WO2016199347A1 - 燃料噴射装置 - Google Patents

燃料噴射装置 Download PDF

Info

Publication number
WO2016199347A1
WO2016199347A1 PCT/JP2016/002330 JP2016002330W WO2016199347A1 WO 2016199347 A1 WO2016199347 A1 WO 2016199347A1 JP 2016002330 W JP2016002330 W JP 2016002330W WO 2016199347 A1 WO2016199347 A1 WO 2016199347A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical member
cylinder
cylinder member
protrusion
nozzle
Prior art date
Application number
PCT/JP2016/002330
Other languages
English (en)
French (fr)
Inventor
忍 及川
栄二 三村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/580,032 priority Critical patent/US10208726B2/en
Publication of WO2016199347A1 publication Critical patent/WO2016199347A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding

Definitions

  • the housing may be deformed in the radial direction.
  • stress is concentrated at the connection location, the welded portion is torn, and there is a possibility that a gap is generated between the cylindrical members. If there is a gap between the cylinder members, the fuel in the fuel passage may leak out of the housing.
  • the fuel injection device of the present disclosure includes a nozzle portion, a housing, a needle, an inner protrusion, and an outer protrusion.
  • the nozzle cylinder is formed in a cylindrical shape.
  • the nozzle bottom closes one end of the nozzle cylinder.
  • the nozzle hole connects the surface on the nozzle cylinder side of the nozzle bottom and the surface opposite to the nozzle cylinder, and fuel is injected.
  • the valve seat is formed in an annular shape around the nozzle hole on the nozzle tube side of the nozzle bottom.
  • the housing has a first cylinder member, a second cylinder member, a third cylinder member, and a fuel passage.
  • the first cylinder member is provided so that one end thereof is connected to the side opposite to the nozzle bottom part of the nozzle cylinder part.
  • the second cylinder member is provided so that one end is located on the other end side of the first cylinder member.
  • the third cylinder member is provided so that one end is located on the other end side of the second cylinder member.
  • the fuel passage is formed inside the first cylinder member, the second cylinder member, and the third cylinder member so as to guide the fuel to the nozzle hole.
  • the needle is provided so as to be able to reciprocate in the fuel passage, and opens and closes the nozzle hole when one end is separated from the valve seat or comes into contact with the valve seat.
  • the inner protruding portion protrudes in a cylindrical shape from one end face of the second cylindrical member and the third cylindrical member toward the other of the second cylindrical member and the third cylindrical member, and the second cylindrical member and the third cylindrical member It is formed integrally with one of the second cylinder member and the third cylinder member so as to be connected to the other.
  • the outer protruding portion protrudes in a cylindrical shape from the other end face of the second cylindrical member and the third cylindrical member toward one of the second cylindrical member and the third cylindrical member, and extends to one of the second cylindrical member and the third cylindrical member. Connected and formed integrally with the other of the second and third cylinder members so that the inner wall contacts the outer wall of the inner protrusion.
  • an outer protrusion that is integral with the other of the second cylinder member and the third cylinder member is located outside the inner protrusion of the second cylinder member and the third cylinder member, and the inner protrusion protrudes.
  • the outer wall of the part is in contact with the inner wall of the outer protrusion. Therefore, even if the pressure of the fuel in the fuel passage increases, it is possible to suppress the radial deformation of the inner protruding portion. Thereby, stress concentrates on the connection part with the other of the 2nd cylinder member and the 3rd cylinder member of the inner side projection part, and the connection part with one of the 2nd cylinder member and the 3rd cylinder member of the outside projection part. Can be suppressed.
  • an inner side projection part projects in the shape of a cylinder toward the other of the 1st cylinder member and the 2nd cylinder member from either one end face of the 1st cylinder member and the 2nd cylinder member, It is integrally formed with one of the first cylinder member and the second cylinder member so as to be connected to the other of the first cylinder member and the second cylinder member.
  • the outer protruding portion protrudes in a cylindrical shape from the other end face of the first cylindrical member and the second cylindrical member toward one of the first cylindrical member and the second cylindrical member, and extends to one of the first cylindrical member and the second cylindrical member. It connects and the inner wall is formed integrally with the other of the first cylinder member and the second cylinder member so as to contact the outer wall of the inner projecting portion.
  • the present disclosure can inject high-pressure fuel while suppressing leakage of fuel from the fuel passage to the outside of the housing.
  • FIG. 1 is a cross-sectional view illustrating a fuel injection device according to a first embodiment of the present disclosure.
  • the enlarged view of the II part of FIG. Sectional drawing which shows the inner side protrusion part and outer side protrusion part of the fuel-injection apparatus by 2nd Embodiment of this indication.
  • Sectional drawing which shows the inner side protrusion part and outer side protrusion part of the fuel injection apparatus by 3rd Embodiment of this indication.
  • Sectional drawing which shows the inner side protrusion part and outer side protrusion part of the fuel injection apparatus by 4th Embodiment of this indication.
  • FIG. 1 A fuel injection device according to a first embodiment of the present disclosure is shown in FIG.
  • the fuel injection device 1 is used, for example, in a direct injection gasoline engine as an internal combustion engine (not shown), and injects and supplies gasoline as fuel to the engine.
  • the nozzle portion 10 is formed of a metal such as martensitic stainless steel.
  • the nozzle unit 10 is subjected to a quenching process so as to have a predetermined hardness.
  • the nozzle portion 10 includes a nozzle cylinder portion 11, a nozzle bottom portion 12, an injection hole 13, and a valve seat 14.
  • the nozzle cylinder portion 11 is formed in a cylindrical shape.
  • the nozzle bottom 12 closes one end of the nozzle cylinder 11.
  • the nozzle hole 13 connects the surface of the nozzle bottom portion 12 on the nozzle tube portion 11 side, that is, the inner wall, and the surface opposite to the nozzle tube portion 11, that is, the outer wall, so that fuel is injected.
  • a plurality of nozzle holes 13 are formed in the nozzle bottom 12.
  • the valve seat 14 is formed in an annular shape around the nozzle hole 13 on the nozzle cylinder portion 11 side of the nozzle bottom portion 12.
  • the first cylinder member 21, the second cylinder member 22, and the third cylinder member 23 are all formed in a substantially cylindrical shape.
  • the first cylinder member 21, the second cylinder member 22, and the third cylinder member 23 are arranged so as to be coaxial (axis Ax1) in the order of the first cylinder member 21, the second cylinder member 22, and the third cylinder member 23.
  • the projections 60, the outer projections 70, the inner projections 80, and the outer projections 90 are connected to each other.
  • the inner protrusion 60, the outer protrusion 70, the inner protrusion 80, and the outer protrusion 90 will be described in detail later.
  • the end of the nozzle cylinder 10 opposite to the nozzle bottom 12 of the nozzle cylinder 11 is connected to the inside of the end of the first cylinder 21 opposite to the second cylinder 22.
  • the 1st cylinder member 21 and the nozzle part 10 are connected by welding, for example.
  • the inlet portion 24 is formed in a cylindrical shape from a magnetic material such as ferritic stainless steel.
  • the inlet portion 24 is provided so that one end is connected to the inside of the end portion of the third cylinder member 23 opposite to the second cylinder member 22.
  • the inlet part 24 is integrally formed of the same material as the third cylinder member 23 (see FIG. 1).
  • a fuel passage 26 is formed inside the housing 20.
  • the fuel passage 26 is connected to the nozzle hole 13.
  • a pipe (not shown) is connected to the inlet 24 on the side opposite to the third cylinder member 23. Thereby, the fuel from the fuel supply source flows into the fuel passage 26 via the pipe.
  • the fuel passage 26 guides fuel to the nozzle hole 13.
  • the needle 30 is formed in a rod shape from a metal such as martensitic stainless steel.
  • the needle 30 is quenched so as to have a predetermined hardness.
  • the hardness of the needle 30 is set substantially equal to the hardness of the nozzle portion 10.
  • the needle body 31 is formed in a substantially cylindrical shape.
  • the seat portion 32 is formed at the end of the needle body 31 on the valve seat 14 side and can contact the valve seat 14.
  • the flange 33 is formed in an annular shape and is provided on the radially outer side of the end of the needle body 31 opposite to the valve seat 14. The flange 33 is formed integrally with the needle body 31.
  • the large-diameter portion 35 is provided integrally with the needle body 31 in the vicinity of the seat portion 32 of the needle body 31.
  • the large diameter portion 35 is formed so that the outer diameter is larger than the outer diameter of the end portion of the needle body 31 on the valve seat 14 side.
  • the large diameter portion 35 is formed so that the outer wall slides with the inner wall of the nozzle cylinder portion 11 of the nozzle portion 10.
  • the large-diameter portion 35 is formed with a notch 36 so that a plurality of portions in the circumferential direction of the outer wall are notched. As a result, the fuel can flow between the notch portion 36 and the inner wall of the nozzle cylinder portion 11 of the nozzle portion 10.
  • An axial hole 37 extending along the axis Ax2 of the needle main body 31 is formed at the end of the needle main body 31 opposite to the seat portion 32. That is, the end of the needle body 31 opposite to the seat portion 32 is formed in a hollow cylindrical shape.
  • the needle body 31 is formed with a radial hole 38 extending in the radial direction of the needle body 31 so as to connect the end of the axial hole 37 on the valve seat 14 side and the space outside the needle body 31. ing. Thereby, the fuel in the fuel passage 26 can flow through the axial hole 37 and the radial hole 38.
  • the movable core 40 is formed in a substantially cylindrical shape by a magnetic material such as ferritic stainless steel.
  • the movable core 40 is subjected to a magnetic stabilization process.
  • the hardness of the movable core 40 is relatively low and is substantially equal to the hardness of the first cylindrical member 21 and the third cylindrical member 23 of the housing 20.
  • the movable core 40 has a shaft hole 41, a hole 42, a recess 43, and the like.
  • the shaft hole 41 is formed to extend along the axis Ax3 of the movable core 40.
  • the hole 42 is formed so as to connect the end surface of the movable core 40 on the valve seat 14 side and the end surface on the opposite side of the valve seat 14.
  • the hole 42 has a cylindrical inner wall.
  • the hole 42 is formed such that the axis is parallel to the axis Ax3 of the movable core 40.
  • four hole portions 42 are formed at equal intervals in the circumferential direction of the movable core 40.
  • the recess 43 is formed in the center of the movable core 40 so as to be recessed in a circular shape from the end face of the movable core 40 on the valve seat 14 side to the side opposite to the valve seat 14.
  • the shaft hole portion 41 is formed so as to connect the bottom portion of the concave portion 43 of the movable core 40 and the end surface opposite to the valve seat 14.
  • the movable core 40 is accommodated in the housing 20 with the needle body 31 of the needle 30 inserted through the shaft hole 41.
  • the movable core 40 is provided coaxially with the needle body 31 of the needle 30.
  • the inner diameter of the shaft hole portion 41 of the movable core 40 is set to be equal to or slightly larger than the outer diameter of the needle body 31 of the needle 30. Therefore, the movable core 40 can move relative to the needle 30 while the inner wall of the shaft hole portion 41 slides on the outer wall of the needle body 31 of the needle 30.
  • the movable core 40 is accommodated in the housing 20 so as to reciprocate in the fuel passage 26 in the direction of the axis Ax1 of the housing 20. The fuel in the fuel passage 26 can flow through the hole 42.
  • the collar portion 33 of the needle 30 has an annular contact surface 34 on the valve seat 14 side.
  • the contact surface 34 is formed in a tapered shape so as to approach the axis Ax2 as it goes from one side to the other side in the direction of the axis Ax2.
  • the movable core 40 has a contact surface 44 at the end of the shaft hole 41 opposite to the recess 43.
  • the contact surface 44 is formed in a tapered shape so as to approach the axis Ax3 as it goes from one side to the other side in the direction of the axis Ax3.
  • the contact surface 34 of the collar part 33 and the contact surface 44 of the movable core 40 can be contacted by surface contact.
  • the movable core 40 is provided so as to be movable relative to the needle 30 so that the contact surface 44 can contact the contact surface 34 or the contact surface 44 can be separated from the contact surface 34.
  • the movable core 40 can reciprocate in the fuel passage 26 together with the needle 30 when, for example, the contact surface 44 is in contact with the contact surface 34.
  • the fixed core 50 is formed in a substantially cylindrical shape by a magnetic material such as ferritic stainless steel.
  • the fixed core 50 is subjected to a magnetic stabilization process.
  • the hardness of the fixed core 50 is relatively low and is approximately equal to the hardness of the movable core 40.
  • the fixed core 50 is provided on the opposite side of the movable core 40 from the valve seat 14.
  • the fixed core 50 is provided so that the outer wall is connected to the inner wall of the third cylindrical member 23 of the housing 20, and the end opposite to the valve seat 14 is connected to the inlet portion 24.
  • the fixed core 50 is integrally formed of the same material as the third cylindrical member 23 and the inlet portion 24 (see FIG. 1).
  • An end surface of the fixed core 50 on the valve seat 14 side can abut on an end surface of the movable core 40 on the fixed core 50 side.
  • the spring 52 is, for example, a coil spring, and is provided between the adjusting pipe 51 inside the fixed core 50 and the flange portion 33 of the needle 30. One end of the spring 52 is in contact with the adjusting pipe 51.
  • the gap forming member 54 is provided between the needle 30 and the spring 52.
  • the gap forming member 54 is made of a metal such as martensitic stainless steel.
  • the hardness of the gap forming member 54 is set substantially equal to the hardness of the needle 30.
  • the gap forming member 54 is formed in a bottomed cylindrical shape in this embodiment.
  • the gap forming member 54 has a plate portion 541 and a leg portion 542.
  • the plate part 541 is formed in a substantially disc shape.
  • the leg portion 542 is formed integrally with the plate portion 541 so as to extend in a cylindrical shape from the outer edge portion of the plate portion 541 to the valve seat 14 side.
  • the gap forming member 54 is provided so that the collar portion 33 of the needle 30 is positioned inside the leg portion 542.
  • the fixed core 50 has a cylindrical member 53 inside the end portion on the movable core 40 side.
  • the cylindrical member 53 is made of a metal such as martensitic stainless steel.
  • the hardness of the cylindrical member 53 is set substantially equal to the hardness of the gap forming member 54.
  • the gap forming member 54 is located inside the end of the cylindrical member 53 on the movable core 40 side.
  • the inner diameter of the cylindrical member 53 is equal to the outer diameter of the plate portion 541 and the leg portion 542 of the gap forming member 54 or slightly larger than the outer diameter of the plate portion 541 and the leg portion 542 of the gap forming member 54.
  • the other end of the spring 52 is in contact with the end surface on the opposite side of the leg portion 542 of the plate portion 541 of the gap forming member 54.
  • the spring 52 biases the gap forming member 54 toward the valve seat 14.
  • the spring 52 can bias the needle 30 toward the valve seat 14, that is, the valve closing direction via the gap forming member 54.
  • the spring 52 can bias the movable core 40 toward the valve seat 14 via the gap forming member 54 when the leg portion 542 of the gap forming member 54 is in contact with the movable core 40.
  • the biasing force of the spring 52 is adjusted by the position of the adjusting pipe 51 with respect to the fixed core 50.
