WO2016199678A1 - 導電性ペースト - Google Patents

導電性ペースト Download PDF

Info

Publication number
WO2016199678A1
WO2016199678A1 PCT/JP2016/066475 JP2016066475W WO2016199678A1 WO 2016199678 A1 WO2016199678 A1 WO 2016199678A1 JP 2016066475 W JP2016066475 W JP 2016066475W WO 2016199678 A1 WO2016199678 A1 WO 2016199678A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
conductive paste
copper powder
coated copper
Prior art date
Application number
PCT/JP2016/066475
Other languages
English (en)
French (fr)
Inventor
真一 脇田
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to US15/574,907 priority Critical patent/US20180163069A1/en
Priority to CN201680033737.0A priority patent/CN107615402B/zh
Publication of WO2016199678A1 publication Critical patent/WO2016199678A1/ja
Priority to HK18106661.5A priority patent/HK1247437B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/222Catalysts containing metal compounds metal compounds not provided for in groups C08G18/225 - C08G18/26
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3278Hydroxyamines containing at least three hydroxy groups
    • C08G18/3281Hydroxyamines containing at least three hydroxy groups containing three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/58Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/6505Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen the low-molecular compounds being compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6523Compounds of group C08G18/3225 or C08G18/3271 or polyamines of C08G18/38
    • C08G18/6535Compounds of group C08G18/3271
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8061Masked polyisocyanates masked with compounds having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to a conductive paste.
  • a transparent conductive layer obtained by forming a transparent conductive layer composed of a metal oxide such as ITO (indium-tin composite oxide) on a transparent resin film (base material) such as a PET film.
  • ITO indium-tin composite oxide
  • base material base material
  • Conductive films are frequently used.
  • a transparent conductive layer composed of ITO can be obtained by forming a circuit on a substrate by forming an ITO coating layer by vapor deposition or sputtering and then etching the coating layer.
  • various parts are mounted on the transparent conductive layer. Since a component cannot be mounted on the transparent conductive layer made of ITO by solder, a method of fixing the component using a conductive adhesive is used. In addition, a circuit made of silver paste is arranged around the ITO circuit in the transparent conductive layer, and the component is fixed on the silver paste circuit via a conductive adhesive, or the component is mounted on the silver paste with solder. A method may be used.
  • Patent Document 1 a conductive paste combining a silver-coated copper powder and a phenol resin, which is cheaper than silver powder, has been proposed (Patent Document 1).
  • the conductive paste has a problem that the curing temperature is high (for example, 140 ° C. or higher).
  • the substrate of the transparent conductive film often shrinks during heat curing.
  • the conductive paste comprised from a phenol resin also has the problem that adhesiveness with an ITO layer is inadequate.
  • the present invention has been made in order to solve the above-described conventional problems.
  • the object of the present invention is a conductive paste that can be soldered, cured at a low temperature, and excellent in adhesion to the ITO layer.
  • Another object of the present invention is to provide an inexpensive conductive paste.
  • the conductive paste of the present invention comprises flaky silver-coated copper powder, a phenoxy resin, a hexamethylene diisocyanate polyisocyanate compound and / or a blocked isocyanate compound, a phosphorus-containing organic titanate, and an alkanolamine.
  • the content ratio of the silver-coated copper powder is from 88 parts by weight to 100 parts by weight of the total amount of the flaky silver-coated copper powder, the phenoxy resin, the hexamethylene diisocyanate polyisocyanate compound and the blocked isocyanate compound. 92 parts by weight.
  • the flaky silver-coated copper powder has an average particle size of 5 ⁇ m to 25 ⁇ m.
  • the flaky silver-coated copper powder is composed of core copper particles and a silver coat layer that coats the copper particles, and the weight ratio of the silver coat layer is in the copper particles. On the other hand, it is 5 to 20% by weight.
  • the content ratio of the phenoxy resin is 40 to 65 parts by weight with respect to 100 parts by weight of the total amount of the phenoxy resin and the hexamethylene diisocyanate polyisocyanate compound and the blocked isocyanate compound. is there.
  • the content ratio of the phosphorus-containing organic titanate is 1 part by weight to 3 parts by weight with respect to 100 parts by weight of the flaky silver-coated copper powder.
  • the content of the alkanolamine is 1 part by weight to 3 parts by weight with respect to 100 parts by weight of the flaky silver-coated copper powder.
  • a specific amount of flaky silver-coated copper powder is used as a conductive material
  • a phenoxy resin is used as a binder component
  • a hexamethylene diisocyanate-based polyisocyanate compound and / or a blocked isocyanate compound is used as a binder component
  • a hexamethylene diisocyanate-based polyisocyanate compound and / or a blocked isocyanate compound a phosphorus-containing organic material
  • the conductive paste of the present invention comprises flaky silver-coated copper powder, phenoxy resin, hexamethylene diisocyanate polyisocyanate compound and / or blocked isocyanate compound, phosphorus-containing organic titanate, and alkanolamine. Including.
  • the conductive paste of the present invention can be used after being applied to any appropriate film (for example, a transparent conductive film) and then cured. Since the conductive paste after curing is excellent in solder wettability, if the conductive paste is used, component mounting by soldering becomes possible.
  • the conductive paste of the present invention is excellent in adhesion with ITO, and can be suitably used, for example, as a conductive paste applied on an ITO layer formed on a transparent conductive film.
  • the flaky silver-coated copper powder functions as a conductive material.
  • the electroconductive paste which is excellent in the wettability with respect to a solder can be obtained by making content of flaky silver coat copper powder into a specific quantity. Details will be described later.
  • the phenoxy resin, the hexamethylene diisocyanate polyisocyanate compound and the blocked isocyanate compound form a crosslinked body by a curing treatment, and the crosslinked body functions as a binder.
  • the crosslinked body functions as a binder.
  • a phenoxy resin, a hexamethylene diisocyanate polyisocyanate compound and / or a blocked isocyanate compound as a binder component, it has excellent adhesion to the ITO layer and prevents biting by solder.
  • a conductive paste can be obtained.
  • cured at low temperature (for example, 130 degrees C or less) can be obtained by using the said binder component.
  • the conductive paste of the present invention that exhibits such an effect is suitably used for a transparent conductive film including a substrate having low heat resistance (for example, a PET film substrate).
  • a conductive paste excellent in dispersibility of the flaky silver-coated copper powder and wettability with respect to solder can be obtained.
  • adhesiveness with an ITO layer improves by adding phosphorus containing organic titanate.
  • the conductive paste obtained by combining the binder component and the phosphorus-containing organic titanate has a characteristic that it is difficult for solder to pass through.
  • a conductive paste it is difficult for the solder to reach the back surface of the conductive paste (the surface in contact with the ITO layer) during soldering, and the adhesion between the conductive paste and the ITO layer is maintained.
  • the conductive paste of the present invention has an appropriate affinity for the ITO layer and has a characteristic that the solder is difficult to permeate, and therefore has very high adhesion to the ITO layer.
  • the flaky silver-coated copper powder is composed of core copper particles and a silver-coated layer that coats the copper particles.
  • the silver coat layer may coat a part of the copper particle surface, or may coat the entire copper particle surface. Preferably, the silver coat layer coats the entire surface of the copper particles. If the flaky silver-coated copper powder is used, a conductive paste that is excellent in wettability with respect to solder and that can be prevented from being eaten by solder can be obtained at low cost. Further, the flaky silver-coated copper powder is advantageous in that it is excellent in dispersibility in the binder component.
  • the flake shape means a shape close to a flat plate or a thin rectangular parallelepiped, and specifically, a shape having an aspect ratio (major axis length L / thickness t) of 3 or more.
