 이에 제한되지 않으나, 바람직하게는 옥사L-라이신, L-라이신하이드록사메이트, S-(2-아미노에틸)-L-시스테인(AEC), γ-메틸L-라이신, α-클로로카프로락탐 등이 될 수 있다.
한편, 본 발명에서는 L-라이신 생산량을 더욱 증가시키기 위해, L-라이신의 생합성에 관련된 공지의 효소들의 활성을 추가로 조절할 수 있다. 바람직하게 본 발명에서는 추가로 아스파테이트 세미알데히드 디히드로게나제, 디히드로피콜리네이트 리덕타제 및 디아미노피멜레이트 디히드로게나제 효소의 활성을 조절하기 위하여 상기 효소를 암호화하는 asd, dapB, 및 ddh 유전자를 과발현시켜 L-라이신 생산량을 증대시킬 수 있다.
본 발명의 일 실시예에 의하면, 본 발명자들은 코리네박테리움속 미생물에 도입하기에 적합한 XylA 및 XylB를 코딩하는 유전자로 어위니아 카로토보라(Erwinia carotovora SCRI1043) 유래 ECA0097(xylA)(서열번호 1) 및 ECA0096(xylB)(서열번호 2)를 선정하고(실시예 1), 상기 선정된 xylAxylB를 코딩하는 유전자를 클로닝하여 xylAxylB(이하 xylAB(Er))가 동시에 발현되는 발현벡터 pECCG122-pcj7-xylA-xylB(이하 pECCG122-pcj7-xylAB(Er))를 제작하였다. 상기 발현벡터를 코리네박테리움 글루타미쿰에 KCCM11016P(상기 미생물은 KFCC10881로 공개되었다가 부다페스트 조약 하의 국제기탁기관에 재기탁되어, KCCM11016P를 부여 받았음. 한국등록특허 제10-0159812호, 제10-0397322호)에 도입하여 xylAB(Er)가 과발현되는 형질전환체를 제조하고, 상기 제조된 형질전환체가 자일로즈를 탄소원으로 사용하여 증식할 수 있음을 확인하였으며(도 2), 글루코즈 또는 자일로즈를 각각 또는 글루코즈와 자일로즈를 동시에 이용하여 L-라이신을 생산할 수 있음을 확인하였다(표 1). 또한 xylAB(Er)를 염색체에 상에서 발현시키기 위하여 염색체 삽입용 재조합벡터인 pDZTn-pcj7-xylAB(Er)를 제작하고, 이를 KCCM11016P에 형질전환 후, 2차 교차 과정을 거쳐 염색체 상에서 트랜스포존 유전자의 내부에 pcj7 프로모터로 작동가능하도록 연결된 xylAB(Er)를 갖는 형질전환체인 KCCM11016P-pcj7-xylAB(Er)를 제작하였다. 그리고 상기 형질전환체가 자일로즈를 탄소원으로 사용하여 증식할 수 있음을 확인하였으며(도 3), 글루코즈 또는 자일로즈를 각각 또는 동시에 이용하여 L-라이신을 생산할 수 있음을 확인하였다(표 2). 아울러, 기 보고된 대장균 유래 xylAB(이하 xylAB(Ec))의 도입에 따른 자일로즈 이용능 증가 효과와 본 발명의 어위니아 카로토보라 유래 xylAB(Er) 도입에 따른 자일로즈 이용능 증가 효과를 비교하기 위하여 KCCM11016P에 xylAB(Ec)를 도입한 균주(KCCM11016P-pcj7-xylAB(Ec))를 제작하였고 상기 제작된 KCCM11016P-pcj7-xylAB(Er)와의 자일로즈 이용능 및 L-라이신 생산 특성을 비교한 결과, KCCM11016P-pcj7-xylAB(Ec) 대비 KCCM11016P-pcj7-xylAB(Er)의 자일로즈 소모속도가 현저히 증가함으로서 L-라이신의 발효 생산성이 개선되는 것을 확인하였다(표 3). 또한, 다양한 코리네박테리움 속 미생물에서도 동일한 결과가 나타나는 지를 확인하기 위하여, pDZTn-pcj7-xylAB(Er)를 L-라이신 생산 균주인 KCCM10770P에 도입하여 KCCM10770P-pcj7-xylAB(Er)인 형질전환체를 제작하였고 상기 형질전환체가 글루코즈 또는 자일로즈를 각각 또는 동시에 이용하여 L-라이신을 생산할 수 있음을 확인하였다(표 4). 역시 상기 pDZTn-pcj7-xylAB(Er)를 또 다른 L-라이신 생산 균주인 KFCC10750(상기 미생물은 KFCC10750으로 공개되었다가 부다페스트 조약 하의 국제기탁기관에 재기탁되어, KCCM11347P를 부여받았음. 한국등록특허 제10-0073610호)에 도입하여, KFCC10750-pcj7-xylAB(Er)인 형질전환체를 제작하였고 상기 형질전환체가 글루코즈 또는 자일로즈를 각각 또는 동시에 이용하여 L-라이신을 생산할 수 있음을 확인하였다(표 5). 또한 상기 pDZTn-pcj7-xylAB(Er)를 또 다른 L-라이신 생산 균주인 CJ3P에 도입하여, CJ3P-pcj7-xylAB(Er)인 형질전환체를 제작하였고 상기 형질전환체가 글루코즈 또는 자일로즈를 각각 또는 동시에 이용하여 L-라이신을 생산할 수 있음을 확인하였다(표 6).
이에, 본 발명자들은 배지 내의 자일로즈를 이용하여 증식할 수 있을 뿐만 아니라, 배지 내의 자일로즈 및 글루코즈를 이용하여 L-라이신을 제조할 수 있는 것으로 확인된 상기 형질전환체를 "CA01-2195"라 명명하고, 부다페스트 조약 하에 서울 서대문구 홍제1동 소재의 한국미생물보존센터(Korean Culture Center of Microorganisms, KCCM)에 2011년 12월 29일자로 수탁번호 KCCM11242P로 기탁하였다. 즉, 상기 기탁은 부다페스트 조약 하에 국제기탁기관에 기탁된 것이다.
또 하나의 양태로서, 본 발명은 (i) 탄소원으로서 자일로즈가 포함된 배양 배지에서 본 발명의 상기 자일로즈를 이용하여 L-라이신을 생산할 수 있는 변이된 코리네박테리움속 미생물을 배양하여 배양물을 수득하는 단계; 및, (ii) 상기 배양물로부터 L-라이신을 회수하는 단계를 포함하는 L-라이신을 생산하는 방법을 제공한다.
본 발명에서 용어 "배양"은 미생물을 적당히 인공적으로 조절한 환경조건에서 생육시키는 것을 의미한다. 본 발명에서 코리네박테리움 속 미생물을 배양하는 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로 상기 배양은 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있으나, 이에 제한되는 것은 아니다.