  • the leg portion 542 of the gap forming member 54 is formed such that the axial length is longer than the axial length of the flange portion 33. Therefore, the gap forming member 54 includes a contact surface 34 of the flange 33 and a contact surface 44 of the movable core 40 in a state where the plate portion 541 is in contact with the needle 30 and the leg portion 542 is in contact with the movable core 40. A gap C1 can be formed between the two.
  • the gap forming member 54 has a hole 543.
  • the hole 543 is formed so as to penetrate the center of the plate portion 541 in the plate thickness direction.
  • the fuel on the side opposite to the valve seat 14 of the gap forming member 54 in the fuel passage 26 passes through the hole portion 543, the axial hole portion 37 of the needle 30, and the radial hole portion 38. It can be distributed to the valve seat 14 side.
  • the fuel injection device 1 further includes a restriction portion 55 and a spring 56.
  • the restricting portion 55 is made of a metal such as stainless steel.
  • the restricting portion 55 includes a cylindrical portion 551, a spring seat portion 552, and the like.
  • the restricting portion 55 is provided on the needle 30 so that the needle body 31 of the needle 30 is inserted inside the cylindrical portion 551.
  • the movable core 40 is provided so as to be capable of reciprocating in the axial direction between the flange portion 33 and the restriction portion 55 of the needle 30.
  • the bottom of the concave portion 43 of the movable core 40 can abut on the end of the cylinder portion 551 of the restriction portion 55 on the movable core 40 side.
  • the inner diameter of the end portion on the valve seat 14 side of the cylindrical portion 551 is set larger than the inner diameter of the end portion on the movable core 40 side. Therefore, a cylindrical gap is formed between the inner wall at the end of the cylindrical portion 551 on the valve seat 14 side and the outer wall of the needle body 31 of the needle 30.
  • the cylindrical gap is connected to the radial hole 38 of the needle 30. Therefore, the fuel in the axial hole portion 37 of the needle 30 can flow to the valve seat 14 side through the cylindrical hole inside the radial hole portion 38 and the cylindrical portion 551.
  • the spring seat portion 552 is formed integrally with the tubular portion 551 so as to extend annularly outward in the radial direction from the end portion of the tubular portion 551 on the valve seat 14 side.
  • the spring 56 is, for example, a coil spring, and is provided so that one end contacts the bottom of the concave portion 43 of the movable core 40 and the other end contacts the spring seat 552.
  • the spring 56 can bias the movable core 40 toward the fixed core 50.
  • the biasing force of the spring 56 is smaller than the biasing force of the spring 52.
  • the needle 30 is supported so that the end on the valve seat 14 side can be reciprocated by the inner wall of the nozzle cylinder 11 of the nozzle section 10, and the end on the flange 33 side is the gap forming member 54 and the cylinder member. 53 is supported by the inner wall of 53 so as to be reciprocally movable. As described above, the needle 30 is guided to reciprocate in the axis Ax2 direction by the two portions in the axis Ax2 direction.
  • the coil 57 generates a magnetic force when electric power is supplied (energized).
  • a magnetic force is generated in the coil 57
  • a magnetic circuit is formed in the fixed core 50, the movable core 40, the first cylindrical member 21, the holder 15, and the third cylindrical member 23.
  • a magnetic attractive force is generated between the fixed core 50 and the movable core 40, and the movable core 40 is attracted to the fixed core 50 side.
  • the movable core 40 moves in the valve opening direction while accelerating the gap C ⁇ b> 1, and the contact surface 44 collides with the contact surface 34 of the flange portion 33 of the needle 30.
  • the needle 30 moves in the valve opening direction, and the seat portion 32 is separated from the valve seat 14 and opened.
  • the nozzle hole 13 is opened.
  • the gap forming member 54 forms the gap C1 between the flange 33 and the movable core 40 in the valve-closed state. It can be made to accelerate by C1 and collide with the collar 33. Thereby, even when the pressure in the fuel passage 26 is relatively high, the needle 30 can be opened without increasing the power supplied to the coil 57.
  • the movable core 40 moves relative to the needle 30 relative to the needle 30 due to inertia.
  • the restricting portion 55 can restrict excessive movement of the movable core 40 toward the valve seat 14 by contacting the movable core 40. Thereby, the fall of the responsiveness of the next valve opening can be suppressed.
  • the urging force of the spring 56 can reduce the impact when the movable core 40 abuts against the restricting portion 55, and can suppress secondary valve opening caused by the bounce of the needle 30 by the valve seat 14.
  • the restricting portion 55 restricts the movement of the movable core 40 toward the valve seat 14, whereby excessive compression of the spring 56 can be suppressed, and the movable core 40 is opened by the restoring force of the excessively compressed spring 56. Secondary valve opening caused by being urged in the direction and colliding with the flange 33 again can be suppressed.
  • the radially outer sides of the inlet portion 24 and the third cylindrical member 23 are molded with resin.
  • a connector part 58 is formed in the mold part.
  • a terminal 581 for supplying power to the coil 57 is insert-molded in the connector portion 58.
  • a cylindrical member 16 formed in a cylindrical shape with metal is provided on the outer side in the radial direction of the holder 15.
  • the fuel that has flowed from the inlet portion 24 flows into the fixed core 50, the adjusting pipe 51, the hole portion 543 of the gap forming member 54, the axial hole portion 37, the radial hole portion 38 of the needle 30, the first cylindrical member 21 and the needle 30.
  • the nozzle portion 10 and the needle 30 that is, through the fuel passage 26 and guided to the nozzle hole 13.
  • the periphery of the movable core 40 is filled with fuel. Further, when the fuel injection device 1 is operated, the fuel flows through the hole 42 of the movable core 40. Therefore, the movable core 40 can smoothly reciprocate in the axial direction inside the housing 20.
  • the inner projecting portion 60 is formed of a nonmagnetic material such as austenitic stainless steel, for example, like the second cylindrical member 22.
  • the inner projecting portion 60 projects from the end surface 221 of the second cylindrical member 22 on the third cylindrical member 23 side toward the third cylindrical member 23, and the end surface 601 is the second cylindrical member of the third cylindrical member 23.
  • the second cylindrical member 22 is formed integrally with the end surface 231 on the 22 side.
  • the inner diameter of the inner protrusion 60 is the same as the inner diameter of the second cylindrical member 22.
  • the outer diameter of the inner projecting portion 60 is smaller than the outer diameter of the second cylindrical member 22.
  • the outer projecting portion 70 is formed of a magnetic material such as ferritic stainless steel like the third cylindrical member 23.
  • the outer protrusion 70 protrudes from the end surface 231 of the third cylinder member 23 on the second cylinder member 22 side toward the second cylinder member 22, and the end surface 701 is the third cylinder member of the second cylinder member 22.
  • the third cylindrical member 23 is formed integrally with the end surface 221 on the 23 side.
  • the inner diameter of the outer protrusion 70 is the same as the outer diameter of the inner protrusion 60.
  • the radially inner wall (hereinafter simply referred to as the inner wall) of the outer protrusion 70 abuts on the radially outer wall (hereinafter simply referred to as the outer wall) of the inner protrusion 60 by surface contact.
  • the outer diameter of the outer protrusion 70 is the same as the outer diameter of the third cylindrical member 23.
  • the outer projecting portion 90 is formed of a magnetic material such as ferritic stainless steel like the first cylindrical member 21.
  • the outer projecting portion 90 projects in a substantially cylindrical shape from the end surface 211 on the second tube member 22 side of the first tube member 21 toward the second tube member 22 side, and the end surface 901 is the first tube member of the second tube member 22.
  • the first cylinder member 21 is formed integrally with the end surface 222 on the 21 side.
  • the inner diameter of the outer protrusion 90 is the same as the outer diameter of the inner protrusion 80.
  • the radially inner wall (hereinafter simply referred to as the inner wall) of the outer protrusion 90 abuts against the radially outer wall (hereinafter simply referred to as the outer wall) of the inner protrusion 80 by surface contact.
  • the outer diameter of the outer protruding portion 90 is the same as the outer diameter of the first tubular member 21.
  • an outer protrusion 70 integral with the third cylinder member 23 is located outside the inner protrusion 60 integral with the second cylinder member 22, and the outer wall of the inner protrusion 60 is formed as an outer protrusion. 70 is in contact with the inner wall. Therefore, even if the fuel pressure in the fuel passage 26 increases, the radial deformation of the inner protrusion 60 is suppressed.
  • an outer protrusion 90 integral with the first tubular member 21 is positioned outside the inner protrusion 80 integral with the second tubular member 22, and the outer wall of the inner protrusion 80 is the inner wall of the outer protrusion 90. Abut. Therefore, even if the fuel pressure in the fuel passage 26 increases, the radial deformation of the inner protrusion 80 is suppressed.
  • the second cylinder member 22 is provided so that one end is located on the other end side of the first cylinder member 21.
  • the third cylinder member 23 is provided so that one end is located on the other end side of the second cylinder member 22.
  • the fuel passage 26 is formed inside the first cylinder member 21, the second cylinder member 22, and the third cylinder member 23 so as to guide the fuel to the nozzle hole 13.
  • the inner protrusion 60 is formed integrally with the second cylinder member 22 so as to protrude from the end surface 221 of the second cylinder member 22 on the third cylinder member 23 side so as to be connected to the third cylinder member 23.
  • the outer protruding portion 90 protrudes in a cylindrical shape from the end surface 211 of the first cylindrical member 21 on the second cylindrical member 22 side, and is connected to the second cylindrical member 22 so that the inner wall abuts against the outer wall of the inner protruding portion 80. 21 is formed integrally.
  • an outer protrusion 70 integral with the third cylinder member 23 is located outside the inner protrusion 60 integral with the second cylinder member 22, and the outer wall of the inner protrusion 60 is formed as an outer protrusion. 70 is in contact with the inner wall.
  • an outer protrusion 90 integral with the first tubular member 21 is positioned outside the inner protrusion 80 integral with the second tubular member 22, and the outer wall of the inner protrusion 80 is the inner wall of the outer protrusion 90. Abut. Therefore, even if the pressure of the fuel in the fuel passage 26 increases, the radial deformation of the inner protrusion 60 and the inner protrusion 80 can be suppressed.
  • the fixed core 50 is provided on the side opposite to the valve seat 14 of the movable core 40 inside the housing 20.
  • the coil 57 is provided outside the housing 20, and when energized, the movable core 40 can be attracted to the fixed core 50 side and the needle 30 can be moved to the side opposite to the valve seat 14.
  • the spring 52 can urge the needle 30 and the movable core 40 toward the valve seat 14.
  • the first cylinder member 21 and the third cylinder member 23 are made of a magnetic material.
  • the second cylinder member 22 is made of a nonmagnetic material.
  • the movable core 40 is provided so as to be movable relative to the needle 30 so as to be in contact with or away from the contact surface 34.
  • the needle 30 and the movable core 40 separately so as to be relatively movable, it is possible to increase the pressure of the injected fuel.
  • the gap forming member 54 capable of forming the gap C ⁇ b> 1 is provided between the contact surface 34 and the movable core 40. Therefore, when the coil 57 is energized, the movable core 40 can be accelerated in the gap C ⁇ b> 1 to collide with the contact surface 34 of the flange portion 33 of the needle 30. Thereby, even when the pressure in the fuel passage 26 is relatively high, the needle 30 can be opened without increasing the power supplied to the coil 57. Therefore, it is possible to increase the pressure of the injected fuel with low power consumption.
  • the inner protruding portion 60 is chamfered at the corner on the inner side of the end portion on the third cylindrical member 23 side. Further, the inner projecting portion 80 has a chamfered corner at the end on the first tube member 21 side.
  • the inner projecting portion 60 and the inner projecting portion 80 are formed integrally with the second cylindrical member 22.
  • the inner protruding portion 60 is chamfered at the inner corner of the end portion on the third cylinder member 23 side.
  • the inner projecting portion 80 has a chamfered corner at the end on the first tube member 21 side.
  • high-pressure fuel can be injected while suppressing fuel leakage from the fuel passage 26 to the outside of the housing 20 as in the first embodiment.
  • FIG. 4 A part of the fuel injection device according to the third embodiment of the present disclosure is shown in FIG. 4.
  • the third embodiment differs from the first embodiment in the shapes of the inner protrusion and the outer protrusion.
  • the inner side protrusion part 61 protrudes in the substantially cylindrical shape toward the 3rd cylinder member 23 side from the end surface 221 by the side of the 3rd cylinder member 23 of the 2nd cylinder member 22, and the edge part 611 is the 3rd cylinder. It is formed integrally with the second cylinder member 22 so as to be connected to the end surface 231 of the member 23 on the second cylinder member 22 side.
  • the inner diameter of the inner protrusion 61 is the same as the inner diameter of the second cylindrical member 22.
  • the inner projecting portion 61 is formed in a tapered shape so that the outer wall approaches the axis (center axis) Ax1 of the housing 20 from the other side in the axial direction toward the one side.
  • the outer protrusion 71 protrudes from the end surface 231 of the third cylinder member 23 on the second cylinder member 22 side toward the second cylinder member 22, and the end surface 711 is the third cylinder member of the second cylinder member 22.
  • the third cylindrical member 23 is formed integrally with the end surface 221 on the 23 side.
  • the outer protrusion 71 is formed in a tapered shape so that the inner wall approaches the axis Ax1 of the housing 20 as it goes from the other side in the axial direction to the one side. Therefore, the inner wall of the outer protrusion 71 abuts on the outer wall of the inner protrusion 61 by surface contact. Further, the outer diameter of the outer projecting portion 71 is the same as the outer diameter of the third cylindrical member 23.
  • the inner protrusion 81 protrudes in a substantially cylindrical shape from the end surface 222 of the second cylinder member 22 on the first cylinder member 21 side toward the first cylinder member 21, and the end 811 is the second cylinder of the first cylinder member 21.
  • the second cylindrical member 22 is formed integrally with the end surface 211 on the member 22 side.
  • the inner diameter of the inner projecting portion 80 is the same as the inner diameter of the second cylindrical member 22.
  • the inner side protrusion part 81 is formed in the taper shape so that an outer wall may approach a shaft as it goes to the other side from the one side of an axial direction.
  • the outer protruding portion 91 protrudes from the end surface 211 of the first cylindrical member 21 on the second cylindrical member 22 side toward the second cylindrical member 22, and the end surface 911 is the first cylindrical member of the second cylindrical member 22.
  • the first cylinder member 21 is formed integrally with the end surface 222 on the 21 side.
  • the outer projecting portion 91 is formed in a tapered shape so that the inner wall approaches the shaft as it goes from one side in the axial direction to the other side. Therefore, the inner wall of the outer protrusion 91 is in contact with the outer wall of the inner protrusion 81 by surface contact. Further, the outer diameter of the outer protruding portion 91 is the same as the outer diameter of the first tubular member 21.
  • the inner projecting portion 61 is formed such that the entire axial direction of the outer wall approaches the shaft from the other side in the axial direction toward the one side.
  • the inner side protrusion part 81 is formed so that the whole axial direction among outer walls may approach an axis
  • the outer projecting portion 71 is formed so that the entire axial direction of the inner wall approaches the shaft from the other side in the axial direction toward the one side. Further, the outer protruding portion 91 is formed so that the entire axial direction of the inner wall approaches the shaft as it goes from one side of the axial direction to the other side.
