WO2012077995A2 - 퓨트레신을 생산하는 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법 - Google Patents

퓨트레신을 생산하는 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법 Download PDF

Info

Publication number
WO2012077995A2
WO2012077995A2 PCT/KR2011/009478 KR2011009478W WO2012077995A2 WO 2012077995 A2 WO2012077995 A2 WO 2012077995A2 KR 2011009478 W KR2011009478 W KR 2011009478W WO 2012077995 A2 WO2012077995 A2 WO 2012077995A2
Authority
WO
WIPO (PCT)
Prior art keywords
putrescine
ornithine
microorganism
activity
gene
Prior art date
Application number
PCT/KR2011/009478
Other languages
English (en)
French (fr)
Other versions
WO2012077995A3 (ko
Inventor
최향
이경민
강민선
전성후
엄혜원
최수진
이한원
신수안
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to RU2013131033/10A priority Critical patent/RU2573923C2/ru
Priority to AU2011339096A priority patent/AU2011339096B2/en
Priority to JP2013543103A priority patent/JP6219168B2/ja
Priority to US13/992,242 priority patent/US9890404B2/en
Priority to CN201180064397.5A priority patent/CN103403147B/zh
Priority to EP11846494.0A priority patent/EP2650357B1/en
Priority to BR112013014442A priority patent/BR112013014442A2/pt
Publication of WO2012077995A2 publication Critical patent/WO2012077995A2/ko
Publication of WO2012077995A3 publication Critical patent/WO2012077995A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1018Carboxy- and carbamoyl transferases (2.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1217Phosphotransferases with a carboxyl group as acceptor (2.7.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01038N-Acetyl-gamma-glutamyl-phosphate reductase (1.2.1.38)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/03Carboxy- and carbamoyltransferases (2.1.3)
    • C12Y201/03003Ornithine carbamoyltransferase (2.1.3.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01035Glutamate N-acetyltransferase (2.3.1.35)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01013Ornithine aminotransferase (2.6.1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/02Phosphotransferases with a carboxy group as acceptor (2.7.2)
    • C12Y207/02008Acetylglutamate kinase (2.7.2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01017Ornithine decarboxylase (4.1.1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Definitions