배양에 사용되는 배지는 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 적절한 방식으로 특정 균주의 요건을 충족해야 한다. 코리네박테리아 균주에 대한 배양 배지는 공지되어 있다 (예를 들면, Manual of Methods for General Bacteriology. American Society for Bacteriology. Washington D.C., USA, 1981). 사용될 수 있는 탄소원으로는 글루코즈 및 자일로즈의 혼합당을 주 탄소원으로 사용하며 이외에 수크로즈, 락토즈, 프락토즈, 말토즈, 전분, 셀룰로즈와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 사용될 수 있는 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 및 질산암모늄과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민과 같은 아미노산 및 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해생성물 등 유기질소원이 사용될 수 있다. 이들 질소원은 단독 또는 조합되어 사용될 수 있다. 상기 배지에는 인원으로서 인산 제1칼륨, 인산 제2칼륨 및 대응되는 소듐-함유 염이 포함될 수 있다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함된다. 또한, 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간 및 탄산칼슘 등이 사용될 수 있다. 마지막으로, 상기 물질에 더하여 아미노산 및 비타민과 같은 필수 성장 물질이 사용될 수 있다.
또한, 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기된 원료들은 배양과정에서 배양물에 적절한 방식에 의해 회분식, 유가식 또는 연속식으로 첨가될 수 있으나, 특별히 이에 제한되지는 않는다. 수산화나트륨, 수산화칼륨, 암모니아와 같은 기초 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배양물의 pH를 조절할 수 있다.
또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 호기 상태를 유지하기 위해 배양물 내로 산소 또는 산소-함유 기체(예, 공기)를 주입한다. 배양물의 온도는 보통 27℃ 내지 37℃, 바람직하게는 30℃ 내지 35℃이다. 배양은 L-라이신의 생성량이 최대로 얻어질 때까지 계속한다. 이러한 목적으로 보통 10 내지 100 시간에서 달성된다. L-라이신은 배양 배지 중으로 배출되거나, 세포 중에 포함되어 있을 수 있다.
아울러, 배양물로부터 L-라이신을 회수하는 단계는 당업계에 공지된 방법에 의해 수행될 수 있다. 구체적으로, 공지된 L-라이신 회수 방법은 특별히 이에 제한되지 않으나, 원심분리, 여과, 추출, 분무, 건조, 증방, 침전, 결정화, 전기영동, 분별용해(예를 들면 암모늄 설페이트 침전), 크로마토그래피(예를 들면 이온 교환, 친화성, 소수성 및 크기배제) 등의 방법을 사용함이 바람직하다.
이하, 실시예를 통하여 본 발명의 구성 및 효과를 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
실시예 1: 외래유전자 선정
어위니아 카로토보라(Erwinia carotovora SCRI1043) 유래 ECA0097(xylA)(아미노산: 서열번호 1, 핵산: 서열번호 3) 및 ECA0096(xylB)(아미노산: 서열번호 2, 핵산: 서열번호 4)를 자일로즈 생산능이 부여된 변이된 코리네박테리움 속 미생물을 제조하기 위한 외래 유전자로 선정하였다.
실시예 2: 어위니아 카로토보라 유래 xylAB 발현벡터 제작
상기 실시예 1에서 선정한 어위니아 카로토보라 유래의 XylA와 XylB를 코딩하는 유전자는 나란히 연결되어 있다. 미국국립보건원 진뱅크(NIH GenBank)로부터 xylAB(Er) 및 주변 염기서열에 대한 정보(등록번호 BX950851)를 확보하였고, 확보된 염기서열에 근거하여 어위니아 카로토보라 유래 xylAB(Er)를 증폭시키기 위한 프라이머를 합성하였다.
서열번호 5 : 5'-ACACATATGCAAGCCTATTTTGAACAGATC-3'
서열번호 6 : 5'-AGAACTAGTGCCTTTTGGTGGTGTTTAAGT-3'
xylAB(Er) 단편을 확보하기 위하여 어위니아 카로토보라 SCRI1043 균주의 염색체 DNA를 주형으로 하여 서열번호 5과 서열번호 6을 이용하여 PCR을 수행하였다. 중합효소는 PfuUltra TM 고-신뢰 DNA 폴리머라제 (Stratagene)를 사용하였으며, PCR증폭 조건은 94 ℃에서 5분간 변성 후, 94℃ 30초 변성, 56℃ 30초 어닐링, 72℃ 3분 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 2844bp의 xylAB(Er)(서열번호 17)를 포함한 3122bp의 유전자 단편을 수득하였다(서열번호 18). 코리네박테리움 암모니아게네스 유래의 pcj7 프로모터(KR0620092)를 확보하기 위하여, 코리네박테리움 암모니아게네스 CJHB100(KR0620092) 게놈 DNA를 주형으로 하여 서열번호 15와 서열번호 16를 이용하여 PCR을 수행하였다. 중합효소는 PfuUltra TM 고-신뢰 DNA 폴리머라제 (Stratagene)를 사용하였으며, PCR증폭 조건은 94 ℃에서 5분간 변성 후, 94℃ 30초 변성, 56℃ 30초 어닐링, 72℃ 1분 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 318 bp의 폴리뉴클레오티드를 획득할 수 있었다(서열번호 14).
서열 번호 15 : 5'-AATCTAGAAACATCCCAGCGCTA-3'
서열 번호 16 : 5'-AAACTAGTCATATGTGTTTCCTTTCGTTG-3'
대장균-코리네박테리움 셔틀벡터 pECCG122에 제한효소 XbaI, SpeI을 이용하여 pcj7을 클로닝 한 후, NdeI과 SpeI을 이용하여 xylAB(Er)을 클로닝함으로써 pECCG122-pcj7-xylAB(Er)벡터를 수득하였다(도 1). 도 1은 본 발명의 발현벡터 pECCG122-pcj7-xylAB(Er)의 개열지도이다.
실시예 3: 어위니아 카로토보라 유래 xylAB 가 도입된 L-라이신 생산균주 개발 및 자일로즈 이용능 확인
상기 실시예 2에서 수득한 각각의 발현벡터 pECCG122-pcj7-xylAB(Er)를 코리네박테리움 글루타미쿰 KCCM11016P(한국등록특허 제10-0159812호, 제10-0397322호)에 도입하여 xylAB(Er)가 발현되는 형질전환체인 코리네박테리움 글루타미쿰 CA01-2195를 제작하였다.