  • high-pressure fuel can be injected while suppressing leakage of fuel from the fuel passage 26 to the outside of the housing 20 as in the first embodiment.
  • FIG. 5 A part of the fuel injection device according to the fourth embodiment of the present disclosure is illustrated in FIG. 5.
  • the fourth embodiment is different from the first embodiment in the number and arrangement of the inner protrusions and the outer protrusions.
  • the inner side protrusion part 62 protrudes in the substantially cylindrical shape toward the 2nd cylinder member 22 side from the end surface 231 by the side of the 2nd cylinder member 22 of the 3rd cylinder member 23, and the end surface 621 is the 2nd cylinder member. 22 is formed integrally with the third cylinder member 23 so as to be connected to the end surface 221 on the third cylinder member 23 side.
  • the inner diameter of the inner protrusion 62 is the same as the inner diameter of the second cylindrical member 22. That is, the inner protrusion 62 is formed integrally with the fixed core 50 so that the inner wall is connected to the outer wall of the fixed core 50. Further, the outer diameter of the inner projecting portion 62 is smaller than the outer diameter of the third cylindrical member 23.
  • the outer protruding portion 72 protrudes from the end surface 221 of the second cylindrical member 22 on the third cylindrical member 23 side toward the third cylindrical member 23, and the end surface 721 is the second cylindrical member of the third cylindrical member 23.
  • the second cylindrical member 22 is formed integrally with the end surface 231 on the 22 side.
  • the inner diameter of the outer protrusion 72 is the same as the outer diameter of the inner protrusion 62. Therefore, the inner wall of the outer protrusion 72 is brought into contact with the outer wall of the inner protrusion 62 by surface contact. Further, the outer diameter of the outer protrusion 72 is smaller than the outer diameter of the second cylindrical member 22.
  • the inner projecting portion 82 projects in a substantially cylindrical shape from the end surface 211 on the second cylinder member 22 side of the first cylinder member 21 toward the second cylinder member 22, and the end surface 821 is the first cylinder member of the second cylinder member 22.
  • the first cylinder member 21 is formed integrally with the end surface 222 on the 21 side.
  • the inner diameter of the inner projecting portion 82 is the same as the inner diameter of the first cylindrical member 21.
  • the outer diameter of the inner projecting portion 82 is smaller than the outer diameter of the first tubular member 21.
  • the outer diameter of the inner protrusion 82 is the same as the outer diameter of the inner protrusion 62 and the inner diameter of the outer protrusion 72.
  • the outer protruding portion 92 protrudes from the end surface 222 of the second cylindrical member 22 on the first cylindrical member 21 side toward the first cylindrical member 21, and the end surface 921 is the second cylindrical member of the first cylindrical member 21.
  • the second cylindrical member 22 is formed integrally with the end surface 211 on the 22 side.
  • the inner diameter of the outer protrusion 92 is the same as the outer diameter of the inner protrusion 82. Therefore, the inner wall of the outer protrusion 92 is in contact with the outer wall of the inner protrusion 82 by surface contact. Further, the outer diameter of the outer projecting portion 92 is smaller than the outer diameter of the second cylindrical member 22.
  • the inner protruding portion 63 protrudes from the end surface 221 of the second cylindrical member 22 on the third cylindrical member 23 side toward the third cylindrical member 23, and the end surface 631 is the second cylindrical member of the third cylindrical member 23.
  • the second cylindrical member 22 is formed integrally with the end surface 231 on the 22 side.
  • the inner diameter of the inner protrusion 63 is the same as the outer diameter of the outer protrusion 72. Therefore, the inner protrusion 63 is formed integrally with the outer protrusion 72 so that the inner wall is connected to the outer wall of the outer protrusion 72. Further, the outer diameter of the inner projecting portion 63 is smaller than the outer diameter of the second cylindrical member 22.
  • the outer protrusion 73 protrudes in a substantially cylindrical shape from the end surface 231 on the second cylinder member 22 side of the third cylinder member 23 toward the second cylinder member 22, and the end surface 731 is the third cylinder member of the second cylinder member 22.
  • the third cylindrical member 23 is formed integrally with the end surface 221 on the 23 side.
  • the inner diameter of the outer protrusion 73 is the same as the outer diameter of the inner protrusion 63. Therefore, the inner wall of the outer protrusion 73 abuts on the outer wall of the inner protrusion 63 by surface contact. Further, the outer diameter of the outer protrusion 73 is the same as the outer diameter of the third cylindrical member 23.
  • the inner protrusion 83 protrudes from the end surface 222 of the second cylinder member 22 on the first cylinder member 21 side toward the first cylinder member 21, and the end surface 831 is the second cylinder member of the first cylinder member 21.
  • the second cylindrical member 22 is formed integrally with the end surface 211 on the 22 side.
  • the inner diameter of the inner protrusion 83 is the same as the outer diameter of the outer protrusion 92. Therefore, the inner protrusion 83 is formed integrally with the outer protrusion 92 so that the inner wall is connected to the outer wall of the outer protrusion 92. Further, the outer diameter of the inner projecting portion 83 is smaller than the outer diameter of the second cylindrical member 22.
  • the outer protruding portion 93 protrudes in a substantially cylindrical shape from the end surface 211 on the second cylinder member 22 side of the first cylinder member 21 toward the second cylinder member 22, and the end surface 931 is the first cylinder member of the second cylinder member 22.
  • the first cylinder member 21 is formed integrally with the end surface 222 on the 21 side.
  • the inner diameter of the outer protrusion 93 is the same as the outer diameter of the inner protrusion 83. Therefore, the inner wall of the outer protrusion 93 is in contact with the outer wall of the inner protrusion 83 by surface contact. Further, the outer diameter of the outer protruding portion 93 is the same as the outer diameter of the first cylindrical member 21.
  • high-pressure fuel can be injected while suppressing fuel leakage from the fuel passage 26 to the outside of the housing 20 as in the first embodiment.
  • FIG. 6 A part of the fuel injection device according to the fifth embodiment of the present disclosure is illustrated in FIG. 6.
  • the fourth embodiment is different from the first embodiment in the arrangement of the inner protrusion and the outer protrusion.
  • the inner side protrusion part 64 protrudes in the substantially cylindrical shape toward the 2nd cylinder member 22 side from the end surface 231 by the side of the 2nd cylinder member 22 of the 3rd cylinder member 23, and the end surface 641 is a 2nd cylinder member. 22 is formed integrally with the third cylinder member 23 so as to be connected to the end surface 221 on the third cylinder member 23 side.
  • the inner diameter of the inner protruding portion 64 is the same as the inner diameter of the second cylindrical member 22. That is, the inner protrusion 64 is formed integrally with the fixed core 50 so that the inner wall is connected to the outer wall of the fixed core 50. Further, the outer diameter of the inner projecting portion 64 is smaller than the outer diameter of the third cylindrical member 23.
  • the outer protrusion 74 protrudes from the end surface 221 of the second cylinder member 22 on the third cylinder member 23 side toward the third cylinder member 23, and the end surface 741 is the second cylinder member of the third cylinder member 23.
  • the second cylindrical member 22 is formed integrally with the end surface 231 on the 22 side.
  • the inner diameter of the outer protrusion 74 is the same as the outer diameter of the inner protrusion 64. Therefore, the inner wall of the outer protrusion 74 is in contact with the outer wall of the inner protrusion 64 by surface contact. Further, the outer diameter of the outer protrusion 74 is the same as the outer diameter of the second cylindrical member 22.
  • the inner projecting portion 84 projects in a substantially cylindrical shape from the end surface 211 on the second tube member 22 side of the first tube member 21 toward the second tube member 22 side, and the end surface 841 is the first tube member of the second tube member 22.
  • the first cylinder member 21 is formed integrally with the end surface 222 on the 21 side.
  • the inner diameter of the inner projecting portion 84 is the same as the inner diameter of the first cylindrical member 21.
  • the outer diameter of the inner protruding portion 84 is smaller than the outer diameter of the first cylindrical member 21.
  • the outer diameter of the inner protrusion 84 is the same as the outer diameter of the inner protrusion 64 and the inner diameter of the outer protrusion 74.
  • the outer protruding portion 94 protrudes in a substantially cylindrical shape from the end surface 222 of the second cylinder member 22 on the first cylinder member 21 side toward the first cylinder member 21, and the end surface 941 is the second cylinder member of the first cylinder member 21.
  • the second cylindrical member 22 is formed integrally with the end surface 211 on the 22 side.
  • the inner diameter of the outer protrusion 94 is the same as the outer diameter of the inner protrusion 84. Therefore, the inner wall of the outer protrusion 94 is in contact with the outer wall of the inner protrusion 84 by surface contact. Further, the outer diameter of the outer protruding portion 94 is the same as the outer diameter of the second cylindrical member 22.
  • connection part of the 3rd cylinder member 23 and the outer side protrusion part 74 is welded over the perimeter of the circumferential direction.
  • connection location of the 1st cylinder member 21 and the outer side protrusion part 94 is welded over the perimeter of the circumferential direction.
  • the inner protruding portion 64 protrudes in a cylindrical shape from the end surface 231 of the third cylindrical member 23 on the second cylindrical member 22 side, and becomes the second cylindrical member 22. It is integrally formed with the third cylinder member 23 so as to be connected.
  • the outer protruding portion 74 protrudes in a cylindrical shape from the end surface 221 of the second cylindrical member 22 on the third cylindrical member 23 side, and is connected to the third cylindrical member 23 so that the inner wall abuts against the outer wall of the inner protruding portion 64. 22 is formed integrally.
  • the inner protruding portion 84 is formed integrally with the first cylindrical member 21 so as to protrude from the end surface 211 of the first cylindrical member 21 on the second cylindrical member 22 side and to be connected to the second cylindrical member 22.
  • the outer protruding portion 94 protrudes in a cylindrical shape from the end surface 222 of the second cylindrical member 22 on the first cylindrical member 21 side, is connected to the first cylindrical member 21, and the second cylindrical member is in contact with the outer wall of the inner protruding portion 84. 22 is formed integrally.
  • high-pressure fuel can be injected while suppressing leakage of fuel from the fuel passage 26 to the outside of the housing 20 as in the first embodiment.
  • FIG. 7 A part of the fuel injection device according to the sixth embodiment of the present disclosure is illustrated in FIG. 7.
  • the sixth embodiment is different from the first embodiment in the arrangement of the inner protrusion and the outer protrusion.
  • the sixth embodiment includes the inner protrusion 60 and the outer protrusion 70 shown in the first embodiment, and the inner protrusion 84 and the outer protrusion 94 shown in the fifth embodiment. That is, the sixth embodiment is a combination of the first embodiment and the fifth embodiment.
  • high-pressure fuel can be injected while suppressing leakage of fuel from the fuel passage 26 to the outside of the housing 20 as in the first embodiment.
  • FIG. 7 A part of the fuel injection device according to the seventh embodiment of the present disclosure is shown in FIG.
  • the seventh embodiment differs from the first embodiment in the shapes of the inner protrusion 60, the outer protrusion 70, the inner protrusion 80, the outer protrusion 90, and the like.
  • the inner protrusion 60 includes an inner large-diameter portion 602 and an inner small-diameter portion 603 that is formed on the second cylindrical member 22 side of the inner large-diameter portion 602 and has an outer diameter smaller than that of the inner large-diameter portion 602.
  • the inner protrusion 60 is formed in a tapered shape so that the outer walls of the inner large-diameter portion 602 and the inner small-diameter portion 603 are closer to the shaft from one side in the axial direction toward the other side.
  • the outer protrusion 70 has an outer large-diameter portion 702 and an outer small-diameter portion 703 that is formed on the second cylindrical member 22 side of the outer large-diameter portion 702 and has an inner diameter smaller than that of the outer large-diameter portion 702.
  • the outer protrusion 70 is formed in a tapered shape so that the inner walls of the outer large-diameter portion 702 and the outer small-diameter portion 703 are closer to the shaft from one side in the axial direction toward the other side. Therefore, the inner walls of the outer large diameter portion 702 and the outer small diameter portion 703 of the outer protrusion 70 are brought into contact with the outer walls of the inner large diameter portion 602 and the inner small diameter portion 603 of the inner protrusion 60 by surface contact.
  • the third cylindrical member 23 is formed separately from the fixed core 50.
  • the second cylinder member 22 is combined with the inner protrusion 60 and the inner protrusion 80.
  • Each member is connected in the state which cooled and made the outer diameter small and heated the 1st cylinder member 21 and the 3rd cylinder member 23 with the outside protrusion part 70 and the outside protrusion part 90, and enlarged the inside diameter.
  • the inner protrusion 60 is the third cylinder member 23
  • the outer protrusion 70 is the second cylinder member 22
  • the inner protrusion 80 is the first cylinder member 21
  • the outer protrusion 90 is the second cylinder member 22.
  • the members 20 can be connected relatively easily to form the housing 20.
  • the outer wall of the inner protrusion 60 and the inner wall of the outer protrusion 70 are connected to the inner protrusion 80.
  • the outer wall and the inner wall of the outer protrusion 90 are in contact with each other by surface contact.
  • the fixed core 50 may be inserted inside the third cylinder member 23 and the second cylinder member 22.
  • the outer protrusion 70 is formed such that the entire axial direction of the inner wall approaches the shaft as it goes from one side of the axial direction to the other side. Further, the outer protruding portion 90 is formed so that the entire axial direction of the inner wall approaches the shaft from the other side in the axial direction toward the one side.
  • the inner side protrusion part 60 is formed in the inner side large diameter part 602 and the inner side large diameter part 602 in the 2nd cylinder member 22 side, and the inner side whose outer diameter is smaller than the inner side large diameter part 602.
  • a small diameter portion 603 is provided.
  • the outer protruding portion 70 includes an outer large diameter portion 702 and an outer small diameter portion 703 that is formed on the second cylindrical member 22 side of the outer large diameter portion 702 and has an inner diameter smaller than that of the outer large diameter portion 702.
  • the inner protrusion 80 includes an inner large diameter portion 802 and an inner small diameter portion 803 that is formed on the second cylindrical member 22 side of the inner large diameter portion 802 and has an outer diameter smaller than that of the inner large diameter portion 802.
  • the outer protrusion 90 includes an outer large-diameter portion 902 and an outer small-diameter portion 903 that is formed on the second cylindrical member 22 side of the outer large-diameter portion 902 and has an inner diameter smaller than that of the outer large-diameter portion 902.
  • FIG. 9 shows a part of the fuel injection device according to the eighth embodiment of the present disclosure.
  • the eighth embodiment differs from the seventh embodiment in the shapes of the inner protrusion 60, the outer protrusion 70, the inner protrusion 80, the outer protrusion 90, and the like.
  • the inner projecting portion 80 is formed in a tapered shape so that the outer wall of the inner large-diameter portion 802 approaches the shaft from one side in the axial direction to the other side.
  • the outer side protrusion part 90 is formed in the taper shape so that the inner wall of the outer side small diameter part 903 may approach an axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Abstract