  • the present invention relates to a microorganism producing putrescine and a method for producing putrescine using the same.
  • Polyamines are substances present in most living cells.
  • Spermidine or spermine belonging to polyamines, is found in various species, including bacteria, fungi, and animals.
  • Putrescine putrescine or 1,4-butanediamine
  • a precursor to spermidine and spermine metabolism is found in Gram-negative bacteria or fungi, and is thought to play an important role in metabolic pathways because of its high concentration in various species. .
  • Putrescine is an important raw material for synthesizing polyamine nylon-4,6 by reacting with adipic acid. It is mainly used in the production of propylene from acrylonitrile and succinate. Produced by chemical synthesis via succinonitrile. The chemical synthesis consists of a three-step process that includes energy-consuming catalytic oxidation reactions, toxic compounds such as cyanide, and hydrogenation using high pressure hydrogen. Putrescine chemical production is not environmentally friendly and has a problem of depletion of petroleum resources. Therefore, there is a need for a method using biomass that is more environmentally friendly and can reduce energy consumption for the production of putrescine.
  • the putrescine biosynthetic pathway in microorganisms is the same as the arginine biosynthetic pathway from glutamate to ornithine synthesis.
  • Two pathways are known which are synthesized into putrescine via decarboxylation of the ornithine produced as an intermediate, or throughacceptine from arginine through agmatine. These two pathways produce the energy needed for metabolism or confer stress resistance to acidity.
  • a method of producing putrescine using microorganisms a method of producing putrescine at high concentration by transforming Escherichia coli and Coritebacterium has been disclosed. The production of putrescine in E.
  • coli can be achieved by increasing the expression levels of ornithine decarboxylase and glutamate acetyltransferase, and the putrescine degradation or use pathways of spermidine and acetyl It is possible to produce high concentrations of putrescine by deleting the acetylspermidine synthesis pathway (Qian. ZD. Et al., Biotechnol. Bioeng. 104: 4, 651-662, 2009, International Patent Publication No. WO06 / 005603. Patent Publication No. WO09 / 125924).
  • Escherichia coli can grow in the presence of 44 g / L of putrescine, and Corynebacterium glutamicum can be grown at a concentration of 66 g / L. Therefore, it is expected to develop a strain for producing putrescine using a microorganism strain of Corynebacterium that can grow in the presence of a higher concentration of putrescine than Escherichia coli.
  • Strains of the genus Corynebacterium are industrial microorganisms widely used in the production of amino acids, nucleic acids, enzymes, and antibiotic analogs.
  • L-arginine is synthesized by an enzyme expressed from a gene of an arginine operon structure consisting of argCJBDFRGH form from glutamate.
  • Arginine operon genes that play the most important role in arginine biosynthesis synthesize arginine using L-glutamate synthesized in cells. 2 shows the synthetic pathway of arginine from glutamate in a strain of genus Corynebacterium.
  • argJ converts glutamate to N-acetylglutamate
  • argB converts N-acetylglutamate to N-acetylglutamyl phosphate
  • argC converts to N-acetyl Convert glutamylphosphate to N-acetylglutamate semialdehyde
  • argD converts N-acetylglutamate semialdehyde to N-acetylornithine
  • argJ raises N-acetyl ornithine
  • ArgF converts ornithine to citrulline
  • argG converts citrulline to argininosuccinate
  • argH encodes an enzyme that converts arginosuccinate to arginine.
  • arginine producing strains have been developed by introducing mutations into arginine operons or by increasing the expression level of enzymes involved in arginine biosynthesis through mutations such as promoters.
  • argR which regulates and inhibits the expression of arginine operon gene
  • argB inhibited by arginine concentration
  • ornithine is produced by ornithine decarboxylase (ODC) from the synthesized ornithine. Therefore, ornithine, a putrescine precursor, must be sufficiently made to make a strain having a high productivity of putrescine. In the argF- and argR-deleting strains of wild-type E.
  • glutamate addition increased ornithine production by 20%, and in addition to the route from glutamate to ornithine, gamma glutamyl kinase was involved in the first step in the production of proline from glutamate.
  • Ornithine is also known to increase when the gene proB, which encodes ⁇ -glutamylkinase), is deleted. This shows that increasing the amount of glutamate has a positive effect on ornithine production.
  • NCgl1221 protein from Corynebacterium glutamicum wild type strain (Cgl 13032) promotes betain release and is known to have an amino acid sequence similar to that of yggB, a mechanosensitive channel protein of Escherichia coli. Patent Publication No. 2010-0017581).
  • One object of the present invention is to provide a microorganism endowed with putrescine production capacity.
  • Another object of the present invention is to provide a method for producing putrescine using the microorganism.
  • Microorganisms endowed with putrescine production capacity of the present invention may be widely used for the production of putrescine which is more effective.
  • Figure 3 shows the vector pDZ vector for intrachromosomal insertion of the microorganism of the genus Corynebacterium.
  • the present invention is the activity of ornithine carbamoyl transferase and protein involved in glutamate release (NCgl1221) is weakened compared to the intrinsic activity, ornithine dicarboxyl Provided is a microorganism that produces putrescine incorporating the activity of a lagase.
  • ornithine carbamoyltransferase refers to an enzyme that exhibits a catalytic activity for producing citrulline and phosphoric acid through the reaction of carbamoyl phosphate with ornithine. It is present in plants and microorganisms as well as in the liver of excretory animals, and is involved in the synthesis of arginine in microorganisms.
  • the enzyme includes a catalytic function region and a regulatory function site, ornithine binding to the regulatory function site is inhibited the activity of the enzyme.
  • E. coli K12 strains have two types of OCTs (argF, argI), and enteric microorganisms, including E. coli B and W strains, have one type of OCT similar to argI.
  • OCTs encoded by argF and argI are different isoenzymes with different amino acid sequences but have the same function (EMBO J. (1982) 1: 853-857).
  • Microorganisms of the genus Corynebacterium contain only OCT encoded by the argF gene. Since OCT acts on the pathway for synthesizing arginine from ornithine, attenuating the activity of OCT can increase the production of ornithine in cells.
  • the present invention provides a microorganism of the genus Corynebacterium in which the path of conversion of ornithine to arginine is blocked in order to block the conversion of ornithine, which is a putrescine precursor, to arginine, and for this purpose, the ornithine carbamoyl transferra
  • a transgenic strain was prepared in which the gene encoding the aze was deleted.
  • the ornithine carbamoyl transferase is not particularly limited, but the amino acid sequence of SEQ ID NO: 28 or more than 70%, more preferably 80% or more, more preferably 90% or more homology It may be a protein having a sequence.
  • homology refers to a similar degree of a nucleotide sequence or an amino acid sequence of a gene encoding a protein. When homology is sufficiently high, expression products of the gene may have the same or similar activity.
  • glycosyl transferer refers to a kind of mechanosensitive channels as a protein that plays a role in releasing glutamate produced in a cell to the outside of the cell.
  • the present invention provides a microorganism of the genus Corynebacterium endowed with the ability to produce putrescine, and for this purpose, a gene encoding a protein that releases glutamate, which is a raw material for the synthesis of ornithine, a precursor of putrescine to the outside of cells, is deleted. To prepare a transformant strain capable of maintaining high levels of intracellular glutamate.
  • glutamate release may be reduced or eliminated by weakening the activity of NCgl1221 protein.
  • the protein involved in the deletion glutamate discharge is not particularly limited, but the amino acid sequence of SEQ ID NO: 30 or more than 70%, more preferably at least 80%, more preferably at least 90% homology I can.
  • Deactivation of the protein may include 1) deletion of part or all of the gene encoding the protein, 2) modification of expression control sequences to reduce expression of the gene, 3) the sequence of the gene on the chromosome so that the activity of the protein is attenuated. 4) or a combination thereof, but is not particularly limited thereto.
  • the method for deleting part or all of the polynucleotide encoding the protein is performed by replacing a polynucleotide encoding an intrinsic target protein in a chromosome with a polynucleotide or a marker gene which has deleted some nucleic acid sequences through a bacterial chromosomal insertion vector.
  • "part" differs according to the kind of polynucleotide, it is specifically 1-300 pieces, Preferably it is 1-100 pieces, More preferably, it is 1-50 pieces.
  • the method of modifying the expression control sequence to reduce the expression of the polynucleotide is to delete, insert, non-conservative or conservative substitution or combination of nucleic acid sequences to further weaken the activity of the expression control sequence on the expression control sequence
  • the mutation can be carried out by inducing or by replacing with a nucleic acid sequence having weaker activity.
  • the expression control sequences include promoters, operator sequences, sequences encoding ribosomal binding sites, and sequences that control the termination of transcription and translation.
  • a method of modifying a polynucleotide sequence on a chromosome, which encodes an enzyme of the present invention involves altering the sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof, to further weaken the activity of the enzyme. Or by replacing with a polynucleotide sequence modified to have weaker activity.
  • argR which is a transcriptional inhibitor of arginine biosynthetic pathway.
  • intrinsic activity refers to the active state of an enzyme that a microorganism has in its natural state, and in the present invention, the ornithine carbamoyl transferase and glutamate excreted in the microorganism have a natural state.
  • Mean activity of the involved protein means that the protein involved in ornithine carbamoyl transferase and glutamate release by the deletion or mutation of the gene (NCgl1221) refers to a state in which the activity of the protein involved in ornithine carbamoyl transferase and glutamate excretion (NCgl1221), which microorganisms have in their natural state, is weakened.
  • ornithine decarboxylase (ODC) refers to an enzyme that produces putrescine using ornithine, wherein the ODC is a coenzyme pyridoxal phosphate (Pyridoxal 5'-phosphate). , PLP) and are present in most Gram-negative bacteria and may be present in some of the intestinal bacteria such as Lactobacillus among Gram-positive bacteria.
  • ODC pyridoxal phosphate
  • ODCs Some species have two types of ODCs, such as E. coli, and others have only one type. Two species are Escherichia sp., Shigella sp., Citroacter sp., Salmonella sp. And Enterobacter sp. Strains of ODC (speC, speF), Yersinia sp., Klebsiella sp., Erwinia sp., Etc. have one type of ODC (speC). . In the case of lactic acid bacteria, ODC is expressed in one type of gene (speF), and it is known that expression is induced at low pH or rich conditions of ornithine and histidine.
  • the ODC is not particularly limited, but may be a protein encoded by the amino acid sequence of SEQ ID NO: 41 or an amino acid sequence having at least 70%, more preferably 80%, more preferably 90% or more homology thereof.
  • introducing the activity of ornithine decarboxylase (ODC) into the microorganism can be carried out by various methods well known in the art, for example, a polynucleotide containing a base sequence encoding the ODC A method of inserting a nucleotide into a chromosome, A method of introducing the polynucleotide into a vector system, and a microorganism, A method of introducing a promoter showing improved activity upstream of an nucleotide sequence encoding an ODC, or introducing a modified ODC into a promoter Method, a method of introducing a variant of the nucleotide sequence encoding the ODC can be used, and more preferably, when introducing the nucleotide sequence encoding the ODC, the CJ7 promoter of SEQ ID NO: 42 as a promoter for controlling its expression Can be used.
  • ODC ornithine decarboxylase
  • the present invention provides a microorganism of the genus Corynebacterium endowed with the ability to produce putrescine, and for this purpose the base sequence encoding ornithine decarboxylase that can synthesize putrescine from ornithine A transgenic strain capable of introducing into the chromosome to produce putrescine was produced.
  • Putrescine produced by microorganisms may be decomposed into spermidine, acetyl putrescine, and gamma aminobutyric acid (GABA) by E. coli in the intracellular degradation pathway. do.
  • ODCs are present in most Gram-negative bacteria, but not in Corynebacterium microorganisms. Therefore, when developing putrescine-producing strains using microorganisms of the genus Corynebacterium, it is necessary to introduce ODC of foreign species.
  • microorganisms endowed with the ability to produce putrescine or "microorganisms producing putrescine” refers to a microorganism to which putrescine has been produced, but is not given the ability to produce putrescine.
  • Microorganisms to which production capacities are endowed or produce putrescine are not particularly limited, but acetylglutamate synthase or acetyl ornithine, which converts glutamate to acetyl glutamate to enhance biosynthetic pathways from glutamate to ornithine synthesis Ornithine acetyl transferase (ArgJ) which converts to ornithine, acetyl glutamate kinase (ArgB) which converts acetyl glutamate to acetyl glutamyl phosphate, acetyl glutamate semialdehyde (Nacetylglutamate) semialdehyde) Acetyl gamma glutamyl phosphate reductase (ArgC), which converts to acetyl glutamate semialdehyde, to acetyl ornithine (Nacetylornithine) to increase the activity of
  • ornithine which is transformed to be used as a raw material of putrescine, is improved, and a gene encoding ornithine decarboxylase (speC) is transformed to be introduced to produce putrescine using the ornithine. It may be a microorganism.
  • One or more methods selected from may be carried out by.
  • various methods can be generally used to increase the activity of a protein in a microorganism. Modulations that increase the number of copies of a polynucleotide, modify the expression control sequence of a polynucleotide, or increase the expression of a polynucleotide by, for example, transformation with plasmid introduction, homologous recombination, conjugation, translocation, and the like.
  • the expression level of a polynucleotide can be increased by amplifying a gene encoding a factor or destroying or attenuating a polynucleotide encoding a regulator that reduces expression of the polynucleotide.
  • gene fragments comprising polynucleotides are operably linked to multiple copy vectors capable of replicating within Corynebacterium microorganisms, introducing one or multiple polynucleotide copies into a chromosome, or Expression control sequences, including promoters of nucleotides, can be replaced with more advanced activities.
  • the vector pHC139T is used to transform microorganisms into the argCJBD family of genes to produce microorganisms with significantly improved ornithine production compared to wild type, or to improve promoter sites that regulate the expression of the argCJBD gene present in the chromosome of the microorganism. Can be enhanced or replaced with a promoter that exhibits more improved activity, resulting in a microorganism that has enhanced the biosynthetic pathway to ornithine.
  • the method of improving the promoter site is not particularly limited, but the promoter replacement in the chromosome may be performed by constructing both terminal sequences of the site to be replaced and the promoter to be introduced in the same form as the original position in the chromosome, and then known pDZ.
  • the method of performing the same method as the gene deletion method using a vector can be used.
  • the improved promoter is not particularly limited, but it is preferable to use a pcj7 (or P (CJ7)) promoter (Korean Patent Registration No. 0620092) having a nucleotide sequence of SEQ ID NO: 42, and the pDZ vector is particularly
  • a vector represented by the cleavage map of FIG. 3 may be used.
  • the term "vector” refers to a DNA preparation containing the nucleotide sequence of a gene operably linked to a suitable regulatory sequence to allow expression of the gene of interest in a suitable host.
  • the regulatory sequence includes a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence regulating termination of transcription and translation. Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages.
  • pWE15, M13, [lambda] EMBL3, [lambda] EMBL4, [lambda] FIXII, [lambda] DASHII, [lambda] ZAPII, [lambda] gt10, [lambda] 11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors.
  • System pBluescriptII system, pGEM system, pTZ system, pCL system, pET system and the like can be used.
  • the vector which can be used is not specifically limited, A well-known expression vector can be used.
  • a pDZ vector or the like can be used.
  • the microorganism is not particularly limited thereto, but the microorganism of the present invention does not have a putrescine metabolic pathway and exhibits the activity of ornithine carbamoyl transferase and protein (NCgl1221) involved in glutamate release.
  • Genus Esscherichia sp.
  • Shigella sp. Citrobacter sp.
  • Salmonella sp. Enterobacter sp. Yersinia sp.
  • the genus Corynebacterium sp. The genus Brevibacterium sp., The genus Lactobacillus sp.
  • It may be a microorganism which transformed a microorganism belonging to the genus Selenomanas sp., Or Vibrio sp.
  • ornithine accumulates by reducing or inactivating the activity of ornithine carbamoyltransferase, and the amount of glutamate in the cell is increased by decreasing or inactivating the activity of glutamate exporter.
  • Increasing the expression level of the argCJBD gene family involved in arginine biosynthesis produces ornithine in excess, and the activity of ornithine decarboxylase (ODC), which converts ornithine to putrescine, Microorganisms introduced and transformed to have putrescine production capacity.
  • ODC ornithine decarboxylase
  • the KCCM-10785P strain is a glutamate over-producing strain that has deleted cg2624 (NCBI LOCUS ID YP_226636) and cg2115 (NCBI LOCUS ID YP_226173) based on the glutamate producing strain (KFCC-11074) selected through a mutagen such as NTG. .
  • cg2624 is pcaR, which is named IclR family regulatory protein
  • cg2115 is sugR, which regulates the expression factor of glucose metabolism. It is termed a protein (transcriptional regulators of sugar metabolism).
  • ornithine As can be seen in the synthesis route of ornithine shown in Figure 2, in order to increase the amount of ornithine to increase the amount of the starting material glutamate, block the route to convert the synthesized ornithine to arginine, orni It is required to increase the amount or activity of enzymes involved in the biosynthesis of chitin. As such, the productivity of ornithine is improved, and a gene encoding ornithine decarboxylase (ODC), an enzyme capable of biosynthesizing putrescine from ornithine, is introduced into a microorganism that does not have a putrescine metabolic pathway. Subsequently, an excessively produced ornithine can be used to prepare a transformed microorganism to which putrescine productivity is given.
