WO2017006902A1 - 半導体素子の製造方法 - Google Patents

半導体素子の製造方法 Download PDF

Info

Publication number
WO2017006902A1
WO2017006902A1 PCT/JP2016/069764 JP2016069764W WO2017006902A1 WO 2017006902 A1 WO2017006902 A1 WO 2017006902A1 JP 2016069764 W JP2016069764 W JP 2016069764W WO 2017006902 A1 WO2017006902 A1 WO 2017006902A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleavage
groove
guide groove
grooves
reference line
Prior art date
Application number
PCT/JP2016/069764
Other languages
English (en)
French (fr)
Inventor
兼司 吉川
鈴木 正人
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/580,134 priority Critical patent/US20180145206A1/en
Priority to CN201680039593.XA priority patent/CN107851563B/zh
Priority to JP2017527448A priority patent/JP6430009B2/ja
Publication of WO2017006902A1 publication Critical patent/WO2017006902A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages

Definitions

  • the present invention relates to a method for manufacturing a semiconductor element.
  • a semiconductor element manufacturing method including a third step of cleaving a wafer is known (see Patent Document 1).
  • the method for manufacturing a semiconductor device has a problem that the manufacturing yield of the semiconductor device is reduced because the wafer is divided at a position greatly deviated from the division reference line where the cleavage grooves are arranged.
  • a plurality of semiconductor elements and cleavage grooves may be formed to be inclined in the direction of the azimuth angle in the main surface of the wafer with respect to the cleavage line of the wafer.
  • the plurality of semiconductor elements are divided along the cleavage line of the wafer without the dividing lines of the semiconductor elements being guided by the cleavage grooves. Is done. For this reason, the wafer is divided at a position greatly deviated from the dividing reference line where the cleavage grooves are arranged, and the manufacturing yield of the semiconductor element is lowered.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method of manufacturing a semiconductor device that can improve the manufacturing yield of the semiconductor device.
  • a plurality of semiconductor elements arranged along a first direction and a second direction intersecting the first direction are formed on a main surface of a wafer, Forming a plurality of cleaved groove groups between the semiconductor elements, and cleaving the wafer along the division reference line to separate the plurality of semiconductor elements from each other.
  • the plurality of cleavage groove groups are arranged on the division reference line.
  • at least one of the plurality of cleavage groove groups is arranged for four semiconductor elements adjacent to each other in the first direction and the second direction.
  • Each of the plurality of cleavage grooves includes a plurality of cleavage grooves arranged on the division reference line.
  • the plurality of cleavage grooves included in each of the plurality of cleavage groove groups formed between the plurality of semiconductor elements are such that the dividing line is sufficiently close to the dividing reference line.
  • the dividing line can be corrected.
  • the plurality of cleavage groove groups including the plurality of cleavage grooves can prevent the wafer from being divided at a position greatly deviated from the division reference line.
  • the manufacturing method of the semiconductor device of this embodiment can improve the manufacturing yield of the semiconductor device.
  • FIG. 3 is a schematic partially enlarged plan view of a region III shown in FIG. 2 in one step of the method for manufacturing a semiconductor element according to the first embodiment of the present invention.
  • FIG. 4 is a schematic partially enlarged cross-sectional view taken along a cross-sectional line IV-IV shown in FIG. It is a general
  • FIG. 37 is a schematic partial enlarged plan view of a region XXXVII shown in FIG. 36 in one step of the method of manufacturing a semiconductor device according to the fifteenth embodiment of the present invention.
  • Embodiment 1 A method for manufacturing the semiconductor element 12 according to the first embodiment will be described with reference to FIGS.
  • the method of manufacturing the semiconductor element 12 according to the present embodiment includes a first direction and a first direction on a first region of the main surface 11m (see FIG. 7) of the wafer 11.
  • the material of the wafer 11 is not particularly limited, but may be indium phosphide (InP), for example.
  • the second direction may be orthogonal to the first direction.
  • the first direction may be parallel to the division reference line 14.
  • the plurality of semiconductor elements 12 are formed to be inclined with respect to the cleavage line 15 of the wafer 11 in the direction of the azimuth angle in the main surface 11m of the wafer 11 (see FIG. 7).
  • the cleavage line 15 means an intersection line between the cleavage surface 11 s (see FIG. 7) of the wafer 11 and the main surface 11 m of the wafer 11.
  • the cleavage plane 11s of the wafer 11 means a crystal plane of the wafer 11 having cleavage properties.
  • the division reference line 14 means a reference line for dividing the wafer 11.
  • the plurality of semiconductor elements 12 include, for example, a semiconductor layer, an insulating layer, and an electrode.
  • a semiconductor layer, an insulating layer, and an electrode are deposited on the main surface 11 m of the wafer 11 by using a sputtering method, a vacuum evaporation method, a chemical vapor deposition (CVD) method, or the like, thereby forming a plurality of semiconductor elements 12.
  • the semiconductor element 12 is a light emitting diode or a semiconductor laser, and includes an active region 13. Light is emitted from each active region 13 of the plurality of semiconductor elements 12 obtained by dividing the plurality of semiconductor elements 12.
  • the extending direction of the active region 13 is inclined with respect to the cleavage line 15 in the direction of the azimuth angle in the main surface 11m of the wafer 11 (see FIG. 7).
  • the semiconductor element 12 is not limited to a light emitting diode or a semiconductor laser, and may be, for example, a transistor having a vertical structure or a horizontal structure.
  • the method for manufacturing semiconductor element 12 includes a plurality of cleavage groove groups between a plurality of semiconductor elements 12 in the first region of main surface 11 m of wafer 11. 20 (S12), and cleaving start point 18 is formed in the second region of main surface 11m (see FIG. 7) of wafer 11 different from the first region (S13).
  • the plurality of cleavage groove groups 20 and the cleavage starting point 18 are arranged on the division reference line 14.
  • at least one of the plurality of cleavage groove groups 20 is arranged for four semiconductor elements 12 adjacent to each other in the first direction and the second direction.
  • Each of the plurality of cleavage groove groups 20 includes a plurality of cleavage grooves 21, 22, and 23 disposed on the division reference line 14.
  • a plurality of cleaved groove groups 20 are arranged with respect to one division reference line 14.
  • the division reference line 14 is located between two semiconductor elements 12 adjacent to each other in the second direction.
  • two cleavage groove groups 20 adjacent to each other in the first direction among the plurality of cleavage groove groups 20 are arranged symmetrically with respect to the active region 13.
  • the first distance d 1 between the cleavage groove group 20 located on the cleavage start point 18 side with respect to the active region 13 and the active region 13 is the cleavage start point 18 side with respect to the active region 13.
  • the first distance d 1 is defined as the distance between the cleavage groove group 20 located on the cleavage start point 18 side with respect to the active region 13 and the center line of the active region 13.
  • the second distance d 2 is defined as a distance between the cleavage groove group 20 located on the side opposite to the cleavage starting point 18 side with respect to the active region 13 and the center line of the active region 13.
  • the plurality of cleavage groove groups 20 are formed so as not to contact the active region 13.
  • the plurality of cleavage grooves 21, 22, and 23 are formed to be inclined with respect to the cleavage line 15 in the azimuth direction within the main surface 11 m of the wafer 11.
  • the direction in which the plurality of cleavage grooves 21, 22 and 23 are arranged is orthogonal to the direction in which the active region 13 extends.
  • the formation of the plurality of cleavage groove groups 20 (S12) and the formation of the cleavage starting point 18 (S13) may be performed first, or both may be performed simultaneously.
  • the formation of the plurality of cleavage groove groups 20 (S12) and the formation of the cleavage starting point 18 (S13) include element isolation grooves (not shown) of the semiconductor element 12 arranged along the element isolation lines 16s. ) May be performed at the same time. Thereby, the manufacturing time of the semiconductor element 12 can be shortened.
  • the element isolation line 16s is located between two semiconductor elements 12 adjacent to each other in the first direction.
  • Forming the plurality of cleavage groove groups 20 may include etching the wafer 11.
  • Forming the cleavage start point 18 may include forming a cleavage start groove (18).
  • the cleavage starting point 18 may be a cleavage starting groove (18).
  • forming the cleavage starting point portion 18 may include etching the wafer 11.
  • the plurality of cleavage groove groups 20 and cleavage starting point grooves (18) may be formed in a common process.
  • the formation of the plurality of cleavage groove groups 20 and the cleavage start point groove (18) in a common process means that the cleavage start point groove (18) is also formed in the process of forming the plurality of cleavage groove groups 20. .
  • the plurality of cleavage grooves 21, 22, and 23 included in each of the plurality of cleavage groove groups 20 have a depth of 10 ⁇ m, for example.
  • the plurality of cleavage groove groups 20 and cleavage starting point grooves (18) may be formed by etching the wafer 11 using a mask having an opening formed by a photolithography process.
  • a silicon dioxide (SiO 2 ) film is formed on the main surface 11 m of the wafer 11 on which the plurality of semiconductor elements 12 are formed by sputtering or plasma CVD.
  • a resist is formed on the SiO 2 film.
  • An opening is formed in the resist using a photolithography process.
  • the SiO 2 film is dry-etched to form the opening in the SiO 2 film.
  • a gas composed of a compound containing an element such as carbon, hydrogen, or fluorine may be used as an etching gas.
  • the wafer 11 is etched using the SiO 2 film in which the opening is formed as a mask.
  • the etching of the wafer 11 may be dry etching such as inductively coupled plasma reactive ion etching (ICP-RIE), or may be wet etching using a hydrochloric acid-based etchant.
  • ICP-RIE inductively coupled plasma reactive ion etching
  • the plurality of cleavage groove groups 20 and cleavage starting point grooves (18) may be formed in the wafer 11 by a common etching process.
  • the formation of the plurality of cleavage groove groups 20 includes the plurality of cleavage grooves 21 having the same bottom area when the main surface 11m of the wafer 11 is viewed in plan. , 22, 23 may be included.
  • the plurality of cleavage grooves 21, 22, and 23 have the same bottom surface area. Therefore, when the wafer 11 is etched to form the plurality of cleavage grooves 21, 22, and 23.
  • the area of the opening of the mask used in the above is the same.
  • the plurality of cleavage grooves 21, 22, and 23 included in the cleavage groove group 20 are formed simultaneously, the plurality of cleavage grooves 21, 22, and 23 can be suppressed from having different depths.
  • the accuracy of the correction of the dividing line 16 toward the dividing reference line 14 by the plurality of cleavage grooves 21, 22, 23 is further improved and greatly improved from the dividing reference line 14. It can be further suppressed that the wafer 11 is cleaved.
  • cleavage grooves having different depths are formed. If the depth of the cleavage groove is relatively deep, the wafer 11 is easily broken in the relatively deep cleavage groove. If the depth of the cleavage groove is relatively shallow, it becomes difficult for the relatively shallow cleavage groove to correct the dividing line 16.
  • the dividing line 16 means an intersection line between the dividing surface and the main surface 11m of the wafer 11.
  • the dividing surface means a surface on which the wafer 11 is actually divided when the wafer 11 is cleaved.
  • each of the plurality of cleavage groove groups 20 includes three cleavage grooves 21, 22, and 23.
  • Each of the plurality of cleavage groove groups 20 may include two cleavage grooves or four or more cleavage grooves.
  • the cleavage groove 22 is disposed on the opposite side (end point F side) from the cleavage start point 18 side with respect to the cleavage groove 21 with an interval 20G.
  • the cleavage groove 23 is disposed on the opposite side (end point F side) from the cleavage start point 18 side with respect to the cleavage groove 22 with a gap 20G.
  • the interval between the cleavage groove 21 and the cleavage groove 22 may be equal to or different from the interval between the cleavage groove 22 and the cleavage groove 23.
  • the distance 20G between the plurality of adjacent cleaved grooves 21, 22, 23 increases, the number of cleaved grooves 21, 22, 23 decreases. Therefore, for example, when the wafer 11 is made of an InP material, the interval 20G between the plurality of adjacent cleaved grooves 21, 22, 23 is preferably 100 ⁇ m or less.
  • each of the three cleavage grooves 21, 22, and 23 may have an elongated shape in a direction along the division reference line 14.
  • the cleavage groove 21 has a groove length 21 ⁇ / b> L in a direction along the division reference line 14 and a groove width 21 ⁇ / b> W in a direction orthogonal to the division reference line 14.
  • the cleavage groove 22 has a groove length 22 ⁇ / b> L in a direction along the division reference line 14 and a groove width 22 ⁇ / b> W in a direction orthogonal to the division reference line 14.
  • the cleavage groove 23 has a groove length 23 ⁇ / b> L in a direction along the division reference line 14 and a groove width 23 ⁇ / b> W in a direction orthogonal to the division reference line 14.
  • the center of the groove width 21W of the cleavage groove 21, the center of the groove width 22W of the cleavage groove 22, and the center of the groove width 23W of the cleavage groove 23 may be located on the division reference line 14.
  • the cleavage groove 21, the cleavage groove 22, and the cleavage groove 23 may have the same shape as each other or different shapes from each other.
  • the groove length 21L, the groove length 22L, and the groove length 23L may be equal to each other or different from each other.
  • the groove width 21W, the groove width 22W, and the groove width 23W may be equal to each other or different from each other.
  • the plurality of cleaved grooves 21, 22, and 23 each have a groove length (21L, 22L, and 23L) of 5 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 50 ⁇ m. May be.
  • the groove length (21L, 22L, 23L) of the plurality of cleavage grooves 21, 22, 23 is reduced, the depth of the cleavage grooves 21, 22, 23 is reduced.
  • the groove length (21L, 22L, 23L) and depth of the cleavage grooves 21, 22, and 23 are reduced, it becomes difficult to bring the dividing line 16 closer to the dividing reference line 14 by the plurality of cleavage grooves 21, 22, and 23. .
  • each of the plurality of cleaved grooves 21, 22, and 23 has a groove length (21L, 22L, 23L) of 5 ⁇ m or more.
  • the groove length (21L, 22L, 23L) of the plurality of cleavage grooves 21, 22, 23 increases, the number of the plurality of cleavage grooves 21, 22, 23 decreases.
  • the plurality of cleaved grooves 21, 22, 23 each have a groove length (21L, 22L, 23L) of 100 ⁇ m or less.
  • each of the plurality of cleaved grooves 21, 22, 23 has a groove width (21 W, 22 W, 23 W) of 1 ⁇ m to 20 ⁇ m, preferably 5 ⁇ m to 15 ⁇ m. May be.
  • the groove width (21W, 22W, 23W) of the plurality of cleavage grooves 21, 22, 23 is reduced, the depth of the cleavage grooves 21, 22, 23 is reduced.
  • the groove width (21W, 22W, 23W) and depth of the cleavage grooves 21, 22, and 23 are reduced, it becomes difficult to bring the dividing line 16 closer to the dividing reference line 14 by the plurality of cleavage grooves 21, 22, and 23. .
  • each of the plurality of cleaved grooves 21, 22, and 23 has a groove width (21W, 22W, 23W) of 1 ⁇ m or more.
  • the groove widths (21W, 22W, 23W) of the plurality of cleavage grooves 21, 22, 23 are increased, the end portions of the groove widths (21W, 22W, 23W) of the plurality of cleavage grooves 21, 22, 23 are divided reference line 14 It is difficult to bring the dividing line 16 close to the dividing reference line 14 by the plurality of cleaved grooves 21, 22, 23 away from the center. Therefore, it is preferable that the plurality of cleaved grooves 21, 22, 23 each have a groove width (21 W, 22 W, 23 W) of 20 ⁇ m or less.
  • the plurality of cleavage grooves 21, 22, and 23 may have a V shape in a cross section orthogonal to the division reference line 14 as shown in FIGS. 4 and 5. As shown in FIGS. 4 and 5, the bottom surfaces of the plurality of cleavage grooves 21, 22, and 23 may have a V shape in a cross section perpendicular to the division reference line 14.
  • the plurality of cleavage grooves 21, 22, and 23 having a V shape can be formed by, for example, wet etching the wafer 11. As shown in FIG. 6, the plurality of cleavage grooves 21, 22, and 23 may have a rectangular shape in a cross section orthogonal to the division reference line 14. As shown in FIG. 6, the bottom surfaces of the plurality of cleavage grooves 21, 22 and 23 may be flat in a cross section perpendicular to the division reference line 14.
  • the V-shaped grooves of the plurality of cleavage grooves 21, 22, 23 are formed. Stress concentrates on the tip. Therefore, the wafer 11 is easily cleaved at the center of the groove widths (21W, 22W, 23W) of the plurality of cleaved grooves 21, 22, 23 having a V shape.
  • the plurality of cleavage grooves 21, 22, and 23 having a V-shape can bring the dividing line 16 closer to the dividing reference line 14 with higher accuracy.
  • the method for manufacturing the semiconductor element 12 according to the present embodiment may further include grinding the wafer 11.
  • the method for manufacturing the semiconductor element 12 according to the present embodiment may further include forming a back electrode on the back surface of the wafer 11 opposite to the main surface 11 m of the wafer 11.
  • the method for manufacturing semiconductor element 12 includes cleaving wafer 11 and separating a plurality of semiconductor elements 12 from each other (S 14). Specifically, the blade 19 is pressed from the back side of the wafer 11 to apply a load to the wafer 11. The wafer 11 is cleaved along the cleavage line 15 from the cleavage starting point 18. For example, when the wafer 11 has a (100) principal surface 11m, the cleavage plane 11s is the (0-1-1) plane, and the wafer 11 is separated from the cleavage starting point 18 in the [01-1] direction or [ Cleaved in the direction of [0-11]. As shown in FIGS.
  • the wafer 11 is cleaved along the division reference line 14 from the starting point S indicated by a black circle toward the end point F indicated by a white circle.
  • the starting point S and the ending point F are located on the division reference line 14.
  • the wafer 11 is cleaved from the cleavage starting point 18 in a direction along the main surface 11 m of the wafer 11 and a thickness direction of the wafer 11 orthogonal to the main surface 11 m of the wafer 11.
  • the plurality of semiconductor elements 12 and the plurality of cleavage grooves 21, 22, 23 are within the main surface 11 m of the wafer 11 with respect to the cleavage line 15 of the wafer 11. It is tilted in the direction of the azimuth angle.
  • the divided reference line 14 that is the arrangement direction of the plurality of cleavage grooves 21, 22, and 23 is shifted from the cleavage line 15 by the azimuth angle ⁇ .
  • the cleavage line 15 is parallel to the grooveless dividing line 17 described later.
  • the wafer 11 is divided from the cleavage starting point 18 along a cleavage line 15 that is inclined by an azimuth angle ⁇ with respect to the division reference line 14.
  • the inclination of the division reference line 14 with respect to the cleavage line 15 in the direction of the azimuth angle in the main surface 11m of the wafer 11 is, for example, the angle deviation of the orientation flat of the wafer 11 and the pattern deviation of the plurality of semiconductor elements 12 in the photolithography process.
  • a plurality of cleavage groove groups 20 are formed between the plurality of semiconductor elements 12.
  • Each of the plurality of cleavage groove groups 20 includes a plurality of cleavage grooves 21, 22, and 23 disposed on the division reference line 14. While the wafer 11 does not exist in the plurality of cleavage grooves 21, 22, and 23, the wafer 11 exists around the plurality of cleavage grooves 21, 22, and 23. Therefore, stress is generated at each edge portion of the plurality of cleavage grooves 21, 22, 23, that is, a portion of the wafer 11 facing each of the plurality of cleavage grooves 21, 22, 23.
  • a step 25 is formed on the dividing line 16 and the dividing surface.
  • the step 25 is formed from a plurality of cleavage grooves 21, 22, 23 from the cleavage start point 18 side toward the opposite side of the cleavage start point 18 (direction from the start point S toward the end point F), and the main surface of the wafer 11. It extends from 11 m toward the back surface of the wafer 11.
  • the size of the step 25 corresponds to the correction amount of the dividing line 16 and the dividing surface in each of the plurality of cleavage grooves 21, 22, and 23.
  • a position x on the horizontal axis in FIG. 10 represents a position in the wafer 11 in the direction along the division reference line 14.
  • a position x on the side of the cleavage starting point 18 of the semiconductor element 12 closest to the cleavage starting point 18 is defined as 0 ⁇ m.
  • the position x opposite to the cleavage starting point 18 side of the semiconductor element 12 farthest from the cleavage starting point 18 may be, for example, 14000 ⁇ m.
  • the position y of the dividing line 16 on the vertical axis in FIG. 10 represents the magnitude of the deviation of the dividing line 16 from the dividing reference line 14 at the position x (the distance between the dividing reference line 14 and the dividing line 16).
  • the split reference line 14 is inclined with respect to the cleavage line 15 only by the azimuth angle ⁇ . Therefore, in Comparative Example 1 in which the plurality of cleavage grooves 21, 22, and 23 are not formed, as shown by the grooveless dividing line 17 shown in FIG. 8, the dividing line 16 becomes the dividing reference line as the distance from the cleavage starting point 18 increases. Deviated greatly from 14. In Comparative Example 2, one cleavage groove is formed for four semiconductor elements 12 adjacent to each other in the first direction and the second direction. The cleavage groove of Comparative Example 2 cannot correct the dividing line 16 so that the dividing line 16 is sufficiently close to the dividing reference line 14.
  • one cleaved groove group 20 is formed for four semiconductor elements 12 adjacent to each other in the first direction and the second direction.
  • Each of the plurality of cleavage groove groups 20 includes three plurality of cleavage grooves 21, 22, and 23.
  • the position y of the dividing line 16 in the semiconductor element 12 farthest from the cleavage starting point 18 is reduced to one third or less of the first comparative example.
  • the dividing line 16 is sufficiently close to the dividing reference line 14 by the cleavage groove group 20 including the plurality of cleavage grooves 21, 22, 23 between the plurality of semiconductor elements 12. Can be corrected.
  • each of the plurality of cleavage groove groups includes two cleavage grooves (for example, cleavage groove group 20j shown in FIGS. 36 and 37).
  • the position y of the dividing line 16 in the semiconductor element 12 farthest from the cleavage starting point 18 is reduced to one third or less of the first comparative example.
  • the dividing line 16 can be corrected so that the dividing line 16 is sufficiently close to the dividing reference line 14 by the cleavage groove group including two cleavage grooves between the plurality of semiconductor elements 12. .
  • the cleavage of the wafer 11 and the separation of the plurality of semiconductor elements 12 from each other may include the separation of the plurality of semiconductor elements 12 from each other along the element separation line 16s where the element separation grooves are arranged. Good.
  • the manufacturing method of the semiconductor element 12 of this Embodiment is demonstrated.
  • a plurality of elements arranged in the first region of the main surface 11m of the wafer 11 along the first direction and the second direction intersecting the first direction.
  • a plurality of cleavage groove groups 20 are formed between the plurality of semiconductor elements 12 in the first region of the main surface 11m of the wafer 11 (S12), Forming a cleavage starting point 18 in a second region of the main surface 11m of the wafer 11 different from the first region (S13).
  • the method for manufacturing the semiconductor element 12 includes cleaving the wafer 11 along the division reference line 14 and separating the plurality of semiconductor elements 12 from each other (S14).
  • the plurality of cleavage groove groups 20 and the cleavage starting point 18 are arranged on the division reference line 14.
  • at least one of the plurality of cleavage groove groups 20 is arranged for four semiconductor elements 12 adjacent to each other in the first direction and the second direction.
  • Each of the plurality of cleavage groove groups 20 includes a plurality of cleavage grooves 21, 22, and 23 disposed on the division reference line 14.
  • the manufacturing method of the semiconductor element 12 of the present embodiment even if the division reference line 14 is inclined in the direction of the azimuth in the main surface 11m of the wafer 11 with respect to the cleavage line 15 of the wafer 11, a plurality of semiconductors
  • the plurality of cleavage grooves 21, 22, and 23 included in each of the plurality of cleavage groove groups 20 formed between the elements 12 correct the division line 16 so that the division line 16 is sufficiently close to the division reference line 14. be able to.
  • the plurality of cleavage groove groups 20 including the plurality of cleavage grooves 21, 22, and 23 can prevent the wafer 11 from being divided at positions greatly deviated from the division reference line 14.
  • the manufacturing method of the semiconductor element 12 according to the present embodiment can improve the manufacturing yield of the semiconductor element 12.
  • the plurality of cleavage grooves 21, 22, and 23 may have a V shape in a cross section orthogonal to the division reference line 14.
  • stress concentrates on the tips of the V-shaped grooves of the plurality of cleaved grooves 21, 22, and 23.
  • the wafer 11 is easily cleaved at the center of the groove width (21W, 22W, 23W) of the plurality of cleavage grooves 21, 22, 23 having a V-shape.
  • the plurality of cleavage grooves 21, 22, and 23 having a V-shape can bring the dividing line 16 closer to the dividing reference line 14 with higher accuracy.
  • forming the cleavage starting point 18 may include forming the cleavage starting groove (18) by etching the wafer 11. Forming the cleavage start groove (18) by etching suppresses the formation of cracks around the cleavage start groove (18). According to the manufacturing method of the semiconductor element 12 of the present embodiment, the wafer 11 is prevented from being cleaved at the position where the division reference line is greatly deviated from 14 due to the crack, and the wafer 11 is divided into the division reference line. 14 can be cleaved along.
  • the plurality of cleavage groove groups 20 and the cleavage starting point groove (18) may be formed in a common process. According to the manufacturing method of the semiconductor element 12 of the present embodiment, the number of manufacturing steps of the semiconductor element 12 can be reduced, and the semiconductor element 12 can be manufactured efficiently.
  • the formation of the plurality of cleavage groove groups 20 includes the plurality of cleavage grooves 21 having the same bottom area when the main surface 11m of the wafer 11 is viewed in plan. , 22, 23 may be included. Since the plurality of cleavage grooves 21, 22, and 23 have the same bottom surface area, the plurality of cleavage grooves 21, 22, and 23 can be prevented from having different depths. According to the manufacturing method of the semiconductor element 12 of the present embodiment, the accuracy of the correction of the dividing line 16 toward the dividing reference line 14 by the plurality of cleavage grooves 21, 22, 23 is further improved and greatly improved from the dividing reference line 14. It can be further suppressed that the wafer 11 is cleaved.
  • FIG. A method for manufacturing the semiconductor element 12 according to the second embodiment will be described with reference to FIGS.
  • the manufacturing method of the semiconductor element 12 according to the present embodiment basically includes the same steps as the manufacturing method of the semiconductor element 12 according to the first embodiment, and has the same effects, but mainly differs in the following points. .
  • the plurality of semiconductor elements 12 include an active region 13.
  • the plurality of cleavage groove groups 20 a are adjacent to the active region 13 and are adjacent to the active region 13 and are adjacent to the active region 13 and to the active region 13. It includes a second cleavage groove group 20a2 located on the opposite side to the cleavage starting point 18 side.
  • the first cleavage groove group 20a1 and the second cleavage groove group 20a2 include a plurality of cleavage grooves 21, 22, and 23, respectively.
  • the formation of the plurality of cleavage groove groups 20a means that the first distance d 1 between the first cleavage groove group 20a1 and the active region 13 is a second distance between the second cleavage groove group 20a2 and the active region 13. as is larger than the distance d 2, comprising forming a plurality of cleavage groove group 20a.
  • the step 25 reduces the light emission efficiency of the semiconductor element 12.
  • the first distance d 1 between the first cleavage groove group 20a1 and the active region 13 is the second distance d between the second cleavage groove group 20a2 and the active region 13. Greater than 2 . Therefore, the distance d 4 between the step 25 and the active region 13 in the manufacturing method of this embodiment (see FIG. 12), the distance d 3 (FIG between the step 25 and the active region 13 in the manufacturing method of the first embodiment 9).
  • the semiconductor element 12 having improved luminous efficiency can be manufactured with improved manufacturing yield.
  • Embodiment 3 With reference to FIG. 13, the manufacturing method of the semiconductor element 12 which concerns on Embodiment 3 is demonstrated.
  • the manufacturing method of the semiconductor element 12 of the present embodiment basically includes the same steps as the manufacturing method of the semiconductor element 12 of the first embodiment, but mainly differs in the following points.
  • the manufacturing method of the semiconductor element 12 of the present embodiment includes forming a plurality of cleavage groove groups 20b.
  • Each of the plurality of cleavage groove groups 20b includes a plurality of cleavage grooves (21b, 22b, 23b).
  • the first ends of the plurality of cleavage grooves (21b, 22b, 23b) on the opposite side (end point F side) from the cleavage start point 18 side are directed toward the opposite side (end point F side) from the cleavage start point 18 side. It has a tapered shape.
  • the second ends of the plurality of cleavage grooves (21b, 22b, 23b) on the cleavage start point 18 side (start S side) are the cleavage start point 18 side (start S). You may have a shape which becomes tapered as it goes to the side.
  • the plurality of cleavage grooves (21b, 22b, 23b) in the present embodiment may have a rectangular shape as shown in FIG.
  • the plurality of cleavage grooves (21b, 22b, 23b) may have a V-shape in a cross section perpendicular to the division reference line 14, as shown in FIGS.
  • the effect of the manufacturing method of the semiconductor element 12 of the present embodiment will be described.
  • the effects of the manufacturing method of the semiconductor element 12 of the present embodiment mainly have the following effects in addition to the same effects as the manufacturing method of the semiconductor element 12 of the first embodiment.
  • the first end portions of the plurality of cleavage grooves (21b, 22b, 23b) on the side opposite to the cleavage starting point portion 18 side (end point F side) are the cleavage starting point portion 18. It has a shape that tapers toward the side opposite to the side (end point F side). Stress is generated in each edge portion of the plurality of cleavage grooves (21b, 22b, 23b), that is, a portion of the wafer 11 facing each of the plurality of cleavage grooves (21b, 22b, 23b). This stress is concentrated on the tapered tip of the first end of the plurality of cleavage grooves (21b, 22b, 23b).
  • the wafer 11 When the wafer 11 is cleaved, the wafer 11 is centered at the groove width of the plurality of cleavage grooves (21b, 22b, 23b) where the tapered tips of the first ends of the plurality of cleavage grooves (21b, 22b, 23b) are located. Is easy to cleave. Even if the plurality of cleavage grooves (21b, 22b, 23b) have a rectangular shape as shown in FIG. 6 in the cross section perpendicular to the dividing reference line 14, the plurality of cleavage grooves (21b, 22b, 23b).
  • the dividing line 16 inclined in the direction of the azimuth angle with respect to the dividing reference line 14 can be corrected so as to approach the dividing reference line 14 with higher accuracy.
  • the plurality of semiconductor elements 12 can be manufactured with a high manufacturing yield.
  • the second end portions of the plurality of cleavage grooves (21b, 22b, 23b) on the cleavage start point 18 side have a shape that tapers toward the cleavage start point 18 side. You may have. Stress is generated in each edge portion of the plurality of cleavage grooves (21b, 22b, 23b), that is, a portion of the wafer 11 facing each of the plurality of cleavage grooves (21b, 22b, 23b). This stress is concentrated on the tapered tip of the second end of the plurality of cleavage grooves (21b, 22b, 23b).
  • the wafer 11 When the wafer 11 is cleaved, the wafer 11 is centered at the groove width of the plurality of cleavage grooves (21b, 22b, 23b) where the tapered tips of the second ends of the plurality of cleavage grooves (21b, 22b, 23b) are located. Is easy to cleave. Even if the plurality of cleavage grooves (21b, 22b, 23b) have a rectangular shape as shown in FIG. 6 in the cross section perpendicular to the dividing reference line 14, the plurality of cleavage grooves (21b, 22b, 23b). ), The dividing line 16 inclined in the direction of the azimuth angle with respect to the dividing reference line 14 can be corrected so as to approach the dividing reference line 14 with higher accuracy. Thus, the plurality of semiconductor elements 12 can be manufactured with a high manufacturing yield.
  • Embodiment 4 FIG. With reference to FIG. 14, the manufacturing method of the semiconductor element 12 which concerns on Embodiment 4 is demonstrated.
  • the manufacturing method of the semiconductor element 12 of the present embodiment basically includes the same steps as the manufacturing method of the semiconductor element 12 of the first embodiment, but mainly differs in the following points.
  • the manufacturing method of the semiconductor element 12 of the present embodiment includes forming a plurality of cleavage groove groups 20c.
  • Each of the plurality of cleavage groove groups 20c includes a plurality of cleavage grooves (21c, 22c, 23c).
  • Each of the plurality of cleavage grooves (21c, 22c, 23c) includes a first cleavage groove and a second cleavage groove that are adjacent to each other.
  • the second cleavage groove is located on the opposite side (end point F side) from the cleavage starting point 18 side with respect to the first cleavage groove.
  • the second groove width of the second cleavage groove is narrower than the first groove width of the first cleavage groove.
  • the cleavage groove 21c and the cleavage groove 22c can be regarded as a first cleavage groove and a second cleavage groove, respectively.
  • the groove width 22 ⁇ / b> W of the cleavage groove 22 is narrower than the groove width 21 ⁇ / b> W of the cleavage groove 21.
  • the cleavage groove 22c and the cleavage groove 23c can be regarded as a first cleavage groove and a second cleavage groove, respectively.
  • the groove width 23 ⁇ / b> W of the cleavage groove 23 is narrower than the groove width 22 ⁇ / b> W of the cleavage groove 22.
  • the cleavage groove group 20c located adjacent to the active region 13 and on the cleavage start point 18 side (starting point S side) with respect to the active region 13 includes a plurality of cleavage grooves (21c, 22c, 23c).