内側突出部(60)は、第2筒部材(22)の第3筒部材(23)側の端面(221)から筒状に突出し第3筒部材(23)に接続するよう第2筒部材(22)と一体に形成される。外側突出部(70)は、第3筒部材(23)の第2筒部材(22)側の端面(231)から筒状に突出し第2筒部材(22)に接続し内壁が内側突出部(60)の外壁に当接するよう第3筒部材(23)と一体に形成される。内側突出部(80)は、第2筒部材(22)の第1筒部材(21)側の端面(222)から筒状に突出し第1筒部材(21)に接続するよう第2筒部材(22)と一体に形成される。外側突出部(90)は、第1筒部材(21)の第2筒部材(22)側の端面(211)から筒状に突出し第2筒部材(22)に接続し内壁が内側突出部(80)の外壁に当接するよう第1筒部材(21)と一体に形成される。

Description

燃料噴射装置 関連出願の相互参照
 本願は、2015年6月10日に出願された日本国特許出願第2015-117471号に基づくものであり、この開示をもってその内容を本明細書中に開示したものとする。
 本開示は、内燃機関に燃料を噴射供給する燃料噴射装置に関する。
 従来、高圧の液体燃料を噴射可能な燃料噴射装置が知られている。例えば特許文献1に開示された燃料噴射装置では、3つの筒部材を同軸に連続して並べ溶接により接続し、ハウジングを構成している。ハウジングの内側には、噴射される燃料が流れる燃料通路が形成されている。
 特許文献1の燃料噴射装置では、ハウジングを構成する3つの筒部材のうち軸方向の両端側の筒部材が磁性材料により形成され、中間の筒部材が非磁性材料により形成されている。中間の筒部材および固定コアの径外側には、コイルが設けられている。この構成により、コイルに通電すると、可動コアを固定コア側に吸引可能である。
 特許文献1の燃料噴射装置では、燃料通路内の燃料の圧力が所定値以上に大きくなると、ハウジングが径方向に変形するおそれがある。特に3つの筒部材の接続箇所の近傍が径方向に変形すると、接続箇所に応力が集中し溶接部が断裂し、各筒部材間に隙間が生じるおそれがある。各筒部材間に隙間が生じると、燃料通路内の燃料がハウジングの外部へ漏れ出るおそれがある。
特開2013-217307号公報
 本開示は、上述の問題に鑑みてなされたものであり、その目的は、燃料通路からハウジング外部への燃料の漏れを抑制しつつ高圧の燃料を噴射可能な燃料噴射装置を提供することにある。
 本開示の燃料噴射装置は、ノズル部とハウジングとニードルと内側突出部と外側突出部とを備える。
 ノズル部は、ノズル筒部、ノズル底部、噴孔および弁座を有する。
 ノズル筒部は筒状に形成される。ノズル底部は、ノズル筒部の一端を塞ぐ。噴孔は、ノズル底部のノズル筒部側の面とノズル筒部とは反対側の面とを接続し燃料が噴射される。弁座は、ノズル底部のノズル筒部側において噴孔の周囲に環状に形成される。
 ハウジングは、第1筒部材、第2筒部材、第3筒部材および燃料通路を有する。
 第1筒部材は、一端がノズル筒部のノズル底部とは反対側に接続するよう設けられる。
 第2筒部材は、一端が第1筒部材の他端側に位置するよう設けられる。
 第3筒部材は、一端が第2筒部材の他端側に位置するよう設けられる。
 燃料通路は、噴孔に燃料を導くよう第1筒部材、第2筒部材および第3筒部材の内側に形成される。
 ニードルは、燃料通路内を往復移動可能に設けられ、一端が弁座から離間または弁座に当接すると噴孔を開閉する。
 内側突出部は、第2筒部材および第3筒部材のいずれか一方の端面から第2筒部材および第3筒部材の他方に向かって筒状に突出し、第2筒部材および第3筒部材の他方に接続するよう第2筒部材および第3筒部材の一方と一体に形成される。
 外側突出部は、第2筒部材および第3筒部材の他方の端面から第2筒部材および第3筒部材の一方に向かって筒状に突出し、第2筒部材および第3筒部材の一方に接続し内壁が内側突出部の外壁に当接するよう第2筒部材および第3筒部材の他方と一体に形成される。
 本開示では、第2筒部材および第3筒部材の一方と一体の内側突出部の径外側には、第2筒部材および第3筒部材の他方と一体の外側突出部が位置し、内側突出部の外壁は、外側突出部の内壁に当接している。そのため、燃料通路内の燃料の圧力が大きくなっても、内側突出部の径方向の変形を抑制することができる。これにより、内側突出部の第2筒部材および第3筒部材の他方との接続箇所、および、外側突出部の第2筒部材および第3筒部材の一方との接続箇所に応力が集中するのを抑制することができる。その結果、上記接続箇所の断裂、および、接続箇所における隙間の発生を抑制することができる。よって、燃料通路から隙間を経由して燃料がハウジングの外部へ漏れ出るのを抑制することができる。したがって、本開示は、燃料通路からハウジング外部への燃料の漏れを抑制しつつ高圧の燃料を噴射することができる。
 本開示の別の燃料噴射装置では、内側突出部は、第1筒部材および第2筒部材のいずれか一方の端面から第1筒部材および第2筒部材の他方に向かって筒状に突出し、第1筒部材および第2筒部材の他方に接続するよう第1筒部材および第2筒部材の一方と一体に形成される。
 外側突出部は、第1筒部材および第2筒部材の他方の端面から第1筒部材および第2筒部材の一方に向かって筒状に突出し、第1筒部材および第2筒部材の一方に接続し内壁が内側突出部の外壁に当接するよう第1筒部材および第2筒部材の他方と一体に形成される。
 本開示では、第1筒部材および第2筒部材の一方と一体の内側突出部の径外側には、第1筒部材および第2筒部材の他方と一体の外側突出部が位置し、内側突出部の外壁は、外側突出部の内壁に当接している。そのため、燃料通路内の燃料の圧力が大きくなっても、内側突出部の径方向の変形を抑制することができる。これにより、内側突出部の第1筒部材および第2筒部材の他方との接続箇所、および、外側突出部の第1筒部材および第2筒部材の一方との接続箇所に応力が集中するのを抑制することができる。その結果、上記接続箇所の断裂、および、接続箇所における隙間の発生を抑制することができる。よって、燃料通路から隙間を経由して燃料がハウジングの外部へ漏れ出るのを抑制することができる。したがって、本開示は、燃料通路からハウジング外部への燃料の漏れを抑制しつつ高圧の燃料を噴射することができる。
本開示の第1実施形態による燃料噴射装置を示す断面図。 図1のII部分の拡大図。 本開示の第2実施形態による燃料噴射装置の内側突出部および外側突出部を示す断面図。 本開示の第3実施形態による燃料噴射装置の内側突出部および外側突出部を示す断面図。 本開示の第4実施形態による燃料噴射装置の内側突出部および外側突出部を示す断面図。 本開示の第5実施形態による燃料噴射装置の内側突出部および外側突出部を示す断面図。 本開示の第6実施形態による燃料噴射装置の内側突出部および外側突出部を示す断面図。 本開示の第7実施形態による燃料噴射装置の内側突出部および外側突出部を示す断面図。 本開示の第8実施形態による燃料噴射装置の内側突出部および外側突出部を示す断面図。 本開示の第9実施形態による燃料噴射装置の内側突出部および外側突出部を示す断面図。 本開示の第10実施形態による燃料噴射装置の内側突出部および外側突出部を示す断面図。
 以下、本開示の複数の実施形態を図に基づいて説明する。なお、複数の実施形態において、実質的に同一の構成部位には同一の符号を付し、説明を省略する。
  (第1実施形態)
 本開示の第1実施形態による燃料噴射装置を図1に示す。燃料噴射装置1は、例えば図示しない内燃機関としての直噴式ガソリンエンジンに用いられ、燃料としてのガソリンをエンジンに噴射供給する。
 燃料噴射装置1は、ノズル部10、ハウジング20、ニードル30、可動コア40、固定コア50、弁座側付勢部材としてのスプリング52、隙間形成部材54、コイル57、内側突出部60、80、外側突出部70、90等を備える。
 ノズル部10は、例えばマルテンサイト系ステンレス等の金属により形成されている。ノズル部10は、所定の硬度を有するよう焼入れ処理が施されている。図1に示すように、ノズル部10は、ノズル筒部11、ノズル底部12、噴孔13、および、弁座14を有する。
 ノズル筒部11は筒状に形成されている。ノズル底部12は、ノズル筒部11の一端を塞いでいる。噴孔13は、ノズル底部12のノズル筒部11側の面すなわち内壁と、ノズル筒部11とは反対側の面すなわち外壁とを接続し燃料が噴射される。本実施形態では、噴孔13はノズル底部12に複数形成されている。弁座14は、ノズル底部12のノズル筒部11側において噴孔13の周囲に環状に形成されている。
 ハウジング20は、第1筒部材21、第2筒部材22、第3筒部材23、インレット部24、フィルタ25等を有している。
 第1筒部材21、第2筒部材22および第3筒部材23は、いずれも略円筒状に形成されている。第1筒部材21、第2筒部材22および第3筒部材23は、第1筒部材21、第2筒部材22、第3筒部材23の順に同軸(軸Ax1)となるよう配置され、内側突出部60、外側突出部70、内側突出部80、外側突出部90を経由して互いに接続している。内側突出部60、外側突出部70、内側突出部80、外側突出部90については、後に詳述する。
 第1筒部材21および第3筒部材23は、例えばフェライト系ステンレス等の磁性材料により形成され、磁気安定化処理が施されている。第1筒部材21および第3筒部材23は、硬度が比較的低い。一方、第2筒部材22は、例えばオーステナイト系ステンレス等の非磁性材料により形成されている。第2筒部材22の硬度は、第1筒部材21および第3筒部材23の硬度よりも高い。
 第1筒部材21の第2筒部材22とは反対側の端部の内側には、ノズル部10のノズル筒部11のノズル底部12とは反対側の端部が接続されている。第1筒部材21とノズル部10とは、例えば溶接により接続されている。
 インレット部24は、例えばフェライト系ステンレス等の磁性材料により筒状に形成されている。インレット部24は、一端が第3筒部材23の第2筒部材22とは反対側の端部の内側に接続するよう設けられている。本実施形態では、インレット部24は、第3筒部材23と同じ材料により一体に形成されている(図1参照)。
 ハウジング20の内側には、燃料通路26が形成されている。燃料通路26は、噴孔13に接続している。インレット部24の第3筒部材23とは反対側には、図示しない配管が接続される。これにより、燃料通路26には、燃料供給源からの燃料が配管を経由して流入する。燃料通路26は、燃料を噴孔13に導く。
 フィルタ25は、インレット部24の内側に設けられている。フィルタ25は、燃料通路26に流入する燃料中の異物を捕集する。
 ニードル30は、例えばマルテンサイト系ステンレス等の金属により棒状に形成されている。ニードル30は、所定の硬度を有するよう焼入れ処理が施されている。ニードル30の硬度は、ノズル部10の硬度とほぼ同等に設定されている。
 ニードル30は、燃料通路26内をハウジング20の軸(中心軸)Ax1方向へ往復移動可能なようハウジング20内に収容されている。ニードル30は、ニードル本体31、シート部32、鍔部33、大径部35等を有している。
 ニードル本体31は、略円柱状に形成されている。シート部32は、ニードル本体31の弁座14側の端部に形成され、弁座14に当接可能である。鍔部33は、環状に形成され、ニードル本体31の弁座14とは反対側の端部の径方向外側に設けられている。鍔部33は、ニードル本体31と一体に形成されている。
 大径部35は、ニードル本体31のシート部32近傍にニードル本体31と一体に設けられている。大径部35は、外径がニードル本体31の弁座14側の端部の外径より大きく形成されている。大径部35は、外壁がノズル部10のノズル筒部11の内壁と摺動するよう形成されている。これにより、ニードル30は、弁座14側の端部の軸Ax1方向の往復移動が案内される。大径部35には、外壁の周方向の複数個所が切り欠かれるようにして切欠き部36が形成されている。これにより、燃料は、切欠き部36とノズル部10のノズル筒部11の内壁との間を流通可能である。
 ニードル本体31のシート部32とは反対側の端部には、ニードル本体31の軸Ax2に沿って延びる軸方向穴部37が形成されている。すなわち、ニードル本体31のシート部32とは反対側の端部は、中空筒状に形成されている。また、ニードル本体31には、軸方向穴部37の弁座14側の端部とニードル本体31の外側の空間とを接続するようニードル本体31の径方向に延びる径方向穴部38が形成されている。これにより、燃料通路26内の燃料は、軸方向穴部37および径方向穴部38を流通可能である。
 ニードル30は、シート部32が弁座14から離間(離座)または弁座14に当接(着座)することで噴孔13を開閉する。以下、適宜、ニードル30が弁座14から離間する方向を開弁方向といい、ニードル30が弁座14に当接する方向を閉弁方向という。
 可動コア40は、例えばフェライト系ステンレス等の磁性材料により略円柱状に形成されている。可動コア40は、磁気安定化処理が施されている。可動コア40の硬度は比較的低く、ハウジング20の第1筒部材21および第3筒部材23の硬度と概ね同等である。
 可動コア40は、軸穴部41、穴部42、凹部43等を有している。軸穴部41は、可動コア40の軸Ax3に沿って延びるよう形成されている。穴部42は、可動コア40の弁座14側の端面と弁座14とは反対側の端面とを接続するよう形成されている。穴部42は、円筒状の内壁を有している。ここで、穴部42は、軸が可動コア40の軸Ax3に対し平行になるよう形成されている。本実施形態では、穴部42は、可動コア40の周方向に等間隔で4つ形成されている。
 凹部43は、可動コア40の弁座14側の端面から弁座14とは反対側へ円形に凹むよう可動コア40の中央に形成されている。ここで、軸穴部41は、可動コア40の凹部43の底部と、弁座14とは反対側の端面とを接続するよう形成されている。
 可動コア40は、軸穴部41にニードル30のニードル本体31が挿通された状態でハウジング20内に収容されている。可動コア40は、ニードル30のニードル本体31と同軸に設けられている。可動コア40の軸穴部41の内径は、ニードル30のニードル本体31の外径と同等、または、ニードル本体31の外径よりやや大きく設定されている。そのため、可動コア40は、軸穴部41の内壁がニードル30のニードル本体31の外壁に摺動しつつ、ニードル30に対し相対移動可能である。また、可動コア40は、ニードル30と同様、燃料通路26内をハウジング20の軸Ax1方向へ往復移動可能なようハウジング20内に収容されている。穴部42には、燃料通路26内の燃料が流通可能である。
 なお、可動コア40の外径は、ハウジング20の第1筒部材21および第2筒部材22の内径より小さく設定されている。そのため、可動コア40が燃料通路26内を往復移動するとき、可動コア40の外壁と第1筒部材21および第2筒部材22の内壁とは摺動しない。
 ニードル30の鍔部33は、弁座14側に環状の当接面34を有している。当接面34は、軸Ax2方向の一方側から他方側へ向かうに従い軸Ax2に近づくようテーパ状に形成されている。また、可動コア40は、軸穴部41の凹部43とは反対側の端部に当接面44を有している。当接面44は、軸Ax3方向の一方側から他方側へ向かうに従い軸Ax3に近づくようテーパ状に形成されている。ここで、鍔部33の当接面34と可動コア40の当接面44とは、面接触により当接可能である。
 可動コア40は、当接面44が当接面34に当接、または、当接面44が当接面34から離間可能なようニードル30に対し相対移動可能に設けられている。可動コア40は、例えば当接面44が当接面34に当接しているとき、ニードル30とともに燃料通路26内を往復移動可能である。