  • ODC ornithine decarboxylase
  • Corynebacterium glutamicum strains (ATCC 13032 ⁇ argF and KCCM-10785P ⁇ argF) (Example 1), in which the argF gene is deleted, the Corynebacterium lacking the argF gene and the NCgl1221 gene Glutamicum strains (ATCC 13032 ⁇ argF ⁇ NCgl1221 and KCCM-10785P ⁇ argF ⁇ NCgl1221) (Example 2), Corynebacterium glutamicum strains in which the argF and NCgl1221 genes were deleted and the argCJBD gene was introduced (ATCC 13032 ⁇ argF ⁇ NCgl1221 pHC139T-argCJBD (Cgl) and KCCM-10785P ⁇ argF ⁇ NCgl1221 / pHC139T-argCJBD (Cgl)) (Example 3-1), the argF gene and NCgl1221 gene were deleted and the Coryne
  • Corynebacterium glutamicum strain (ATCC 13032) in which the argF gene and the NCgl1221 gene were deleted, the promoter of the argCJBD gene group in the chromosome was substituted, and the speC gene was introduced into the chromosome.
  • Productivity was confirmed (Table 7 and Table 8).
  • the present inventors refer to the putrescine producing strain which is confirmed to have excellent putrescine production ability as "CC01-0064 (ATCC 13032 ⁇ argF ⁇ NCgl1221 P (CJ7) -argCJBD bioAD :: P (CJ7) -speC (Ec))". It was deposited under the Treaty of Budapest under the accession number KCCM11138P on November 24, 2010 to the Korean Culture Center of Microorganisms (KCCM) in Hongje 1-dong, Seodaemun-gu, Seoul.
  • the present invention comprises the steps of (i) culturing the microorganisms given the putrescine production capacity to obtain a culture; And (ii) provides a method for producing putrescine comprising the step of recovering putrescine from the cultured microorganism or culture.
  • the step of culturing the microorganism is not particularly limited thereto, but is preferably performed by a known batch culture method, a continuous culture method, a fed-batch culture method, and the like, and the culture conditions are not particularly limited thereto.
  • Adjusting the appropriate pH pH 5-9, preferably pH 6-8, most preferably pH 6.8 using a compound (e.g. sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (e.g. phosphoric acid or sulfuric acid)
  • the incubation temperature can be maintained at 20 to 45 °C, preferably 25 to 40 °C, culture for about 10 to 160 hours It is preferable to.
  • Putrescine produced by the culture may be secreted into the medium or remain intracellular.
  • the culture medium used may include sugars and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seeds) as carbon sources.
  • sugars and carbohydrates e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose
  • fats and fats e.g. soybean oil, sunflower seeds
  • Oils, peanut oils and coconut oils fatty acids (e.g. palmitic acid, stearic acid and linoleic acid), alcohols (e.g. glycerol and ethanol) and organic acids (e.g. acetic acid), etc.
  • Nitrogen sources include nitrogen-containing organic compounds such as peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea, or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate) and the like can be used individually or in combination;
  • As a source of phosphorus, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, a corresponding sodium-containing salt, and the like can be used individually or in combination;
  • Other metal salts such as magnesium sulfate or iron sulfate, and essential growth-promoting substances such as amino acids and vitamins.
  • ArgF deletion strains were constructed in order to block the route of arginine synthesis from ornithine in publication 2008-0034334).
  • the arginine biosynthetic genes of Corynebacterium glutamicum ATCC 13032 consist of the argCJBDFRGH type of operon structure, and the deletion-target argF gene (SEQ ID NO: 27) is parallel to the gene encoding the enzyme involved in the ornithine synthesis pathway on the chromosome. Because it exists, we tried to construct a plasmid to delete the argF part based on the nucleotide sequence of argD and argR located outside.
  • homologous recombination fragments of the N-terminal outer portion of argF and homologous recombinant fragments of the C-terminal outer portion of argF were obtained based on the argD and argR base sequences of the ATCC 13032 strain.
  • the fragment of the N-terminal outer portion of argF is a genomic DNA obtained from the ATCC 13032 strain as a template and by PCR using primers (SEQ ID NOS: 1 and 2) (94 °C 30 seconds denaturation, 55 °C 30 seconds annealing And 72 ° C. 30 sec.
  • the homologous recombinant fragment of the obtained N-terminal outer portion of argF was digested with BamHI and SalI, and the homologous recombinant fragment of the C-terminal outer portion of argF was digested with SalI and XbaI to obtain respective fragments.
  • Each of these truncated fragments was treated with BamHI and XbaI and introduced into the truncated pDZ vector to obtain plasmid pDZ-argF (K / O).
  • the obtained plasmid pDZ-argF (K / O) was introduced into ATCC 13032 strain and KCCM-10785P strain, and the introduced strains were kanamycin (25 ⁇ g / ml) and X-gal (5-bromo-4-chloro-3). Colonies were formed by smearing and incubating in BHIS plate medium (Braine heart infusion 37g / l, sorbitol 91g / l, agar 2%) containing -indolin- ⁇ -D-galactoside, and the blue color among the formed colonies. By selecting the colonies shown, strains into which the plasmid pDZ-argF (K / O) was introduced were selected.
  • the selected strain was shaken culture (30 °C) in CM medium (glucose 10g / l, polypeptone 10g / l, yeast extract 5g / l, beef extract 5g / l, NaCl 2.5g / l, urea 2g / l, pH 6.8) , 8 hours), and diluted sequentially from 10 -4 to 10 -10 , and plated and cultured in a solid medium containing X-gal to form colonies. Of the colonies formed, white colonies appearing at relatively low rates were selected to select strains lacking argF.
  • Example 2 Construction of Corynebacterium glutamicum strains deleted with argF gene and NCgl1221 gene
  • the NCgl1221 gene which is a glutamate exporter gene, was further deleted, thereby increasing the intracellular content of glutamate, an ornithine precursor.
  • NCgl1221 SEQ ID NO: 29
  • homologous recombinant fragments of the N-terminal outer portion of NCgl1221 and homologous recombinant fragments of the C-terminal outer portion of NCgl1221 were obtained.
  • the fragment of the N-terminal outer portion of NCgl1221 was obtained by performing genomic DNA obtained from the ATCC 13032 strain as a template and performing PCR using primers (SEQ ID NOs: 5 and 6), and the fragment of the C-terminal outer portion of NCgl1221.
  • SEQ ID NOS: 7 and 8 Table 2
  • the homologous recombinant fragment of the obtained N-terminal outer portion of NCgl1221 was digested with BamHI and SalI, and the homologous recombinant fragment of the C-terminal outer portion of NCgl1221 was digested with SalI and XbaI to obtain respective fragments.
  • Each of these truncated fragments was treated with BamHI and XbaI and introduced into the truncated pDZ vector to obtain plasmid pDZ-NCgl1221 (K / O).
  • the obtained plasmid pDZ-NCgl1221 (K / O) was introduced into ATCC 13032 ⁇ argF strain and KCCM-10785P ⁇ argF strain, and the introduced strain was smeared on a BHIS plate medium containing kanamycin (25 ⁇ g / ml) and X-gal. Colonies were formed by culturing, and a strain in which the plasmid pDZ-NCgl1221 (K / O) was introduced was selected by selecting a colony showing blue color among the formed colonies.
  • the selected strains were shaken in a CM medium (30 ° C., 8 hours), diluted sequentially from 10 ⁇ 4 to 10 ⁇ 10 , respectively, and plated and cultured on a solid medium containing X-gal to form colonies. I was. Among the colonies formed, white colonies appearing at a relatively low rate were selected to select strains that lack NCgl1221.
  • ArgC, argJ, argB, argD to enhance the ornithine production pathway by increasing the copy number of the argCJBD operon (including the promoter region, SEQ ID NO: 31) encoding an enzyme involved in the pathway for synthesizing ornithine from glutamate.
  • Vectors into which the genes (SEQ ID NOs: 32, 34, 36 and 38, respectively) were introduced were prepared, and transformants into which the genes were introduced were prepared.
  • a chromosome of the ATCC 13032 strain was used as a template, and PCR was performed using primers (SEQ ID NOs: 9 and 10) (95 ° C. 40 sec denaturation, 55 ° C. 40 sec annealing, and 72 ° C. 150 sec extension). , 30 cycle), 4,900bp gene fragment was obtained.
  • the obtained gene fragment was electrophoresed on a 0.8% agarose gel, followed by eluting a band of a desired size, and treating the eluted band with restriction enzymes KpnI and XbaI to obtain a fragment, and the fragment was obtained at pHC139T-gfp.
  • Cloning into a vector Karl Patent Publication No. 2008-0074286), the expression vector pHC139T-argCJBD (Cgl) was prepared.
  • the expression vector pHC139T-argCJBD (Cgl) prepared above was introduced into the ATCC 13032 ⁇ argF ⁇ NCgl1221 strain and KCCM-10785P ⁇ argF ⁇ NCgl1221 strain using an electroporation method to increase ornithine production in the strain, and 25 ⁇ g / ml
  • the transformants were selected by smearing a BHIS plate medium containing kanamycin, and each of the selected transformants was ATCC 13032 ⁇ argF ⁇ NCgl1221 / pHC139T-argCJBD (Cgl) and KCCM-10785P ⁇ argF ⁇ NCgl1221 / pHC139T-argCJBD (Cgl). Named it.
  • Example 3-2 Promoter substitution of the argCJBD gene group in the chromosome
  • the chromosome argCJBD itself promoter was intended to be replaced by the newly developed CJ7 promoter of the applicant.
  • a homologous recombination fragment comprising a CJ7 promoter, the terminal ends of which had the original sequence on the chromosome.
  • the 5'-terminal portion of the CJ7 promoter is a genomic DNA of the ATCC 13032 strain as a template and PCR using primers (SEQ ID NOs: 11 and 12) (94 °C 30 seconds denaturation, 55 °C 30 seconds annealing and 72 30 seconds extension, 28 cycles) was obtained, the site of the CJ7 promoter was obtained by performing PCR under the same conditions using the primers (SEQ ID NO: 13 and 14), and the 3'-terminal part of the CJ7 promoter was the primer (SEQ ID NO: 15 and It was obtained by performing PCR under the same conditions using 16).
  • primers SEQ ID NOs: 11 and 12
  • the 5'-terminal site (argC-L) of the obtained promoter was treated with restriction enzymes BamHI and EcoRI, the CJ7 promoter site was treated with restriction enzymes EcoRI and XbaI, and the 3'-terminal site of the promoter (argC-R).
  • the prepared expression vector pDZ-CJ7 (arg) was transformed into ATCC 13032 ⁇ argF ⁇ NCgl1221 and KCCM-10785P ⁇ argF ⁇ NCgl1221 strains by electroporation.
  • the prepared transformant was shaken in a culture medium (30 ° C., 8 hours), and the culture was sequentially diluted from 10 ⁇ 4 to 10 ⁇ 10 , containing 25 ⁇ g / ml kanamycin and X-gal. Colonies were formed by plating and incubating in BHIS plate media.
  • a strain was finally selected in which the arg promoter was replaced by CJ7 by the second crossing, and the genomic DNA obtained from the strain was used as a template.
  • PCR was performed using primers (SEQ ID NOs. 13 and 16) (94 ° C. 30 sec denaturation, 55 ° C. 30 sec annealing and 72 ° C. 60 sec extension, 28 cycles) by the introduced expression vector pDZ-CJ7 (arg).
  • ODC E. coli ornithine decarboxylase
  • E. coli-derived speC gene (SEQ ID NO: 40) was cloned to be expressed using the CJ7 promoter of SEQ ID NO: 42 to introduce the Corynebacterium glutamicum strain.
  • the CJ7 promoter site was templated with p117-CJ7-gfp (Korean Patent Registration No. 10620092) and subjected to PCR using primers (SEQ ID NOs: 17 and 18) (94 ° C. 40 sec denaturation, 55 ° C. 40 sec annealing and 72 ° C. 60 sec extension, 30 cycles), and the coding region of the speC gene was obtained by performing chromosomes of the wild type Escherichia coli W3110 strain as a template and performing PCR using primers (SEQ ID NOs: 19 and 20) under the same conditions.
  • CJ7 promoter region and the coding region of the speC gene were treated with restriction enzymes KpnI and XbaI, cloned into KpnI and XbaI-treated pHC139T-gfp vectors, and the expression comprising the gene linked to the ODC coding region after the CJ7 promoter.
  • Vector pHC139T-P (CJ7) -speC (Ec) was prepared.
  • E. coli-derived speC gene was introduced between bioA and bioD.
  • both ends of the P (CJ7) -speC (Ec) gene fragment included in the expression vector pHC139T-P (CJ7) -speC (Ec) prepared in Example 4-1 were microorganisms of the genus Corynebacterium. Both ends were cloned to have bioA and bioD sequences, respectively, so that they could be used as homologous recombination sites of chromosomes.
  • the genome of the ATCC 13032 strain as a template and PCR using primers (SEQ ID NOs: 21 and 22) (94 ° C. 40 sec denaturation, 55 ° C. 30 sec annealing and 72 ° C.
  • bioA gene fragment PCR was performed using the same template and primers (SEQ ID NOs: 25 and 26) under the same conditions to obtain a bioD gene fragment, and the expression vector pHC139T-P (CJ7) -speC (Ec) was used as a template. PCR using (SEQ ID NOs: 23 and 24) was carried out under the same conditions to obtain P (CJ7) -speC (Ec) gene fragment.
  • the obtained bioA gene fragment was treated with restriction enzymes BamHI and ScaI
  • the P (CJ7) -speC (Ec) gene fragment was treated with restriction enzymes ScaI and EcoRI
  • the bioD gene fragment was treated with restriction enzymes EcoRI and XbaI
  • Each PCR product treated with these restriction enzymes was cloned into a pDZ vector treated with BamHI and XbaI to prepare an expression vector pDZ-bioAD-P (CJ7) -speC (Ec) for introducing the speC gene into the chromosome.
  • the prepared expression vector pDZ-bioAD-P (CJ7) -speC (Ec) was used as the ATCC 13032 ⁇ argF ⁇ NCgl1221 strain, ATCC 13032 ⁇ argF ⁇ NCgl1221 P (CJ7) -argCJBD, KCCM-10785P ⁇ argF ⁇ NCgl1221 and KCCM-10785C ⁇ argF
  • Each transformant was prepared by introducing each of the) -argCJBD strains using electroporation.
  • Each of the transformants prepared above was shake-cultured in a CM medium (30 ° C., 8 hours), and the cultures were sequentially diluted from 10 ⁇ 4 to 10 ⁇ 10 to give 25 ⁇ g / ml kanamycin and X-gal. Colonies were formed by smearing and incubating in the BHIS plate medium contained.
  • strains in which P (CJ7) -speC was introduced into the chromosome by the second crossing were selected.
  • Genomic DNA obtained from each of the above selected strains was used as a template, and PCR was performed using primers (SEQ ID NOs: 21 and 26) (94 ° C. 30 sec denaturation, 55 ° C. 30 sec annealing and 72 ° C. 120 sec extension, 28cycle).
  • the introduced expression vector pDZ-bioAD-P (CJ7) -speC (Ec) was confirmed that the insertion of the P (CJ7) -speC gene fragment between the bioA and bioD in the chromosome, each of the identified strains ATCC 13032 ⁇ argF ⁇ NCgl1221 bioAD :: P (CJ7) -speC (Ec), ATCC 13032 ⁇ argF ⁇ arggl ⁇ NCgl1221 P (CJ7) -argCJBD bioAD :: P (CJ7) -speC (Ec), KCCM-10785P ⁇ argF ⁇ NCgl1221 bioAD :: P (C -speC (Ec) and KCCM-10785P ⁇ argF ⁇ NCgl1221 P (CJ7) -argCJBD bioAD :: P (CJ7) -speC (Ec).
  • the pHC139T-argCJBD (Cgl) vector prepared in Example 3-1 was prepared using the ATCC 13032 ⁇ argF ⁇ NCgl1221 bioAD :: P (CJ7) -speC (Ec) strain and KCCM-10785P ⁇ argF ⁇ NCgl1221 bioAD :: P (CJ7) -speC (Ec) Transformants prepared by introducing into strain were ATCC 13032 ⁇ argF ⁇ NCgl1221 bioAD :: P (CJ7) -speC (Ec) / pHC139T-argCJBD (Cgl) and KCCM-10785P ⁇ argF ⁇ NCgl1221 bioAD :: P (CJ7) -speC (Ec) / pHC139T-argCJBD (Cgl).
  • each strain prepared in Examples 2 to 4 (ATCC 13032 ⁇ argF ⁇ NCgl1221 (Experimental Group 1), ATCC 13032 ⁇ argF ⁇ NCgl1221 / pHC139T-argCJBD (Cgl) (Experimental Group 2), ATCC 13032 ⁇ argF ⁇ NCgl1221 P (CJ7) -argCJBD (Experimental Group 3), ATCC 13032 ⁇ argF ⁇ NCgl1221 bioAD :: P (CJ7) -speC (Ec) (Experimental Group 4), ATCC 13032 ⁇ argF ⁇ NCgl1221 bioAD :: P (CJ7) -speC (Ec) / HC139T-argCJBD (Cgl) ( Experimental Group 5) and ATCC 13032 ⁇ argF ⁇ NCgl1221 P (CJ7) -argCJBD bioAD :: P (CJ7) -speC (Ec) (Experiment 6)) were
  • ornithine was produced when the argF and NCgl1221 genes were deleted or the argF and NCgl1221 genes were deleted and the expression level of the argCJBD gene was increased, but putrescine was not produced. This was attributed to the absence of the speC gene encoding ornithine decarboxylase (ODC), an enzyme that synthesizes putrescine from ornithine in the Corynebacterium glutamicum strain.
  • ODC ornithine decarboxylase
  • Example 4-2 the three strains prepared in Example 4-2, in which the speC gene derived from E. coli was introduced, showed little ornithine and putrescine was produced, which was introduced into the speC gene derived from E. coli.
  • the ODC expressed therefrom was analyzed to be due to the synthesis of putrescine from ornithine.
  • the production amount of putrescine when comparing the production amount of ornithine produced in the strains of the experimental groups 1 to 3 and the production amount of putrescine produced in the strains of the experimental groups 4 to 6 into which the speC gene was introduced into the strains of the experimental groups 1 to 3, was found to be proportional to the production of ornithine.
  • the production of ornithine and putrescine was improved when the expression level of the endogenous argCJBD gene was increased, rather than when the foreign argCJBD gene was additionally introduced.
  • Putrescine production capacity was compared for each strain prepared in.
  • each strain prepared in Examples 2 to 4 (KCCM-10785P ⁇ argF ⁇ NCgl1221 (Experimental Group 1), KCCM-10785P ⁇ argF ⁇ NCgl1221 / pHC139T-argCJBD (Cgl) (Experimental Group 2), KCCM-10785P ⁇ argF ⁇ NCgl1221 P (CJ7) ) -argCJBD (Experimental Group 3), KCCM-10785P ⁇ argF ⁇ NCgl1221 bioAD :: P (CJ7) -speC (Ec) (Experimental Group 4), KCCM-10785P ⁇ argF ⁇ NCgl1221 bioAD :: P (CJ7) -speC (Ec) / HC139T- argCJBD (Cgl) (Experimental Group 5) and KCCM-10785P ⁇ argF ⁇ NCgl1221 P (CJ7) -argCJBD bioAD :::
  • ornithine was produced when the argF and NCgl1221 genes were deleted or the argF and NCgl1221 genes were deleted and the expression level of the argCJBD gene was increased even in the glutamate overproducing strain base, but putrescine was not produced. Confirmed.
  • putrescine is produced only in three strains prepared in Example 4-2, in which the speC gene derived from E. coli was introduced, which indicates that the speC gene derived from E. coli is introduced so that the ODC expressed from ornithine is It was analyzed because of the synthesis of putrescine.
  • Comparing ornithine with glutamate produced by the strains of Experimental Groups 1 to 3 showed an increase in the amount of ornithine produced in proportion to the amount of glutamate produced in the strain.
  • the production amount of putrescine when comparing the production amount of ornithine produced in the strains of the experimental groups 1 to 3 and the production amount of putrescine produced in the strains of the experimental groups 4 to 6 into which the speC gene was introduced into the strains of the experimental groups 1 to 3 was found to be proportional to the production of ornithine.
  • the production of ornithine and putrescine was improved when the expression level of the endogenous argCJBD gene was increased, rather than when the foreign argCJBD gene was additionally introduced. In conclusion, as the amount of glutamate produced in the cell increases, the amount of ornithine increases, and finally, the amount of putrescine produced increases.
  • Example 4-2 the strain produced in Example 4-2 with excellent putrescine ability "CC01-0064 (ATCC 13032 ⁇ argF ⁇ NCgl1221 P (CJ7) -argCJBD bioAD :: P (CJ7) -speC (Ec It was deposited under the Treaty of Budapest under the Treaty No. KCCM11138P on November 24, 2010 to the Korean Culture Center of Microorganisms (KCCM) in Hongje 1-dong, Seodaemun-gu, Seoul.
  • KCCM11138P Korean Culture Center of Microorganisms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신의 생산 방법에 관한 것으로, 보다 구체적으로 본 발명은 오르니틴으로부터 아르기닌으로의 생합성 경로를 차단하고, 세포 내 글루타메이트의 양을 증가시키고, 글루타메이트로부터 오르니틴을 생산하는 생합성 경로의 활성을 강화시키며, 오르니틴 디카르복실라아제(ornithine decarboxylase)를 외래로부터 도입함으로써 퓨트레신 생산능이 부여된 미생물 및 상기 미생물을 이용하여 퓨트레신을 생산하는 방법에 관한 것이다.