  • the upper limit of the aspect ratio is 300, for example.
  • the major axis length L and thickness t of the flaky silver-coated copper powder can be measured by observing an SEM photograph with a scanning electron microscope (SEM).
  • the average particle size of the flaky silver-coated copper powder is preferably 5 ⁇ m to 25 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m, and even more preferably 7 ⁇ m to 20 ⁇ m. If a flaky silver-coated copper powder having an average particle diameter of 5 ⁇ m or more is used, it is possible to obtain a conductive paste that is prevented from being eaten by solder and is excellent in solderability. Moreover, if the flaky silver coat copper powder whose average particle diameter is 25 micrometers or less is used, the electrically conductive paste which is easy to carry out fine line printing by screen printing can be obtained.
  • the average particle size means the particle size (primary particle size) at an integrated value of 50% in the particle size distribution obtained by the laser diffraction scattering method.
  • the weight ratio of the silver coat layer is preferably 5% by weight to 20% by weight, more preferably 7% by weight to 18% by weight with respect to the copper particles. Within such a range, a low-resistance and inexpensive conductive paste can be obtained.
  • the content ratio of the flaky silver-coated copper powder is preferably 100 parts by weight based on the total amount of the flaky silver-coated copper powder, the phenoxy resin, and the hexamethylene diisocyanate polyisocyanate compound and the blocked isocyanate compound. 88 parts by weight to 92 parts by weight. If it is such a range, the electrically conductive paste which is excellent in the wettability with respect to a solder can be obtained.
  • the flaky silver-coated copper powder can be produced by any appropriate method.
  • spherical particles are pulverized with any appropriate pulverizing mill to obtain flaky copper powder, and then the copper powder is coated with silver by a method such as a substitution reduction method, thereby flaky silver coat Copper powder can be obtained.
  • the phenoxy resin is an epoxy resin obtained by reacting a bisphenol compound with epihalohydrin.
  • the phenoxy resin can contain two or more epoxy groups in one molecule.
  • the phenoxy resin those having a large molecular weight (degree of polymerization) are preferably used.
  • the weight average molecular weight of the phenoxy resin is, for example, 10,000 or more, preferably 30000 or more, more preferably 35000 or more, and further preferably 35000 to 600000.
  • a conductive paste having excellent heat resistance can be obtained.
  • High molecular weight epoxy resins tend to be hardened (low curing temperature, short curing time) and are advantageous.
  • the weight average molecular weight can be measured by GPC (solvent: THF).
  • the phenoxy resin examples include a bisphenol A type phenoxy resin obtained using bisphenol A as a bisphenol compound, a bisphenol F type phenoxy resin obtained using bisphenol F, and the like.
  • bisphenol A type phenoxy resin is used. If the bisphenol A type phenoxy resin is used, the effect of improving the adhesion to the ITO layer and the effect of preventing the biting by the solder become remarkable.
  • the content of the phenoxy resin is preferably 40% by weight to 65% by weight, more preferably 50% by weight to 65% by weight with respect to the total amount of the phenoxy resin, the hexamethylene diisocyanate polyisocyanate compound and the blocked isocyanate compound. 60% by weight. If it is such a range, the biting by a solder is prevented and the electrically conductive paste which is excellent in solderability can be obtained.
  • hexamethylene diisocyanate polyisocyanate compound As the hexamethylene diisocyanate polyisocyanate compound, a burette type or isocyanurate type hexamethylene diisocyanate polyisocyanate compound may be used. Preferably, an isocyanurate type hexamethylene diisocyanate polyisocyanate compound (general formula (1)) is used.
  • R is hexamethylene
  • the content ratio of the hexamethylene diisocyanate polyisocyanate compound is preferably 35 parts by weight to 60 parts by weight with respect to 100 parts by weight of the total amount of the phenoxy resin, the hexamethylene diisocyanate polyisocyanate compound and the blocked isocyanate compound, More preferred is 40 to 50 parts by weight. Moreover, you may use together the said hexamethylene diisocyanate type polyisocyanate compound and the said block isocyanate compound. In this case, the total content ratio of the hexamethylene diisocyanate-based polyisocyanate compound and the blocked isocyanate compound is preferably 35 wt. Part to 60 parts by weight, more preferably 40 parts to 50 parts by weight.
  • the blocked isocyanate compound As the blocked isocyanate compound, any appropriate compound can be used as long as the effects of the present invention are obtained.
  • the blocked isocyanate compound is a compound obtained, for example, by reacting an isocyanate group of an isocyanate compound with a blocking agent, and the isocyanate group is protected by the blocking agent. If block isocyanate is used, the pot life of an electrically conductive paste can be improved.
  • Examples of the isocyanate compound include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and the like.
  • Examples of the blocking agent include oxime compounds, lactam compounds, phenol compounds, alcohol compounds, amine compounds, active methylene compounds, pyrazole compounds, mercaptan compounds, imidazole compounds, imide compounds, and the like.
  • the content of the blocked isocyanate compound is preferably 35 parts by weight to 60 parts by weight, more preferably 40 parts by weight with respect to 100 parts by weight of the total amount of the phenoxy resin, the hexamethylene diisocyanate polyisocyanate compound and the blocked isocyanate compound. Parts by weight to 50 parts by weight.
  • Phosphorus-containing organic titanates examples include tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, and tetraoctyl.
  • Examples thereof include bis (ditridecyl phosphite) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, isopropyl tris (dioctyl pyrophosphate) titanate, and bis (dioctyl pyrophosphate) ethylene titanate.
  • a phosphorus-containing organic titanate having a phosphate group is used, and more preferably, bis (dioctylpyrophosphate) oxyacetate titanate is used.
  • the content ratio of the phosphorus-containing organic titanate is preferably 1 to 3 parts by weight, more preferably 1.5 to 2.5 parts by weight with respect to 100 parts by weight of the flaky silver-coated copper powder. It is. If it is such a range, the electrically conductive paste which is excellent in the wettability with respect to a solder can be obtained.
  • alkanolamine can exhibit a function as a flux when soldering on the conductive paste, and can particularly contribute to improvement of wettability to solder.
  • alkanolamine when alkanolamine is used, it is possible to obtain a conductive paste that is prevented from being eroded by solder and is excellent in solderability.
  • a protective film can be formed on the surface of the flaky silver-coated copper powder by alkanolamine.
  • the alkanolamine may be a monoalkanolamine, a dialkanolamine, or a trialkanolamine.
  • Examples of the alkanolamine include monoethanolamine, diethanolamine, triethanolamine, monopropanolamine and the like. Of these, triethanolamine is preferable. If triethanolamine is used, a conductive paste that is superior in wettability to solder can be obtained.
  • the content of the alkanolamine is preferably 1 to 3 parts by weight, more preferably 1.5 to 2.5 parts by weight, based on 100 parts by weight of the flaky silver-coated copper powder. . If it is such a range, the electrically conductive paste which is excellent in the wettability with respect to a solder can be obtained.
  • the conductive paste of the present invention may further contain any appropriate other additive.
  • additives include antifoaming agents, antioxidants, viscosity modifiers, diluents, anti-settling agents, leveling agents, and coupling agents.
  • the conductive paste further includes an antifoaming agent.
  • the antifoaming agent include a silicon antifoaming agent and an acrylic antifoaming agent.
  • the addition amount of the antifoaming agent is not limited, but the minimum amount necessary for defoaming during screen printing is preferable.
  • the conductive paste may contain a solvent.
  • a solvent capable of dissolving the binder component (phenoxy resin, hexamethylene diisocyanate polyisocyanate compound, block isocyanate compound) contained in the conductive paste can be preferably used.
  • a solvent having a vapor pressure and a boiling point that can enable continuous printing when screen-printing the conductive paste can be preferably used.
  • the solvent include organic solvents such as butyl carbitol, ethyl carbitol, and ⁇ -butyrolactone.
  • a solvent may be used individually by 1 type and may be used in combination of 2 or more types.
  • the conductive paste of the present invention can be manufactured by any appropriate method.