  • the cleaved groove group 20c is configured so that the groove widths (21W, 22W, 23W) of the plurality of cleaved grooves (21c, 22c, 23c) gradually decrease toward the active region 13.
  • the effect of the manufacturing method of the semiconductor element 12 of the present embodiment will be described.
  • the effects of the manufacturing method of the semiconductor element 12 of the present embodiment mainly have the following effects in addition to the same effects as the manufacturing method of the semiconductor element 12 of the first embodiment.
  • the plurality of cleavage grooves each include a first cleavage groove and a second cleavage groove that are adjacent to each other.
  • the second cleavage groove is located on the opposite side (end point F side) from the cleavage starting point 18 side with respect to the first cleavage groove.
  • the second groove width of the second cleavage groove is narrower than the first groove width of the first cleavage groove. Therefore, the second cleavage groove can correct the dividing line 16 closer to the dividing reference line 14 than the first cleavage groove.
  • the dividing line 16 inclined in the direction of the azimuth angle with respect to the dividing reference line 14 can be corrected so as to approach the dividing reference line 14 with higher accuracy.
  • Embodiment 5 FIG. With reference to FIG. 15 to FIG. 21 and FIG. 23, a method for manufacturing the semiconductor element 12 according to the fifth embodiment will be described.
  • a plurality of semiconductor elements 12 are formed on one area and the other area sandwiching division reference line 14 on wafer 11. (S11).
  • the wafer 11 is cleaved in the direction of the arrow of the division reference line.
  • the wafer 11 is cleaved from a starting point S indicated by a black circle to an end point F indicated by a white circle.
  • the starting point S and the ending point F are located on the division reference line 14.
  • the division reference line 14 and the cleavage line 15 are parallel to each other.
  • the material of the wafer 11 is not particularly limited, but may be, for example, indium phosphide (InP).
  • the plurality of semiconductor elements 12 may be arranged in a matrix.
  • the plurality of semiconductor elements 12 include, for example, a semiconductor layer, an insulating layer, and an electrode.
  • a plurality of semiconductor elements 12 may be formed on wafer 11 by the same method as in the first embodiment.
  • the pair of side surfaces of the plurality of semiconductor elements 12 are formed substantially parallel to the division reference line 14.
  • the semiconductor element 12 is a light emitting diode and includes an active region 13. Light is emitted from each active region 13 of the plurality of semiconductor elements 12 obtained by dividing the plurality of semiconductor elements 12.
  • the direction in which the active region 13 extends is orthogonal to the dividing reference line 14 and the cleavage line 15.
  • the semiconductor element 12 is not limited to a light emitting diode, and may be, for example, a transistor having a vertical structure or a horizontal structure.
  • the method of manufacturing semiconductor device 12 of the present embodiment includes forming guide groove group 30 on wafer 11 (S22).
  • One guide groove group 30 may be formed for one division reference line 14.
  • the formation of the plurality of guide groove groups 30 (S22) may be performed simultaneously with the step of forming element isolation grooves (not shown) of the semiconductor element 12. Thereby, the time required for manufacturing the semiconductor element 12 can be shortened.
  • Each of the plurality of guide groove groups 30 includes a plurality of guide grooves (first guide groove 32, second guide groove 33, guide grooves 31, 34, 35).
  • the plurality of guide grooves are the first guide groove 32, the second guide groove 33, and the guide grooves 31, 34. , 35.
  • the second guide groove 33 is disposed away from the first guide groove 32 toward the end point F.
  • the guide groove 31 is disposed away from the first guide groove 32 toward the starting point S side.
  • the guide groove 34 is disposed away from the second guide groove 33 toward the end point F.
  • the guide groove 35 is disposed away from the guide groove 34 toward the end point F.
  • the first guide groove 32 and the second guide groove 33 are disposed across one region and the other region sandwiching the division reference line 14. That is, the first guide groove 32 has the first side surface 32p in one region and the third side surface 32q in the other region.
  • the second guide groove 33 has a second side surface 33p in one region and a fourth side surface 33q in the other region.
  • the plurality of guide grooves (the first guide groove 32, the second guide groove 33, the guide grooves 31, 34, and 35) each have a groove width W1 in a direction perpendicular to the split reference line 14, and the split reference line 14 has a groove length W ⁇ b> 2 in a direction parallel to 14.
  • the plurality of guide grooves (the first guide groove 32, the second guide groove 33, the guide grooves 31, 34, and 35) are disposed along the division reference line 14 with a groove interval of 30G.
  • the starting point S is located closer to the cleavage starting point groove 18d than the guide groove group 30.
  • the starting point S is located within the groove width W1 of the guide groove 31 in the direction perpendicular to the division reference line 14.
  • the starting point S is a groove width W1 of a plurality of guide grooves (first guide groove 32, second guide groove 33, guide grooves 31, 34, 35) in a direction perpendicular to the dividing reference line 14. It may be located in the center of.
  • the groove step interval S1 is equal to the side surface (for example, the first side surface 32p) far from the division reference line 14 among the side surfaces of the guide groove (for example, the first guide groove 32) along the division reference line 14 and the division reference line. 14 and the side surface (for example, the second side surface) farther from the division reference line 14 among the side surfaces of the adjacent guide groove (for example, the second guide groove 33) along the direction of the division reference line 14. 33p) and the distance between the split reference line 14.
  • the groove step interval S1 is defined as a difference between the distance between the first side surface 32p and the division reference line 14 and the distance between the second side surface 33p and the division reference line 14.
  • the side surface along the division reference line 14 does not have to be a side surface strictly parallel to the division reference line 14.
  • the first side surface 32p and the third side surface 32q of the first guide groove 32 sandwich the division reference line 14.
  • the division reference line 14 passes through the center of the first guide groove 32 in the width direction.
  • the second side surface 33p and the fourth side surface 33q of the second guide groove 33 sandwich the division reference line 14.
  • the division reference line 14 passes through the center in the width direction of the second guide groove 33.
  • the groove step interval S1 is half of the difference between the groove widths W1 of adjacent guide grooves.
  • the groove step interval S1 is about 5 ⁇ m or less
  • the groove interval 30G is about 10 ⁇ m to about 100 ⁇ m
  • the groove width W1 is about 10 ⁇ m.
  • the depth of the guide groove is about 5 ⁇ m or more.
  • the groove width W1, the groove length W2, the groove interval 30G, and the groove step interval S1 are appropriately determined according to the size and thickness of the wafer 11, the number of the plurality of semiconductor elements 12 formed in the wafer 11, and the like. obtain.
  • the first side surface 32p of the first guide groove 32 and the second side surface 33p of the second guide groove 33 are located in one region sandwiching the division reference line 14.
  • the first side surface 32 p of the first guide groove 32 and the second side surface 33 p of the second guide groove 33 are side surfaces along the division reference line 14.
  • the first side surface 32p of the first guide groove 32 and the second side surface 33p of the second guide groove 33 are side surfaces along the direction from the starting point S to the end point F.
  • the side surface along the division reference line 14 is a side surface along the direction from the starting point S to the end point F.
  • the third side surface 32q of the first guide groove 32 facing the first side surface 32p is located in the other region sandwiching the division reference line 14.
  • the fourth side surface 33q of the second guide groove 33 facing the second side surface 33p is located in the other region sandwiching the division reference line 14.
  • the third side surface 32q of the first guide groove 32 and the fourth side surface 33q of the second guide groove 33 are side surfaces along the division reference line 14.
  • the first side surface 32p and the third side surface 32q of the first guide groove 32 sandwich the division reference line 14.
  • the second side surface 33p and the fourth side surface 33q of the second guide groove 33 sandwich the division reference line 14.
  • the guide groove group 30 includes a plurality of guide grooves (first guide groove 32, second guide groove 33, guide grooves 31, 34, 35).
  • the first guiding groove 32 is the second guiding groove from the starting point S side (second from the right on the paper surface), and the second guiding groove 33 is the third guiding groove from the starting point S side. May be.
  • the second guide groove 34 from the end point F side is regarded as the first guide groove, and the guide groove 35 closest to the end point F (leftmost on the paper surface) is the second guide groove. May be considered.
  • the guide groove 31 closest to the starting point S (rightmost on the paper surface) is regarded as the first guiding groove
  • the second guiding groove (32) from the starting point S side is the second guide. It may be regarded as a groove.
  • the guide grooves adjacent to each other are regarded as a first guide groove and a second guide groove, and the two guide grooves are repeatedly arranged to form a plurality of guide grooves (first guide groove 32, second guide groove 33, A guide groove group 30 including guide grooves 31, 34, 35) may be configured.
  • the groove width W1 of the guide groove 31 closest to the starting point S (the guide groove with which the dividing line 16 first comes into contact and the rightmost groove in FIG. 17) will be described.
  • the groove width W1 of the guide groove closest to the starting point S is set from the split reference line 14 to the split line 16 in the manufacturing method of the semiconductor element 12 of the comparative example in which the wafer 11 is cleaved without forming the guide groove group 30. It may be longer than twice the maximum distance.
  • the dividing reference line 14 becomes the groove of the guide groove 31 as shown in FIG.
  • the groove width W1 of the guide groove 31 may be about 30 ⁇ m or more.
  • the plurality of guide grooves are used to etch the wafer 11 using a mask having an opening formed by a photolithography process. It may be formed. Specifically, a silicon dioxide (SiO 2 ) film is formed on the wafer 11 by sputtering, plasma chemical vapor deposition (CVD), or the like. A resist is formed on the SiO 2 film. An opening is formed in the resist using a photolithography process. Using the resist in which the opening is formed, the SiO 2 film is dry-etched to form the opening in the SiO 2 film. When dry etching is performed, a gas composed of a compound such as carbon, hydrogen, or fluorine may be used.
  • a gas composed of a compound such as carbon, hydrogen, or fluorine may be used.
  • the wafer 11 is etched using the SiO 2 film in which the opening is formed as a mask.
  • the etching of the wafer 11 may be dry etching such as inductively coupled reactive ion etching (ICP-RIE).
  • ICP-RIE inductively coupled reactive ion etching
  • Forming a plurality of guide grooves (first guide groove 32, second guide groove 33, guide grooves 31, 34, 35) in the manufacturing method of the semiconductor element 12 of the present embodiment is performed by dry etching the wafer 11. Then, further wet etching may be performed. However, wet etching is a characteristic of the plurality of semiconductor elements 12 already formed before forming the plurality of guide grooves (first guide groove 32, second guide groove 33, guide grooves 31, 34, 35). Need to be done so as not to affect.
  • the method for manufacturing semiconductor device 12 of the present embodiment may further include forming cleavage starting groove 18 d (S 23).
  • the cleavage starting point groove 18 d is formed on the starting point S side of the guide groove group 30.
  • the cleavage starting point groove 18d is formed by scribing the wafer 11 along the division reference line 14 using a needle made of a hard material such as diamond, for example. Either the guide groove group 30 (S22) or the cleavage start groove 18d (S23) may be performed first.
  • the wafer 11 is ground to a predetermined thickness after the formation of the guide groove group 30 (S22) and the formation of the cleavage start groove 18d (S23). It may be further provided.
  • the method for manufacturing the semiconductor element 12 of the present embodiment may further include forming the back electrode on the back surface of the wafer 11.
  • the method for manufacturing semiconductor element 12 according to the present embodiment further includes cleaving wafer 11 to separate the plurality of semiconductor elements 12 from each other (S 14). Specifically, as shown in FIG. 18, a load is applied to the wafer 11 by pressing the blade 19 from the back side of the wafer 11. The wafer 11 is cleaved along the cleavage line 15 from the cleavage starting point groove 18d. As shown in FIGS. 16 and 17, the wafer 11 is cleaved along the division reference line 14 from the starting point S to the end point F indicated by a white circle, which is indicated by a black circle. In FIG.
  • the cleavage plane 11s is the (0-1-1) plane, and the wafer 11 is separated from the cleavage starting point groove 18d by [01-1]. ] Or [0-11] direction.
  • the method for manufacturing the semiconductor element 12 of the present embodiment includes a plurality of guide grooves (first guide groove 32, second guide groove 33, guide grooves 31, 34, 35) on the wafer 11.
  • the guide groove group 30 including the guide groove group 30 is formed (S22).
  • the guide groove group 30 including a plurality of guide grooves (the first guide groove 32, the second guide groove 33, the guide grooves 31, 34, and 35) is separated from the split reference line 14 due to this crack. (Refer to FIG. 18) is corrected so as to approach the division reference line 14.
  • correction of the dividing line 16 by the guide groove group 30 including a plurality of guide grooves is performed.
  • the dividing line 16 is shifted from the cleavage starting point groove 18 d toward the first side face 32 p of the first guide groove 32.
  • the dividing line 16 extends along a cleavage line 15 parallel to the dividing reference line 14 at a position shifted from several ⁇ m to several tens of ⁇ m from the dividing reference line 14.
  • the dividing line 16 contacts the guide groove 31 closest to the starting point S (the rightmost guide groove 31 on the paper surface in FIG. 19).
  • the extension line of the dividing line 16 in the guide groove 31 exists inside the guide groove (first guide groove 32) adjacent to the guide groove 31 in the cleavage direction (direction from the starting point S to the end point F)
  • the dividing line 16 Is not corrected by the guide groove 31.
  • the extension line of the dividing line 16 in the guiding groove 31 is closer to the dividing reference line 14 than the first side surface 32p of the first guiding groove 32
  • the dividing line 16 is corrected in the direction of the dividing reference line 14 by the guiding groove 31.
  • the extension line of the dividing line 16 in the guiding groove 31 is positioned inside the first guiding groove 32 by a distance d 5 , the dividing line 16 is separated by the guiding groove 31. No correction is made in the direction of the division reference line 14.
  • the dividing line 16 that has not been corrected by the guide groove 31 contacts the first guide groove 32.
  • the dividing line 16 is Correction is made toward the dividing reference line 14 by one guide groove 32.
  • the extension line of the dividing line 16 in the first guiding groove 32 is farther from the dividing reference line 14 than the second side surface 33p of the second guiding groove 33, the dividing line 16 is divided by the first guiding groove 32. Correction is made toward the line 14. Specifically, as shown in FIG.
  • the dividing line 16 is Correction is made toward the dividing reference line 14 at the end of the first guide groove 32 on the cleavage direction side (end point F side).
  • the dividing line 16 is corrected toward the dividing reference line 14 by a distance d 7 at the end of the second guiding groove 33 on the cleavage direction side (end point F side), similarly to the first guiding groove 32.
  • This correction is repeated for a plurality of guide grooves (for example, the first guide groove 32, the second guide groove 33, and the guide groove 34), and the dividing line 16 gradually approaches the dividing reference line 14.
  • the guide groove group 30 has 15 guide grooves. As shown in FIGS. 20 and 21, end portions on the cleavage direction side (end point F side) of each of the plurality of guide grooves (for example, the first guide groove 32, the second guide groove 33, and the guide groove 34). Thus, when the dividing line 16 is corrected, steps C1, C2, and C3 are formed on the dividing line 16 and the dividing surface. The steps C1, C2, and C3 are formed from a plurality of guide grooves (for example, the first guide groove 32, the second guide groove 33, and the guide groove 34) from the cleavage start point groove 18d side to the opposite side of the cleavage start point groove 18d.
  • a plurality of guide grooves for example, the first guide groove 32, the second guide groove 33, and the guide groove 34
  • each of the steps C1, C2, C3 is the amount of correction of the dividing line 16 and the dividing surface in each of a plurality of guiding grooves (for example, the first guiding groove 32, the second guiding groove 33, the guiding groove 34). It corresponds to.
  • the steps C1, C2, and C3 are formed from the main surface 11m of the wafer 11 to the back surface of the wafer 11.
  • a plurality of guide grooves (for example, the first guide groove 32, the second guide groove 33, and the guide groove 34) correct the split surface that is shifted from the split reference line 14 on the back surface of the wafer 11.
  • one tapered groove 40 is formed in wafer 11 for one divided reference line 14 instead of guiding groove group 30 of the present embodiment.
  • the side where the groove width of the tapered groove 40 is narrow is the cleavage direction side (end point F side).
  • the tapered groove 40 has a shape in which the groove width converges toward the end point F.
  • the dividing line 16 when the dividing line 16 shifted from the dividing reference line 14 contacts the tapered groove 40, the dividing line 16 is slightly corrected along the side surface of the tapered groove 40. However, the dividing line 16 does not continue to be corrected along the side surface of the tapered groove 40 by the tapered groove 40.
  • a plurality of guide grooves (first guide groove 32, second guide groove 33, guide grooves 31, 34, 35 per one division reference line 14). ) Is formed on the wafer 11.
  • the wafer 11 does not exist in the plurality of guide grooves (first guide groove 32, second guide groove 33, guide grooves 31, 34, 35), whereas the plurality of guide grooves (first guide groove 32).
  • the wafer 11 exists around the second guide groove 33 and the guide grooves 31, 34, and 35). Therefore, a plurality of guide grooves (first guide grooves) in the edge portion of each of the plurality of guide grooves (first guide groove 32, second guide groove 33, guide grooves 31, 34, 35), that is, wafer 11 is formed.
  • a stress is generated in a portion facing each of the second guide groove 33 and the guide grooves 31, 34, 35).
  • cleavage is performed at the first end portion on the starting point S side and the second end portion on the end point F side of each of the plurality of guiding grooves (first guiding groove 32, second guiding groove 33, guiding grooves 31, 34, and 35). Stress is generated not only in the direction but also in the direction perpendicular to the cleavage direction (that is, the width direction of the guide groove).
  • the dividing line 16 is divided at the second end in the cleavage direction of each of the plurality of guiding grooves (for example, the first guiding groove 32, the second guiding groove 33, and the guiding grooves 34, 35). Correction is made toward the line 14. Further, in the method of manufacturing the semiconductor element 12 according to the present embodiment, a plurality of guide grooves (first guide groove 32, second guide groove 33, guide grooves 31, 34, 35 with respect to one division reference line 14 are provided. ) Is formed on the wafer 11, the dividing line 16 shifted from the dividing reference line 14 can be corrected at a plurality of locations. Therefore, the plurality of guide grooves (the first guide groove 32, the second guide groove 33, the guide grooves 31, 34, and 35) can improve the accuracy of correction of the dividing line 16 toward the dividing reference line 14. it can.
  • groove interval 30G is preferably as wide as possible.
  • the horizontal axis in FIG. 23 indicates the dividing line 16 and the dividing reference line before the dividing line 16 contacts the plurality of guiding grooves (first guiding groove 32, second guiding groove 33, guiding grooves 31, 34, 35).
  • 14 shows a distance D 1 [ ⁇ m].
  • the vertical axis in FIG. 23 shows the dividing line 16 and the dividing reference after the dividing line 16 is corrected by a plurality of guiding grooves (first guiding groove 32, second guiding groove 33, guiding grooves 31, 34, 35).
  • the distance D 2 [ ⁇ m] between the line 14 is shown.
  • the groove interval 30G of the plurality of guide grooves (first guide groove 32, second guide groove 33, guide grooves 31, 34, 35) is 20 ⁇ m
  • the plurality of guide grooves (first guide groove 32).
  • the guide groove group 30 including the second guide groove 33 and the guide grooves 31, 34, and 35) can reduce the distance D 1 of 14 ⁇ m to the distance D 2 of 2 ⁇ m.
  • the groove interval 30G of the plurality of guide grooves (first guide groove 32, second guide groove 33, guide grooves 31, 34, 35) is 20 ⁇ m or more, the plurality of guide grooves (first guide groove 32,
  • the effect of correcting the dividing line 16 toward the dividing reference line 14 by the second guiding groove 33 and the guiding grooves 31, 34, 35) is high.
  • the groove interval 30G of the plurality of guide grooves (the first guide groove 32, the second guide groove 33, the guide grooves 31, 34, 35) is too large, the number of guide grooves is reduced, and therefore a plurality of guide grooves are provided.
  • the effect of correcting the dividing line 16 toward the dividing reference line 14 by the grooves is a plurality of guiding grooves (first guiding grooves).
  • the groove 32, the second guide groove 33, and the guide grooves 31, 34, 35) are the same as those without the case.
  • the groove interval 30G between the plurality of guide grooves is preferably about tens of ⁇ m or more and about several hundreds of ⁇ m or less.
  • each of the plurality of guide grooves has a groove length W2 of 20 ⁇ m.
  • a guide groove group including a plurality of guide grooves (first guide groove 32, second guide groove 33, guide grooves 31, 34, 35).
  • Forming 30 (S22) may include further performing wet etching after the wafer 11 is dry-etched.
  • the bottom surfaces of the plurality of guide grooves (first guide groove 32, second guide groove 33, guide grooves 31, 34, 35) are formed on the plurality of guide grooves (first guide groove 32,
  • the second guide groove 33 and the guide grooves 31, 34, 35) have an inverted triangular cross-sectional shape having an acute angle toward the center of the groove width.
  • a plurality of guide grooves (first guide groove 32, second guide groove 33, guide grooves 31, 34, 35) having an inverted triangular cross-sectional shape are formed by dividing the dividing line 16 into a plurality of guide grooves (first guide grooves).
  • the groove 32, the second guide groove 33, and the guide grooves 31, 34, 35) can be corrected toward the center of the groove width.
  • the dividing line 16 is shifted from the cleavage starting point groove 18d toward the third side surface 32q of the first guiding groove 32, the dividing line 16 is not corrected in the guiding groove 31 closest to the starting point S.
  • the dividing line 16 is corrected toward the dividing reference line 14 at the end of the third side surface 32q of the first guide groove 32 in the cleavage direction (end point F side).
  • the dividing line 16 is corrected toward the dividing reference line 14 at the end of the fourth side surface 33q of the second guide groove 33 in the cleavage direction (end point F side).
  • the effect of the manufacturing method of the semiconductor element 12 of this Embodiment is demonstrated.
  • a plurality of guide grooves (first guide groove 32, second guide groove 33).
  • the guide grooves 31, 34, 35) correct the dividing line 16 toward the dividing reference line 14.
  • the manufacturing method of the semiconductor element 12 according to the present embodiment can suppress the wafer 11 from being cleaved greatly from the division reference line 14.
  • the dividing line 16 is formed of a pair of side surfaces of the first guide groove 32 along the dividing reference line 14 from the dividing reference line 14 and the cleavage starting point groove 18d (first The dividing line 16 can be corrected toward the dividing reference line 14 regardless of which side of the side surface 32p and the third side surface 32q).
  • Forming a plurality of guide grooves is a step of forming an element isolation groove (not shown) of the semiconductor element 12. It may be performed simultaneously. Thereby, the manufacturing time of the semiconductor element 12 can be shortened.
  • Embodiment 6 With reference to FIG. 24, the manufacturing method of the semiconductor element 12 which concerns on Embodiment 6 is demonstrated.
  • the manufacturing method of the semiconductor element 12 of the present embodiment basically includes the same steps as the manufacturing method of the semiconductor element 12 of the fifth embodiment, but mainly differs in the following points.
  • This embodiment is different from the fifth embodiment in the arrangement of a plurality of guide grooves (first guide groove 32a, second guide groove 33a, guide grooves 31a, 34a, 35a) included in the guide groove group 30a.
  • the positions of the plurality of guide grooves (first guide groove 32a, second guide groove 33a, guide grooves 31a, 34a, and 35a) with respect to the division reference line 14 are different.
  • a plurality of guide grooves (first guide groove 32a, second guide groove 33a, guide grooves 31a, 34a) included in the guide groove group 30a formed in the wafer 11 are used.
  • 35 a) is located on the dividing reference line 14.
  • the third side surface 32q of the first guide groove 32a and the fourth side surface 33q of the second guide groove 33a are located on the division reference line 14.
  • the groove step interval S1 in the present embodiment is twice the groove step interval S1 in the fifth embodiment.
  • the effect of the manufacturing method of the semiconductor element 12 of the present embodiment will be described.
  • the effects of the manufacturing method of the semiconductor element 12 of the present embodiment mainly have the following effects in addition to the same effects as the manufacturing method of the semiconductor element 12 of the fifth embodiment.
  • the guide groove group 30a of the present embodiment is similar to the guide groove group 30 of the fifth embodiment.
  • the dividing line 16 is corrected toward the dividing reference line 14.
  • the manufacturing method of the semiconductor element 12 according to the present embodiment can suppress the wafer 11 from being cleaved greatly from the division reference line 14.
  • the dividing line 16 is corrected toward the dividing reference line 14 by a plurality of guiding grooves (first guiding groove 32a, second guiding groove 33a, guiding grooves 31a, 34a, and 35a), and the dividing line 16 is A plurality of guide grooves (first guide groove 32a, second guide groove 33a, guide grooves 31a, 34a, 35a) in contact with side surfaces (for example, third side surface 32q and fourth side surface 33q),
  • the dividing line 16 is formed of a plurality of guide grooves (first guide groove 32a, second guide groove 33a, guide grooves 31a, 34a, 35a) on the split reference line 14 (for example, the third side face 32q and the first guide groove 32a). 4 side surfaces 33q).
  • Embodiment 7 FIG. With reference to FIG. 25, a method of manufacturing the semiconductor element 12 according to the seventh embodiment will be described.
  • the manufacturing method of the semiconductor element 12 of the present embodiment basically includes the same steps as the manufacturing method of the semiconductor element 12 of the fifth embodiment, but mainly differs in the following points.
  • the areas of the bottom surfaces of the plurality of guide grooves (first guide groove 32b, second guide groove 33b, guide grooves 31b, 34b, and 35b) included in the guide groove group 30b formed on the wafer 11 are equal to each other.
  • the area of the bottom surface of the first guide groove 32b is the same as the area of the bottom surface of the second guide groove 33b.
  • One of the side surfaces along the division reference line 14 of the guide groove 31 b closest to the starting point S is located on the division reference line 14.
  • the third side surface 32q of the first guide groove 32b and the fourth side surface 33q of the second guide groove 33b are located in the other region sandwiching the division reference line 14.
  • One of the side surfaces along the division reference line 14 of the guide grooves 34b and 35b on the end point F side of the second guide groove 33b is located in the other region sandwiching the division reference line 14.
  • the groove step interval S1 in the manufacturing method of the semiconductor element 12 according to the present embodiment is the size and thickness of the wafer 11, the number of the plurality of semiconductor elements 12 formed in the wafer 11, the groove width W1, the groove length W2, and It can be appropriately determined by the groove interval 30G or the like.
  • the effect of the manufacturing method of the semiconductor element 12 of the present embodiment will be described.
  • the effects of the manufacturing method of the semiconductor element 12 of the present embodiment mainly have the following effects in addition to the same effects as the manufacturing method of the semiconductor element 12 of the fifth embodiment.
  • the guide groove group 30b of the present embodiment is similar to the guide groove group 30 of the fifth embodiment.
  • the dividing line 16 is corrected toward the dividing reference line 14.
  • the manufacturing method of the semiconductor element 12 according to the present embodiment can suppress the wafer 11 from being cleaved greatly from the division reference line 14.
  • the dividing line 16 is corrected toward the dividing reference line 14 by a plurality of guiding grooves (first guiding groove 32b, second guiding groove 33b, guiding grooves 31b, 34b, and 35b). When contacted, the dividing line 16 extends along the dividing reference line 14.
  • the plurality of guide grooves (first guide groove 32b, second guide groove 33b, guide grooves 31b, 34b, and 35b) have the same bottom surface area. Therefore, the area of the mask opening used when the wafer 11 is etched to form a plurality of guide grooves (first guide groove 32b, second guide groove 33b, guide grooves 31b, 34b, and 35b) is the same. It is.
  • a plurality of guide grooves (first guide groove 32b, second guide groove 33b, guide grooves 31b, 34b, and 35b) included in the guide groove group 30b are simultaneously formed, a plurality of guide grooves (first guide grooves) are formed.
  • the groove 32b, the second guide groove 33b, and the guide grooves 31b, 34b, and 35b) are prevented from having different depths.
  • the direction toward the division reference line 14 by the plurality of guide grooves first guide groove 32b, second guide groove 33b, guide grooves 31b, 34b, and 35b.
  • the accuracy of the correction of the dividing line 16 is further improved, and the wafer 11 can be further prevented from being cleaved by being greatly deviated from the dividing reference line 14.
  • the opening area of the mask is different, a plurality of guide grooves having different depths are formed. If the guide groove is deep, the wafer 11 is easily broken, and if the guide groove is shallow, the dividing line 16 is difficult to be corrected.
  • Embodiment 8 FIG. With reference to FIG. 26, a method of manufacturing the semiconductor element 12 according to the eighth embodiment will be described.
  • the manufacturing method of the semiconductor element 12 of the present embodiment basically includes the same steps as the manufacturing method of the semiconductor element 12 of the fifth embodiment, but mainly differs in the following points.
  • the manufacturing method of the semiconductor element 12 of the present embodiment is the same as the manufacturing method of the semiconductor element 12 of the fifth embodiment, and a plurality of guide grooves (first guide groove 32c, second guide groove) included in the guide groove group 30c. 33c, guide grooves 31c, 34c, and 35c) are different in shape.
  • a plurality of guide grooves (first guide groove 32, second guide groove 33, guide grooves 31, 34, and 35) according to the fifth embodiment are viewed in plan from the main surface 11m of the wafer 11 (see FIG. 18). Sometimes it has a rectangular shape.
  • the plurality of guide grooves (first guide groove 32c, second guide groove 33c, guide grooves 31c, 34c, and 35c) of the present embodiment are the main surface 11m of the wafer 11 (see FIG. 18). Has a trapezoidal shape when viewed from above.
  • the shape of the plurality of guide grooves (first guide groove 32c, second guide groove 33c, guide grooves 31c, 34c, and 35c) of the present embodiment will be described by taking the first guide groove 32c as an example.
  • the first side surface 32p and the third side surface 32q are side surfaces along the division reference line 14.
  • the side surfaces (for example, the first side surface 32p and the third side surface 32q) along the division reference line 14 need to be strictly parallel to the division reference line 14. Absent.
  • the side surface along the division reference line 14 may not be located on the division reference line 14.
  • the side surface along the division reference line 14 is the division reference among the side surfaces of the plurality of guide grooves (first guide groove 32c, second guide groove 33c, guide grooves 31c, 34c, and 35c). It is a side surface in which the angle formed with the line 14 is an acute angle.
  • the side surface close to the starting point S is the first connection side surface 32r
  • the side surface close to the end point F is the second connection side surface 32s.
  • the angle ⁇ 32 of the first guide groove 32c between the first side surface 32p and the first connection side surface 32r has an angle of 45 degrees or more and less than 90 degrees, preferably an angle of 80 degrees or more and less than 90 degrees.
  • the angle ⁇ 32 of the first guide groove 32c between the third side surface 32q and the first connection side surface 32r has an angle of 45 degrees or more and less than 90 degrees, preferably an angle of 80 degrees or more and less than 90 degrees.
  • the line indicating the first connection side surface 32r is longer than the line indicating the second connection side surface 32s.
  • the first guide groove 32c has a trapezoidal shape with the second connection side surface 32s as an upper base and the first connection side surface 32r as a lower base. have.
  • the angle ⁇ 32 of the first guide groove 32c and the angle ⁇ 32 of the first guide groove 32c have an angle of 45 degrees or more and less than 90 degrees.
  • Side surfaces (for example, the first side surface 32p, the second side surface 33p, the third side surface 32q, and the fourth side surface 33q) of the first guiding groove 32c, the second guiding groove 33c, and the guiding grooves 31c, 34c, and 35c). May have an angle of about 45 degrees or less with respect to the split reference line 14.
  • the distance between the second side surface 33p and the divided reference line 14 is shorter than the distance between the first side surface 32p and the divided reference line 14. .
  • the first side surface 32 p and the second side surface 33 p are inclined with respect to the division reference line 14. Therefore, when comparing the distance between the second side surface 33p and the dividing reference line 14 with the distance between the first side surface 32p and the dividing reference line 14, the cleavage direction (end point) of the first side surface 32p is determined.
  • the distance between the end portion on the F side) and the division reference line 14 and the distance between the end portion on the second side surface 33p in the direction opposite to the cleavage direction of the second side surface 33p (starting point S side) and the division reference line 14 Compare.