KCCM11016P와 CA01-2195의 자일로즈 이용능을 비교하기 위하여, 글루코즈 또는 자일로즈를 탄소원으로 포함하는 종배지에서 배양하여 상기 균주들의 증식특성을 비교하고, 글루코즈 또는 자일로즈를 탄소원으로 포함하는 생산배지에서 배양하여 L-라이신 생산특성을 비교하였다.
먼저, 증식특성을 비교하기 위하여, 25㎖ 종배지[탄소원(글루코즈 또는 자일로즈) 10 g/ℓ, 펩톤 10 g/ℓ, 효모추출물 10 g/ℓ, 요소 5 g/ℓ, KH2PO4 4 g/ℓ, K2HPO4 8 g/ℓ, MgSO47H2O 0.5 g/ℓ, 바이오틴 100 ㎍/ℓ, 티아민 HCl 1 mg/ℓ, pH 7.0]에 균주들을 각각 접종하고, 30℃에서 32시간 동안 배양하면서, 시간별로 배양물의 흡광도(OD600)를 측정하여 상호 비교하였다(도 2). 도 2는 배지에 포함된 탄소원에 따른 KCCM11016P와 CA01-2195의 증식특성을 나타내는 그래프로서, (◆)는 글루코즈를 포함하는 배지에서 배양된 KCCM11016P를 나타내고, (■)는 자일로즈를 포함하는 배지에서 배양된 KCCM11016P를 나타내며, (▲)는 글루코즈를 포함하는 배지에서 배양된 CA01-2195를 나타내고, (×)는 자일로즈를 포함하는 배지에서 배양된 CA01-2195를 나타낸다.
상기 도 2에서 보듯이, 글루코즈를 탄소원으로 사용한 종배지에서는 KCCM11016P와 CA01-2195가 증식특성 간의 차이를 나타내지 않았으나, 자일로즈를 탄소원으로 사용한 종배지에서는 KCCM11016P는 거의 증식하지 못한 반면 CA01-2195는 일정수준으로 증식할 수 있음을 확인하였다. 따라서, 상기 CA01-2195는 배지에 포함된 자일로즈를 단일 탄소원으로 이용하여 증식할 수 있음을 알 수 있었다.
다음으로, 상기 KCCM11016P와 CA01-2195의 L-라이신 생산특성을 비교하기 위하여, 24㎖ 생산배지[탄소원, (NH4)2SO4 40 g/ℓ, 대두 단백질 2.5 g/ℓ, 옥수수 침지고형분 5 g/ℓ, 요소 3 g/ℓ, KH2PO4 1 g/ℓ, MgSO47H2O 0.5 g/ℓ, 바이오틴 100㎍/l, 티아민 염산염 1 mg/ℓ, CaCO3 30 g/ℓ, pH 7.0]에 상기 종 배양액 1 ml을 각각 접종하고 35℃ 및 200rpm의 조건으로 72시간 동안 배양하였다. 이때, 상기 탄소원은 글루코즈 100 g/ℓ, 글루코즈 50 g/ℓ+ 자일로즈 50 g/ℓ 및 글루코즈 70 g/ℓ+ 자일로즈 30 g/ℓ으로 설정하였다. 그런 다음, 각 배양물에 포함된 L-라이신의 농도, 잔류하는 자일로즈의 농도 및 잔류하는 글루코즈의 농도를 각각 측정하여 비교하였다(표 1).
표 1
균주 글루코즈 100 g/ℓ 글루코즈 50 g/ℓ+자일로즈 50 g/ℓ 글루코즈 70 g/ℓ+자일로즈 30 g/ℓ
L-라이신 R.X R.G L-라이신 R.X R.G L-라이신 R.X R.G
KCCM11016P 42 - 0 21 50 0 29 30 0
CA01-2195 42 - 0 40 0 0 41 0 0
R.X: residual xylose(반응종료 후 잔류하는 자일로즈 농도)(단위: g/ℓ)
R.G: residual glucose(반응종료 후 잔류하는 글루코즈 농도)
상기 표 1에서 보듯이, 자일로즈가 포함되지 않은 배지(글루코즈 100 g/ℓ)를 사용한 경우에는 모균주와 CA01-2195로부터 생산된 L-라이신의 농도가 동등함을 확인하였다. 그러나, 자일로즈가 포함된 배지(글루코즈 50 g/ℓ+자일로즈 50 g/ℓ 및 글루코즈 70 g/ℓ+ 자일로즈 30 g/ℓ)를 사용한 경우에는, 모균주는 자일로즈를 소모하지 않고 글루코즈만을 소모하여 L-라이신을 생산한 반면, CA01-2195는 글루코즈와 자일로즈를 모두 소모하여 L-라이신을 생산하였다.
이와 같은 결과는 자일로즈를 이용할 수 없는 코리네박테리움 속 미생물에 어위니아 카로토보라 유래의 xylAB를 도입할 경우, 자일로즈를 모두 소모할 수 있음을 시사하는 것이다.
실시예 4. 어위니아 카로토보라 유래 xylAB 염색체 삽입용 재조합벡터 (pDZTn-pcj7- xylAB (Er)) 및 대장균 유래 xylAB 염색체 삽입용 재조합벡터 (pDZTn-pcj7- xylAB (Ec)) 제작
상기 발현벡터 xylAB(Er)를 염색체에 상에서 발현시키기 위하여 염색체 삽입용 재조합벡터 pDZTn-pcj7-xylAB(Er)를 제작하였다. pcj7-xylAB(Er) 단편을 확보하기 위하여 실시예 2에서 수득한 pECCG122-pcj7-xylAB(Er)을 주형으로 하여 서열번호 7와 서열번호 8를 합성하여 PCR을 수행하였다. 중합효소는 PfuUltra TM 고-신뢰 DNA 폴리머라제 (Stratagene)를 사용하였으며, PCR증폭 조건은 94 ℃에서 5분간 변성 후, 94℃ 30초 변성, 56℃ 30초 어닐링, 72℃ 3분 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 3440bp의 유전자 단편를 수득할 수 있었다(서열번호 9). 그 결과, pcj7-xylAB(Er) 3440bp와 제한효소 SpeI으로 처리된 pDZTn 벡터(한국등록특허 제10-1126041호)에 BD In-Fusion kit를 이용하여 클로닝함으로써 최종적으로 pDZTn-pcj7-xylAB(Er) 재조합 벡터를 얻었다.
서열번호 7 : 5'-GAGTTCCTCGAGACTAGTAGAAACATCCCAGCGCTA-3'
서열번호 8 : 5'-GATGTCGGGCCCACTAGGCCTTTTTGGTGGTGTTTA-3'
다음으로, 대장균 유래 xylAB(이하 xylAB(Ec)) 역시 염색체 상에서 발현시키기 위하여 염색체 삽입용 재조합벡터 pDZTn-pcj7-xylAB(Ec)를 제작하였다. pcj7 프로모터를 확보하기 위하여 실시예 2에서 수득한 pcj7 단편을 주형으로 하여 서열번호 7과 서열번호 10을 이용하여 PCR을 수행하였다. 중합효소는 PfuUltra TM 고-신뢰 DNA 폴리머라제 (Stratagene)를 사용하였으며, PCR증폭 조건은 94 ℃에서 5분간 변성 후, 94℃ 30초 변성, 56℃ 30초 어닐링, 72℃ 1분 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 318bp의 유전자 단편를 수득할 수 있었다. xylAB(Ec) 단편을 확보하기 위하여 대장균 K12 염색체 DNA를 주형으로 하여 서열번호 11과 서열번호 12를 이용하여 PCR을 수행하였다. 중합효소는 PfuUltra TM 고-신뢰 DNA 폴리머라제 (Stratagene)를 사용하였으며, PCR증폭 조건은 94 ℃에서 5분간 변성 후, 94℃ 30초 변성, 56℃ 30초 어닐링, 72℃ 3분 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 3145bp의 xylAB(Ec) 단편을 획득할 수 있었다(서열번호 13). 그 결과, pcj7 부위 318bp와 xylAB(Ec) 3145bp의 증폭된 산물을 제한효소 SpeI으로 처리된 pDZTn 벡터에 BD In-Fusion kit를 이용하여 클로닝함으로써 최종적으로 pDZTn-pcj7-xylAB(Ec) 재조합 벡터를 얻었다.