  • a phenoxy resin can be dissolved in a solvent to prepare a varnish, and flaky silver-coated copper powder, a binder component, a phosphorus-containing organic titanate and an alkanolamine can be added to the varnish and stirred.
  • Each component can be added in any suitable order.
  • a method of stirring each component a method using a self-revolving mixer, a triple roll, a kneader or the like can be employed.
  • the conductive paste of the present invention can be used by coating on a transparent conductive film.
  • a conductive paste is applied on a transparent conductive layer (for example, ITO layer) formed on a transparent conductive film by any appropriate method, and then heated and cured.
  • the coating method include screen printing, flexure printing, gravure printing, and the like; spraying, brushing, bar coating, and the like.
  • a screen printing method is used.
  • the conductive paste of the present invention can be cured at a low temperature.
  • the curing temperature of the conductive paste is preferably 130 ° C. or lower, more preferably 120 ° C. or lower, and further preferably 80 ° C. or higher and lower than 100 ° C.
  • the heat curing time is, for example, 10 minutes to 60 minutes.
  • Example 1 6.7 parts by weight of a phenoxy resin (Mitsubishi Chemical Co., Ltd., trade name “JER1256”, bisphenol A type phenoxy resin, weight average molecular weight: 50000), hexamethylene diisocyanate polyisocyanate compound (isocyanurate type, NCO%: 23. 1 wt%) 4.4 parts by weight and butyl carbitol were mixed to prepare a varnish.
  • a phenoxy resin Mitsubishi Chemical Co., Ltd., trade name “JER1256”, bisphenol A type phenoxy resin, weight average molecular weight: 50000
  • hexamethylene diisocyanate polyisocyanate compound isocyanurate type, NCO%: 23. 1 wt%
  • Example 2 The same as in Example 1 except that the amount of triethanolamine was 1.5 parts by weight and the amount of phosphorus-containing organic titanate (bis (dioctylpyrophosphate) oxyacetate titanate) was 1.5 parts by weight. As a result, a conductive paste was obtained.
  • phosphorus-containing organic titanate bis (dioctylpyrophosphate) oxyacetate titanate
  • Example 3 Conductive paste in the same manner as in Example 1, except that the amount of triethanolamine was 2 parts by weight and the amount of phosphorus-containing organic titanate (bis (dioctylpyrophosphate) oxyacetate titanate) was 2 parts by weight.
  • the amount of triethanolamine was 2 parts by weight and the amount of phosphorus-containing organic titanate (bis (dioctylpyrophosphate) oxyacetate titanate) was 2 parts by weight.
  • Example 4 The same as in Example 1 except that the amount of triethanolamine was 2.5 parts by weight and the amount of phosphorus-containing organic titanate (bis (dioctylpyrophosphate) oxyacetate titanate) was 2.5 parts by weight. As a result, a conductive paste was obtained.
  • phosphorus-containing organic titanate bis (dioctylpyrophosphate) oxyacetate titanate
  • Example 5 Conductive paste in the same manner as in Example 1 except that the amount of triethanolamine was 3 parts by weight and the amount of phosphorus-containing organic titanate (bis (dioctylpyrophosphate) oxyacetate titanate) was 3 parts by weight. Got.
  • Example 6 7.2 parts by weight of a phenoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name “JER1256”, bisphenol A type phenoxy resin, weight average molecular weight: 50000) and a hexamethylene diisocyanate polyisocyanate compound (isocyanurate type, NCO%: 23. 1 wt%) 3.9 parts by weight and butyl carbitol were mixed to prepare a varnish.
  • a phenoxy resin manufactured by Mitsubishi Chemical Corporation, trade name “JER1256”, bisphenol A type phenoxy resin, weight average molecular weight: 50000
  • a hexamethylene diisocyanate polyisocyanate compound isocyanurate type, NCO%: 23. 1 wt
  • Example 7 The blending amount of phenoxy resin (Mitsubishi Chemical Corporation, trade name “JER1256”, bisphenol A type phenoxy resin, weight average molecular weight: 50000) is 6.7 parts by weight, hexamethylene diisocyanate polyisocyanate compound (isocyanurate type, NCO) %: 23.1% by weight) was obtained in the same manner as in Example 6 except that the blending amount was 4.4 parts by weight.
  • phenoxy resin Mitsubishi Chemical Corporation, trade name “JER1256”, bisphenol A type phenoxy resin, weight average molecular weight: 50000
  • hexamethylene diisocyanate polyisocyanate compound isocyanurate type, NCO
  • Example 8 The blending amount of phenoxy resin (Mitsubishi Chemical Corporation, trade name “JER1256”, bisphenol A type phenoxy resin, weight average molecular weight: 50000) is 6.1 parts by weight, hexamethylene diisocyanate polyisocyanate compound (isocyanurate type, NCO). %: 23.1% by weight) was obtained in the same manner as in Example 6 except that the blending amount was 5.0 parts by weight.
  • phenoxy resin Mitsubishi Chemical Corporation, trade name “JER1256”, bisphenol A type phenoxy resin, weight average molecular weight: 50000
  • hexamethylene diisocyanate polyisocyanate compound isocyanurate type, NCO.
  • % 23.1% by weight
  • Example 9 6.6 parts by weight of a phenoxy resin (Mitsubishi Chemical Co., Ltd., trade name “JER1256”, bisphenol A type phenoxy resin, weight average molecular weight: 50000), hexamethylene diisocyanate polyisocyanate compound (isocyanurate type, NCO%: 23. 1 wt.%) 4.9 parts by weight and butyl carbitol were mixed to prepare a varnish.
  • a phenoxy resin Mitsubishi Chemical Co., Ltd., trade name “JER1256”, bisphenol A type phenoxy resin, weight average molecular weight: 50000
  • hexamethylene diisocyanate polyisocyanate compound isocyanurate type, NCO%: 23. 1 wt.
  • Example 10 Hexamethylene diisocyanate-based polyisocyanate compound (isocyanurate type, NCO%: 23.1 wt%), instead of 4.9 parts by weight, blocked isocyanate compound (trade name “Duranate SBN-70D” manufactured by Asahi Kasei Chemicals) A conductive paste was obtained in the same manner as in Example 9 except that 9 parts by weight were used.
  • Example 11 Instead of 100 parts by weight of flaky silver-coated copper powder (average particle diameter: 8 ⁇ m to 10 ⁇ m, silver coating amount: 15 wt%, aspect ratio: 45), flaky silver coated copper powder (average particle diameter: 5 ⁇ m to 7 ⁇ m, A conductive paste was obtained in the same manner as in Example 9 except that 100 parts by weight of silver coating amount: 5% by weight, aspect ratio: 30) was used.
  • Example 1 A conductive paste was obtained in the same manner as in Example 1 except that triethanolamine and phosphorus-containing organic titanate were not added.
  • Example 3 The same as Example 9 except that 100 parts by weight of spherical silver-coated copper powder (average particle diameter: 6 ⁇ m to 10 ⁇ m, silver coating amount: 10% by weight) was used instead of 100 parts by weight of flaky silver-coated copper powder. Thus, a conductive paste was obtained.
  • Example 7 A varnish was prepared by mixing 11.5 parts by weight of a phenolic resin (manufactured by Gunei Chemical Industry Co., Ltd., trade name “Resist Top PL4348”) and butyl carbitol. A conductive paste was obtained in the same manner as in Example 9 except that this varnish was used.
  • volume resistivity A conductive paste is printed in a line between two copper electrodes formed on a glass epoxy substrate, and then heated using an air oven (Examples 1 to 11 and comparison) Examples 1 to 6: 30 minutes at 120 ° C., Comparative Example 7: 30 minutes at 160 ° C.), the conductive paste was cured to obtain a measurement sample.
  • the printing employed screen printing, and a 180 mesh Tetron screen with an emulsion thickness of 30 ⁇ m was used.
  • Ten lines were formed with a width of 1 mm and a length of 70 mm.
  • the resistance value between the electrodes was measured by a four-terminal method. From the obtained resistance value, the volume resistance was determined by the following formula.
  • the coating thickness (D) is an average value of the thicknesses of 10 lines
  • the measured resistance value (R) is an average value of the measured resistance values of 10 lines.
  • Volume resistivity ⁇ W ⁇ D ⁇ R / L ⁇ : Volume resistivity ( ⁇ ⁇ cm)
  • W Coating width (cm)
  • D Coating thickness (cm) (average value of coating thickness of 10 lines)
  • L Coating film length (cm)
  • R measured resistance value ( ⁇ ) (average value of measured resistance values of 10 lines)
  • the number of grids was measured and the adhesion was evaluated according to the following criteria. ⁇ : The number of peeled grids is less than 1 ⁇ : The number of peeled grids is 1 or more and less than 99 ⁇ : The number of peeled grids is 99 or more
  • the present invention it is possible to provide a conductive paste that can be cured at a low temperature and has excellent solderability. Moreover, it can be seen from the results of the acetone rubbing test that the conductive paste of the present invention is sufficiently cured. Such a conductive paste can be prevented from being eroded by solder. Furthermore, the conductive paste obtained in the examples was excellent in adhesion with the ITO layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