Description

퓨트레신을 생산하는 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법
본 발명은 퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신의 생산 방법에 관한 것이다.
폴리아민(polyamine)은 대부분의 살아있는 세포 내에 존재하는 물질이다. 폴리아민에 속하는 스퍼미딘(spermidine)이나 스퍼민(spermine)은 박테리아, 곰팡이, 동물 등 다양한 종에서 발견된다. 이러한 스퍼미딘 및 스퍼민 대사에서 전구물질인 퓨트레신(putrescine 또는 1,4-butanediamine)은 그람 음성 박테리아나 곰팡이에서 발견되며, 다양한 종에서 고농도로 존재하기 때문에 대사 경로에서 중요한 역할을 하는 것으로 사료된다.
퓨트레신은 아디프산 (adipic acid)과 반응하여 폴리아민 나일론-4,6을 합성하는 중요한 원료물질로, 가공 플라스틱의 중요한 원료로 사용하기 위해 주로 프로필렌(propylene)으로부터 아크릴로니트릴 (acrylonitrile) 및 숙시노니트릴(succinonitrile)을 거쳐 화학 합성법으로 생산된다. 이 화학 합성법은 에너지 소모가 많은 촉매적 산화 반응 단계, 시아나이드(cyanide) 같은 유독성 화합물을 사용하는 단계와 고압 수소를 사용하는 수소화반응단계 등을 포함하는 3단계 공정으로 이루어져 있다. 퓨트레신의 화학공정에 의한 생산은 환경친화적이지 못하며 석유자원의 고갈문제를 안고 있다. 따라서, 퓨트레신의 생산을 위해 보다 환경친화적이고 에너지소비를 절감할 수 있는 바이오매스를 활용한 방법이 요구된다.
미생물에서의 퓨트레신 생합성 경로는 글루타메이트로부터 오르니틴 합성까지는 아르기닌 생합성 경로와 동일하다. 중간 물질로 생성된 오르니틴의 디카르복실화(decarboxylation)를 통해 퓨트레신으로 합성되거나, 아르기닌(L-arginine)으로부터 아그마틴(agmatine)을 거쳐 퓨트레신을 합성하는 두 가지 경로가 알려져 있다. 이러한 두 가지 경로는 대사에 필요한 에너지를 생성하거나 산성에 대한 스트레스 내성을 부여한다. 미생물을 이용한 퓨트레신을 생산 방법으로는 대장균과 코리테박테리움을 형질전환하여 퓨트레신을 고농도로 생산하는 방법이 공개되었다. 대장균에서의 퓨트레신 생산방법은 오르니틴 디카르복실레이즈(ornithine decarboxylase)과 글루타메이트 아세틸트렌스퍼레이즈(glutamate acetyltransferase)의 발현양 증가로 이루어질 수 있으며, 퓨트레신 분해 또는 이용 경로인 스퍼미딘, 아세틸스퍼미딘(acetylspermidine) 합성경로를 결실하여 고농도 퓨트레신 생산이 가능하다(Qian. ZD. et al., Biotechnol. Bioeng. 104:4, 651-662, 2009, 국제특허공개번호 WO06/005603. 국제특허공개번호 WO09/125924). 또한 퓨트레신 합성경로를 갖고 있지 않은 코리네박테리움 속 균주에서는 대장균 유래의 오르니틴 디카복실레이즈 유전자 도입을 통해 오르니틴으로부터 퓨트레신을 생산하는 방법과 대장균 유래의 아르기닌 디카복실레이즈와 아그마티네이즈(Agamatinase) 유전자 도입을 통해 아르기닌으로부터 퓨트레신을 생산하는 방법이 있다. 실제로 아르기닌 경로보다 오르니틴 경로를 통해 약 50배 높은 퓨트레신을 생산할 수 있다(Schneider et al., Appl. Microbiol. Biotechnol. 88:4, 859-868, 2010).
한편, 대장균은 44g/L의 퓨트레신 존재하에서 성장할 수 있고, 코리네박테리움 글루타미쿰은 66g/L의 농도에서 성장이 가능한 것으로 확인되었다. 따라서, 대장균보다 고농도의 퓨트레신의 존재 하에서 성장할 수 있는 코리네박테리움 속 미생물 균주를 이용하여 퓨트레신 생산용 균주를 개발하는 것이 효과적일 것으로 예측되고 있다.
코리네박테리움 속 균주들은 아미노산, 핵산, 효소, 및 항생제 유사물질의 생산에서 널리 이용되는 산업용 미생물이다. 코리네박테리움 속 균주에서, 아르기닌(L-arginine)은 글루타메이트로부터 argCJBDFRGH 형태로 이루어진 아르기닌 오페론(operon) 구조의 유전자로부터 발현된 효소에 의해 합성된다. 아르기닌 생합성에 가장 중요한 역할을 하는 아르기닌 오페론 유전자들은 세포 내에서 합성된 글루타메이트(L-glutamate)를 기질로 이용하여 아르기닌을 합성한다. 도 2는 코리네박테리움 속 균주에서 글루타메이트로부터 아르기닌의 합성 경로를 도시한다. 아르기닌 합성 경로에서, argJ는 글루타메이트를 N-아세틸글루타메이트(N-acetylglutamate)로 전환시키고, argB는 N-아세틸글루타메이트를 N-아세틸글루타밀 포스페이트(N-acetylglutamyl phosphate)로 전환시키며, argC는 N-아세틸 글루타밀포스페이트를 N-아세틸글루타메이트 세미알데히드(Nacetylglutamate semialdehyde)로 전환시키고, argD는 N-아세틸글루타메이트 세미알데히드를 N-아세틸 오르니틴(N-acetylornithine)으로 전환시키며, argJ는 N-아세틸 오르니틴을 오르니틴으로 전환시키고, argF는 오르니틴을 시트룰린(Lditrulline)으로 전환시키며, argG는 시트룰린을 아르기노숙시네이트(argininosuccinate)로 전환시키고, argH는 아르기노숙시네이트를 아르기닌으로 전환시키는 효소를 코딩한다고 알려져 있다.
기존에 알려진 아르기닌 생산 균주는 아르기닌 오페론에 돌연변이를 도입하거나 프로모터(promoter) 등의 변이를 통하여 아르기닌 생합성에 관련된 효소의 발현량을 증가시키는 방법으로 개발되었다. 그 중 아르기닌 오페론 유전자의 발현을 조절하고 억제하는 argR과, 아르기닌 농도에 의해 저해를 받는 argB가 아르기닌의 생산량을 증가시키기 위한 표적으로서 널리 연구되었다(대한민국 특허공개 제2010-0060909호).
퓨트레신 생합성 경로 중 글루타메이트로부터 오르니틴의 합성까지는 아르기닌 생합성 경로와 동일하고, 합성된 오르니틴으로부터 오르니틴 디카르복실라아제 (ornithine decarboxylase, ODC)에 의해 퓨트레신이 생성된다. 따라서 퓨트레신의 고생산능을 가진 균주를 만들기 위해서는 퓨트레신 전구체 물질인 오르니틴이 충분히 만들어져야 한다. 야생형 대장균 W3110의 argF와 argR이 결실된 균주에서 글루타메이트 첨가시 오르니틴 생산이 20% 증가했고, 글루타메이트에서 오르니틴으로 가는 경로 이외에 글루타메이트로부터 프롤린을 생성하는 경로의 첫 단계에 관여하는 감마글루타밀키나아제(γ-glutamylkinase)를 코딩하는 유전자 proB를 결실시켰을 때도 오르니틴이 증가한다고 알려져 있다. 이는 글루타메이트의 양을 증가시켰을 때 오르니틴 생산에 긍정적인 영향을 미친다는 것을 보여준다.
오르니틴 전구체인 글루타메이트의 고수율 생산에 관한 연구는 코리네박테리움 글루타미쿰을 대상으로 오랫동안 진행되었다. 그 중 코리네박테리움 글루타미쿰의 글루타메이트 배출능은 비오틴 (biotin) 결핍조건이나 페니실린 G(penicillin G) 또는 지방산 에스테르 계면활성제 처리시 증가된다는 것이 보고되었으며, 이는 세포벽에 손상이 있을 때 글루타메이트가 세포질을 통해 보다 잘 배출된다는 것을 보여준다.
코리네박테리움 글루타미쿰 야생형 균주 (Cgl 13032) 유래의 NCgl1221 단백질은 베타인 (betain) 배출을 촉진하며, 대장균의 기계수용 채널(mechanosensitive channel) 단백질인 yggB와 아미노산 서열이 유사하다고 알려져 있다(대한민국 특허공개 제2010-0017581호).
이러한 배경하에서, 본 발명자들은 퓨트레신을 보다 고수율로 생산할 수 있는 균주를 개발하기 위하여 예의 연구 노력한 결과, 오르니틴으로부터 아르기닌으로의 생합성 경로를 차단시키고, 세포 내 글루타메이트의 양을 증가시키고, 글루타메이트로부터 오르니틴을 생산하는 생합성 경로의 활성을 강화시키며, 오르니틴으로부터 퓨트레신을 합성할 수 있는 효소인 오르니틴 디카르복실라아제(ornithine decarboxylase)를 외래로부터 도입하여, 퓨트레신 과생산 균주를 개발함으로써, 본 발명을 완성하였다.
본 발명의 하나의 목적은 퓨트레신 생산능이 부여된 미생물을 제공하는 것이다.
본 발명의 다른 목적은 상기 미생물을 이용하여 퓨트레신을 생산하는 방법을 제공하는 것이다.
본 발명의 퓨트레신 생산능이 부여된 미생물은 보다 효과적인 퓨트레신의 제조에 널리 활용될 수 있을 것이다.
도 1은 본 발명의 형질전환된 코리네박테리움 글루타미쿰에서의 퓨트레신 생합성 경로 및 관련 유전자를 보여준다.
도 2는 공지된 코리네박테리움 글루타미쿰의 아르기닌 생합성 경로를 보여준다.
도 3은 코리네박테리움 속 미생물의 염색체내 삽입용 벡터 pDZ 벡터를 나타낸다.
상기 본 발명의 목적을 달성하기 위한 일 실시양태로서, 본 발명은 오르니틴 카르바모일 트랜스퍼라아제 및 글루타메이트 배출에 관여하는 단백질(NCgl1221)의 활성이 내재적 활성에 비하여 약화되고, 오르니틴 디카르복실라아제의 활성이 도입된, 퓨트레신을 생산하는 미생물을 제공한다.
본 발명의 용어 "오르니틴 카르바모일 트랜스퍼라아제(ornithine carbamoyltransferase, OCT)"란, 카르바모일인산과 오르니틴의 반응을 매개하여 시트룰린과 인산을 생성하는 촉매활성을 나타내는 효소를 의미하는데, 요소배설성 동물의 간 뿐만 아니라 식물 및 미생물에도 존재하고, 미생물에서는 아르기닌의 합성과정에 관여한다. 상기 효소는 촉매기능부위와 조절기능부위를 포함하는데, 상기 조절기능부위에 오르니틴이 결합하면 효소의 활성이 저해된다.
대장균 K12 스트레인의 경우 두 종류(argF, argI)의 OCT를 가지며, 대장균 B 및 W 스트레인을 포함한 장내미생물의 경우 argI와 유사한 한 종류의 OCT를 갖는다. argF 및 argI에 의해 코딩되는 OCT는 아미노산 서열은 다르지만, 동일한 기능을 갖는 동위효소(isoenzyme)라고 할 수 있다 (EMBO J. (1982) 1:853-857). 코리네박테리움 속 미생물에는 argF 유전자에 의해 코딩되는 OCT만 존재한다. OCT는 오르니틴으로부터 아르기닌을 합성하는 경로에서 작용하므로, OCT의 활성을 약화시키면, 세포 내 오르니틴의 생성량을 증가시킬 수 있다.
본 발명에서는 퓨트레신 전구체인 오르니틴이 아르기닌으로 전환되는 것을 차단하기 위해 오르니틴에서 아르기닌으로 전환되는 경로가 차단된 코리네박테리움 속 미생물을 제공하며, 이를 위하여 상기 오르니틴 카르바모일 트랜스퍼라아제를 코딩하는 유전자를 결실시킨 형질전환 균주를 제조하였다.
이때, 상기 오르니틴 카르바모일 트랜스퍼라아제는 특별히 이에 제한되지 않으나, 서열번호 28의 아미노산 서열 또는 이와 70% 이상, 보다 바람직하게는 80% 이상, 보다 바람직하게는 90% 이상의 상동성을 가지는 아미노산 서열을 가지는 단백질일 수 있다.
본 발명의 용어 "상동성"이란, 단백질을 코딩하는 유전자의 염기 서열이나 아미노산 서열의 유사한 정도를 의미하는데, 상동성이 충분히 높은 경우 해당 유전자의 발현 산물은 동일하거나 유사한 활성을 가질 수 있다.
본 발명의 용어 "글루타메이트 배출에 관여하는 단백질(glutamate exporter)"이란, 세포 내에서 생성된 글루타메이트를 세포 외부로 배출하는 역할을 수행하는 단백질로서 기계수용 채널(mechanosensitive channels)의 일종을 의미한다.
본 발명에서는 퓨트레신의 생산능이 부여된 코리네박테리움 속 미생물을 제공하며, 이를 위하여 상기 퓨트레신의 전구체인 오르니틴의 합성의 원료가 되는 글루타메이트를 세포외부로 방출하는 단백질을 코딩하는 유전자를 결실시켜서, 세포내 글루타메이트의 농도를 높은 수준으로 유지할 수 있는 형질전환 균주를 제조하였다.
오르니틴의 전구체인 글루타메이트의 세포 내 함량을 증가시키면 오르니틴 생합성 경로를 촉진할 수 있는데, 본 발명에서는 NCgl1221 단백질의 활성을 약화시킴으로써 글루타메이트의 배출을 감소 또는 제거할 수 있다.
이때, 결실된 글루타메이트 배출에 관여하는 단백질은 특별히 이에 제한되지 않으나, 서열번호 30의 아미노산 서열 또는 이와 70% 이상, 보다 바람직하게는 80% 이상, 보다 바람직하게는 90% 이상의 상동성을 가지는 단백질일 수 있고다.
상기 단백질의 활성 약화는 1) 상기 단백질을 암호화하는 유전자의 일부 또는 전체의 결실, 2) 상기 유전자의 발현이 감소하도록 발현조절 서열의 변형, 3) 상기 단백질의 활성이 약화되도록 염색체 상의 상기 유전자 서열의 변형 또는 4) 이의 조합 등을 사용하여 수행될 수 있으나, 특별히 이에 제한되지는 않는다.
상기 단백질을 암호화하는 폴리뉴클레오티드의 일부 또는 전체를 결실하는 방법은 세균내 염색체 삽입용 벡터를 통해 염색체내 내재적 목적 단백질을 암호화하는 폴리뉴클레오티드를 일부 핵산서열이 결실된 폴리뉴클레오티드 또는 마커 유전자로 교체함으로써 수행될 수 있다. 상기 "일부"란 폴리뉴클레오티드의 종류에 따라서 상이하지만, 구체적으로는 1 내지 300개, 바람직하게는 1 내지 100개, 보다 바람직하게는 1 내지 50개이다.
또한, 상기 폴리뉴클레오티드의 발현이 감소하도록 발현조절 서열을 변형하는 방법은 상기 발현조절 서열의 활성을 더욱 약화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현조절 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖는 핵산 서열로 교체함으로써 수행할 수 있다. 상기 발현조절 서열에는 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함한다.
아울러, 본 발명의 효소를 암호화하는, 염색체 상의 폴리뉴클레오티드 서열을 변형하는 방법은 상기 효소의 활성을 더욱 약화하도록 폴리뉴클레오티드 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함으로써 수행할 수 있다.
상기 퓨트레신의 전구체인 오르니틴을 세포내 축적하도록 변형된 미생물은 지금까지의 오르니틴 생산 균주 개발, 즉 아르기닌 생합성 경로의 전사 억제자인 argR의 기능을 없애거나 약화시켜 오르니틴 생산을 증가시키고, 추가로 오르니틴 카바모일트랜스퍼라아제(ornithine carbamoyltransferase) 유전자를 결실시키고 조절이 해제된 N-아세틸글루타메이트 신타아제(N-acetylglutamate synthase)를 도입하여 오르니틴 생산을 증가시키는 방법(대한민국 특허공개 제2010-0060909호)과는 다른 접근 방법에 의하여 제조된 미생물이다.
본 발명에서 용어, "내재적 활성"이란, 미생물이 천연의 상태로 가지고 있는 효소의 활성 상태를 의미하는 것으로, 본 발명에서는 미생물이 천연적으로 가지고 있는 오르니틴 카르바모일 트랜스퍼라아제 및 글루타메이트 배출에 관여하는 단백질(NCgl1221)의 활성 상태를 의미하고, 본 발명에서 "내재적 활성에 비하여 약화되도록 변형" 되었다는 것은, 유전자의 결손 또는 돌연변이에 의해 오르니틴 카르바모일 트랜스퍼라아제 및 글루타메이트 배출에 관여하는 단백질(NCgl1221)이 정상적으로 작용하지 않아 미생물이 천연의 상태로 가지고 있는 오르니틴 카르바모일 트랜스퍼라아제 및 글루타메이트 배출에 관여하는 단백질(NCgl1221)의 활성이 약해진 상태를 의미한다.
본 발명의 용어 "오르니틴 디카르복실라아제(ornithine decarboxylase, ODC)"란, 오르니틴을 이용하여 퓨트레신을 생성하는 효소를 의미하는데, 상기 ODC는 조효소로서 피리독살 포스페이트 (Pyridoxal 5'-phosphate, PLP)를 필요로 하고 대부분의 그람음성균에 존재하며, 그람 양성균 중에서 락토바실러스(Lactobacillus)와 같은 장내 세균중의 일부에 존재할 수 있다. 대장균의 경우 ODC를 암호화하는 유전자는 두 종류가 있는데, 그 중 하나인 speC는 지속적으로 일정 농도로 발현되고, 다른 하나인 speF는 특정 조건 (오르니틴이 일정농도 이상 존재 및 낮은 pH 조건)하에서 발현이 유도되는 유전자이다. 종에 따라 대장균처럼 2종류의 ODC를 가진 종도 있고, 한가지 종류만 갖는 있는 종도 있다. 에스케리치아 속(Escherichia sp.), 시겔라 속(Shigella sp.), 시트로박터 속(Citrobacter sp.), 살모넬라 속(Salmonella sp.), 엔테로박터 속(Enterobacter sp.) 등의 종에서는 두 종류의 ODC (speC, speF)를, 여시니아 속(Yersinia sp.), 크렙시엘라 속(Klebsiella sp.), 어위니아 속(Erwinia sp.) 등의 균주는 한 종류의 ODC (speC)를 갖는다. 유산균의 경우 ODC가 한 종류의 유전자 (speF)에서 발현되며, 낮은 pH나 오르니틴(ornithine)과 히스티딘(histidine)이 풍부한 조건에서 발현이 유도되는 것으로 알려져 있다.
상기 ODC는 특별히 이에 제한되지 않으나, 서열번호 41의 아미노산 서열 또는 이와 70% 이상, 보다 바람직하게는 80% 이상, 보다 바람직하게는 90% 이상의 상동성을 가지는 아미노산 서열로 코딩되는 단백질일 수 있다.
상술한 바와 같이, 미생물에 오르니틴 디카르복실라아제(ODC)의 활성을 도입하는 것은 당해 분야에서 잘 알려진 다양한 방법으로 수행될 수 있는데, 예를 들어, ODC를 코딩하는 염기서열을 포함하는 폴리뉴클레오티드를 염색체에 삽입하는 방법, 상기 폴리뉴클레오티드를 벡터 시스템에 도입하여 미생물에 도입하는 방법, ODC를 코딩하는 염기서열의 상류에 개량된 활성을 나타내는 프로모터를 도입하거나 프로모터에 변이를 준 ODC를 도입하는 방법, ODC를 코딩하는 염기서열의 변이체를 도입하는 방법 등을 사용할 수 있고, 보다 바람직하게는 상기 ODC를 코딩하는 염기서열을 도입할 경우, 이의 발현을 조절하기 위한 프로모터로서 서열번호 42의 CJ7 프로모터를 사용할 수 있다.
본 발명의 구체적인 실시예에서는 퓨트레신 생산능이 부여된 코리네 박테리움 속 미생물을 제공하며, 이를 위하여 오르니틴으로부터 퓨트레신을 합성할 수 있는 오르니틴 디카르복실라아제제를 암호화하는 염기서열을 염색체내에 도입하여, 퓨트레신을 생산할 수 있는 형질전환 균주를 제조하였다.
미생물에 의해 제조된 퓨트레신은 대장균의 경우 세포 내 분해 경로에 의해, 스퍼미딘(spermidine), 아세틸 퓨트레신(acetyl putrescine), 감마 아미노뷰티릭에시드(g-aminobutyric acid, GABA) 등으로 분해되기도 한다. ODC는 대부분의 그람음성 균에는 존재하지만, 코리네박테리움 속 미생물에는 존재하지 않는 것으로 알려져 있다. 따라서 코리네박테리움 속 미생물을 이용하여 퓨트레신 생산 균주를 개발할 경우 외래 종의 ODC 도입은 반드시 필요하다.
본 발명의 용어 "퓨트레신의 생산능이 부여된 미생물" 또는 "퓨트레신을 생산하는 미생물"이란, 퓨트레신의 생산능이 없는 모 균주에 퓨트레신의 생산능이 부여된 미생물을 의미하는데, 상기 퓨트레신 생산능이 부여되거나 또는 퓨트레신을 생산하는 미생물은 특별히 이에 제한되지 않으나, 글루타메이트에서 오르니틴 합성까지의 생합성 경로 강화를 위해 글루타메이트를 아세틸 글루타메이트(N-acetylglutamate)로 전환하는 아세틸글루타메이트 신타아제 또는 아세틸 오르니틴을 오르니틴으로 전환하는 오르니틴 아세틸 트랜스퍼라아제(ArgJ), 아세틸 글루타메이트를 아세틸 글루타밀 포스페이트(N-acetylglutamyl phosphate)로 전환하는 아세틸글루타메이트 키나아제(ArgB), 아세틸 글루타밀 포스페이트를 아세틸 글루타메이트 세미알데히드(Nacetylglutamate semialdehyde)로 전환하는 아세틸 감마 글루타밀 포스페이트 리덕타아제(ArgC), 아세틸 글루타메이트 세미알데히드를 아세틸 오르니틴(Nacetylornithine)으로 전환하는 아세틸오르니틴 아미노 트랜스퍼라아제(ArgD)의 활성을 내재적 활성에 비하여 증가시키도록 추가적으로 형질전환되어 퓨트레신의 원료로서 사용되는 오르니틴의 생산성이 향상되고, 오르니틴 디카르복실라아제(speC)를 코딩하는 유전자가 도입되도록 형질전환되어 상기 오르니틴을 이용하여 퓨트레신을 생산할 수 있는 미생물일 수 있다.
