WO2016190354A1 - エポキシシクロヘキサンジカルボン酸ジエステル、可塑剤、安定化剤、及び樹脂組成物 - Google Patents

エポキシシクロヘキサンジカルボン酸ジエステル、可塑剤、安定化剤、及び樹脂組成物 Download PDF

Info

Publication number
WO2016190354A1
WO2016190354A1 PCT/JP2016/065456 JP2016065456W WO2016190354A1 WO 2016190354 A1 WO2016190354 A1 WO 2016190354A1 JP 2016065456 W JP2016065456 W JP 2016065456W WO 2016190354 A1 WO2016190354 A1 WO 2016190354A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl chloride
chloride resin
resin composition
weight
alkyl group
Prior art date
Application number
PCT/JP2016/065456
Other languages
English (en)
French (fr)
Inventor
井上 貴博
泰樹 辻
森川 雅弘
美奈子 辻本
匠生 吉近
宮崎 謙一
有華 佐藤
Original Assignee
新日本理化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015156987A external-priority patent/JP6623605B2/ja
Priority claimed from JP2016032560A external-priority patent/JP6705985B2/ja
Priority claimed from JP2016056500A external-priority patent/JP6823246B2/ja
Priority claimed from JP2016057876A external-priority patent/JP6823247B2/ja
Application filed by 新日本理化株式会社 filed Critical 新日本理化株式会社
Priority to EP16800058.6A priority Critical patent/EP3305772A4/en
Priority to KR1020177037288A priority patent/KR20180012318A/ko
Priority to US15/576,651 priority patent/US10836739B2/en
Priority to CN201680030614.1A priority patent/CN107614492A/zh
Publication of WO2016190354A1 publication Critical patent/WO2016190354A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/38Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D303/40Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals by ester radicals
    • C07D303/42Acyclic compounds having a chain of seven or more carbon atoms, e.g. epoxidised fats
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/38Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D303/40Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals by ester radicals

Definitions

  • the present invention relates to a novel epoxycyclohexanedicarboxylic acid diester having an epoxy group in a molecular structure suitable as a plasticizer and as a stabilizer for a chlorine-containing resin.
  • the present invention also relates to a novel plasticizer for vinyl chloride resin and a vinyl chloride resin composition containing the same, and more specifically, deterioration of physical properties due to heat or light comprising an epoxycyclohexanedicarboxylic acid diester having a specific structure.
  • a plasticizer for vinyl chloride resin which has less coloration and good flexibility, and has improved cold resistance and heat resistance, and a vinyl chloride resin composition suitable for long-term outdoor use containing the same.
  • a plasticizer for vinyl chloride resin which has less coloration and good flexibility, and has improved cold resistance and heat resistance
  • a vinyl chloride resin composition suitable for long-term outdoor use containing the same about.
  • the present invention also relates to a novel stabilizer for a chlorine-containing resin and a stabilized chlorine-containing resin composition comprising the same, and more particularly, has excellent compatibility with the resin and can be stably heated for a long time.
  • Stabilizer for chlorine-containing resin comprising a novel epoxycyclohexanedicarboxylic acid diester capable of suppressing deterioration in physical properties and coloring due to light and light, chlorine-containing resin composition containing the stabilizer, and further using the stabilizer
  • the present invention relates to a method for stabilizing a chlorine-containing resin composition.
  • the present invention also relates to a vinyl chloride resin composition for automobile interiors having improved cold resistance, volatilization resistance, particularly fogging resistance, and excellent light resistance and heat aging resistance, and an automotive interior material comprising the resin composition. More specifically, the present invention relates to a vinyl chloride resin composition for automobile interiors and a vehicle interior material containing a novel epoxycyclohexanedicarboxylic acid diester having a specific structure. In addition, the present invention is a medical vinyl chloride resin which has little deterioration in flexibility and coloration after sterilization or sterilization treatment, has good workability and flexibility, and has improved heat resistance and cold resistance.
  • the composition and the medical material contain a plasticizer composed of an epoxycyclohexanedicarboxylic acid diester having a specific structure, have good processability and flexibility, and have improved heat resistance and cold resistance.
  • the present invention relates to a medical vinyl chloride resin composition and a medical material, and more particularly to a medical vinyl chloride resin composition and a medical material suitable for a medical instrument that requires sterilization or sterilization treatment.
  • plasticizers are often used for the purpose of improving moldability and imparting flexibility to resins and rubbers.
  • various compounds are used depending on the type of the target resin or rubber and depending on the intended use or purpose.
  • ester compounds are known as the most frequently used ones.
  • the ester compounds include aliphatic, alicyclic, and aromatic compounds, and there are a wide variety of types such as monoesters, diesters, triesters, tetraesters, and polyesters.
  • the most general plasticizers are aromatic diesters, and aliphatic diesters, aromatic triesters, tetraesters and the like are widely used in applications requiring cold resistance and heat resistance. In recent years, the use of alicyclic diesters is increasing from the viewpoint of environmental problems.
  • plasticizers The performance required for such plasticizers is of course excellent in compatibility with the target resin, and it is an essential performance as a plasticizer. Plasticization performance such as imparting flexibility and improving processability.
  • heat resistance and cold resistance that can withstand use at high temperatures and low temperatures, and recently, there is an increasing demand for such heat resistance and cold resistance.
  • currently known plasticizers do not sufficiently satisfy the requirements, and further improvements in heat resistance and cold resistance are required.
  • the chlorine-containing resin contains chlorine, and thus exhibits excellent performance such as moldability, physical properties, and flame retardancy, but the chlorine is a cause of deterioration such as coloring due to heat and light and deterioration of physical properties. Therefore, the suppression is necessary, and various stabilizers have been studied and used in practice.
  • typical examples include fatty acid soaps of metals such as calcium, barium, zinc and magnesium, and chlorine-containing resins such as phenolic, phosphorus and sulfur antioxidants.
  • General purpose stabilizers are well known.
  • an ultraviolet absorber or the like may be blended. Furthermore, it is known that an epoxy compound is effective for suppressing the deterioration caused by chlorine as described above, and epoxidized natural oils such as epoxidized soybean oil are widely used. However, in recent years, chlorine-containing resins have been reviewed again due to the above-mentioned superior performance advantages, and the conventional known stabilizers are not fully satisfied, and the development of new stabilizers is awaited. ing.
  • a vinyl chloride resin is usually produced by adding a plasticizer to a vinyl chloride resin and molding the soft vinyl chloride resin composition.
  • plasticizers for vinyl chloride resins include phthalate esters such as di-2-ethylhexyl phthalate (hereinafter referred to as “DOP”) and diisononyl phthalate (hereinafter referred to as “DINP”). These are plasticizers, and these plasticizers are used for general purposes.
  • DOP di-2-ethylhexyl phthalate
  • DINP diisononyl phthalate
  • tributyl acetyl citrate hereinafter referred to as “ATBC”
  • DOA di-2-ethylhexyl adipate
  • TOTM trimellitic acid tri-2 -Plasticizers
  • ATBC and DOA are phthalate ester plasticizers.
  • heat resistance was greatly insufficient.
  • TOTM has a heat resistance equivalent to or better than that of phthalates, and is expected to be a good heat-resistant plasticizer that can replace phthalate plasticizers. It has the disadvantage of being inferior, and it has not yet completely replaced phthalate plasticizers with non-phthalate plasticizers.
  • alicyclic dicarboxylic acid diester plasticizers represented by diisononyl 1,2-cyclohexanedicarboxylate (hereinafter referred to as “DINCH”) have flexibility close to that of phthalic acid ester plasticizers. It has attracted attention as a non-phthalate plasticizer that has heat resistance and cold resistance and is well-balanced (Patent Document 4).
  • epoxycyclohexanedicarboxylic acid diester represented by 4,5-epoxycyclohexane-1,2-dicarboxylic acid di-2-ethylhexyl (hereinafter referred to as “E-DEHCH”), which is a kind of alicyclic dicarboxylic acid diester.
  • E-DEHCH 4,5-epoxycyclohexane-1,2-dicarboxylic acid di-2-ethylhexyl
  • the epoxy group contained in the structure has the effect of supplementing hydrogen chloride generated by the decomposition of vinyl chloride resin by heat and light.
  • chlorine-containing resins such as vinyl chloride resins are excellent in mechanical properties and have other characteristics such as flame retardancy and are widely used in various applications. And light are liable to be decomposed mainly due to dehydrochlorination reaction, resulting in deterioration of physical properties and deterioration of coloring, and it is difficult to obtain stable product quality. Furthermore, it has been pointed out that hydrogen chloride generated during molding may cause equipment corrosion and the like.
  • Patent Documents 6, 7
  • the epoxy compound has a function in which the epoxy group in the molecule supplements the hydrogen chloride generated by the dehydrochlorination reaction, and as a result, suppresses the deterioration of the resin such as deterioration of physical properties and coloring, such as cadmium type and lead type. Since there is no concern about environmental problems such as heavy metal system, and stable effects can be obtained, it is widely used in combination systems with metal salts of organic acids (Patent Document 8).
  • epoxidized natural oils such as epoxidized soybean oil (hereinafter referred to as “ESBO”) and epoxidized linseed oil are well known and widely used.
  • ESBO epoxidized soybean oil
  • epoxidized linseed oil have difficulties in compatibility with chlorine-containing resins, have problems such as bleeding, and attempts have been made to improve them (Patent Document 9).
  • Patent Document 9 None has been obtained. Therefore, in some applications, attempts have been made to use high-molecular epoxy compounds such as epoxy resins that do not bleed, but epoxy resins do not have problems such as bleed, but their performance as stabilizers is not sufficient. Is limited.
  • alicyclic E-DEHCH which has excellent compatibility, has attracted attention as an epoxy-based stabilizer that has excellent compatibility with resins and has no fear of bleeding or migration.
  • it has an effect as a plasticizer when added to a general-purpose plasticizer compounding system such as aliphatic polyvalent carboxylic acid ester, aromatic polyvalent carboxylic acid ester, alicyclic polyvalent carboxylic acid ester, polyester, polyether, etc. It can be applied to various uses as a stabilizer (Patent Documents 10 and 11).
  • diisodecyl phthalate DIDP
  • diundecyl phthalate DUP
  • dialkyl phthalate C9 to C11
  • the added alicyclic epoxy compound may cause fogging or the like in the above-mentioned applications requiring severe heat resistance. At present, the heat resistance requirement cannot be satisfied and the alicyclic epoxy compound cannot be blended.
  • an automobile interior material is composed of a skin layer for providing a design feeling such as a soft feeling and a high-class feeling and a base material layer for maintaining the structure. Furthermore, in order to give a soft feeling to the skin layer, it is often used by lining a foam layer such as urethane.
  • polyvinyl chloride resin for the skin layer, polyvinyl chloride resin, thermoplastic elastomer and polyolefin foam such as polyethylene are used.
  • polyvinyl chloride resin is semi-rigid to soft depending on the amount of plasticizer. It is widely used because it can provide various touch feelings, and is more excellent in design than ease of molding processability.
  • plasticizer commonly used plasticizers for vinyl chloride resins can be used.
  • relatively inexpensive phthalate plasticizers such as DINP and DIDP are the most versatile. It has been used.
  • trimellitic acid ester plasticizers such as TOTM, DOA, etc.
  • Other aliphatic dibasic ester plasticizers have also been used.
  • DOA it is excellent in cold resistance and flexibility, but inferior in heat resistance
  • TOTM it is excellent in heat resistance, but it cannot satisfy cold resistance and flexibility, and phthalate ester plasticity.
  • epoxidized vegetable oils such as ESBO and epoxidized linseed oil are well known as the epoxy compounds (Patent Documents 11 and 14).
  • ESBO and epoxidized linseed oil are well known as the epoxy compounds (Patent Documents 11 and 14).
  • epoxidized vegetable oil there is a problem with the compatibility with the vinyl chloride resin, and when mixing is insufficient, the resin becomes non-uniform in the resin and sufficient performance cannot be obtained. The improvement was also desired.
  • the vinyl chloride resin composition has good processability, excellent chemical resistance and durability, and can be adjusted to various hardnesses by blending a plasticizer, for example, several tens of parts
  • Soft vinyl chloride resin materials containing the above plasticizers have better kink resistance than polyolefins, etc., and medical materials such as medical tubes such as catheters, medical bags such as blood bags, infusion bags, etc. As widely used.
  • semi-rigid vinyl chloride resin materials containing a small amount of plasticizer are widely used as medical materials such as connecting members, branch valves and speed control parts used in connection with the soft vinyl chloride materials. .
  • soft vinyl chloride resin materials used for medical materials have good flexibility, excellent heat resistance that can withstand heat treatment, and excellent cold resistance that can withstand low-temperature storage.
  • a semi-rigid vinyl chloride resin composition material it is necessary to have a hardness that exhibits an appropriate follow-up property, and it is important to have excellent heat resistance, cold resistance, and durability as well as a soft material. .
  • Patent Document 15 phthalate ester plasticizers represented by DOP and DINP have been widely used.
  • phthalate ester plasticizers it is difficult to obtain sufficient heat resistance during the above-mentioned heat treatment, and improvements in elution and migration are also required.
  • Studies using acid ester plasticizers and polyester plasticizers are also underway (Patent Documents 16 and 17).
  • the treatment method there are a heat treatment such as dry heating, boiling, and pressurized hot water treatment, a method of irradiating ultraviolet rays and radiation, a chemical treatment with ethylene oxide gas and the like.
  • heat treatment or a method of irradiating ultraviolet rays or radiation is mainly used.
  • Patent Document 19 As a method for suppressing the coloring, it is known that it can be improved, for example, by blending a large amount of stabilizer (Patent Document 19). However, blending a large amount of stabilizers is problematic in terms of safety and the like, and is practically impossible, and no effective improvement method has yet been found.
  • an epoxy compound is effective as a stabilizer having no problem in safety and prevents deterioration such as coloring.
  • epoxidized vegetable oils such as ESBO and epoxidized linseed oil are well known as the epoxy compounds (Patent Documents 20 and 21).
  • Patent Documents 20 and 21 epoxidized vegetable oils
  • the first object of the present invention is as a plasticizer having good plasticizing performance inherent in a plasticizer and improved in heat resistance and cold resistance, and as a stabilizer for chlorine-containing resins.
  • the object is to provide useful novel compounds.
  • the second object of the present invention is to provide a vinyl chloride resin comprising a novel epoxycyclohexanedicarboxylic acid diester that can solve the above-mentioned problems, that is, satisfies the requirements of more severe cold resistance and volatile resistance and has good flexibility. And a vinyl chloride resin composition containing the plasticizer.
  • a third object of the present invention is to provide a stabilizer for a chlorine-containing resin that can solve the above-mentioned problems, that is, is environmentally safe and can provide a stable effect, and more specifically.
  • the fourth object of the present invention is to provide a plasticizer for automobile interiors that is excellent in compatibility with the resin, easy to mix with the resin, and has improved cold resistance, volatile resistance, particularly fogging resistance.
  • a vinyl chloride-based resin composition for automobile interiors having improved cold resistance, volatilization resistance, particularly fogging resistance, excellent light resistance and heat aging resistance, and an automotive interior material comprising the resin composition.
  • the purpose of the fifth aspect of the present invention is to solve the above-mentioned problems, that is, there is little deterioration such as coloring after sterilization or sterilization treatment, and further, workability and flexibility are good, and heat resistance and cold resistance are good.
  • the present inventors have paid attention to the above-described alicyclic diesters and epoxy compounds, and as a result of intensive studies, they have found that a novel epoxy having a specific structure having an epoxy group in the molecular structure.
  • the present inventors have found that cyclohexanedicarboxylic acid diester fulfills the purpose, and have completed the first invention.
  • the epoxycyclohexanedicarboxylic acid diester having a specific structure having an epoxy group in the molecular structure according to the first aspect of the present invention has a chemical structure shown below.
  • R 1 and R 2 are the same or different and each represents a linear or branched alkyl group having 7 to 13 carbon atoms.
  • the alkyl group is mainly composed of an alkyl group having 9 to 11 carbon atoms, and the ratio (molar ratio) of the alkyl group having 9 carbon atoms / the alkyl group having 10 carbon atoms / the alkyl group having 11 carbon atoms is 10
  • [Claim 4] The epoxycyclohexanedicarboxylic acid diester according to [Claim 1] or [Claim 2], wherein the alkyl group contains 90% or more (molar ratio) of a C9 alkyl group.
  • [Claim 5] The epoxycyclohexanedicarboxylic acid diester according to any one of [Claim 1] to [Claim 4], wherein the ratio (molar ratio) of the linear alkyl group in the alkyl group is 55 to 95%.
  • [Claim 6] The epoxycyclohexanedicarboxylic acid diester according to any one of [Claim 1] to [Claim 4], wherein the ratio (molar ratio) of the linear alkyl group in the alkyl group is 60 to 95%.
  • [Claim 7] The epoxycyclohexanedicarboxylic acid diester according to any one of [Claim 1] to [Claim 4], wherein the ratio (molar ratio) of the linear alkyl group in the alkyl group is 70 to 95%.
  • a chlorine-containing resin composition comprising the epoxycyclohexanedicarboxylic acid diester according to any one of [Item 1] to [Item 12].
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, the epoxycyclohexanedicarboxylic acid diester having a specific structure is compatible with the characteristic resin, that is, plasticity.
  • the present inventors have found that it is possible to improve cold resistance and volatile resistance without impairing the conversion efficiency and flexibility, and have completed the second invention.
  • the second present invention provides the following novel plasticizer for vinyl chloride resin and a vinyl chloride resin composition containing the same.
  • a plasticizer for vinyl chloride resin characterized in that the ratio (molar ratio) is 50 to 99%.
  • R1 and R2 are the same or different and each represents a linear or branched alkyl group having 7 to 13 carbon atoms.
  • the alkyl group is mainly composed of an alkyl group having 9 to 11 carbon atoms, and the ratio (molar ratio) of the alkyl group having 9 carbon atoms / the alkyl group having 10 carbon atoms / the alkyl group having 11 carbon atoms is 10 to 10
  • the saturated aliphatic alcohol is mainly composed of a saturated aliphatic alcohol having 9 to 11 carbon atoms, and the linear ratio (molar ratio) of the saturated aliphatic alcohol is 50 to 95%.
  • the plasticizer for vinyl chloride resins according to [Item 8].