서열번호 10 : 5'-TCAAAATAGGCTTGCATGAGTGTTTCCTTTCGTTG-3'
서열번호 11 : 5'-CAACGAAAGGAAACACATGCAAGCCTATTTTGAC-3'
서열번호 12 : 5'-GATGTCGGGCCCACTAGTGCTGTCATTAACACGCCA-3'
실시예 5. 어위니아 유래 xylAB 삽입 L-라이신 생산균주 개발 및 자일로즈 이용능 확인
상기 제작된 pDZTn-pcj7-xylAB(Er) 벡터를 KCCM11016P에 형질전환 후, 2차 교차 과정을 거쳐 염색체 상에서 트랜스포존 유전자의 사이에 1 카피의 pcj7 프로모터로 교체된 xylAB(Er)가 도입된 균주 KCCM11016P-pcj7-xylAB(Er)를 얻었다.
KCCM11016P-pcj7-xylAB(Er)과 KCCM11016P의 자일로즈 이용능을 비교하기 위하여, 실시예 3에서 수행한 방법과 동일한 방법으로 글루코즈 또는 자일로즈를 탄소원으로 포함하는 종배지에서 배양하여 증식특성을 비교하고, 글루코즈 또는 자일로즈를 탄소원으로 포함하는 생산배지에서 배양하여 L-라이신 생산특성을 비교하였다.
도 3은 배지에 포함된 탄소원에 따른 균주들의 증식특성을 나타내는 그래프로서, (◆)는 글루코즈를 포함하는 배지에서 배양된 KCCM11016P를 나타내고, (■)는 자일로즈를 포함하는 배지에서 배양된 KCCM11016P를 나타내며, (▲)는 글루코즈를 포함하는 배지에서 배양된 KCCM11016P-pcj7-xylAB(Er)를 나타내고, (×)는 자일로즈를 포함하는 배지에서 배양된 KCCM11016P-pcj7-xylAB(Er)를 나타낸다. 글루코즈를 탄소원으로 사용한 종배지에서는 KCCM11016P-pcj7-xylAB(Er)과 KCCM11016P이 증식특성의 차이를 나타내지 않았으나, 자일로즈를 탄소원으로 사용한 종배지에서는 KCCM11016P는 거의 증식하지 못한 반면 KCCM11016P-pcj7-xylAB(Er)는 일정수준으로 증식할 수 있음을 확인하였다. 따라서, 상기 xylAB(Er)가 염색체 상에 삽입된 경우에도 배지에 포함된 자일로즈를 이용하여 증식할 수 있음을 알 수 있었다.
다음으로, KCCM11016P-pcj7-xylAB(Er)과 KCCM11016P의 L-라이신 생산특성을 측정하여 비교하였다(표 2).
표 2
균주 글루코즈 100 g/ℓ 글루코즈 50 g/ℓ+자일로즈 50 g/ℓ 글루코즈 70 g/ℓ+자일로즈 30 g/ℓ
L-라이신 R.X R.G L-라이신 R.X R.G L-라이신 R.X R.G
KCCM11016P 43.0 - 0 22.6 50 0 29.2 30 0
42.5 - 0 21.9 0 0 29.6 0 0
KCCM11016P-pcj7-xylAB(Er) 42.8 - 0 42.1 0 0 42.6 0 0
43.1 - 0 42.0 0 0 42.2 0 0
R.X: residual xylose(반응종료 후 잔류하는 자일로즈 농도) (단위: g/ℓ)
R.G: residual glucose(반응종료 후 잔류하는 글루코즈 농도)
상기 표 2에서 보듯이, 자일로즈가 포함되지 않은 배지(글루코즈 100 g/ℓ)를 사용한 경우에는 KCCM11016P-pcj7-xylAB(Er)과 KCCM11016P로부터 생산된 L-라이신의 농도가 동등함을 확인하였다. 그러나, 자일로즈가 포함된 배지(글루코즈 50 g/ℓ+자일로즈 50 g/ℓ 및 글루코즈 70 g/ℓ+자일로즈 30 g/ℓ)를 사용한 경우에는, KCCM11016P 균주는 글루코즈만을 소모한 반면, KCCM11016P-pcj7-xylAB(Er)는 글루코즈와 자일로즈를 모두 소모하여 L-라이신을 생산하였다.
실시예 6. 대장균 유래 xylAB 삽입 L-라이신 생산균주 제작 및 KCCM11016P-pcj7- xylAB (Ec) 균주와의 자일로즈 이용능 비교
기 보고된 대장균 유래 xylAB(Ec) 도입에 따른 자일로즈 이용능 증가 효과와 본 발명의 어위니아 카로토보라 유래 xylAB(Er) 도입에 따른 자일로즈 이용능 증가 효과를 비교하기 위하여 KCCM11016P에 xylAB(Ec)를 도입한 균주를 제작하고 상기 제작된 KCCM11016P-pcj7-xylAB(Er)와 자일로즈 이용능과 L-라이신 생산 특성을 비교하였다.
xylAB(Ec)가 도입된 균주를 제작하기 위하여 실시예 4에서 제작된 pDZTn-pcj7-xylAB(Ec) 재조합 벡터를 KCCM11016P에 형질전환하였고 2차 교차 과정을 거쳐 염색체 상에서 트랜스포존 유전자의 내부에 pcj7 프로모터로 작동가능하도록 연결된 xylAB(Ec)가 도입된 균주 KCCM11016P-pcj7-xylAB(Ec)를 얻었다.
KCCM11016P-pcj7-xylAB(Er)과 KCCM11016P-pcj7-xylAB(Ec)의 자일로즈 이용능을 비교하기 위하여, 실시예 3에서 수행한 방법과 동일하게 글루코즈 50 g/ℓ+자일로즈 50 g/ℓ를 탄소원으로 포함하는 생산배지에서 배양하여 L-라이신 생산특성을 비교하였으며, 자일로즈 이용능을 확인하기 위하여 15시간째 배양액 중의 잔여 자일로즈 농도를 측정하였다(표 3).
표 3
R.X(g/ℓ) L-라이신
45h 72h 72h
KCCM11016P-pcj7-xylAB(Er) 8.0 0 42.8
7.2 0 42.2
KCCM11016P-pcj7-xylAB(Ec) 11.2 0 42.7
12.1 0 42.4
R.X: residual xylose(반응종료후 잔류하는 자일로즈 농도)(단위: g/ℓ)
상기 표 3에서 보듯이, 상기 두 균주는 동등수준의 L-라이신을 생산하였으나, KCCM11016P-pcj7-xylAB(Er)의 자일로즈 소모속도가 KCCM11016P-pcj7-xylAB(Ec)의 자일로즈 소모속도보다 빨라서 발효생산성이 개선되는 것을 확인할 수 있었다. 즉, 이와 같은 결과는 기존의 대장균 유래 xylAB(Ec) 도입시보다 본 발명의 어위니아 카로토보라 유래의 xylAB(Er)를 도입한 경우, L-라이신의 발효 생산성이 개선되는 효과의 우수성을 시사하는 것이다.