はんだ付けが可能な導電性ペーストであって、低温で硬化し、ITO層との密着性に優れ、かつ、安価な導電性ペーストを提供する。 本発明の導電性ペーストは、フレーク状銀コート銅粉と、フェノキシ樹脂と、ヘキサメチレンジイソシアネート系ポリイソシアネート化合物および/またはブロックイソシアネート化合物と、リン含有有機チタネートと、アルカノールアミンとを含み、該フレーク状銀コート銅粉の含有割合が、該フレーク状銀コート銅粉と、前記フェノキシ樹脂と、前記ヘキサメチレンジイソシアネート系ポリイソシアネート化合物およびブロックイソシアネート化合物との合計量100重量部に対して、88重量部~92重量部である。

Description

導電性ペースト
 本発明は、導電性ペーストに関する。
 近年、携帯電話に代表されるモバイル機器には、例えばタッチセンサーの電極として、透明導電性フィルムが用いられている。この透明導電性フィルムとしては、PETフィルム等の透明樹脂フィルム(基材)上に、ITO(インジウム・スズ複合酸化物)等の金属酸化物から構成される透明導電層を形成して得られる透明導電性フィルムが多用されている。ITOから構成される透明導電層は、基材上に、蒸着またはスパッタリングによりITOコーティング層を形成した後、該コーティング層をエッチングすることにより回路形成して、得られ得る。
 通常、透明導電層上には、種々の部品が実装される。ITOから構成される透明導電層上には、はんだにより部品を実装することができないため、導電性接着剤を用いて部品を固着するという方法が用いられている。また、透明導電層におけるITO回路の周辺に銀ペーストによる回路を配し、銀ペースト回路上に導電性接着剤を介して部品を固着する、あるいは、はんだにより銀ペースト上に部品を実装する等の方法が用いられることもある。
 しかしながら、導電性接着剤を用いた場合、部品のリペアが困難であるという問題がある。また、銀ペースト上にはんだで部品を実装する場合、はんだに銀が取り込まれて銀ペースト部分が消失するという現象(いわゆる、銀喰われ)が生じやすく、このような現象を抑制するためには、多量の銀を含むはんだを用いることが必要となる。したがって、銀ペーストを用いる上記方法においては、銀ペーストが高価であることに加えて、高価なはんだを用いることとなり、コストが高くなるという問題がある。
 上記問題を解消するため、銀粉よりも安価な銀コート銅粉と、フェノール樹脂とを組み合わせた導電性ペーストが提案されている(特許文献1)。しかしながら、該導電性ペーストは、硬化温度が高い(例えば、140℃以上)という問題がある。このような導電性ペーストを、透明導電性フィルム上に塗工する場合、加熱硬化時に透明導電性フィルムの基材が収縮する場合が多い。また、フェノール樹脂から構成される導電性ペーストは、ITO層との密着性が不十分であるという問題もある。
特開平07-62274号公報
 本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、はんだ付けが可能な導電性ペーストであって、低温で硬化し、ITO層との密着性に優れ、かつ、安価な導電性ペーストを提供することにある。
 本発明の導電性ペーストは、フレーク状銀コート銅粉と、フェノキシ樹脂と、ヘキサメチレンジイソシアネート系ポリイソシアネート化合物および/またはブロックイソシアネート化合物と、リン含有有機チタネートと、アルカノールアミンとを含み、該フレーク状銀コート銅粉の含有割合が、該フレーク状銀コート銅粉と、前記フェノキシ樹脂と、前記ヘキサメチレンジイソシアネート系ポリイソシアネート化合物およびブロックイソシアネート化合物との合計量100重量部に対して、88重量部~92重量部である。
 1つの実施形態においては、上記フレーク状銀コート銅粉の平均粒子径が、5μm~25μmである。
 1つの実施形態においては、上記フレーク状銀コート銅粉が、核となる銅粒子と、該銅粒子をコートする銀コート層とから構成され、該銀コート層の重量割合が、該銅粒子に対して、5重量%~20重量%である。
 1つの実施形態においては、上記フェノキシ樹脂の含有割合が、該フェノキシ樹脂と前記ヘキサメチレンジイソシアネート系ポリイソシアネート化合物およびブロックイソシアネート化合物との合計量100重量部に対して、40重量部~65重量部である。
 1つの実施形態においては、上記リン含有有機チタネートの含有割合が、前記フレーク状銀コート銅粉100重量部に対して、1重量部~3重量部である。
 1つの実施形態においては、上記アルカノールアミンの含有割合が、前記フレーク状銀コート銅粉100重量部に対して、1重量部~3重量部である。 
 本発明によれば、導電性材料として特定量のフレーク状銀コート銅粉を用い、バインダー成分としてフェノキシ樹脂を用い、さらに、ヘキサメチレンジイソシアネート系ポリイソシアネート化合物および/またはブロックイソシアネート化合物と、リン含有有機チタネートと、アルカノールアミンとを添加することにより、低温で硬化し、はんだ付け性およびITO層との密着性に優れ、かつ、安価な導電性ペーストを得ることができる。
A.導電性ペーストの概要
 本発明の導電性ペーストは、フレーク状銀コート銅粉と、フェノキシ樹脂と、ヘキサメチレンジイソシアネート系ポリイソシアネート化合物および/またはブロックイソシアネート化合物と、リン含有有機チタネートと、アルカノールアミンとを含む。本発明の導電性ペーストは、任意の適切なフィルム(例えば、透明導電性フィルム)に塗布し、その後、硬化させて用いられ得る。硬化後の導電性ペーストは、はんだ濡れ性に優れるため、該導電性ペーストを用いれば、はんだ付けによる部品実装が可能となる。また、本発明の導電性ペーストは、ITOとの密着性に優れ、例えば、透明導電性フィルムに形成されたITO層上に塗工する導電性ペーストとして好適に用いられ得る。
 上記フレーク状銀コート銅粉は、導電性材料として機能する。本発明においては、フレーク状銀コート銅粉の含有量を特定の量とすることにより、はんだに対する濡れ性に優れる導電性ペーストを得ることができる。詳細は後述する。
 また、フェノキシ樹脂、ヘキサメチレンジイソシアネート系ポリイソシアネート化合物およびブロックイソシアネート化合物は、硬化処理により架橋体を形成し、該架橋体がバインダーとして機能する。本発明においては、バインダー成分として、フェノキシ樹脂と、ヘキサメチレンジイソシアネート系ポリイソシアネート化合物および/またはブロックイソシアネート化合物とを用いることにより、ITO層との密着性に優れ、かつ、はんだによる喰われを防止し得る導電性ペーストを得ることができる。また、上記バインダー成分を用いることにより、低温(例えば、130℃以下)で硬化し得る導電性ペーストを得ることができる。このような導電性ペーストを用いれば、透明導電性フィルム上で該ペーストを硬化させる際、該透明導電性フィルムの熱収縮が抑制される。このような効果を発揮する本発明の導電性ペーストは、耐熱性の低い基材(例えば、PETフィルム基材)を含む透明導電性フィルムに対して、好適に用いられる。
 さらに、上記リン含有有機チタネートを添加することにより、上記フレーク状銀コート銅粉の分散性、およびはんだに対する濡れ性に優れる導電性ペーストを得ることができる。また、リン含有有機チタネートを添加することにより、ITO層との密着性が向上する。
 上記バインダー成分と、リン含有有機チタネートとを組み合わせて得られた導電性ペーストは、はんだを透過させにくい特性を有する。このような導電性ペーストを用いれば、はんだ付け時、はんだが導電性ペースト裏面(ITO層と接触する面)にまで到達し難く、導電性ペーストとITO層との密着性が維持される。すなわち、本発明の導電性ペーストは、ITO層に対して適切な親和性を示すとともに、はんだを透過させにくいという特性を有するため、ITO層との密着性が非常に高い。
B.フレーク状銀コート銅粉
 上記フレーク状銀コート銅粉は、核となる銅粒子と、該銅粒子をコートする銀コート層とから構成される。銀コート層は、銅粒子表面の一部をコートしていてもよく、銅粒子表面の全体をコートしていてもよい。好ましくは、銀コート層は、銅粒子表面の全体をコートする。フレーク状銀コート銅粉を用いれば、はんだに対する濡れ性に優れ、はんだによる喰われが防止され得る導電性ペーストを安価に得ることができる。また、フレーク状の銀コート銅粉は、上記バインダー成分中での分散性に優れる点で有利である。
 本明細書において、フレーク状とは、平板または厚みの薄い直方体に近い形状を意味し、具体的には、アスペクト比(長軸長さL/厚みt)が3以上の形状を意味する。該アスペクト比の上限は、例えば、300である。なお、フレーク状銀コート銅粉の長軸長さLおよび厚みtは、走査型電子顕微鏡(SEM)によるSEM写真を観察することにより測定することができる。
 上記フレーク状銀コート銅粉の平均粒子径は、好ましくは5μm~25μmであり、より好ましくは5μm~20μmであり、さらに好ましくは7μm~20μmである。平均粒子径が5μm以上のフレーク状銀コート銅粉を用いれば、はんだによる喰われが防止され、はんだ付け性に優れる導電性ペーストを得ることができる。また、平均粒子径が25μm以下のフレーク状銀コート銅粉を用いれば、スクリーン印刷にてファインライン印刷がしやすい導電性ペーストを得ることができる。なお、平均粒子径とは、レーザー回折散乱法により得られた粒度分布における積算値50%での粒径(一次粒子径)を意味する。
 上記フレーク状銀コート銅粉において、銀コート層の重量割合は、銅粒子に対して、好ましくは5重量%~20重量%であり、より好ましくは7重量%~18重量%である。このような範囲であれば、低抵抗かつ安価な導電性ペーストを得ることができる。
 上記フレーク状銀コート銅粉の含有割合は、フレーク状銀コート銅粉と、上記フェノキシ樹脂と、上記ヘキサメチレンジイソシアネート系ポリイソシアネート化合物およびブロックイソシアネート化合物との合計量100重量部に対して、好ましくは88重量部~92重量部である。このような範囲であれば、はんだに対する濡れ性に優れる導電性ペーストを得ることができる。