이때, 상기 아세틸 감마 글루타밀 포스페이트 리덕타아제(ArgC), 아세틸글루타메이트 신타아제 또는 오르니틴 아세틸트랜스퍼라아제(ArgJ), 아세틸글루타메이트 키나아제(ArgB), 및 아세틸오르니틴 아미노트랜스퍼라아제(ArgD)는 특별히 이에 제한되지 않으나, 바람직하게는 각각 서열번호 33, 35, 37, 및 39의 아미노산 서열 또는 이와 70% 이상, 보다 바람직하게는 80% 이상, 보다 바람직하게는 90% 이상의 상동성을 가지는 아미노산 서열을 가질 수 있으며, 이들의 활성 증가는 1) 상기 단백질을 암호화하는 폴리뉴클레오티드의 카피수 증가, 2) 상기 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형, 3) 상기 효소의 활성이 강화되도록 염색체 상의 상기 폴리뉴클레오티드 서열의 변형 및 4) 이의 조합에 의해 강화되도록 변형하는 방법으로 이루어진 군으로부터 선택되는 하나 이상의 방법에 의해 수행될 수 있다.
구체적으로, 미생물에서 단백질의 활성을 증가시키기 위해서 일반적으로 여러 가지 방법을 사용할 수 있다. 예를 들면, 플라스미드 도입, 상동성 재조합, 접합, 전위 등을 이용한 형질 전환에 의해 폴리뉴클레오티드의 카피 수를 증가시키거나, 폴리뉴클레오티드의 발현 조절 서열을 변형시키거나, 폴리뉴클레오티드의 발현을 증가시키는 조절인자를 코딩하는 유전자를 증폭하거나, 폴리뉴클레오티드의 발현을 감소시키는 조절인자를 코딩하는 폴리뉴클레오티드를 파괴 또는 약화시킴으로써 폴리뉴클레오티드의 발현량을 증가시킬 수 있다. 보다 구체적으로는, 폴리뉴클레오티드를 포함하는 유전자 단편을 코리네박테리움 속 미생물 내에서 복제할 수 있는 다중 카피 벡터에 작동가능하게 연결하거나, 염색체 내로 한 개 또는 다수의 폴리뉴클레오티드 카피를 도입하거나, 폴리뉴클레오티드의 프로모터를 포함한 발현 조절 서열을 활성이 보다 개량된 것으로 대체할 수 있다.
예를 들어, 벡터 pHC139T를 사용하여 argCJBD 유전자군을 미생물에 형질전환시켜, 야생형 대비 오르니틴 생산능이 매우 향상된 미생물을 제조하거나, 또는 미생물의 염색체 내 존재하는 argCJBD 유전자의 발현을 조절하는 프로모터 부위를 개량해서 강화하거나 더 개량된 활성을 나타내는 프로모터로 교체하여 오르니틴까지의 생합성 경로를 강화한 미생물이 될 수 있다. 특히, 프로모터 부위를 개량하는 방법은 특별히 이에 제한되지 않으나, 염색체 내의 프로모터 교체는 치환하고자 하는 부위의 양 말단 염기서열과 도입하고자 하는 프로모터를 염색체 내 원래 위치와 동일한 형태로 제작한 뒤, 공지된 pDZ 벡터를 사용한 유전자 결실 방법(대한민국 특허공개 제2009-0082702호)과 동일하게 수행하는 방법을 사용할 수 있다. 이때, 상기 개량된 프로모터는 특별히 이에 제한되지는 않으나, 서열번호 42의 염기서열을 가지는 pcj7(또는 P(CJ7)) 프로모터(대한민국 특허등록 제0620092호)를 사용함이 바람직하고, 상기 pDZ 벡터는 특별히 이에 제한되지 않으나 바람직하게는 도 3의 개열지도로 표시되는 벡터를 사용할 수 있다.
본 발명에서 용어 "벡터"는 적합한 숙주 내에서 목적 유전자를 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 유전자의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함한다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, λEMBL3, λEMBL4, λFIXII, λDASHII, λZAPII, λgt10, λgt11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로 서 pDZ 벡터, pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 사용 가능한 벡터는 특별히 제한되는 것이 아니며 공지된 발현 벡터를 사용할 수 있다. 바람직하게는 pDZ 벡터 등을 사용할 수 있다.
한편, 상기 미생물은 특별히 이에 제한되지 않으나, 본 발명의 미생물은 퓨트레신 대사 경로를 갖지 않고, 오르니틴 카르바모일 트랜스퍼라아제 및 글루타메이트 배출에 관여하는 단백질(NCgl1221)의 활성을 나타내는 에스케리치아 속(Escherichia sp.), 시겔라 속(Shigella sp.), 시트로박터 속(Citrobacter sp.), 살모넬라 속(Salmonella sp.), 엔테로박터 속(Enterobacter sp.) 여시니아 속(Yersinia sp.), 크렙시엘라 속(Klebsiella sp.), 어위니아 속(Erwinia sp.), 코리네박테리움 속(Corynebacterium sp.), 브레비박테리움 속(Brevibacterium sp.), 락토바실러스 속(Lactobacillus sp.), 셀레노모나스 속(Selenomanas sp.), 또는 비브리오 속(Vibrio sp.)에 속하는 미생물을 형질전환시킨 미생물일 수 있다.
바람직하게는 오르니틴 카르바모일트랜스퍼라아제의 활성을 감소시키거나 또는 불활성화시켜 오르니틴이 축적되고, 글루타메이트엑스포터(exporter)의 활성을 감소시키거나 또는 불활성화시켜 세포 내 글루타메이트 양이 증가되며, 아르기닌 생합성에 관여하는 argCJBD 유전자군의 발현량을 증가시켜 오르니틴을 과량으로 생산하고, 오르니틴을 퓨트레신으로 전환하는 오르니틴 디카르복실라아제(ornithine decarboxylase, ODC)의 활성이 외래로부터 도입되어 퓨트레신 생산능을 갖도록 형질전환된 미생물일 수 있다.
바람직하게는 코리네박테리움 속 미생물, 더욱 바람직하게는 코리네박테리움 글루타미쿰일 수 있다. 구체적으로, 야생형 균주인 코리네박테리움 글루타미쿰 ATCC 13032 또는 글루타메이트 과생산 균주 KCCM-10785P (대한민국 특허공개 제2008-0034334호) 일 수 있으나, 이에 제한되지는 않는다. 상기 KCCM-10785P 균주는 NTG 등의 변이 유발체를 통해 선별한 글루타메이트 생산균주(KFCC-11074)를 기반으로 cg2624(NCBI LOCUS ID YP_226636), cg2115(NCBI LOCUS ID YP_226173)를 결실시킨 글루타메이트 과생산 균주이다.
cg2624와 cg2115 결손에 따른 글루타메이트 과생산 기작은 상기 문헌 이전에 밝혀진 바 없으나, cg2624는 pcaR로 IclR 그룹의 조절단백질 (IclR family regulatory protein)이라 명명되어 있으며, cg2115는 sugR로 당대사기작의 발현인자 조절단백질 (transcriptional regulators of sugar metabolism)로 명명되어 있다.
도 2에 도시된 오르니틴의 합성 경로에서 알 수 있는 바와 같이, 오르니틴의 생성량을 증가시키기 위해서는 출발물질인 글루타메이트의 양을 증가시키고, 합성된 오르니틴을 아르기닌으로 전환시키는 경로를 차단하며, 오르니틴의 생합성에 관여하는 효소의 양이나 활성을 증가시키는 것이 요구된다. 이처럼 오르니틴의 생산성이 향상되고, 퓨트레신 대사 경로를 갖지 않는 미생물에 오르니틴으로부터 퓨트레신을 생합성할 수 있는 효소인 오르니틴 디카르복실라아제(ornithine decarboxylase, ODC)를 코딩하는 유전자를 도입하면, 과다하게 생성된 오르니틴을 이용하여 퓨트레신의 생산성이 부여된 형질전환된 미생물을 제조할 수 있다.
본 발명의 일 실시예에 의하면, argF 유전자가 결실된 코리네박테리움 글루타미쿰 균주(ATCC 13032 ΔargF 및 KCCM-10785P ΔargF)(실시예 1), argF 유전자 및 NCgl1221 유전자가 결실된 코리네박테리움 글루타미쿰 균주(ATCC 13032 ΔargF ΔNCgl1221 및 KCCM-10785P ΔargF ΔNCgl1221)(실시예 2), argF 유전자 및 NCgl1221 유전자가 결실되고, argCJBD 유전자가 도입된 코리네박테리움 글루타미쿰 균주(ATCC 13032 ΔargF ΔNCgl1221/pHC139T-argCJBD(Cgl) 및 KCCM-10785P ΔargF ΔNCgl1221/pHC139T-argCJBD(Cgl))(실시예 3-1), argF 유전자 및 NCgl1221 유전자가 결실되고, 염색체 내 argCJBD 유전자군의 프로모터를 치환시킨 코리네박테리움 글루타미쿰 균주(ATCC 13032 ΔargF ΔNCgl1221 P(CJ7)-argCJBD 및 KCCM-10785P ΔargF ΔNCgl1221 P(CJ7)-argCJBD)(실시예 3-2), argF 유전자 및 NCgl1221 유전자가 결실되고 오르니틴 디카르복실라아제(ODC)를 코딩하는 speC 유전자가 염색체에 도입된 코리네박테리움 글루타미쿰 균주(ATCC 13032 ΔargF ΔNCgl1221 bioAD::P(CJ7)-speC(Ec) 및 KCCM-10785P ΔargF ΔNCgl1221 bioAD::P(CJ7)-speC(Ec)), 상기 균주에 argCJBD 유전자가 도입된 코리네박테리움 글루타미쿰 균주(ATCC 13032 ΔargF ΔNCgl1221 bioAD::P(CJ7)-speC(Ec) / pHC139T-argCJBD(Cgl) 및 KCCM-10785P ΔargF ΔNCgl1221 bioAD::P(CJ7)-speC(Ec) / pHC139T-argCJBD(Cgl)) 및 argF 유전자 및 NCgl1221 유전자가 결실되고, 염색체 내 argCJBD 유전자군의 프로모터가 치환되며, speC 유전자가 염색체에 도입된 코리네박테리움 글루타미쿰 균주(ATCC 13032 ΔargF ΔNCgl1221 P(CJ7)-argCJBD bioAD::P(CJ7)-speC(Ec) 및 KCCM-10785P ΔargF ΔNCgl1221 P(CJ7)-argCJBD bioAD::P(CJ7)-speC(Ec))를 각각 제조하였다. 이들의 퓨트레신 생산성을 비교한 결과, argF 유전자 및 NCgl1221 유전자가 결실되고, 염색체 내 argCJBD 유전자군의 프로모터를가 치환되고며, speC 유전자가 염색체에 도입된 코리네박테리움 글루타미쿰 균주(ATCC 13032 ΔargF ΔNCgl1221 P(CJ7)-argCJBD bioAD::P(CJ7)-speC(Ec) 및 KCCM-10785P ΔargF ΔNCgl1221 P(CJ7)-argCJBD bioAD::P(CJ7)-speC(Ec))가 우수한 퓨트레신 생산성을 나타냄을 확인하였다(표 7 및 표 8).
이에, 본 발명자들은 퓨트레신 생산능이 우수한 것으로 확인된 퓨트레신 생산 균주를 "CC01-0064(ATCC 13032 ΔargF ΔNCgl1221 P(CJ7)-argCJBD bioAD::P(CJ7)-speC(Ec))"라 명명하고, 부다페스트 조약 하에 서울 서대문구 홍제1동 소재의 한국미생물보존센터(Korean Culture Center of Microorganisms, KCCM)에 2010년 11월 24일자로 수탁번호 KCCM11138P로 기탁하였다.
상기 목적을 달성하기 위한 본 발명의 다른 양태에 의하면, 본 발명은 (i) 상기 퓨트레신 생산능이 부여된 미생물을 배양하여 배양물을 수득하는 단계; 및 (ii) 상기 배양된 미생물 또는 배양물로부터 퓨트레신을 회수하는 단계를 포함하는 퓨트레신의 생산방법을 제공한다.
상기 방법에 있어서, 상기 미생물을 배양하는 단계는 특별히 이에 제한되지 않으나, 공지된 회분식 배양방법, 연속식 배양방법, 유가식 배양방법 등에 의해 수행됨이 바람직하고, 배양조건은 특별히 이에 제한되지 않으나, 염기성 화합물(예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물(예: 인산 또는 황산)을 사용하여 적정 pH(pH 5 내지 9, 바람직하게는 pH 6 내지 8, 가장 바람직하게는 pH 6.8)를 조절할 수 있고, 산소 또는 산소-함유 가스 혼합물을 배양물에 도입시켜 호기성 조건을 유지할 수 있으며, 배양온도는 20 내지 45℃, 바람직하게는 25 내지 40℃를 유지할 수 있고, 약 10 내지 160 시간동안 배양함이 바람직하다. 상기 배양에 의하여 생산된 퓨트레신은 배지중으로 분비되거나 세포내에 잔류할 수 있다.
아울러, 사용되는 배양용 배지는 탄소 공급원으로는 당 및 탄수화물(예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방(예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산(예: 팔미트산, 스테아르산 및 리놀레산), 알콜(예: 글리세롤 및 에탄올) 및 유기산(예: 아세트산) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있고; 질소 공급원으로는 질소-함유 유기 화합물(예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물(예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으며; 인 공급원으로서 인산 이수소칼륨, 인산수소이칼륨, 이에 상응하는 나트륨 함유 염 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있고; 기타 금속염(예: 황산마그네슘 또는 황산철), 아미노산 및 비타민과 같은 필수성장-촉진 물질을 포함할 수 있다.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: argF 유전자가 결실된 코리네박테리움 글루타미쿰 균주 제작
야생형 코리네박테리움 글루타미쿰 균주 ATCC 13032와, NTG 등의 변이 유발체를 통해 선별한 글루타메이트 생산균주(KFCC-11074)를 기반으로 cg2624, cg2115를 결실시킨 글루타메이트 과생산 균주 KCCM-10785P(대한민국 특허공개 제2008-0034334호)에서 오르니틴으로부터 아르기닌을 합성하는 경로를 막기 위해 argF 결실 균주를 제작하였다. 코리네박테리움 글루타미쿰 ATCC 13032의 아르기닌 생합성 유전자들은 argCJBDFRGH 형태의 오페론 구조로 구성되고, 결실 표적인 argF 유전자(서열번호 27)가 염색체상에서 오르니틴 합성 경로에 관여하는 효소를 코딩하는 유전자와 나란히 존재하기 때문에 바깥 부분에 위치한 argD와 argR의 염기서열을 바탕으로 argF 부분을 결실시키기 위한 플라스미드를 제작하고자 하였다.
구체적으로, 상기 ATCC 13032 균주의 argD 및 argR의 염기서열에 기초하여, argF의 N-말단 외부 부분의 상동 재조합(homologous recombination) 단편 및 argF의 C-말단 외부 부분의 상동 재조합 단편을 수득하였다. 이때, argF의 N-말단 외부 부분의 단편은 ATCC 13032 균주로부터 수득된 게놈 DNA를 주형으로 하고 프라이머(서열번호 1 및 2)를 이용한 PCR을 수행함으로써(94℃ 30초 denaturation, 55℃ 30초 annealing 및 72℃ 30초 extension, 28cycle) 수득하고, argF의 C-말단 외부 부분의 단편은 ATCC 13032 균주로부터 수득된 게놈 DNA를 주형으로 하고 프라이머(서열번호 3 및 4)를 이용한 동일한 조건에서 PCR을 수행함으로써 수득하였다(표 1).
표 1 argF 결실 균주(ΔargF) 제작을 위한 프라이머
명칭 서열번호 서열(5'-3')
argF-del-F1_BamHIargF-del-R1_SalIargF-del-F2_SalIargF-del-R2_XbaI 1234 CGGGATCCTGGCCGTACCGGCGATTTCTCGCGTCGACAAGTTTGAGTCCTTTATGCGCGCGTCGACGACATGTCCCTTGGCTCAACTGCTCTAGAAGTAATTCACCTAGTTCTTTACC
상기 수득한 argF의 N-말단 외부 부분의 상동 재조합 단편을 BamHI 및 SalI로 처리하여 절단하고, 상기 argF의 C-말단 외부 부분의 상동 재조합 단편을 SalI 및 XbaI으로 처리하여 절단하여 각각의 단편을 수득하였으며, 이들 절단된 각 단편을 BamHI 및 XbaI으로 처리하여 절단된 pDZ 벡터에 도입하여, 플라스미드 pDZ-argF(K/O)를 수득하였다.
상기 수득한 플라스미드 pDZ-argF(K/O)를 ATCC 13032 균주와 KCCM-10785P 균주에 도입하고, 도입된 균주를 카나마이신(25㎍/㎖)과 X-gal(5-bromo-4-chloro-3-indolin-β-D-galactoside)이 함유된 BHIS 평판배지(Braine heart infusion 37g/ℓ, 소르비톨 91g/ℓ, 아가 2%)에 도말하여 배양함으로써 콜로니를 형성시켰으며, 상기 형성된 콜로니 중에서 푸른색을 나타내는 콜로니를 선택함으로써, 상기 플라스미드 pDZ-argF(K/O)이 도입된 균주를 선발하였다.
상기 선발된 균주를 CM배지(glucose 10g/ℓ, polypeptone 10g/ℓ, yeast extract 5g/ℓ, beef extract 5g/ℓ, NaCl 2.5g/ℓ, urea 2g/ℓ, pH 6.8)에서 진탕 배양(30℃, 8시간)하고, 각각 10-4 부터 10-10까지 순차적으로 희석하여, X-gal을 포함하고 있는 고체배지에 도말하고 배양하여 콜로니를 형성시켰다. 형성된 콜로니 중에서 상대적으로 낮은 비율로 나타나는 백색의 콜로니를 선택하여, argF가 결실된 균주를 선발하였다.
상기 선발된 균주로부터 수득한 염색체 DNA를 주형으로 하고, 서열번호 1 및 4의 프라이머를 사용한 PCR을 수행하여, 상기 선발된 균주에 상기 플라스미드 pDZargF(K/O)가 도입되었음을 확인하여, 상기 선발된 균주가 argF가 결실된 균주(ATCC 13032 ΔargF, KCCM-10785P ΔargF)임을 알 수 있었다.
실시예 2: argF 유전자 및 NCgl1221 유전자가 결실된 코리네박테리움 글루타미쿰 균주 제작
상기 실시예 1에서 수득한 ATCC 13032 ΔargF 균주와 KCCM-10785P ΔargF 균주에서 글루타메이트 엑스포터 유전자인 NCgl1221 유전자를 추가로 결실시킴으로써, 오르니틴 전구체인 글루타메이트의 세포 내 함량을 증가시켰다.
구체적으로, 상기 ATCC 13032 균주의 NCgl1221의 염기서열(서열번호 29)에 기초하여, NCgl1221의 N-말단 외부 부분의 상동 재조합 단편 및 NCgl1221의 C-말단 외부 부분의 상동 재조합 단편을 수득하였다. 이때, NCgl1221의 N-말단 외부 부분의 단편은 ATCC 13032 균주로부터 수득된 게놈 DNA를 주형으로 하고 프라이머(서열번호 5 및 6)를 이용한 PCR을 수행함으로써 수득하고, NCgl1221의 C-말단 외부 부분의 단편은 ATCC 13032 균주로부터 수득된 게놈 DNA를 주형으로 하고 프라이머(서열번호 7 및 8)를 이용한 상기 실시예 1과 동일한 조건에서 PCR을 수행함으로써 수득하였다(표 2).
표 2 NCgl1221 결실 균주 제작을 위한 프라이머
명칭 서열번호 서열(5'-3')
NCgl1221-del-F1_BamHINCgl1221-del-R1_SalINCgl1221-del-F2_SalINCgl1221-del-R2_XbaI 5678 CGGGATCCGTCCAAGCCAAGCCGATTTCAACACGCGTCGACCCACTCGGCGCTTGATAATACACGCGTCGACCTGGAACAAGAACTCTCCAGCCTAGTCTAGA GGTTGGTGCTTCCACTGCTG
상기 수득한 NCgl1221의 N-말단 외부 부분의 상동 재조합 단편을 BamHI 및 SalI로 처리하여 절단하고, 상기 NCgl1221의 C-말단 외부 부분의 상동 재조합 단편을 SalI 및 XbaI으로 처리하여 절단하여 각각의 단편을 수득하였으며, 이들 절단된 각 단편을 BamHI 및 XbaI으로 처리하여 절단된 pDZ 벡터에 도입하여, 플라스미드 pDZ-NCgl1221(K/O)를 수득하였다.
상기 수득한 플라스미드 pDZ-NCgl1221(K/O)를 ATCC 13032 ΔargF 균주와 KCCM-10785P ΔargF 균주에 도입하고, 도입된 균주를 카나마이신(25㎍/㎖)과 X-gal이 함유된 BHIS 평판배지에 도말하여 배양함으로써 콜로니를 형성시켰으며, 상기 형성된 콜로니 중에서 푸른색을 나타내는 콜로니를 선택함으로써, 상기 플라스미드 pDZ-NCgl1221(K/O)이 도입된 균주를 선발하였다.
상기 선발된 균주를 CM배지에서 진탕 배양(30℃, 8시간)하고, 각각 10-4 부터 10-10까지 순차적으로 희석하여, X-gal을 포함하고 있는 고체배지에 도말하고 배양하여 콜로니를 형성시켰다. 형성된 콜로니 중에서 상대적으로 낮은 비율로 나타나는 백색의 콜로니를 선택하여, NCgl1221가 결실된 균주를 선발하였다.
상기 선발된 균주로부터 수득한 염색체 DNA를 주형으로 하고, 서열번호 5 및 8의 프라이머를 사용한 PCR을 수행하여, 상기 선발된 균주에 상기 플라스미드 pDZ-NCgl1221(K/O)가 도입되었음을 확인하여, 상기 선발된 NCgl1221이 결실된 균주를 각각 ATCC 13032 ΔargF ΔNCgl1221 및 KCCM-10785P ΔargF ΔNCgl1221라 명명하였다.
실시예 3: argCJBD 유전자가 도입된 코리네박테리움 글루타미쿰 균주 제작
실시예 3-1: argCJBD 유전자의 클로닝 및 형질전환체 제조