실시예 7. 어위니아 카로토보라 유래 xylAB 삽입 KCCM10770P 유래 균주 개발 및 자일로즈 이용능 확인
상기 KCCM11016P 이외의 다른 L-라이신 생산균주에서도 xylAB(Er) 도입의 동일한 효과가 나타내는지 확인하기 위하여 pDZTn-pcj7-xylAB(Er)를 L-라이신 생산 균주인 부다페스트 조약하의 기탁기관에 기탁된 KCCM 10770P(한국등록특허 제10-0924065호)에 도입하였다. 전기펄스법을 이용하여 도입한 후, 2차 교차 과정을 거쳐 염색체 상에서 트랜스포존 유전자의 사이에 1 카피의 pcj7 프로모터로 교체된 xylAB(Er)가 도입된 균주를 획득하였으며, 코리네박테리움 글루타미쿰 KCCM10770P-pcj7-xylAB(Er)로 명명하였다.
실시예 3에서 수행한 방법과 동일한 방법으로 상기 제작된 코리네박테리움 글루타미쿰 KCCM10770P와 발명 균주 코리네박테리움 글루타미쿰 KCCM10770P-pcj7-xylAB(Er))의 자일로즈 이용능 및 L-라이신 생산량을 측정하였다(표 4).
표 4
균주 R.G R.X L-라이신
KCCM10770P 0 50 23.8
0 50 24.4
KCCM10770P-pcj7-xylAB(Er) 0 0 47.6
0 0 47.5
R.X: residual xylose(반응종료후 잔류하는 자일로즈 농도)(단위: g/ℓ)
R.G: residual glucose(반응종료후 잔류하는 글루코즈 농도)
상기 표 4에서 보듯이, L-라이신 생산균주 KCCM10770P에 xylAB(Er)를 도입하였을 경우, 자일로즈를 전혀 이용하지 못하는 모균주와 달리 자일로즈를 완전히 소모하였고, L-라이신 생산도 증가한 것을 확인하였다.
상기와 같은 결과는 특정 기탁번호로 특정된 코리네박테리움 속 미생물이 아닌 다양한 코리네박테리움 속 미생물에 어위니아 카로토보라 유래의 xylAB를 도입할 경우 자일로즈를 탄소원으로 완전히 소모하여 L-라이신 등의 아미노산을 효율적으로 생산할 수 있음을 뒷받침한다.
실시예 8. 어위니아 카로토보라 유래 xylAB 삽입 KFCC10750 유래 균주 개발 및 자일로즈 이용능 확인
상기 KCCM11016P 이외의 다른 L-라이신 생산균주에서도 xylAB(Er) 도입의 동일한 효과가 나타내는지 확인하기 위하여 pDZTn-pcj7-xylAB(Er)를 L-라이신 생산 균주인 KFCC10750 (한국등록특허 제10-0073610호)에 도입하였다. 전기펄스법을 이용하여 도입한 후, 2차 교차 과정을 거쳐 염색체 상에서 트랜스포존 유전자의 사이에 1 카피의 pcj7 프로모터로 교체된 xylAB(Er)가 도입된 균주를 획득하였으며, 이를 코리네박테리움 글루타미쿰 KFCC10750-pcj7-xylAB(Er)로 명명하였다.
실시예 3에서 수행한 방법과 동일한 방법으로 상기 제작된 코리네박테리움 글루타미쿰 KFCC10750와 발명 균주 코리네박테리움 글루타미쿰 KFCC10750-pcj7-xylAB(Er)의 자일로즈 이용능 및 L-라이신 생산량을 측정하였다(표 5).
표 5
균주 R.G R.X L-라이신
KFCC10750 0 50 19.7
0 50 18.8
KFCC10750-pcj7-xylAB(Er) 0 0 38.3
0 0 38.6
R.X: residual xylose(반응종료후 잔류하는 자일로즈 농도) (단위: g/ℓ)
R.G: residual glucose(반응종료후 잔류하는 글루코즈 농도)
상기 표 5에서 보듯이, L-라이신 생산균주 KFCC10750에 xylAB(Er)를 도입하였을 경우, 자일로즈 전혀 이용하지 못하는 모균주와 달리 자일로즈를 완전히 소모하였고, L-라이신 생산도 증가한 것을 확인하였다.
상기와 같은 결과는 특정 기탁번호로 특정된 코리네박테리움 속 미생물이 아닌 다양한 코리네박테리움 속 미생물에 어위니아 카로토보라 유래의 xylAB를 도입할 경우 자일로즈를 탄소원으로 완전히 소모하여 L-라이신 등의 아미노산을 효율적으로 생산할 수 있음을 뒷받침한다.
실시예 9. 어위니아 카로토보라 유래 xylAB 삽입 CJ3P 유래 균주 개발 및 자일로즈 이용능 확인
상기 KCCM11016P 이외의 다른 L-라이신 생산균주에서도 xylAB(Er) 도입의 동일한 효과가 나타내는지 확인하기 위하여 pDZTn-pcj7-xylAB(Er)를 L-라이신 생산 균주인 CJ3P에 도입하였다. CJ3P 균주는 Binder 등이 보고한 기술(Genome Biology 2102, 13:R40)을 바탕으로 야생주에 pyc, hom, lysC 유전자 3종에 각각 P458S, V59A, T311I 변이를 도입하여 L-라이신 생산능을 갖게된 코리네박테리움 글루타미쿰 균주이다. 전기펄스법을 이용하여 도입한 후, 2차 교차 과정을 거쳐 염색체 상에서 트랜스포존 유전자의 사이에 1 카피의 pcj7 프로모터로 교체된 xylAB(Er)가 도입된 균주를 획득하였으며, 이를 코리네박테리움 글루타미쿰 CJ3P-pcj7-xylAB(Er)로 명명하였다.
실시예 3에서 수행한 방법과 동일한 방법으로 상기 제작된 코리네박테리움 글루타미쿰 CJ3P와 발명 균주 코리네박테리움 글루타미쿰 CJ3P-pcj7-xylAB(Er)의 자일로즈 이용능 및 L-라이신 생산량을 측정하였다(표 6).
표 6
균주 R.G R.X L-라이신
CJ3P 0 50 4.0
0 50 4.5
CJ3P-pcj7-xylAB(Er) 0 0 8.5
0 0 9.0
R.X: residual xylose(반응종료후 잔류하는 자일로즈 농도) (단위: g/ℓ)
R.G: residual glucose(반응종료후 잔류하는 글루코즈 농도)
상기 표 6에서 보듯이, L-라이신 생산균주 CJ3P균주에 xylAB(Er)를 도입하였을 경우, 자일로즈를 전혀 이용하지 못하는 모균주와 달리 자일로즈를 완전히 소모하였고, L-라이신 생산도 증가한 것을 확인하였다.
상기와 같은 결과는 특정 기탁번호로 특정된 코리네박테리움 속 미생물이 아닌 다양한 코리네박테리움 속 미생물에 어위니아 카로토보라 유래의 xylAB를 도입할 경우 자일로즈를 탄소원으로 완전히 소모하여 L-라이신 등의 아미노산을 효율적으로 생산할 수 있음을 뒷받침한다.
따라서, 상기 결과를 통하여, 상기 xylAB(Er)가 발현되는 코리네박테리움속 미생물은 배지 내의 자일로즈를 이용하여 증식할 수 있을 뿐만 아니라, 배지 내의 자일로즈 및 글루코즈를 이용하여 L-라이신을 생산할 수 있음을 알 수 있었다.
Figure PCTKR2013000221-appb-I000001
Figure PCTKR2013000221-appb-I000002
Figure PCTKR2013000221-appb-I000003