 上記フレーク状銀コート銅粉は、任意の適切な方法により製造することができる。例えば、球状粒子を任意の適切な粉砕ミルで粉砕して、フレーク状の銅粉を得た後、該銅粉に対して、置換還元法等の方法により銀をコートして、フレーク状銀コート銅粉が得られ得る。
C.バインダー成分
(フェノキシ樹脂)
 上記フェノキシ樹脂とは、ビスフェノール化合物とエピハロヒドリンとを反応させて得られるエポキシ樹脂である。フェノキシ樹脂は、1分子内にエポキシ基を2個以上含み得る。フェノキシ樹脂としては、分子量(重合度)の大きいものが好ましく用いられる。フェノキシ樹脂の重量平均分子量は、例えば、10000以上であり、好ましくは30000以上であり、より好ましくは35000以上であり、さらに好ましくは35000~600000である。高分子量のフェノキシ基樹脂を用いれば、耐熱性に優れる導電性ペーストを得ることができる。また、高分子量のエポキシ樹脂は硬化しやすい(硬化温度が低い、硬化時間が短い)傾向にあり、有利である。重量平均分子量は、GPC(溶媒:THF)により測定され得る。
 上記フェノキシ樹脂としては、例えば、ビスフェノール化合物としてビスフェノールAを用いて得られたビスフェノールA型フェノキシ樹脂、ビスフェノールFを用いて得られたビスフェノールF型フェノキシ樹脂等が挙げられる。好ましくは、ビスフェノールA型フェノキシ樹脂が用いられる。ビスフェノールA型フェノキシ樹脂を用いれば、ITO層への密着性を向上させる効果、およびはんだによる喰われを防止する効果が顕著となる。
 上記フェノキシ樹脂の含有割合は、フェノキシ樹脂と上記ヘキサメチレンジイソシアネート系ポリイソシアネート化合物およびブロックイソシアネート化合物との合計量に対して、好ましくは40重量%~65重量%であり、より好ましくは50重量%~60重量%である。このような範囲であれば、はんだによる喰われが防止され、はんだ付け性に優れる導電性ペーストを得ることができる。
(ヘキサメチレンジイソシアネート系ポリイソシアネート化合物)
 上記ヘキサメチレンジイソシアネート系ポリイソシアネート化合物としては、ビューレットタイプ、またはイソシアヌレートタイプのヘキサメチレンジイソシアネート系ポリイソシアネート化合物が用いられ得る。好ましくは、イソシアヌレートタイプのヘキサメチレンジイソシアネート系ポリイソシアネート化合物(一般式(1))が用いられる。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Rはヘキサメチレンである。
 上記ヘキサメチレンジイソシアネート系ポリイソシアネート化合物の含有割合は、フェノキシ樹脂とヘキサメチレンジイソシアネート系ポリイソシアネート化合物およびブロックイソシアネート化合物との合計量100重量部に対して、好ましくは35重量部~60重量部であり、より好ましくは40重量部~50重量部である。また、上記ヘキサメチレンジイソシアネート系ポリイソシアネート化合物と、上記ブロックイソシアネート化合物とを併用してもよい。この場合、ヘキサメチレンジイソシアネート系ポリイソシアネート化合物および上記ブロックイソシアネート化合物の合計含有割合は、フェノキシ樹脂とヘキサメチレンジイソシアネート系ポリイソシアネート化合物およびブロックイソシアネート化合物との合計量100重量部に対して、好ましくは35重量部~60重量部であり、より好ましくは40重量部~50重量部である。
(ブロックイソシアネート化合物)
 ブロックイソシアネート化合物としては、本発明の効果が得られる限り、任意の適切な化合物が用いられ得る。ブロックイソシアネート化合物は、例えば、イソシアネート化合物のイソシアネート基と、ブロック剤とを反応させて得られ、該イソシアネート基がブロック剤により保護された化合物である。ブロックイソシアネートを用いれば、導電性ペーストのポットライフを向上させ得る。
 上記イソシアネート化合物としては、例えば、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)等が挙げられる。上記ブロック剤としては、オキシム化合物、ラクタム化合物、フェノール化合物、アルコール化合物、アミン化合物、活性メチレン化合物、ピラゾール化合物、メルカプタン化合物、イミダゾール系化合物、イミド系化合物等を挙げることができる。
 上記ブロックイソシアネート化合物の含有割合は、フェノキシ樹脂とヘキサメチレンジイソシアネート系ポリイソシアネート化合物およびブロックイソシアネート化合物との合計量100重量部に対して、好ましくは35重量部~60重量部であり、より好ましくは40重量部~50重量部である。
D.リン含有有機チタネート
 上記リン含有有機チタネートとしては、例えば、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート等が挙げられる。好ましくは、ホスフェート基を有するリン含有有機チタネートが用いられ、より好ましくは、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネートが用いられる。
 上記リン含有有機チタネートの含有割合は、上記フレーク状銀コート銅粉100重量部に対して、好ましくは1重量部~3重量部であり、より好ましくは1.5重量部~2.5重量部である。このような範囲であれば、はんだに対する濡れ性に優れる導電性ペーストを得ることができる。
E.アルカノールアミン
 上記アルカノールアミンは、上記導電性ペースト上ではんだ付けを行う際に、フラックスとしての機能を発揮し得、特に、はんだに対する濡れ性の向上に寄与し得る。また、アルカノールアミンを用いれば、はんだによる喰われが防止されて、はんだ付け性に優れる導電性ペーストを得ることができる。さらには、アルカノールアミンにより、フレーク状銀コート銅粉の表面に保護膜を形成させることができる。
 上記アルカノールアミンは、モノアルカノールアミンであってもよく、ジアルカノールアミンであってもよく、トリアルカノールアミンであってもよい。アルカノールアミンとしては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノプロパノールアミン等が挙げられる。なかでも好ましくは、トリエタノールアミンである。トリエタノールアミンを用いれば、はんだに対する濡れ性により優れる導電性ペーストを得ることができる。
 上記アルカノールアミンの含有割合は、上記フレーク状銀コート銅粉100重量部に対して、好ましくは1重量部~3重量部であり、より好ましくは1.5重量部~2.5重量部である。このような範囲であれば、はんだに対する濡れ性に優れる導電性ペーストを得ることができる。
F.その他の添加剤
 本発明の導電性ペーストは、任意の適切なその他の添加剤をさらに含み得る。その他の添加剤としては、例えば、消泡剤、酸化防止剤、粘度調整剤、希釈剤、沈降防止剤、レベリング剤、カップリング剤等が挙げられる。
 1つの実施形態においては、上記導電性ペーストは、消泡剤をさらに含む。消泡剤としては、例えば、シリコン系消泡剤、アクリル系消泡剤等が挙げられる。消泡剤の添加量は、限定されるものではないが、スクリーン印刷時の消泡に必要な最小量が好ましい。
 上記導電性ペーストは、溶剤を含んでいてもよい。該溶剤としては、導電性ペーストに含まれる上記バインダー成分(フェノキシ樹脂、ヘキサメチレンジイソシアネート系ポリイソシアネート化合物、ブロックイソシアネート化合物)を溶解し得る溶剤が好ましく用いられ得る。また、導電性ペーストをスクリーン印刷する際に連続印刷を可能とし得る蒸気圧および沸点を有する溶剤が好ましく用いられ得る。上記溶剤としては、例えば、ブチルカルビトール、エチルカルビトール、γ―ブチロラクトン等の有機溶剤が挙げられる。溶剤は、1種類を単独で使用してもよく、2種類以上を組み合わせて使用してもよい。
G.導電性ペーストの製造方法
 本発明の導電性ペーストは、任意の適切な方法により製造することができる。例えば、フェノキシ樹脂を溶剤で溶解してワニスを調製し、該ワニスに、フレーク状銀コート銅粉、バインダー成分、リン含有有機チタネートおよびアルカノールアミンを添加し、攪拌して得ることができる。各成分は、任意の適切な順序で添加され得る。各成分を攪拌する方法としては、自公転ミキサー、三本ロール、ニーダー等を用いた方法が採用され得る。
 代表的には、本発明の導電性ペーストは、透明導電性フィルム上に塗工して用いられ得る。例えば、透明導電性フィルムに形成された透明導電層(例えば、ITO層)上に、導電性ペーストを任意の適切な方法により塗布し、その後、加熱硬化して用いられる。上記塗布方法としては、スクリーン印刷法、フレクシャー印刷法、グラビア印刷法等の印刷法;スプレー法、刷毛塗り、バーコート法等が挙げられる。好ましくは、スクリーン印刷法が用いられる。
 上記のとおり、本発明の導電性ペーストは、低温で硬化し得る。導電性ペーストの硬化温度は、好ましくは130℃以下であり、より好ましくは120℃以下であり、さらに好ましくは80℃以上100℃未満である。また、加熱硬化の時間は、例えば、10分~60分である。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。また、実施例において、特に明記しない限り、「部」および「%」は重量基準である。
[実施例1]
 フェノキシ樹脂(三菱化学社製、商品名「JER1256」、ビスフェノールA型フェノキシ樹脂、重量平均分子量:50000)6.7重量部と、ヘキサメチレンジイソシアネート系ポリイソシアネート化合物(イソシアヌレートタイプ、NCO%:23.1重量%)4.4重量部と、ブチルカルビトールとを混合してワニスを調製した。
 上記ワニス(固形分:11.1重量部)に、フレーク状銀コート銅粉(平均粒子径:8μm~10μm、銀コート量:15重量%、アスペクト比:45)100重量部と、トリエタノールアミン1重量部と、リン含有有機チタネート(ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート)1重量部と消泡剤とを加えて、導電性ペーストを得た。
[実施例2]
 トリエタノールアミンの配合量を1.5重量部とし、リン含有有機チタネート(ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート)の配合量を1.5重量部としたこと以外は、実施例1と同様にして導電性ペーストを得た。