  • a vinyl chloride resin composition comprising a vinyl chloride resin and the vinyl chloride resin plasticizer according to any one of [Item 1] to [Item 9].
  • the content of the plasticizer for vinyl chloride resin is 20 to 200 parts by weight with respect to 100 parts by weight of vinyl chloride resin, and the vinyl chloride resin composition is a soft vinyl chloride resin composition.
  • the present inventors pay attention to the superiority of the above-mentioned epoxy compound as a stabilizer, and show the effect as a stabilizer even in a small amount so as to meet the above-mentioned problems, that is, the recent severe demands.
  • an epoxy-based stabilizer that does not cause problems such as volatility even when the amount is further increased
  • an epoxycyclohexanedicarboxylic acid diester having a specific structure is effective as a stabilizer. It was found that it was excellent in compatibility with the resin and excellent in volatility, and the third invention was completed.
  • the third present invention is a stabilizer for chlorine-containing resin comprising a novel epoxycyclohexanedicarboxylic acid diester having the following specific structure, and a stabilized chlorine-containing resin composition comprising the stabilizer, Furthermore, the stabilization method of a chlorine containing resin composition is provided.
  • R 1 and R 2 are the same or different and each represents a linear or branched alkyl group having 7 to 13 carbon atoms.
  • the alkyl group is mainly composed of an alkyl group having 9 to 11 carbon atoms, and the ratio (molar ratio) of the alkyl group having 9 carbon atoms / the alkyl group having 10 carbon atoms / the alkyl group having 11 carbon atoms is 10
  • [Claim 5] The stabilizer for chlorine-containing resin according to any one of [Claim 1] to [Claim 4], wherein a ratio of the linear alkyl group in the alkyl group is 55 to 95%.
  • the saturated aliphatic alcohol is mainly composed of a saturated aliphatic alcohol having 9 to 11 carbon atoms, and the linear ratio (molar ratio) of the saturated aliphatic alcohol is 50 to 99%.
  • the stabilizer for chlorine-containing resins according to [Item 8].
  • a stabilized chlorine-containing resin composition comprising a chlorine-containing resin and the stabilizer according to any one of [Item 1] to [Item 9].
  • the plasticizer is one or more selected from the group consisting of an aliphatic polyvalent carboxylic acid ester, an aromatic polyvalent carboxylic acid ester, an alicyclic polyvalent carboxylic acid ester, a polyester, and a polyether.
  • the chlorine-containing resin composition according to [Item 15] or [Item 16].
  • the plasticizer is diisodecyl phthalate (DIDP), di (2-propylheptyl) phthalate (DPHP), diundecyl phthalate (DUP), dialkyl phthalate (C9 to C11) (PL-200), phthalate Dialkyl acid (C10-C13) (Vinizer 124), Ditridecyl phthalate (Vinizer 20), Trinormal alkyl trimellitic acid (C8, C10) (Trimex N-08), Trinormal Octyl trimellitic acid (Trimex New NSK) ), Trimellitic acid isononyl ester (C-9N), a saturated aliphatic alcohol containing 90% or more of a saturated aliphatic alcohol having 9 carbon atoms and a linear saturated aliphatic alcohol ratio of 50 to 99% Trimellitic acid triester of alcohol (trimellitic acid trinoni (Branched and linear), and from selected one or two or more group consisting TL9TM), chlorine-containing
  • the chlorine-containing resin is stabilized by containing at least one selected from 4,5-epoxycyclohexane-1,2-dicarboxylic acid diester represented by the following general formula (1) in the chlorine-containing resin.
  • R 1 and R 2 are the same or different and each represents a linear or branched alkyl group having 7 to 13 carbon atoms.
  • the alkyl group is mainly composed of an alkyl group having 9 to 11 carbon atoms, and the ratio (molar ratio) of the alkyl group having 9 carbon atoms / the alkyl group having 10 carbon atoms / the alkyl group having 11 carbon atoms is 10
  • the method according to [22] which is in a range of from 25/35 to 50/30 to 45.
  • the 4-cyclohexene-1,2-dicarboxylic acid diester undergoes an esterification reaction between 4-cyclohexene-1,2-dicarboxylic acid or an acid anhydride thereof and a saturated aliphatic alcohol having 7 to 13 carbon atoms.
  • the saturated aliphatic alcohol is mainly composed of a saturated aliphatic alcohol having 9 to 11 carbon atoms, and the straight chain ratio (molar ratio) of the saturated aliphatic alcohol is 50 to 99%.
  • [Item 28] A process for producing 4,5-epoxycyclohexane-1,2-dicarboxylic acid diester for use in the stabilizer for chlorine-containing resins according to any one of [Item 1] to [Item 7]. And If necessary, 4-cyclohexene-1,2-dicarboxylic acid or an acid anhydride thereof and a saturated aliphatic alcohol having 7 to 13 carbon atoms in an inert gas atmosphere or in an air stream as necessary. 4,5-epoxycyclohexane-1, comprising the steps of esterifying, and epoxidizing 4-cyclohexene-1,2-dicarboxylic acid diester obtained by esterification in the presence of an epoxidizing agent. A process for producing 2-dicarboxylic acid diesters.
  • the saturated aliphatic alcohol is mainly composed of a saturated aliphatic alcohol having 9 to 11 carbon atoms, and is a saturated aliphatic alcohol having 9 carbon atoms / saturated aliphatic alcohol having 10 carbon atoms / saturated aliphatic alcohol having 11 carbon atoms.
  • the alcohol ratio (molar ratio) is in the range of 10-25 / 35-50 / 30-45, or the saturated aliphatic alcohol ratio (molar ratio) of 9 carbons is in the range of 90% or more. 28].
  • a novel epoxycyclohexanedicarboxylic acid diester having a specific structure is excellent in compatibility with a vinyl chloride resin, and the epoxycyclohexanedicarboxylic acid
  • the vinyl chloride resin composition containing diester is excellent in the effects of suppressing physical properties deterioration and coloration caused by heat and light peculiar to vinyl chloride resin, and greatly increases cold resistance and volatilization resistance, especially fogging resistance. It has been found that it can be improved and is very useful as the automobile interior material described above, and the fourth invention has been completed.
  • the fourth aspect of the present invention is a vinyl chloride resin composition for automobile interior containing a novel epoxycyclohexanedicarboxylic acid diester having a specific structure, an automobile interior material comprising the vinyl chloride resin composition, and
  • the present invention provides a plasticizer and a stabilizer for a vinyl chloride resin for automobile interior materials, comprising a novel epoxycyclohexanedicarboxylic acid diester having a specific structure.
  • a vinyl chloride resin composition for automobile interior comprising a vinyl chloride resin and an epoxycyclohexanedicarboxylic acid diester
  • the epoxycyclohexanedicarboxylic acid diester is a 4,5-epoxycyclohexane-1,2-dicarboxylic acid diester represented by the following general formula (1), and is linear with respect to the total amount of alkyl groups constituting the dicarboxylic acid diester.
  • a vinyl chloride resin composition for automobile interior wherein the ratio (molar ratio) of the alkyl group is from 50 to 99%.
  • R 1 and R 2 are the same or different and each represents a linear or branched alkyl group having 7 to 13 carbon atoms.
  • the alkyl group is mainly composed of an alkyl group having 9 to 11 carbon atoms, and the ratio (molar ratio) of the alkyl group having 9 carbon atoms / the alkyl group having 10 carbon atoms / the alkyl group having 11 carbon atoms is 10
  • [Claim 4] The vinyl chloride resin composition for automobile interior according to [Claim 1] or [Claim 2], wherein the alkyl group includes 90% or more (molar ratio) of an alkyl group having 9 carbon atoms.
  • [Claim 5] The vinyl chloride resin composition for automobile interior according to any one of [Claim 1] to [Claim 4], wherein a ratio of the linear alkyl group in the alkyl group is 55 to 95%.
  • [Claim 7] The vinyl chloride resin composition for automobile interior according to any one of [Claim 1] to [Claim 4], wherein the ratio of the linear alkyl group in the alkyl group is 70 to 95%.
  • the plasticizer is diisodecyl phthalate, di (2-propylheptyl) phthalate, diundecyl phthalate, dialkyl phthalate (C9 to C11), dialkyl phthalate (C10 to C13), ditridecyl phthalate, tri One or more selected from the group consisting of trinormal alkyl melitrate (C8, C10), trinormal octyl trimellitic acid, triisononyl trimellitic acid and trimellitic triester, the trimellitic triester is A saturated aliphatic alcohol in which the ratio (molar ratio) of trimellitic acid to the saturated aliphatic alcohol having 9 carbon atoms is 90% or more and the linear saturated aliphatic alcohol ratio (molar ratio) is 50 to 99%.
  • trimellitic acid triester Vinyl-based resin composition.
  • R1 and R2 are the same or different and each represents a linear or branched alkyl group having 7 to 13 carbon atoms.
  • a vinyl chloride resin stabilizer for automobile interior materials characterized in that the ratio (molar ratio) is 50 to 99%.
  • R1 and R2 are the same or different and each represents a linear or branched alkyl group having 7 to 13 carbon atoms.
  • a medical vinyl chloride resin composition that can be used stably, has good workability and flexibility, and has improved heat resistance and cold resistance, and is made of the resin composition.
  • the material has little deterioration after sterilization or sterilization treatment, can be used stably, has good mechanical properties such as flexibility, and is effective as a medical material with improved heat resistance and cold resistance. As a result, the present invention has been completed.
  • the fifth aspect of the present invention provides a medical vinyl chloride resin composition and a medical material containing a novel epoxycyclohexanedicarboxylic acid diester having a specific structure shown below.
  • a medical vinyl chloride resin composition comprising a vinyl chloride resin and an epoxycyclohexanedicarboxylic acid diester, wherein the epoxycyclohexanedicarboxylic acid diester is represented by the following general formula (1): It is composed of 5-epoxycyclohexane-1,2-dicarboxylic acid diester, and the ratio (molar ratio) of linear alkyl groups to the total amount of alkyl groups constituting the dicarboxylic acid diester is 50 to 99%.
  • a medical vinyl chloride resin composition In the formula, R 1 and R 2 are the same or different and each represents a linear or branched alkyl group having 7 to 13 carbon atoms.
  • the alkyl group is mainly composed of an alkyl group having 9 to 11 carbon atoms, and the ratio of the alkyl group having 9 carbon atoms / the alkyl group having 10 carbon atoms / the alkyl group having 11 carbon atoms is 10 to 25/35.
  • [Claim 4] The medical vinyl chloride resin composition according to [Claim 1] or [Claim 2], wherein the alkyl group includes 90% or more (molar ratio) of a C9 alkyl group.
  • [Claim 6] The vinyl chloride resin composition for medical use according to any one of [Claim 1] to [Claim 4], wherein a ratio of the linear alkyl group in the alkyl group is 55 to 95%.
  • [Claim 7] The medical vinyl chloride resin composition according to any one of [Claim 1] to [Claim 4], wherein a ratio of the linear alkyl group in the alkyl group is 60 to 95%.
  • the 4-cyclohexene-1,2-dicarboxylic acid diester is an esterified product of 4-cyclohexene-1,2-dicarboxylic acid or an anhydride thereof and a saturated aliphatic alcohol having 7 to 13 carbon atoms,
  • Vinyl chloride resin composition for use.
  • the medical vinyl chloride resin composition is a soft vinyl chloride resin composition for medical use in which the compounding amount of the epoxycyclohexanedicarboxylic acid diester is 30 to 150 parts by weight with respect to 100 parts by weight of the vinyl chloride resin.
  • [Item 1] to [Item 10] A medical vinyl chloride resin composition according to any one of items [1] to [10].
  • a medical semi-rigid vinyl chloride resin wherein the medical vinyl chloride resin composition comprises 5 parts by weight or more and less than 30 parts by weight of the epoxycyclohexanedicarboxylic acid diester based on 100 parts by weight of the vinyl chloride resin.
  • the medical vinyl chloride resin composition according to any one of [Item 1] to [Item 10], which is a composition.
  • the compounding amount of the fatty acid calcium salt and / or fatty acid zinc salt (the compounding amount when either one is used or the total amount when both are used) is the vinyl chloride resin 100.
  • Item 13 The medical vinyl chloride resin composition according to Item 16, wherein the amount is 0.1 to 10 parts by weight with respect to parts by weight.
  • [Item 20] A medical material comprising the medical vinyl chloride resin composition according to any one of [Item 1] to [Item 19].
  • the epoxy cyclohexane dicarboxylic acid diester which has a novel epoxy group which can be used suitably for the stabilizer in a plasticizer and chlorine containing resin can be obtained.
  • the plasticizer inherently has good plasticizing performance and is excellent in heat resistance and cold resistance. Can be used.
  • this epoxycyclohexane dicarboxylic acid diester when using this epoxycyclohexane dicarboxylic acid diester as a stabilizer, it is excellent also in the performance as a stabilizer in a chlorine containing resin system.
  • the plasticizer for vinyl chloride resin of the second aspect of the present invention is superior in compatibility with the vinyl chloride resin and more excellent in plasticization efficiency and flexibility, and has higher cold resistance and volatilization resistance than conventional ones. It has been improved and its use as a plasticizer is very useful for obtaining a vinyl chloride resin molded product that meets the demands for heat resistance and cold resistance, which have become increasingly severe in recent years. Furthermore, since anti-aging ability by heat and light due to the effect of the epoxy group contained in the compound is also expected, it is useful particularly in applications that are used outdoors for a long period of time.
  • the stabilizer for chlorine-containing resin of the third aspect of the present invention has excellent compatibility as a stabilizer (stabilization effect), good compatibility with the resin, and improved volatility resistance.
  • the chlorine-containing resin composition containing the stabilizer is a stabilized chlorine-containing resin composition that can be used stably without fear of fogging or the like.
  • the molded body of the stabilized chlorine-containing resin composition is very useful for applications such as wire coating, and further employs the stabilization method according to the present invention using the stabilizer.
  • the vinyl chloride resin composition for automobile interior of the fourth aspect of the present invention is excellent in compatibility with resin, easy to mix with resin, and used for automobile interior materials with improved cold resistance, volatilization resistance, especially fogging resistance.
  • a plasticizer or a stabilizer By containing a plasticizer or a stabilizer, it is possible to obtain a vinyl chloride resin composition for automobile interiors with improved cold resistance, volatile resistance, particularly fogging resistance, and excellent light resistance and heat aging resistance.
  • Automotive interior materials made of the vinyl chloride resin composition for automotive interiors are excellent in light resistance and heat aging resistance, and are stable without problems such as deterioration of physical properties or coloring even under severe conditions such as in hot weather.
  • the medical vinyl chloride resin composition of the fifth aspect of the present invention has good mechanical properties represented by processability and flexibility, improved heat resistance and cold resistance, and is volatile after heat sterilization treatment.
  • the decrease in the content of the plasticizer due to the above is remarkably small, good mechanical properties are maintained, and there is almost no coloring even in sterilization or sterilization treatment by irradiation with ultraviolet rays or radiation.
  • the medical material obtained from the vinyl chloride resin composition has good mechanical properties such as flexibility, improved heat resistance and cold resistance, and reduced mechanical properties after various sterilization and sterilization treatments. There is little, and there is almost no coloring, and it can be used stably.
  • the epoxycyclohexanedicarboxylic acid diester of the present invention is characterized by comprising a 4,5-epoxycyclohexane-1,2-dicarboxylic acid diester represented by the following general formula (1).
  • R 1 and R 2 are the same or different, having 7 to 13 carbon atoms, preferably represents a straight-chain or branched alkyl group having 8-12 carbon atoms, and where each of R 1, R
  • the ratio (molar ratio) of the linear alkyl group to the total amount of the alkyl group represented by 2 is 50 to 99%, preferably 55 to 98%, more preferably 55 to 95%, still more preferably 60 to 95%.
  • the epoxycyclohexanedicarboxylic acid diester of the present invention includes a mixture of 4,5-epoxycyclohexane-1,2-dicarboxylic acid diester.
  • the ratio in the case of a mixture means the ratio (molar ratio) of the linear alkyl group with respect to the whole quantity of the alkyl group of the whole mixture.
  • the alkyl group is mainly composed of an alkyl group having 9 to 11 carbon atoms, and a ratio (molar ratio) of an alkyl group having 9 carbon atoms / an alkyl group having 10 carbon atoms / an alkyl group having 11 carbon atoms.
  • 4,5-epoxycyclohexane-1,2-dicarboxylic acid diester includes cyclohexane ring (chair type conformation, boat type conformation), oxirane ring for cyclohexane ring (cis isomer, trans isomer), alkyloxy for cyclohexane ring.
  • Stereoisomers may exist in the carbonyl group (cis isomer, trans isomer) and in the oxirane ring and alkyloxycarbonyl group (cis isomer, trans isomer) via the cyclohexane ring.
  • any of a cis isomer alone, a trans isomer alone, or a mixture of a cis isomer and a trans isomer may be used.
  • it is generally produced by epoxidation followed by esterification at a reaction temperature lower than about 210 ° C. using 4-cyclohexene-1,2-dicarboxylic anhydride as a starting material.
  • the cis isomer is predominant in the isomer structure of the alkyloxycarbonyl group with respect to the cyclohexane ring.
  • the isomer structure of the oxirane ring and the alkyloxycarbonyl group via the cyclohexane ring preferably has an isomer ratio (cis isomer / trans isomer, molar ratio) measured by proton nuclear magnetic resonance spectroscopy of 5/95 to 35.
  • a preferred embodiment is a mixture of cis and trans isomers in the range of / 65, more preferably 10/90 to 30/70, particularly preferably 15/85 to 25/75.
  • the isomer structure of the oxirane ring and the alkyloxycarbonyl group through the cyclohexane ring as referred to herein is such that the oxirane ring and the alkyloxycarbonyl group are in the same direction with respect to the cyclohexane ring as shown in the following structural formula (2).
  • Those located are cis isomers, those located in different directions as shown in structural formula (3) are trans isomers, and the isomer ratio, that is, the isomer ratio between cis isomers and trans isomers is the proton nuclear magnetic field. It can be determined from the result of resonance spectroscopy ( 1 H-NMR).
  • the measurement can be easily performed, for example, by dissolving a sample in deuterated chloroform solvent or the like and using a general-purpose nuclear magnetic resonance spectrometer.
  • the isomer ratio is a trans-isomer of the peak shifted to the low magnetic field side among the two peaks attributed to methine hydrogen at the oxirane ring site present in the vicinity of 3.2 ppm of the analysis chart obtained by the above measurement.