Claims (6)

  1. 어위니아 카로토보라(Erwinia carotovora) 유래의 자일로즈 이소머라제(xylose isomerase, XylA) 및 자일룰로키나제(xylulokinase, XylB) 활성이 도입된, 자일로즈를 이용하여 L-라이신을 생산할 수 있는 변이형 코리네박테리움속 미생물.
  2. 제1항에 있어서, 상기 XylA는 서열번호 1의 아미노산 서열을 포함하고, 상기 XylB는 서열번호 2의 아미노산 서열을 포함하는 것인 미생물.
  3. 제1항에 있어서, 상기 XylA는 서열번호 3의 폴리뉴클레오티드 서열에 의하여 코딩되고, 상기 XylB는 서열번호 4의 폴리뉴클레오티드 서열에 의하여 코딩되는 것인 미생물.
  4. 제1항에 있어서, 상기 미생물은 코리네박테리움 글루타미쿰인 것인 미생물.
  5. 제1항에 있어서, 상기 XylA 및 XylB의 활성 도입은 XylA 및 XylB를 코딩하는 염기서열을 포함하는 폴리뉴클레오티드를 염색체에 삽입하는 방법, 상기 폴리뉴클레오티드를 벡터 시스템에 도입하여 상기 미생물에 도입하는 방법, XylA 및 XylB를 코딩하는 염기서열의 상류에 개량된 활성을 나타내는 프로모터를 도입하거나 프로모터가 변이된 XylA 및 XylB를 도입하는 방법 및 XylA 및 XylB를 코딩하는 염기서열의 변이체를 도입하는 방법으로 이루어진 군으로부터 선택되는 것인 미생물.
  6. (i) 탄소원으로서 자일로즈가 포함된 배양 배지에서 제1항 내지 제5항 중 어느 한 항의 자일로즈를 이용하여 L-라이신을 생산할 수 있는 변이된 코리네박테리움속 미생물을 배양하여 배양물을 수득하는 단계; 및,
    (ii) 상기 배양물로부터 L-라이신을 회수하는 단계를 포함하는 L-라이신을 생산하는 방법.
PCT/KR2013/000221 2012-01-10 2013-01-10 자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법 WO2013105802A2 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DK13736186.1T DK2803722T3 (en) 2012-01-10 2013-01-10 Corynebacterium microorganisms capable of utilizing xylose, and method for producing L-lysine using the same
EP13736186.1A EP2803722B1 (en) 2012-01-10 2013-01-10 Microorganisms of corynebacterium which can utilize xylose and method for producing l-lysine using same
RU2014130234/10A RU2584593C2 (ru) 2012-01-10 2013-01-10 МИКРООРГАНИЗМЫ Corynebacterium, СПОСОБНЫЕ УТИЛИЗИРОВАТЬ КСИЛОЗУ, И СПОСОБ ПОЛУЧЕНИЯ L-ЛИЗИНА С ПРИМЕНЕНИЕМ ТАКИХ МИКРООРГАНИЗМОВ
JP2014552129A JP5945336B2 (ja) 2012-01-10 2013-01-10 キシロース利用能が付与されたコリネバクテリウム属微生物、及びそれを用いたl−リジンの生産方法
US14/371,653 US9200300B2 (en) 2012-01-10 2013-01-10 Microorganisms of Corynebacterium which can utilize xylose and method for producing L-lysine using same
BR112014017088-6A BR112014017088B1 (pt) 2012-01-10 2013-01-10 Microrganismos de corynebacterium que podem utilizar xilose e método para a produção de l-lisina utilizando os mesmos
CN201380013346.9A CN104245921B (zh) 2012-01-10 2013-01-10 可利用木糖的棒状杆菌微生物和利用其产生l-赖氨酸的方法
ES13736186.1T ES2654809T3 (es) 2012-01-10 2013-01-10 Microorganismos de Corynebacterium que pueden utilizar xilosa y procedimiento de producción de L-lisina utilizando los mismos
PL13736186T PL2803722T3 (pl) 2012-01-10 2013-01-10 Mikroorganizmy maczugowców, które mogą wykorzystywać ksylozę i sposób wytwarzania L-lizyny z ich wykorzystaniem
US14/923,825 US9399784B2 (en) 2012-01-10 2015-10-27 Microorganisms of Corynebacterium which can utilize xylose and method for producing L-lysine using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0003133 2012-01-10
KR20120003133 2012-01-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/371,653 A-371-Of-International US9200300B2 (en) 2012-01-10 2013-01-10 Microorganisms of Corynebacterium which can utilize xylose and method for producing L-lysine using same
US14/923,825 Continuation US9399784B2 (en) 2012-01-10 2015-10-27 Microorganisms of Corynebacterium which can utilize xylose and method for producing L-lysine using same