[実施例3]
 トリエタノールアミンの配合量を2重量部とし、リン含有有機チタネート(ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート)の配合量を2重量部としたこと以外は、実施例1と同様にして導電性ペーストを得た。
[実施例4]
 トリエタノールアミンの配合量を2.5重量部とし、リン含有有機チタネート(ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート)の配合量を2.5重量部としたこと以外は、実施例1と同様にして導電性ペーストを得た。
[実施例5]
 トリエタノールアミンの配合量を3重量部とし、リン含有有機チタネート(ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート)の配合量を3重量部としたこと以外は、実施例1と同様にして導電性ペーストを得た。
[実施例6]
 フェノキシ樹脂(三菱化学社製、商品名「JER1256」、ビスフェノールA型フェノキシ樹脂、重量平均分子量:50000)7.2重量部と、ヘキサメチレンジイソシアネート系ポリイソシアネート化合物(イソシアヌレートタイプ、NCO%:23.1重量%)3.9重量部と、ブチルカルビトールとを混合してワニスを調製した。
 上記ワニス(固形分:11.1重量部)に、フレーク状銀コート銅粉(平均粒子径:8μm~10μm、銀コート量:15重量%、アスペクト比:45)100重量部と、トリエタノールアミン2.5重量部と、リン含有有機チタネート(ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート)2.5重量部と消泡剤とを加えて、導電性ペーストを得た。
[実施例7]
 フェノキシ樹脂(三菱化学社製、商品名「JER1256」、ビスフェノールA型フェノキシ樹脂、重量平均分子量:50000)の配合量を6.7重量部とし、ヘキサメチレンジイソシアネート系ポリイソシアネート化合物(イソシアヌレートタイプ、NCO%:23.1重量%)の配合量を4.4重量部としたこと以外は、実施例6と同様にして、導電性ペーストを得た。
[実施例8]
 フェノキシ樹脂(三菱化学社製、商品名「JER1256」、ビスフェノールA型フェノキシ樹脂、重量平均分子量:50000)の配合量を6.1重量部とし、ヘキサメチレンジイソシアネート系ポリイソシアネート化合物(イソシアヌレートタイプ、NCO%:23.1重量%)の配合量を5.0重量部としたこと以外は、実施例6と同様にして、導電性ペーストを得た。
[実施例9]
 フェノキシ樹脂(三菱化学社製、商品名「JER1256」、ビスフェノールA型フェノキシ樹脂、重量平均分子量:50000)6.6重量部と、ヘキサメチレンジイソシアネート系ポリイソシアネート化合物(イソシアヌレートタイプ、NCO%:23.1重量%)4.9重量部と、ブチルカルビトールとを混合してワニスを調製した。
 上記ワニス(固形分:11.5重量部)に、フレーク状銀コート銅粉(平均粒子径:8μm~10μm、銀コート量:15重量%、アスペクト比:45)100重量部と、トリエタノールアミン2.5重量部と、リン含有有機チタネート(ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート)2.5重量部とを加えて、導電性ペーストを得た。
[実施例10]
 ヘキサメチレンジイソシアネート系ポリイソシアネート化合物(イソシアヌレートタイプ、NCO%:23.1重量%)4.9重量部に代えて、ブロックイソシアネート化合物(旭化成ケミカルズ社製、商品名「デュラネート SBN-70D」)4.9重量部を用いたこと以外は、実施例9と同様にして導電性ペーストを得た。
[実施例11]
 フレーク状銀コート銅粉(平均粒子径:8μm~10μm、銀コート量:15重量%、アスペクト比:45)100重量部に代えて、フレーク状銀コート銅粉(平均粒子径:5μm~7μm、銀コート量:5重量%、アスペクト比:30)100重量部を用いたこと以外は、実施例9と同様にして導電性ペーストを得た。
[比較例1]
 トリエタノールアミンおよびリン含有有機チタネートを添加しなかったこと以外は、実施例1と同様にして、導電性ペーストを得た。
[比較例2]
 フェノキシ樹脂(三菱化学社製、商品名「JER1256」、ビスフェノールA型フェノキシ樹脂、重量平均分子量:50000)の配合量を8.2重量部とし、ヘキサメチレンジイソシアネート系ポリイソシアネート化合物(イソシアヌレートタイプ、NCO%:23.1重量%)の配合量を5.5重量部としたこと以外は、比較例1と同様にして、導電性ペーストを得た。
[比較例3]
 フレーク状銀コート銅粉100重量部に代えて、球状銀コート銅粉(平均粒子径:6μm~10μm、銀コート量:10重量%)100重量部を用いたこと以外は、実施例9と同様にして、導電性ペーストを得た。
[比較例4]
 フレーク状銀コート銅粉100重量部に代えて、フレーク状銀粉(平均粒子径:7μm~15μm、アスペクト比:55)100重量部を用いたこと以外は、実施例9と同様にして、導電性ペーストを得た。
[比較例5]
 フレーク状銀コート銅粉100重量部に代えて、フレーク状銅粉(平均粒子径:8μm~10μm、アスペクト比:45)100重量部を用いたこと以外は、実施例9と同様にして、導電性ペーストを得た。
[比較例6]
 フェノキシ樹脂(三菱化学社製、商品名「JER1256」、ビスフェノールA型フェノキシ樹脂、重量平均分子量:50000)4.9重量部と、ヘキサメチレンジイソシアネート系ポリイソシアネート化合物(イソシアヌレートタイプ、NCO%:23.1重量%)3.2重量部と、ブチルカルビトールとを混合してワニスを調製した。
 上記ワニス(固形分:8.1重量部)に、フレーク状銀コート銅粉(平均粒子径:8μm~10μm、銀コート量:15重量%、アスペクト比:45)100重量部と、トリエタノールアミン2.5重量部と、リン含有有機チタネート(ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート)2.5重量部と消泡剤とを加えて、導電性ペーストを得た。
[比較例7]
 フェノール樹脂(群栄化学工業社製、商品名「レジトップPL4348」)11.5重量部と、ブチルカルビトールとを混合してワニスを調製した。このワニスを用いたこと以外は、実施例9と同様にして、導電性ペーストを得た。
<評価>
 実施例および比較例で得られた導電性ペーストを以下の評価に供した。結果を表1に示す。
(1)体積抵抗率
 ガラスエポキシ基板上に形成させた2つの銅電極の間で、導電性ペーストをライン状に印刷し、その後、エアーオーブンを用いて加熱して(実施例1~11および比較例1~6:120℃で30分間、比較例7:160℃で30分間)、導電性ペーストを硬化させて測定用サンプルを得た。
 印刷はスクリーン印刷を採用し、乳剤厚30μmの180メッシュテトロンスクリーンを使用した。ラインは、幅1mm、長さ70mmのサイズとし、10本形成させた。
 電極間の抵抗値を4端子法により測定した。得られた抵抗値から以下の式により、体積抵抗を求めた。なお、塗膜厚さ(D)は10本のラインの厚さの平均値であり、測定抵抗値(R)は、10本のラインの測定抵抗値の平均値である。
         体積抵抗率σ=W×D×R/L 
         σ:体積抵抗率(Ω・cm)
         W:塗膜幅  (cm)
         D:塗膜厚さ (cm)(10本のラインの塗膜厚さの平均値)
         L:塗膜長  (cm)
         R:測定抵抗値(Ω) (10本のラインの測定抵抗値の平均値)
(2)アセトンラビング試験
 上記(1)と同様に測定サンプルを得た。アセトンをしみ込ませたペーパータオルを、ライン状の導電ペースト上で5往復させ、該ペーストが拭き取られるか否かを確認し、以下の基準で評価した。
 ○:全くペーストが拭き取られない。
 △:ペーストが少し拭き取られる。
 ×:ペーストが完全に拭き取られる。
(3)はんだ付け性試験
 片面銅張りガラスエポキシ基板に、導電性ペーストを乳剤厚30μmの180メッシュテトロンスクリーンを使用して、15×20mmの面積で印刷する。このスクリーン印刷後、エアーオーブンで加熱硬化した後(実施例1~11および比較例1~6:120℃で30分間、比較例7:160℃で30分間)、室温まで冷却し、これをサンプルとする。このサンプルを265±5℃に加熱した63Sn/37Pbのはんだに3秒間浸漬し取り出した後、15×20mmのペーストへのはんだ濡れ性を評価した。
  ○:はんだ濡れ面積80%以上
  △:はんだ濡れ面積50%以上、80%未満
  △~×:はんだ濡れ面積20%以上、50%未満
  ×:はんだ濡れ面積20%未満
(4)ITOに対する密着性
 ITO基板上に導電性ペーストを塗布し、その後、加熱して(実施例1~11および比較例1~6:120℃で30分間、比較例7:160℃で30分間)、塗布層を硬化させて、評価サンプルを作製した。
 上記評価サンプルを用い、導電性ペーストとITOとの密着性を、JIS K 5600の碁盤目剥離試験により評価した。具体的には、導電性ペースト表面上10mm角中に1mm間隔にカッターで切れ目を入れ、100個の碁盤目を作り、粘着テープをその上に貼り付けた後、剥離し、ITO基板から剥離した碁盤目の数を測定し、以下の基準で密着性を評価した。
 〇:剥離した碁盤目の数が1個未満
 △:剥離した碁盤目の数が1個以上99個未満
 ×:剥離した碁盤目の数が99個以上
Figure JPOXMLDOC01-appb-T000002
 実施例から明らかなように、本発明によれば、低温で硬化し得、かつ、はんだ付け性に優れる導電性ペーストを提供することができる。また、上記アセトンラビング試験の結果から、本発明の導電性ペーストは、十分に硬化していることがわかる。このような導電性ペーストは、はんだによる喰われが防止され得る。さらに、実施例で得られた導電性ペーストは、ITO層との密着性に優れていた。