 固定コア50は、例えばフェライト系ステンレス等の磁性材料により略円筒状に形成されている。固定コア50は、磁気安定化処理が施されている。固定コア50の硬度は比較的低く、可動コア40の硬度と概ね同等である。固定コア50は、可動コア40の弁座14とは反対側に設けられている。固定コア50は、外壁がハウジング20の第3筒部材23の内壁に接続するよう、かつ、弁座14とは反対側の端部がインレット部24に接続するよう設けられている。本実施形態では、固定コア50は、第3筒部材23およびインレット部24と同じ材料により一体に形成されている(図1参照)。固定コア50の弁座14側の端面は、可動コア40の固定コア50側の端面に当接可能である。
 固定コア50は、シート部32が弁座14に当接した状態のニードル30の鍔部33が、弁座14側の端部の内側に位置するよう設けられている。固定コア50の内側には、円筒状のアジャスティングパイプ51が圧入されている。
 スプリング52は、例えばコイルスプリングであり、固定コア50の内側のアジャスティングパイプ51とニードル30の鍔部33との間に設けられている。スプリング52の一端は、アジャスティングパイプ51に当接している。
 隙間形成部材54は、ニードル30とスプリング52との間に設けられている。隙間形成部材54は、例えばマルテンサイト系ステンレス等の金属により形成されている。隙間形成部材54の硬度は、ニードル30の硬度とほぼ同等に設定されている。
 隙間形成部材54は、本実施形態では、有底円筒状に形成されている。隙間形成部材54は、板部541、脚部542を有している。板部541は、略円板状に形成されている。脚部542は、板部541の外縁部から弁座14側へ円筒状に延びるよう板部541と一体に形成されている。隙間形成部材54は、脚部542の内側にニードル30の鍔部33が位置するよう設けられている。
 ここで、隙間形成部材54の脚部542の内径は、鍔部33の外径と同等、または、鍔部33の外径よりやや大きく設定されている。そのため、隙間形成部材54は、脚部542の内壁が鍔部33の外壁に摺動しつつ、ニードル30に対し相対移動可能である。板部541の脚部542側の端面は、ニードル30のニードル本体31の弁座14とは反対側の端面および鍔部33に当接可能である。脚部542の板部541とは反対側の端部は、可動コア40の固定コア50側の端面に当接可能である。
 固定コア50は、可動コア40側の端部の内側に筒部材53を有している。筒部材53は、例えばマルテンサイト系ステンレス等の金属により形成されている。筒部材53の硬度は、隙間形成部材54の硬度とほぼ同等に設定されている。隙間形成部材54は、筒部材53の可動コア40側端部の内側に位置している。筒部材53の内径は、隙間形成部材54の板部541および脚部542の外径と同等、または、隙間形成部材54の板部541および脚部542の外径よりやや大きく形成されている。そのため、隙間形成部材54は、板部541および脚部542の外壁が筒部材53の内壁に摺動しつつ、筒部材53に対し相対移動可能である。これにより、ニードル30は、鍔部33側の端部の軸Ax2方向の往復移動が、隙間形成部材54の脚部542を介して筒部材53により案内される。
 スプリング52の他端は、隙間形成部材54の板部541の脚部542とは反対側の端面に当接している。スプリング52は、隙間形成部材54を弁座14側に付勢する。スプリング52は、隙間形成部材54の板部541がニードル30に当接しているとき、隙間形成部材54を経由してニードル30を弁座14側、すなわち、閉弁方向に付勢可能である。また、スプリング52は、隙間形成部材54の脚部542が可動コア40に当接しているとき、隙間形成部材54を経由して可動コア40を弁座14側に付勢可能である。スプリング52の付勢力は、固定コア50に対するアジャスティングパイプ51の位置により調整される。
 本実施形態では、隙間形成部材54の脚部542は、軸方向の長さが鍔部33の軸方向の長さより長くなるよう形成されている。そのため、隙間形成部材54は、板部541がニードル30に当接し、脚部542が可動コア40に当接した状態で、鍔部33の当接面34と可動コア40の当接面44との間に隙間C1を形成可能である。
 隙間形成部材54は、孔部543を有している。孔部543は、板部541の中央を板厚方向に貫くようにして形成されている。これにより、燃料通路26内の隙間形成部材54の弁座14とは反対側の燃料は、孔部543、ニードル30の軸方向穴部37、径方向穴部38を経由して可動コア40の弁座14側に流通可能である。
 本実施形態では、燃料噴射装置1は、規制部55、スプリング56をさらに備えている。規制部55は、例えばステンレス等の金属により形成されている。規制部55は、筒部551、ばね座部552等を有している。規制部55は、筒部551の内側にニードル30のニードル本体31が挿通されるようにしてニードル30に設けられている。ここで、可動コア40は、ニードル30の鍔部33と規制部55との間で軸方向に往復移動可能に設けられている。可動コア40の凹部43の底部は、規制部55の筒部551の可動コア40側の端部に当接可能である。
 本実施形態では、規制部55は、筒部551の可動コア40側の端部の内壁がニードル本体31の外壁に嵌合するよう設けられている。そのため、規制部55は、ニードル30に対し相対移動不能である。これにより、規制部55は、筒部551が可動コア40に当接することで、ニードル30に対する可動コア40の弁座14側への相対移動を規制可能である。
 筒部551の弁座14側の端部の内径は、可動コア40側の端部の内径より大きく設定されている。そのため、筒部551の弁座14側の端部の内壁とニードル30のニードル本体31の外壁との間には、筒状の隙間が形成されている。当該筒状の隙間は、ニードル30の径方向穴部38に接続している。そのため、ニードル30の軸方向穴部37内の燃料は、径方向穴部38および筒部551の内側の筒状の隙間を通って弁座14側へ流通可能である。
 ばね座部552は、筒部551の弁座14側の端部から径方向外側に環状に延びるよう筒部551と一体に形成されている。
 スプリング56は、例えばコイルスプリングであり、一端が可動コア40の凹部43の底部に当接し、他端がばね座部552に当接するよう設けられている。スプリング56は、可動コア40を固定コア50側に付勢可能である。スプリング56の付勢力は、スプリング52の付勢力よりも小さい。
 スプリング52が隙間形成部材54を弁座14側に付勢することで、隙間形成部材54の板部541とニードル30とが当接し、ニードル30は、シート部32が弁座14に押し付けられる。このとき、スプリング56が可動コア40を固定コア50側に付勢することで、隙間形成部材54の脚部542と可動コア40の固定コア50側の端面とが当接する。この状態で、ニードル30の鍔部33の当接面34と可動コア40の当接面44との間に隙間C1が形成され、可動コア40の凹部43の底部と規制部55の筒部551との間に隙間C2が形成される。
 本実施形態では、ニードル30は、弁座14側の端部がノズル部10のノズル筒部11の内壁により往復移動可能に支持され、鍔部33側の端部が隙間形成部材54および筒部材53の内壁により往復移動可能に支持される。このように、ニードル30は、軸Ax2方向の2箇所の部位により、軸Ax2方向の往復移動が案内される。
 コイル57は、略円筒状に形成され、ハウジング20のうち特に第2筒部材22および第3筒部材23の径方向外側を囲むようにして設けられている。また、コイル57の径方向外側には、コイル57を覆うようにして筒状のホルダ15が設けられている。ホルダ15は、例えばフェライト系ステンレス等の磁性材料により形成されている。
 コイル57は、電力が供給(通電)されると磁力を生じる。コイル57に磁力が生じると、固定コア50、可動コア40、第1筒部材21、ホルダ15および第3筒部材23に磁気回路が形成される。これにより、固定コア50と可動コア40との間に磁気吸引力が発生し、可動コア40は、固定コア50側に吸引される。このとき、可動コア40は、隙間C1を加速しつつ開弁方向に移動し、当接面44がニードル30の鍔部33の当接面34に衝突する。これにより、ニードル30が開弁方向に移動し、シート部32が弁座14から離間し、開弁する。その結果、噴孔13が開放される。このように、コイル57は、通電されると、可動コア40を固定コア50側に吸引しニードル30を弁座14とは反対側に移動させることが可能である。
 上述のように、本実施形態では、閉弁状態において、隙間形成部材54が鍔部33と可動コア40との間に隙間C1を形成するため、コイル57への通電時、可動コア40を隙間C1で加速させて鍔部33に衝突させることができる。これにより、燃料通路26内の圧力が比較的高い場合でも、コイル57へ供給する電力を増大させることなく、ニードル30を開弁させることができる。
 なお、可動コア40は、磁気吸引力により固定コア50側(開弁方向)に吸引されると、固定コア50側の端面が固定コア50の可動コア40側の端面に衝突する。これにより、可動コア40は、開弁方向への移動が規制される。
 可動コア40が固定コア50側に吸引されている状態でコイル57への通電を停止すると、ニードル30および可動コア40は、隙間形成部材54を経由したスプリング52の付勢力により、弁座14側へ付勢される。これにより、ニードル30が閉弁方向に移動し、シート部32が弁座14に当接し、閉弁する。その結果、噴孔13が閉塞される。
 本実施形態では、シート部32が弁座14に当接した後、可動コア40は、慣性によりニードル30に対し弁座14側に相対移動する。このとき、規制部55は、可動コア40に当接することで、可動コア40の弁座14側への過度の移動を規制可能である。これにより、次回の開弁の応答性の低下を抑制可能である。また、スプリング56の付勢力により、可動コア40が規制部55に当接するときの衝撃を小さくでき、ニードル30が弁座14でバウンスすることによる二次開弁を抑制することができる。さらに、規制部55が可動コア40の弁座14側への移動を規制することにより、スプリング56の過度の圧縮を抑制でき、過度に圧縮されたスプリング56の復原力により可動コア40が開弁方向に付勢され再び鍔部33に衝突することによる二次開弁を抑制することができる。
 図1に示すように、インレット部24および第3筒部材23の径方向外側は、樹脂によりモールドされている。当該モールド部分にコネクタ部58が形成されている。コネクタ部58には、コイル57へ電力を供給するための端子581がインサート成形されている。また、ホルダ15の径方向外側には、金属により筒状に形成された筒部材16が設けられている。
 インレット部24から流入した燃料は、固定コア50、アジャスティングパイプ51、隙間形成部材54の孔部543、ニードル30の軸方向穴部37、径方向穴部38、第1筒部材21とニードル30との間、ノズル部10とニードル30との間、すなわち、燃料通路26を流通し、噴孔13に導かれる。なお、燃料噴射装置1の作動時、可動コア40の周囲は燃料で満たされた状態となる。また、燃料噴射装置1の作動時、可動コア40の穴部42を燃料が流通する。そのため、可動コア40は、ハウジング20の内側で軸方向に円滑に往復移動可能である。
 次に、内側突出部60、外側突出部70、内側突出部80、外側突出部90について、図2に基づき詳細に説明する。
 本実施形態では、第1筒部材21、第2筒部材22および第3筒部材23の内径および外径は、すべての部材間で同じに設定されている。
 内側突出部60は、第2筒部材22と同様、例えばオーステナイト系ステンレス等の非磁性材料により形成されている。内側突出部60は、第2筒部材22の第3筒部材23側の端面221から第3筒部材23側へ向かって略円筒状に突出し、端面601が第3筒部材23の第2筒部材22側の端面231に接続するよう第2筒部材22と一体に形成されている。ここで、内側突出部60の内径は、第2筒部材22の内径と同じである。また、内側突出部60の外径は、第2筒部材22の外径より小さい。
 外側突出部70は、第3筒部材23と同様、例えばフェライト系ステンレス等の磁性材料により形成されている。外側突出部70は、第3筒部材23の第2筒部材22側の端面231から第2筒部材22側へ向かって略円筒状に突出し、端面701が第2筒部材22の第3筒部材23側の端面221に接続するよう第3筒部材23と一体に形成されている。ここで、外側突出部70の内径は、内側突出部60の外径と同じである。そのため、外側突出部70の径方向内側の内壁(以下、単に内壁と称する)は、内側突出部60の径方向外側の外壁(以下、単に外壁と称する)に面接触により当接する。また、外側突出部70の外径は、第3筒部材23の外径と同じである。
 内側突出部80は、第2筒部材22と同様、例えばオーステナイト系ステンレス等の非磁性材料により形成されている。内側突出部80は、第2筒部材22の第1筒部材21側の端面222から第1筒部材21側へ向かって略円筒状に突出し、端面801が第1筒部材21の第2筒部材22側の端面211に接続するよう第2筒部材22と一体に形成されている。ここで、内側突出部80の内径は、第2筒部材22の内径と同じである。また、内側突出部80の外径は、第2筒部材22の外径より小さい。また、本実施形態では、内側突出部80の外径は、内側突出部60の外径および外側突出部70の内径と同じである。
 外側突出部90は、第1筒部材21と同様、例えばフェライト系ステンレス等の磁性材料により形成されている。外側突出部90は、第1筒部材21の第2筒部材22側の端面211から第2筒部材22側へ向かって略円筒状に突出し、端面901が第2筒部材22の第1筒部材21側の端面222に接続するよう第1筒部材21と一体に形成されている。ここで、外側突出部90の内径は、内側突出部80の外径と同じである。そのため、外側突出部90の径方向内側の内壁(以下、単に内壁と称する)は、内側突出部80の径方向外側の外壁(以下、単に外壁と称する)に面接触により当接する。また、外側突出部90の外径は、第1筒部材21の外径と同じである。
 本実施形態では、第2筒部材22と外側突出部70との接続箇所が周方向の全周に亘って溶接されている。また、第2筒部材22と外側突出部90との接続箇所が周方向の全周に亘って溶接されている。これにより、ハウジング20内側の燃料通路26が液密に保たれるとともに、第1筒部材21、第2筒部材22、第3筒部材23が軸方向に分離することを抑制可能である。
 本実施形態では、第2筒部材22と一体の内側突出部60の径外側には、第3筒部材23と一体の外側突出部70が位置し、内側突出部60の外壁は、外側突出部70の内壁に当接している。そのため、燃料通路26内の燃料の圧力が大きくなっても、内側突出部60の径方向の変形が抑制される。
 また、第2筒部材22と一体の内側突出部80の径外側には、第1筒部材21と一体の外側突出部90が位置し、内側突出部80の外壁は、外側突出部90の内壁に当接している。そのため、燃料通路26内の燃料の圧力が大きくなっても、内側突出部80の径方向の変形が抑制される。
 以上説明したように、(1)、(2)本実施形態では、ハウジング20は、第1筒部材21、第2筒部材22、第3筒部材23および燃料通路26を有する。
 第1筒部材21は、一端がノズル筒部11のノズル底部12とは反対側に接続するよう設けられる。
 第2筒部材22は、一端が第1筒部材21の他端側に位置するよう設けられる。
 第3筒部材23は、一端が第2筒部材22の他端側に位置するよう設けられる。
 燃料通路26は、噴孔13に燃料を導くよう第1筒部材21、第2筒部材22および第3筒部材23の内側に形成される。
 内側突出部60は、第2筒部材22の第3筒部材23側の端面221から筒状に突出し第3筒部材23に接続するよう第2筒部材22と一体に形成される。
 外側突出部70は、第3筒部材23の第2筒部材22側の端面231から筒状に突出し第2筒部材22に接続し内壁が内側突出部60の外壁に当接するよう第3筒部材23と一体に形成される。