  • the groove width W1 indicates a connection side surface that is close to the starting point S among a pair of connection side surfaces that connect a pair of side surfaces along the division reference line 14 when the main surface 11m (see FIG. 18) of the wafer 11 is viewed in plan.
  • line length For example, the groove width W1 of the first guide groove 32c is the length of a line indicating the first connection side surface 32r when the main surface 11m of the wafer 11 (see FIG. 18) is viewed in plan.
  • the groove step interval S1 is opposite to the distance between the end portion of the first side surface 32p in the cleavage direction (end point F side) and the dividing reference line 14 and the cleavage direction of the second side surface 33p (starting side S). ) Is defined as the difference between the end and the distance between the split reference line 14.
  • side surfaces for example, first guiding grooves 32c, second guiding grooves 33c, guiding grooves 31c, 34c, and 35c
  • the inclinations of the first side surface 32p and the second side surface 33p with respect to the division reference line 14 are all the same.
  • the side surfaces for example, the first guiding groove 32c, the second guiding groove 33c, the guiding grooves 31c, 34c, and 35c
  • the inclinations of the third side surface 32q and the fourth side surface 33q) with respect to the division reference line 14 are all the same.
  • the dividing line 16 shifted from the dividing reference line 14 in the direction of the first side surface 32p and the second side surface 33p has a plurality of guide grooves (first guide grooves 32c) as in the fifth embodiment.
  • the second guide groove 33c and the guide grooves 31c, 34c, and 35c) are not only corrected toward the dividing reference line 14 at the end of the end F side, but also on the first side surface 32p and the second side surface 33p.
  • the dividing line 16 shifted from the dividing reference line 14 in the direction of the third side surface 32q and the fourth side surface 33q has a plurality of guide grooves (first guide groove 32c, second guide groove) as in the fifth embodiment.
  • 33c and guide grooves 31c, 34c, 35c) are not only corrected toward the dividing reference line 14 at the end portions on the end F side, but also divided along the third side surface 32q and the fourth side surface 33q. Correction is made toward the line 14.
  • the effect of the manufacturing method of the semiconductor element 12 of the present embodiment will be described.
  • the effects of the manufacturing method of the semiconductor element 12 of the present embodiment mainly have the following effects in addition to the same effects as the manufacturing method of the semiconductor element 12 of the fifth embodiment.
  • the guide groove group 30c of the present embodiment includes an end portion on the end point F side and a first side surface of a plurality of guide grooves (first guide groove 32c, second guide groove 33c, guide grooves 31c, 34c, and 35c).
  • the dividing line 16 is corrected toward the dividing reference line 14 at 32p, the second side surface 33p, the third side surface 32q, and the fourth side surface 33q.
  • the manufacturing method of the semiconductor element 12 according to the present embodiment can suppress the wafer 11 from being cleaved greatly from the division reference line 14.
  • each of the guide grooves (first guide groove 32c, second guide groove 33c, guide grooves 31c, 34c, and 35c) along the direction of the division reference line 14 is used.
  • the pair of side surfaces sandwich the division reference line 14. Therefore, even if the dividing line 16 shifts from the cleavage starting point groove 18d to either side of the pair of side surfaces (the first side surface 32p and the third side surface 32q) of the first guiding groove 32c along the dividing reference line 14.
  • the dividing line 16 can be corrected toward the dividing reference line 14.
  • the dividing line 16 when the dividing line 16 is shifted from the dividing reference line 14 to one region sandwiching the dividing reference line 14, the dividing line 16 is corrected by the first side face 32p and the second side face 33p.
  • the dividing line 16 is corrected by the third side face 32q and the fourth side face 33q.
  • Embodiment 9 FIG. With reference to FIG. 27, a method of manufacturing the semiconductor element 12 according to the eighth embodiment will be described.
  • the manufacturing method of the semiconductor element 12 of the present embodiment basically includes the same steps as the manufacturing method of the semiconductor element 12 of the eighth embodiment, but mainly differs in the following points.
  • This embodiment is different from the eighth embodiment in the position of the guide groove group 30d with respect to the division reference line 14.
  • a plurality of guide grooves (first guide grooves 32d) included in the guide groove group 30d.
  • the second guide groove 33d and the plurality of guide grooves 31d, 34d, 35d) have a trapezoidal shape.
  • One of the pair of side surfaces of the plurality of guide grooves (first guide groove 32d, second guide groove 33d, guide grooves 31d, 34d, and 35d) along the split reference line 14 is located on the split reference line 14.
  • the third side surface 32q of the first guide groove 32 and the fourth side surface 33q of the second guide groove 33 are located on the division reference line 14.
  • side surfaces for example, a plurality of guide grooves (first guide groove 32d, second guide groove 33d, guide grooves 31d, 34d, 35d) along the division reference line 14 (for example, The inclinations of the first side face 32p and the second side face 33p) with respect to the division reference line 14 are all the same.
  • the dividing line 16 shifted from the dividing reference line 14 toward the first side surface 32p and the second side surface 33p has a plurality of guiding grooves (first guiding grooves 32d as in the fifth embodiment).
  • the second guide groove 33d and the guide grooves 31d, 34d, and 35d) are not only corrected toward the dividing reference line 14 at the end of the end F side, but also on the first side face 32p and the second side face 33p. Along the division reference line 14.
  • the effect of the manufacturing method of the semiconductor element 12 of the present embodiment will be described.
  • the effects of the manufacturing method of the semiconductor element 12 of the present embodiment mainly have the following effects in addition to the same effects as the manufacturing method of the semiconductor element 12 of the eighth embodiment.
  • the guide groove group 30d of the present embodiment includes a plurality of guide grooves (first guide groove 32d, first guide groove 32d, 2, the dividing line 16 is corrected toward the dividing reference line 14 at the end F side end, the first side face 32 p and the second side face 33 p of the guiding grooves 33 d and the guiding grooves 31 d, 34 d and 35 d).
  • the manufacturing method of the semiconductor element 12 according to the present embodiment can suppress the wafer 11 from being cleaved greatly from the division reference line 14.
  • the dividing line 16 is corrected toward the dividing reference line 14 by a plurality of guiding grooves (first guiding groove 32d, second guiding groove 33d, guiding grooves 31d, 34d, and 35d), and the dividing line 16 is A plurality of guide grooves (first guide groove 32d, second guide groove 33d, guide grooves 31d, 34d, and 35d) are in contact with side surfaces (for example, third side surface 32q and fourth side surface 33q),
  • the dividing line 16 is a side surface of the plurality of guiding grooves (first guiding groove 32d, second guiding groove 33d, guiding grooves 31d, 34d, and 35d) on the dividing reference line 14 (for example, the third side surface 32q and the second guiding groove 32d). 4 side surfaces 33q).
  • Embodiment 10 FIG. With reference to FIG. 28, a method of manufacturing the semiconductor element 12 according to the tenth embodiment will be described.
  • the manufacturing method of the semiconductor element 12 of the present embodiment basically includes the same steps as the manufacturing method of the semiconductor element 12 of the seventh embodiment, but mainly differs in the following points.
  • Embodiment 7 differs from Embodiment 7 in the shapes of a plurality of guide grooves (first guide groove 32e, second guide groove 33e, guide grooves 31e, 34e, 35e) included in the guide groove group 30e.
  • the plurality of guide grooves (first guide groove 32b, second guide groove 33b, guide grooves 31b, 34b, and 35b) of the seventh embodiment are the main surface 11m of the wafer 11 (see FIG. 18).
  • a plan view has a rectangular shape.
  • the plurality of guide grooves (first guide groove 32e, second guide groove 33e, guide grooves 31e, 34e, and 35e) of the present embodiment are the main surface 11m of the wafer 11 (see FIG. 18). Has a trapezoidal shape when viewed from above.
  • the first guide groove 32e as an example, the shapes of a plurality of guide grooves (first guide groove 32e, second guide groove 33e, guide grooves 31e, 34e, 35e) of the present embodiment will be described.
  • the first side surface 32p and the third side surface 32q are side surfaces along the division reference line 14.
  • the side surface along the division reference line 14 does not have to be strictly parallel to the division reference line 14.
  • the side surface along the division reference line 14 may not be located on the division reference line 14.
  • the side surface close to the starting point S is the first connection side surface 32r
  • the side surface close to the end point F is the second connection side surface 32s.
  • the angle ⁇ 32 of the first guide groove 32e between the first side surface 32p and the first connection side surface 32r has an angle of 45 degrees or more and less than 90 degrees, preferably an angle of 80 degrees or more and less than 90 degrees.
  • the line indicating the first connection side surface 32r is longer than the line indicating the second connection side surface 32s.
  • the first guide groove 32e has a trapezoidal shape with the second connection side surface 32s as an upper base and the first connection side surface 32r as a lower base. have.
  • the angle ⁇ 32 of the first guide groove 32e has an angle of 45 degrees or more and less than 90 degrees, a plurality of guide grooves (the first guide groove 32e and the second guide groove 32e along the division reference line 14).
  • the side surfaces (for example, the first side surface 32p and the second side surface 33p) of the guide groove 33e and the guide grooves 31e, 34e, and 35e may have an angle of about 45 degrees or less with respect to the division reference line 14. .
  • the side surfaces (for example, first guiding grooves 32e, second guiding grooves 33e, guiding grooves 31e, 34e, and 35e) along the dividing reference line 14 are provided.
  • the inclinations of the first side surface 32p and the second side surface 33p with respect to the division reference line 14 are all the same.
  • the side surfaces (for example, the third guide grooves 32e, the second guide grooves 33e, the guide grooves 31e, 34e, and 35e) along the division reference line 14 are provided.
  • the inclinations of the side surface 32q and the fourth side surface 33q) with respect to the dividing reference line 14 are all the same.
  • the dividing line 16 shifted from the dividing reference line 14 toward the first side surface 32p and the second side surface 33p has a plurality of guiding grooves (first guiding grooves 32e as in the fifth embodiment).
  • the second guide groove 33e and the guide grooves 31e, 34e, 35e) are not only corrected toward the dividing reference line 14 at the end of the end point F, but also on the first side face 32p and the second side face 33p.
  • the division reference line 14 is not only corrected toward the dividing reference line 14 at the end of the end point F, but also on the first side face 32p and the second side face 33p.
  • the effect of the manufacturing method of the semiconductor element 12 of the present embodiment will be described.
  • the effects of the manufacturing method of the semiconductor element 12 of the present embodiment mainly have the following effects in addition to the same effects as the manufacturing method of the semiconductor element 12 of the seventh embodiment.
  • the guide groove group 30e of the present embodiment is similar to the guide groove group 30b of the seventh embodiment. Dividing at the end of the plurality of guide grooves (first guide groove 32e, second guide groove 33e, guide grooves 31e, 34e, 35e) on the end point F side, the first side face 32p, and the second side face 33p The line 16 is corrected toward the division reference line 14.
  • the manufacturing method of the semiconductor element 12 according to the present embodiment can suppress the wafer 11 from being cleaved greatly from the division reference line 14.
  • the dividing line 16 is corrected toward the dividing reference line 14 by a plurality of guiding grooves (first guiding groove 32e, second guiding groove 33e, guiding grooves 31e, 34e, and 35e). When contacted, the dividing line 16 extends along the dividing reference line 14.
  • each guide groove (first guide groove 32e, second guide groove 33e, guide grooves 31e, 34e, 35e) is formed.
  • the area is the same. Therefore, the area of the mask opening used when the wafer 11 is etched to form a plurality of guide grooves (first guide groove 32e, second guide groove 33e, guide grooves 31e, 34e, 35e) is the same. It is.
  • a plurality of guide grooves (first guide groove 32e, second guide groove 33e, guide grooves 31e, 34e, and 35e) included in the guide groove group 30e are formed simultaneously.
  • each guide groove (the first guide groove 32e, the second guide groove 33e, the guide grooves 31e, 34e, and 35e) is different.
  • the manufacturing method of the semiconductor element 12 of the present embodiment the accuracy of the correction of the dividing line 16 toward the dividing reference line 14 is further improved, and the wafer 11 is cleaved greatly deviating from the dividing reference line 14. Can be further suppressed.
  • Embodiment 11 FIG. With reference to FIGS. 29 to 31, a method of manufacturing the semiconductor element 12 according to the eleventh embodiment will be described.
  • the manufacturing method of the semiconductor element 12 of the present embodiment basically includes the same steps as the manufacturing method of the semiconductor element 12 of the fifth embodiment, but mainly differs in the following points.
  • the method for manufacturing semiconductor device 12 of the present embodiment includes forming a plurality of guide groove groups 30 f on wafer 11 (S 32).
  • Each of the plurality of guide groove groups 30f includes a first guide groove 32f 1 , a second guide groove 33f 1 , a third guide groove 32f 2 , a fourth guide groove 33f 2, and guide grooves 31f 1 , 31f 2 , 34f 1 , 34f 2 , 35f 1 , 35f 2 are included.
  • One guide groove group 30 f may be formed for one division reference line 14.
  • the first guide groove 32f 1 has a first side surface 32p located in one region.
  • the second guide groove 33f 1 is spaced from the first guide groove 32f 1 to the end point F side.
  • the second guide groove 33f 1 has a second side surface 33p located in one region.
  • the third guide groove 32f 2 has a third side surface 32q located in the other region.
  • the fourth guide groove 33f 2 is spaced from the third guide groove 32f 2 toward the end point F.
  • the fourth guide groove 33f 2 has a fourth side surface 33q located in the other region.
  • the starting point S is on the division reference line 14.
  • the starting point S is a guide groove (for example, the first guide groove 32f 1 and the second guide groove 33f 1 ) in one region across the division reference line 14 and a guide groove (for example, the third guide groove 33f 1 ) in the other region. It only has to be between the guide groove 32f 2 and the fourth guide groove 33f 2 ).
  • the end point F is on the division reference line 14.
  • the second guide groove 33f 1 is formed closer to the end point F than the first guide groove 32f 1 .
  • the fourth guide groove 33f 2 is formed closer to the end point F than the third guide groove 32f 2 .
  • the first side surface 32p, the second side surface 33p, the third side surface 32q, and the fourth side surface 33q have a plurality of guide grooves (for example, the first guide groove 32f 1 , the second guide, etc.) along the division reference line 14.
  • the side surface of the groove 33f 1 , the third guide groove 32f 2, and the fourth guide groove 33f 2 is close to the dividing reference line 14.
  • the fifth side face 42p of the first guide groove 32f 1 facing the first side face 32p is in one region sandwiching the division reference line 14.
  • the distance between the fifth side surface 42p and the division reference line 14 is longer than the distance between the first side surface 32p and the division reference line 14.
  • the sixth side surface 43p of the second guide groove 33f 1 facing the second side surface 33p is in one region sandwiching the division reference line 14.
  • the distance between the sixth side surface 43p and the dividing reference line 14 is longer than the distance between the second side surface 33p and the dividing reference line 14.
  • the seventh side surface 42q of the third guide groove 32f 2 facing the third side surface 32q is in the other region sandwiching the division reference line 14.
  • the distance between the seventh side surface 42q and the division reference line 14 is longer than the distance between the third side surface 32q and the division reference line 14.
  • Fourth eighth aspect 43q of the guide groove 33f 2 that faces the fourth side 33q is in the other areas which sandwich the divided reference line 14.
  • the distance between the eighth side surface 43q and the dividing reference line 14 is longer than the distance between the fourth side surface 33q and the dividing reference line 14.
  • the distance between the second side surface 33p and the division reference line 14 is shorter than the distance between the first side surface 32p and the division reference line 14.
  • the distance between the fourth side surface 33q and the division reference line 14 is shorter than the distance between the third side surface 32q and the division reference line 14.
  • Each guide groove (first guide groove 32f 1 , second guide groove 33f 1 , third guide groove 32f 2 , fourth guide groove 33f 2 , guide grooves 31f 1 , 31f 2 , 34f 1 , 34f 2 , 35f 1 , 35f 2 ) have the same bottom area.
  • the first guide groove 32f 1 and the second guide groove 33f 1 that are adjacent to each other may be repeatedly arranged in one region sandwiching the division reference line 14. That is, the relative positional relationship between the guide groove 31f 1 and the first guide groove 32f 1 , the relative positional relationship between the second guide groove 33f 1 and the guide groove 34f 1 , and the guide groove 34f 1 and the guide
  • the relative positional relationship with the groove 35f 1 is the same as the relative positional relationship between the first guide groove 32f 1 and the second guide groove 33f 1 .
  • the third guide groove 32f 2 and the fourth guide groove 33f 2 adjacent to each other may be repeatedly arranged in the other region sandwiching the division reference line 14.
  • the relative positional relationship between the guide groove 31f 2 and the third guide groove 32f 2 , the relative positional relationship between the fourth guide groove 33f 2 and the guide groove 34f 2 , and the guide groove 34f 2 and the guide is the same as the relative positional relationship between the third guide groove 32f 2 and the fourth guide groove 33f 2 .
  • the guide groove group 30f of the present embodiment corrects the dividing line 16 shifted from the dividing reference line 14 toward the dividing reference line 14.
  • the dividing line 16 that is shifted from the dividing reference line 14 toward one region sandwiching the dividing reference line 14 is corrected toward the dividing reference line 14 by the first side face 32p and the second side face 33p.
  • the dividing line 16 shifted from the dividing reference line 14 toward the other region sandwiching the dividing reference line 14 is corrected toward the dividing reference line 14 by the third side face 32q and the fourth side face 33q.
  • the guide groove group 30 of the fifth embodiment corrects the dividing line 16 toward the dividing reference line 14 as follows.
  • the dividing line 16 contacts one guide groove.
  • the extension line of the dividing line 16 in this one guiding groove is inside another guiding groove adjacent in the cleavage direction (direction from the starting point S to the ending point F)
  • the dividing line 16 is not corrected in this one guiding groove.
  • the extension line of the dividing line 16 in the one guiding groove is outside the other guiding groove adjacent in the cleavage direction (direction from the starting point S to the ending point F)
  • the dividing line 16 is corrected in the one guiding groove.
  • the Specifically, the dividing line 16 is corrected toward the dividing reference line 14 at the end of this one guide groove in the cleavage direction (end point F side).
  • the guide groove group 30f of the present embodiment corrects the dividing line 16 toward the dividing reference line 14 as follows.
  • the dividing line 16 contacts one guide groove.
  • the extension line of the dividing line 16 in this one guiding groove is inside another guiding groove adjacent in the cleavage direction (direction from the starting point S to the ending point F)
  • the dividing line 16 is corrected in this one guiding groove.
  • the dividing line 16 is corrected toward the dividing reference line 14 at the end of the one guiding groove in the direction opposite to the cleavage direction (starting point S side).
  • the extension line of the dividing line 16 in the one guiding groove is outside the other guiding groove adjacent in the cleavage direction (direction from the starting point S to the ending point F)
  • the dividing line 16 is not corrected in the one guiding groove. .
  • the manufacturing method of the semiconductor element 12 of the present embodiment basically has the same effect as the manufacturing method of the semiconductor element 12 of the fifth embodiment, but mainly differs in the following points.
  • the guiding groove group 30f of the present embodiment corrects the dividing line 16 toward the dividing reference line 14.
  • the manufacturing method of the semiconductor element 12 according to the present embodiment can suppress the wafer 11 from being cleaved greatly from the division reference line 14.
  • the dividing line 16 has a plurality of guiding grooves (first guiding groove 32f 1 , second guiding groove) extending from the cleavage starting point groove 18d along the dividing reference line 14.
  • the dividing line 16 can be corrected toward the dividing reference line 14 regardless of which side of the third side surface 32q).
  • each guide groove (first guide groove 32f 1 , second guide groove 33f 1 , third guide groove 32f 2 , fourth guide groove 33f 2 , guide area of the bottom surface of the groove 31f 1, 31f 2, 34f 1 , 34f 2, 35f 1, 35f 2) are the same. Therefore, the wafer 11 is etched to form a plurality of guide grooves (first guide groove 32f 1 , second guide groove 33f 1 , third guide groove 32f 2 , fourth guide groove 33f 2 , guide groove 31f 1 , 31f 2 , 34f 1 , 34f 2 , 35f 1 , 35f 2 ), the area of the opening of the mask used is the same.
  • a plurality of guide grooves (first guide groove 32f 1 , second guide groove 33f 1 , third guide groove 32f 2 ,
  • the respective guide grooves (first guide grooves 32f 1 , second guides) are formed.
  • the depths of the grooves 33f 1 , the third guide groove 32f 2 , the fourth guide groove 33f 2 , the guide grooves 31f 1 , 31f 2 , 34f 1 , 34f 2 , 35f 1 , 35f 2 ) can be suppressed. .
  • the accuracy of the correction of the dividing line 16 toward the dividing reference line 14 is further improved, and the wafer 11 is cleaved greatly deviating from the dividing reference line 14. Can be further suppressed.
  • Embodiment 12 FIG. 32 With reference to FIG. 32, a method of manufacturing the semiconductor element 12 according to the twelfth embodiment will be described.
  • the manufacturing method of the semiconductor element 12 of the present embodiment basically includes the same steps as the manufacturing method of the semiconductor element 12 of the eleventh embodiment, but mainly differs in the following points.
  • This embodiment is different from the eleventh embodiment in that a plurality of guide grooves (first guide groove 32g 1 , second guide groove 33g 1 , third guide groove 32g 2 , Of the guide grooves 33g 2 , 31g 1 , 31g 2 , 34g 1 , 34g 2 , 35g 1 , 35g 2 ).
  • a plurality of guide grooves of the eleventh embodiment (first guide groove 32f 1 , second guide groove 33f 1 , third guide groove 32f 2 , fourth guide groove 33f 2 , guide grooves 31f 1 , 31f 2 , 34f 1 , 34f 2 , 35f 1 , 35f 2 ) have a rectangular shape when the main surface 11m (see FIG. 18) of the wafer 11 is viewed in plan.
  • the plurality of guide grooves (first guide groove 32g 1 , second guide groove 33g 1 , third guide groove 32g 2 , fourth guide groove 33g 2 , guide groove 31g 1) of the present embodiment.
  • 31 g 2 , 34 g 1 , 34 g 2 , 35 g 1 , 35 g 2 ) have a trapezoidal shape when the main surface 11 m (see FIG. 18) of the wafer 11 is viewed in plan view.
  • first guide groove 32g 1 a plurality of guide grooves of the present embodiment (first guide groove 32g 1 , second guide groove 33g 1 , third guide groove 32g 2 , fourth guide groove 32g 1
  • the shapes of the guide groove 33g 2 , guide grooves 31g 1 , 31g 2 , 34g 1 , 34g 2 , 35g 1 , 35g 2 ) will be described.
  • the first side surface 32 p and the fifth side surface 42 p are side surfaces along the division reference line 14. In the present embodiment, the side surface along the division reference line 14 does not have to be strictly parallel to the division reference line 14. The side surface along the division reference line 14 may not be located on the division reference line 14.
  • the side surface close to the starting point S is the first connection side surface 32r.
  • the angle ⁇ 32 of the first guide groove 32g 1 between the first side face 32p and the first connection side face 32r has an angle greater than 90 degrees and less than or equal to 135 degrees, preferably greater than 90 degrees and 100 degrees. It has the following angle.
  • the third side surface 32q and the seventh side surface 42q are side surfaces along the division reference line 14.
  • the side surface close to the starting point S is the third connection side surface 42r.
  • the angle ⁇ 32 of the third guide groove 32g 2 between the third side surface 32q and the third connection side surface 42r has an angle greater than 90 degrees and less than or equal to 135 degrees, preferably greater than 90 degrees and 100 degrees. It has the following angle.
  • each guide groove along the division reference line 14 (for example, the first guide groove 32g 1 , the second guide groove 33g 1 , the guide grooves 31g 1 , 34g 1 , 35g 1). ) Of the pair of side surfaces closer to the division reference line 14 (for example, the first side surface 32p and the second side surface 33p) with respect to the division reference line 14 are all the same. In the other region sandwiching the division reference line 14, each guide groove along the division reference line 14 (for example, the third guide groove 32g 2 , the fourth guide groove 33g 2 , the guide grooves 31g 2 , 34g 2 , 35g 2).
  • Each guide groove (first guide groove 32g 1 , second guide groove 33g 1 , third guide groove 32g 2 , fourth guide groove 33g 2 , guide grooves 31g 1 , 31g 2 , 34g 1 , 34g 2 , The areas of the bottom surfaces of 35g 1 and 35g 2 ) are the same.
  • the dividing line 16 shifted from the dividing reference line 14 has a plurality of guiding grooves (first guiding groove 32g 1 , second guiding groove) as in the eleventh embodiment.
  • 33 g 1 , third guide groove 32 g 2 , fourth guide groove 33 g 2 , guide grooves 31 g 1 , 31 g 2 , 34 g 1 , 34 g 2 , 35 g 1 , 35 g 2 ) 14 is corrected along the first side surface 32p and the second side surface 33p, or along the third side surface 32q and the fourth side surface 33q.
  • the effect of the manufacturing method of the semiconductor element 12 of the present embodiment will be described.
  • the effects of the manufacturing method of the semiconductor element 12 of the present embodiment mainly have the following effects in addition to the same effects as the manufacturing method of the semiconductor element 12 of the eleventh embodiment.
  • the guide groove group 30g of the present embodiment includes a plurality of guide grooves (first guide groove 32g 1 , second guide groove 33g 1 , third guide groove 32g 2 , fourth guide groove 33g 2 , guide groove). 31 g 1 , 31 g 2 , 34 g 1 , 34 g 2 , 35 g 1 , 35 g 2 ), the end on the starting point S side, the first side surface 32 p, the second side surface 33 p, the third side surface 32 q, and the fourth side surface 33 q Then, the dividing line 16 is corrected toward the dividing reference line 14.
  • the manufacturing method of the semiconductor element 12 according to the present embodiment can suppress the wafer 11 from being cleaved greatly from the division reference line 14.
  • each guide groove (first guide groove 32g 1 , second guide groove 33g 1 , third guide groove 32g 2) along the direction of the dividing reference line 14 is used.
  • a pair of side surfaces (for example, the first side surface 32p and the third side surface 32q) of the fourth guide groove 33g 2 , guide grooves 31g 1 , 31g 2 , 34g 1 , 34g 2 , 35g 1 , 35g 2 ,
  • the division reference line 14 is sandwiched.
  • the dividing line 16 is shifted from the cleavage starting point groove 18d to either side of a pair of side surfaces (for example, the first side surface 32p and the third side surface 32q) along the dividing reference line 14, the dividing line 16 is divided. It can be corrected towards the reference line 14.
  • each guide groove (first guide groove 32g 1 , second guide groove 33g 1 , third guide groove 32g 2 , fourth guide groove 33g 2 , guide The areas of the bottom surfaces of the grooves 31g 1 , 31g 2 , 34g 1 , 34g 2 , 35g 1 , 35g 2 ) are the same.
  • the wafer 11 is etched to form a plurality of guide grooves (first guide groove 32g 1 , second guide groove 33g 1 , third guide groove 32g 2 , fourth guide groove 33g 2 , guide grooves 31g 1 and 31g 2.
  • 34g 1 , 34g 2 , 35g 1 , 35g 2 are the same in the area of the mask opening.
  • a plurality of guide grooves included in the guide groove group 30g.
  • the fourth guide groove 33g 2 and the guide grooves 31g 1 , 31g 2 , 34g 1 , 34g 2 , 35g 1 , 35g 2 are formed simultaneously, the respective guide grooves (first guide grooves 32g 1 , second Of the guide grooves 33g 1 , the third guide grooves 32g 2 , the fourth guide grooves 33g 2 , the guide grooves 31g 1 , 31g 2 , 34g 1 , 34g 2 , 35g 1 , 35g 2 ) are suppressed.
  • the accuracy of the correction of the dividing line 16 toward the dividing reference line 14 is further improved, and the wafer 11 is cleaved greatly deviating from the dividing reference line 14. Can be further suppressed.
  • Embodiment 13 FIG. With reference to FIG. 33, a method of manufacturing the semiconductor element 12 according to the thirteenth embodiment will be described.
  • the manufacturing method of the semiconductor element 12 according to the present embodiment basically includes the same steps as the manufacturing method of the semiconductor element 12 according to the eleventh embodiment, and has the same effects, but mainly differs in the following points. .
  • This embodiment is different from the eleventh embodiment in that a plurality of guide grooves (first guide groove 32h 1 , second guide groove 33h 1 , third guide groove 32h 2 , fourth guide groove 33h 2 , guide
  • the arrangement of the grooves 31h 1 , 31h 2 , 34h 1 , 34h 2 , 35h 1 , 35h 2 ) is different.
  • the first guide groove 32f 1 and the third guide groove 32f 2 are arranged mirror-symmetrically across the division reference line 14, and the second guide groove 33f 1 and the fourth guide groove 33f 2 is arranged in mirror symmetry with the division reference line 14 in between.
  • the first guide groove 32h 1 and the third guide groove 32h 2 do not have to be arranged mirror-symmetrically across the division reference line 14, and the second guide
  • the groove 33h 1 and the fourth guide groove 33h 2 may not be arranged mirror-symmetrically with the division reference line 14 in between.
  • the third guide groove 32h 2 , the fourth guide groove 33h 2 , the guide grooves 31h 2 , 34h 2 , and 35h 2 are the first guide groove 32h 1 and the second guide groove.
  • 33h 1 and guide grooves 31h 1 , 34h 1 , and 35h 1 may be arranged so as to be shifted to the end point F side (the side opposite to the cleavage start point groove 18d).
  • Embodiment 14 FIG. With reference to FIG. 34, a method of manufacturing the semiconductor element 12 according to the fourteenth embodiment will be described.
  • the manufacturing method of the semiconductor element 12 according to the present embodiment basically includes the same steps as the manufacturing method of the semiconductor element 12 according to the twelfth embodiment and has the same effects, but mainly differs in the following points. .
  • This embodiment is different from Embodiment 12 in that a plurality of guide grooves (first guide groove 32i 1 , second guide groove 33i 1 , third guide groove 32i 2 , Of the guide grooves 33i 2 , 31i 1 , 31i 2 , 34i 1 , 34i 2 , 35i 1 , 35i 2 ).
  • the first guide groove 32g 1 and the third guide groove 32g 2 are arranged mirror-symmetrically with respect to the division reference line 14, and the second guide groove 33g 1 and the fourth guide groove 33g 2 is arranged mirror-symmetrically with the division reference line 14 in between.
  • the first guide groove 32i 1 and the third guide groove 32i 2 do not have to be arranged mirror-symmetrically across the division reference line 14, and the second guide The groove 33i 1 and the fourth guide groove 33i 2 do not have to be arranged mirror-symmetrically with the division reference line 14 in between.
  • the third guide groove 32i 2 , the fourth guide groove 33i 2 , the guide grooves 31i 2 , 34i 2 , and 35i 2 are the first guide groove 32i 1 and the second guide groove.
  • 33i 1, guide groove 31i 1, than 34i 1, 35i 1 may be arranged to be shifted in (the side opposite to the cleavage starting point groove 18 d) ending F side.
  • Embodiment 15 FIG. A method for manufacturing the semiconductor element 12 according to the fifteenth embodiment will be described with reference to FIGS.
  • the manufacturing method of the semiconductor element 12 according to the present embodiment basically includes the same steps as those of the manufacturing method of the semiconductor element 12 according to the fifth embodiment, and has the same effects, but mainly differs in the following points. .
  • the manufacturing method of the semiconductor element 12 of the present embodiment further includes forming a plurality of cleavage groove groups 20j (S22).
  • Each of the plurality of cleavage groove groups 20 j includes a cleavage groove 21 and a cleavage groove 22.
  • the plurality of cleavage groove groups 20j are located on the division reference line 14.
  • the plurality of cleavage groove groups 20j are disposed between the plurality of semiconductor elements 12 adjacent to each other.
  • the wafer 11 includes a plurality of cleavage grooves 21 and 22.
  • the plurality of semiconductor elements 12 are separated from the division reference line 14 by the main surface 11m of the wafer 11. (See FIG. 18).
  • the cleavage line 15 is shifted from the division reference line 14 in the direction of the azimuth angle in the main surface 11m (see FIG. 18) of the wafer 11.
  • the dividing line 16 shifted from the starting point S on the dividing reference line 14 is corrected toward the dividing reference line 14 by the guide groove group 30, the dividing line 16 is moved from the guiding groove group 30 to the dividing reference line 14.
  • the azimuth angle ⁇ extends along the cleavage line 15 that is inclined.
  • a plurality of cleavage groove groups 20j are formed. Stress is generated at the edge portion of each of the plurality of cleavage grooves 21 and 22 included in each of the plurality of cleavage groove groups 20j, that is, the portion of the wafer 11 that faces the plurality of cleavage grooves 21 and 22. At the first end portion on the starting point S side and the second end portion on the end point F side of each of the plurality of guiding grooves (first guiding groove 32, second guiding groove 33, guiding grooves 31, 34, and 35), cleavage is performed.
  • the dividing line 16 is divided at the second end in the cleavage direction of each of the plurality of guiding grooves (for example, the first guiding groove 32, the second guiding groove 33, and the guiding grooves 34, 35). Correction is made toward the line 14.
  • a plurality of cleavage grooves 21 and 22 are formed between the plurality of semiconductor elements 12.
  • the dividing line 16 extending along the cleavage line 15 that is inclined with respect to the dividing reference line 14 becomes the plurality of cleavage grooves 21 and 22.
  • the plurality of cleavage grooves 21 and 22 can correct the dividing line 16 toward the dividing reference line 14 before the dividing line 16 is largely deviated from the dividing reference line 14.
  • the dividing line 16 whose azimuth angle ⁇ is inclined with respect to the dividing reference line 14 can be corrected so as to approach the dividing reference line 14 with higher accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Dicing (AREA)
  • Semiconductor Lasers (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Led Devices (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