Claims (6)

  1.  フレーク状銀コート銅粉と、
     フェノキシ樹脂と、
     ヘキサメチレンジイソシアネート系ポリイソシアネート化合物および/またはブロックイソシアネート化合物と、
     リン含有有機チタネートと、
     アルカノールアミンとを含み、
     該フレーク状銀コート銅粉の含有割合が、該フレーク状銀コート銅粉と、前記フェノキシ樹脂と、前記ヘキサメチレンジイソシアネート系ポリイソシアネート化合物およびブロックイソシアネート化合物との合計量100重量部に対して、88重量部~92重量部である、
     導電性ペースト。
  2.  前記フレーク状銀コート銅粉の平均粒子径が、5μm~25μmである、請求項1に記載の導電性ペースト。
  3.  前記フレーク状銀コート銅粉が、核となる銅粒子と、該銅粒子をコートする銀コート層とから構成され、
     該銀コート層の重量割合が、該銅粒子に対して、5重量%~20重量%である、請求項1または2に記載の導電性ペースト。
  4.  前記フェノキシ樹脂の含有割合が、該フェノキシ樹脂と前記ヘキサメチレンジイソシアネート系ポリイソシアネート化合物およびブロックイソシアネート化合物との合計量100重量部に対して、40重量部~65重量部である、請求項1から3のいずれかに記載の導電性ペースト。
  5.  前記リン含有有機チタネートの含有割合が、前記フレーク状銀コート銅粉100重量部に対して、1重量部~3重量部である、請求項1から4のいずれかに記載の導電性ペースト。
  6.  前記アルカノールアミンの含有割合が、前記フレーク状銀コート銅粉100重量部に対して、1重量部~3重量部である、請求項1から5のいずれかに記載の導電性ペースト。 
     
PCT/JP2016/066475 2015-06-09 2016-06-02 導電性ペースト WO2016199678A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/574,907 US20180163069A1 (en) 2015-06-09 2016-06-02 Conductive Paste
CN201680033737.0A CN107615402B (zh) 2015-06-09 2016-06-02 导电膏
HK18106661.5A HK1247437B (zh) 2015-06-09 2018-05-23 導電膏

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015116858A JP6151742B2 (ja) 2015-06-09 2015-06-09 導電性ペースト
JP2015-116858 2015-06-09

Publications (1)

Publication Number Publication Date
WO2016199678A1 true WO2016199678A1 (ja) 2016-12-15

Family

ID=57504065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066475 WO2016199678A1 (ja) 2015-06-09 2016-06-02 導電性ペースト

Country Status (6)

Country Link
US (1) US20180163069A1 (ja)
JP (1) JP6151742B2 (ja)
CN (1) CN107615402B (ja)
HK (1) HK1247437B (ja)
TW (1) TWI657117B (ja)
WO (1) WO2016199678A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110028760A (zh) * 2018-01-12 2019-07-19 纳米及先进材料研发院有限公司 压阻材料
JP2021527743A (ja) * 2018-06-18 2021-10-14 デュポン エレクトロニクス インコーポレイテッド 可撓性電気導電性ペースト及びそれを使用して製造されるデバイス