  • the peak not shifted to the low magnetic field side was assigned as the peak of the cis isomer, and calculation was performed from each peak integral value using the following formula.
  • the above isomer structure can be isomerized to a desired isomer structure, that is, an isomer ratio, by heat or a chemical agent depending on the purpose.
  • the 4,5-epoxycyclohexane-1,2-dicarboxylic acid diester according to the present invention (hereinafter sometimes referred to as “the present diester”) is limited by its production method as long as it has the specific structure.
  • the present diester 4-cyclohexene-1,2-dicarboxylic acid or an acid anhydride thereof and a saturated aliphatic alcohol having a specific structure are esterified, and the resulting 4-cyclohexene-1,2-dicarboxylic acid is obtained. It can be easily obtained by epoxidizing an acid diester (hereinafter sometimes referred to as “the raw material ester”) under predetermined conditions.
  • the resulting 4,5-epoxycyclohexane-1,2-dicarboxylic acid or its acid anhydride and a saturated fat having a specific structure It can also be obtained by esterifying a group alcohol.
  • esterifying a group alcohol there is a method in which after the esterification with a lower alcohol having about 1 to 6 carbon atoms in advance, the saturated aliphatic alcohol is added and obtained by transesterification. From the viewpoint of practicality such as simplicity, the method of epoxidation after esterification is most preferable.
  • the 4,5-epoxycyclohexane-1,2-dicarboxylic acid diester according to the present invention is obtained by esterifying 4-cyclohexene-1,2-dicarboxylic acid or its acid anhydride with a saturated aliphatic alcohol. It is characterized by having an epoxidized structure of an unsaturated bond on the cyclohexene ring in 4-cyclohexene-1,2-dicarboxylic acid diester.
  • the saturated aliphatic alcohol used in the above esterification reaction or transesterification reaction is a linear or branched saturated aliphatic alcohol having 7 to 13 carbon atoms, preferably 8 to 12 carbon atoms, more preferably 9 carbon atoms.
  • To 11 or more particularly preferably (i) a ratio (molar ratio) of 90% or more, more preferably 95% or more of a saturated aliphatic alcohol having 9 carbon atoms.
  • the saturated aliphatic alcohol has an alkyl group ratio (molar ratio) of 10 to 25/35 to 50/30 to 45.
  • the “mainly” means that the ratio (molar ratio) of the saturated aliphatic alcohol having 9 to 11 carbon atoms in the entire saturated aliphatic alcohol is 90% or more, preferably 95% or more.
  • the saturated aliphatic alcohol is a raw alcohol that becomes a saturated aliphatic alkyl group constituting the 4,5-epoxycyclohexane-1,2-dicarboxylic acid diester represented by the general formula (1). This is synonymous with the description of the alkyl group.
  • the saturated aliphatic alcohol has a linear saturated aliphatic alcohol ratio (molar ratio) in the alcohol of 50 to 99%, preferably 55 to 98%, more preferably 55 to 95%, More preferably, it is 60 to 95%, particularly preferably 70 to 95%.
  • Details of preferred embodiments of the saturated aliphatic alcohol include (i) a ratio (molar ratio) of a saturated aliphatic alcohol having 9 to 13 carbon atoms, which is a linear or branched saturated aliphatic alcohol having 9 to 13 carbon atoms.
  • a saturated aliphatic alcohol containing 90% or more of a saturated aliphatic alcohol having 9 carbon atoms and having a linear saturated aliphatic alcohol ratio of 50 to 99% is (1) 1-octene, carbon monoxide and It can be produced by a production method comprising a step of producing an aldehyde having 9 carbon atoms by a hydroformylation reaction with hydrogen, and (2) a step of hydrogenating the aldehyde having 9 carbon atoms to reduce it to an alcohol.
  • the saturated aliphatic alcohol can be obtained by using or containing the saturated aliphatic alcohol obtained in the above as it is.
  • an aldehyde having 9 carbon atoms can be produced by reacting 1-octene, carbon monoxide and hydrogen in the presence of a cobalt catalyst or a rhodium catalyst.
  • the hydrogenation in the step (2) can be reduced to an alcohol by hydrogenating an aldehyde having 9 carbon atoms under hydrogen pressure in the presence of a noble metal catalyst such as a nickel catalyst or a palladium catalyst.
  • a noble metal catalyst such as a nickel catalyst or a palladium catalyst.
  • Specific examples of commercially available products include Lineball 9 manufactured by Shell Chemicals and n-Nonanol manufactured by Oxair.
  • the alkyl group having 9 carbon atoms / the alkyl group having 10 carbon atoms / the alkyl group having 11 carbon atoms is 10-25 / 35-50.
  • a saturated aliphatic alcohol having a ratio (molar ratio) of linear saturated aliphatic alcohol in the range of 50 to 99% in the saturated aliphatic alcohol in the range of / 30 to 45 is (1) 1-octene, 1-octene A step of producing an aldehyde having 9 to 11 carbon atoms by hydroformylation reaction of nonene, 1-decene, carbon monoxide and hydrogen, and (2) a step of hydrogenating the aldehyde having 9 to 11 carbon atoms and reducing it to an alcohol.
  • the saturated aliphatic alcohol is obtained by using or containing the saturated aliphatic alcohol obtained by the production method as it is. It can be.
  • the hydroformylation reaction in the step (1) is performed, for example, by reacting 1-octene, 1-nonene, 1-decene, carbon monoxide and hydrogen in the presence of a cobalt catalyst or a rhodium catalyst. Aldehydes can be produced.
  • the hydrogenation in the step (2) can be reduced to an alcohol by hydrogenating an aldehyde having 9 to 11 carbon atoms under hydrogen pressure in the presence of a noble metal catalyst such as a nickel catalyst or a palladium catalyst.
  • a noble metal catalyst such as a nickel catalyst or a palladium catalyst.
  • Specific examples of commercially available products include Neodol 911 manufactured by Shell Chemicals.
  • the esterification reaction refers to the above-mentioned raw alcohol for obtaining 4-cyclohexene-1,2-dicarboxylic acid diester (raw ester) and 4-cyclohexene-1,2- which are raw materials for the epoxidation reaction for obtaining the present diester.
  • the raw alcohol is, for example, 1 mol of 4-cyclohexene-1,2-dicarboxylic acid or an acid anhydride thereof. It is recommended to use 2.00 mol to 5.00 mol, more preferably 2.01 mol to 3.00 mol, especially 2.02 mol to 2.50 mol.
  • examples of the catalyst include mineral acids, organic acids, Lewis acids and the like. More specifically, examples of the mineral acid include sulfuric acid, hydrochloric acid, and phosphoric acid, examples of the organic acid include p-toluenesulfonic acid, methanesulfonic acid, and the like.
  • examples of the Lewis acid include aluminum derivatives, tin derivatives, A titanium derivative, a lead derivative, a zinc derivative, etc. are illustrated and it is possible to use these 1 type or 2 types or more together.
  • p-toluenesulfonic acid, tetraalkyl titanate having 3 to 8 carbon atoms, titanium oxide, titanium hydroxide, fatty acid tin having 3 to 12 carbon atoms, tin oxide, tin hydroxide, zinc oxide, zinc hydroxide, Lead oxide, lead hydroxide, aluminum oxide and aluminum hydroxide are particularly preferred.
  • the amount used is, for example, preferably 0.01 wt% to 5.0 wt%, more preferably 0.02 wt% to 4.0 wt% with respect to the total weight of the acid component and alcohol component that are the ester synthesis raw materials. It is recommended to use% by weight, in particular 0.03% to 3.0% by weight.
  • esterification temperature examples include 100 ° C. to 230 ° C., and the reaction is usually completed in 3 hours to 30 hours.
  • 4-Cyclohexene-1,2-dicarboxylic acid or its acid anhydride which is a raw material of the raw material ester, is not particularly limited, and those manufactured by known methods, commercially available products, those available as reagents, etc. are used. it can.
  • Rikacid TH (trade name, Shin Nippon Rika Co., Ltd.) is exemplified as a commercial product.
  • 4-Cyclohexene-1,2-dicarboxylic acid anhydride is usually obtained by Diels-Alder reaction of maleic anhydride and 1,3-butadiene. From the viewpoint of the esterification reaction, it is recommended to use 4-cyclohexene-1,2-dicarboxylic anhydride.
  • oxygenated organic compounds such as oxides, peroxides, and carbonyl compounds
  • the heat resistance, light resistance, etc. are adversely affected.
  • the raw material ester obtained by the esterification method may be subsequently purified by base treatment (neutralization treatment) ⁇ water washing treatment, liquid-liquid extraction, distillation (decompression, dehydration treatment), adsorption treatment, etc., if necessary. .
  • the base used for the base treatment is not particularly limited as long as it is a basic compound, and examples thereof include sodium hydroxide and sodium carbonate.
  • Examples of the adsorbent used in the adsorption treatment include activated carbon, activated clay, activated alumina, hydrotalcite, silica gel, silica alumina, zeolite, magnesia, calcia, and diatomaceous earth. They can be used alone or in combination of two or more.
  • the purification treatment after the esterification may be performed at room temperature, but may be performed by heating to about 40 to 90 ° C.
  • the epoxidation reaction means an epoxidation reaction of an unsaturated bond on the cyclohexene ring in the above raw material ester to obtain the present diester, and is usually “Organic Synthetic Chemistry, Vol. 23, No. 7, pp. 612-619”. (1985) "and the like can be easily performed using a well-known epoxidation reaction. Examples include (i) a method using an organic peracid such as peracetic acid or performic acid as the epoxidizing agent, and (ii) a method using hydrogen peroxide as the epoxidizing agent.
  • peracetic acid obtained by reacting hydrogen peroxide and acetic anhydride or acetic acid with a strong acid such as sulfuric acid as a catalyst is added to the raw material ester, and 20 to After stirring for several hours at 30 ° C., the temperature is gradually raised, and after reaching 50 to 60 ° C., the temperature can be maintained for 2 to 3 hours to complete the reaction.
  • a strong acid such as sulfuric acid as a catalyst
  • the organic peracid monoperphthalic acid, methachloroperbenzoic acid, trifluoroperacetic acid and the like can be used in addition to the above.
  • epoxidation can be performed by reacting with a raw material ester in the presence of an oxygen carrier such as formic acid or a strong acid catalyst such as sulfuric acid. More specifically, with respect to 1 mol of hydrogen peroxide, acetic acid or formic acid is used in a small amount of 0.5 mol or less and sulfuric acid is used as a catalyst in a small amount of 0.05 mol or less, and the temperature at 40 to 70 ° C. for 2 to 15 hours. By holding and reacting, the raw material ester can be easily epoxidized.
  • an oxygen carrier such as formic acid or a strong acid catalyst such as sulfuric acid.
  • phosphoric acid hydrochloric acid, nitric acid, boric acid, or a salt thereof is well known as the catalyst, and a sulfonic acid type strongly acidic cation exchange resin or aluminum oxide is also effective.
  • the present diester obtained by the epoxidation method may be subsequently purified by water phase removal, water washing treatment, liquid-liquid extraction, dehydration treatment, vacuum distillation, adsorption treatment or the like, if necessary.
  • Examples of the adsorbent used in the adsorption treatment include activated carbon, activated clay, activated alumina, hydrotalcite, silica gel, silica alumina, zeolite, magnesia, calcia, and diatomaceous earth. They can be used alone or in combination of two or more.
  • the purification treatment after the epoxidation may be performed at room temperature, but may be performed by heating to about 40 to 100 ° C.
  • Proton nuclear magnetic resonance spectroscopy confirmed that most of the isomer structure of the alkyloxycarbonyl group with respect to the cyclohexane ring of the diester obtained by the above-mentioned method and conditions range is a cis isomer. .
  • the diester can be suitably used as a plasticizer, and can be particularly suitably used as a plasticizer for vinyl chloride resins. That is, the plasticizer is characterized by comprising the above-described epoxycyclohexanedicarboxylic acid diester having a specific structure according to the present invention.
  • an epoxy having an isomer ratio (cis isomer / trans isomer, molar ratio) of an oxirane ring and an alkyloxycarbonyl group via a cyclohexane ring measured by proton nuclear magnetic resonance spectroscopy is 5/95 to 35/65 It is recommended to use a cyclohexanedicarboxylic acid diester compound as a plasticizer.
  • This diester can be suitably used as a stabilizer for chlorine-containing resins. That is, the stabilizer is characterized by comprising the above-described epoxycyclohexanedicarboxylic acid diester having a specific structure according to the present invention.
  • an epoxycyclohexanedicarboxylic acid diester compound in which the isomer ratio (cis isomer / trans isomer, molar ratio) of the oxirane ring site measured by proton nuclear magnetic resonance spectroscopy is 5/95 to 35/65 is stabilized. It is recommended to use as an agent.
  • a resin composition containing an epoxycyclohexanedicarboxylic acid diester having a specific structure according to the present invention and a molded product thereof are used for automobile underbody coats, instrument panels, consoles, door seats, under carpets, trunk seats, door trims and the like.
  • the vinyl chloride resin composition of the present invention can be obtained by blending the above-mentioned diester as a plasticizer or a stabilizer with a vinyl chloride resin.
  • the content of the present diester in the vinyl chloride resin composition according to the present invention is appropriately selected according to its use, but is preferably 1 to 200 parts by weight with respect to 100 parts by weight of the vinyl chloride resin. .
  • the vinyl chloride resin used in the present invention is a homopolymer of vinyl chloride or vinylidene chloride and a copolymer of vinyl chloride or vinylidene chloride, and the production method thereof is carried out by a conventionally known polymerization method.
  • a method of suspension polymerization in the presence of an oil-soluble polymerization catalyst can be used.
  • vinyl chloride paste resin a method of emulsion polymerization in the presence of a water-soluble polymerization catalyst in an aqueous medium can be used.
  • the degree of polymerization of these vinyl chloride resins is usually 300 to 5000, preferably 400 to 3500, and more preferably 700 to 3000. If the degree of polymerization is too low, heat resistance and the like are lowered, and if it is too high, moldability tends to be lowered.
  • a copolymer for example, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1- ⁇ -olefins having 2 to 30 carbon atoms such as tridecene, 1-tetradecene, acrylic acid and its esters, methacrylic acid and its esters, maleic acid and its esters, vinyl acetate, vinyl propionate, alkyl vinyl ether, etc.
  • the soft vinyl chloride resin composition of the present invention can be obtained by blending the above diester as a plasticizer with the vinyl chloride resin.
  • the content of the present diester in the soft vinyl chloride resin composition according to the present invention is appropriately selected according to its use, but is preferably 20 to 200 parts by weight with respect to 100 parts by weight of the vinyl chloride resin. More preferably, it is 30 to 150 parts by weight. If it is 20 parts by weight or more, sufficient flexibility can be obtained even in applications where flexibility is required, and in applications where further flexibility is required, flexibility can be imparted by adjusting the blending amount accordingly. However, in applications where there is concern about bleeding on the surface of the molded product, the amount of 200 parts by weight or less can be preferably used without concern.
  • the said plasticizer when adding a filler etc. with respect to said vinyl chloride resin composition, since the filler itself absorbs oil, the said plasticizer may be mix
  • the plasticizer when 100 parts by weight of calcium carbonate is added as a filler to 100 parts by weight of the vinyl chloride resin, the plasticizer may be added up to about 500 parts by weight.
  • the vinyl chloride resin composition or the soft vinyl chloride resin composition can be used in combination with other known plasticizers together with the diester. If necessary, flame retardants, stabilizers, stabilization aids, colorants, processing aids, fillers, antioxidants (anti-aging agents), UV absorbers, light stabilizers such as hindered amines, lubricants Or an additive, such as an antistatic agent, is often used by appropriately blending.
  • plasticizers and additives other than the present diester may be blended with the present diester alone or in combination of two or more.
  • plasticizers that can be used in combination with the present diester
  • known plasticizers conventionally used in this technical field can be used, for example, benzoates such as diethylene glycol dibenzoate, dibutyl phthalate (DBP), and the like.
  • benzoates such as diethylene glycol dibenzoate, dibutyl phthalate (DBP), and the like.
  • Alkyl esters of polyhydric alcohols such as pentaerythritol, polyesters having a molecular weight of 800 to 4000 synthesized by polyesterification of dibasic acids such as adipic acid and glycols, polyethers, epoxidized soybean oil, epoxidation Epoxidized esters such as linseed oil, dicapric acid-1, -Fatty acid glycol esters such as butanediol, citrate esters such as tributyl acetylcitrate (ATBC), trihexyl acetylcitrate (ATHC), triethylhexyl acetylcitrate (ATEHC), trihexylbutyrate citrate (BTHC), isosorbide diester Examples thereof include chlorinated paraffins obtained by chlorinating paraffin wax and n-paraffin, chlorinated fatty acid esters such as chlorinated stearate, and higher fatty acid esters such as butyl o
  • the blending amount is appropriately selected within a range not impairing the effect of the plasticizer according to the present invention, and usually 1 to 100 weights per 100 weight parts of the vinyl chloride resin. About 1 part is recommended.
  • Flame retardants include inorganic compounds such as aluminum hydroxide, antimony trioxide, magnesium hydroxide, zinc borate, cresyl diphenyl phosphate, trischloroethyl phosphate, trischloropropyl phosphate, trisdichloropropyl phosphate, etc.
  • Illustrative are halogen compounds such as phosphorus compounds and chlorinated paraffins.
  • Stabilizers include lithium stearate, magnesium stearate, magnesium laurate, calcium ricinoleate, calcium stearate, barium laurate, barium ricinoleate, barium stearate, zinc octylate, zinc laurate, zinc ricinoleate, stearin Metal soap compounds such as organic acid compounds including metals such as zinc acid, barium zinc stearate, barium zinc laurate, barium zinc ricinoleate, barium zinc octylate, calcium stearate zinc, calcium laurate zinc Metal soap compounds such as organic acid compounds containing composite metals such as calcium ricinoleate-zinc and calcium octylate-zinc, dimethyltin bis-2-ethylhexyl thioglycolate, dibutyltin maleate, Butyl tin bis butyl maleate, organic tin compounds such as dibutyltin dilaurate, antimony mercaptan
  • Stabilization aids include phosphite compounds such as triphenyl phosphite, monooctyl diphenyl phosphite, tridecyl phosphite, beta diketone compounds such as acetylacetone and benzoylacetone, glycerin, sorbitol, pentaerythritol, polyethylene glycol, etc.