半導体素子(12)の製造方法は、ウェハ(11)の主面に複数の半導体素子(12)を形成することと、分割基準線上に配置される複数の劈開溝群(20)を形成することと、分割基準線(14)に沿ってウェハ(11)を劈開して、複数の半導体素子(12)を互いに分離することとを備える。複数の半導体素子(12)のうち、互いに隣り合う4つの半導体素子(12)に対して、複数の劈開溝群(20)の少なくとも1つが配置される。複数の劈開溝群(20)は、各々、分割基準線(14)上に配置される複数の劈開溝(21,22,23)を含む。これにより、半導体素子(12)の製造歩留りが向上され得る。

Description

半導体素子の製造方法
 本発明は、半導体素子の製造方法に関する。
 ウェハの主面上に複数の半導体素子を形成する第1の工程と、複数の半導体素子の間に劈開溝を形成する第2の工程と、ウェハに荷重を加えることにより、劈開溝に沿ってウェハを劈開する第3の工程とを備える半導体素子の製造方法が知られている(特許文献1を参照)。
特開2003-86900号公報
 しかしながら、半導体素子の製造方法では、劈開溝が配列される分割基準線から大きくずれた位置でウェハが分割されて、半導体素子の製造歩留りが低下するという課題がある。一例として、複数の半導体素子及び劈開溝が、ウェハの劈開線に対して、ウェハの主面内の方位角の方向に傾いて形成されることがある。複数の半導体素子及び劈開溝がウェハの劈開線に対して傾いて形成されると、半導体素子の分割線が劈開溝にガイドされることなく、ウェハの劈開線に沿って複数の半導体素子が分割される。そのため、劈開溝が配列される分割基準線から大きくずれた位置でウェハが分割されて、半導体素子の製造歩留りが低下する。
 本発明は、上記の課題を鑑みてなされたものであり、その目的は、半導体素子の製造歩留りを向上させることができる半導体素子の製造方法を提供することである。
 本発明の半導体素子の製造方法は、ウェハの主面に、第1の方向と第1の方向に交差する第2の方向とに沿って配列される複数の半導体素子を形成することと、複数の半導体素子の間に複数の劈開溝群を形成することと、分割基準線に沿ってウェハを劈開して、複数の半導体素子を互いに分離することとを備える。複数の劈開溝群は、分割基準線上に配置される。複数の半導体素子のうち、第1の方向及び第2の方向において互いに隣り合う4つの半導体素子に対して、複数の劈開溝群の少なくとも1つが配置される。複数の劈開溝群は、各々、分割基準線上に配置される複数の劈開溝を含む。
 本発明の半導体素子の製造方法によれば、複数の半導体素子の間に形成される複数の劈開溝群の各々に含まれる複数の劈開溝は、分割線が分割基準線に十分近づくように、分割線を補正することができる。複数の劈開溝を含む複数の劈開溝群は、分割基準線から大きくずれた位置でウェハが分割されることを防ぐことができる。本実施の形態の半導体素子の製造方法は、半導体素子の製造歩留りを向上させることができる。
本発明の実施の形態1に係る半導体素子の製造方法のフローチャートを示す図である。 本発明の実施の形態1に係る半導体素子の製造方法の一工程を示す概略平面図である。 本発明の実施の形態1に係る半導体素子の製造方法の一工程の、図2に示される領域IIIの概略部分拡大平面図である。 本発明の実施の形態1に係る半導体素子の製造方法の一工程の、図3に示される断面線IV-IVの概略部分拡大断面図である。 本発明の実施の形態1の第1変形例に係る半導体素子の製造方法の一工程の、概略部分拡大断面図である。 本発明の実施の形態1の第2変形例に係る半導体素子の製造方法の一工程の、概略部分拡大断面図である。 本発明の実施の形態1に係る半導体素子の製造方法における、ウェハを劈開する工程を示す概略部分拡大斜視図である。 本発明の実施の形態1に係る半導体素子の製造方法における、ウェハを劈開する工程を示す概略部分拡大平面図である。 本発明の実施の形態1に係る半導体素子の製造方法における、ウェハを劈開する工程後のウェハの概略部分拡大断面図である。 本発明の実施の形態1に係る半導体素子の製造方法における、劈開溝群による分割面の補正の効果を表すグラフを示す図である。 本発明の実施の形態2に係る半導体素子の製造方法の一工程の概略部分拡大平面図である。 本発明の実施の形態2に係る半導体素子の製造方法における、ウェハを劈開する工程後のウェハの概略部分拡大断面図である。 本発明の実施の形態3に係る半導体素子の製造方法の一工程の概略部分拡大平面図である。 本発明の実施の形態4に係る半導体素子の製造方法の一工程の概略部分拡大平面図である。 本発明の実施の形態5に係る半導体素子の製造方法のフローチャートを示す図である。 本発明の実施の形態5に係る半導体素子の製造方法の一工程を示す概略平面図である。 本発明の実施の形態5に係る半導体素子の製造方法における、誘導溝群の概略部分拡大平面図である。 本発明の実施の形態5に係る半導体素子の製造方法における、ウェハを劈開する工程を示す概略部分拡大斜視図である。 本発明の実施の形態5に係る半導体素子の製造方法における、ウェハを劈開する工程を示す概略部分拡大平面図である。 本発明の実施の形態5に係る半導体素子の製造方法における、ウェハを劈開する工程後のウェハの劈開面における断面写真を示す図である。 本発明の実施の形態5に係る半導体素子の製造方法における、ウェハを劈開する工程後のウェハの概略部分拡大斜視図である。 比較例の半導体素子の製造方法の一工程を示す、概略部分拡大平面図である。 本発明の実施の形態5に係る半導体素子の製造方法における、誘導溝による分割線の補正の効果を表すグラフを示す図である。 本発明の実施の形態6に係る半導体素子の製造方法における、誘導溝群の概略部分拡大平面図である。 本発明の実施の形態7に係る半導体素子の製造方法における、誘導溝群の概略部分拡大平面図である。 本発明の実施の形態8に係る半導体素子の製造方法における、誘導溝群の概略部分拡大平面図である。 本発明の実施の形態9に係る半導体素子の製造方法における、誘導溝群の概略部分拡大平面図である。 本発明の実施の形態10に係る半導体素子の製造方法における、誘導溝群の概略部分拡大平面図である。 本発明の実施の形態11に係る半導体素子の製造方法のフローチャートを示す図である。 本発明の実施の形態11に係る半導体素子の製造方法の一工程を示す概略平面図である。 本発明の実施の形態11に係る半導体素子の製造方法における、誘導溝群の概略部分拡大平面図である。 本発明の実施の形態12に係る半導体素子の製造方法における、誘導溝群の概略部分拡大平面図である。 本発明の実施の形態13に係る半導体素子の製造方法における、誘導溝群の概略部分拡大平面図である。 本発明の実施の形態14に係る半導体素子の製造方法における、誘導溝群の概略部分拡大平面図である。 本発明の実施の形態15に係る半導体素子の製造方法のフローチャートを示す図である。 本発明の実施の形態15に係る半導体素子の製造方法の一工程を示す概略平面図である。 本発明の実施の形態15に係る半導体素子の製造方法の一工程の、図36に示される領域XXXVIIの概略部分拡大平面図である。
 以下、本発明の実施の形態を説明する。なお、同一の構成には同一の参照番号を付し、その説明は繰り返さない。
 実施の形態1.
 図1から図10を参照して、実施の形態1に係る半導体素子12の製造方法を説明する。
 図1及び図2を参照して、本実施の形態に係る半導体素子12の製造方法は、ウェハ11の主面11m(図7を参照)の第1の領域に、第1の方向と、第1の方向に交差する第2の方向とに沿って配列される複数の半導体素子12を形成すること(S11)を備える。ウェハ11の材料は、特に制限はないが、例えば、リン化インジウム(InP)であってもよい。特定的には、第2の方向は、第1の方向に直交してもよい。第1の方向は、分割基準線14に平行であってもよい。本実施の形態では、複数の半導体素子12が、ウェハ11の劈開線15に対して、ウェハ11の主面11m(図7を参照)内の方位角の方向に傾いて形成されている。
 本明細書において、劈開線15は、ウェハ11の劈開面11s(図7を参照)とウェハ11の主面11mとの交線を意味する。ウェハ11の劈開面11sは、劈開性を有するウェハ11の結晶面を意味する。本明細書において、分割基準線14は、ウェハ11を分割する基準となる線を意味する。
 複数の半導体素子12は、例えば、半導体層、絶縁層及び電極を含んでいる。例えば、スパッタ法、真空蒸着法または化学気相成長(CVD)法などを用いて、ウェハ11の主面11m上に半導体層、絶縁層及び電極が堆積されて、複数の半導体素子12が形成されてもよい。本実施の形態では、半導体素子12は、発光ダイオードまたは半導体レーザであり、活性領域13を含んでいる。複数の半導体素子12を分割することによって得られる複数の半導体素子12の各々の活性領域13から、光が放射される。本実施の形態では、活性領域13が延在する方向は、劈開線15に対して、ウェハ11の主面11m(図7を参照)内の方位角の方向に傾いて形成されている。半導体素子12は、発光ダイオードまたは半導体レーザに限られず、例えば、縦型構造または横型構造を有するトランジスタであってもよい。
 図1から図3を参照して、本実施の形態に係る半導体素子12の製造方法は、ウェハ11の主面11mの第1の領域における複数の半導体素子12の間に、複数の劈開溝群20を形成すること(S12)と、第1の領域とは異なるウェハ11の主面11m(図7を参照)の第2の領域に劈開起点部18を形成すること(S13)とを備える。複数の劈開溝群20及び劈開起点部18は、分割基準線14上に配置される。複数の半導体素子12のうち、第1の方向及び第2の方向において互いに隣り合う4つの半導体素子12に対して、複数の劈開溝群20の少なくとも1つが配置される。複数の劈開溝群20は、各々、分割基準線14上に配置される複数の劈開溝21,22,23を含む。
 1本の分割基準線14に対して、複数の劈開溝群20が配置されている。分割基準線14は、第2の方向において互いに隣り合う2つの半導体素子12の間に位置している。
 図2、図8及び図9を参照して、複数の劈開溝群20のうち第1の方向において互いに隣り合う2つの劈開溝群20は、活性領域13に対して対称に配置されている。具体的には、活性領域13に対して劈開起点部18側に位置する劈開溝群20と活性領域13との間の第1の距離d1は、活性領域13に対して劈開起点部18側とは反対側に位置する劈開溝群20と活性領域13との間の第2の距離d2に等しい。第1の距離d1は、活性領域13に対して劈開起点部18側に位置する劈開溝群20と活性領域13の中心線との間の距離として定義される。第2の距離d2は、活性領域13に対して劈開起点部18側とは反対側に位置する劈開溝群20と活性領域13の中心線との間の距離として定義される。
 本実施の形態では、複数の劈開溝群20は活性領域13に接しないように形成されている。複数の劈開溝21,22,23は、劈開線15に対して、ウェハ11の主面11m内において方位角の方向に傾いて形成されている。複数の劈開溝21,22,23が配列される方向は、活性領域13が延在する方向に直交している。
 複数の劈開溝群20を形成すること(S12)と、劈開起点部18を形成すること(S13)とは、いずれを先に行ってもよいし、両者を同時に行ってもよい。複数の劈開溝群20を形成すること(S12)と、劈開起点部18を形成すること(S13)とは、素子分離線16sに沿って配置される半導体素子12の素子分離溝(図示せず)を形成することと同時に行われてもよい。これにより、半導体素子12の製造時間が短縮され得る。素子分離線16sは、第1の方向において互いに隣り合う2つの半導体素子12の間に位置している。
 複数の劈開溝群20を形成することは、ウェハ11をエッチングすることを含んでもよい。劈開起点部18を形成することは、劈開起点溝(18)を形成することを含んでもよい。劈開起点部18は劈開起点溝(18)であってもよい。劈開起点部18が劈開起点溝(18)である場合、劈開起点部18を形成することは、ウェハ11をエッチングすることを含んでもよい。複数の劈開溝群20及び劈開起点溝(18)は、共通の工程で形成されてもよい。複数の劈開溝群20及び劈開起点溝(18)が共通の工程で形成されることは、複数の劈開溝群20が形成される工程において劈開起点溝(18)も形成されることを意味する。複数の劈開溝群20の各々に含まれる複数の劈開溝21,22,23は、例えば、10μmの深さを有する。
 具体的には、複数の劈開溝群20及び劈開起点溝(18)は、フォトリソグラフィ工程によって形成された開口部を有するマスクを用いて、ウェハ11をエッチングすることによって、形成されてもよい。例えば、複数の半導体素子12が形成されたウェハ11の主面11m上に、スパッタ法またはプラズマCVD法などによって、二酸化珪素(SiO2)膜が形成される。SiO2膜の上にレジストが形成される。フォトリソグラフィ工程を用いて、レジストに開口部が形成される。
 開口部が形成されたレジストを用いて、SiO2膜をドライエッチングして、SiO2膜に開口部が形成される。SiO2膜をドライエッチングする際に、エッチングガスとして、炭素、水素、フッ素等の元素を含む化合物からなるガスが使用されてもよい。開口部が形成されたSiO2膜をマスクとして用いて、ウェハ11をエッチングする。このウェハ11のエッチングは、例えば、誘導結合型プラズマ反応性イオンエッチング(ICP-RIE)のようなドライエッチングであってもよいし、塩酸系のエッチャントを用いたウェットエッチングであってもよい。こうして、複数の劈開溝群20及び劈開起点溝(18)は、共通のエッチング工程でウェハ11に形成されてもよい。
 本実施の形態の半導体素子12の製造方法において、複数の劈開溝群20を形成することは、ウェハ11の主面11mを平面視したときに、互いに等しい底面の面積を有する複数の劈開溝21,22,23を形成することを含んでもよい。ウェハ11の主面を平面視したときに、複数の劈開溝21,22,23は互いに等しい底面の面積を有するため、ウェハ11をエッチングして複数の劈開溝21,22,23を形成する際に使用されるマスクの開口の面積が同じである。劈開溝群20に含まれる複数の劈開溝21,22,23を同時に形成する場合に、複数の劈開溝21,22,23が互いに異なる深さを有することが抑制され得る。本実施の形態の半導体素子12の製造方法によれば、複数の劈開溝21,22,23による分割基準線14に向けた分割線16の補正の精度がさらに向上され、分割基準線14から大幅にずれてウェハ11が劈開されることがさらに抑制され得る。
 これに対し、マスクの開口面積が異なれば、互いに異なる深さを有する複数の劈開溝が形成される。劈開溝の深さが相対的に深ければ、相対的に深い劈開溝においてウェハ11が割れやすくなる。劈開溝の深さが相対的に浅ければ、相対的に浅い劈開溝が分割線16を補正することが困難になる。
 本明細書において、分割線16は、分割面とウェハ11の主面11mとの交線を意味する。本明細書において、分割面は、ウェハ11を劈開するときに、実際にウェハ11が分割される面を意味する。
 本実施の形態では、複数の劈開溝群20は、各々、3つの劈開溝21,22,23を含んでいる。複数の劈開溝群20は、各々、2つの劈開溝を含んでもよいし、4つ以上の劈開溝を含んでもよい。劈開溝22は、劈開溝21に対して、劈開起点部18側とは反対側(終点F側)に、間隔20Gを空けて配置されている。劈開溝23は、劈開溝22に対して、劈開起点部18側とは反対側(終点F側)に、間隔20Gを空けて配置されている。劈開溝21と劈開溝22との間の間隔は、劈開溝22と劈開溝23との間の間隔に等しくてもよいし、異なってもよい。互いに隣り合う複数の劈開溝21,22,23の間の間隔20Gが大きくなると、劈開溝21,22,23の数が減少する。そのため、例えば、ウェハ11がInPの材料からなる場合、互いに隣り合う複数の劈開溝21,22,23の間の間隔20Gは、100μm以下が好ましい。
 ウェハ11の主面11mを平面視した時に、3つの劈開溝21,22,23は、各々、分割基準線14に沿う方向に細長い形状を有してもよい。劈開溝21は、分割基準線14に沿う方向に溝長21Lを有し、分割基準線14に直交する方向に溝幅21Wを有する。劈開溝22は、分割基準線14に沿う方向に溝長22Lを有し、分割基準線14に直交する方向に溝幅22Wを有する。劈開溝23は、分割基準線14に沿う方向に溝長23Lを有し、分割基準線14に直交する方向に溝幅23Wを有する。劈開溝21の溝幅21Wの中心、劈開溝22の溝幅22Wの中心及び劈開溝23の溝幅23Wの中心は、分割基準線14上に位置してもよい。劈開溝21、劈開溝22及び劈開溝23は、互いに同じ形状を有してもよいし、互いに異なる形状を有してもよい。溝長21L、溝長22L及び溝長23Lは互いに等しくてもよいし、互いに異なってもよい。溝幅21W、溝幅22W及び溝幅23Wは互いに等しくてもよいし、互いに異なってもよい。
 例えば、ウェハ11がInPの材料からなる場合、複数の劈開溝21,22,23は、各々、5μm以上100μm以下、好ましくは、10μm以上50μm以下の溝長(21L,22L,23L)を有してもよい。複数の劈開溝21,22,23の溝長(21L,22L,23L)が小さくなると、劈開溝21,22,23の深さが小さくなる。劈開溝21,22,23の溝長(21L,22L,23L)及び深さが小さくなると、複数の劈開溝21,22,23によって、分割線16を分割基準線14に近づけることが困難になる。そのため、複数の劈開溝21,22,23は、各々、5μm以上の溝長(21L,22L,23L)を有することが好ましい。複数の劈開溝21,22,23の溝長(21L,22L,23L)が大きくなると、複数の劈開溝21,22,23の数が減少する。複数の劈開溝21,22,23の数が減少すると、分割線16を分割基準線14に近づけることが困難になる。そのため、複数の劈開溝21,22,23は、各々、100μm以下の溝長(21L,22L,23L)を有することが好ましい。
 例えば、ウェハ11がInPの材料からなる場合、複数の劈開溝21,22,23は、各々、1μm以上20μm以下、好ましくは、5μm以上15μm以下の溝幅(21W,22W,23W)を有してもよい。複数の劈開溝21,22,23の溝幅(21W,22W,23W)が小さくなると、劈開溝21,22,23の深さが小さくなる。劈開溝21,22,23の溝幅(21W,22W,23W)及び深さが小さくなると、複数の劈開溝21,22,23によって、分割線16を分割基準線14に近づけることが困難になる。そのため、複数の劈開溝21,22,23は、各々、1μm以上の溝幅(21W,22W,23W)を有することが好ましい。複数の劈開溝21,22,23の溝幅(21W,22W,23W)が大きくなると、複数の劈開溝21,22,23の溝幅(21W,22W,23W)の端部が分割基準線14から遠く離れ、複数の劈開溝21,22,23によって、分割線16を分割基準線14に近づけることが困難になる。そのため、複数の劈開溝21,22,23は、各々、20μm以下の溝幅(21W,22W,23W)を有することが好ましい。
 複数の劈開溝21,22,23は、図4及び図5に示されるように、分割基準線14に直交する断面において、V字の形状を有してもよい。図4及び図5に示されるように、複数の劈開溝21,22,23の底面は、分割基準線14に直交する断面において、V字の形状を有してもよい。V字の形状を有する複数の劈開溝21,22,23は、例えば、ウェハ11をウェットエッチングすることによって形成され得る。図6に示されるように、複数の劈開溝21,22,23は、分割基準線14に直交する断面において、矩形の形状を有してもよい。図6に示されるように、複数の劈開溝21,22,23の底面は、分割基準線14に直交する断面において、平坦であってもよい。
 図4及び図5に示されるようなV字の形状を有する複数の劈開溝21,22,23が形成されたウェハ11を劈開するとき、複数の劈開溝21,22,23のV字溝の先端に応力が集中する。そのため、V字の形状を有する複数の劈開溝21,22,23の溝幅(21W,22W,23W)の中心で、ウェハ11が劈開されやすい。V字の形状を有する複数の劈開溝21,22,23は、より高い精度で、分割線16を分割基準線14に近づけることができる。
 本実施の形態に係る半導体素子12の製造方法は、ウェハ11を研削加工することをさらに備えてもよい。本実施の形態に係る半導体素子12の製造方法は、ウェハ11の主面11mと反対側のウェハ11の裏面に裏面電極を形成することをさらに備えてもよい。
 図1及び図7から図9を参照して、本実施の形態に係る半導体素子12の製造方法は、ウェハ11を劈開して、複数の半導体素子12を互いに分離すること(S14)を備える。具体的には、ウェハ11の裏側からブレード19を押し当てて、ウェハ11に荷重を加える。ウェハ11は、劈開起点部18から劈開線15に沿って劈開される。例えば、ウェハ11が(100)面の主面11mを有するとき、劈開面11sは(0-1-1)面であり、ウェハ11は、劈開起点部18から、[01-1]方向または[0-11]方向に向かって劈開される。図2及び図7に示されるように、ウェハ11は、黒丸で示される起点Sから白丸で示される終点Fに向かって、分割基準線14に沿って劈開される。本実施の形態では、起点S及び終点Fは、分割基準線14上に位置している。ウェハ11は、劈開起点部18から、ウェハ11の主面11mに沿う方向とウェハ11の主面11mに直交するウェハ11の厚さ方向とに劈開される。
 本実施の形態では、ウェハ11の主面11m内において、複数の半導体素子12及び複数の劈開溝21,22,23が、ウェハ11の劈開線15に対して、ウェハ11の主面11m内の方位角の方向に傾いて形成されている。図8を参照して、複数の劈開溝21,22,23の配列方向である分割基準線14は、劈開線15に対して、方位角θだけずれている。劈開線15は、後に述べる溝無し分割線17に平行である。ウェハ11は、劈開起点部18から、分割基準線14に対して方位角θがだけ傾いた劈開線15に沿って分割される。ウェハ11の主面11m内の方位角の方向における劈開線15に対する分割基準線14の傾きは、例えば、ウェハ11のオリフラの角度ずれ、及び、フォトリソグラフィ工程における複数の半導体素子12のパターンずれなどに起因して発生する。
 本実施の形態では、複数の半導体素子12の間に、複数の劈開溝群20が形成されている。複数の劈開溝群20は、各々、分割基準線14上に配置される複数の劈開溝21,22,23を含んでいる。複数の劈開溝21,22,23内にはウェハ11が存在しないのに対し、複数の劈開溝21,22,23の周りには、ウェハ11が存在する。そのため、複数の劈開溝21,22,23の各々のエッジ部分、すなわちウェハ11のうち複数の劈開溝21,22,23の各々に面する部分に、応力が発生する。
 劈開起点部18側とは反対側(終点F側)の複数の劈開溝21,22,23の第1端部と劈開起点部18側(起点S側)の複数の劈開溝21,22,23の第2端部とにおいて、この応力の方向は、分割基準線14に対して直交する。この応力によって、複数の劈開溝21,22,23の第1端部において、分割基準線14に対して方位角θがだけ傾いた分割線16は、分割基準線14に近づくように補正される。この応力によって、複数の劈開溝21,22,23の第1端部において、分割線16は、分割基準線14に向けて補正される。
 図9に示されるように、複数の劈開溝21,22,23が分割線16を分割基準線14に向けて補正するときに、分割線16及び分割面に段差25が形成される。この段差25は、複数の劈開溝21,22,23から、劈開起点部18側から劈開起点部18とは反対側に向かう方向(起点Sから終点Fに向かう方向)と、ウェハ11の主面11mからウェハ11の裏面に向かう方向とに延在している。段差25の大きさが、複数の劈開溝21,22,23の各々における分割線16及び分割面の補正量に相当する。
 図10を参照して、劈開溝群20による分割線16の補正の効果を説明する。図10の横軸の位置xは、分割基準線14に沿う方向におけるウェハ11内の位置を表す。劈開起点部18に最も近い半導体素子12の劈開起点部18側の位置xが、0μmと定義される。劈開起点部18から最も離れた半導体素子12の劈開起点部18側とは反対側の位置xは、例えば、14000μmであってもよい。図10の縦軸の分割線16の位置yは、位置xにおける、分割基準線14からの分割線16のずれの大きさ(分割基準線14と分割線16との間の距離)を表す。
 分割基準線14は、劈開線15に対して方位角θがだけ傾いている。そのため、複数の劈開溝21,22,23が形成されない比較例1では、図8に示される溝無し分割線17に示されるように、劈開起点部18から離れるにつれて、分割線16が分割基準線14から大きくずれる。比較例2では、第1の方向及び第2の方向において互いに隣り合う4つの半導体素子12に対して1つの劈開溝が形成されている。比較例2の劈開溝は、分割線16が分割基準線14に十分に近づくように、分割線16を補正することができない。
 これに対し、本実施の形態では、第1の方向及び第2の方向において互いに隣り合う4つの半導体素子12に対して1つの劈開溝群20が形成されている。複数の劈開溝群20は、各々、3つの複数の劈開溝21,22,23を含んでいる。本実施の形態における、劈開起点部18から最も離れた半導体素子12における分割線16の位置yは、比較例1の三分の一以下に減少している。本実施の形態によれば、複数の半導体素子12の間の複数の劈開溝21,22,23を含む劈開溝群20によって、分割線16が分割基準線14に十分近づくように、分割線16は補正され得る。
 本実施の形態の変形例では、複数の劈開溝群は、各々、2つの劈開溝(例えば、図36及び図37に示される劈開溝群20j)を含んでいる。本実施の形態の変形例における、劈開起点部18から最も離れた半導体素子12における分割線16の位置yは、比較例1の三分の一以下に減少している。本実施の形態の変形例においても、複数の半導体素子12の間の2つの劈開溝を含む劈開溝群によって、分割線16が分割基準線14に十分近づくように、分割線16は補正され得る。
 ウェハ11を劈開して、複数の半導体素子12を互いに分離すること(S14)は、素子分離溝が配置されている素子分離線16sに沿って複数の半導体素子12を互いに分離することを含んでもよい。
 本実施の形態の半導体素子12の製造方法の効果を説明する。