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009146A1 (ja) * 2017-07-03 2019-01-10 Dowaエレクトロニクス株式会社 導電性ペースト
JP6681437B2 (ja) * 2017-07-03 2020-04-15 Dowaエレクトロニクス株式会社 導電性ペースト
US11929341B2 (en) * 2018-06-26 2024-03-12 Alpha Assembly Solutions Inc. Nano copper paste and film for sintered die attach and similar applications
CN112216457A (zh) * 2020-09-24 2021-01-12 深圳顺络电子股份有限公司 一种铜电极的制备方法及压敏电阻器
JP2022102442A (ja) * 2020-12-25 2022-07-07 パナソニックIpマネジメント株式会社 導電性樹脂組成物、並びに、それを用いた回路基板および回路基板の製造方法
CN114121337B (zh) * 2021-12-22 2024-03-12 无锡帝科电子材料股份有限公司 电子浆料及其在太阳能电池片中的应用
JP7373096B1 (ja) * 2022-03-29 2023-11-01 バンドー化学株式会社 導電性インク
CN114914011B (zh) * 2022-06-14 2024-03-08 苏州思尔维纳米科技有限公司 修复型银包铜粉及其制备方法、电子浆料及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353575A (ja) * 1991-05-31 1992-12-08 Tatsuta Electric Wire & Cable Co Ltd 導電塗料
JPH0762274A (ja) * 1993-08-25 1995-03-07 Tatsuta Electric Wire & Cable Co Ltd 金属酸化物成形体との密着性の良い導電塗料
JPH08148035A (ja) * 1994-11-24 1996-06-07 Hitachi Chem Co Ltd 導電性材料及びそれを用いた導電性ペースト
JPH1196833A (ja) * 1997-09-16 1999-04-09 Hitachi Chem Co Ltd 導電ペースト及びこれを用いた印刷アンテナ回路を有する非接触icカード
JP2006514418A (ja) * 2003-03-18 2006-04-27 ダウ・コーニング・コーポレイション 導電性組成物及び該導電性組成物の使用法
JP2006335976A (ja) * 2005-06-06 2006-12-14 Hitachi Chem Co Ltd 導電性塗料
JP2008101078A (ja) * 2006-10-18 2008-05-01 Hitachi Chem Co Ltd 導電性塗料
JP2011238596A (ja) * 2010-04-14 2011-11-24 Dowa Holdings Co Ltd 熱硬化型導電性ペーストおよび配線基板
JP2011529121A (ja) * 2008-07-22 2011-12-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 薄膜太陽電池用ポリマー厚膜銀電極組成物
JP2012041517A (ja) * 2010-07-23 2012-03-01 Taiyo Holdings Co Ltd 導電性樹脂組成物
JP2015079656A (ja) * 2013-10-17 2015-04-23 東洋紡株式会社 導電性ペースト及びこれを用いた印刷回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732702A (en) * 1986-02-13 1988-03-22 Hitachi Chemical Company, Ltd. Electroconductive resin paste
US5372749A (en) * 1992-02-19 1994-12-13 Beijing Technology Of Printing Research Institute Chinese Method for surface treating conductive copper powder with a treating agent and coupler
JP4235887B2 (ja) * 2002-06-07 2009-03-11 日立化成工業株式会社 導電ペースト
JP2005126641A (ja) * 2003-10-27 2005-05-19 Tatsuta System Electronics Kk 導電塗料
US20100277884A1 (en) * 2007-10-02 2010-11-04 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connection structure
WO2013090344A1 (en) * 2011-12-13 2013-06-20 Ferro Corporation Electrically conductive polymeric compositons, contacts, assemblies, and methods
WO2014103569A1 (ja) * 2012-12-25 2014-07-03 住友金属鉱山株式会社 導電性接着剤組成物及びそれを用いた電子素子
JP6398718B2 (ja) * 2013-06-27 2018-10-03 東レ株式会社 導電ペースト、導電パターンの製造方法及びタッチパネル
JP6567921B2 (ja) * 2014-08-29 2019-08-28 Dowaエレクトロニクス株式会社 銀被覆銅粉およびその製造方法
CN104312476B (zh) * 2014-09-30 2017-02-08 苏州金枪新材料股份有限公司 一种银包铜粉导电胶及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353575A (ja) * 1991-05-31 1992-12-08 Tatsuta Electric Wire & Cable Co Ltd 導電塗料
JPH0762274A (ja) * 1993-08-25 1995-03-07 Tatsuta Electric Wire & Cable Co Ltd 金属酸化物成形体との密着性の良い導電塗料
JPH08148035A (ja) * 1994-11-24 1996-06-07 Hitachi Chem Co Ltd 導電性材料及びそれを用いた導電性ペースト
JPH1196833A (ja) * 1997-09-16 1999-04-09 Hitachi Chem Co Ltd 導電ペースト及びこれを用いた印刷アンテナ回路を有する非接触icカード
JP2006514418A (ja) * 2003-03-18 2006-04-27 ダウ・コーニング・コーポレイション 導電性組成物及び該導電性組成物の使用法
JP2006335976A (ja) * 2005-06-06 2006-12-14 Hitachi Chem Co Ltd 導電性塗料
JP2008101078A (ja) * 2006-10-18 2008-05-01 Hitachi Chem Co Ltd 導電性塗料
JP2011529121A (ja) * 2008-07-22 2011-12-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 薄膜太陽電池用ポリマー厚膜銀電極組成物
JP2011238596A (ja) * 2010-04-14 2011-11-24 Dowa Holdings Co Ltd 熱硬化型導電性ペーストおよび配線基板
JP2012041517A (ja) * 2010-07-23 2012-03-01 Taiyo Holdings Co Ltd 導電性樹脂組成物
JP2015079656A (ja) * 2013-10-17 2015-04-23 東洋紡株式会社 導電性ペースト及びこれを用いた印刷回路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110028760A (zh) * 2018-01-12 2019-07-19 纳米及先进材料研发院有限公司 压阻材料
CN110028760B (zh) * 2018-01-12 2021-07-27 纳米及先进材料研发院有限公司 压阻材料
JP2021527743A (ja) * 2018-06-18 2021-10-14 デュポン エレクトロニクス インコーポレイテッド 可撓性電気導電性ペースト及びそれを使用して製造されるデバイス
JP7499705B2 (ja) 2018-06-18 2024-06-14 デュポン チャイナ リミテッド 可撓性電気導電性ペースト及びそれを使用して製造されるデバイス

Also Published As

Publication number Publication date
JP6151742B2 (ja) 2017-06-21
HK1247437B (zh) 2020-03-20
JP2017004732A (ja) 2017-01-05
TW201708431A (zh) 2017-03-01
CN107615402B (zh) 2019-05-31
TWI657117B (zh) 2019-04-21
CN107615402A (zh) 2018-01-19
US20180163069A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6151742B2 (ja) 導電性ペースト
US7198736B2 (en) Conductive silver paste and conductive film formed using the same
US20110140162A1 (en) Conductive adhesive and led substrate using the same
KR101747621B1 (ko) 후막 저항체 및 그 제조방법
TWI599636B (zh) 導電性接著劑組成物及使用其之電子元件
JP7061632B2 (ja) 樹脂組成物、樹脂付銅箔、誘電体層、銅張積層板、キャパシタ素子及びキャパシタ内蔵プリント配線板
KR101738326B1 (ko) 저항 조성물
JPH0412595A (ja) 導電性ペースト組成物
JP5859823B2 (ja) 加熱硬化型導電性ペースト組成物
TWI794349B (zh) 變阻器形成用樹脂組成物及變阻器
JP6660921B2 (ja) 電子基板の製造方法
JP2017069027A (ja) 導電性ペースト、電子部品及び積層セラミックコンデンサ
JP2009146679A (ja) 導電性ペースト
JP2019054105A (ja) 電極の接続方法および電子基板の製造方法
JP6048166B2 (ja) 導電性接着剤組成物及びそれを用いた電子素子
TWI336085B (en) Composition of polymer thick film resistor and manufacturing method thereof
JP2020100807A (ja) 導電性接着剤、および導電性接着剤が用いられた回路基板
JP6584511B2 (ja) 導電性組成物
JP2023018665A (ja) 導電性樹脂組成物
EP3872143A1 (en) Conductive ink, use thereof, and method for producing electronic circuit using the same
JP2023144480A (ja) 導電性ペースト及びその利用
JP3243655B2 (ja) ハイブリッドic
JP2021143226A (ja) 金属ペースト及び端面形成用電極ペースト
JP2021143227A (ja) 金属ペースト及び端面形成用電極ペースト
CN103680679A (zh) 导电性糊剂和带有导电膜的基材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807385

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15574907

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807385

Country of ref document: EP

Kind code of ref document: A1