  • phosphite compounds such as triphenyl phosphite, monooctyl diphenyl phosphite, tridecyl phosphite, beta diketone compounds such as acetylacetone and benzoylacetone, glycerin, sorbitol, pentaerythritol, polyethylene glycol, etc.
  • examples include polyol compounds, perchlorate compounds such as barium perchlorate and sodium perchlorate, hydrotalcite compounds, and zeolites.
  • the colorant examples include carbon black, lead sulfide, white carbon, titanium white, lithopone, benigara, antimony sulfide, chrome yellow, chrome green, phthalocyanine green, cobalt blue, phthalocyanine blue, and molybdenum orange.
  • the blending amount of the colorant with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 1 to 100 parts by weight.
  • processing aids include liquid paraffin, polyethylene wax, stearic acid, stearic acid amide, ethylene bis stearic acid amide, butyl stearate, calcium stearate and the like.
  • the processing aid is blended, the blending amount of the processing aid with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 20 parts by weight.
  • Fillers include metal oxides such as calcium carbonate, silica, alumina, clay, talc, diatomaceous earth, ferrite, fibers and powders such as glass, carbon, metal, glass spheres, graphite, aluminum hydroxide, barium sulfate, oxidation Examples include magnesium, magnesium carbonate, magnesium silicate, calcium silicate, and the like.
  • the blending amount of the filler with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 1 to 100 parts by weight.
  • Antioxidants include 2,6-di-tert-butylphenol, tetrakis [methylene-3- (3,5-tert-butyl-4-hydroxyphenol) propionate] methane, 2-hydroxy-4-methoxybenzophenone, etc.
  • Sulfur compounds such as phenolic compounds, alkyl disulfides, thiodipropionic esters, benzothiazoles, trisnonylphenyl phosphite, diphenylisodecyl phosphite, triphenyl phosphite, tris (2,4-di-tert-butylphenyl) ) Phosphinic compounds such as phosphites, organometallic compounds such as zinc dialkyldithiophosphate and zinc diaryldithiophosphate.
  • the blending amount of the antioxidant with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.2 to 20 parts by weight.
  • ultraviolet absorbers examples include salicylate compounds such as phenyl salicylate and p-tert-butylphenyl salicylate, benzophenone compounds such as 2-hydroxy-4-n-octoxybenzophenone and 2-hydroxy-4-methoxybenzophenone, 5-
  • benzotriazole compounds such as methyl-1H-benzotriazole and 1-dioctylaminomethylbenzotriazole, cyanoacrylate compounds and the like are exemplified.
  • the ultraviolet absorber is blended, the blending amount of the ultraviolet absorber with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 10 parts by weight.
  • Hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate (mixture), bis (1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis (1,1 -Dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate, bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidyl) ester and 1,1-dimethyl Reaction product of ethyl hydroperoxide and octane, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 2,2,6,6-tetramethyl-4-piperidi And ester mixtures of higher fatty acids, tetrakis (2,2,6,6-tetra
  • the lubricant examples include silicone, liquid paraffin, barafin wax, fatty acid metal salts such as metal stearate and metal laurate, fatty acid amides, fatty acid wax, and higher fatty acid wax.
  • the blending amount of the lubricant with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 10 parts by weight.
  • Antistatic agents include alkyl sulfonate type, alkyl ether carboxylic acid type or dialkyl sulfosuccinate type anionic antistatic agents, non-ionic antistatic agents such as polyethylene glycol derivatives, sorbitan derivatives, diethanolamine derivatives, alkylamidoamine type, alkyl Examples include quaternary ammonium salts such as dimethylbenzyl type, cationic antistatic agents such as alkylpyridinium type organic acid salts or hydrochlorides, amphoteric antistatic agents such as alkylbetaine type and alkylimidazoline type.
  • the blending amount of the antistatic agent with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 10 parts by weight.
  • the vinyl chloride resin composition or soft vinyl chloride resin composition of the present invention is prepared by mixing the present diester, vinyl chloride resin, and various additives as necessary, for example, a mortar mixer, a Henschel mixer, a Banbury mixer, a ribbon blender, or the like. By stirring and mixing, a mixed powder of a vinyl chloride resin composition or a soft vinyl chloride resin composition can be obtained.
  • the diester, vinyl chloride resin, and various additives as required are mixed with a kneader such as a conical twin screw extruder, a parallel twin screw extruder, a single screw extruder, a kneader type kneader, or a roll kneader.
  • a kneader such as a conical twin screw extruder, a parallel twin screw extruder, a single screw extruder, a kneader type kneader, or a roll kneader.
  • a pellet-like vinyl chloride resin composition or a soft vinyl chloride resin composition can also be obtained by melt molding.
  • this diester, vinyl chloride paste resin and optionally other plasticizers and various additives other than this diester such as pony mixer, butterfly mixer, planetary mixer, ribbon blender, kneader, dissolver, twin screw mixer, It is possible to obtain a paste-like soft vinyl chloride resin composition by uniformly mixing with a mixer such as a Henschel mixer or a three-roll mill and defoaming under reduced pressure if necessary.
  • the vinyl chloride resin composition or soft vinyl chloride resin composition (compounded powder or pellet) according to the present invention is vacuum molded, compression molded, extruded, injection molded, calendar molded, press molded, blow molded, powdered. It can be formed into a desired shape by melt molding using a conventionally known method such as body molding.
  • the paste-like soft vinyl chloride resin composition is molded into a desired shape by molding using a conventionally known method such as spread molding, dipping molding, gravure molding, slush molding, or screen processing. be able to.
  • the shape of the molded body is not particularly limited, but, for example, rod-shaped, sheet-shaped, film-shaped, plate-shaped, cylindrical, circular, elliptical, etc., or special shapes such as toys, ornaments, such as stars, A polygonal shape is illustrated.
  • the stabilized chlorine-containing resin composition of the present invention can be obtained by blending the above-described diester with a chlorine-containing resin as a stabilizer.
  • the chlorine-containing resin used in the present invention is not particularly limited as long as the resin contains chlorine in its structure.
  • chlorinated polyolefin such as polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, and chlorinated polypropylene.
  • Homopolymers such as chlorinated polyvinyl chloride, vinyl chloride-ethylene copolymer, vinyl chloride-propylene copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-styrene copolymer, vinyl chloride- Isobutylene copolymer, vinyl chloride-butadiene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-chlorinated propylene copolymer, vinyl chloride-maleic acid ester copolymer, allyl chloride copolymer, vinyl chloride -Methacrylate copolymer, ethylene-vinyl acetate-vinyl chloride copolymer, vinyl chloride Styrene-maleic anhydride terpolymer, vinyl chloride-styrene-acrylonitrile copolymer, vinyl chloride-isoprene copolymer, vinyl chloride-vinylidene chloride-vinyl
  • the stabilizer according to the present invention can be used in a rubber or elastomer system containing chlorine such as chloroprene synthetic rubber, epichlorohydrin rubber and its copolymer, hydrochloric acid rubber, and chlorinated rubber.
  • the chlorine-containing resin may be a single system or a blend system with other compatible resins such as polyester resins, acrylic resins, urethane resins, acrylonitrile-styrene-butadiene copolymers and the like. Also good.
  • vinyl chloride resin is a chlorine-containing resin that is easy to process, has excellent characteristics of the obtained molded body, and is widely used.
  • the content of the present diester in the stabilized chlorine-containing resin composition according to the present invention is appropriately selected depending on the type of resin to be blended and the application used, but is preferably based on 100 parts by weight of the chlorine-containing resin. Is 1 to 30 parts by weight, more preferably 1 part by weight or more and less than 20 parts by weight, particularly preferably 5 parts by weight or more and less than 20 parts by weight.
  • the content is 1 part by weight or more, it is possible to obtain a more advantageous stabilization effect, particularly advantageous in terms of long-term stabilization effect, and if the content is 30 parts by weight or less
  • antioxidants antioxidants (anti-aging agents)
  • UV absorbers light stabilizers such as hindered amines
  • plasticizers flame retardants
  • colorants processing aids
  • fillers fillers
  • lubricants e.g., talc, kaolin
  • stabilizers examples include those described above.
  • the combined use of the metal soap compound is particularly preferable because it shows the effect of amplifying the stabilization effect of the present diester by a synergistic effect.
  • the blending amount is appropriately selected within a range that does not impair the effect of the stabilizer according to the present invention. About 1 to 20 parts by weight is recommended.
  • a stabilizing aid in combination is also effective as a method for making the effect of the present diester more effective.
  • the stabilizing aid include those described above.
  • the blending amount is appropriately selected within a range not impairing the effect of the stabilizer according to the present invention, and usually 0.1 to 20 weights with respect to 100 parts by weight of the chlorine-containing resin. About 1 part is recommended.
  • an antioxidant an ultraviolet absorber, an antioxidant, a light stabilizer and the like as a method for making the effect of the diester more effective.
  • examples of the antioxidant include those described above.
  • the blending amount of the antioxidant with respect to 100 parts by weight of the chlorine-containing resin is recommended to be about 0.2 to 20 parts by weight.
  • the ultraviolet absorber examples include those described above.
  • the blending amount of the ultraviolet absorber with respect to 100 parts by weight of the chlorine-containing resin is recommended to be about 0.1 to 10 parts by weight.
  • hindered amine-based light stabilizer examples include those described above.
  • the blending amount of the light stabilizer with respect to 100 parts by weight of the chlorine-containing resin is recommended to be about 0.1 to 10 parts by weight.
  • plasticizer known plasticizers conventionally used can be used, and those described above are exemplified.
  • aromatic polycarboxylic esters such as phthalates and trimellitic esters
  • alicyclic polycarboxylic esters such as alicyclic dibasic esters, polyesters, polyethers, etc.
  • phthalic acid esters, trimellitic acid esters, cyclohexanedicarboxylic acid esters and the like are exemplified as particularly preferable plasticizers.
  • the preferable plasticizer include diisodecyl phthalate (DIDP), di (2-propylheptyl) phthalate (DPHP), diundecyl phthalate, dialkyl phthalate (C9 to C11) (PL-200), phthalate Dialkyl acid (C10-C13) (Vinizer 124), Ditridecyl phthalate (Vinizer 20), Tri-2-ethylhexyl trimellitic acid (TOTM), Tri-normal octyl trimellitic acid (Trimex New NSK), Triisononyl trimellitic acid ( TINTM), triisodecyl trimellitic acid (TIDTM), trinormal alkyl trimellitic acid (C8, C10) (Trimex N-08), trinonyl trimellitic acid (branched and linear) (TL9TM), and the like.
  • DIDP diisodecyl phthalate
  • DPHP di (2-propylheptyl) phthal
  • the plasticizer When the plasticizer is contained, its content is appropriately selected according to the hardness required for the intended use, but is usually 1 to 200 parts by weight, preferably 5 parts per 100 parts by weight of the chlorine-containing resin. About 150 parts by weight is recommended.
  • the stabilizer for chlorine-containing resins and the plasticizer according to the present invention may be added separately to the chlorine-containing resin, a method of adding them to the chlorine-containing resin after mixing in advance is more preferable.
  • the plasticizer having poor compatibility with the resin is compatible with the resin (that is, the addition effect of improving the plasticization efficiency of the plasticizer having poor plasticization efficiency), or contains a stabilizer. The effect of improving the uniformity of the stabilizer in the resin when the amount is small, that is, preventing unevenness in the stabilizing effect, is expected.
  • the flame retardant examples include those described above.
  • the blending amount of the flame retardant with respect to 100 parts by weight of the chlorine-containing resin is recommended to be about 0.1 to 20 parts by weight.
  • the colorant examples include those described above.
  • the blending amount of the colorant with respect to 100 parts by weight of the chlorine-containing resin is recommended to be about 1 to 100 parts by weight.
  • processing aids include those described above.
  • the blending amount of the processing aid with respect to 100 parts by weight of the chlorine-containing resin is recommended to be about 0.1-20 parts by weight.
  • the filler examples include those described above.
  • the blending amount of the filler with respect to 100 parts by weight of the chlorine-containing resin is recommended to be about 1 to 100 parts by weight.
  • the lubricant examples include those described above.
  • the blending amount of the lubricant with respect to 100 parts by weight of the chlorine-containing resin is recommended to be about 0.1 to 10 parts by weight.
  • the antistatic agent examples include those described above.
  • the blending amount of the antistatic agent with respect to 100 parts by weight of the chlorine-containing resin is recommended to be about 0.1 to 10 parts by weight.
  • the chlorine-containing resin composition of the present invention is obtained by stirring and mixing the diester, chlorine-containing resin and various additives as necessary with a stirrer such as a mortar mixer, a Henschel mixer, a Banbury mixer, or a ribbon blender. It can be a mixed powder of products.
  • a stirrer such as a mortar mixer, a Henschel mixer, a Banbury mixer, or a ribbon blender. It can be a mixed powder of products.
  • a kneader such as a conical twin screw extruder, a parallel twin screw extruder, a single screw extruder, a kneader type kneader, or a roll kneader.
  • a pellet-like chlorine-containing resin composition can also be obtained by molding.
  • the diester, plasticizer, vinyl chloride paste resin and various additives as required such as pony mixer, butterfly mixer, planetary mixer, ribbon blender, kneader, dissolver, twin screw mixer, Henschel mixer, three roll mill It is possible to obtain a paste-like chlorine-containing resin composition by uniformly mixing with a mixer such as the like and defoaming under reduced pressure as necessary.
  • Chlorine-containing molded resin Conventionally known methods such as vacuum molding, compression molding, extrusion molding, injection molding, calendar molding, press molding, blow molding, powder molding, etc. are applied to the chlorine-containing resin composition (mixed powder or pellet) according to the present invention. It can be formed into a desired shape by being melt-molded.
  • the paste-like chlorine-containing resin composition can be molded into a desired shape by molding using a conventionally known method such as spread molding, dipping molding, gravure molding, slush molding, or screen processing. it can.
  • the shape of the molded body is not particularly limited, but, for example, rod-shaped, sheet-shaped, film-shaped, plate-shaped, cylindrical, circular, elliptical, etc., or special shapes such as toys, ornaments, such as stars, A polygonal shape is illustrated.
  • the vinyl chloride resin composition for automobile interior of the present invention is characterized in that the above-mentioned diester is contained as a plasticizing component (plasticizer) or a stabilizing component (stabilizer) in the resin composition. It can be obtained by blending the above-described diester as a plasticizer or a stabilizer with a vinyl chloride resin.
  • Vinyl chloride resin Since the vinyl chloride resin used in the present invention is as described above, description thereof is omitted.
  • the content of the present diester in the vinyl chloride resin composition for automobile interior according to the present invention is appropriately selected according to the use, but is preferably 1 to 200 weights with respect to 100 parts by weight of the vinyl chloride resin. Part, more preferably 5 to 150 parts by weight.
  • This diester has an effect as a plasticizer and an effect as a stabilizer regardless of the blending amount, but more specifically, when an effect as a plasticizer is desired,
  • the amount is preferably 20 to 200 parts by weight, more preferably 30 to 150 parts by weight.
  • the amount is preferably 1 to 30 parts by weight, more preferably 5 to 20 parts by weight.
  • the content relative to 100 parts by weight of the vinyl chloride resin is 1 part by weight or more, the effect of the present diester as a stabilizer can be sufficiently exerted, and if it is 200 parts by weight or less, the surface of the molded product It can be used safely without worrying about bleeding.
  • the content relative to 100 parts by weight of the vinyl chloride resin is 20 parts by weight or more, sufficient flexibility according to the purpose of use can be obtained.
  • the effect as a stabilizer (stabilization effect) is mainly desired, if the content with respect to 100 parts by weight of vinyl chloride resin is 1 part by weight or more, sufficient stabilization effect, particularly long-term stabilization An effect is obtained. If the content is 30 parts by weight or less, the stabilizing effect is more dominant than the effect as a plasticizer, so it does not become soft and maintains the target hardness in the intended intended use. It is also possible to do.
  • plasticizers and stabilizers can be used in combination with the diester, which is recommended from the viewpoint of plasticizing effect and stabilizing effect.
  • a light stabilizer such as a stabilizer, an antioxidant (anti-aging agent), an ultraviolet absorber, or a hindered amine as necessary.
  • additives such as flame retardants, colorants, processing aids, fillers, lubricants or antistatic agents are often appropriately blended depending on the intended use.
  • plasticizers, stabilizers, and other additives other than the present diester may be used alone or in combination of two or more with the present diester.
  • plasticizers that can be used in combination with the present diester
  • known plasticizers conventionally used in this technical field can be used, and those described above are exemplified.
  • the blending amount is appropriately selected within a range not impairing the effect of the plasticizer according to the present invention, and usually 1 to 100 weights per 100 weight parts of the vinyl chloride resin. About 1 part is recommended.
  • aromatic polycarboxylic esters such as phthalates and trimellitic esters
  • alicyclic polycarboxylic esters such as alicyclic dibasic esters, polyesters, polyethers, etc.
  • preferred plasticizers phthalic acid esters, trimellitic acid esters, and cyclohexanedicarboxylic acid esters are further exemplified as particularly preferred plasticizers.
  • particularly preferred plasticizer include diisodecyl phthalate (DIDP), di (2-propylheptyl) phthalate (DPHP), diundecyl phthalate, and dialkyl phthalates (C9 to C11) (PL-200).
  • the content thereof is appropriately selected according to the hardness required in the application to be used, but is usually 1 to 200 parts by weight, preferably 100 parts by weight, preferably 100 parts by weight of the vinyl chloride resin. About 5 to 150 parts by weight is recommended.
  • the diester and the plasticizer according to the present invention may be added to the vinyl chloride resin separately, but a method of adding them to the vinyl chloride resin after mixing in advance is more preferable.
  • the diester is used as a stabilizer, it is not compatible with the resin by mixing in advance, that is, the plasticizer with poor plasticization efficiency is compatible with the resin, that is, the effect of improving the plasticization efficiency. Even if the content is small, the uniformity in the resin can be maintained, and as a result, the effect of preventing unevenness of the stabilization effect can be easily obtained.
  • stabilizers examples include those described above.
  • the combined use of the metal soap compound is particularly preferable because it shows the effect of amplifying the stabilization effect of the present diester by a synergistic effect.
  • the blending amount is appropriately selected within a range not impairing the effect of the stabilizer according to the present invention, and is usually 0 with respect to 100 parts by weight of the vinyl chloride resin. About 1 to 20 parts by weight is recommended.