 本実施の形態の半導体素子12の製造方法は、ウェハ11の主面11mの第1の領域に、第1の方向と第1の方向に交差する第2の方向とに沿って配列される複数の半導体素子12を形成すること(S11)を備える。本実施の形態の半導体素子12の製造方法は、ウェハ11の主面11mの第1の領域における複数の半導体素子12の間に、複数の劈開溝群20を形成すること(S12)と、第1の領域とは異なるウェハ11の主面11mの第2の領域に劈開起点部18を形成すること(S13)とを備える。本実施の形態の半導体素子12の製造方法は、分割基準線14に沿ってウェハ11を劈開して、複数の半導体素子12を互いに分離すること(S14)を備える。複数の劈開溝群20及び劈開起点部18は、分割基準線14上に配置される。複数の半導体素子12のうち、第1の方向及び第2の方向において互いに隣り合う4つの半導体素子12に対して、複数の劈開溝群20の少なくとも1つが配置される。複数の劈開溝群20は、各々、分割基準線14上に配置される複数の劈開溝21,22,23を含む。
 本実施の形態の半導体素子12の製造方法によれば、分割基準線14がウェハ11の劈開線15に対してウェハ11の主面11m内の方位角の方向に傾いていても、複数の半導体素子12の間に形成される複数の劈開溝群20の各々に含まれる複数の劈開溝21,22,23は、分割線16が分割基準線14に十分近づくように、分割線16を補正することができる。複数の劈開溝21,22,23を含む複数の劈開溝群20は、分割基準線14から大きくずれた位置でウェハ11が分割されることを防ぐことができる。本実施の形態の半導体素子12の製造方法は、半導体素子12の製造歩留りを向上させることができる。
 本実施の形態の半導体素子12の製造方法では、複数の劈開溝21,22,23は、分割基準線14に直交する断面において、V字の形状を有してもよい。ウェハ11を劈開するとき、複数の劈開溝21,22,23のV字溝の先端に応力が集中する。V字の形状を有する複数の劈開溝21,22,23の溝幅(21W,22W,23W)の中心で、ウェハ11が劈開されやすい。V字の形状を有する複数の劈開溝21,22,23は、より高い精度で、分割線16を分割基準線14に近づけることができる。
 本実施の形態の半導体素子12の製造方法において、劈開起点部18を形成することは、ウェハ11をエッチングすることによって劈開起点溝(18)を形成することを含んでもよい。劈開起点溝(18)をエッチングによって形成することは、劈開起点溝(18)の周囲にクラックが形成されることを抑制する。本実施の形態の半導体素子12の製造方法によれば、このクラックのために分割基準線が14から大きくずれた位置でウェハ11が劈開されることが抑制されて、ウェハ11が、分割基準線14に沿って劈開され得る。これに対し、劈開起点溝(18)がスクライブによってウェハ11に形成されると、劈開起点溝(18)の周囲に、様々な方向に延びるクラックが形成される。このクラックによって、分割基準線14から大きくずれた位置でウェハ11は劈開され得る。
 本実施の形態の半導体素子12の製造方法において、複数の劈開溝群20及び劈開起点溝(18)は共通の工程で形成されてもよい。本実施の形態の半導体素子12の製造方法によれば、半導体素子12の製造工程の数を減少させることができ、半導体素子12を効率的に製造することができる。
 本実施の形態の半導体素子12の製造方法において、複数の劈開溝群20を形成することは、ウェハ11の主面11mを平面視したときに、互いに等しい底面の面積を有する複数の劈開溝21,22,23を形成することを含んでもよい。複数の劈開溝21,22,23は互いに等しい底面の面積を有するため、複数の劈開溝21,22,23が互いに異なる深さを有することが抑制され得る。本実施の形態の半導体素子12の製造方法によれば、複数の劈開溝21,22,23による分割基準線14に向けた分割線16の補正の精度がさらに向上され、分割基準線14から大幅にずれてウェハ11が劈開されることがさらに抑制され得る。
 実施の形態2.
 図11及び図12を参照して、実施の形態2に係る半導体素子12の製造方法を説明する。本実施の形態の半導体素子12の製造方法は、基本的には、実施の形態1の半導体素子12の製造方法と同様の工程を備え、同様の効果を奏するが、主に以下の点で異なる。
 複数の半導体素子12は活性領域13を含む。複数の劈開溝群20aは、活性領域13に隣り合いかつ活性領域13に対して劈開起点部18側に位置する第1劈開溝群20a1と、活性領域13に隣り合いかつ活性領域13に対して劈開起点部18側とは反対側に位置する第2劈開溝群20a2とを含む。第1劈開溝群20a1及び第2劈開溝群20a2は、各々、複数の劈開溝21,22,23を含んでいる。複数の劈開溝群20aを形成することは、第1劈開溝群20a1と活性領域13との間の第1の距離d1が第2劈開溝群20a2と活性領域13との間の第2の距離d2よりも大きくなるように、複数の劈開溝群20aを形成することを含む。
 半導体素子12が半導体レーザまたは発光ダイオードであるとき、段差25は、半導体素子12の発光効率を低下させる。本実施の形態の製造方法では、第1劈開溝群20a1と活性領域13との間の第1の距離d1は、第2劈開溝群20a2と活性領域13との間の第2の距離d2よりも大きい。そのため、本実施の形態の製造方法における段差25と活性領域13との距離d4(図12を参照)は、実施の形態1の製造方法における段差25と活性領域13との距離d3(図9を参照)よりも大きい。本実施の形態の半導体素子12の製造方法によれば、向上した発光効率を有する半導体素子12が向上した製造歩留りで製造され得る。
 実施の形態3.
 図13を参照して、実施の形態3に係る半導体素子12の製造方法を説明する。本実施の形態の半導体素子12の製造方法は、基本的には、実施の形態1の半導体素子12の製造方法と同様の工程を備えるが、主に以下の点で異なる。
 本実施の形態の半導体素子12の製造方法は、複数の劈開溝群20bを形成することを含む。複数の劈開溝群20bは、各々、複数の劈開溝(21b,22b,23b)を含む。劈開起点部18側とは反対側(終点F側)の複数の劈開溝(21b,22b,23b)の第1端部は、劈開起点部18側とは反対側(終点F側)に向かうにつれて先細となる形状を有する。本実施の形態の半導体素子12の製造方法では、劈開起点部18側(起点S側)の複数の劈開溝(21b,22b,23b)の第2端部は、劈開起点部18側(起点S側)に向かうにつれて先細となる形状を有してもよい。
 本実施の形態における複数の劈開溝(21b,22b,23b)は、分割基準線14に直交する断面において、図6に示されるような矩形の形状を有してもよい。複数の劈開溝(21b,22b,23b)は、図4及び図5に示されるように、分割基準線14に直交する断面において、V字の形状を有してもよい。
 本実施の形態の半導体素子12の製造方法の効果を説明する。本実施の形態の半導体素子12の製造方法の効果は、実施の形態1の半導体素子12の製造方法と同様の効果に加えて、主に以下の効果を奏する。
 本実施の形態の半導体素子12の製造方法では、劈開起点部18側とは反対側(終点F側)の複数の劈開溝(21b,22b,23b)の第1端部は、劈開起点部18側とは反対側(終点F側)に向かうにつれて先細となる形状を有する。複数の劈開溝(21b,22b,23b)の各々のエッジ部分、すなわちウェハ11のうち複数の劈開溝(21b,22b,23b)の各々に面する部分に、応力が発生する。この応力は、複数の劈開溝(21b,22b,23b)の第1端部の先細の先端に集中する。
 ウェハ11を劈開するとき、複数の劈開溝(21b,22b,23b)の第1端部の先細の先端が位置する複数の劈開溝(21b,22b,23b)の溝幅の中心で、ウェハ11は劈開されやすい。複数の劈開溝(21b,22b,23b)が、分割基準線14に直交する断面において、図6に示されるような矩形の形状を有していても、複数の劈開溝(21b,22b,23b)の第1端部において、分割基準線14に対して方位角の方向に傾いた分割線16は、より高い精度で分割基準線14に近づくように補正され得る。こうして、複数の半導体素子12が高い製造歩留りで製造され得る。
 本実施の形態の半導体素子12の製造方法では、劈開起点部18側の複数の劈開溝(21b,22b,23b)の第2端部は、劈開起点部18側に向かうにつれて先細となる形状を有してもよい。複数の劈開溝(21b,22b,23b)の各々のエッジ部分、すなわちウェハ11のうち複数の劈開溝(21b,22b,23b)の各々に面する部分に、応力が発生する。この応力は、複数の劈開溝(21b,22b,23b)の第2端部の先細の先端に集中する。
 ウェハ11を劈開するとき、複数の劈開溝(21b,22b,23b)の第2端部の先細の先端が位置する複数の劈開溝(21b,22b,23b)の溝幅の中心で、ウェハ11は劈開されやすい。複数の劈開溝(21b,22b,23b)が、分割基準線14に直交する断面において、図6に示されるような矩形の形状を有していても、複数の劈開溝(21b,22b,23b)の第2端部において、分割基準線14に対して方位角の方向に傾いた分割線16は、より高い精度で分割基準線14に近づくように補正され得る。こうして、複数の半導体素子12が高い製造歩留りで製造され得る。
 実施の形態4.
 図14を参照して、実施の形態4に係る半導体素子12の製造方法を説明する。本実施の形態の半導体素子12の製造方法は、基本的には、実施の形態1の半導体素子12の製造方法と同様の工程を備えるが、主に以下の点で異なる。
 本実施の形態の半導体素子12の製造方法は、複数の劈開溝群20cを形成することを含む。複数の劈開溝群20cは、各々、複数の劈開溝(21c,22c,23c)を含む。複数の劈開溝(21c,22c,23c)は各々、互いに隣り合う第1の劈開溝と第2の劈開溝とを含む。第2の劈開溝は、第1の劈開溝に対して、劈開起点部18側とは反対側(終点F側)に位置する。
 第2の劈開溝の第2の溝幅は、第1の劈開溝の第1の溝幅よりも狭い。例えば、劈開溝21c及び劈開溝22cは、それぞれ、第1の劈開溝及び第2の劈開溝として見なされ得る。劈開溝22の溝幅22Wは、劈開溝21の溝幅21Wよりも狭い。例えば、劈開溝22c及び劈開溝23cは、それぞれ、第1の劈開溝及び第2の劈開溝として見なされ得る。劈開溝23の溝幅23Wは、劈開溝22の溝幅22Wよりも狭い。特定的には、活性領域13に隣り合いかつ活性領域13に対して劈開起点部18側(起点S側)に位置する劈開溝群20cは、複数の劈開溝(21c,22c,23c)を含む。この活性領域13に近づくにつれて、複数の劈開溝(21c,22c,23c)の溝幅(21W,22W,23W)が次第に減少するように、劈開溝群20cは構成されている。
 本実施の形態の半導体素子12の製造方法の効果を説明する。本実施の形態の半導体素子12の製造方法の効果は、実施の形態1の半導体素子12の製造方法と同様の効果に加えて、主に以下の効果を奏する。
 本実施の形態の半導体素子12の製造方法では、複数の劈開溝(21c,22c,23c)は各々、互いに隣り合う第1の劈開溝と第2の劈開溝とを含む。第2の劈開溝は、第1の劈開溝に対して、劈開起点部18側とは反対側(終点F側)に位置する。第2の劈開溝の第2の溝幅は、第1の劈開溝の第1の溝幅よりも狭い。そのため、第2の劈開溝は、第1の劈開溝よりも、分割線16を分割基準線14のより近くに補正することができる。複数の劈開溝群20cの間において、分割基準線14に対して方位角の方向に傾いた分割線16は、より高い精度で分割基準線14に近づくように補正され得る。
 実施の形態5.
 図15から図21及び図23を参照して、実施の形態5に係る半導体素子12の製造方法を説明する。
 図15及び図16を参照して、本実施の形態の半導体素子12の製造方法は、ウェハ11上において分割基準線14を挟む一方の領域と他方の領域とにそれぞれ複数の半導体素子12を形成すること(S11)を備える。複数の半導体素子12を形成すること(S11)の後のウェハ11を劈開すること(S14)において、ウェハ11は、分割基準線14の矢印方向に向けて劈開される。ウェハ11は、黒丸で示された起点Sから白丸で示された終点Fまで劈開される。本実施の形態では、起点S及び終点Fは、分割基準線14上に位置している。本実施の形態では、分割基準線14と劈開線15とは互いに平行である。
 ウェハ11の材料は、特に制限はないが、例えば、リン化インジウム(InP)であってもよい。複数の半導体素子12は、行列状に配列されてもよい。複数の半導体素子12は、例えば、半導体層、絶縁層及び電極を含んでいる。実施の形態1と同様の方法によって、ウェハ11上に複数の半導体素子12が形成されてもよい。本実施の形態では、複数の半導体素子12の一対の側面は、分割基準線14にほぼ平行に形成される。本実施の形態では、半導体素子12は、発光ダイオードであり、活性領域13を含んでいる。複数の半導体素子12を分割することによって得られる複数の半導体素子12の各々の活性領域13から、光が放射される。本実施の形態では、活性領域13が延在する方向は、分割基準線14及び劈開線15に直交している。半導体素子12は、発光ダイオードに限られず、例えば、縦型構造または横型構造を有するトランジスタであってもよい。
 図15から図17を参照して、本実施の形態の半導体素子12の製造方法は、ウェハ11上に誘導溝群30を形成すること(S22)を備える。1本の分割基準線14に対し、1つの誘導溝群30が形成されてもよい。複数の誘導溝群30を形成すること(S22)は、半導体素子12の素子分離溝(図示せず)を形成する工程と同時に行われてもよい。これにより、半導体素子12の製造にかかる時間が短縮され得る。
 複数の誘導溝群30の各々は、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)を含む。複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)は、第1の誘導溝32と、第2の誘導溝33と、誘導溝31,34,35とを含む。第2の誘導溝33は、第1の誘導溝32から終点F側に離れて配置される。誘導溝31は、第1の誘導溝32から起点S側に離れて配置される。誘導溝34は、第2の誘導溝33から終点F側に離れて配置される。誘導溝35は、誘導溝34から終点F側に離れて配置される。第1の誘導溝32と第2の誘導溝33とは、分割基準線14を挟む一方の領域と他方の領域とにわたって配置される。すなわち、第1の誘導溝32は、一方の領域に第1の側面32pを有し、他方の領域に、第3の側面32qを有する。第2の誘導溝33は、一方の領域に第2の側面33pを有し、他方の領域に第4の側面33qを有する。
 複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)は、各々、分割基準線14に垂直な方向に溝幅W1を有し、分割基準線14に平行な方向に溝長W2を有する。複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)は、分割基準線14に沿って、互いに溝間隔30Gを空けて配置されている。起点Sは、誘導溝群30よりも劈開起点溝18d側に位置する。起点Sは、分割基準線14に垂直な方向において、誘導溝31の溝幅W1内に位置している。特定的には、起点Sは、分割基準線14に垂直な方向において、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)の溝幅W1の中心に位置してもよい。
 溝ステップ間隔S1は、分割基準線14に沿う誘導溝(例えば、第1の誘導溝32)の側面のうち分割基準線14から遠い方の側面(例えば、第1の側面32p)と分割基準線14との間の距離と、分割基準線14の方向に沿う隣の誘導溝(例えば、第2の誘導溝33)の側面のうち分割基準線14から遠い方の側面(例えば、第2の側面33p)と分割基準線14との間の距離との差として定義される。具体的には、溝ステップ間隔S1は、第1の側面32pと分割基準線14との距離と、第2の側面33pと分割基準線14との距離との間の差として定義される。分割基準線14に沿う側面は、分割基準線14に厳密に平行な側面である必要はない。本実施の形態では、第1の誘導溝32の第1の側面32pと第3の側面32qとは、分割基準線14を挟む。分割基準線14は、第1の誘導溝32の幅方向の中心を通る。第2の誘導溝33の第2の側面33pと第4の側面33qとは、分割基準線14を挟む。分割基準線14は、第2の誘導溝33の幅方向の中心を通る。溝ステップ間隔S1は、隣り合う誘導溝の溝幅W1の差の半分である。
 例えば、ウェハ11がInPの材料からなり、かつ、100μmの厚さを有する場合、溝ステップ間隔S1は約5μm以下であり、溝間隔30Gは約10μmから約100μmであり、溝幅W1は約10μmから約100μmであり、誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)の深さは約5μm以上であることが好ましい。溝幅W1、溝長W2、溝間隔30G及び溝ステップ間隔S1は、ウェハ11の大きさ及び厚さ、並びに、ウェハ11内に形成される複数の半導体素子12の数などに応じて適宜定められ得る。
 第1の誘導溝32の第1の側面32p及び第2の誘導溝33の第2の側面33pは、分割基準線14を挟む一方の領域に位置している。第1の誘導溝32の第1の側面32p及び第2の誘導溝33の第2の側面33pは、分割基準線14に沿う側面である。第1の誘導溝32の第1の側面32p及び第2の誘導溝33の第2の側面33pは、起点Sから終点Fに向かう方向に沿う側面である。本実施の形態では、起点Sは分割基準線14上に位置するので、分割基準線14に沿う側面は、起点Sから終点Fへ向かう方向に沿う側面である。
 第1の側面32pに対向する第1の誘導溝32の第3の側面32qは、分割基準線14を挟む他方の領域に位置している。第2の側面33pに対向する第2の誘導溝33の第4の側面33qは、分割基準線14を挟む他方の領域に位置している。第1の誘導溝32の第3の側面32q及び第2の誘導溝33の第4の側面33qは、分割基準線14に沿う側面である。第1の誘導溝32の第1の側面32pと第3の側面32qとは、分割基準線14を挟む。第2の誘導溝33の第2の側面33pと第4の側面33qとは、分割基準線14を挟む。
 図17に示されるように、誘導溝群30は、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)を含む。第1の誘導溝32は、起点S側から2つ目(紙面上右から2つ目)の誘導溝であり、第2の誘導溝33は、起点S側から3つ目の誘導溝であってもよい。終点F側から2つ目(紙面上左から2つ目)の誘導溝34を第1の誘導溝とみなし、終点Fに最も近い(紙面上最も左)誘導溝35を第2の誘導溝とみなしてもよい。起点Sに最も近い(紙面上最も右)誘導溝31を第1の誘導溝とみなし、起点S側から2つ目(紙面上右から2つ目)の誘導溝(32)を第2の誘導溝とみなしてもよい。互いに隣り合う誘導溝を第1の誘導溝及び第2の誘導溝とみなし、この2つの誘導溝が繰り返し配置されて、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)を含む誘導溝群30が構成されてもよい。
 図17及び図18を参照して、起点Sに最も近い誘導溝31(分割線16が最初に接触する誘導溝であり、図17では紙面上最も右の溝)の溝幅W1について説明する。本実施の形態では、起点Sに最も近い誘導溝の溝幅W1は、誘導溝群30を形成しないでウェハ11を劈開する比較例の半導体素子12の製造方法における分割基準線14から分割線16までの最大距離の2倍より長ければよい。例えば、比較例の半導体素子12の製造方法における分割基準線14から分割線16までの最大距離が約15μm以下であるならば、図17に示されるように分割基準線14が誘導溝31の溝幅W1の中心を通る場合、誘導溝31の溝幅W1は約30μm以上あればよい。
 複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)は、フォトリソグラフィ工程によって形成された開口部を有するマスクを用いて、ウェハ11をエッチングすることによって、形成されてもよい。具体的には、ウェハ11上にスパッタ法やプラズマ化学気相成長(CVD)法等によって、二酸化珪素(SiO2)膜が形成される。SiO2膜の上にレジストが形成される。フォトリソグラフィ工程を用いて、レジストに開口部が形成される。開口部が形成されたレジストを用いて、SiO2膜をドライエッチングして、SiO2膜に開口部が形成される。ドライエッチングを行う際は、炭素、水素、フッ素等の化合物からなるガスが使用されてもよい。開口部が形成されたSiO2膜をマスクとして用いて、ウェハ11をエッチングする。このウェハ11のエッチングは、例えば、誘導結合型反応性イオンエッチング(ICP-RIE)のようなドライエッチングであってもよい。こうして、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)は、ウェハ11をエッチングすることによって形成されてもよい。
 本実施の形態の半導体素子12の製造方法において複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)を形成することは、ウェハ11をドライエッチングした後に、さらにウェットエッチングを行うことを含んでもよい。ただし、ウェットエッチングは、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)を形成する前に既に形成されている複数の半導体素子12の特性に影響を与えないように行われる必要がある。
 図15及び図16を参照して、本実施の形態の半導体素子12の製造方法は、劈開起点溝18dを形成すること(S23)をさらに備えてもよい。劈開起点溝18dは、誘導溝群30の起点S側に形成される。劈開起点溝18dは、例えば、ダイヤモンドのような硬質材料からなる針を用いて、分割基準線14に沿ってウェハ11をスクライブすることによって形成される。誘導溝群30を形成すること(S22)と劈開起点溝18dを形成すること(S23)とは、いずれが先に行われてもよい。
 本実施の形態の半導体素子12の製造方法は、誘導溝群30を形成すること(S22)と劈開起点溝18dを形成すること(S23)との後に、ウェハ11を所定の厚みに研削加工することをさらに備えてもよい。複数の半導体素子12が裏面電極を必要とする場合は、本実施の形態の半導体素子12の製造方法は、ウェハ11の裏面に裏面電極を形成することをさらに備えてもよい。
 図15から図21を参照して、本実施の形態の半導体素子12の製造方法は、ウェハ11を劈開して、複数の半導体素子12を互いに分離すること(S14)をさらに備える。具体的には、図18に示されるように、ウェハ11の裏側からブレード19を押し当てて、ウェハ11に荷重を加える。ウェハ11は、劈開起点溝18dから劈開線15に沿って劈開される。図16及び図17に示されるように、ウェハ11は、黒丸で示され起点Sから白丸で示される終点Fに向けて、分割基準線14に沿って劈開される。図18において、例えば、ウェハ11が(100)面の主面11mを有するとき、劈開面11sは(0-1-1)面であり、ウェハ11は、劈開起点溝18dから、[01-1]又は[0-11]方向に向かって劈開される。
 劈開起点溝18dがスクライブによって形成されると、劈開起点溝18dの周囲に、様々な方向に延びるクラックが形成される。複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)がなければ、このクラックのために分割基準線14からずれた溝無し分割線17(図18を参照)に沿って、ウェハ11は分割され得る。これに対し、本実施の形態の半導体素子12の製造方法は、ウェハ11上に複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)を含む誘導溝群30を含む誘導溝群30を形成すること(S22)を備える。複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)を含む誘導溝群30は、このクラックのために分割基準線14からずれた分割線16(図18を参照)を、分割基準線14に近づけるように補正する。
 図19及び図20を参照して、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)を含む誘導溝群30による分割線16の補正を詳しく説明する。分割線16は、例えば、図19に示されるように、劈開起点溝18dから第1の誘導溝32の第1の側面32p側へずれる。この場合、分割線16は、分割基準線14から数μmから数10μmずれた位置で、分割基準線14に平行な劈開線15に沿って延びる。
 分割線16は、起点Sに最も近い誘導溝31(図19では、紙面上最も右の誘導溝31)に接触する。劈開方向(起点Sから終点Fへ向かう方向)に誘導溝31に隣り合う誘導溝(第1の誘導溝32)の内側に誘導溝31における分割線16の延長線が存在する場合、分割線16は、誘導溝31によって補正されない。誘導溝31における分割線16の延長線が第1の誘導溝32の第1の側面32pよりも分割基準線14に近い場合、分割線16は、誘導溝31によって分割基準線14の方向へ補正されない。具体的には、図19に示されるように、誘導溝31における分割線16の延長線が距離d5だけ第1の誘導溝32の内側に位置する場合、分割線16は、誘導溝31によって分割基準線14の方向へ補正されない。
 誘導溝31によって補正されなかった分割線16は、第1の誘導溝32に接触する。第1の誘導溝32における分割線16の延長線が、劈開方向に第1の誘導溝32に隣り合う誘導溝(第2の誘導溝33)の外側に存在する場合、分割線16は、第1の誘導溝32によって分割基準線14に向けて補正される。第1の誘導溝32における分割線16の延長線が第2の誘導溝33の第2の側面33pよりも分割基準線14から遠い場合、分割線16は、第1の誘導溝32によって分割基準線14に向けて補正される。具体的には、図19に示されるように、第1の誘導溝32における分割線16の延長線が距離d6だけ第2の誘導溝33の外側に位置する場合、分割線16は、第1の誘導溝32の劈開方向側(終点F側)の端部において、分割基準線14に向けて補正される。分割線16は、第1の誘導溝32と同様に、第2の誘導溝33の劈開方向側(終点F側)の端部において、距離d7だけ分割基準線14に向けて補正される。この補正が複数の誘導溝(例えば、第1の誘導溝32、第2の誘導溝33、誘導溝34)繰り返されて、分割線16は分割基準線14に徐々に近づく。