글루타메이트로부터 오르니틴을 합성하는 경로에 관여하는 효소를 코딩하고 있는 argCJBD 오페론(프로모터 부위를 포함, 서열번호 31)의 카피수를 증가시켜 오르니틴 생성 경로를 강화시키기 위해, argC, argJ, argB, argD 유전자(각각 서열번호 32, 34, 36 및 38)가 도입된 벡터를 제조하고, 이를 도입한 형질전환체를 제조하였다.
우선, argCJBD 유전자를 얻기 위해, ATCC 13032 균주의 염색체를 주형으로 하고, 프라이머(서열번호 9 및 10)를 이용한 PCR을 수행하여(95℃ 40초 denaturation, 55℃ 40초 annealing 및 72℃ 150초 extension, 30cycle), 4,900bp 크기의 유전자 단편을 수득하였다.
표 3 ATCC 13032의 argCJBD 유전자 단편을 얻기 위한 프라이머
명칭 서열번호 서열(5'-3')
P_argC-5-KpnIargD-3_XbaI 910 CGGGGTACCCTCCTCCAGCAGCTCTAGCTCTGCTCTAGAAAGTTTGAGTCCTTTATGCG
상기 수득한 유전자 단편을 0.8% 아가로스 겔에서 전기영동한 후 원하는 크기의 밴드를 용리시키고, 용리된 밴드에 제한효소인 KpnI 및 XbaI를 처리하여 단편을 수득하였으며, 상기 수득한 단편을 pHC139T-gfp 벡터(대한민국특허공개 제2008-0074286호)에 클로닝하여, 발현벡터 pHC139T-argCJBD(Cgl)를 제조하였다.
다음으로, 균주 내 오르니틴 생성량을 증가시키기 위해 상기 제조한 발현벡터 pHC139T-argCJBD(Cgl)를 ATCC 13032 ΔargF ΔNCgl1221 균주와 KCCM-10785P ΔargF ΔNCgl1221 균주에 전기 천공법을 이용하여 도입하고, 25㎍/㎖ 카나마이신이 함유된 BHIS 평판배지에 도말하여 형질전환체를 선발하고, 상기 선발된 각 형질전환체를 ATCC 13032 ΔargF ΔNCgl1221/pHC139T-argCJBD(Cgl) 및 KCCM-10785P ΔargF ΔNCgl1221/pHC139T-argCJBD(Cgl)라 명명하였다.
실시예 3-2: 염색체 내 argCJBD 유전자군의 프로모터 치환
글루타메이트로부터 오르니틴을 합성하는 경로에 관여하는 효소를 코딩하는 argCJBD 유전자의 조절 해제를 통해 발현량을 증가시키기 위해, 염색체내 argCJBD 자체 프로모터를 본 출원인이 신규 개발한 CJ7 프로모터로 교체하고자 하였다.
우선, CJ7 프로모터를 포함하고, 상기 프로모터의 양끝 말단 부위는 염색체상의 원래의 서열을 갖는 상동 재조합 단편을 수득하였다.
구체적으로, CJ7 프로모터의 5'-말단 부위는 ATCC 13032 균주의 게놈 DNA를 주형으로 하고 프라이머(서열번호 11 및 12)를 이용한 PCR을 수행하여(94℃ 30초 denaturation, 55℃ 30초 annealing 및 72℃ 30초 extension, 28cycle) 수득하였고, CJ7 프로모터의 부위는 프라이머(서열번호 13 및 14)를 이용한 동일한 조건에서 PCR을 수행하여 수득하였으며, CJ7 프로모터의 3'-말단 부위는 프라이머(서열번호 15 및 16)를 이용한 동일한 조건에서 PCR을 수행하여 수득하였다.
표 4 argCJBD 유전자 프로모터 치환을 위한 위한 프라이머
명칭 서열번호 서열(5'-3')
argC-L-5-BamHIargC-L-3-EcoRICJ7-5-EcoRICJ7-3-XbaIargC-R-5-XbaIargC-R-3-SalI 111213141516 CGGGATCCGCAACGCTTGCGGTGAGAGACCGGAATTCCTGGAAGTGGTCGAAGAAGACCGGAATTCGCCGGCATAGCCTACCGATGTGCTCTAGAGATATCAGTGTTTCCTTTCGTGCTCTAGAATGATAATGCATAACGTGTAACGCGTCGACGCTTTCCGGAGGTGTTGTAC
상기 수득한 프로모터의 5'-말단 부위(argC-L)를 제한효소 BamHI과 EcoRI로 처리하고, CJ7 프로모터 부위를 제한효소 EcoRI과 XbaI로 처리하였으며, 프로모터의 3'-말단 부위(argC-R)를 제한효소 XbaI과 SalI로 처리하고, 이들 제한효소로 처리된 각 PCR 산물을 BamHI 및 SalI로 처리된 pDZ 벡터에 클로닝하여 프로모터가 치환된 발현벡터 pDZ-CJ7(arg)를 제조하였다.
상기 제조된 발현벡터 pDZ-CJ7(arg)를 ATCC 13032 ΔargF ΔNCgl1221 및 KCCM-10785P ΔargF ΔNCgl1221 균주에 전기 천공법을 이용하여 형질전환체를 제조하였다. 상기 제조된 형질전환체를 CM배지에서 진탕 배양(30℃, 8시간)하고, 상기 배양물을 10-4 부터 10-10까지 순차적으로 희석하여, 25㎍/㎖ 카나마이신과 X-gal이 함유된 BHIS 평판배지에 도말하여 배양함으로써 콜로니를 형성시켰다.
대부분의 콜로니가 푸른색을 나타내는데 반해 낮은 비율로 나타나는 백색의 콜로니를 선별함으로써, 2차 교차에 의해 최종적으로 arg 프로모터가 CJ7으로 치환된 균주를 선발하고, 상기 균주로부터 수득한 게놈 DNA를 주형으로 하고, 프라이머(서열번호 13 및 16)를 이용한 PCR을 수행하여(94℃ 30초 denaturation, 55℃ 30초 annealing 및 72℃ 60초 extension, 28cycle), 상기 도입된 발현벡터 pDZ-CJ7(arg)에 의하여 염색체내 argCJBD 프로모터가 치환되었는지를 확인하였으며, 상기 확인된 균주를 ATCC 13032 ΔargF ΔNCgl1221 P(CJ7)-argCJBD 및 KCCM-10785P ΔargF ΔNCgl1221 P(CJ7)-argCJBD이라 명명하였다.
실시예 4: speC 유전자가 도입된 코리네박테리움 글루타미쿰 균주
오르니틴에서 퓨트레신을 합성하는데 사용되는 대장균의 오르니틴 디카르복실라아제(ODC)를 코딩하는 speC 유전자를 코리네박테리움 글루타미쿰 균주의 염색체 내에 있는 불활성화된 비오틴 합성 관련 유전자 내에 도입하였다.
실시예 4-1: ODC의 유전자 단편을 포함하는 발현벡터의 제조
대장균 유래의 speC 유전자(서열번호 40)를 코리네박테리움 글루타미쿰 균주로 도입시키기 위하여, 서열번호 42의 CJ7 프로모터를 이용하여 발현되도록 클로닝하였다.
우선, CJ7 프로모터 부위를 p117-CJ7-gfp(대한민국 특허등록 제10620092호)를 주형으로 하고 프라이머(서열번호 17 및 18)를 이용한 PCR을 수행하여(94℃ 40초 denaturation, 55℃ 40초 annealing 및 72℃ 60초 extension, 30cycle) 수득하고, speC 유전자의 코딩 부위를 야생형 대장균 W3110 균주의 염색체를 주형으로 하고 프라이머(서열번호 19 및 20)를 이용한 PCR을 동일한 조건으로 수행하여 수득하였다.
표 5 P(CJ7)-speC 유전자 단편을 얻기 위한 프라이머
명칭 서열번호 서열(5'-3')
CJ7-5-KpnICJ7-3speC(Ec)-5speC(Ec)-3_XbaI 17181920 CGGGGTACCGCCGGCATAGCCTACCGATGp-GATATCAGTGTTTCCTTTCGp-ATCATGAAATCAATGAATATTGCCGTGCTCTAGATTACTTCAACACATAACCGTACAAC
상기 수득한 CJ7 프로모터 부위와 speC 유전자의 코딩 부위를 제한효소인 KpnI 및 XbaI으로 처리하고, KpnI 및 XbaI 처리된 pHC139T-gfp 벡터에 클로닝하여, 상기 CJ7 프로모터 뒤에 ODC 코딩부위가 연결된 유전자를 포함하는 발현벡터 pHC139T-P(CJ7)-speC(Ec)를 제조하였다.
실시예 4-2: 형질전환체의 제조
코리네박테리움 속 미생물은 비오틴 합성 관련 유전자의 일부가 결실되어 있기 때문에, 대장균 유래의 speC 유전자를 비오틴 합성 유전자 중 bioA와 bioD 사이에 도입하고자 하였다.
구체적으로, 상기 실시예 4-1에서 제조한 발현벡터 pHC139T-P(CJ7)-speC(Ec)에 포함된 P(CJ7)-speC(Ec) 유전자 단편의 양끝 말단 부위를 코리네박테리움 속 미생물 염색체의 상동재조합 부위로 사용할 수 있도록 상기 양끝 말단이 각각 bioA 및 bioD 염기서열을 갖도록 클로닝하였다. 이를 위하여, ATCC 13032 균주의 게놈을 주형으로 하고 프라이머(서열번호 21 및 22)를 이용한 PCR을 수행하여(94℃ 40초 denaturation, 55℃ 30초 annealing 및 72℃ 60초 extension, 28cycle) bioA 유전자 단편을 수득하고, 동일한 주형과 프라이머(서열번호 25 및 26)을 이용한 PCR을 동일한 조건으로 수행하여 bioD 유전자 단편을 수득하였으며, 상기 발현벡터 pHC139T-P(CJ7)-speC(Ec)를 주형으로 하고 프라이머(서열번호 23 및 24)를 이용한 PCR을 동일한 조건으로 수행하여 P(CJ7)-speC(Ec) 유전자 단편을 수득하였다.
표 6 P(CJ7)-speC 유전자 단편을 염색체 내(bioA, bioD) 도입하기 위한 프라이머
명칭 서열번호 서열(5'-3')
bioA-5-BamHIbioA-3-ScaIP(CJ7)-5-ScaIspeC(Ec)-3-EcoRIbioD-5-EcoRIbioD-3-XbaI 212223242526 CGGGATCCTGCGCGAGCTTGATCACCGAAAAAGTACTGCCTTGCCCACACACATGATAAAAGTACTGCCGGCATAGCCTACCGATGCCGGAATTCTTACTTCAACACATAACCGTACAACCCGGAATTCGCTGTTTTGGCGGATGAGAGTGCTCTAGACGCAAAAAGGCCATCCGTCA
상기 수득한 bioA 유전자 단편을 제한효소 BamHI과 ScaI으로 처리하고, P(CJ7)-speC(Ec) 유전자 단편을 제한효소 ScaI과 EcoRI으로 처리하였으며, bioD 유전자 단편을 제한효소 EcoRI과 XbaI으로 처리하고, 이들 제한효소로 처리된 각 PCR 산물을 BamHI 및 XbaI으로 처리된 pDZ 벡터에 클로닝하여 speC 유전자를 염색체 내에 도입하기 위한 발현벡터 pDZ-bioAD-P(CJ7)-speC(Ec)를 제조하였다.
상기 제조된 발현벡터 pDZ-bioAD-P(CJ7)-speC(Ec)를 ATCC 13032 ΔargF ΔNCgl1221 균주, ATCC 13032 ΔargF ΔNCgl1221 P(CJ7)-argCJBD, KCCM-10785P ΔargF ΔNCgl1221 및 KCCM-10785P ΔargF ΔNCgl1221 P(CJ7)-argCJBD 균주에 각각 전기천공법을 이용하여 도입함으로써 각각의 형질전환체를 제조하였다.
상기 제조된 각각의 형질전환체를 CM배지에서 진탕 배양(30℃, 8시간)하고, 상기 배양물을 10-4 부터 10-10까지 순차적으로 희석하여, 25㎍/㎖ 카나마이신과 X-gal이 함유된 BHIS 평판배지에 도말하여 배양함으로써 콜로니를 형성시켰다.
대부분의 콜로니가 푸른색을 나타내는데 반해 낮은 비율로 나타나는 백색의 콜로니를 선별함으로써, 2차 교차에 의해 P(CJ7)-speC가 염색체 내로 도입된 균주를 각각 선발하였다. 상기 선발된 각 균주로부터 수득한 게놈 DNA를 주형으로 하고, 프라이머(서열번호 21 및 26)을 이용한 PCR을 수행하여(94℃ 30초 denaturation, 55℃ 30초 annealing 및 72℃ 120초 extension, 28cycle), 상기 도입된 발현벡터 pDZ-bioAD-P(CJ7)-speC(Ec)에 의하여 염색체내 bioA와 bioD 사이에 P(CJ7)-speC 유전자 단편이 삽입되었음을 확인하였으며, 상기 확인된 균주를 각각 ATCC 13032 ΔargF ΔNCgl1221 bioAD::P(CJ7)-speC(Ec), ATCC 13032 ΔargF ΔNCgl1221 P(CJ7)-argCJBD bioAD::P(CJ7)-speC(Ec), KCCM-10785P ΔargF ΔNCgl1221 bioAD::P(CJ7)-speC(Ec) 및 KCCM-10785P ΔargF ΔNCgl1221 P(CJ7)-argCJBD bioAD::P(CJ7)-speC(Ec)로 명명하였다.
아울러, 실시예 3-1에서 제조한 pHC139T-argCJBD(Cgl) 벡터를 ATCC 13032 ΔargF ΔNCgl1221 bioAD::P(CJ7)-speC(Ec) 균주 및 KCCM-10785P ΔargF ΔNCgl1221 bioAD::P(CJ7)-speC(Ec) 균주에 도입하여 제조한 형질전환체를 각각 ATCC 13032 ΔargF ΔNCgl1221 bioAD::P(CJ7)-speC(Ec) / pHC139T-argCJBD(Cgl) 및 KCCM-10785P ΔargF ΔNCgl1221 bioAD::P(CJ7)-speC(Ec) / pHC139T-argCJBD(Cgl)로 명명하였다.
실시예 5: argF 및 NCgl1221 유전자 결실 및 argCJBD 발현양 강화 및 speC 유전자 도입에 의한 퓨트레신 생산성 향상 효과
실시예 5-1: ATCC 13032 코리네박테리움 글루타미쿰 기반의 퓨트레신 생산능 확인
ATCC 13032 코리네박테리움 글루타미쿰 기반 균주에서 argF 결실, NCgl1221 유전자 결실, argCJBD 발현량 강화 및 speC 도입이 퓨트레신의 생산에 미치는 효과를 확인하기 위하여, 상기 실시예 2 내지 4에서 제조한 각 균주를 대상으로 퓨트레신 생산능을 비교하였다.
구체적으로, 상기 실시예 2 내지 4에서 제조된 각 균주(ATCC 13032 ΔargF ΔNCgl1221(실험군 1), ATCC 13032 ΔargF ΔNCgl1221/pHC139T-argCJBD(Cgl)(실험군 2), ATCC 13032 ΔargF ΔNCgl1221 P(CJ7)-argCJBD(실험군 3), ATCC 13032 ΔargF ΔNCgl1221 bioAD::P(CJ7)-speC(Ec)(실험군 4), ATCC 13032 ΔargF ΔNCgl1221 bioAD::P(CJ7)-speC(Ec)/HC139T-argCJBD(Cgl)(실험군 5) 및 ATCC 13032 ΔargF ΔNCgl1221 P(CJ7)-argCJBD bioAD::P(CJ7)-speC(Ec)(실험군 6))를 1.8%(w/v) agar를 포함하는 CMA 평판배지에 도말하여 37℃에서 24시간동안 배양하고, 상기 배양된 각 균주를 1mM 아르기닌을 포함하는 25㎖ 역가배지(2%(w/v) glucose, 1%(w/v) polypeptone, 0.5%(w/v) yeast extract, 0.5%(w/v) (NH4)2SO4, 0.15%(w/v) urea, 0.4%(w/v) KH2PO4, 0.8%(w/v) K2HPO4, 0.05%(w/v) MgSO4, 100㎍/ℓ biotin and 1㎎/ℓ thiamine)에 접종한 다음 30℃에서 200rpm으로 72시간 동안 진탕배양하였으며, 각 배양물로부터 생산된 오르니틴과 퓨트레신의 농도를 측정하고 비교하였다(표 7). 이때, 대조군으로는 유전적으로 변형되지 않은 균주 ATCC 13032를 사용하였다.
표 7 ATCC 13032 균주에서 유래된 각 균주에서 퓨트레신의 생산성 비교
실험군 오르니틴(g/L) 퓨트레신(g/L)
대조군123456 0.06.06.47.70.10.10.2 0.00.00.00.05.26.28.1
상기 표 7에서 보듯이, argF 및 NCgl1221 유전자가 결실되거나 또는 argF 및 NCgl1221 유전자가 결실되고 argCJBD 유전자의 발현량이 증가될 경우에 오르니틴을 생산되었으나, 퓨트레신은 생산되지 않음을 확인하였다. 이는 코리네박테리움 글루타미쿰 균주내에 오르니틴으로부터 퓨트레신을 합성하는 효소인 오르니틴 디카르복실라아제(ODC)를 코딩하는 speC 유전자가 존재하지 않기 때문인 것으로 분석되었다.
한편, 대장균에서 유래된 speC 유전자가 도입된 실시예 4-2에서 제조된 3종의 균주에서는 오르니틴이 거의 존재하지 않고 퓨트레신이 생산됨을 알 수 있었는데, 이는 대장균에서 유래된 speC 유전자가 도입되어 이로부터 발현된 ODC가 오르니틴으로부터 퓨트레신을 합성하였기 때문인 것으로 분석되었다.
또한, 실험군 1 내지 3의 균주에서 생산하는 오르니틴의 생산량과 상기 실험군 1 내지 3의 균주에 speC 유전자가 도입된 실험군 4 내지 6의 균주에서 생산하는 퓨트레신의 생산량을 비교하면, 퓨트레신의 생산량은 오르니틴의 생산량에 비례함을 알 수 있었다. 그리고, 외래의 argCJBD 유전자를 추가로 도입한 경우보다는, 내재적인 argCJBD 유전자의 발현수준을 증가시킨 경우에, 오르니틴과 퓨트레신의 생산량이 향상됨을 알 수 있었다.
실시예 5-2: 글루타메이트 생산 코리네박테리움 글루타미쿰 KCCM-10785P 균주 기반의 퓨트레신 생산능 확인
글루타메이트를 과생산하는 코리네 글루타미쿰 균주 KCCM-10785P를 기반으로 argF 결실, NCgl1221 유전자 결실, argCJBD 발현량 강화 및 speC 도입이 퓨트레신의 생산에 미치는 효과를 확인하기 위하여, 상기 실시예 2 내지 4에서 제조한 각 균주를 대상으로 퓨트레신 생산능을 비교하였다.
구체적으로, 상기 실시예 2 내지 4에서 제조된 각 균주(KCCM-10785P ΔargF ΔNCgl1221(실험군 1), KCCM-10785P ΔargF ΔNCgl1221/pHC139T-argCJBD(Cgl)(실험군 2), KCCM-10785P ΔargF ΔNCgl1221 P(CJ7)-argCJBD(실험군 3), KCCM-10785P ΔargF ΔNCgl1221 bioAD::P(CJ7)-speC(Ec)(실험군 4), KCCM-10785P ΔargF ΔNCgl1221 bioAD::P(CJ7)-speC(Ec)/HC139T-argCJBD(Cgl)(실험군 5) 및 KCCM-10785P ΔargF ΔNCgl1221 P(CJ7)-argCJBD bioAD::P(CJ7)-speC(Ec)(실험군 6))를 실시예 5-1과 동일한 조건에서 접종한 다음, 30℃에서 200rpm으로 48시간 동안 진탕배양하였으며, 각 배양물로부터 생산된 오르니틴의 농도를 측정하고 비교하였다(표 6). 이때, 대조군으로는 유전적으로 변형되지 않은 균주 KCCM-10785P를 사용하였다.
표 8 KCCM-10785P 균주에서 유래된 각 균주에서 퓨트레신의 생산성 비교
실험군 글루타메이트(g/L) 오르니틴(g/L) 퓨트레신(g/L)
대조군123456 15.55.24.82.01.40.10.0 0.07.67.99.01.71.30.1 0.00.00.00.05.96.89.5
상기 표 8에서 보듯이, 글루타메이트 과생산 균주 기반에서도 argF 및 NCgl1221 유전자가 결실되거나 또는 argF 및 NCgl1221 유전자가 결실되고 argCJBD 유전자의 발현량이 증가될 경우에 오르니틴을 생산되었으나, 퓨트레신은 생산되지 않음을 확인하였다.
대장균에서 유래된 speC 유전자가 도입된 실시예 4-2에서 제조된 3종의 균주에서만 퓨트레신이 생산됨을 알 수 있었는데, 이는 대장균에서 유래된 speC 유전자가 도입되어 이로부터 발현된 ODC가 오르니틴으로부터 퓨트레신을 합성하였기 때문인 것으로 분석되었다.
실험군 1 내지 3의 균주에서 생산하는 글루타메이트와 오르니틴을 비교해보면, 균주 내 생성되는 글루타메이트 양이 감소하는 양에 비례해서 생성되는 오르니틴 양이 증가하는 현상을 보였다. 또한, 실험군 1 내지 3의 균주에서 생산하는 오르니틴의 생산량과 상기 실험군 1 내지 3의 균주에 speC 유전자가 도입된 실험군 4 내지 6의 균주에서 생산하는 퓨트레신의 생산량을 비교하면, 퓨트레신의 생산량은 오르니틴의 생산량에 비례함을 알 수 있었다. 그리고, 외래의 argCJBD 유전자를 추가로 도입한 경우보다는, 내재적인 argCJBD 유전자의 발현수준을 증가시킨 경우에, 오르니틴과 퓨트레신의 생산량이 향상됨을 알 수 있었다. 결론적으로 세포 내 생성되는 글루타메이트 양이 증가함에 따라 오르니틴 양도 증가하고, 최종적으로 퓨트레신 생성양도 증가하게 됨을 확인하였다.
이에, 본 발명자들은 퓨트레신 생산능이 우수한 것으로 확인된 실시예 4-2에서 제조된 균주를 "CC01-0064(ATCC 13032 ΔargF ΔNCgl1221 P(CJ7)-argCJBD bioAD::P(CJ7)-speC(Ec))"라 명명하고, 부다페스트 조약 하에 서울 서대문구 홍제1동 소재의 한국미생물보존센터(Korean Culture Center of Microorganisms, KCCM)에 2010년 11월 24일자로 수탁번호 KCCM11138P로 기탁하였다.
이상의 설명으로부터, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 후술하는 특허 청구범위의 의미 및 범위와 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2011009478-appb-I000001