  • a stabilizing aid in combination is also effective as a method for making the effect of the present diester more effective.
  • the stabilizing aid include those described above.
  • the blending amount is appropriately selected within a range not impairing the effect of the stabilizer according to the present invention, and usually 0.1 to 20 with respect to 100 parts by weight of the vinyl chloride resin. About parts by weight are recommended.
  • an antioxidant an ultraviolet absorber, an antioxidant, a light stabilizer and the like as a method for making the effect of the diester more effective.
  • examples of the antioxidant include those described above.
  • the blending amount of the antioxidant with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.2 to 20 parts by weight.
  • the ultraviolet absorber examples include those described above.
  • the blending amount of the ultraviolet absorber with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 10 parts by weight.
  • hindered amine-based light stabilizer examples include those described above.
  • the blending amount of the light stabilizer with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 10 parts by weight.
  • the flame retardant examples include those described above.
  • the blending amount of the flame retardant with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 20 parts by weight.
  • the colorant examples include those described above.
  • the blending amount of the colorant with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 1 to 100 parts by weight.
  • processing aids include those described above.
  • the blending amount of the processing aid with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 20 parts by weight.
  • the filler examples include those described above.
  • the blending amount of the filler with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 1 to 100 parts by weight.
  • the lubricant examples include those described above.
  • the blending amount of the lubricant with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 10 parts by weight.
  • the antistatic agent examples include those described above.
  • the blending amount of the antistatic agent with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 10 parts by weight.
  • the vinyl chloride resin composition for automobile interior materials of the present invention is a mixture of the present diester, vinyl chloride resin and various additives as required, for example, with a stirrer such as a mortar mixer, Henschel mixer, Banbury mixer, ribbon blender or the like. It can be made into a mixed powder of a vinyl chloride resin composition for automobile interior.
  • a kneader such as a conical twin screw extruder, a parallel twin screw extruder, a single screw extruder, a kneader type kneader, or a roll kneader.
  • a vinyl chloride resin composition for automobile interior can be obtained by melt molding.
  • this diester, vinyl chloride paste resin and various additives as required, such as mixing of pony mixer, butterfly mixer, planetary mixer, ribbon blender, kneader, dissolver, twin screw mixer, Henschel mixer, three roll mill, etc. It is possible to obtain a paste-like vinyl chloride resin composition for automobile interior by mixing with a machine and defoaming under reduced pressure if necessary.
  • a vinyl chloride resin composition for automobile interiors (mixed powder or pellets) according to the present invention, such as vacuum molding, compression molding, extrusion molding, injection molding, calendar molding, press molding, blow molding, powder molding, etc.
  • melt molding By carrying out melt molding using a known method, it can be molded into an automobile interior material having a desired shape.
  • the above-mentioned vinyl chloride resin composition for automobile interior is molded into a desired shape by molding using a conventionally known method such as spread molding, dipping molding, gravure molding, slush molding, screen processing, etc. Can be molded into automotive interior materials.
  • the automotive interior materials thus obtained are automobiles such as instrument panels, door trims, trunk trims, seats, pillar covers, ceiling materials, rear trays, console boxes, airbag covers, armrests, headrests, meter covers, crash pads, floor carpets, etc. It can be suitably used as an interior material.
  • the vinyl chloride resin composition of the present invention is characterized by containing the diester described above as a plasticizing component (plasticizer) or a stabilizing component (stabilizer) in the resin composition. It can be obtained by blending the present diester with a vinyl chloride resin.
  • Vinyl chloride resin Since the vinyl chloride resin used in the present invention is as described above, description thereof is omitted.
  • the content of the present diester in the medical vinyl chloride resin composition of the present invention is appropriately selected according to its use, but is usually 5 to 200 parts by weight with respect to 100 parts by weight of the vinyl chloride resin.
  • the amount is preferably 5 to 100 parts by weight. Even when the content is within the above range, it is preferably 30 to 200 parts by weight, more preferably, when used as a soft material, for example, depending on the method of use (use) of the medical vinyl chloride resin composition of the present invention. Is recommended to be in the range of 30 to 150 parts by weight, particularly preferably 40 to 100 parts by weight.
  • the amount be in the range of not less than 20 parts by weight. If it is less than 5 parts by weight, the mechanical properties and the effect of preventing deterioration during sterilization or sterilization may be insufficient. If it exceeds 200 parts by weight, bleeding on the surface of the molded product will be severe. May not be preferable.
  • a filler etc. with respect to said vinyl chloride resin composition since this filler itself absorbs oil, it is also possible to mix
  • 100 parts by weight of calcium carbonate is added as a filler to 100 parts by weight of the vinyl resin, about 5 to 500 parts by weight of the plasticizer can be added.
  • a stabilizer such as a metal soap compound or a radiation-resistant material of a silane compound, it further suppresses deterioration after sterilization or sterilization treatment. Is possible.
  • the stabilizer examples include those described above.
  • the blending amount of the stabilizer with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 20 parts by weight.
  • the said metal soap compound may exhibit the function as a processing aid or a lubricant with the function of a stabilizer.
  • the stabilizers a combination of calcium stearate and zinc stearate is most preferably used in terms of safety and the like. Further, the total amount is recommended to be 0.1 to 10 parts by weight, preferably about 0.2 to 6 parts by weight, and the blending ratio is particularly limited as long as it is within the range showing the stabilizing effect. Usually, it is often used in the range of 5: 1 to 1: 5.
  • Examples of the radiation-resistant materials of the silane compounds include monoalkoxysilane compounds such as trimethylmethoxysilane, trimethylethoxysilane, triethylmethoxysilane, and triethylethoxysilane, dimethyldimethoxysilane, diethyldimethoxysilane, dimethyldiethoxysilane, and diphenyldimethoxy.
  • Silane diphenyldiethoxysilane, methylaminoethoxypropyl dialkoxysilane, N- ( ⁇ aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, etc.
  • Dialkoxysilane compounds methyltrimethoxysilane, methyltriethoxysilane, hexyltrimethoxysilane, phenyltrimethoxysilane, Nyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- (Phenyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ - (Polyethyleneamino) propyltri
  • plasticizers can be used in combination with the diester.
  • stabilizing aid antioxidant (anti-aging agent), UV absorber, hindered amine light stabilizer, filler, diluent, thinning agent, thickening agent, processing aid, Additives such as lubricants, antistatic agents, flame retardants, foaming agents, adhesives, and colorants can be blended.
  • plasticizers and additives other than the present diester may be used alone or in combination of two or more kinds together with the present diester.
  • the blending amount is recommended to be about 1 to 100 parts by weight with respect to 100 parts by weight of the vinyl chloride resin.
  • the stabilizing aid examples include those described above.
  • the blending amount of the stabilizing aid with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 20 parts by weight.
  • the antioxidant examples include those described above.
  • the blending amount of the antioxidant with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.2 to 20 parts by weight.
  • the ultraviolet absorber examples include those described above.
  • the blending amount of the ultraviolet absorber with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 10 parts by weight.
  • hindered amine-based light stabilizer examples include those described above.
  • the blending amount of the light stabilizer with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 10 parts by weight.
  • the filler examples include those described above.
  • the blending amount of the filler with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 1 to 100 parts by weight.
  • the diluent examples include 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, low-boiling point aliphatic and aromatic hydrocarbons, and the like.
  • the blending amount of the diluent with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 1 to 50 parts by weight.
  • the viscosity reducer various nonionic surfactants, sulfosuccinate anionic surfactants, silicone compounds with surface activity, soybean oil lecithin, monohydric alcohols, glycol ethers, polyethylene glycols, etc. Is exemplified.
  • the blending amount of the thinning agent with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 20 parts by weight.
  • Thickeners include synthetic fine silica, bentonite, ultrafine precipitated calcium carbonate, metal soap, hydrogenated castor oil, polyamide wax, oxidized polyethylene, vegetable oil, granulated ester surfactant, nonionic interface An active agent etc. are illustrated.
  • the blending amount of the thickener with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 1 to 50 parts by weight.
  • processing aids include those described above.
  • the blending amount of the processing aid with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 20 parts by weight.
  • the lubricant examples include those described above.
  • the blending amount of the lubricant with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 10 parts by weight.
  • the antistatic agent examples include those described above.
  • the blending amount of the antistatic agent with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 10 parts by weight.
  • the flame retardant examples include those described above.
  • the blending amount of the flame retardant with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 0.1 to 20 parts by weight.
  • the foaming agent examples include organic foaming agents such as azodicarbonamide and oxybisbenzenesulfonyl hydrazide, and inorganic foaming agents such as baking soda.
  • organic foaming agents such as azodicarbonamide and oxybisbenzenesulfonyl hydrazide
  • inorganic foaming agents such as baking soda.
  • the colorant examples include those described above.
  • the blending amount of the colorant with respect to 100 parts by weight of the vinyl chloride resin is recommended to be about 1 to 20 parts by weight.
  • the medical vinyl chloride resin composition of the present invention comprises the stabilizer, the silane compound, and various additives as required depending on the diester, the vinyl chloride resin and the intended purpose / use application.
  • Pony mixers butterfly mixers, planetary mixers, dissolvers, twin screw mixers, three roll mills, mortar mixers, Henschel mixers, Banbury mixers, ribbon blenders, etc., conical twin screw extruders, parallel twin screw extruders,
  • a vinyl chloride resin composition in the form of powder, pellets, or paste can be obtained.
  • the medical vinyl chloride resin composition according to the present invention includes vacuum molding, compression molding, extrusion molding, injection molding, calendar molding, press molding, blow molding, powder molding, spread coating, dip coating, spray coating, paper casting. , Extrusion-coating, gravure printing, screen printing, slush molding, rotational molding, casting, dip molding, welding, etc. Can be molded into material.
  • the shape of the molded body which is a medical material, is not particularly limited.
  • the molded body which is a medical material obtained in this way, is a chest tube, dialysis tube, artificial respiration tube, endotracheal tube, respiratory tube, nutrition tube, extension tube, etc., urinary catheter, suction catheter, intravenous injection Catheters, catheters such as gastrointestinal tract catheters, blood bags, infusion bags, medicinal solution bags, bags such as drain bags, blood component separators, circuit devices such as hemodialysis circuits, peritoneal dialysis circuits, cardiopulmonary circuits, connection members Very useful as medical materials such as branch valves, connector members such as speed control members, infusion sets, blood transfusion sets, intravenous injection sets, cardiopulmonary bypass, surgical gloves, pharmaceutical packaging materials, medical films, hygiene materials, respiratory masks, etc. Useful.
  • NMR analysis Nuclear magnetic resonance spectroscopy (NMR analysis) NMR analyzer: trade name “DRX-500”, Bruker solvent: deuterated chloroform (CDCl 3 ) Internal standard: Tetramethylsilane (TMS) Sample tube: 5mm 1 H-NMR: Resonance frequency: 500.1 MHz, number of integrations 4 times 13 C-NMR: Resonance frequency: 125.8 MHz, 71 integrations The measurement sample was prepared by diluting a 20 mg sample with 0.8 ml of solvent.
  • FT-IR apparatus trade name “Spectrum One”, manufactured by PerkinElmer, measurement range: 650 to 4000 cm ⁇ 1 , measurement method: ATR method, integration count: 4 times, resolution: 4.00 cm ⁇ 1
  • Chemical analysis ester value measured in accordance with JIS K-0070 (1992).
  • Acid value measured in accordance with JIS K-0070 (1992).
  • Iodine value measured in accordance with JIS K-0070 (1992).
  • Oxirane Oxygen Measured according to the standard oil and fat analysis test method 2.3.7.1-2013 “oxirane oxygen determination method (1)”.
  • Hue Measured according to JIS K-0071 (1998) to determine the Hazen unit color number.
  • Example 1 Esterification Reaction Into a 2 L four-necked flask equipped with a thermometer, decanter, stirring blade, and reflux condenser, 182.6 g (1.2 mol, Shin Nippon Rika Co., Ltd.) was added to 4-cyclohexene-1,2-dicarboxylic anhydride. Sliced fatty alcohol (shell) containing 95.1% by weight of a linear saturated aliphatic alcohol having 9 carbon atoms and 11.7% by weight of a branched saturated aliphatic alcohol having 9 carbon atoms.
  • Epoxidation reaction Next, 423 g (1.0 mol) of the raw material ester 1 was charged into a 1 L four-necked flask equipped with a thermometer, stirring blades, and a cooling tube, and the temperature was raised to 60 to 70 ° C. After the temperature rise, 60% hydrogen peroxide water 76.6 g (1.35 mol), 76% formic acid 18.3 g (0.30 mol), and 75% phosphoric acid 1.47 g (0.01 mol) 2.25 g. Drip slowly over time. After completion of the dropwise addition, the temperature was further maintained for 4 hours, and the reaction was completed by aging.
  • diester 1 4,5-epoxycyclohexane-1,2-dicarboxylic acid diester
  • 397 g was obtained.
  • the resulting diester 1 is a transparent liquid, ester value: 256mgKOH / g, acid number: 0.06mgKOH / g, iodine value: 2.5gI 2 / 100g, oxirane oxygen: 3.5%, color: 10 there were.
  • the obtained diester 1 was subjected to elemental analysis, NMR analysis, and IR analysis, and the results are shown in Table 1.
  • the isomer ratio (cis isomer / trans isomer, molar ratio) of the oxirane ring portion of diester 1 calculated from the results of 1 H-NMR analysis in Table 1 was 20/80.
  • Example 2 Instead of 416 g of saturated aliphatic alcohol (manufactured by Shell Chemicals: Lineball 9), the ratio (molar ratio) of carbon number 9/10/11 is 18/42/38, and the overall straight chain ratio is 84%.
  • 4,5-epoxycyclohexanedicarboxylic acid diester was carried out in the same manner as in Example 1 except that 400 g (2.5 mol) of a saturated aliphatic alcohol having 9 to 11 carbon atoms (manufactured by Shell Chemicals: Neodol 911) was added. (Hereinafter referred to as “diester 2”) 404 g was obtained.
  • the resulting diester 2 ester value: 242mgKOH / g, acid number: 0.04 mgKOH / g, iodine value: 1.9gI 2 / 100g, oxirane oxygen: 3.1%, color: 10.
  • the obtained diester 2 was subjected to elemental analysis, NMR analysis, and IR analysis, and the results are shown in Table 1.
  • the isomer ratio (cis isomer / trans isomer, molar ratio) of the oxirane ring portion of diester 2 calculated from the results of 1 H-NMR analysis in Table 1 was 20/80.
  • a general-purpose vinyl chloride resin trade name “Zest1000z”, manufactured by Shin Da
  • di-2-ethylhexyl phthalate (hereinafter referred to as DOP), which is a general-purpose phthalate ester, is an epoxycyclohexanedicarboxylic acid diester that does not contain an epoxy group in its molecular structure.
  • DOP di-2-ethylhexyl phthalate
  • DINCH 2,2-cyclohexanedicarboxylic acid diisononyl
  • E-DEHTH 4,5-epoxycyclohexanedicarboxylic acid di-2-ethylhexyl ester
  • the vinyl chloride sheet blended with the diester of the present invention has the same flexibility and plasticization performance as shown by the 100% modulus and elongation of the tensile test results compared to the vinyl chloride sheet blended with other plasticizers. It was confirmed that the performance as a plasticizer was excellent.
  • the flexible temperature of the vinyl chloride sheet blended with the diester of the present invention is 10 ° C. or more lower than that of the vinyl chloride sheet blended with other plasticizers such as E-DEHTH, which is extremely cold resistant. It was confirmed that it was excellent in performance.
  • the volatilization loss at 170 ° C. of the vinyl chloride sheet blended with the diester of the present invention is 1 ⁇ 4 to 1/7 compared with the vinyl chloride sheet blended with other plasticizers. It was reduced and it was confirmed that it was very excellent in heat resistance.
  • the vinyl chloride sheet compounded with the diester of the present invention was markedly colored in about one hour while the vinyl chloride sheet compounded with other plasticizers was markedly colored. Was hardly colored, and it was confirmed that it acted as a stabilizer as well as an effect as a plasticizer.
  • the vinyl chloride sheet not blended with the diester of the present invention starts to color in about 30 minutes at a high temperature of 170 ° C., and is markedly colored in about 1 hour, whereas the vinyl chloride sheet blended with the diester of the present invention. was hardly colored even after 1 hour, and it was confirmed that it worked effectively as a stabilizer.
  • the diester of the present invention is very useful as a plasticizer and a stabilizer.
  • Cold resistance Measured according to JIS K-6773 (1999) using a crashberg tester. The lower the softening temperature (° C), the better the cold resistance.
  • the flexible temperature here refers to a temperature at a low temperature limit indicating a predetermined torsional rigidity (3.17 ⁇ 10 3 kg / cm 2 ) in the measurement.
  • ester 1 4-cyclohexene-1,2-dicarboxylic acid diester
  • epoxy 1 the desired 4,5-epoxycyclohexanedicarboxylic acid diester
  • Example 1 According to the method described in the above “(3) Molding processability”, the moldability (gelling temperature) was measured using the epoxycyclohexanedicarboxylic acid diester (epoxy 1) obtained in Production Example 1. The obtained results are shown in Table 2. Subsequently, as described in “(4) Production of vinyl chloride sheet” above, a soft vinyl chloride resin composition was prepared using epoxy 1 as a plasticizer, and chlorinated from the obtained soft vinyl chloride resin composition. A vinyl sheet was prepared and subjected to a tensile test, a cold resistance test, and a heat resistance test. The obtained results are shown in Table 2.
  • Example 2 The same procedure as in Example 1 was conducted except that epoxy 2 was used in place of epoxy 1 to measure molding processability. Subsequently, a soft vinyl chloride resin composition was prepared, and the resulting soft vinyl chloride resin was obtained. A vinyl chloride sheet was prepared from the composition and subjected to a tensile test, a cold resistance test, and a heat resistance test. The results obtained are summarized in Table 2.
  • Example 3 The same procedure as in Example 1 was conducted except that epoxy 3 was used in place of epoxy 1, the moldability was measured, a soft vinyl chloride resin composition was prepared, and the resulting soft vinyl chloride resin was obtained. A vinyl chloride sheet was prepared from the composition and subjected to a tensile test, a cold resistance test, and a heat resistance test. The results obtained are summarized in Table 2.