 図20に示されるように、誘導溝群30は、15個の誘導溝を有している。図20及び図21に示されるように、複数の誘導溝(例えば、第1の誘導溝32、第2の誘導溝33、誘導溝34)の各々の劈開方向側(終点F側)の端部で分割線16が補正されるときに、分割線16及び分割面に段差C1,C2,C3が形成される。段差C1,C2,C3は、複数の誘導溝(例えば、第1の誘導溝32、第2の誘導溝33、誘導溝34)から、劈開起点溝18d側から劈開起点溝18dとは反対側に向かう方向(起点Sから終点Fに向かう方向)と、ウェハ11の主面11mからウェハ11の裏面に向かう方向とに延在している。段差C1,C2,C3の各々の大きさは、複数の誘導溝(例えば、第1の誘導溝32、第2の誘導溝33、誘導溝34)の各々における分割線16及び分割面の補正量に相当する。段差C1,C2,C3は、ウェハ11の主面11mからウェハ11の裏面まで形成されている。複数の誘導溝(例えば、第1の誘導溝32、第2の誘導溝33、誘導溝34)によって、ウェハ11の裏面においても、分割基準線14からずれた分割面が補正されている。
 図22を参照して、比較例の半導体素子12の製造方法では、本実施の形態の誘導溝群30に代えて、1つの分割基準線14につき1つのテーパー溝40がウェハ11に形成されている。テーパー溝40の溝幅が狭い側が、劈開方向側(終点F側)である。テーパー溝40は、溝幅が終点Fに向かって収束する形状を有している。比較例の半導体素子12の製造方法では、分割基準線14からずれた分割線16がテーパー溝40に接触したとき、分割線16は、テーパー溝40の側面に沿ってわずかに補正される。しかしながら、分割線16は、テーパー溝40によって、テーパー溝40の側面に沿って補正され続けることはない。
 これに対し、本実施の形態の半導体素子12の製造方法では、1つの分割基準線14につき複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)がウェハ11に形成されている。複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)内にはウェハ11が存在しないのに対し、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)の周りには、ウェハ11が存在する。そのため、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)の各々のエッジ部分、すなわちウェハ11のうち複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)の各々に面する部分に、応力が発生する。複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)の各々の起点S側の第1端部と終点F側の第2端部では、劈開方向だけでなく劈開方向に垂直な方向(すなわち誘導溝の幅方向)にも応力が発生する。
 この応力により、分割線16は、複数の誘導溝(例えば、第1の誘導溝32、第2の誘導溝33、誘導溝34,35)の各々の劈開方向の第2端部で、分割基準線14に向けて補正される。また、本実施の形態の半導体素子12の製造方法では、1つの分割基準線14に対して複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)がウェハ11に形成されるため、分割基準線14からずれた分割線16は複数箇所で補正され得る。そのため、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)は、分割基準線14に向けた分割線16の補正の精度を向上させることができる。
 図23を参照して、溝間隔30Gは、できる限り広い方が好ましい。図23の横軸は、分割線16が複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)に接触する前の分割線16と分割基準線14との間の距離D1[μm]を示す。図23の縦軸は、分割線16が複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)によって補正された後の分割線16と分割基準線14との間の距離D2[μm]を示す。
 図23に示されるように、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)の溝間隔30Gを20μmとしたときの方が、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)の溝間隔30Gを10μmとしたときよりも、距離D2が0μmに近づくことが分かる。この傾向は、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)に接触する前の分割線16と分割基準線14との間の距離D1が大きい場合に、顕著である。例えば、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)の溝間隔30Gを20μmとしたとき、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)を含む誘導溝群30は、14μmの距離D1を2μmの距離D2まで減少させることができる。複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)の溝間隔30Gが20μm以上であるとき、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)による分割基準線14に向けた分割線16の補正の効果が高い。
 他方、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)の溝間隔30Gが大きすぎると、誘導溝の数が減少するため、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)による分割基準線14に向けた分割線16の補正の効果が、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)がない場合と同程度となってしまう。そのため、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)の溝間隔30Gは、約十数μm以上約数百μm以下であることが好ましい。なお、図23において、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)は、各々、20μmの溝長W2を有している。
 既に述べたように、本実施の形態の半導体素子12の製造方法において複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)を含む誘導溝群30を形成すること(S22)は、ウェハ11をドライエッチングした後に、さらにウェットエッチングを行うことを含んでもよい。ウェハ11をウェットエッチングすると、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)の底面は、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)の溝幅の中心に向かって鋭角を有する逆三角形の断面形状を有する。逆三角形の断面形状を有する複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)は、分割線16を、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)の溝幅の中心に向かって補正することができる。逆三角形の断面形状を有する複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)は、分割基準線14からずれた分割線16をさらに精度よく補正することができる。
 上記では、図19に示されるように、分割線16が劈開起点溝18dから第1の誘導溝32の第1の側面32pの方向へずれる場合において、分割基準線14に向けた分割線16の補正について説明した。しかしながら、図19とは逆に、分割線16が劈開起点溝18dから第1の誘導溝32の第3の側面32qの方向へずれる場合もある。この場合も、第1の誘導溝32及び第2の誘導溝33は、分割線16を分割基準線14に向けて補正する。すなわち、分割線16が劈開起点溝18dから第1の誘導溝32の第3の側面32qの方向へずれる場合、分割線16は、起点Sに最も近い誘導溝31では補正されない。分割線16は、第1の誘導溝32の第3の側面32qの劈開方向(終点F側)の端部で、分割基準線14に向けて補正される。分割線16は、第2の誘導溝33の第4の側面33qの劈開方向(終点F側)の端部で、分割基準線14に向けて補正される。
 本実施の形態の半導体素子12の製造方法の効果を説明する。
 本実施の形態の半導体素子12の製造方法では、ウェハ11を劈開して、複数の半導体素子12を互いに分離する際に、複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)は、分割線16を分割基準線14に向けて補正する。本実施の形態の半導体素子12の製造方法は、分割基準線14から大幅にずれてウェハ11が劈開されることを抑制することができる。さらに、本実施の形態の半導体素子12の製造方法では、分割線16が、分割基準線14及び劈開起点溝18dから、分割基準線14に沿う第1の誘導溝32の一対の側面(第1の側面32pと第3の側面32q)のいずれ側にずれても、分割線16は、分割基準線14に向けて補正され得る。
 複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)を形成することは、半導体素子12の素子分離溝(図示せず)を形成する工程と同時に行われてもよい。これにより、半導体素子12の製造時間が短縮され得る。
 実施の形態6.
 図24を参照して、実施の形態6に係る半導体素子12の製造方法を説明する。本実施の形態の半導体素子12の製造方法は、基本的には、実施の形態5の半導体素子12の製造方法と同様の工程を備えるが、主に以下の点で異なる。本実施の形態は、実施の形態5とは、誘導溝群30aに含まれる複数の誘導溝(第1の誘導溝32a,第2の誘導溝33a,誘導溝31a,34a,35a)の配置、特に、分割基準線14に対する複数の誘導溝(第1の誘導溝32a,第2の誘導溝33a,誘導溝31a,34a,35a)の位置が異なる。
 本実施の形態の半導体素子12の製造方法において、ウェハ11に形成される誘導溝群30aに含まれる複数の誘導溝(第1の誘導溝32a,第2の誘導溝33a,誘導溝31a,34a,35a)の側面の一つは、分割基準線14上に位置している。具体的には、第1の誘導溝32aの第3の側面32qと第2の誘導溝33aの第4の側面33qとは、分割基準線14上に位置している。分割基準線14に沿う複数の誘導溝(例えば第1の誘導溝32a)の側面のうち、分割基準線14から遠い方の側面(例えば、第1の側面32p)と分割基準線14との間の距離と、分割基準線14に沿う隣の誘導溝(例えば、第2の誘導溝33)の側面のうち、分割基準線14から遠い方の側面(例えば、第2の側面33p)と分割基準線14との間の距離との差が、溝ステップ間隔S1として定義される。本実施の形態における溝ステップ間隔S1は、実施の形態5における溝ステップ間隔S1の2倍となる。
 本実施の形態の半導体素子12の製造方法の効果を説明する。本実施の形態の半導体素子12の製造方法の効果は、実施の形態5の半導体素子12の製造方法と同様の効果に加えて、主に以下の効果を奏する。
 分割線16が起点Sから第1の誘導溝32aの第1の側面32pの方向にずれた場合、本実施の形態の誘導溝群30aは、実施の形態5の誘導溝群30と同様に、分割線16を分割基準線14に向けて補正する。本実施の形態の半導体素子12の製造方法は、分割基準線14から大幅にずれてウェハ11が劈開されることを抑制できる。また、分割線16が複数の誘導溝(第1の誘導溝32a,第2の誘導溝33a,誘導溝31a,34a,35a)によって分割基準線14に向けて補正されて、分割基準線14上の複数の誘導溝(第1の誘導溝32a,第2の誘導溝33a,誘導溝31a,34a,35a)の側面(例えば、第3の側面32q及び第4の側面33q)に接触した場合、分割線16は、分割基準線14上の複数の誘導溝(第1の誘導溝32a,第2の誘導溝33a,誘導溝31a,34a,35a)の側面(例えば、第3の側面32q及び第4の側面33q)に沿って延びる。
 実施の形態7.
 図25を参照して、実施の形態7に係る半導体素子12の製造方法を説明する。本実施の形態の半導体素子12の製造方法は、基本的には、実施の形態5の半導体素子12の製造方法と同様の工程を備えるが、主に以下の点で異なる。
 ウェハ11に形成される誘導溝群30bに含まれる複数の誘導溝(第1の誘導溝32b,第2の誘導溝33b,誘導溝31b,34b,35b)の底面の面積は、互いに等しい。例えば、第1の誘導溝32bの底面の面積は、第2の誘導溝33bの底面の面積と同じである。起点Sに最も近い誘導溝31bの分割基準線14に沿う側面の一つは、分割基準線14上に位置する。第1の誘導溝32bの第3の側面32q及び第2の誘導溝33bの第4の側面33qは、分割基準線14を挟む他方の領域に位置している。第2の誘導溝33bよりも終点F側の誘導溝34b,35bの分割基準線14に沿う側面の一つは、分割基準線14を挟む他方の領域に位置している。
 本実施の形態の半導体素子12の製造方法における溝ステップ間隔S1は、ウェハ11の大きさ及び厚さ、ウェハ11内に形成される複数の半導体素子12の数、溝幅W1、溝長W2並びに溝間隔30Gなどによって適宜定められ得る。
 本実施の形態の半導体素子12の製造方法の効果を説明する。本実施の形態の半導体素子12の製造方法の効果は、実施の形態5の半導体素子12の製造方法と同様の効果に加えて、主に以下の効果を奏する。
 分割線16が起点Sから第1の誘導溝32bの第1の側面32pの方向にずれた場合、本実施の形態の誘導溝群30bは、実施の形態5の誘導溝群30と同様に、分割線16を分割基準線14に向けて補正する。本実施の形態の半導体素子12の製造方法は、分割基準線14から大幅にずれてウェハ11が劈開されることを抑制できる。また、分割線16が複数の誘導溝(第1の誘導溝32b,第2の誘導溝33b,誘導溝31b,34b,35b)によって分割基準線14に向けて補正されて、分割基準線14に接触した場合、分割線16は分割基準線14に沿って延びる。
 本実施の形態の半導体素子12の製造方法では、複数の誘導溝(第1の誘導溝32b,第2の誘導溝33b,誘導溝31b,34b,35b)は、互いに等しい底面の面積を有する。そのため、ウェハ11をエッチングして複数の誘導溝(第1の誘導溝32b,第2の誘導溝33b,誘導溝31b,34b,35b)を形成する際に使用されるマスクの開口の面積が同じである。誘導溝群30bに含まれる複数の誘導溝(第1の誘導溝32b,第2の誘導溝33b,誘導溝31b,34b,35b)を同時に形成する場合に、複数の誘導溝(第1の誘導溝32b,第2の誘導溝33b,誘導溝31b,34b,35b)が互いに異なる深さを有することが抑制される。本実施の形態の半導体素子12の製造方法によれば、複数の誘導溝(第1の誘導溝32b,第2の誘導溝33b,誘導溝31b,34b,35b)による分割基準線14に向けた分割線16の補正の精度がさらに向上され、分割基準線14から大幅にずれてウェハ11が劈開されることがさらに抑制され得る。
 これに対し、マスクの開口面積が異なれば、互いに異なる深さを有する複数の誘導溝が形成される。誘導溝の深さが深ければウェハ11が割れやすくなり、誘導溝の深さが浅ければ分割線16が補正されにくくなる。
 実施の形態8.
 図26を参照して、実施の形態8に係る半導体素子12の製造方法を説明する。本実施の形態の半導体素子12の製造方法は、基本的には、実施の形態5の半導体素子12の製造方法と同様の工程を備えるが、主に以下の点で異なる。
 本実施の形態の半導体素子12の製造方法は、実施の形態5の半導体素子12の製造方法と、誘導溝群30cに含まれる複数の誘導溝(第1の誘導溝32c,第2の誘導溝33c,誘導溝31c,34c,35c)の形状において異なる。実施の形態5の複数の誘導溝(第1の誘導溝32,第2の誘導溝33,誘導溝31,34,35)は、ウェハ11の主面11m(図18を参照)を平面視したときに矩形の形状を有している。これに対し、本実施の形態の複数の誘導溝(第1の誘導溝32c,第2の誘導溝33c,誘導溝31c,34c,35c)は、ウェハ11の主面11m(図18を参照)を平面視したときに台形の形状を有している。
 第1の誘導溝32cを例に挙げて、本実施の形態の複数の誘導溝(第1の誘導溝32c,第2の誘導溝33c,誘導溝31c,34c,35c)の形状を説明する。第1の側面32p及び第3の側面32qは、分割基準線14に沿う側面である。本実施の形態では、実施の形態5と同様に、分割基準線14に沿う側面(例えば、第1の側面32p及び第3の側面32q)は、分割基準線14に厳密に平行である必要はない。分割基準線14に沿う側面は、分割基準線14上に位置しなくてもよい。
 本実施の形態では、分割基準線14に沿う側面は、複数の誘導溝(第1の誘導溝32c,第2の誘導溝33c,誘導溝31c,34c,35c)が有する側面のうち、分割基準線14と成す角が鋭角となる側面である。第1の側面32pと第3の側面32qとを接続する側面のうち、起点Sに近い側面が第1の接続側面32rであり、終点Fに近い側面が第2の接続側面32sである。第1の側面32pと第1の接続側面32rとの間の第1の誘導溝32cの角α32は、45度以上90度未満の角度を有し、好ましくは80度以上90度未満の角度を有する。第3の側面32qと第1の接続側面32rとの間の第1の誘導溝32cの角β32は、45度以上90度未満の角度を有し、好ましくは80度以上90度未満の角度を有する。
 ウェハ11の主面11m(図18を参照)を平面視したとき、第1の接続側面32rを示す線は、第2の接続側面32sを示す線よりも長い。ウェハ11の主面11m(図18を参照)を平面視したとき、第1の誘導溝32cは、第2の接続側面32sを上底とし第1の接続側面32rを下底とする台形の形状を有している。本実施の形態では、第1の誘導溝32cの角α32及び第1の誘導溝32cの角β32は45度以上90度未満の角度を有するため、分割基準線14に沿う誘導溝(第1の誘導溝32c,第2の誘導溝33c,誘導溝31c,34c,35c)の側面(例えば、第1の側面32p、第2の側面33p、第3の側面32q及び第4の側面33q)は、分割基準線14に対して約45度以下の角度を有してもよい。
 本実施の形態においても、実施の形態5と同様に、第2の側面33pと分割基準線14との間の距離は、第1の側面32pと分割基準線14との間の距離よりも短い。本実施の形態では、第1の側面32p及び第2の側面33pは、分割基準線14に対して傾斜している。そのため、第2の側面33pと分割基準線14との間の距離と第1の側面32pと分割基準線14との間の距離とを比較するときは、第1の側面32pの劈開方向(終点F側)における端部と分割基準線14との間の距離と、第2の側面33pの劈開方向とは逆方向(起点S側)における端部と分割基準線14との間の距離とを比較する。
 溝幅W1は、ウェハ11の主面11m(図18を参照)を平面視したときに、分割基準線14に沿う一対の側面を接続する一対の接続側面のうち起点Sに近い接続側面を示す線の長さとして定義される。例えば、第1の誘導溝32cの溝幅W1は、ウェハ11の主面11m(図18を参照)を平面視したときに、第1の接続側面32rを示す線の長さである。溝ステップ間隔S1は、第1の側面32pの劈開方向(終点F側)における端部と分割基準線14との間の距離と、第2の側面33pの劈開方向とは逆方向(起点S側)における端部と分割基準線14との間の距離との差として定義される。
 分割基準線14を挟む一方の領域内において、分割基準線14に沿う各誘導溝(第1の誘導溝32c,第2の誘導溝33c,誘導溝31c,34c,35c)の側面(例えば、第1の側面32p及び第2の側面33p)の分割基準線14に対する傾きは、全て同じである。分割基準線14を挟む他方の領域内において、分割基準線14に沿う各誘導溝(第1の誘導溝32c,第2の誘導溝33c,誘導溝31c,34c,35c)の側面(例えば、第3の側面32q及び第4の側面33q)の分割基準線14に対する傾きも、全て同じである。
 本実施の形態では、分割基準線14から第1の側面32p及び第2の側面33pの方向へずれた分割線16は、実施の形態5と同様に複数の誘導溝(第1の誘導溝32c、第2の誘導溝33c、誘導溝31c,34c,35c)の終点F側の端部において分割基準線14に向けて補正されるだけでなく、第1の側面32p及び第2の側面33pに沿って分割基準線14に向けて補正される。分割基準線14から第3の側面32q及び第4の側面33qの方向へずれた分割線16は、実施の形態5と同様に複数の誘導溝(第1の誘導溝32c、第2の誘導溝33c、誘導溝31c,34c,35c)の各々の終点F側の端部において分割基準線14に向けて補正されるだけでなく、第3の側面32q及び第4の側面33qに沿って分割基準線14に向けて補正される。
 本実施の形態の半導体素子12の製造方法の効果を説明する。本実施の形態の半導体素子12の製造方法の効果は、実施の形態5の半導体素子12の製造方法と同様の効果に加えて、主に以下の効果を奏する。
 本実施の形態の誘導溝群30cは、複数の誘導溝(第1の誘導溝32c、第2の誘導溝33c、誘導溝31c,34c,35c)の終点F側の端部と第1の側面32pと第2の側面33pと第3の側面32qと第4の側面33qとにおいて、分割線16を分割基準線14に向けて補正する。本実施の形態の半導体素子12の製造方法は、分割基準線14から大幅にずれてウェハ11が劈開されることを抑制できる。
 さらに、本実施の形態の半導体素子12の製造方法では、分割基準線14の方向に沿う各誘導溝(第1の誘導溝32c,第2の誘導溝33c,誘導溝31c,34c,35c)の一対の側面は、分割基準線14を挟んでいる。そのため、分割線16が、劈開起点溝18dから、分割基準線14に沿う第1の誘導溝32cの一対の側面(第1の側面32pと第3の側面32q)のどちら側にずれても、分割線16は分割基準線14に向けて補正され得る。すなわち、分割線16が分割基準線14から分割基準線14を挟む一方の領域にずれたときは、分割線16は第1の側面32p及び第2の側面33pにより補正される。分割線16が分割基準線14から分割基準線14を挟む他方の領域にずれたときは、分割線16は第3の側面32q及び第4の側面33qにより補正される。
 実施の形態9.
 図27を参照して、実施の形態8に係る半導体素子12の製造方法を説明する。本実施の形態の半導体素子12の製造方法は、基本的には、実施の形態8の半導体素子12の製造方法と同様の工程を備えるが、主に以下の点で異なる。本実施の形態は、実施の形態8と、分割基準線14に対する誘導溝群30dの位置が異なる。
 本実施の形態の半導体素子12の製造方法では、ウェハ11の主面11m(図18を参照)を平面視したときに、誘導溝群30dに含まれる複数の誘導溝(第1の誘導溝32d,第2の誘導溝33d,複数の誘導溝31d,34d,35d)は、台形の形状を有している。分割基準線14に沿う複数の誘導溝(第1の誘導溝32d,第2の誘導溝33d,誘導溝31d,34d,35d)の各々の一対の側面の一つが分割基準線14上に位置している。例えば、第1の誘導溝32の第3の側面32qと、第2の誘導溝33の第4の側面33qとが、分割基準線14上に位置している。
 分割基準線14を挟む一方の領域内において、分割基準線14に沿う複数の誘導溝(第1の誘導溝32d,第2の誘導溝33d,誘導溝31d,34d,35d)の側面(例えば、第1の側面32p及び第2の側面33p)の分割基準線14に対する傾きは、全て同じである。本実施の形態では、分割基準線14から第1の側面32p及び第2の側面33pの方向へずれた分割線16は、実施の形態5と同様に複数の誘導溝(第1の誘導溝32d、第2の誘導溝33d、誘導溝31d,34d,35d)の終点F側の端部において分割基準線14に向けて補正されるだけでなく、第1の側面32p及び第2の側面33pに沿って分割基準線14に向けて補正される。
 本実施の形態の半導体素子12の製造方法の効果を説明する。本実施の形態の半導体素子12の製造方法の効果は、実施の形態8の半導体素子12の製造方法と同様の効果に加えて、主に以下の効果を奏する。
 分割線16が起点Sから第1の誘導溝32の第1の側面32pの方向にずれた場合、本実施の形態の誘導溝群30dは、複数の誘導溝(第1の誘導溝32d、第2の誘導溝33d、誘導溝31d,34d,35d)の終点F側の端部と第1の側面32pと第2の側面33pとにおいて、分割線16を分割基準線14に向けて補正する。本実施の形態の半導体素子12の製造方法は、分割基準線14から大幅にずれてウェハ11が劈開されることを抑制できる。また、分割線16が複数の誘導溝(第1の誘導溝32d,第2の誘導溝33d,誘導溝31d,34d,35d)によって分割基準線14に向けて補正されて、分割基準線14上の複数の誘導溝(第1の誘導溝32d,第2の誘導溝33d,誘導溝31d,34d,35d)の側面(例えば、第3の側面32q及び第4の側面33q)に接触した場合、分割線16は、分割基準線14上の複数の誘導溝(第1の誘導溝32d,第2の誘導溝33d,誘導溝31d,34d,35d)の側面(例えば、第3の側面32q及び第4の側面33q)に沿って延びる。
 実施の形態10.
 図28を参照して、実施の形態10に係る半導体素子12の製造方法を説明する。本実施の形態の半導体素子12の製造方法は、基本的には、実施の形態7の半導体素子12の製造方法と同様の工程を備えるが、主に以下の点で異なる。
 本実施の形態は、実施の形態7と、誘導溝群30eに含まれる複数の誘導溝(第1の誘導溝32e,第2の誘導溝33e,誘導溝31e,34e,35e)の形状において異なる。具体的には、実施の形態7の複数の誘導溝(第1の誘導溝32b,第2の誘導溝33b,誘導溝31b,34b,35b)は、ウェハ11の主面11m(図18を参照)を平面視したときに矩形の形状を有している。これに対し、本実施の形態の複数の誘導溝(第1の誘導溝32e,第2の誘導溝33e,誘導溝31e,34e,35e)は、ウェハ11の主面11m(図18を参照)を平面視したときに台形の形状を有している。
 第1の誘導溝32eを例に挙げて、本実施の形態の複数の誘導溝(第1の誘導溝32e,第2の誘導溝33e,誘導溝31e,34e,35e)の形状を説明する。第1の側面32p及び第3の側面32qは、分割基準線14に沿う側面である。本実施の形態では、実施の形態5と同様に、分割基準線14に沿う側面は、分割基準線14に厳密に平行である必要はない。分割基準線14に沿う側面は、分割基準線14上に位置しなくてもよい。第1の側面32p及び第3の側面32qを接続する側面のうち、起点Sに近い側面が第1の接続側面32rであり、終点Fに近い側面が第2の接続側面32sである。第1の側面32pと第1の接続側面32rとの間の第1の誘導溝32eの角α32は、45度以上90度未満の角度を有し、好ましくは80度以上90度未満の角度を有する。