 内側突出部80は、第2筒部材22の第1筒部材21側の端面222から筒状に突出し第1筒部材21に接続するよう第2筒部材22と一体に形成される。
 外側突出部90は、第1筒部材21の第2筒部材22側の端面211から筒状に突出し第2筒部材22に接続し内壁が内側突出部80の外壁に当接するよう第1筒部材21と一体に形成される。
 本実施形態では、第2筒部材22と一体の内側突出部60の径外側には、第3筒部材23と一体の外側突出部70が位置し、内側突出部60の外壁は、外側突出部70の内壁に当接している。また、第2筒部材22と一体の内側突出部80の径外側には、第1筒部材21と一体の外側突出部90が位置し、内側突出部80の外壁は、外側突出部90の内壁に当接している。そのため、燃料通路26内の燃料の圧力が大きくなっても、内側突出部60および内側突出部80の径方向の変形を抑制することができる。これにより、内側突出部60の第3筒部材23との接続箇所、外側突出部70の第2筒部材22との接続箇所、内側突出部80の第1筒部材21との接続箇所、および、外側突出部90の第2筒部材22との接続箇所に応力が集中するのを抑制することができる。その結果、上記接続箇所(溶接箇所)の断裂、および、接続箇所における隙間の発生を抑制することができる。よって、燃料通路26から隙間を経由して燃料がハウジング20の外部へ漏れ出るのを抑制することができる。したがって、本実施形態は、燃料通路26からハウジング20外部への燃料の漏れを抑制しつつ高圧の燃料を噴射することができる。
 また、(8)本実施形態では、可動コア40、固定コア50、コイル57、スプリング52を備えている。
 可動コア40は、ニードル30とともに燃料通路26内を往復移動可能に設けられる。
 固定コア50は、ハウジング20の内側の可動コア40の弁座14とは反対側に設けられる。
 コイル57は、ハウジング20の外側に設けられ、通電されると可動コア40を固定コア50側に吸引しニードル30を弁座14とは反対側に移動させることが可能である。
 スプリング52は、ニードル30および可動コア40を弁座14側に付勢可能である。
 第1筒部材21および第3筒部材23は、磁性材料により形成されている。
 第2筒部材22は、非磁性材料により形成されている。
 また、(9)本実施形態では、第3筒部材23は、内壁が固定コア50の外壁に接続するよう固定コア50と一体に形成されている。これにより、部材点数を削減できるとともに第3筒部材23の変形を抑制することができる。
 また、(10)本実施形態では、ニードル30は、可動コア40の固定コア50側の面である当接面44に当接可能な当接面34を有している。
 可動コア40は、当接面34に当接または当接面34から離間可能なようニードル30に対し相対移動可能に設けられている。このように、ニードル30と可動コア40とを相対移動可能なよう別体に形成することにより、噴射燃料の高圧化を図ることができる。
 また、(11)本実施形態では、当接面34と可動コア40との間に隙間C1を形成可能な隙間形成部材54を備えている。そのため、コイル57への通電時、可動コア40を隙間C1で加速させてニードル30の鍔部33の当接面34に衝突させることができる。これにより、燃料通路26内の圧力が比較的高い場合でも、コイル57へ供給する電力を増大させることなく、ニードル30を開弁させることができる。したがって、低消費電力で噴射燃料の高圧化を図ることができる。
  (第2実施形態)
 本開示の第2実施形態による燃料噴射装置の一部を図3に示す。第2実施形態は、内側突出部60および内側突出部80の形状が第1実施形態と異なる。
 第2実施形態では、内側突出部60は、第3筒部材23側の端部の内側の角部が面取りされている。また、内側突出部80は、第1筒部材21側の端部の角部が面取りされている。
 また、内側突出部60の外径および外側突出部70の内径は、第1実施形態の内側突出部60の外径および外側突出部70の内径よりも大きく設定されている。また、内側突出部80の外径および外側突出部90の内径は、第1実施形態の内側突出部80の外径および外側突出部90の内径よりも大きく設定されている。
 以上説明したように、(3)本実施形態では、内側突出部60、内側突出部80は、第2筒部材22と一体に形成されている。内側突出部60は、第3筒部材23側の端部の内側の角部が面取りされている。また、内側突出部80は、第1筒部材21側の端部の角部が面取りされている。これにより、内側突出部60および内側突出部80の第2筒部材22側の端部の肉厚(外径と内径との差)を大きくできる。そのため、燃料通路26内の燃料の圧力が大きくなっても、内側突出部60および内側突出部80の特に第2筒部材22側の端部の径方向の変形を抑制することができる。
 したがって、本実施形態は、第1実施形態と同様、燃料通路26からハウジング20外部への燃料の漏れを抑制しつつ高圧の燃料を噴射することができる。
  (第3実施形態)
 本開示の第3実施形態による燃料噴射装置の一部を図4に示す。第3実施形態は、内側突出部および外側突出部の形状が第1実施形態と異なる。
 第3実施形態では、内側突出部61は、第2筒部材22の第3筒部材23側の端面221から第3筒部材23側へ向かって略円筒状に突出し、端部611が第3筒部材23の第2筒部材22側の端面231に接続するよう第2筒部材22と一体に形成されている。ここで、内側突出部61の内径は、第2筒部材22の内径と同じである。また、内側突出部61は、外壁が軸方向の他方側から一方側へ向かうに従いハウジング20の軸(中心軸)Ax1に近づくようテーパ状に形成されている。
 外側突出部71は、第3筒部材23の第2筒部材22側の端面231から第2筒部材22側へ向かって略円筒状に突出し、端面711が第2筒部材22の第3筒部材23側の端面221に接続するよう第3筒部材23と一体に形成されている。ここで、外側突出部71は、内壁が軸方向の他方側から一方側へ向かうに従いハウジング20の軸Ax1に近づくようテーパ状に形成されている。そのため、外側突出部71の内壁は、内側突出部61の外壁に面接触により当接する。また、外側突出部71の外径は、第3筒部材23の外径と同じである。
 内側突出部81は、第2筒部材22の第1筒部材21側の端面222から第1筒部材21側へ向かって略円筒状に突出し、端部811が第1筒部材21の第2筒部材22側の端面211に接続するよう第2筒部材22と一体に形成されている。ここで、内側突出部80の内径は、第2筒部材22の内径と同じである。また、内側突出部81は、外壁が軸方向の一方側から他方側へ向かうに従い軸に近づくようテーパ状に形成されている。
 外側突出部91は、第1筒部材21の第2筒部材22側の端面211から第2筒部材22側へ向かって略円筒状に突出し、端面911が第2筒部材22の第1筒部材21側の端面222に接続するよう第1筒部材21と一体に形成されている。ここで、外側突出部91は、内壁が軸方向の一方側から他方側へ向かうに従い軸に近づくようテーパ状に形成されている。そのため、外側突出部91の内壁は、内側突出部81の外壁に面接触により当接する。また、外側突出部91の外径は、第1筒部材21の外径と同じである。
 以上説明したように、(4)本実施形態では、内側突出部61は、外壁のうち軸方向の全部が、軸方向の他方側から一方側へ向かうに従い軸に近づくよう形成されている。また、内側突出部81は、外壁のうち軸方向の全部が、軸方向の一方側から他方側へ向かうに従い軸に近づくよう形成されている。
 外側突出部71は、内壁のうち軸方向の全部が、軸方向の他方側から一方側へ向かうに従い軸に近づくよう形成されている。また、外側突出部91は、内壁のうち軸方向の全部が、軸方向の一方側から他方側へ向かうに従い軸に近づくよう形成されている。
 本実施形態においても、第1実施形態と同様、燃料通路26からハウジング20外部への燃料の漏れを抑制しつつ高圧の燃料を噴射することができる。
  (第4実施形態)
 本開示の第4実施形態による燃料噴射装置の一部を図5に示す。第4実施形態は、内側突出部および外側突出部の数や配置等が第1実施形態と異なる。
 第4実施形態では、内側突出部62は、第3筒部材23の第2筒部材22側の端面231から第2筒部材22側へ向かって略円筒状に突出し、端面621が第2筒部材22の第3筒部材23側の端面221に接続するよう第3筒部材23と一体に形成されている。ここで、内側突出部62の内径は、第2筒部材22の内径と同じである。すなわち、内側突出部62は、内壁が固定コア50の外壁に接続するよう固定コア50と一体に形成されている。また、内側突出部62の外径は、第3筒部材23の外径より小さい。
 外側突出部72は、第2筒部材22の第3筒部材23側の端面221から第3筒部材23側へ向かって略円筒状に突出し、端面721が第3筒部材23の第2筒部材22側の端面231に接続するよう第2筒部材22と一体に形成されている。ここで、外側突出部72の内径は、内側突出部62の外径と同じである。そのため、外側突出部72の内壁は、内側突出部62の外壁に面接触により当接する。また、外側突出部72の外径は、第2筒部材22の外径より小さい。
 内側突出部82は、第1筒部材21の第2筒部材22側の端面211から第2筒部材22側へ向かって略円筒状に突出し、端面821が第2筒部材22の第1筒部材21側の端面222に接続するよう第1筒部材21と一体に形成されている。ここで、内側突出部82の内径は、第1筒部材21の内径と同じである。また、内側突出部82の外径は、第1筒部材21の外径より小さい。また、本実施形態では、内側突出部82の外径は、内側突出部62の外径および外側突出部72の内径と同じである。
 外側突出部92は、第2筒部材22の第1筒部材21側の端面222から第1筒部材21側へ向かって略円筒状に突出し、端面921が第1筒部材21の第2筒部材22側の端面211に接続するよう第2筒部材22と一体に形成されている。ここで、外側突出部92の内径は、内側突出部82の外径と同じである。そのため、外側突出部92の内壁は、内側突出部82の外壁に面接触により当接する。また、外側突出部92の外径は、第2筒部材22の外径より小さい。
 内側突出部63は、第2筒部材22の第3筒部材23側の端面221から第3筒部材23側へ向かって略円筒状に突出し、端面631が第3筒部材23の第2筒部材22側の端面231に接続するよう第2筒部材22と一体に形成されている。ここで、内側突出部63の内径は、外側突出部72の外径と同じである。そのため、内側突出部63は、内壁が外側突出部72の外壁に接続するよう外側突出部72と一体に形成されている。また、内側突出部63の外径は、第2筒部材22の外径より小さい。
 外側突出部73は、第3筒部材23の第2筒部材22側の端面231から第2筒部材22側へ向かって略円筒状に突出し、端面731が第2筒部材22の第3筒部材23側の端面221に接続するよう第3筒部材23と一体に形成されている。ここで、外側突出部73の内径は、内側突出部63の外径と同じである。そのため、外側突出部73の内壁は、内側突出部63の外壁に面接触により当接する。また、外側突出部73の外径は、第3筒部材23の外径と同じである。
 内側突出部83は、第2筒部材22の第1筒部材21側の端面222から第1筒部材21側へ向かって略円筒状に突出し、端面831が第1筒部材21の第2筒部材22側の端面211に接続するよう第2筒部材22と一体に形成されている。ここで、内側突出部83の内径は、外側突出部92の外径と同じである。そのため、内側突出部83は、内壁が外側突出部92の外壁に接続するよう外側突出部92と一体に形成されている。また、内側突出部83の外径は、第2筒部材22の外径より小さい。
 外側突出部93は、第1筒部材21の第2筒部材22側の端面211から第2筒部材22側へ向かって略円筒状に突出し、端面931が第2筒部材22の第1筒部材21側の端面222に接続するよう第1筒部材21と一体に形成されている。ここで、外側突出部93の内径は、内側突出部83の外径と同じである。そのため、外側突出部93の内壁は、内側突出部83の外壁に面接触により当接する。また、外側突出部93の外径は、第1筒部材21の外径と同じである。
 以上説明したように、本実施形態では、内側突出部62、外側突出部72、内側突出部63、外側突出部73は、第2筒部材22の径方向に並ぶよう、すなわち、同心円上に配置され、外壁および内壁が互いに当接または接続している。また、内側突出部82、外側突出部92、内側突出部83、外側突出部93は、第2筒部材22の径方向に並ぶよう、すなわち、同心円上に配置され、外壁および内壁が互いに当接または接続している。これにより、燃料通路26内の燃料の圧力が大きくなっても、内側突出部62、外側突出部72、内側突出部63、外側突出部73、内側突出部82、外側突出部92、内側突出部83、外側突出部93の径方向の変形を抑制することができる。
 したがって、本実施形態は、第1実施形態と同様、燃料通路26からハウジング20外部への燃料の漏れを抑制しつつ高圧の燃料を噴射することができる。
  (第5実施形態)
 本開示の第5実施形態による燃料噴射装置の一部を図6に示す。第4実施形態は、内側突出部および外側突出部の配置等が第1実施形態と異なる。
 第5実施形態では、内側突出部64は、第3筒部材23の第2筒部材22側の端面231から第2筒部材22側へ向かって略円筒状に突出し、端面641が第2筒部材22の第3筒部材23側の端面221に接続するよう第3筒部材23と一体に形成されている。ここで、内側突出部64の内径は、第2筒部材22の内径と同じである。すなわち、内側突出部64は、内壁が固定コア50の外壁に接続するよう固定コア50と一体に形成されている。また、内側突出部64の外径は、第3筒部材23の外径より小さい。
 外側突出部74は、第2筒部材22の第3筒部材23側の端面221から第3筒部材23側へ向かって略円筒状に突出し、端面741が第3筒部材23の第2筒部材22側の端面231に接続するよう第2筒部材22と一体に形成されている。ここで、外側突出部74の内径は、内側突出部64の外径と同じである。そのため、外側突出部74の内壁は、内側突出部64の外壁に面接触により当接する。また、外側突出部74の外径は、第2筒部材22の外径と同じである。
 内側突出部84は、第1筒部材21の第2筒部材22側の端面211から第2筒部材22側へ向かって略円筒状に突出し、端面841が第2筒部材22の第1筒部材21側の端面222に接続するよう第1筒部材21と一体に形成されている。ここで、内側突出部84の内径は、第1筒部材21の内径と同じである。また、内側突出部84の外径は、第1筒部材21の外径より小さい。また、本実施形態では、内側突出部84の外径は、内側突出部64の外径および外側突出部74の内径と同じである。
 外側突出部94は、第2筒部材22の第1筒部材21側の端面222から第1筒部材21側へ向かって略円筒状に突出し、端面941が第1筒部材21の第2筒部材22側の端面211に接続するよう第2筒部材22と一体に形成されている。ここで、外側突出部94の内径は、内側突出部84の外径と同じである。そのため、外側突出部94の内壁は、内側突出部84の外壁に面接触により当接する。また、外側突出部94の外径は、第2筒部材22の外径と同じである。
 本実施形態では、第3筒部材23と外側突出部74との接続箇所が周方向の全周に亘って溶接されている。また、第1筒部材21と外側突出部94との接続箇所が周方向の全周に亘って溶接されている。
 以上説明したように、(1)、(2)本実施形態では、内側突出部64は、第3筒部材23の第2筒部材22側の端面231から筒状に突出し第2筒部材22に接続するよう第3筒部材23と一体に形成される。