Publications (2)

Publication Number Publication Date
WO2013105802A2 true WO2013105802A2 (ko) 2013-07-18
WO2013105802A3 WO2013105802A3 (ko) 2013-09-19

Family

ID=48782024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000221 WO2013105802A2 (ko) 2012-01-10 2013-01-10 자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법

Country Status (12)

Country Link
US (2) US9200300B2 (ko)
EP (1) EP2803722B1 (ko)
JP (1) JP5945336B2 (ko)
KR (2) KR20130082124A (ko)
CN (2) CN104245921B (ko)
BR (1) BR112014017088B1 (ko)
DK (1) DK2803722T3 (ko)
ES (1) ES2654809T3 (ko)
MY (1) MY164858A (ko)
PL (1) PL2803722T3 (ko)
RU (1) RU2584593C2 (ko)
WO (1) WO2013105802A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060391A1 (ja) 2013-10-23 2015-04-30 味の素株式会社 目的物質の製造法
JP2017525381A (ja) * 2014-09-05 2017-09-07 シージェイ チェイルジェダン コーポレイション L−リジン生産能が向上した微生物及びそれを用いたl−リジン生産方法
CN112458108A (zh) * 2020-11-24 2021-03-09 华东理工大学 一种在谷氨酸棒状杆菌中利用木糖生成谷氨酸的合成路径的构建方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101694850B1 (ko) * 2014-10-08 2017-01-10 씨제이제일제당 주식회사 L-글루타민을 생산하는 미생물 및 이를 이용한 l-글루타민 생산방법
KR101793328B1 (ko) * 2015-07-03 2017-11-03 씨제이제일제당 (주) L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법
CN107849514A (zh) 2015-07-13 2018-03-27 玛拉可再生能源公司 增强木糖的微藻代谢
CN105567567A (zh) * 2016-02-03 2016-05-11 程雪娇 一种甘蔗渣培养基及其制备方法
ES2939979T3 (es) 2016-09-01 2023-04-28 Ningxia Eppen Biotech Co Ltd Corynebacterium para producir L-lisina por fermentación
KR101915433B1 (ko) * 2018-02-13 2018-11-05 씨제이제일제당 (주) 시트레이트 신타아제 (Citrate synthase)의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 L-아미노산 생산방법
CN110551648B (zh) * 2018-05-30 2022-03-15 天津大学 发酵木糖生产琥珀酸的谷氨酸棒杆菌及用途
KR102112240B1 (ko) * 2018-09-28 2020-05-18 씨제이제일제당 주식회사 알파-글루코시다제의 활성이 강화된 l-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산 생산 방법
WO2021133030A1 (ko) * 2019-12-23 2021-07-01 씨제이제일제당 (주) 사이토크롬 c 활성이 강화된 l-아미노산 생산 미생물 및 이를 이용한 l-아미노산 생산방법
KR102314882B1 (ko) * 2021-01-29 2021-10-19 씨제이제일제당 (주) 신규한 막단백질 TerC 변이체 및 이를 이용한 L-라이신 생산 방법
KR20220156323A (ko) * 2021-05-18 2022-11-25 씨제이제일제당 (주) Agl 단백질의 활성이 강화된, 아미노산을 생산하는 미생물 및 이를 이용한 아미노산 생산 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0159812B1 (ko) 1995-12-20 1998-11-16 손경식 코리네박테리움 글루타미컴 씨에이치 77 및 이 균주를 이용한 l-라이신의 제조 방법
KR100397322B1 (ko) 2000-12-30 2003-09-06 씨제이 주식회사 엘-라이신의 제조방법
KR100620092B1 (ko) 2004-12-16 2006-09-08 씨제이 주식회사 코리네박테리움 속 세포로부터 유래된 신규한 프로모터서열, 그를 포함하는 발현 카세트 및 벡터, 상기 벡터를포함하는 숙주 세포 및 그를 이용하여 유전자를 발현하는방법
KR100924065B1 (ko) 2006-09-15 2009-10-27 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리아 및 그를 이용한 l-라이신 생산 방법
JP4665567B2 (ja) 2004-03-16 2011-04-06 味の素株式会社 キシロース資化遺伝子の発現が高められた細菌を用いた発酵によるl−アミノ酸の製造法
KR101126041B1 (ko) 2008-04-10 2012-03-19 씨제이제일제당 (주) 트랜스포존을 이용한 형질전환용 벡터, 상기 벡터로형질전환된 미생물 및 이를 이용한 l-라이신 생산방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY113040A (en) * 1994-02-24 2001-11-30 Ajinomoto Kk Novel gene derived from coryneform bacteria and use thereof
SE0302421D0 (sv) 2003-09-11 2003-09-11 Forskarpatent I Syd Ab Construction of new xylose utilizing Saccharomyces cerevisiae strain
RU2283346C1 (ru) * 2005-03-14 2006-09-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) Способ получения l-аминокислот методом ферментации с использованием бактерий, обладающих повышенной экспрессией генов утилизации ксилозы
RU2304615C2 (ru) * 2005-10-12 2007-08-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) Способ получения l-аминокислот с использованием бактерий, принадлежащих к роду escherichia
KR100838035B1 (ko) * 2006-12-29 2008-06-12 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용한 l-라이신 생산 방법
US7998722B2 (en) * 2008-03-27 2011-08-16 E. I. Du Pont De Nemours And Company Zymomonas with improved xylose utilization
US8685703B2 (en) * 2008-06-17 2014-04-01 Research Institute Of Innovative Technology For The Earth Coryneform bacterium transformant having improved D-xylose-utilizing ability
KR101083136B1 (ko) * 2009-02-13 2011-11-11 씨제이제일제당 (주) L-아미노산 생산용 미생물 및 이를 이용하여 l-아미노산을 생산하는 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0159812B1 (ko) 1995-12-20 1998-11-16 손경식 코리네박테리움 글루타미컴 씨에이치 77 및 이 균주를 이용한 l-라이신의 제조 방법
KR100397322B1 (ko) 2000-12-30 2003-09-06 씨제이 주식회사 엘-라이신의 제조방법
JP4665567B2 (ja) 2004-03-16 2011-04-06 味の素株式会社 キシロース資化遺伝子の発現が高められた細菌を用いた発酵によるl−アミノ酸の製造法
KR100620092B1 (ko) 2004-12-16 2006-09-08 씨제이 주식회사 코리네박테리움 속 세포로부터 유래된 신규한 프로모터서열, 그를 포함하는 발현 카세트 및 벡터, 상기 벡터를포함하는 숙주 세포 및 그를 이용하여 유전자를 발현하는방법
KR100924065B1 (ko) 2006-09-15 2009-10-27 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리아 및 그를 이용한 l-라이신 생산 방법
KR101126041B1 (ko) 2008-04-10 2012-03-19 씨제이제일제당 (주) 트랜스포존을 이용한 형질전환용 벡터, 상기 벡터로형질전환된 미생물 및 이를 이용한 l-라이신 생산방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Manual of Methods for General Bacteriology", 1981, AMERICAN SOCIETY FOR BACTERIOLOGY
BINDER ET AL., GENOME BIOLOGY, vol. 13, pages R40
F.M. AUSUBEL ET AL.,: "Current Protocols in Molecular Biology", JOHN WILEY & SONS, INC.
J. SAMBROOK ET AL.: "Molecular Cloning (A Laboratory Manual) , 2nd Edition,", 1989, COLD SPRING HARBOR LABORATORY PRESS