 ウェハ11の主面11m(図18を参照)を平面視したとき、第1の接続側面32rを示す線は、第2の接続側面32sを示す線よりも長い。ウェハ11の主面11m(図18を参照)を平面視したとき、第1の誘導溝32eは、第2の接続側面32sを上底とし第1の接続側面32rを下底とする台形の形状を有している。本実施の形態では、第1の誘導溝32eの角α32は45度以上90度未満の角度を有するため、分割基準線14に沿う複数の誘導溝(第1の誘導溝32e,第2の誘導溝33e,誘導溝31e,34e,35e)の側面(例えば、第1の側面32p及び第2の側面33p)は、分割基準線14に対して約45度以下の角度を有してもよい。
 分割基準線14を挟む一方の領域内において、分割基準線14に沿う各誘導溝(第1の誘導溝32e,第2の誘導溝33e,誘導溝31e,34e,35e)の側面(例えば、第1の側面32p及び第2の側面33p)の分割基準線14に対する傾きは、全て同じである。分割基準線14を挟む他方の領域において、分割基準線14に沿う各誘導溝(第1の誘導溝32e,第2の誘導溝33e,誘導溝31e,34e,35e)の側面(例えば、第3の側面32q及び第4の側面33q)の分割基準線14に対する傾きも、全て同じである。本実施の形態では、分割基準線14から第1の側面32p及び第2の側面33pの方向へずれた分割線16は、実施の形態5と同様に複数の誘導溝(第1の誘導溝32e、第2の誘導溝33e、誘導溝31e,34e,35e)の終点F側の端部において分割基準線14に向けて補正されるだけでなく、第1の側面32p及び第2の側面33pに沿って分割基準線14に向けて補正される。
 本実施の形態の半導体素子12の製造方法の効果を説明する。本実施の形態の半導体素子12の製造方法の効果は、実施の形態7の半導体素子12の製造方法と同様の効果に加えて、主に以下の効果を奏する。
 分割線16が起点Sから第1の誘導溝32eの第1の側面32pの方向にずれた場合、本実施の形態の誘導溝群30eは、実施の形態7の誘導溝群30bと同様に、複数の誘導溝(第1の誘導溝32e、第2の誘導溝33e、誘導溝31e,34e,35e)の終点F側の端部と第1の側面32pと第2の側面33pとにおいて、分割線16を分割基準線14に向けて補正する。本実施の形態の半導体素子12の製造方法は、分割基準線14から大幅にずれてウェハ11が劈開されることを抑制できる。また、分割線16が複数の誘導溝(第1の誘導溝32e,第2の誘導溝33e,誘導溝31e,34e,35e)によって分割基準線14に向けて補正されて、分割基準線14に接触した場合、分割線16は分割基準線14に沿って延びる。
 本実施の形態の半導体素子12の製造方法では、実施の形態7と同様に、各誘導溝(第1の誘導溝32e,第2の誘導溝33e,誘導溝31e,34e,35e)の底面の面積が同じである。そのため、ウェハ11をエッチングして複数の誘導溝(第1の誘導溝32e,第2の誘導溝33e,誘導溝31e,34e,35e)を形成する際に使用されるマスクの開口の面積が同じである。本実施の形態の半導体素子12の製造方法では、誘導溝群30eに含まれる複数の誘導溝(第1の誘導溝32e,第2の誘導溝33e,誘導溝31e,34e,35e)を同時に形成する際に、各誘導溝(第1の誘導溝32e,第2の誘導溝33e,誘導溝31e,34e,35e)の深さが異なることが抑制され得る。本実施の形態の半導体素子12の製造方法によれば、分割基準線14に向けた分割線16の補正の精度がさらに向上され、分割基準線14から大幅にずれてウェハ11が劈開されることがさらに抑制され得る。
 実施の形態11.
 図29から図31を参照して、実施の形態11に係る半導体素子12の製造方法を説明する。本実施の形態の半導体素子12の製造方法は、基本的には、実施の形態5の半導体素子12の製造方法と同様の工程を備えるが、主に以下の点で異なる。
 図29及び図30を参照して、本実施の形態の半導体素子12の製造方法は、ウェハ11上に複数の誘導溝群30fを形成すること(S32)を備える。複数の誘導溝群30fの各々は、第1の誘導溝32f1、第2の誘導溝33f1、第3の誘導溝32f2、第4の誘導溝33f2及び誘導溝31f1,31f2,34f1,34f2,35f1,35f2を含む。1本の分割基準線14に対し、1つの誘導溝群30fが形成されてもよい。
 第1の誘導溝32f1は、一方の領域に位置する第1の側面32pを有する。第2の誘導溝33f1は、第1の誘導溝32f1から終点F側に離間されている。第2の誘導溝33f1は、一方の領域に位置する第2の側面33pを有する。第3の誘導溝32f2は、他方の領域に位置する第3の側面32qを有する。第4の誘導溝33f2は、第3の誘導溝32f2から終点F側に離間されている。第4の誘導溝33f2は、他方の領域に位置する第4の側面33qを有する。
 本実施の形態の半導体素子12の製造方法では、起点Sは、分割基準線14上にある。起点Sは、分割基準線14を挟んで一方の領域にある誘導溝(例えば、第1の誘導溝32f1及び第2の誘導溝33f1)と他方の領域の誘導溝(例えば、第3の誘導溝32f2及び第4の誘導溝33f2)との間にあればよい。終点Fは、分割基準線14上にある。第2の誘導溝33f1は、第1の誘導溝32f1より終点F側に形成される。第4の誘導溝33f2は、第3の誘導溝32f2より終点F側に形成される。第1の側面32p、第2の側面33p、第3の側面32q及び第4の側面33qは、分割基準線14に沿う複数の誘導溝(例えば、第1の誘導溝32f1、第2の誘導溝33f1、第3の誘導溝32f2及び第4の誘導溝33f2)の側面のうち、分割基準線14に近い側面である。
 図31を参照して、第1の側面32pに対向する第1の誘導溝32f1の第5の側面42pは、分割基準線14を挟む一方の領域にある。第5の側面42pと分割基準線14との間の距離は、第1の側面32pと分割基準線14との間の距離よりも長い。第2の側面33pに対向する第2の誘導溝33f1の第6の側面43pは、分割基準線14を挟む一方の領域にある。第6の側面43pと分割基準線14との間の距離は、第2の側面33pと分割基準線14との間の距離よりも長い。
 第3の側面32qに対向する第3の誘導溝32f2の第7の側面42qは、分割基準線14を挟む他方の領域にある。第7の側面42qと分割基準線14との間の距離は、第3の側面32qと分割基準線14との間の距離よりも長い。第4の側面33qに対向する第4の誘導溝33f2の第8の側面43qは、分割基準線14を挟む他方の領域にある。第8の側面43qと分割基準線14との間の距離は、第4の側面33qと分割基準線14との間の距離よりも長い。
 第2の側面33pと分割基準線14との間の距離は、第1の側面32pと分割基準線14との間の距離より短い。第4の側面33qと分割基準線14との間の距離は、第3の側面32qと分割基準線14との間の距離より短い。各誘導溝(第1の誘導溝32f1、第2の誘導溝33f1、第3の誘導溝32f2、第4の誘導溝33f2、誘導溝31f1,31f2,34f1,34f2,35f1,35f2)の底面の面積は同じである。
 分割基準線14を挟む一方の領域内において、互いに隣り合う第1の誘導溝32f1及び第2の誘導溝33f1が繰り返し配置されてもよい。すなわち、誘導溝31f1及び第1の誘導溝32f1との相対的な位置関係、第2の誘導溝33f1及び誘導溝34f1との相対的な位置関係、及び、誘導溝34f1及び誘導溝35f1との相対的な位置関係は、第1の誘導溝32f1及び第2の誘導溝33f1の相対的な位置関係と同様である。分割基準線14を挟む他方の領域内において、互いに隣り合う第3の誘導溝32f2及び第4の誘導溝33f2が繰り返し配置されてもよい。すなわち、誘導溝31f2及び第3の誘導溝32f2との相対的な位置関係、第4の誘導溝33f2及び誘導溝34f2との相対的な位置関係、及び、誘導溝34f2及び誘導溝35f2との相対的な位置関係は、第3の誘導溝32f2及び第4の誘導溝33f2の相対的な位置関係と同様である。
 本実施の形態の誘導溝群30fは、分割基準線14からずれた分割線16を、分割基準線14に向けて補正する。分割基準線14から分割基準線14を挟む一方の領域側にずれた分割線16は、第1の側面32p及び第2の側面33pで分割基準線14に向けて補正される。一方、分割基準線14から分割基準線14を挟む他方の領域側にずれた分割線16は、第3の側面32q及び第4の側面33qで分割基準線14に向けて補正される。
 実施の形態5の誘導溝群30は、以下のようにして、分割線16を分割基準線14に向けて補正する。分割線16が一つの誘導溝に接触する。この一つの誘導溝における分割線16の延長線が劈開方向(起点Sから終点Fに向かう方向)において隣り合う別の誘導溝の内側にある場合、この一つの誘導溝において分割線16は補正されない。この一つの誘導溝における分割線16の延長線が劈開方向(起点Sから終点Fに向かう方向)において隣り合う別の誘導溝の外側にある場合、この一つの誘導溝において分割線16は補正される。特定的には、この一つの誘導溝の劈開方向(終点F側)の端部において、分割線16は、分割基準線14に向けて補正される。
 これに対し、本実施の形態の誘導溝群30fは、以下のようにして、分割線16を分割基準線14に向けて補正する。分割線16が一つの誘導溝に接触する。この一つの誘導溝における分割線16の延長線が劈開方向(起点Sから終点Fに向かう方向)において隣り合う別の誘導溝の内側にある場合、この一つの誘導溝において分割線16は補正される。特定的には、この一つの誘導溝の劈開方向とは逆方向(起点S側)の端部において、分割線16は、分割基準線14に向けて補正される。この一つの誘導溝における分割線16の延長線が劈開方向(起点Sから終点Fに向かう方向)において隣り合う別の誘導溝の外側にある場合、この一つの誘導溝において分割線16は補正されない。
 本実施の形態の半導体素子12の製造方法の効果を説明する。本実施の形態の半導体素子12の製造方法は、基本的には、実施の形態5の半導体素子12の製造方法と同様の効果を奏するが、主に以下の点で異なる。
 分割線16が起点Sから第1の誘導溝32の第1の側面32pの方向にずれた場合、本実施の形態の誘導溝群30fは、分割線16を分割基準線14に向けて補正する。本実施の形態の半導体素子12の製造方法は、分割基準線14から大幅にずれてウェハ11が劈開されることを抑制できる。さらに、本実施の形態の半導体素子12の製造方法は、分割線16が、劈開起点溝18dから、分割基準線14に沿う複数の誘導溝(第1の誘導溝32f1、第2の誘導溝33f1、第3の誘導溝32f2、第4の誘導溝33f2、誘導溝31f1,31f2,34f1,34f2,35f1,35f2)の一対の側面(例えば、第1の側面32pと第3の側面32q)のどちら側にずれても、分割線16は分割基準線14に向けて補正され得る。
 本実施の形態の半導体素子12の製造方法では、各誘導溝(第1の誘導溝32f1、第2の誘導溝33f1、第3の誘導溝32f2、第4の誘導溝33f2、誘導溝31f1,31f2,34f1,34f2,35f1,35f2)の底面の面積は同じである。そのため、ウェハ11をエッチングして複数の誘導溝(第1の誘導溝32f1、第2の誘導溝33f1、第3の誘導溝32f2、第4の誘導溝33f2、誘導溝31f1,31f2,34f1,34f2,35f1,35f2)を形成する際に使用されるマスクの開口の面積が同じである。本実施の形態の半導体素子12の製造方法では、誘導溝群30fに含まれる複数の誘導溝(第1の誘導溝32f1、第2の誘導溝33f1、第3の誘導溝32f2、第4の誘導溝33f2、誘導溝31f1,31f2,34f1,34f2,35f1,35f2)を同時に形成する際に、各誘導溝(第1の誘導溝32f1、第2の誘導溝33f1、第3の誘導溝32f2、第4の誘導溝33f2、誘導溝31f1,31f2,34f1,34f2,35f1,35f2)の深さが異なることが抑制され得る。本実施の形態の半導体素子12の製造方法によれば、分割基準線14に向けた分割線16の補正の精度がさらに向上され、分割基準線14から大幅にずれてウェハ11が劈開されることがさらに抑制され得る。
 実施の形態12.
 図32を参照して、実施の形態12に係る半導体素子12の製造方法を説明する。本実施の形態の半導体素子12の製造方法は、基本的には、実施の形態11の半導体素子12の製造方法と同様の工程を備えるが、主に以下の点で異なる。
 本実施の形態は、実施の形態11と、誘導溝群30gに含まれる複数の誘導溝(第1の誘導溝32g1、第2の誘導溝33g1、第3の誘導溝32g2、第4の誘導溝33g2、誘導溝31g1,31g2,34g1,34g2,35g1,35g2)の形状において異なる。実施の形態11の複数の誘導溝(第1の誘導溝32f1、第2の誘導溝33f1、第3の誘導溝32f2、第4の誘導溝33f2、誘導溝31f1,31f2,34f1,34f2,35f1,35f2)は、ウェハ11の主面11m(図18を参照)を平面視したときに矩形の形状を有している。これに対し、本実施の形態の複数の誘導溝(第1の誘導溝32g1、第2の誘導溝33g1、第3の誘導溝32g2、第4の誘導溝33g2、誘導溝31g1,31g2,34g1,34g2,35g1,35g2)は、ウェハ11の主面11m(図18を参照)を平面視したときに台形の形状を有している。
 第1の誘導溝32g1を例に挙げて、本実施の形態の複数の誘導溝(第1の誘導溝32g1、第2の誘導溝33g1、第3の誘導溝32g2、第4の誘導溝33g2、誘導溝31g1,31g2,34g1,34g2,35g1,35g2)の形状を説明する。第1の側面32p及び第5の側面42pは、分割基準線14に沿う側面である。本実施の形態では、分割基準線14に沿う側面は、分割基準線14に厳密に平行である必要はない。分割基準線14に沿う側面は、分割基準線14上に位置しなくてもよい。第1の側面32p及び第5の側面42pを接続する側面のうち、起点Sに近い側面が第1の接続側面32rである。第1の側面32pと第1の接続側面32rとの間の第1の誘導溝32g1の角α32は、90度より大きく135度以下の角度を有し、好ましくは90度より大きく100度以下の角度を有する。第3の側面32q及び第7の側面42qは、分割基準線14に沿う側面である。第3の側面32q及び第7の側面42qを接続する側面のうち、起点Sに近い側面が第3の接続側面42rである。第3の側面32qと第3の接続側面42rとの間の第3の誘導溝32g2の角β32は、90度より大きく135度以下の角度を有し、好ましくは90度より大きく100度以下の角度を有する。
 分割基準線14を挟む一方の領域内において、分割基準線14に沿う各誘導溝(例えば、第1の誘導溝32g1、第2の誘導溝33g1、誘導溝31g1,34g1,35g1)の一対の側面のうち分割基準線14により近い側面(例えば、第1の側面32p、第2の側面33p)の分割基準線14に対する傾きは、全て同じである。分割基準線14を挟む他方の領域内において、分割基準線14に沿う各誘導溝(例えば、第3の誘導溝32g2、第4の誘導溝33g2、誘導溝31g2,34g2,35g2)の一対の側面のうち分割基準線14により近い側面(例えば、第3の側面32q、第4の側面33q)の分割基準線14に対する傾きも、全て同じである。各誘導溝(第1の誘導溝32g1、第2の誘導溝33g1、第3の誘導溝32g2、第4の誘導溝33g2、誘導溝31g1,31g2,34g1,34g2,35g1,35g2)の底面の面積は同じである。
 本実施の形態の半導体素子12の製造方法では、分割基準線14からずれた分割線16は、実施の形態11と同様に複数の誘導溝(第1の誘導溝32g1、第2の誘導溝33g1、第3の誘導溝32g2、第4の誘導溝33g2、誘導溝31g1,31g2,34g1,34g2,35g1,35g2)の起点S側の端部において分割基準線14に向けて補正されるだけでなく、第1の側面32p及び第2の側面33pに沿って、又は、第3の側面32q及び第4の側面33qに沿って補正される。
 本実施の形態の半導体素子12の製造方法の効果を説明する。本実施の形態の半導体素子12の製造方法の効果は、実施の形態11の半導体素子12の製造方法と同様の効果に加えて、主に以下の効果を奏する。
 本実施の形態の誘導溝群30gは、複数の誘導溝(第1の誘導溝32g1、第2の誘導溝33g1、第3の誘導溝32g2、第4の誘導溝33g2、誘導溝31g1,31g2,34g1,34g2,35g1,35g2)の起点S側の端部と第1の側面32pと第2の側面33pと第3の側面32qと第4の側面33qとにおいて、分割線16を分割基準線14に向けて補正する。本実施の形態の半導体素子12の製造方法は、分割基準線14から大幅にずれてウェハ11が劈開されることを抑制できる。
 さらに、本実施の形態の半導体素子12の製造方法では、分割基準線14の方向に沿う各誘導溝(第1の誘導溝32g1、第2の誘導溝33g1、第3の誘導溝32g2、第4の誘導溝33g2、誘導溝31g1,31g2,34g1,34g2,35g1,35g2)の一対の側面(例えば、第1の側面32pと第3の側面32q)は、分割基準線14を挟んでいる。そのため、分割線16が、劈開起点溝18dから、分割基準線14に沿う一対の側面(例えば、第1の側面32pと第3の側面32q)のどちら側にずれても、分割線16は分割基準線14に向けて補正され得る。
 本実施の形態の半導体素子12の製造方法では、各誘導溝(第1の誘導溝32g1、第2の誘導溝33g1、第3の誘導溝32g2、第4の誘導溝33g2、誘導溝31g1,31g2,34g1,34g2,35g1,35g2)の底面の面積は同じである。ウェハ11をエッチングして複数の誘導溝(第1の誘導溝32g1、第2の誘導溝33g1、第3の誘導溝32g2、第4の誘導溝33g2、誘導溝31g1,31g2,34g1,34g2,35g1,35g2)を形成する際に使用されるマスクの開口の面積が同じである。そのため、本実施の形態の半導体素子12の製造方法では、誘導溝群30gに含まれる複数の誘導溝(第1の誘導溝32g1、第2の誘導溝33g1、第3の誘導溝32g2、第4の誘導溝33g2、誘導溝31g1,31g2,34g1,34g2,35g1,35g2)を同時に形成する際に、各誘導溝(第1の誘導溝32g1、第2の誘導溝33g1、第3の誘導溝32g2、第4の誘導溝33g2、誘導溝31g1,31g2,34g1,34g2,35g1,35g2)の深さが異なることが抑制され得る。本実施の形態の半導体素子12の製造方法によれば、分割基準線14に向けた分割線16の補正の精度がさらに向上され、分割基準線14から大幅にずれてウェハ11が劈開されることがさらに抑制され得る。
 実施の形態13.
 図33を参照して、実施の形態13に係る半導体素子12の製造方法を説明する。本実施の形態の半導体素子12の製造方法は、基本的には、実施の形態11の半導体素子12の製造方法と同様の工程を備え、同様の効果を奏するが、主に以下の点で異なる。
 本実施の形態は、実施の形態11と、複数の誘導溝(第1の誘導溝32h1、第2の誘導溝33h1、第3の誘導溝32h2、第4の誘導溝33h2、誘導溝31h1,31h2,34h1,34h2,35h1,35h2)の配置において異なる。実施の形態11では、第1の誘導溝32f1と第3の誘導溝32f2とは、分割基準線14を挟んで鏡面対称に配置され、第2の誘導溝33f1と第4の誘導溝33f2とは、分割基準線14を挟んで鏡面対称に配置されている。
 これに対し、本実施の形態では、第1の誘導溝32h1と第3の誘導溝32h2とは、分割基準線14を挟んで鏡面対称に配置されていなくてもよく、第2の誘導溝33h1と第4の誘導溝33h2とは、分割基準線14を挟んで鏡面対称に配置されていなくてもよい。分割基準線14に沿う方向において、第3の誘導溝32h2、第4の誘導溝33h2、誘導溝31h2,34h2,35h2は、第1の誘導溝32h1、第2の誘導溝33h1、誘導溝31h1,34h1,35h1よりも、終点F側(劈開起点溝18dとは反対側)にずれるように配置されてもよい。
 実施の形態14.
 図34を参照して、実施の形態14に係る半導体素子12の製造方法を説明する。本実施の形態の半導体素子12の製造方法は、基本的には、実施の形態12の半導体素子12の製造方法と同様の工程を備え、同様の効果を奏するが、主に以下の点で異なる。
 本実施の形態は、実施の形態12と、誘導溝群30iに含まれる複数の誘導溝(第1の誘導溝32i1、第2の誘導溝33i1、第3の誘導溝32i2、第4の誘導溝33i2、誘導溝31i1,31i2,34i1,34i2,35i1,35i2)の配置において異なる。実施の形態12では、第1の誘導溝32g1と第3の誘導溝32g2とは、分割基準線14を挟んで鏡面対称に配置され、第2の誘導溝33g1と第4の誘導溝33g2とは、分割基準線14を挟んで鏡面対称に配置されている。
 これに対し、本実施の形態では、第1の誘導溝32i1と第3の誘導溝32i2とは、分割基準線14を挟んで鏡面対称に配置されていなくてもよく、第2の誘導溝33i1と第4の誘導溝33i2とは、分割基準線14を挟んで鏡面対称に配置されていなくてもよい。分割基準線14に沿う方向において、第3の誘導溝32i2、第4の誘導溝33i2、誘導溝31i2,34i2,35i2は、第1の誘導溝32i1、第2の誘導溝33i1、誘導溝31i1,34i1,35i1よりも、終点F側(劈開起点溝18dとは反対側)にずれるように配置されてもよい。
 実施の形態15.
 図35から図37を参照して、実施の形態15に係る半導体素子12の製造方法を説明する。本実施の形態の半導体素子12の製造方法は、基本的には、実施の形態5の半導体素子12の製造方法と同様の工程を備え、同様の効果を奏するが、主に以下の点で異なる。
 本実施の形態の半導体素子12の製造方法は、複数の劈開溝群20jを形成すること(S22)をさらに備えている。複数の劈開溝群20jの各々は、劈開溝21と劈開溝22と含む。複数の劈開溝群20jは、分割基準線14上に位置している。複数の劈開溝群20jは、互いに隣り合う複数の半導体素子12の間に配置されている。ウェハ11は、複数の劈開溝21,22を備えている。
 本実施の形態の半導体素子12の製造方法では、ウェハ11上に複数の半導体素子12を形成する工程(S11)において、複数の半導体素子12が分割基準線14に対してウェハ11の主面11m(図18を参照)内の方位角の方向にずれて形成される場合がある。この場合、劈開線15は、分割基準線14に対して、ウェハ11の主面11m(図18を参照)内の方位角の方向にずれる。分割基準線14上の起点Sからずれた分割線16が誘導溝群30によって分割基準線14に向けて補正されても、分割線16は、誘導溝群30から、分割基準線14に対して方位角θがだけ傾いた劈開線15に沿って延びてしまう。
 本実施の形態の半導体素子12の製造方法では、誘導溝群30に加えて、複数の劈開溝群20jが形成される。複数の劈開溝群20jの各々に含まれる複数の劈開溝21,22の各々のエッジ部分、すなわちウェハ11のうち複数の劈開溝21,22に面する部分に、応力が発生する。複数の誘導溝(第1の誘導溝32、第2の誘導溝33、誘導溝31,34,35)の各々の起点S側の第1端部と終点F側の第2端部では、劈開方向だけでなく劈開方向に垂直な方向(すなわち誘導溝の幅方向)にも応力が発生する。この応力により、分割線16は、複数の誘導溝(例えば、第1の誘導溝32、第2の誘導溝33、誘導溝34,35)の各々の劈開方向における第2端部で、分割基準線14に向けて補正される。
 本実施の形態の半導体素子12の製造方法では、複数の半導体素子12の間に、複数の劈開溝21,22が形成されている。複数の半導体素子12の間に、複数の劈開溝21,22を形成することにより、分割基準線14に対して傾斜する劈開線15に沿って延びる分割線16は、複数の劈開溝21,22に接触する。複数の劈開溝21,22は、分割線16が分割基準線14から大きくずれないうちに、分割線16を分割基準線14に向けて補正することができる。本実施の形態の半導体素子12の製造方法によれば、分割基準線14に対して方位角θがだけ傾いた分割線16は、より高い精度で分割基準線14に近づくように補正され得る。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。矛盾のない限り、今回開示された実施の形態1から実施の形態15の少なくとも2つを組み合わせてもよい。本発明の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。本発明の範囲内において、各実施の形態は、適宜、変形または省略され得る。各実施の形態において例示された各構成要素の寸法、材質、形状、それらの相対配置などは、本発明が適用される装置の構成や各種条件により適宜変更され得る。各図における各構成要素の寸法は、実際の寸法と異なる場合がある。
 11 ウェハ、11m 主面、11s 劈開面、12 半導体素子、13 活性領域、14 分割基準線、15 劈開線、16 分割線、16s 素子分離線、17 溝無し分割線、18 劈開起点部、18d 劈開起点溝、19 ブレード、20,20b,20c,20j 劈開溝群、20G 間隔、20a1 第1劈開溝群、20a2 第2劈開溝群、21,21c,22,22c,23,23c 劈開溝、21L,22L,23L,W2 溝長、21W,22W,23W,W1 溝幅、25,C1,C2,C3 段差、30,30a,30b,30c,30d,30e,30f,30g,30i 誘導溝群、30G 溝間隔、31,31a,31b,31c,31d,31e,31f1,31f2,31g1,31g2,31h1,31h2,31i1,31i2,34,34a,34b,34c,34d,34e,34f2,34f1,34g1,34g2,34h1,34h2,34i1,34i2,35,35a,35b,35c,35d,35e,35f1,35f2,35g1,35g2,35h1,35h2,35i1,35i2 誘導溝、32,32a,32b,32c,32d,32e,32f1,32g1,32h1,32i1 第1の誘導溝、32f2,32g2,32h2,32i2 第3の誘導溝、32p 第1の側面、32q 第3の側面、32r 第1の接続側面、32s 第2の接続側面、33,33a,33b,33c,33d,33e,33f1,33g1,33h1,33i1 第2の誘導溝、33f2,33g2,33h2,33i2 第4の誘導溝、33p 第2の側面、33q 第4の側面、40 テーパー溝、42p 第5の側面、42q 第7の側面、42r 第3の接続側面、43p 第6の側面、43q 第8の側面、F 終点、S 起点、S1 溝ステップ間隔。