 外側突出部74は、第2筒部材22の第3筒部材23側の端面221から筒状に突出し第3筒部材23に接続し内壁が内側突出部64の外壁に当接するよう第2筒部材22と一体に形成される。
 内側突出部84は、第1筒部材21の第2筒部材22側の端面211から筒状に突出し第2筒部材22に接続するよう第1筒部材21と一体に形成される。
 外側突出部94は、第2筒部材22の第1筒部材21側の端面222から筒状に突出し第1筒部材21に接続し内壁が内側突出部84の外壁に当接するよう第2筒部材22と一体に形成される。
 本実施形態においても、第1実施形態と同様、燃料通路26からハウジング20外部への燃料の漏れを抑制しつつ高圧の燃料を噴射することができる。
  (第6実施形態)
 本開示の第6実施形態による燃料噴射装置の一部を図7に示す。第6実施形態は、内側突出部および外側突出部の配置等が第1実施形態と異なる。
 第6実施形態は、第1実施形態で示した内側突出部60、外側突出部70、および、第5実施形態で示した内側突出部84、外側突出部94を備えている。すなわち、第6実施形態は、第1実施形態と第5実施形態とを組み合わせた形態である。
 本実施形態においても、第1実施形態と同様、燃料通路26からハウジング20外部への燃料の漏れを抑制しつつ高圧の燃料を噴射することができる。
  (第7実施形態)
 本開示の第7実施形態による燃料噴射装置の一部を図8に示す。第7実施形態は、内側突出部60、外側突出部70、内側突出部80、外側突出部90の形状等が第1実施形態と異なる。
 第7実施形態では、内側突出部60は、内側大径部602、および、内側大径部602の第2筒部材22側に形成され内側大径部602より外径が小さい内側小径部603を有している。内側突出部60は、内側大径部602および内側小径部603の外壁が、軸方向の一方側から他方側へ向かうに従い軸に近づくようテーパ状に形成されている。
 外側突出部70は、外側大径部702、および、外側大径部702の第2筒部材22側に形成され外側大径部702より内径が小さい外側小径部703を有している。外側突出部70は、外側大径部702および外側小径部703の内壁が、軸方向の一方側から他方側へ向かうに従い軸に近づくようテーパ状に形成されている。そのため、外側突出部70の外側大径部702および外側小径部703内壁は、内側突出部60の内側大径部602および内側小径部603の外壁に面接触により当接する。
 内側突出部80は、内側大径部802、および、内側大径部802の第2筒部材22側に形成され内側大径部802より外径が小さい内側小径部803を有している。内側突出部80は、内側大径部802および内側小径部803の外壁が、軸方向の他方側から一方側へ向かうに従い軸に近づくようテーパ状に形成されている。
 外側突出部90は、外側大径部902、および、外側大径部902の第2筒部材22側に形成され外側大径部902より内径が小さい外側小径部903を有している。外側突出部90は、外側大径部902および外側小径部903の内壁が、軸方向の他方側から一方側へ向かうに従い軸に近づくようテーパ状に形成されている。そのため、外側突出部90の外側大径部902および外側小径部903内壁は、内側突出部80の内側大径部802および内側小径部803の外壁に面接触により当接する。
 内側突出部60の内側大径部602と外側突出部70の外側小径部703とは、軸方向で重なるよう形成されている。また、内側突出部80の内側大径部802と外側突出部90の外側小径部903とは、軸方向で重なるよう形成されている。
 また、本実施形態では、第3筒部材23は、固定コア50とは別体に形成されている。
 本実施形態では、第1筒部材21、第2筒部材22、第3筒部材23を組み付けてハウジング20を形成するとき、例えば、第2筒部材22を内側突出部60および内側突出部80とともに冷却し外径を小さくしておき、第1筒部材21および第3筒部材23を外側突出部70および外側突出部90とともに加熱し内径を大きくした状態で、各部材を接続する。これにより、内側突出部60が第3筒部材23に、外側突出部70が第2筒部材22に、内側突出部80が第1筒部材21に、外側突出部90が第2筒部材22に接続するよう各部材を比較的容易に接続しハウジング20を形成することができる。上記の方法で組み付けた第1筒部材21、第2筒部材22、第3筒部材23が常温に戻ると、内側突出部60の外壁と外側突出部70の内壁とが、内側突出部80の外壁と外側突出部90の内壁とが面接触により当接した状態となる。その後、第3筒部材23および第2筒部材22の内側に固定コア50を挿入すればよい。
 以上説明したように、(4)本実施形態では、内側突出部60は、外壁のうち軸方向の全部が、軸方向の一方側から他方側へ向かうに従い軸に近づくよう形成されている。また、内側突出部80は、外壁のうち軸方向の全部が、軸方向の他方側から一方側へ向かうに従い軸に近づくよう形成されている。
 外側突出部70は、内壁のうち軸方向の全部が、軸方向の一方側から他方側へ向かうに従い軸に近づくよう形成されている。また、外側突出部90は、内壁のうち軸方向の全部が、軸方向の他方側から一方側へ向かうに従い軸に近づくよう形成されている。
 また、(5)本実施形態では、内側突出部60は、内側大径部602、および、内側大径部602の第2筒部材22側に形成され内側大径部602より外径が小さい内側小径部603を有している。外側突出部70は、外側大径部702、および、外側大径部702の第2筒部材22側に形成され外側大径部702より内径が小さい外側小径部703を有している。内側突出部80は、内側大径部802、および、内側大径部802の第2筒部材22側に形成され内側大径部802より外径が小さい内側小径部803を有している。外側突出部90は、外側大径部902、および、外側大径部902の第2筒部材22側に形成され外側大径部902より内径が小さい外側小径部903を有している。
 そして、内側突出部60の内側大径部602と外側突出部70の外側小径部703とは、軸方向で重なるよう形成されている。また、内側突出部80の内側大径部802と外側突出部90の外側小径部903とは、軸方向で重なるよう形成されている。そのため、第2筒部材22と第3筒部材23、および、第2筒部材22と第1筒部材21とが軸方向に分離するのを規制することができる。よって、燃料通路26内の圧力がさらに大きくなっても、燃料通路26からハウジング20外部への燃料の漏れ、および、ハウジング20の破損を抑制することができる。
  (第8実施形態)
 本開示の第8実施形態による燃料噴射装置の一部を図9に示す。第8実施形態は、内側突出部60、外側突出部70、内側突出部80、外側突出部90の形状等が第7実施形態と異なる。
 第8実施形態では、内側突出部60の内側大径部602および内側小径部603の外径、外側突出部70の外側大径部702および外側小径部703の内径、内側突出部80の内側大径部802および内側小径部803の外径、外側突出部90の外側大径部902および外側小径部903の内径は、軸方向において一定である。そのため、内側突出部60の内側大径部602と内側小径部603との間には、内側突出部60の径方向外側に環状に拡がるよう内側係止面604が形成されている。また、外側突出部70の外側大径部702と外側小径部703との間には、外側突出部70の径方向内側に環状に拡がるよう外側係止面704が形成されている。ここで、外側係止面704は、内側係止面604に当接可能である。そのため、内側係止面604と外側係止面704とは、互いに係止可能である。これにより、第2筒部材22と第3筒部材23との軸方向の相対移動が規制される。
 また、内側突出部80の内側大径部802と内側小径部803との間には、内側突出部80の径方向外側に環状に拡がるよう内側係止面804が形成されている。また、外側突出部90の外側大径部902と外側小径部903との間には、外側突出部90の径方向内側に環状に拡がるよう外側係止面904が形成されている。ここで、外側係止面904は、内側係止面804に当接可能である。そのため、内側係止面804と外側係止面904とは、互いに係止可能である。これにより、第2筒部材22と第1筒部材21との軸方向の相対移動が規制される。
 なお、第1筒部材21、第2筒部材22、第3筒部材23を組み付けてハウジング20を形成するとき、第7実施形態で示した方法と同様の方法を採用すればよい。
 以上説明したように、(7)本実施形態では、内側突出部60は内側係止面604を有し、外側突出部70は内側係止面604に当接可能な外側係止面704を有している。また、内側突出部80は内側係止面804を有し、外側突出部90は内側係止面804を係止可能な外側係止面904を有している。そのため、第2筒部材22と第3筒部材23、および、第2筒部材22と第1筒部材21とが軸方向に分離するのを確実に規制することができる。よって、燃料通路26内の圧力がさらに大きくなっても、燃料通路26からハウジング20外部への燃料の漏れ、および、ハウジング20の破損を効果的に抑制することができる。
  (第9実施形態)
 本開示の第9実施形態による燃料噴射装置の一部を図10に示す。第9実施形態は、内側突出部60、外側突出部70、内側突出部80、外側突出部90の形状等が第8実施形態と異なる。
 第9実施形態では、内側突出部60は、軸方向の他方側から一方側へ向かうに従い内側大径部602の外壁が軸に近づくようテーパ状に形成されている。また、外側突出部70は、軸方向の他方側から一方側へ向かうに従い外側小径部703の内壁が軸に近づくようテーパ状に形成されている。そのため、第2筒部材22と第3筒部材23との組み付け時、第2筒部材22と第3筒部材23とを軸方向に互いに近づくよう移動させると、内側突出部60の内側大径部602の外壁と外側突出部70の外側小径部703の内壁とが摺動しつつ、内側突出部60および外側突出部70が径方向に弾性変形する。内側突出部60の端面601が第3筒部材23の端面231に当接すると、内側係止面604と外側係止面704とが当接した状態となる(図10参照)。
 また、内側突出部80は、軸方向の一方側から他方側へ向かうに従い内側大径部802の外壁が軸に近づくようテーパ状に形成されている。また、外側突出部90は、軸方向の一方側から他方側へ向かうに従い外側小径部903の内壁が軸に近づくようテーパ状に形成されている。そのため、第2筒部材22と第1筒部材21との組み付け時、第2筒部材22と第1筒部材21とを軸方向に互いに近づくよう移動させると、内側突出部80の内側大径部802の外壁と外側突出部90の外側小径部903の内壁とが摺動しつつ、内側突出部80および外側突出部90が径方向に弾性変形する。内側突出部80の端面801が第1筒部材21の端面211に当接すると、内側係止面804と外側係止面904とが当接した状態となる(図10参照)。
 以上説明したように、(7)本実施形態では、内側突出部60は内側係止面604を有し、外側突出部70は外側係止面704を有し、内側突出部80は内側係止面804を有し、外側突出部90は外側係止面904を有している。そのため、第8実施形態と同様、第2筒部材22と第3筒部材23、および、第2筒部材22と第1筒部材21とが軸方向に分離するのを確実に規制することができる。
 また、本実施形態では、内側突出部60の内側大径部602の外壁、外側突出部70の外側小径部703の内壁、内側突出部80の内側大径部802の外壁、外側突出部90の外側小径部903の内壁がテーパ状に形成されている。そのため、第1筒部材21、第2筒部材22、第3筒部材23を組み付けてハウジング20を形成するとき、第7、8実施形態のように各部材を冷却または加熱する必要はなく、各部材を容易に組み付けることができる。
  (第10実施形態)
 本開示の第10実施形態による燃料噴射装置の一部を図11に示す。第10実施形態は、内側突出部60、外側突出部70、内側突出部80、外側突出部90の形状等が第5実施形態と異なる。
 第10実施形態では、内側突出部64は、内側小径部643、および、内側小径部643の第2筒部材22側に形成され内側小径部643より外径が大きい内側大径部642を有している。外側突出部74は、外側小径部743、および、外側小径部743の第2筒部材22側に形成され外側小径部743より内径が大きい外側大径部742を有している。
 内側突出部64の内側大径部642と内側小径部643との間には、内側突出部64の径方向外側に環状に拡がるよう内側係止面644が形成されている。また、外側突出部74の外側大径部742と外側小径部743との間には、外側突出部74の径方向内側に環状に拡がるよう外側係止面704が形成されている。ここで、外側係止面704は、内側係止面604に当接可能である。
 また、内側突出部84は、内側小径部843、および、内側小径部843の第2筒部材22側に形成され内側小径部843より外径が大きい内側大径部842を有している。外側突出部94は、外側小径部943、および、外側小径部943の第2筒部材22側に形成され外側小径部943より内径が大きい外側大径部942を有している。
 内側突出部84の内側大径部842と内側小径部843との間には、内側突出部84の径方向外側に環状に拡がるよう内側係止面844が形成されている。また、外側突出部94の外側大径部942と外側小径部943との間には、外側突出部94の径方向内側に環状に拡がるよう外側係止面944が形成されている。ここで、外側係止面944は、内側係止面844に当接可能である。
 なお、第1筒部材21、第2筒部材22、第3筒部材23を組み付けてハウジング20を形成するとき、第7実施形態で示した方法と同様の方法を採用すればよい。
 以上説明したように、(7)本実施形態では、内側突出部64は内側係止面644を有し、外側突出部74は内側係止面644に当接可能な外側係止面744を有している。また、内側突出部84は内側係止面844を有し、外側突出部94は内側係止面844に当接可能な外側係止面944を有している。そのため、第2筒部材22と第3筒部材23、および、第2筒部材22と第1筒部材21とが軸方向に分離するのを確実に規制することができる。よって、燃料通路26内の圧力がさらに大きくなっても、燃料通路26からハウジング20外部への燃料の漏れ、および、ハウジング20の破損を効果的に抑制することができる。
  (他の実施形態)
 上述の実施形態では、第2筒部材22の第3筒部材23側および第1筒部材21側の両端部に内側突出部および外側突出部を設ける例を示した。これに対し、本開示の他の実施形態では、内側突出部および外側突出部を第2筒部材22の第3筒部材23側または第1筒部材21側のいずれか一方に設けることとしてもよい。
 また、上述の実施形態では、内側突出部および外側突出部の種々の形態を示した。本開示の他の実施形態では、阻害要因が無い限り、上述の実施形態における内側突出部および外側突出部をどのように組み合わせてもよい。
 また、上述の実施形態では、ニードルの鍔部と可動コアとの間に隙間を形成可能な隙間形成部材を備え、前記隙間で可動コアを加速しつつ鍔部に衝突させる構成を示した。本開示の他の実施形態では、隙間形成部材を備えないこととしてもよい。この場合、弁座側付勢部材(スプリング52)の端部がニードル(鍔部)に当接し、弁座側付勢部材がニードルを弁座側に付勢する構成を考えることができる。
 また、上述の実施形態では、可動コアがニードルに対し相対移動可能に設けられる例を示した。これに対し、本開示の他の実施形態では、可動コアは、ニードルに対し相対移動不能に設けられてもよい。また、可動コアは、ニードルに対し相対移動不能なよう、ニードルと一体に形成されることとしてもよい。
 本開示は、直噴式のガソリンエンジンに限らず、例えばポート噴射式のガソリンエンジンやディーゼルエンジン等に適用してもよい。
 このように、本開示は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の形態で実施可能である。