  • Example 1 The same procedure as in Example 1 was conducted except that epoxy 4 was used in place of epoxy 1, the moldability was measured, a soft vinyl chloride resin composition was subsequently prepared, and the resulting soft vinyl chloride resin was obtained. A vinyl chloride sheet was prepared from the composition and subjected to a tensile test, a cold resistance test, and a heat resistance test. The results obtained are summarized in Table 2.
  • Example 2 The same procedure as in Example 1 was conducted except that epoxy 5 was used in place of epoxy 1, the moldability was measured, a soft vinyl chloride resin composition was subsequently prepared, and the resulting soft vinyl chloride resin was obtained. A vinyl chloride sheet was prepared from the composition and subjected to a tensile test, a cold resistance test, and a heat resistance test. The results obtained are summarized in Table 2.
  • Example 3 The same procedure as in Example 1 was conducted except that epoxy 6 was used in place of epoxy 1, the moldability was measured, a soft vinyl chloride resin composition was prepared, and the resulting soft vinyl chloride resin was obtained. A vinyl chloride sheet was prepared from the composition and subjected to a tensile test, a cold resistance test, and a heat resistance test. The results obtained are summarized in Table 2.
  • Example 5 Except for using diisononyl phthalate (manufactured by Shin Nippon Rika Co., Ltd., Sansosizer DINP) instead of epoxy 1, the same process as in Example 1 was carried out to measure the moldability, followed by a soft vinyl chloride resin. A composition was prepared, a vinyl chloride sheet was prepared from the obtained soft vinyl chloride resin composition, and a tensile test, a cold resistance test, and a heat resistance test were performed. The results obtained are summarized in Table 2.
  • Example 6 Except for using commercially available tri-2-ethylhexyl trimellitic acid (TOTM) in place of epoxy 1, the same procedure as in Example 1 was carried out to measure the molding processability, and then a soft vinyl chloride resin composition was prepared. Then, a vinyl chloride sheet was produced from the obtained soft vinyl chloride resin composition and subjected to a tensile test, a cold resistance test, and a heat resistance test. The results obtained are summarized in Table 2.
  • TOTM tri-2-ethylhexyl trimellitic acid
  • the 4,5-epoxycyclohexanedicarboxylic acid diester of the present invention (Example 2) is used as a plasticizer, it exhibits molding processability equal to or higher than that of a phthalic acid diester, which is a general-purpose plasticizer, and is also resistant to cold. It can be seen that the heat resistance is further improved, and it is particularly useful when used in a harsher environment.
  • Ratio of carbon number of alkyl group and linear alkyl group The ratio of carbon number of alkyl group and linear alkyl group in the stabilizer used in the examples and comparative examples of the present invention is used for the production thereof.
  • the composition of the raw material alcohol was measured by gas chromatography (hereinafter abbreviated as GC), and the result was defined as the ratio of the number of carbon atoms in the stabilizer to the linear alkyl group.
  • GC gas chromatography
  • a stabilizer according to the present invention is blended in a predetermined amount shown in Table 3 in 100 parts by weight of a vinyl chloride resin (straight, polymerization degree 1050, trade name “Zest1000Z”, manufactured by Shin Daiichi PVC Co., Ltd.),
  • a stabilizer other than the invention 3.0 parts by weight of a calcium-zinc composite stabilizer was mixed and stirred and mixed with a mortar mixer to obtain a vinyl chloride resin composition.
  • This resin composition was melt-kneaded at 170 to 176 ° C. for 4 minutes using a 5 ⁇ 12 inch double roll to prepare a roll sheet. Subsequently, press molding was performed at 172 to 178 ° C. for 10 minutes to produce a press sheet having a thickness of about 0.5 mm.
  • a stabilizer according to the present invention is blended in 100 parts by weight of a vinyl chloride resin (straight, degree of polymerization 1050, trade name “Zest1000Z”, manufactured by Shin Daiichi Vinyl Co., Ltd.), and a predetermined amount as shown in Table 4 is further added.
  • a vinyl chloride resin straight, degree of polymerization 1050, trade name “Zest1000Z”, manufactured by Shin Daiichi Vinyl Co., Ltd.
  • calcium stearate manufactured by Nacalai Tesque Co., Ltd.
  • zinc stearate manufactured by Nacalai Tesque Co., Ltd.
  • sheet coloring is evaluation of heat resistance, it is also a parameter
  • No coloring
  • Slightly colored
  • ⁇ ⁇ Slightly colored
  • Coloring
  • Strong coloring
  • XX Remarkable coloring
  • Fogging resistance 4 g of press sheets were placed in a glass sample bottle and set in a fogging tester whose temperature was adjusted to 100 ° C. Furthermore, after covering the sample bottle with a glass plate, a cooling plate through which cooling water whose temperature was adjusted to 20 ° C. was placed was placed thereon, and heat treatment was performed at 100 ° C. for 3 hours. After the heat treatment, the haze (%) of the glass plate was measured using a haze meter (manufactured by Toyo Seiki Seisakusho: Hazeguard II). The smaller the Haze value, the better the fogging resistance.
  • ester 1 Made by Chemicals: 416 g (2.9 mol) of lineball 9, linear ratio (molar ratio) 85%, and 0.24 g of tetraisopropyl titanate as an esterification catalyst were added, and the esterification reaction was carried out at a reaction temperature of 200 ° C. did. The reaction was continued until the acid value of the reaction solution reached 0.5 mgKOH / g while the generated water was removed from the system by refluxing the alcohol under reduced pressure. After completion of the reaction, the unreacted alcohol was distilled out of the system under reduced pressure, and neutralized, washed with water and dehydrated according to a conventional method to obtain the desired 4-cyclohexene-1,2-dicarboxylic acid diester (hereinafter referred to as “ester 1”). 449 g was obtained. The obtained ester 1 had an ester value of 262 mgKOH / g, an acid value of 0.04 mgKOH / g, and a hue of 15.
  • epoxy 1 the desired 4,5-epoxycyclohexanedicarboxylic acid diester
  • Example 1 Using 19 parts by weight of epoxycyclohexanedicarboxylic acid diester (epoxy 1) as a stabilizer according to the method described in [Method 1: Hard and semi-rigid vinyl chloride sheet] in “(3) Preparation of vinyl chloride sheet” above.
  • a vinyl chloride resin composition was prepared, a vinyl chloride sheet was prepared from the obtained vinyl chloride resin composition, and a tensile test, a heat resistance test, and a fogging resistance test were performed.
  • the results obtained are summarized in Table 3.
  • the vinyl chloride sheet produced above does not show any signs of bleeding even if it is left at room temperature for one month.
  • Example 2 A vinyl chloride resin composition was prepared in the same manner as in Example 1 except that 10 parts by weight of epoxy 2 was used as a stabilizer instead of 19 parts by weight of epoxy 1, and the resulting vinyl chloride was obtained.
  • a vinyl chloride sheet was prepared from the resin composition and subjected to a tensile test, a heat resistance test, and a fogging resistance test. The results obtained are summarized in Table 3. The vinyl chloride sheet produced above does not show any signs of bleeding even if it is left at room temperature for one month.
  • Example 3 According to the method described in “Method 2: Soft vinyl chloride sheet” in “(3) Preparation of vinyl chloride sheet” above, 19 parts by weight of epoxycyclohexanedicarboxylic acid diester (epoxy 1) as a stabilizer and A vinyl chloride resin composition is prepared using tri-2-ethylhexyl meritate (TOTM), a vinyl chloride sheet is prepared from the obtained vinyl chloride resin composition, and a tensile test, a heat resistance test and a fogging resistance test are performed. I did it. The results obtained are summarized in Table 4.
  • TOTM tri-2-ethylhexyl meritate
  • Example 4 A vinyl chloride resin composition was prepared in the same manner as in Example 3 except that epoxy 2 was used instead of epoxy 1, and a vinyl chloride sheet was prepared from the obtained vinyl chloride resin composition and pulled. A test, a heat resistance test and a fogging resistance test were conducted. The results obtained are summarized in Table 4.
  • Example 5 A vinyl chloride resin composition was prepared and obtained in the same manner as in Example 3 except that trimellitic acid triester (TL9TM) of the saturated aliphatic alcohol (lineball 9) was used instead of TOTM.
  • T9TM trimellitic acid triester
  • a vinyl chloride sheet was prepared from the vinyl chloride resin composition and subjected to a tensile test, a heat resistance test, and a fogging resistance test. The results obtained are summarized in Table 4.
  • Example 1 The same procedure as in Example 1 was conducted except that epoxy 1 was not added, and a vinyl chloride resin composition was prepared. A vinyl chloride sheet was prepared from the obtained vinyl chloride resin composition, and subjected to a tensile test and a heat resistance test. In addition, a fogging resistance test was performed. The results obtained are summarized in Table 3.
  • Example 2 A vinyl chloride resin composition was prepared in the same manner as in Example 1 except that epoxy 3 was used in place of epoxy 1, and a vinyl chloride sheet was prepared from the obtained vinyl chloride resin composition. A test, a heat resistance test and a fogging resistance test were conducted. The results obtained are summarized in Table 3.
  • Example 3 The same procedure as in Example 3 was performed except that epoxy 1 was not added, and a vinyl chloride resin composition was prepared. A vinyl chloride sheet was prepared from the obtained vinyl chloride resin composition and subjected to a tensile test and a heat resistance test. In addition, a fogging resistance test was performed. The results obtained are summarized in Table 4.
  • Example 4 A vinyl chloride resin composition was prepared in the same manner as in Example 3 except that epoxy 3 was used instead of epoxy 1, and a vinyl chloride sheet was prepared from the obtained vinyl chloride resin composition and pulled. A test, a heat resistance test and a fogging resistance test were conducted. The results obtained are summarized in Table 4.
  • Ratio of carbon number of alkyl group and linear alkyl group The ratio of carbon number of alkyl group and linear alkyl group in the plasticizer used in Examples and Comparative Examples of the present invention was used in the production thereof.
  • the composition in the raw material alcohol was measured by gas chromatography (hereinafter abbreviated as GC), and the result was defined as the ratio of the number of carbon atoms in the plasticizer to the linear alkyl group.
  • GC gas chromatography
  • This resin composition was melt-kneaded at 160 to 166 ° C. for 4 minutes using a 5 ⁇ 12 inch double roll to prepare a roll sheet. Subsequently, press molding was performed at 162 to 168 ° C. for 10 minutes to produce a press sheet having a thickness of about 1 mm.
  • the flexible temperature (° C.) of the press sheet was measured according to JIS K-6773 (1999) using a Crushberg tester. The lower the softening temperature (° C), the better the cold resistance.
  • the flexible temperature here refers to a temperature at a low temperature limit indicating a predetermined torsional rigidity (3.17 ⁇ 10 3 kg / cm 2 ) in the measurement.
  • Fogging resistance 4 g of press sheets were placed in a glass sample bottle and set in a fogging tester whose temperature was adjusted to 100 ° C. Furthermore, after covering the sample bottle with a glass plate, a cooling plate through which cooling water whose temperature was adjusted to 20 ° C. was placed was placed thereon, and heat treatment was performed at 100 ° C. for 3 hours. After the heat treatment, the degree of fogging on the surface of the glass plate is visually observed and evaluated in four stages, and the haze (Haze) (%) of the glass plate is measured using a haze meter (manufactured by Toyo Seiki Seisakusho: Hazeguard II). It was measured. The smaller the Haze value, the better the fogging resistance.
  • epoxy 1 the desired 4,5-epoxycyclohexanedicarboxylic acid diester
  • Example 1 According to the method described in “(3) Production of vinyl chloride sheet” above, the vinyl chloride resin composition was prepared using the epoxycyclohexanedicarboxylic acid diester (epoxy 1) obtained in Production Example 1 in a predetermined amount shown in Table 5. A vinyl chloride sheet was prepared from the vinyl chloride resin composition thus prepared and subjected to a tensile test, a cold resistance test, a heat resistance test, a light resistance test, and a fogging resistance test. The obtained results are summarized in Table 5.
  • Example 2 A vinyl chloride resin composition was prepared in the same manner as in Example 1 except that epoxy 2 was used instead of epoxy, and a vinyl chloride sheet was prepared from the obtained vinyl chloride resin composition, and a tensile test was performed. A cold resistance test, a heat resistance test, a light resistance test and a fogging resistance test were performed. The obtained results are summarized in Table 5.
  • Example 3 A vinyl chloride resin composition was prepared in the same manner as in Example 1 except that epoxy 3 was used in place of epoxy 1, and a vinyl chloride sheet was prepared from the obtained vinyl chloride resin composition. A test, a cold resistance test, a heat resistance test, a light resistance test, and a fogging resistance test were performed. The obtained results are summarized in Table 5.
  • Example 4 The vinyl chloride resin composition was prepared in the same manner as in Example 1 except that the amount of epoxy 1 was reduced to 10 parts and 40 parts of diisononyl 1,2-cyclohexanedicarboxylate (hexamol DINCH, manufactured by BASF) was used.
  • a vinyl chloride sheet was prepared from the obtained vinyl chloride resin composition and subjected to a tensile test, a cold resistance test, a heat resistance test, a light resistance test, and a fogging resistance test. The obtained results are summarized in Table 5.
  • Example 5 The vinyl chloride resin composition was prepared in the same manner as in Example 2 except that the compounding amount of epoxy 2 was reduced to 10 parts and 40 parts of diisononyl 1,2-cyclohexanedicarboxylate (hexamol DINCH, manufactured by BASF) was used.
  • a vinyl chloride sheet was prepared from the obtained vinyl chloride resin composition and subjected to a tensile test, a cold resistance test, a heat resistance test, a light resistance test, and a fogging resistance test. The obtained results are summarized in Table 5.
  • Example 6 A vinyl chloride resin composition was prepared and obtained in the same manner as in Example 1 except that the compounding amount of epoxy 1 was reduced to 10 parts and 40 parts of tri-2-ethylhexyl trimellitic acid (TOTM) was used.
  • a vinyl chloride sheet was prepared from the vinyl chloride resin composition and subjected to a tensile test, a cold resistance test, a heat resistance test, a light resistance test, and a fogging resistance test. The obtained results are summarized in Table 5.
  • Example 1 A vinyl chloride resin composition outside the present invention was prepared in the same manner as in Example 1 except that epoxy 4 was used in place of epoxy 1, and a vinyl chloride sheet was prepared from the obtained vinyl chloride resin composition. A tensile test, a cold resistance test, a heat resistance test, a light resistance test, and a fogging resistance test were performed. The obtained results are summarized in Table 5.
  • Example 2 A vinyl chloride resin composition outside the present invention was prepared in the same manner as in Example 1 except that epoxy 5 was used instead of epoxy 1, and a vinyl chloride sheet was prepared from the resulting vinyl chloride resin composition. A tensile test, a cold resistance test, a heat resistance test, a light resistance test, and a fogging resistance test were performed. The obtained results are summarized in Table 5.
  • Example 3 A vinyl chloride resin composition outside the present invention was prepared in the same manner as in Example 1 except that epoxy 6 was used instead of epoxy 1, and a vinyl chloride sheet was prepared from the resulting vinyl chloride resin composition. A tensile test, a cold resistance test, a heat resistance test, a light resistance test, and a fogging resistance test were performed. The obtained results are summarized in Table 5.
  • a vinyl chloride resin composition outside the present invention was prepared in the same manner as in Example 1 except that diisononyl 1,2-cyclohexanedicarboxylate (hexamol DINCH, manufactured by BASF) was used instead of epoxy 1.
  • a vinyl chloride sheet was prepared from the obtained vinyl chloride resin composition and subjected to a tensile test, a cold resistance test, a heat resistance test, a light resistance test, and a fogging resistance test. The obtained results are summarized in Table 5.
  • Example 5 A vinyl chloride resin composition outside the present invention was prepared in the same manner as in Example 1 except that commercially available tri-2-ethylhexyl trimellitic acid (TOTM) was used instead of epoxy 1, and the resulting chloride was obtained.
  • a vinyl chloride sheet was prepared from the vinyl resin composition and subjected to a tensile test, a cold resistance test, a heat resistance test, a light resistance test, and a fogging resistance test. The obtained results are summarized in Table 5.
  • Example 6 A vinyl chloride resin composition outside of the present invention was prepared in the same manner as in Example 1 except that commercially available diisononyl phthalate (manufactured by Shin Nippon Rika Co., Ltd., Sansosizer DINP) was used instead of Epoxy 1. Then, a vinyl chloride sheet was prepared from the obtained vinyl chloride resin composition and subjected to a tensile test, a cold resistance test, a heat resistance test, a light resistance test, and a fogging resistance test. The obtained results are summarized in Table 5.
  • the conventional 4,5-epoxycyclohexanedicarboxylic acid diester (Comparative Example 1) was obtained by using the 4,5-epoxycyclohexanedicarboxylic acid diester of the present invention (Examples 1 to 3) as a plasticizer. It can be seen that the cold resistance and the heat resistance are greatly improved while maintaining the same moldability and flexibility as compared with the case of using a). Furthermore, from the results of Examples 4 to 6, it can be seen that the heat resistance, particularly the colorability, can be greatly improved by adding the 4,5-epoxycyclohexanedicarboxylic acid diester of the present invention to DINCH and TOTM which are widely used at present. .
  • the vinyl chloride resin composition for automobile interior containing the epoxycyclohexanedicarboxylic acid diester according to the present invention is particularly suitable for interior materials used in cold district specifications and overseas specifications automobiles used in more severe environments. It turns out that it is useful.
  • Ratio of carbon number of alkyl group and linear alkyl group The ratio of carbon number of alkyl group and linear alkyl group in the plasticizer used in Examples and Comparative Examples of the present invention was used in the production thereof.
  • the composition in the raw material alcohol was measured by gas chromatography (hereinafter abbreviated as GC), and the result was defined as the ratio of the number of carbon atoms in the plasticizer to the linear alkyl group.
  • GC gas chromatography
  • This resin composition was melt-kneaded at 160 to 166 ° C. for 4 minutes using a 5 ⁇ 12 inch double roll to prepare a roll sheet. Subsequently, press molding was performed at 162 to 168 ° C. for 10 minutes to produce a press sheet having a thickness of about 1 mm.
  • the flexible temperature (° C.) of the press sheet was measured according to JIS K-6773 (1999) using a Crushberg tester. The lower the softening temperature (° C), the better the cold resistance.
  • the flexible temperature here refers to a temperature at a low temperature limit indicating a predetermined torsional rigidity (3.17 ⁇ 10 3 kg / cm 2 ) in the measurement.