Claims (11)

  1.  ウェハの主面の第1の領域に、第1の方向と前記第1の方向に交差する第2の方向とに沿って配列される複数の半導体素子を形成することと、
     前記ウェハの前記主面の前記第1の領域における前記複数の半導体素子の間に、複数の劈開溝群を形成することと、
     前記第1の領域とは異なる前記ウェハの前記主面の第2の領域に劈開起点部を形成することと、
     分割基準線に沿って前記ウェハを劈開して、前記複数の半導体素子を互いに分離することとを備え、
     前記複数の劈開溝群及び前記劈開起点部は、前記分割基準線上に配置され、
     前記複数の半導体素子のうち、前記第1の方向及び前記第2の方向において互いに隣り合う4つの前記半導体素子に対して、前記複数の劈開溝群の少なくとも1つが配置され、
     前記複数の劈開溝群は、各々、前記分割基準線上に配置される複数の劈開溝を含む、半導体素子の製造方法。
  2.  前記複数の劈開溝は、前記分割基準線に直交する断面において、V字の形状を有する、請求項1に記載の半導体素子の製造方法。
  3.  前記劈開起点部を形成することは、前記ウェハをエッチングすることによって劈開起点溝を形成することを含む、請求項1または請求項2に記載の半導体素子の製造方法。
  4.  前記複数の劈開溝群及び前記劈開起点溝は共通の工程で形成される、請求項3に記載の半導体素子の製造方法。
  5.  前記劈開起点部側とは反対側の前記複数の劈開溝の第1端部は、前記劈開起点部側とは反対側に向かうにつれて先細となる形状を有する、請求項1から請求項4のいずれか1項に記載の半導体素子の製造方法。
  6.  前記劈開起点部側の前記複数の劈開溝の第2端部は、前記劈開起点部側に向かうにつれて先細となる形状を有する、請求項5に記載の半導体素子の製造方法。
  7.  前記複数の劈開溝群を形成することは、前記ウェハの前記主面を平面視したときに、互いに等しい底面の面積を有する前記複数の劈開溝を形成することを含む、請求項1から請求項6のいずれか1項に記載の半導体素子の製造方法。
  8.  前記複数の劈開溝は各々、互いに隣り合う第1の劈開溝と第2の劈開溝とを含み、
     前記第2の劈開溝は、前記第1の劈開溝に対して、前記劈開起点部側とは反対側に位置し、
     前記第2の劈開溝の第2の溝幅は、前記第1の劈開溝の第1の溝幅よりも狭い、請求項1から請求項6のいずれか1項に記載の半導体素子の製造方法。
  9.  前記複数の半導体素子は、半導体レーザまたは発光ダイオードである、請求項1から請求項8のいずれか1項に記載の半導体素子の製造方法。
  10.  前記複数の半導体素子は活性領域を含み、
     前記複数の劈開溝群は、前記活性領域に隣り合いかつ前記活性領域に対して前記劈開起点部側に位置する第1劈開溝群と、前記活性領域に隣り合いかつ前記活性領域に対して前記劈開起点部側とは反対側に位置する第2劈開溝群とを含み、
     前記複数の劈開溝群を形成することは、前記第1劈開溝群と前記活性領域との間の第1の距離が前記第2劈開溝群と前記活性領域との間の第2の距離よりも大きくなるように、前記複数の劈開溝群を形成することを含む、請求項9に記載の半導体素子の製造方法。
  11.  前記複数の半導体素子は、トランジスタである、請求項1から請求項8のいずれか1項に記載の半導体素子の製造方法。
PCT/JP2016/069764 2015-07-07 2016-07-04 半導体素子の製造方法 WO2017006902A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/580,134 US20180145206A1 (en) 2015-07-07 2016-07-04 Method of manufacturing semiconductor device
CN201680039593.XA CN107851563B (zh) 2015-07-07 2016-07-04 半导体元件的制造方法
JP2017527448A JP6430009B2 (ja) 2015-07-07 2016-07-04 半導体素子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-135801 2015-07-07
JP2015135801 2015-07-07

Publications (1)

Publication Number Publication Date
WO2017006902A1 true WO2017006902A1 (ja) 2017-01-12

Family

ID=57685129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069764 WO2017006902A1 (ja) 2015-07-07 2016-07-04 半導体素子の製造方法

Country Status (4)

Country Link
US (1) US20180145206A1 (ja)
JP (1) JP6430009B2 (ja)
CN (1) CN107851563B (ja)
WO (1) WO2017006902A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6245414B1 (ja) * 2017-04-12 2017-12-13 三菱電機株式会社 半導体素子の製造方法
WO2018198753A1 (ja) * 2017-04-24 2018-11-01 三菱電機株式会社 半導体デバイスの製造方法
JP2018186124A (ja) * 2017-04-24 2018-11-22 三菱電機株式会社 半導体デバイスの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115410927B (zh) * 2022-09-29 2024-09-27 北京超材信息科技有限公司 半导体器件的切割方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068240A (ja) * 1998-07-08 2000-03-03 Hewlett Packard Co <Hp> 半導体デバイスのウェ―ハからのへき開方法
JP2002064236A (ja) * 2000-08-17 2002-02-28 Nippon Telegr & Teleph Corp <Ntt> 結晶性基板の劈開方法
JP2003086900A (ja) * 2001-09-07 2003-03-20 Toshiba Electronic Engineering Corp 半導体レーザ装置、半導体レーザ装置の製造方法
WO2007074688A1 (ja) * 2005-12-26 2007-07-05 Matsushita Electric Industrial Co., Ltd. 窒化化合物半導体素子およびその製造方法
JP2008227461A (ja) * 2007-02-15 2008-09-25 Mitsubishi Electric Corp 半導体レーザの製造方法
JP2013118250A (ja) * 2011-12-02 2013-06-13 Nichia Chem Ind Ltd 半導体レーザ素子及びその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604161A (en) * 1985-05-02 1986-08-05 Xerox Corporation Method of fabricating image sensor arrays
US5148190A (en) * 1989-12-19 1992-09-15 Asahi Kogaku Kogya K.K. Scanning optical system with plural focusing units
JPH0645707A (ja) * 1992-07-24 1994-02-18 Mitsubishi Electric Corp 半導体レーザの評価方法および半導体装置
US5629233A (en) * 1996-04-04 1997-05-13 Lucent Technologies Inc. Method of making III/V semiconductor lasers
JPH10223992A (ja) * 1997-01-31 1998-08-21 Oki Electric Ind Co Ltd 半導体素子製造方法
JP3822976B2 (ja) * 1998-03-06 2006-09-20 ソニー株式会社 半導体装置およびその製造方法
CN1322574C (zh) * 1999-07-30 2007-06-20 日本板硝子株式会社 在切割区中设置的槽的结构及其应用
US6521513B1 (en) * 2000-07-05 2003-02-18 Eastman Kodak Company Silicon wafer configuration and method for forming same
JP2003017791A (ja) * 2001-07-03 2003-01-17 Sharp Corp 窒化物半導体素子及びこの窒化物半導体素子の製造方法
JP4515790B2 (ja) * 2004-03-08 2010-08-04 株式会社東芝 半導体装置の製造方法及びその製造装置
CN100454693C (zh) * 2004-10-15 2009-01-21 松下电器产业株式会社 氮化物半导体元件及其制造方法
DE102005046479B4 (de) * 2005-09-28 2008-12-18 Infineon Technologies Austria Ag Verfahren zum Spalten von spröden Materialien mittels Trenching Technologie
JP4346598B2 (ja) * 2005-10-06 2009-10-21 株式会社東芝 化合物半導体素子及びその製造方法
JP4948307B2 (ja) * 2006-07-31 2012-06-06 三洋電機株式会社 半導体レーザ素子およびその製造方法
JP5458782B2 (ja) * 2009-09-30 2014-04-02 日本電気株式会社 半導体素子、半導体ウェハ、半導体ウェハの製造方法、半導体素子の製造方法
US9356422B2 (en) * 2014-02-26 2016-05-31 Applied Optoelectronics, Inc. Scribe etch process for semiconductor laser chip manufacturing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068240A (ja) * 1998-07-08 2000-03-03 Hewlett Packard Co <Hp> 半導体デバイスのウェ―ハからのへき開方法
JP2002064236A (ja) * 2000-08-17 2002-02-28 Nippon Telegr & Teleph Corp <Ntt> 結晶性基板の劈開方法
JP2003086900A (ja) * 2001-09-07 2003-03-20 Toshiba Electronic Engineering Corp 半導体レーザ装置、半導体レーザ装置の製造方法
WO2007074688A1 (ja) * 2005-12-26 2007-07-05 Matsushita Electric Industrial Co., Ltd. 窒化化合物半導体素子およびその製造方法
JP2008227461A (ja) * 2007-02-15 2008-09-25 Mitsubishi Electric Corp 半導体レーザの製造方法
JP2013118250A (ja) * 2011-12-02 2013-06-13 Nichia Chem Ind Ltd 半導体レーザ素子及びその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6245414B1 (ja) * 2017-04-12 2017-12-13 三菱電機株式会社 半導体素子の製造方法
WO2018189835A1 (ja) * 2017-04-12 2018-10-18 三菱電機株式会社 半導体素子の製造方法
CN110476308A (zh) * 2017-04-12 2019-11-19 三菱电机株式会社 半导体元件的制造方法
US10930559B2 (en) 2017-04-12 2021-02-23 Mitsubishi Electric Corporation Method for manufacturing semiconductor device
CN110476308B (zh) * 2017-04-12 2021-07-16 三菱电机株式会社 半导体元件的制造方法
WO2018198753A1 (ja) * 2017-04-24 2018-11-01 三菱電機株式会社 半導体デバイスの製造方法
JP2018186124A (ja) * 2017-04-24 2018-11-22 三菱電機株式会社 半導体デバイスの製造方法
CN110546832A (zh) * 2017-04-24 2019-12-06 三菱电机株式会社 半导体器件的制造方法
JPWO2018198753A1 (ja) * 2017-04-24 2019-12-12 三菱電機株式会社 半導体デバイスの製造方法
US11244862B2 (en) 2017-04-24 2022-02-08 Mitsubishi Electric Corporation Method for manufacturing semiconductor devices

Also Published As

Publication number Publication date
JPWO2017006902A1 (ja) 2018-03-08
CN107851563B (zh) 2021-07-30
US20180145206A1 (en) 2018-05-24
JP6430009B2 (ja) 2018-11-28
CN107851563A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
JP6430009B2 (ja) 半導体素子の製造方法
JP5121461B2 (ja) 窒化化合物半導体素子
WO2018180952A1 (ja) 窒化物半導体発光素子、窒化物半導体発光素子の製造方法及び窒化物半導体発光装置
JP5961989B2 (ja) 半導体レーザ素子及びその製造方法
JP2011249556A (ja) 半導体レーザ装置及びその製造方法
WO2018135207A1 (ja) 窒化物半導体レーザ素子およびその製造方法
JP5451724B2 (ja) 半導体レーザ素子の製造方法
KR101174876B1 (ko) 유리기판용 절단 휠
JP2012243866A (ja) 半導体発光素子及びその製造方法
JP2013026517A (ja) 半導体光素子を作製する方法、及び半導体光素子
JP5545648B2 (ja) 半導体ウエハの劈開方法
JP2003086900A (ja) 半導体レーザ装置、半導体レーザ装置の製造方法
JP6245414B1 (ja) 半導体素子の製造方法
JP4938374B2 (ja) 窒化ガリウム系半導体発光素子の製造方法
JP2006286785A (ja) 半導体発光素子およびその製造方法
JP2003258351A (ja) 半導体レーザ装置および半導体レーザ装置の製造方法
JP2013120759A (ja) 半導体装置の製造方法
JP2008311547A (ja) 半導体レーザ素子及び製造方法
US11772202B2 (en) Method for manufacturing light-emitting element
KR100921850B1 (ko) 반도체 레이저 다이오드의 스크라이빙 방법
JP4489691B2 (ja) 半導体光素子の製造方法
JP6902916B2 (ja) 半導体デバイスの製造方法
CN115939039A (zh) 一种晶圆切割方法及led芯片、发光装置
JP6736374B2 (ja) 液体吐出ヘッド用半導体チップの製造方法
JP2008186859A (ja) 半導体レーザ装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527448

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15580134

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821371

Country of ref document: EP

Kind code of ref document: A1