 

Claims (11)

  1.  筒状のノズル筒部(11)、前記ノズル筒部(11)の一端を塞ぐノズル底部(12)、前記ノズル底部(12)の前記ノズル筒部(11)側の面と前記ノズル筒部(11)とは反対側の面とを接続し燃料が噴射される噴孔(13)、および、前記ノズル底部(12)の前記ノズル筒部(11)側において前記噴孔(13)の周囲に環状に形成される弁座(14)を有するノズル部(10)と、
     一端が前記ノズル筒部(11)の前記ノズル底部(12)とは反対側に接続するよう設けられる第1筒部材(21)、一端が前記第1筒部材(21)の他端側に位置するよう設けられる第2筒部材(22)、一端が前記第2筒部材(22)の他端側に位置するよう設けられる第3筒部材(23)、ならびに、前記噴孔(13)に燃料を導くよう前記第1筒部材(21)、前記第2筒部材(22)および前記第3筒部材(23)の内側に形成される燃料通路(26)を有するハウジング(20)と、
     前記燃料通路(26)内を往復移動可能に設けられ、一端が前記弁座(14)から離間または前記弁座(14)に当接すると前記噴孔(13)を開閉するニードル(30)と、
     前記第2筒部材(22)および前記第3筒部材(23)のいずれか一方の端面から前記第2筒部材(22)および前記第3筒部材(23)の他方に向かって筒状に突出し、前記第2筒部材(22)および前記第3筒部材(23)の前記他方に接続するよう前記第2筒部材(22)および前記第3筒部材(23)の前記一方と一体に形成される内側突出部(60、61、62、63、64)と、
     前記第2筒部材(22)および前記第3筒部材(23)の前記他方の端面から前記第2筒部材(22)および前記第3筒部材(23)の前記一方に向かって筒状に突出し、前記第2筒部材(22)および前記第3筒部材(23)の前記一方に接続し内壁が前記内側突出部(60、61、62、63、64)の外壁に当接するよう前記第2筒部材(22)および前記第3筒部材(23)の前記他方と一体に形成される外側突出部(70、71、72、73、74)と
    を備える燃料噴射装置。
  2.  筒状のノズル筒部(11)、前記ノズル筒部(11)の一端を塞ぐノズル底部(12)、前記ノズル底部(12)の前記ノズル筒部(11)側の面と前記ノズル筒部(11)とは反対側の面とを接続し燃料が噴射される噴孔(13)、および、前記ノズル底部(12)の前記ノズル筒部(11)側において前記噴孔(13)の周囲に環状に形成される弁座(14)を有するノズル部(10)と、
     一端が前記ノズル筒部(11)の前記ノズル底部(12)とは反対側に接続するよう設けられる第1筒部材(21)、一端が前記第1筒部材(21)の他端側に位置するよう設けられる第2筒部材(22)、一端が前記第2筒部材(22)の他端側に位置するよう設けられる第3筒部材(23)、ならびに、前記噴孔(13)に燃料を導くよう前記第1筒部材(21)、前記第2筒部材(22)および前記第3筒部材(23)の内側に形成される燃料通路(26)を有するハウジング(20)と、
     前記燃料通路(26)内を往復移動可能に設けられ、一端が前記弁座(14)から離間または前記弁座(14)に当接すると前記噴孔(13)を開閉するニードル(30)と、
     前記第1筒部材(21)および前記第2筒部材(22)のいずれか一方の端面から前記第1筒部材(21)および前記第2筒部材(22)の他方に向かって筒状に突出し、前記第1筒部材(21)および前記第2筒部材(22)の前記他方に接続するよう前記第1筒部材(21)および前記第2筒部材(22)の前記一方と一体に形成される内側突出部(80、81、82、83、84)と、
     前記第1筒部材(21)および前記第2筒部材(22)の前記他方の端面から前記第1筒部材(21)および前記第2筒部材(22)の前記一方に向かって筒状に突出し、前記第1筒部材(21)および前記第2筒部材(22)の前記一方に接続し内壁が前記内側突出部(80、81、82、83、84)の外壁に当接するよう前記第1筒部材(21)および前記第2筒部材(22)の前記他方と一体に形成される外側突出部(90、91、92、93、94)と
    を備える燃料噴射装置。
  3.  前記内側突出部(60、80)は、前記第2筒部材(22)と一体に形成され、前記第3筒部材(23)側の端部または前記第1筒部材(21)側の端部の内側の角部が面取りされている請求項1または2に記載の燃料噴射装置。
  4.  前記内側突出部(60、61、80、81)は、前記外壁のうち少なくとも軸方向の一部が、軸方向の一方側から他方側へ、または、他方側から一方側へ向かうに従い前記ハウジング(20)の中心軸(Ax1)に近づくよう形成され、
     前記外側突出部(70、71、90、91)は、前記内壁のうち少なくとも軸方向の一部が、軸方向の一方側から他方側へ、または、他方側から一方側へ向かうに従い前記ハウジング(20)の中心軸(Ax1)に近づくよう形成されている請求項1~3のいずれか一項に記載の燃料噴射装置。
  5.  前記内側突出部(60、80)は、内側大径部(602、802)、および、前記内側大径部(602、802)の前記第2筒部材(22)側に形成され前記内側大径部(602、802)より外径が小さい内側小径部(603、803)を有し、
     前記外側突出部(70、90)は、外側大径部(702、902)、および、前記外側大径部(702、902)の前記第2筒部材(22)側に形成され前記外側大径部(702、902)より内径が小さい外側小径部(703、903)を有し、
     前記内側大径部(602、802)と前記外側小径部(703、903)とは、軸方向で重なるよう形成されている請求項1~4のいずれか一項に記載の燃料噴射装置。
  6.  前記内側突出部(64、84)は、内側小径部(643、843)、および、前記内側小径部(643、843)の前記第2筒部材(22)側に形成され前記内側小径部(643、843)より外径が大きい内側大径部(642、842)を有し、
     前記外側突出部(74、94)は、外側小径部(743、943)、および、前記外側小径部(743、943)の前記第2筒部材(22)側に形成され前記外側小径部(743、943)より内径が大きい外側大径部(742、942)を有し、
     前記内側大径部(642、842)と前記外側小径部(743、943)とは、軸方向で重なるよう形成されている請求項1~4のいずれか一項に記載の燃料噴射装置。
  7.  前記内側突出部(60、64、80、84)は、径方向外側に環状に拡がるよう前記内側大径部(602、642、802、842)と前記内側小径部(603、643、803、843)との間に形成される内側係止面(604、644、804、844)を有し、
     前記外側突出部(70、74、90、94)は、径方向内側に環状に拡がるよう前記外側大径部(702、742、902、942)と前記外側小径部(703、743、903、943)との間に形成され前記内側係止面(604、644、804、844)に係止される外側係止面(704、744、904、944)を有する請求項5または6に記載の燃料噴射装置。
  8.  前記ニードル(30)とともに前記燃料通路(26)内を往復移動可能に設けられる可動コア(40)と、
     前記ハウジング(20)の内側の前記可動コア(40)の前記弁座(14)とは反対側に設けられる固定コア(50)と、
     前記ハウジング(20)の外側に設けられ、通電されると前記可動コア(40)を前記固定コア(50)側に吸引し前記ニードル(30)を前記弁座(14)とは反対側に移動させることが可能なコイル(57)と、
     前記ニードル(30)および前記可動コア(40)を前記弁座(14)側に付勢可能な弁座側付勢部材(52)と、をさらに備え、
     前記第1筒部材(21)および前記第3筒部材(23)は、磁性材料により形成され、
     前記第2筒部材(22)は、非磁性材料により形成されている請求項1~7のいずれか一項に記載の燃料噴射装置。
  9.  前記第3筒部材(23)は、内壁が前記固定コア(50)の外壁に接続するよう前記固定コア(50)と一体に形成されている請求項8に記載の燃料噴射装置。
  10.  前記ニードル(30)は、前記可動コア(40)の前記固定コア(50)側の面に当接可能な当接面(34)を有し、
     前記可動コア(40)は、前記当接面(34)に当接または前記当接面(34)から離間可能なよう前記ニードル(30)に対し相対移動可能に設けられている請求項1~9のいずれか一項に記載の燃料噴射装置。
  11.  前記当接面(34)と前記可動コア(40)との間に隙間(C1)を形成可能な隙間形成部材(54)をさらに備える請求項10に記載の燃料噴射装置。

     
PCT/JP2016/002330 2015-06-10 2016-05-12 燃料噴射装置 WO2016199347A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/580,032 US10208726B2 (en) 2015-06-10 2016-05-12 Fuel injection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015117471A JP6471618B2 (ja) 2015-06-10 2015-06-10 燃料噴射装置
JP2015-117471 2015-06-10

Publications (1)

Publication Number Publication Date
WO2016199347A1 true WO2016199347A1 (ja) 2016-12-15

Family

ID=57504877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002330 WO2016199347A1 (ja) 2015-06-10 2016-05-12 燃料噴射装置

Country Status (3)

Country Link
US (1) US10208726B2 (ja)
JP (1) JP6471618B2 (ja)
WO (1) WO2016199347A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110366638A (zh) * 2017-03-03 2019-10-22 株式会社电装 燃料喷射阀及燃料喷射阀的制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2778085C (en) 2009-10-20 2018-01-16 Surface Generation Limited Zone control of tool temperature
JP7304140B2 (ja) * 2018-08-01 2023-07-06 キヤノン電子株式会社 ソレノイドバルブ
KR102228300B1 (ko) * 2019-11-14 2021-03-16 주식회사 현대케피코 연료 인젝터
US11721465B2 (en) 2020-04-24 2023-08-08 Rain Bird Corporation Solenoid apparatus and methods of assembly

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116467A (ja) * 1997-06-18 1999-01-12 Unisia Jecs Corp フューエルインジェクタ
JP2000170620A (ja) * 1998-12-09 2000-06-20 Keihin Corp 電磁式燃料噴射弁における磁性体及び非磁性体の組立体,並びに固定コア系組立体の製造方法
JP2001123907A (ja) * 1999-10-26 2001-05-08 Aisan Ind Co Ltd 燃料噴射弁
JP2002089400A (ja) * 2000-09-12 2002-03-27 Keihin Corp 電磁式燃料噴射弁
JP2006138269A (ja) * 2004-11-12 2006-06-01 Mitsubishi Electric Corp 燃料噴射弁のシール構造
JP2008157035A (ja) * 2006-12-20 2008-07-10 Denso Corp 燃料噴射弁
JP2011517298A (ja) * 2008-02-25 2011-06-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 細長い構成部材を整直させるための方法
JP2012097728A (ja) * 2010-10-05 2012-05-24 Denso Corp 燃料噴射弁
JP2013217307A (ja) * 2012-04-10 2013-10-24 Denso Corp 燃料噴射弁

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183156B2 (ja) * 1995-04-27 2001-07-03 株式会社デンソー 流体噴射ノズル
JP3704957B2 (ja) * 1998-07-06 2005-10-12 いすゞ自動車株式会社 インジェクタ
JP2001046919A (ja) * 1999-08-06 2001-02-20 Denso Corp 流体噴射ノズル
US6439484B2 (en) * 2000-02-25 2002-08-27 Denso Corporation Fluid injection nozzle
JP4134966B2 (ja) * 2004-08-17 2008-08-20 株式会社デンソー 噴孔部材、燃料噴射弁、および噴孔部材の製造方法
JP4324881B2 (ja) * 2004-10-26 2009-09-02 株式会社デンソー 燃料噴射弁
DE102005061408A1 (de) * 2005-12-22 2007-06-28 Robert Bosch Gmbh Kunststoff-Metall-Verbindung und Brennstoffeinspritzventil mit einer Kraftstoff-Metall-Verbindung
JP4483940B2 (ja) * 2007-12-21 2010-06-16 株式会社デンソー 燃料噴射弁
JP6253259B2 (ja) * 2012-09-26 2017-12-27 株式会社デンソー 燃料噴射弁
DE102014204019A1 (de) * 2013-03-06 2014-09-11 Denso Corporation Kraftstoffeinspritzventil
JP6087210B2 (ja) * 2013-05-24 2017-03-01 日立オートモティブシステムズ株式会社 燃料噴射弁
EP2857670B1 (en) * 2013-10-04 2018-12-12 Continental Automotive GmbH Fuel injector
JP6311472B2 (ja) * 2014-06-16 2018-04-18 株式会社デンソー 燃料噴射弁

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116467A (ja) * 1997-06-18 1999-01-12 Unisia Jecs Corp フューエルインジェクタ
JP2000170620A (ja) * 1998-12-09 2000-06-20 Keihin Corp 電磁式燃料噴射弁における磁性体及び非磁性体の組立体,並びに固定コア系組立体の製造方法
JP2001123907A (ja) * 1999-10-26 2001-05-08 Aisan Ind Co Ltd 燃料噴射弁
JP2002089400A (ja) * 2000-09-12 2002-03-27 Keihin Corp 電磁式燃料噴射弁
JP2006138269A (ja) * 2004-11-12 2006-06-01 Mitsubishi Electric Corp 燃料噴射弁のシール構造
JP2008157035A (ja) * 2006-12-20 2008-07-10 Denso Corp 燃料噴射弁
JP2011517298A (ja) * 2008-02-25 2011-06-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 細長い構成部材を整直させるための方法
JP2012097728A (ja) * 2010-10-05 2012-05-24 Denso Corp 燃料噴射弁
JP2013217307A (ja) * 2012-04-10 2013-10-24 Denso Corp 燃料噴射弁

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110366638A (zh) * 2017-03-03 2019-10-22 株式会社电装 燃料喷射阀及燃料喷射阀的制造方法
CN110366638B (zh) * 2017-03-03 2021-08-31 株式会社电装 燃料喷射阀及燃料喷射阀的制造方法

Also Published As

Publication number Publication date
US20180142656A1 (en) 2018-05-24
US10208726B2 (en) 2019-02-19
JP2017002807A (ja) 2017-01-05
JP6471618B2 (ja) 2019-02-20

Similar Documents

Publication Publication Date Title
US11047352B2 (en) Fuel injection valve
WO2016199347A1 (ja) 燃料噴射装置
JP6483574B2 (ja) 燃料噴射装置
JP6426556B2 (ja) 燃料噴射装置
JP6332367B2 (ja) 燃料噴射弁
US20170218907A1 (en) Fuel injection valve
CN107923356B (zh) 燃料喷射装置
WO2016042753A1 (ja) 燃料噴射弁
JP2017089425A (ja) 燃料噴射装置
JP6421730B2 (ja) 燃料噴射装置
JP6613973B2 (ja) 燃料噴射装置
WO2017056940A1 (ja) 燃料噴射装置
JP2018059514A (ja) 燃料噴射弁
JP6504023B2 (ja) 燃料噴射装置
JP6669282B2 (ja) 燃料噴射装置
JP6566077B2 (ja) 燃料噴射弁、及び、燃料噴射弁の製造方法
JP2015218664A (ja) 燃料噴射弁
JP6137030B2 (ja) 燃料噴射弁
JP6547885B2 (ja) 燃料噴射装置
JP2018009548A (ja) 燃料噴射弁
JP2017089515A (ja) 燃料噴射装置
JP2016217242A (ja) 燃料噴射装置
JP2017210919A (ja) 燃料噴射装置
JP2017186979A (ja) 燃料噴射装置
JP2017020394A (ja) 燃料噴射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807066

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15580032

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807066

Country of ref document: EP

Kind code of ref document: A1