  • Heat resistance Depends on loss of volatility after heating and evaluation of sheet coloring.
  • Sheet coloring The strength of the coloring degree after heating the roll sheet at 170 ° C. for 30 minutes and 60 minutes in a gear oven was visually evaluated in five stages. ⁇ : No coloring, ⁇ : Slightly colored, ⁇ : Colored, ⁇ : Strong coloring, XX: Significant coloring
  • ester 1 4-cyclohexene-1,2-dicarboxylic acid diester
  • epoxy 1 the desired 4,5-epoxycyclohexanedicarboxylic acid diester
  • Example 1 According to the method described in the above “(3) Molding processability”, the moldability (gelling temperature) was measured using the epoxycyclohexanedicarboxylic acid diester (epoxy 1) obtained in Production Example 1. The results obtained are shown in Table 6. Subsequently, as described in “(4) Preparation of vinyl chloride sheet” above, a medical soft vinyl chloride resin composition (that is, medical vinyl chloride for use in a soft material) using epoxy 1 as a plasticizer. System resin composition) was prepared, and a vinyl chloride sheet was prepared from the obtained soft vinyl chloride resin composition and subjected to a tensile test, a cold resistance test, a heat resistance test, and an ultraviolet irradiation test. The results obtained are shown in Table 6.
  • a medical soft vinyl chloride resin composition that is, medical vinyl chloride for use in a soft material
  • System resin composition was prepared, and a vinyl chloride sheet was prepared from the obtained soft vinyl chloride resin composition and subjected to a tensile test, a cold resistance
  • Example 2 The same procedure as in Example 1 was conducted except that epoxy 2 was used in place of epoxy 1 to measure the molding processability. Subsequently, a soft vinyl chloride resin composition for medical use was prepared, and the resulting soft vinyl chloride was obtained. A vinyl chloride sheet was prepared from the resin composition and subjected to a tensile test, a cold resistance test, a heat resistance test, and an ultraviolet irradiation test. The obtained results are summarized in Table 6.
  • Example 3 The same procedure as in Example 1 was conducted except that epoxy 3 was used instead of epoxy 1 to measure the molding processability. Subsequently, a soft vinyl chloride resin composition for medical use was prepared, and the resulting soft vinyl chloride was obtained. A vinyl chloride sheet was prepared from the resin composition and subjected to a tensile test, a cold resistance test, a heat resistance test, and an ultraviolet irradiation test. The obtained results are summarized in Table 6.
  • Example 1 The same procedure as in Example 1 was conducted except that epoxy 4 was used in place of epoxy 1, the moldability was measured, a soft vinyl chloride resin composition was subsequently prepared, and the resulting soft vinyl chloride resin was obtained. A vinyl chloride sheet was prepared from the composition and subjected to a tensile test, a cold resistance test, a heat resistance test, and an ultraviolet irradiation test. The obtained results are summarized in Table 6.
  • Example 2 The same procedure as in Example 1 was conducted except that epoxy 5 was used in place of epoxy 1, the moldability was measured, a soft vinyl chloride resin composition was subsequently prepared, and the resulting soft vinyl chloride resin was obtained. A vinyl chloride sheet was prepared from the composition and subjected to a tensile test, a cold resistance test, a heat resistance test, and an ultraviolet irradiation test. The obtained results are summarized in Table 6.
  • Example 3 The molding processability was measured in the same manner as in Example 1 except that diisononyl 1,2-cyclohexanedicarboxylate (BASF, hexamol DINCH) was used in place of Epoxy 1, and then the molding processability was measured. A composition was prepared, a vinyl chloride sheet was prepared from the obtained soft vinyl chloride resin composition, and a tensile test, a cold resistance test, a heat resistance test, and an ultraviolet irradiation test were performed. The obtained results are summarized in Table 6.
  • BASF diisononyl 1,2-cyclohexanedicarboxylate
  • Example 4 The same procedure as in Example 1 was performed except that di-2-ethylhexyl phthalate (manufactured by Shin Nippon Rika Co., Ltd., Sunsocizer DOP) was used instead of epoxy 1, and the molding processability was measured.
  • a vinyl chloride sheet was prepared from a vinyl chloride resin composition for a soft material and subjected to a tensile test, a cold resistance test, a heat resistance test, and an ultraviolet irradiation test. . The obtained results are summarized in Table 6.
  • Example 5 The same procedure as in Example 1 was conducted except that commercially available tri-2-ethylhexyl trimellitic acid was used instead of epoxy 1, and the molding processability was measured. Subsequently, a vinyl chloride resin composition for a soft material was prepared. Then, a vinyl chloride sheet was prepared from the obtained vinyl chloride resin composition for a soft material, and subjected to a tensile test, a cold resistance test, a heat resistance test, and an ultraviolet irradiation test. The obtained results are summarized in Table 6.
  • the medical vinyl chloride resin compositions (Examples 1 to 3) containing the epoxycyclohexanedicarboxylic acid diester of the present invention are the most commonly used phthalate ester plastics. It can be seen that the coloring after the ultraviolet irradiation test is very small as compared with the resin composition (Comparative Example 4) containing DOP as the agent.
  • the cause of coloring of the molded product obtained from the vinyl chloride resin composition is that it is colored by the production of conjugated polyene by the dehydrochlorination reaction of the vinyl chloride resin. It is known to be colored at the time of sterilization treatment. From the above results, it can be said that the same effect is exhibited not only in ultraviolet irradiation but also in sterilization and sterilization treatment by various irradiations that are considered to be colored by the same mechanism.
  • the medical vinyl chloride resin composition (Examples 1 to 3) containing the epoxycyclohexanedicarboxylic acid diester of the present invention is a resin containing a phthalate ester plasticizer that is currently most widely used.
  • the composition (Comparative Example 4) there is less loss of volatilization, there is no thermal coloring, and in sterilization and sterilization treatment with heating such as boiling and autoclave, the plasticity is reduced and the coloring is deteriorated due to volatilization of the plasticizer. It can be seen that the concern is further reduced and is very useful.
  • the novel epoxycyclohexanedicarboxylic acid diester having an epoxy group in the molecular structure of the present invention has a good plasticizing performance as a plasticizer for thermoplastic resins and rubbers, and has good heat resistance and cold resistance. It is an excellent plasticizer that can meet the demands for cold resistance and heat resistance that are becoming increasingly severe in recent years, or is very useful as a stabilizer in chlorine-containing resins.
  • the epoxycyclohexanedicarboxylic acid diester of the present invention is a plasticizer having a performance as a stabilizer in a chlorine-containing resin typified by vinyl chloride, and also contains a hard, semi-rigid or other plasticizer. It can be used as a stabilizer in various material systems such as soft materials.
  • the resin composition and the resin molded body containing the epoxycyclohexanedicarboxylic acid diester having such performance are used for electric wire coating, automotive parts, pipes such as water pipes, joints for pipes, rain gutters, etc. Siding, window frame siding, flat plate, corrugated sheet, general film sheet (laminate, packaging, vehicle, miscellaneous goods, etc.), agricultural film use, leather use, compound use, flooring use, wallpaper use, footwear use, sealing material use , Fiber use, hose use, gasket use, building material use, paint use, adhesive use, paste use, medical use, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、可塑剤本来の可塑化性能が良好であり、かつ耐熱性や耐寒性の改善された可塑剤として、また塩素含有樹脂用の安定化剤として有用な新規化合物を提供することを目的とする。分子構造中にエポキシ基を有し、かつ耐寒性や耐熱性の改善された特定の構造の新規なエポキシシクロヘキサンジカルボン酸ジエステルが、その目的を満たすことを見出し、可塑剤として更には安定化剤として有用な新規化合物を得ることができた。

Description

エポキシシクロヘキサンジカルボン酸ジエステル、可塑剤、安定化剤、及び樹脂組成物
 本発明は、可塑剤として、また塩素含有樹脂用安定化剤として好適な分子構造中にエポキシ基を有する新規なエポキシシクロヘキサンジカルボン酸ジエステルに関する。 
 また、本発明は、新規な塩化ビニル系樹脂用可塑剤およびそれを含有してなる塩化ビニル系樹脂組成物に関し、詳しくは、特定の構造のエポキシシクロヘキサンジカルボン酸ジエステルからなる熱や光による物性低下や着色が少なく、かつ柔軟性が良好であり、更に耐寒性や耐熱性の向上された塩化ビニル系樹脂用可塑剤及びそれを含有してなる長期屋外使用等に適した塩化ビニル系樹脂組成物に関する。 
 また、本発明は、新規な塩素含有樹脂用安定化剤及びそれを含有してなる安定化された塩素含有樹脂組成物に関し、詳しくは、樹脂との相溶性に優れ、長期間安定的に熱や光による物性低下や着色を抑えることのできる新規エポキシシクロヘキサンジカルボン酸ジエステルからなる塩素含有樹脂用安定化剤及び該安定化剤を含有してなる塩素含有樹脂組成物、更に該安定化剤を用いた塩素含有樹脂組成物の安定化方法に関する。 
 また、本発明は、耐寒性、耐揮発性、特に耐フォギング性の改良された、耐光性、耐熱老化性に優れた自動車内装用塩化ビニル系樹脂組成物及び該樹脂組成物よりなる自動車内装材に関し、詳しくは、特定の構造を有する新規なエポキシシクロヘキサンジカルボン酸ジエステルを含有してなる自動車内装用塩化ビニル系樹脂組成物及び自動車内装材に関する。 
 また、本発明は、滅菌や殺菌処理後の柔軟性低下や着色等の劣化が少なく、更に加工性や柔軟性が良好であり、かつ耐熱性及び耐寒性の改善された医療用塩化ビニル系樹脂組成物及び医療用材料に関し、詳しくは、特定の構造のエポキシシクロヘキサンジカルボン酸ジエステルからなる可塑剤を含有してなる、加工性や柔軟性が良好であり、かつ耐熱性及び耐寒性の改善された医療用塩化ビニル系樹脂組成物及び医療用材料、特に滅菌や殺菌処理の必要な医療用器具に好適な医療用塩化ビニル系樹脂組成物及び医療用材料に関する。
 一般に、樹脂やゴムには成形性を改良する目的や柔軟性を付与する目的で可塑剤が使用されることが多い。その可塑剤としては、対象の樹脂やゴムの種類によって、またその使用される用途や目的によって、様々な化合物が使用されている。その中でも、最もよく使用されているものとしては、エステル化合物が知られている。そのエステル化合物としては、脂肪族系、脂環族系、芳香族系のものがあり、また、モノエステル、ジエステル、トリエステル、テトラエステル、ポリエステル等、その種類は非常に多岐に渡るが、現在最も汎用的な可塑剤は芳香族系のジエステルであり、耐寒性や耐熱性の要求される用途では脂肪族系のジエステルや芳香族系のトリエステル、テトラエステルなども広く使用されている。また、近年環境問題等の観点から脂環族系のジエステルの使用も増えてきている。
 その様な可塑剤に要求される性能は、その対象樹脂との相溶性に優れることは言うまでもなく、可塑剤としての本質的な性能である、柔軟性付与や加工性の改善等の可塑化性能だけでなく、高温での使用や低温での使用に耐えうる耐熱性や耐寒性も求められており、最近ではその様な耐熱性や耐寒性に対する要求が強くなっている。しかし、従来公知の可塑剤では、その要求を十分に満足することができていないのが現状であり、更なる耐熱性や耐寒性の向上が求められている。
 一方、樹脂やゴムの多くは、耐熱性や耐光性を改善するため、また高温での加工時の劣化を防止するために様々な安定化剤を配合して使用されるのが一般的である。なかでも、塩素含有樹脂は、塩素を含むが故に成形性、物性面、更には難燃性等の優れた性能を示す反面、その塩素が熱や光による着色や物性低下等の劣化の要因となっており、その抑制が必要であり、様々な安定化剤がこれまで検討され、実際に使用されてきた。例えば、代表的なものとしては、カルシウム、バリウム、亜鉛、マグネシウム等の金属の脂肪酸石鹸類や、フェノール系、リン系、イオウ系等の酸化防止剤などの塩素含有樹脂に限らず使用されている汎用的な安定化剤がよく知られている。また、特に耐光性の要求される用途などでは、紫外線吸収剤等を配合されるケースもある。更に、前述の塩素に起因する劣化を抑止するものとしてエポキシ化合物が有効であることが知られており、エポキシ化大豆油等のエポキシ化天然油類が広く使われている。しかし、近年塩素含有樹脂が上述の優れた性能的な優位性より改めて見直されている状況で、従来公知の安定化剤では十分に満足されておらず、新たな安定化剤の開発が待ち望まれている。