Claims (13)

  1. 오르니틴 카르바모일 트랜스퍼라아제 및 글루타메이트 배출에 관여하는 단백질(NCgl1221)의 활성이 내재적 활성에 비하여 약화되도록 변형되고, 오르니틴 디카르복실라아제(ODC)의 활성이 도입된, 퓨트레신을 생산하는 미생물.
  2. 제1항에 있어서,
    상기 오르니틴 카르바모일 트랜스퍼라아제는 서열번호 28의 아미노산 서열 또는 이와 70% 이상의 상동성을 가지는 아미노산 서열을 갖는 것인 퓨트레신을 생산하는 미생물.
  3. 제1항에 있어서,
    상기 글루타메이트 배출에 관여하는 단백질은 서열번호 30의 아미노산 서열 또는 이와 70% 이상의 상동성을 가지는 아미노산 서열을 갖는 것인 퓨트레신을 생산하는 미생물.
  4. 제1항에 있어서,
    단백질의 활성 약화는 1) 상기 단백질을 암호화하는 유전자의 일부 또는 전체의 결실, 2) 상기 유전자의 발현이 감소하도록 발현조절 서열의 변형, 3) 상기 단백질의 활성이 약화되도록 염색체 상의 상기 유전자 서열의 변형 및 4) 이의 조합으로 이루어진 군으로부터 선택되는 방법에 의하여 수행되는 것인, 퓨트레신을 생산하는 미생물.
  5. 제1항에 있어서,
    상기 오르니틴 디카르복실라아제는 서열번호 40의 아미노산 서열 또는 이와 70% 이상의 상동성을 가지는 아미노산 서열을 갖는 것인 퓨트레신을 생산하는 미생물.
  6. 제1항에 있어서,
    ODC의 활성 도입은 ODC를 코딩하는 염기서열을 포함하는 폴리뉴클레오티드를 염색체에 삽입하는 방법, 상기 폴리뉴클레오티드를 벡터 시스템에 도입하여 미생물에 도입하는 방법, ODC를 코딩하는 염기서열의 상류에 개량된 활성을 나타내는 프로모터를 도입하거나 프로모터에 변이를 준 ODC를 도입하는 방법 및 ODC를 코딩하는 염기서열의 변이체를 도입하는 방법으로 이루어진 군으로부터 선택되는 것인, 퓨트레신을 생산하는 미생물.
  7. 제1항에 있어서,
    추가적으로 오르니틴의 생합성에 관여하는 아세틸 감마 글루타밀 포스페이트 리덕타아제(ArgC), 아세틸글루타메이트 신타아제 또는 오르니틴 아세틸트랜스퍼라아제(ArgJ), 아세틸글루타메이트 키나아제(ArgB), 및 아세틸오르니틴 아미노트랜스퍼라아제(ArgD)의 활성이 내재적 활성에 비하여 강화된 것인 퓨트레신을 생산하는 미생물.
  8. 제7항에 있어서,
    상기 ArgC, ArgJ, ArgB 및 ArgD는 각각 서열번호 33, 35, 37, 및 39의 아미노산 서열 또는 이와 70% 이상의 상동성을 가지는 아미노산 서열을 가지는 것인 퓨트레신을 생산하는 미생물.
  9. 제7항에 있어서,
    단백질의 활성 증가는 1) 상기 단백질을 암호화하는 폴리뉴클레오티드의 카피수 증가, 2) 상기 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형, 3) 상기 효소의 활성이 강화되도록 염색체 상의 상기 폴리뉴클레오티드 서열의 변형 및 4) 이의 조합으로 이루어진 군으로부터 선택되는 방법에 의하여 수행되는 것인, 퓨트레신을 생산하는 미생물.
  10. 제1항에 있어서,
    상기 미생물은 코리네박테리움 속 미생물인 것인 퓨트레신을 생산하는 미생물.
  11. 제10항에 있어서,
    상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰인 것인 퓨트레신을 생산하는 미생물.
  12. 제10항에 있어서,
    상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰(KCCM11138P)인 것인 퓨트레신을 생산하는 미생물.
  13. (i) 오르니틴 카르바모일 트랜스퍼라아제 및 글루타메이트 배출에 관여하는 단백질(NCgl1221)의 활성이 약화되도록 변형되고, 오르니틴 디카르복실라아제(ODC)의 활성이 도입된, 퓨트레신 생산능이 부여된 미생물을 배양하여 배양물을 수득하는 단계; 및
    (ii) 상기 배양된 미생물 또는 배양물로부터 퓨트레신을 회수하는 단계를 포함하는, 퓨트레신의 생산방법.
PCT/KR2011/009478 2010-12-08 2011-12-08 퓨트레신을 생산하는 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법 WO2012077995A2 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2013131033/10A RU2573923C2 (ru) 2010-12-08 2011-12-08 Микроорганизмы для получения путресцина и способ получения путресцина с их использованием
AU2011339096A AU2011339096B2 (en) 2010-12-08 2011-12-08 Microorganisms for producing putrescine and method for producing putrescine using same
JP2013543103A JP6219168B2 (ja) 2010-12-08 2011-12-08 プトレシンを生産する微生物、及びそれを用いてプトレシンを生産する方法
US13/992,242 US9890404B2 (en) 2010-12-08 2011-12-08 Microorganisms for producing putrescine and method for producing putrescine using same
CN201180064397.5A CN103403147B (zh) 2010-12-08 2011-12-08 产腐胺的微生物以及使用此微生物生产腐胺的方法
EP11846494.0A EP2650357B1 (en) 2010-12-08 2011-12-08 Microorganisms for producing putrescine and method for producing putrescine using same
BR112013014442A BR112013014442A2 (pt) 2010-12-08 2011-12-08 micro-organismos para a produção de putrescina e método para a produção de putrescina utilizando o mesmo