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060391A1 (ja) 2013-10-23 2015-04-30 味の素株式会社 目的物質の製造法
US10155952B2 (en) 2013-10-23 2018-12-18 Ajinomoto Co., Inc. Method for producing target substance
JP2017525381A (ja) * 2014-09-05 2017-09-07 シージェイ チェイルジェダン コーポレイション L−リジン生産能が向上した微生物及びそれを用いたl−リジン生産方法
EP3196300A4 (en) * 2014-09-05 2018-01-31 Cj Cheiljedang Corporation Microorganism with improved l-lysine productivity, and method for producing l-lysine by using same
US10676512B2 (en) 2014-09-05 2020-06-09 Cj Cheiljedang Corporation Microorganism with enhanced L-lysine producibility and method for producing L-lysine using the same
CN112458108A (zh) * 2020-11-24 2021-03-09 华东理工大学 一种在谷氨酸棒状杆菌中利用木糖生成谷氨酸的合成路径的构建方法

Also Published As

Publication number Publication date
CN104245921A (zh) 2014-12-24
US20140377816A1 (en) 2014-12-25
ES2654809T3 (es) 2018-02-15
JP2015503359A (ja) 2015-02-02
EP2803722A2 (en) 2014-11-19
US20160040200A1 (en) 2016-02-11
US9200300B2 (en) 2015-12-01
MY164858A (en) 2018-01-30
KR20150046778A (ko) 2015-04-30
PL2803722T3 (pl) 2018-03-30
BR112014017088A2 (ko) 2017-06-13
EP2803722B1 (en) 2017-09-27
RU2014130234A (ru) 2016-02-27
BR112014017088B1 (pt) 2022-04-19
JP5945336B2 (ja) 2016-07-05
KR101592140B1 (ko) 2016-02-22
WO2013105802A3 (ko) 2013-09-19
CN104245921B (zh) 2018-09-14
CN108467848A (zh) 2018-08-31
US9399784B2 (en) 2016-07-26
DK2803722T3 (en) 2018-01-08
KR20130082124A (ko) 2013-07-18
RU2584593C2 (ru) 2016-05-20
EP2803722A4 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
WO2013105802A2 (ko) 자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
KR100838038B1 (ko) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용한 l-라이신 생산 방법
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2013095071A2 (ko) L-라이신 생산능을 갖는 미생물을 이용하여 l-라이신을 생산하는 방법
WO2013105827A2 (ko) 퓨트레신 생산능이 향상된 재조합 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법
WO2012077995A2 (ko) 퓨트레신을 생산하는 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법
KR20070056807A (ko) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용하여 l-라이신을 생산하는 방법
WO2019190193A1 (ko) 글라이신 생산능이 증가된 미생물 및 이를 이용한 발효 조성물 생산 방법
WO2019164346A1 (ko) L-트립토판을 생산하는 재조합 코리네형 미생물 및 이를 이용한 l-트립토판을 생산하는 방법
WO2015186990A1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2021112469A1 (ko) 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
WO2022231369A1 (ko) 신규한 포르메이트 의존성 포스포리보실글리신아미드 포밀 전이효소 변이체 및 이를 이용한 imp 생산 방법
WO2013103246A2 (ko) 퀴놀린산을 생산하는 재조합 미생물 및 이를 이용한 퀴놀린산의 생산 방법
WO2022225322A1 (ko) 신규한 f0f1 atp 합성효소 서브유닛 알파 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2015156583A1 (ko) L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법
WO2020067618A1 (ko) 알파-글루코시다제의 활성이 강화된 l-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산 생산 방법
WO2022225319A1 (ko) 신규한 l-세린 암모니아 분해 효소 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022149865A2 (ko) GlxR 단백질 변이체 또는 이를 이용한 쓰레오닌 생산방법
WO2022154190A1 (ko) 신규한 포스포노아세테이트 하이드롤라제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022154191A1 (ko) 신규한 2,5-다이케토-d-글루콘산 리덕타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022231371A1 (ko) 신규한 5-(카르복시아미노)이미다졸리보뉴클레오티드합성효소 변이체 및 이를 이용한 imp 생산 방법
WO2022225320A1 (ko) 신규한 포스포글리세린산 디하이드로게나제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022225321A1 (ko) 신규한 f0f1 atp 합성효소 서브유닛 감마 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2016195439A1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2022231067A1 (ko) 신규한 이중기능성 pyr 오페론 전사조절자/우라실 포스포리보실 전달 효소 변이체 및 이를 이용한 imp 생산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736186

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014552129

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14371653

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013736186

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013736186

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014130234

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014017088

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014017088

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140710

ENP Entry into the national phase

Ref document number: 112014017088

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140710