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20100124867 2010-12-08
KR10-2010-0124867 2010-12-08
KR1020110130595A KR101348461B1 (ko) 2010-12-08 2011-12-07 퓨트레신을 생산하는 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법
KR10-2011-0130595 2011-12-07

Publications (2)

Publication Number Publication Date
WO2012077995A2 true WO2012077995A2 (ko) 2012-06-14
WO2012077995A3 WO2012077995A3 (ko) 2012-09-07

Family

ID=46684298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009478 WO2012077995A2 (ko) 2010-12-08 2011-12-08 퓨트레신을 생산하는 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법

Country Status (10)

Country Link
US (1) US9890404B2 (ko)
EP (1) EP2650357B1 (ko)
JP (2) JP6219168B2 (ko)
KR (1) KR101348461B1 (ko)
CN (1) CN103403147B (ko)
AU (1) AU2011339096B2 (ko)
BR (1) BR112013014442A2 (ko)
MY (1) MY165886A (ko)
RU (1) RU2573923C2 (ko)
WO (1) WO2012077995A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451123A (zh) * 2013-06-08 2013-12-18 江苏省农业科学院 溶酪大球菌及其制备方法和应用
WO2015009074A2 (ko) 2013-07-17 2015-01-22 씨제이제일제당 (주) 신규 변이 오르니틴 디카복실레이즈 단백질 및 이의 용도
JP2015507479A (ja) * 2012-01-11 2015-03-12 シージェイ チェイルジェダン コーポレーション プトレシン生産能が向上した組換え微生物およびそれを用いてプトレシンを生産する方法
US20170002386A1 (en) * 2013-03-20 2017-01-05 Cj Cheiljedang Corporation Microorganisms having putrescine productivity and process for producing putrescine using the same
EP3135759A4 (en) * 2014-04-25 2017-12-20 Cj Cheiljedang Corporation Putrescine-producing variant strain and putrescine production method using same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101348461B1 (ko) * 2010-12-08 2014-01-08 씨제이제일제당 (주) 퓨트레신을 생산하는 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법
IN2014MN01621A (ko) 2012-01-20 2015-07-03 Cj Cheiljedang Corp
WO2015132213A1 (de) * 2014-03-03 2015-09-11 Evocatal Gmbh Verfahren zur herstellung von endständigen aminocarbonsäuren und aminoaldehyden mittels eines rekombinaten mikroorganismus
US10640797B2 (en) 2014-04-25 2020-05-05 Cj Cheiljedang Corporation Microorganisms for producing diamine and process for producing diamine using them
ES2717600T3 (es) * 2014-04-25 2019-06-24 Cj Cheiljedang Corp Microorganismo productor de diamina y método para producir diamina usando el mismo
CN104152483A (zh) * 2014-08-19 2014-11-19 南京工业大学 argJ基因在发酵生产L-瓜氨酸中的应用
JP6479396B2 (ja) * 2014-10-09 2019-03-06 ヒガシマル醤油株式会社 プトレシン生産能を有する新規微生物およびそれを用いたプトレシンの製造方法
KR20170104489A (ko) 2014-12-23 2017-09-15 게노마티카 인코포레이티드 디아민을 제조하고 처리하는 방법
KR101813759B1 (ko) * 2015-06-24 2018-01-02 씨제이제일제당 (주) 퓨트레신 또는 오르니틴 생산 미생물 및 이를 이용한 퓨트레신 또는 오르니틴 생산방법
KR101871037B1 (ko) * 2016-03-15 2018-06-26 씨제이제일제당 (주) 퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신 생산 방법
JP7214952B2 (ja) * 2018-12-27 2023-01-31 シージェイ チェイルジェダン コーポレーション オルニチン脱炭酸酵素変異型及びそれを用いたプトレシンの生産方法
CN113736719B (zh) * 2020-05-29 2023-04-21 陕西鸿道生物分析科学技术研究院有限公司 一种谷氨酸棒杆菌基因工程菌及其在亚精胺生产中的应用
KR102246288B1 (ko) 2020-08-13 2021-04-29 씨제이제일제당 주식회사 퓨트레신 생산 미생물 및 이를 이용한 퓨트레신 생산방법
CN112522171A (zh) * 2020-12-18 2021-03-19 浙江中山化工集团股份有限公司 一种工程菌、含鸟氨酸溶液的处理方法及试剂盒
KR20240013960A (ko) * 2022-07-21 2024-01-31 대상 주식회사 L-아르기닌 또는 l-시트룰린 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 또는 l-시트룰린의 생산 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005603A1 (en) 2004-07-15 2006-01-19 Dsm Ip Assets B.V. Biochemical synthesis of 1,4-butanediamine
KR100620092B1 (ko) 2004-12-16 2006-09-08 씨제이 주식회사 코리네박테리움 속 세포로부터 유래된 신규한 프로모터서열, 그를 포함하는 발현 카세트 및 벡터, 상기 벡터를포함하는 숙주 세포 및 그를 이용하여 유전자를 발현하는방법
KR20080034334A (ko) 2006-10-16 2008-04-21 씨제이제일제당 (주) 고농도의 글루탐산을 생산하는 미생물 및 이를 이용한글루탐산의 제조 방법
KR20080074286A (ko) 2007-02-08 2008-08-13 씨제이제일제당 (주) 신규한 프로모터 및 이의 용도
KR20090082702A (ko) 2008-01-28 2009-07-31 씨제이제일제당 (주) 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
WO2009125924A2 (ko) 2008-04-10 2009-10-15 한국과학기술원 퓨트레신 고생성능을 가지는 변이 미생물 및 이를 이용한 퓨트레신의 제조방법
KR20100017581A (ko) 2004-12-28 2010-02-16 아지노모토 가부시키가이샤 L-글루탐산 생산 미생물 및 l-글루탐산의 제조방법
KR20100060909A (ko) 2008-11-28 2010-06-07 전북대학교산학협력단 전사억제인자의 기능 감소에 의한 오르니틴의 생산성을 증가시킨 미생물 및 이를 이용한 오르니틴의 생산 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2427825A1 (en) * 2000-11-07 2002-05-16 North Carolina State University Putrescine-n-methyltransferase promoter
JP5343303B2 (ja) 2004-12-28 2013-11-13 味の素株式会社 L−グルタミン酸生産菌及びl−グルタミン酸の製造方法
KR101348461B1 (ko) 2010-12-08 2014-01-08 씨제이제일제당 (주) 퓨트레신을 생산하는 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005603A1 (en) 2004-07-15 2006-01-19 Dsm Ip Assets B.V. Biochemical synthesis of 1,4-butanediamine
KR100620092B1 (ko) 2004-12-16 2006-09-08 씨제이 주식회사 코리네박테리움 속 세포로부터 유래된 신규한 프로모터서열, 그를 포함하는 발현 카세트 및 벡터, 상기 벡터를포함하는 숙주 세포 및 그를 이용하여 유전자를 발현하는방법
KR20100017581A (ko) 2004-12-28 2010-02-16 아지노모토 가부시키가이샤 L-글루탐산 생산 미생물 및 l-글루탐산의 제조방법
KR20080034334A (ko) 2006-10-16 2008-04-21 씨제이제일제당 (주) 고농도의 글루탐산을 생산하는 미생물 및 이를 이용한글루탐산의 제조 방법
KR20080074286A (ko) 2007-02-08 2008-08-13 씨제이제일제당 (주) 신규한 프로모터 및 이의 용도
KR20090082702A (ko) 2008-01-28 2009-07-31 씨제이제일제당 (주) 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
WO2009125924A2 (ko) 2008-04-10 2009-10-15 한국과학기술원 퓨트레신 고생성능을 가지는 변이 미생물 및 이를 이용한 퓨트레신의 제조방법
KR20100060909A (ko) 2008-11-28 2010-06-07 전북대학교산학협력단 전사억제인자의 기능 감소에 의한 오르니틴의 생산성을 증가시킨 미생물 및 이를 이용한 오르니틴의 생산 방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
EMBO J., vol. 1, 1982, pages 853 - 857
QIAN. ZD. ET AL., BIOTECHNOL. BIOENG., vol. 104, no. 4, 2009, pages 651 - 662
SCHNEIDER ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 88, no. 4, 2010, pages 859 - 868
See also references of EP2650357A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507479A (ja) * 2012-01-11 2015-03-12 シージェイ チェイルジェダン コーポレーション プトレシン生産能が向上した組換え微生物およびそれを用いてプトレシンを生産する方法
TWI632238B (zh) * 2013-03-20 2018-08-11 Cj第一製糖股份有限公司 具有腐胺生產力之微生物及使用其產生腐胺之方法
US11053524B2 (en) 2013-03-20 2021-07-06 Cj Cheiljedang Corporation Microorganisms having putrescine productivity and process for producing putrescine using the same
US20170002386A1 (en) * 2013-03-20 2017-01-05 Cj Cheiljedang Corporation Microorganisms having putrescine productivity and process for producing putrescine using the same
TWI657142B (zh) * 2013-03-20 2019-04-21 Cj第一製糖股份有限公司 具有腐胺生產力之微生物及使用其產生腐胺之方法
US10221433B2 (en) * 2013-03-20 2019-03-05 Cj Cheiljedang Corporation Microorganisms having putrescine productivity and process for producing putrescine using the same
RU2665825C2 (ru) * 2013-03-20 2018-09-04 СиДжей ЧеилДжеданг Корпорейшн Микроорганизмы, продуцирующие путресцин, и способ получения путресцина с использованием этих микроорганизмов
CN103451123B (zh) * 2013-06-08 2015-10-21 江苏省农业科学院 溶酪大球菌及其制备方法和应用
CN103451123A (zh) * 2013-06-08 2013-12-18 江苏省农业科学院 溶酪大球菌及其制备方法和应用
JP2016524919A (ja) * 2013-07-17 2016-08-22 シージェイ チェイルジェダン コーポレイション 新規な変異オルニチンデカルボキシラーゼタンパク質及びその用途
US10160981B2 (en) 2013-07-17 2018-12-25 Cj Cheiljedang Corporation Modified ornithine decarboxylase protein and a use thereof
EP3023493A4 (en) * 2013-07-17 2017-01-11 Cj Cheiljedang Corporation Novel mutant ornithine decarboxylase protein and use thereof
US10415068B2 (en) 2013-07-17 2019-09-17 Korea Advanced Institute Of Science And Technology Microorganism for production of putrescine and methods for production of putrescine using the same
WO2015009074A2 (ko) 2013-07-17 2015-01-22 씨제이제일제당 (주) 신규 변이 오르니틴 디카복실레이즈 단백질 및 이의 용도
RU2653453C1 (ru) * 2014-04-25 2018-05-08 СиДжей ЧеилДжеданг Корпорейшн Микроорганизм для продуцирования путресцина и способ получения путресцина с его использованием
EP3135759A4 (en) * 2014-04-25 2017-12-20 Cj Cheiljedang Corporation Putrescine-producing variant strain and putrescine production method using same

Also Published As

Publication number Publication date
JP2016119901A (ja) 2016-07-07
KR101348461B1 (ko) 2014-01-08
JP6219168B2 (ja) 2017-10-25
CN103403147B (zh) 2016-12-07
WO2012077995A3 (ko) 2012-09-07
EP2650357B1 (en) 2019-02-20
EP2650357A2 (en) 2013-10-16
US20140004577A1 (en) 2014-01-02
CN103403147A (zh) 2013-11-20
US9890404B2 (en) 2018-02-13
AU2011339096B2 (en) 2016-02-25
EP2650357A4 (en) 2014-05-14
RU2573923C2 (ru) 2016-01-27
RU2013131033A (ru) 2015-01-20
AU2011339096A1 (en) 2013-07-18
JP2014500728A (ja) 2014-01-16
KR20120064046A (ko) 2012-06-18
MY165886A (en) 2018-05-18
BR112013014442A2 (pt) 2016-09-13

Similar Documents

Publication Publication Date Title
WO2012077995A2 (ko) 퓨트레신을 생산하는 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법
WO2012077994A2 (ko) 오르니틴 생산능이 향상된 미생물 및 이를 이용하여 오르니틴을 생산하는 방법
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2013105827A2 (ko) 퓨트레신 생산능이 향상된 재조합 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법
WO2014142463A1 (ko) L-발린 생산능이 향상된 균주 및 이를 이용한 l-발린 생산방법
WO2013095071A2 (ko) L-라이신 생산능을 갖는 미생물을 이용하여 l-라이신을 생산하는 방법
WO2014148743A1 (ko) 퓨트레신 생산 재조합 미생물 및 이를 이용한 퓨트레신 생산방법
WO2013105802A2 (ko) 자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
WO2019231159A1 (ko) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
WO2015199396A1 (ko) O-아세틸 호모세린을 생산하는 미생물 및 상기 미생물을 이용하여 o-아세틸 호모세린을 생산하는 방법
WO2020130236A1 (ko) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
WO2019190193A1 (ko) 글라이신 생산능이 증가된 미생물 및 이를 이용한 발효 조성물 생산 방법
WO2016208854A1 (ko) 퓨트레신 또는 오르니틴 생산 미생물 및 이를 이용한 퓨트레신 또는 오르니틴 생산방법
WO2015186990A1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2016148490A1 (ko) 피루브산 디하이드로게나아제 변이체, 이를 포함하는 미생물 및 이를 이용한 l-아미노산 생산 방법
WO2019164346A1 (ko) L-트립토판을 생산하는 재조합 코리네형 미생물 및 이를 이용한 l-트립토판을 생산하는 방법
WO2019172702A1 (ko) 신규한 프로모터 및 이를 이용한 l-아미노산 생산 방법
WO2017007159A1 (ko) L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법
WO2015064917A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법
WO2017034165A1 (ko) L-라이신 생산능을 가지는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법
WO2016171392A1 (ko) 글루코네이트 리프레서 변이체, 이를 포함하는 l-라이신을 생산하는 미생물 및 이를 이용한 l-라이신 생산방법
WO2013103246A2 (ko) 퀴놀린산을 생산하는 재조합 미생물 및 이를 이용한 퀴놀린산의 생산 방법
WO2015156583A1 (ko) L-라이신 생산능을 갖는 미생물 및 이를 이용한 l-라이신 생산 방법
WO2014126384A1 (ko) L-쓰레오닌 생산능을 가지는 재조합 에스케리키아 속 미생물 및 이를 이용한 l-쓰레오닌의 생산방법
WO2018230977A1 (ko) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846494

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13992242

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013543103

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011846494

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013131033

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011339096

Country of ref document: AU

Date of ref document: 20111208

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013014442

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013014442

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130610