 一方、塩化ビニル系樹脂は、通常、可塑剤を塩化ビニル系樹脂へ添加して、その軟質塩化ビニル系樹脂組成物を成形することにより、成形体を製造することが多い。
 このような可塑剤を含有する軟質塩化ビニル系樹脂組成物を成形することにより得られる成形体(成形加工品)には、柔軟性、耐寒性、耐熱性、電気特性等の種々の性能が求められている。代表的な塩化ビニル系樹脂用可塑剤は、例えば、フタル酸ジ-2-エチルへキシル(以下、「DOP」という)及びフタル酸ジイソノニル(以下、「DINP」という)等のフタル酸エステル系の可塑剤であり、これらの可塑剤が汎用的に使用されている。
 しかし、近年、化学物質に対する安全性についてクローズアップされる中でDOPを齧歯類に大量に投与した際に毒性が認められることから、予防原則に則り日欧米の地域にて、乳幼児を主たる保護対象としてDOP等のフタル酸エステル系化合物の使用制限が行われており、可塑剤分野においても非フタル酸エステル系可塑剤が市場で望まれている。
 今日までに、非フタル酸エステル系可塑剤として、アセチルクエン酸トリブチル(以下、「ATBC」という)、アジピン酸ジ-2-エチルへキシル(以下、「DOA」という)、トリメリット酸トリ-2-エチルへキシル(以下、「TOTM」という)等の可塑剤が開発されてきているが(特許文献1~3)、これらの可塑剤のうち、上記ATBC及びDOAはフタル酸エステル系可塑剤と比較して、耐熱性が大きく不足しているという問題があった。また、TOTMは、フタル酸エステルと較べても同等以上の耐熱性を有しており、フタル酸エステル系可塑剤の代替が可能な耐熱性の良い可塑剤として期待されているが、柔軟性に劣るという欠点を有しており、未だ完全にフタル酸エステル系可塑剤を非フタル酸エステル系可塑剤に置き換えるには至っていない。
 その様な中で、近年、1,2-シクロヘキサンジカルボン酸ジイソノニル(以下、「DINCH」という)に代表される脂環族系ジカルボン酸ジエステル系可塑剤が、フタル酸エステル系可塑剤に近い柔軟性、耐熱性、耐寒性を有し、バランスの良い非フタル酸エステル系の可塑剤として、注目されている(特許文献4)。
 また、脂環族系ジカルボン酸ジエステルの一種である4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジ-2-エチルヘキシル(以下、「E-DEHCH」という)に代表されるエポキシシクロヘキサンジカルボン酸ジエステルは、エポキシ基を含まないDINCH等のシクロヘキサンジカルボン酸ジエステルに較べて、塩化ビニル系樹脂との相溶性に優れており、可塑化効率、即ち柔軟性が良好であり、更にブリード性や移行性の面でも優位な可塑剤として知られている。特に、屋外での長期使用等を目的とした用途では、構造中に含まれるエポキシ基が塩化ビニル系樹脂の熱や光による分解で発生する塩化水素を補足する効果を有し、熱や光による老化、即ち製品の物性低下や着色も抑制することができる可塑剤として、単独でまたは他の可塑剤との併用系で使用されており、今後非フタル酸エステル系可塑剤の一つとして、期待されている(特許文献5)。
 一方、近年電線被覆用途などにおいて、耐寒性や耐揮発性への要求が益々厳しくなっており、非フタル酸エステル系可塑剤に関しても従来からあるDINCHやE-DEHCHでは対応できないケースが増えており、上記要求を満たす様な、即ち耐寒性や耐揮発性のより改善された非フタル酸エステル系の可塑剤の開発が待ち望まれている。
 また、塩化ビニル系樹脂等の塩素含有樹脂は、機械的特性等に優れ、更に難燃性等の特徴を有し、様々な用途で広く使われているが、成形加工時や使用時に、熱や光により主として脱塩化水素反応に起因する分解を起こしやすく、その結果物性低下や着色等の劣化が生じ、安定した製品品質が得られ難いという難点がある。更には、成形加工時に生じた塩化水素が、設備腐食等の原因になる可能性も指摘されている。
 そのため、これまでも塩素含有樹脂の安定性を改善するために、様々な検討がなされてきた。例えば、有機酸の金属塩、有機スズ化合物、有機ホスファイト化合物、β-ジケトン化合物、ポリオール化合物、エポキシ化合物、酸化防止剤、紫外線吸収剤などの種々の安定化剤が提案されている(特許文献6、7)。中でも、エポキシ化合物は、分子内のエポキシ基が上記脱塩化水素反応で発生した塩化水素を補足し、その結果物性低下や着色等の樹脂の劣化を抑える働きがあり、カドミウム系や鉛系等の重金属系の様な環境問題等の懸念もなく、安定した効果が得られるため、有機酸の金属塩との併用系等で広く使われている(特許文献8)。
 そのエポキシ化合物としては、エポキシ化大豆油(以下、「ESBO」という)、エポキシ化亜麻仁油などのエポキシ化天然油類がよく知られており、広く使われている。しかし、ESBOなどエポキシ化天然油類は、塩素含有樹脂との相溶性に難点があり、ブリード等の問題があり、その改善も試みられてきた(特許文献9)が、未だ十分に満足する様なものは得られていない。そこで、一部用途ではエポキシ樹脂等のブリードしない高分子エポキシ化合物を使うことも試みられているが、エポキシ樹脂ではブリード等の問題はないが、安定化剤としての性能が十分ではなく、その使用は限られている。
 また、相溶性に優れる脂環族系のE-DEHCHが、樹脂との相溶性に優れ、ブリード、移行等の懸念のないエポキシ系の安定化剤として、注目されている。特に、脂肪族多価カルボン酸エステル、芳香族多価カルボン酸エステル、脂環族多価カルボン酸エステル、ポリエステル、ポリエーテルなどの汎用可塑剤配合系に加えることにより、可塑剤としての効果を有する安定化剤として様々な用途に適用可能である(特許文献10、11)。
 一方、近年益々厳しくなってきている耐揮発性等の耐熱性の要求される用途では、フタル酸ジイソデシル(DIDP)、フタル酸ジウンデシル(DUP)、フタル酸ジアルキル(C9~C11)(商品名「PL-200」、シージーエスタ-(株)製)、フタル酸ジアルキル(C10~C13)(商品名「ビニサイザー 124」、花王(株)製)、フタル酸ジトリデシル(商品名「ビニサイザー 20」、花王(株)製)の様な耐熱性のフタル酸エステルやトリメリット酸トリ-2-エチルヘキシル(TOTM)、トリメリット酸トリノルマルオクチル(商品名「トリメックス New NSK」、花王(株)製)、トリメリット酸トリノルマルアルキル(C8,C10)(商品名「トリメックスN-08」、花王(株)製)、トリメリット酸イソノニルエステル(商品名「C-9N、(株)ADEKA製」)、90%以上の炭素数9の飽和脂肪族アルコールを含み、かつ直鎖状の飽和脂肪族アルコールの比率が50~99%である飽和脂肪族アルコールのトリメリット酸トリエステル(トリメリット酸トリノニル(分岐及び直鎖)、以下「TL9TM」という)の様なトリメリット酸エステルなどの耐熱性に優れる可塑剤を使用することにより、その耐熱性に対する要求へ対応する方法が広く用いられている。
 また、上記の様な耐熱性に優れる可塑剤配合系でも、上述の様な塩素含有樹脂特有の着色等の課題は同じであり、その改善が求められている。
 しかし、上述のE-DEHCHなどの従来の脂環族系のエポキシ化合物では、上記の様な厳しい耐熱性の要求される用途では、加えた脂環族系のエポキシ化合物がフォギング等の原因になり、耐熱性の要求を満たせなくなってしまい、脂環族系のエポキシ化合物を配合することができなかったのが、現状であった。
 一方、自動車の室内には、乗り心地を良くするために様々な内装材が使われている。通常、自動車用内装材は、ソフト感や高級感等の意匠性を出すための表皮層と構造を保持するための基材層から構成されている。更に表皮層にはよりソフト感を出すためにウレタン等の発泡層を裏打ちして使われることが多い。
 その表皮層としては、ポリ塩化ビニル系樹脂、熱可塑性エラストマーやポリエチレンなどのポリオレフィンの発泡体などが使われているが、なかでも、ポリ塩化ビニル系樹脂が可塑剤の配合量により半硬質から軟質まで様々な触感を出すことが可能であり、更にその成形加工性の容易さよりデザイン性にも優れるため、広く使われている。
 上記可塑剤としては、通常使われている塩化ビニル系樹脂用の可塑剤を使うことができ、これまで比較的安価なDINPやDIDPに代表されるフタル酸エステル系の可塑剤が最も汎用的に使われてきた。また、一部部材では、炎天下等の高温下における劣化を防止するために、更に寒冷地での低温下における柔軟性を保持するために、TOTM等のトリメリット酸エステル系の可塑剤やDOA等の脂肪族二塩基酸エステル系の可塑剤も使われてきた。しかし、DOAの場合は耐寒性や柔軟性には優れるが、耐熱性に劣り、TOTMの場合は耐熱性には優れるが、耐寒性や柔軟性を満足させることができず、フタル酸エステル系可塑剤との併用系で使われることが多かった。
 また、近年、化学物質に対する安全性についてクローズアップされる中でDOPを齧歯類に大量に投与した際に毒性が認められることから、予防措置の一環として日欧米の地域にて、DOP等のフタル酸エステル系の可塑剤を他の可塑剤、即ち、非フタル酸エステル系の可塑剤に置き換える動きがあり、自動車用内装材でも代替可能な非フタル酸エステル系可塑剤が望まれている。一般に、非フタル酸エステル系の可塑剤としては、上記のDOAやTOTM以外にも、ATBCやDINCHなどが知られているが、いずれも耐熱性等の面で十分な性能を有するものではなかった。
 最近の傾向として、自動車部材全般に軽量化や耐久性の要求が厳しくなってきており、自動車内装材等の個々の部材に対しても、その性能向上が強く望まれている。具体的には、炎天下での熱や光による劣化の問題、即ち、可塑剤やその他添加剤の揮発による性能低下や塩化ビニル系樹脂特有の熱や光による物性低下や着色が大きな問題になっており、更に揮発成分によるフロントガラス等の曇り、即ちフォギングも重要な課題である。また、寒冷地での柔軟性低下による破壊も大きな問題であり、耐寒性も重要な性能である。
 これまでにも、耐寒性だけを改善することや耐熱性だけを改善することは、例えば、上記の脂肪族二塩基酸エステル系の可塑剤やトリメリット酸エステル系の可塑剤を使うことにより可能であったが、両方の性能を同時に満たすことは未だ難しいのが現状である。
 また、上述の塩化ビニル系樹脂特有の熱や光による劣化は、分子内での分解により発生する塩化水素に起因するものであろうと言われており、特にウレタン系発泡材を裏打ちして使われることの多い内装材表皮においてその劣化が顕著に表れることが知られており、塩化ビニル系樹脂を自動車内装材表皮に使用する際の大きな問題であった(特許文献12、13)。そこで、これまでにも様々な安定化剤の検討をなされてきたが、その一つであるエポキシ系の化合物がその塩化水素の補足剤として非常に有効であり、製品そのものの劣化を防止することが知られている。そのエポキシ系化合物としては、具体的にはESBO、エポキシ化亜麻仁油等のエポキシ化植物油類がよく知られている(特許文献11、14)。しかし、エポキシ化植物油の場合、塩化ビニル系樹脂との相溶性に問題があり、混合が不十分な場合、樹脂中で不均一となり、十分な性能が得られないだけでなく、ブリード等の問題の原因にもなり、その改善が望まれていた。
 一方、塩化ビニル系樹脂組成物は、加工性が良好であり、かつ優れた耐薬品性や耐久性を有し、更に可塑剤の配合により様々な硬度に調整可能であり、例えば、数十部以上の可塑剤を配合した軟質塩化ビニル系樹脂材料はポリオレフィン等に比べて耐キンク性に優れており、カテーテル等の医療用チューブや、血液バッグ、輸液バッグ等の医療用バッグなどの医療用材料として広く使われている。また、少量の可塑剤を配合した半硬質塩化ビニル系樹脂材料は上記軟質塩化ビニル材料と接続して使われている連結部材、分岐バルブ、速度調節部品などの医療用材料として広く使われている。
 また、上記性能以外にも、例えば、医療用材料に使われる軟質塩化ビニル系樹脂材料には、良好な柔軟性と、加熱処理に耐えうる優れた耐熱性や低温保存に耐えうる優れた耐寒性などが必要であり、更に耐久性や安全性の面から添加剤等の溶出性や移行性が少ないことも必要であることから、最も多量に配合される可塑剤の選択が非常に重要となる。同様に、半硬質塩化ビニル系樹脂組成物材料の場合には、適度な追随性を示す硬度が必要であり、軟質材料と同じく耐熱性や耐寒性、更には耐久性に優れることが重要である。
 これまで、前記可塑剤としては、DOPやDINPに代表されるフタル酸エステル系の可塑剤が汎用的に使用されてきた(特許文献15)。しかし、フタル酸エステル系の可塑剤では、上述の加熱処理時等における十分な耐熱性が得られ難く、また溶出性や移行性の面でも改善が求められていることから、TOTM等のトリメリット酸エステル系の可塑剤やポリエステル系の可塑剤を使用する検討も進められている(特許文献16、17)。
 しかし、トリメリット酸エステル系やポリエステル系の可塑剤を用いた医療用材料の場合、耐熱性には優れるが、加工性に劣り、更に可塑化効率や耐寒性能についても必ずしも満足する性能ではなく、特に軟質材料において十分な柔軟性や耐寒性を得るためには、可塑剤を多量に配合する必要があり、その結果、安全性等の面で問題が生じる懸念があった。
 また、DINCHに代表されるシクロヘキサンジカルボン酸エステル系の可塑剤なども非フタル酸エステル系の可塑剤として注目されている(特許文献18)。
 しかし、上記DINCHなどでは、耐熱性、特に加熱時の着色性に問題があり、更に加工性についても必ずしも満足されるものではなかった。従って、柔軟性が良好であり、かつ耐熱性や耐寒性に優れた医療用材料の得られる、加工性に優れた塩化ビニル系樹脂組成物及びその様な材料及び樹脂組成物に適した可塑剤の開発が待ち望まれている。
 また、医療用材料の場合、多くの用途において衛生面を考慮して、使用前に滅菌や殺菌処理を行うことが必要である。その処理方法としては、乾式加熱や煮沸、加圧熱水処理などの加熱処理、紫外線や放射線を照射する方法、エチレンオキサイドガス等による化学処理などがある。化学処理の場合は、毒性のあるエチレンオキサイドガスの残留の懸念があることから、主として、加熱処理か、紫外線や放射線を照射する方法が使われている。
 近年、病院等での医療事故の増加により、医療現場における衛生管理の徹底がより厳しくなっており、上記滅菌や殺菌処理の条件もより厳しくなっている。しかし、その条件が厳しくなることに伴い、例えば、加熱処理の場合は、可塑剤の揮発等による柔軟性の低下がその材料の破壊の原因になり、前述のDOPやDINCHではその要求を満たすことができなくなってきている。また、紫外線や放射線の照射による処理でも、着色による内容物の識別性の低下が医療事故の原因になり、大きな問題となっており、その改善が望まれている。その着色を抑制する方法としては、例えば、多量の安定化剤を配合することにより、改善することが可能であることが知られている(特許文献19)。しかし、安定化剤を多量に配合することは、安全性等の面で問題が大きく、現実的には不可能であり、未だ有効な改善方法が見いだせていないのが現状である。
 上記安定化剤の一つとして、エポキシ系化合物が安全性の面で問題のない安定化剤として有効であり、着色等の劣化を防止することが知られている。そのエポキシ系化合物としては、具体的にはESBO、エポキシ化亜麻仁油等のエポキシ化植物油類がよく知られている(特許文献20、21)。しかし、エポキシ化植物油の場合、塩化ビニル系樹脂との相溶性に問題があり、混合が不十分な場合、樹脂中で不均一となり、十分な性能が得られないだけでなく、ブリード等の問題の原因になり、特に安全面での要求の厳しい医療用材料ではその使用が難しいのが現状であった。
 最近では、相溶性に優れる脂環族系のE-DEHCHが、樹脂との相溶性に優れ、ブリード、移行等の少ないエポキシ系化合物として、注目されており、医療用材料としても紫外線や放射線の照射による処理時の劣化、特に着色の抑制に優れた効果を示すことが報告されている(特許文献22)。
特開2000-226482号公報 特開2002-194159号公報 特開2013-147520号公報 特表2001-526252号公報 特開2001-081259号公報 特開平2-155941号公報 WO2009/069491号公報 特開平11-158486号公報 特開2013-119622号公報 特公昭36-4741号公報 特開平8-253642号公報 WO2008/033197号公報 WO2012/020618号公報 特開平6-1901号公報 特開平10-176089号公報 特開2003-165881号公報 特開2006-239026号公報 特開2005-40397号公報 特開平8-24329号公報 特開平8-176383号公報 特開昭56-61448号公報 特開2015-30773号公報
 第1の本発明の目的は、上記現状に鑑み、可塑剤本来の可塑化性能が良好であり、かつ耐熱性や耐寒性の改善された可塑剤として、また塩素含有樹脂用の安定化剤として有用な新規化合物を提供することを目的とする。 
 第2の本発明の目的は、上記の問題点を解決できる、即ちより厳しい耐寒性及び耐揮発性の要求を満足し、かつ柔軟性が良好な新規エポキシシクロヘキサンジカルボン酸ジエステルからなる塩化ビニル系樹脂用可塑剤およびその可塑剤を含む塩化ビニル系樹脂組成物を提供することである。 
 第3の本発明の目的は、上記の問題が解決できる、即ち環境的に安全であり、かつ安定した効果が得られる塩素含有樹脂用安定化剤を提供することを目的とし、より具体的には、安定化剤としての効果に優れ、かつ樹脂との相溶性が良好であり、耐揮発性の改善された塩素含有樹脂用安定化剤を提供することである。 
 第4の本発明の目的は、上記現状に鑑み、樹脂との相溶性に優れ、樹脂と混合しやすく、耐寒性、耐揮発性、特に耐フォギング性の改良された自動車内装用可塑剤又は安定化剤を含む、耐寒性、耐揮発性、特に耐フォギング性の改良された、耐光性、耐熱老化性に優れた自動車内装用塩化ビニル系樹脂組成物及び該樹脂組成物よりなる自動車内装材を提供することである。 
 第5の本発明の目的は、上記の問題点を解決できる、即ち、滅菌や殺菌処理後の着色等の劣化が少なく、更に加工性や柔軟性が良好であり、かつ耐熱性及び耐寒性の改善された医療用塩化ビニル系樹脂組成物及び医療用材料を提供することである。
 本発明者らは、上記課題を解決すべく、前述の脂環族系のジエステルとエポキシ化合物に着目し、鋭意検討を行った結果、分子構造中にエポキシ基を有する特定の構造の新規なエポキシシクロヘキサンジカルボン酸ジエステルが、その目的を満たすことを見出し、第1の本発明を完成するに至った。
 即ち、第1の本発明に係る分子構造中にエポキシ基を有する特定の構造のエポキシシクロヘキサンジカルボン酸ジエステルは、下記に示す化学構造を有することを特徴とする。
[項1] 下記一般式(1)で示される4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルからなり、かつ該ジカルボン酸ジエステルを構成するアルキル基の全量に対する直鎖状のアルキル基の比率(モル比)が50~99%であることを特徴とするエポキシシクロヘキサンジカルボン酸ジエステル。
Figure JPOXMLDOC01-appb-I000003
(式中、R及びRは同一又は異なって、炭素数7~13の直鎖状又は分岐鎖状のアルキル基を表す。)
[項2] 前記アルキル基の炭素数が、8~12である[項1]に記載のエポキシシクロヘキサンジカルボン酸ジエステル。
[項3] 前記アルキル基が、主として炭素数9~11のアルキル基から構成され、炭素数9のアルキル基/炭素数10のアルキル基/炭素数11のアルキル基の比率(モル比)が10~25/35~50/30~45の範囲である[項1]又は[項2]に記載のエポキシシクロヘキサンジカルボン酸ジエステル。
[項4] 前記アルキル基が、90%以上(モル比)の炭素数9のアルキル基を含む[項1]又は[項2]に記載のエポキシシクロヘキサンジカルボン酸ジエステル。
[項5] 前記アルキル基中の直鎖状のアルキル基の比率(モル比)が、55~95%である[項1]~[項4]の何れかに記載のエポキシシクロヘキサンジカルボン酸ジエステル。
[項6] 前記アルキル基中の直鎖状のアルキル基の比率(モル比)が、60~95%である[項1]~[項4]の何れかに記載のエポキシシクロヘキサンジカルボン酸ジエステル。
[項7] 前記アルキル基中の直鎖状のアルキル基の比率(モル比)が、70~95%である[項1]~[項4]の何れかに記載のエポキシシクロヘキサンジカルボン酸ジエステル。
[項8] プロトン核磁気共鳴分光分析で測定したシクロヘキサン環を介したオキシラン環とアルキルオキシカルボニル基の異性体比(シス体/トランス体、モル比)が5/95~35/65である、[項1]~[項7]の何れかに記載のエポキシシクロヘキサンジカルボン酸ジエステル化合物。
[項9] 異性体比が10/90~30/70である、[項8]に記載のエポキシシクロヘキサンジカルボン酸ジエステル。
[項10] 異性体比が15/85~25/75である、[項8]に記載のエポキシシクロヘキサンジカルボン酸ジエステル。
[項11] 可塑剤に使用するための、[項1]~[項10]の何れかに記載のエポキシシクロヘキサンジカルボン酸ジエステル。
[項12] 塩素含有樹脂の安定化剤に使用するための、[項1]~[項10]の何れかに記載のエポキシシクロヘキサンジカルボン酸ジエステル。
[項13] [項1]~[項12]の何れかに記載のエポキシシクロヘキサンジカルボン酸ジエステルを含んでなる塩素含有樹脂組成物。
[項14] 前記塩素含有樹脂が塩化ビニル系樹脂である、[項13]に記載の塩素含有樹脂組成物。
 また、本発明者らは、かかる現状に鑑み、上記課題を解決すべく鋭意検討を行なった結果、特定の構造を有するエポキシシクロヘキサンジカルボン酸ジエステルが、その特徴である樹脂との相溶性、即ち可塑化効率、柔軟性を損なうことなく、耐寒性及び耐揮発性を向上させることが可能であることを見出し、第2の本発明を完成するに至った。
 即ち、第2の本発明は、以下の新規な塩化ビニル系樹脂用可塑剤およびそれを含む塩化ビニル系樹脂組成物を提供するものである。
[項1] 下記一般式(1)で示される4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルからなり、かつ該ジカルボン酸ジエステルを構成するアルキル基の全量に対する直鎖状のアルキル基の比率(モル比)が50~99%であることを特徴とする塩化ビニル系樹脂用可塑剤。
Figure JPOXMLDOC01-appb-I000004
 (式中、R1及びR2は同一又は異なって、炭素数7~13の直鎖状又は分岐鎖状のアルキル基を表す。)
[項2] アルキル基の炭素数が、8~12である[項1]に記載の塩化ビニル系樹脂用可塑剤。
[項3] アルキル基が、主として炭素数9~11のアルキル基から構成され、炭素数9のアルキル基/炭素数10のアルキル基/炭素数11のアルキル基の比率(モル比)が10~25/35~50/30~45の範囲である[項1]又は[項2]に記載の塩化ビニル系樹脂用可塑剤。
[項4] アルキル基が、90%以上(モル比)の炭素数9のアルキル基を含む[項1]又は[項2]に記載の塩化ビニル系樹脂用可塑剤。
[項5] アルキル基中の直鎖状アルキル基の比率が、55~95%である[項1]~[項4]の何れかに記載の塩化ビニル系樹脂用可塑剤。
[項6] アルキル基中の直鎖状アルキル基の比率が、60~95%である[項1]~[項4]に記載の塩化ビニル系樹脂用可塑剤。
[項7] アルキル基中の直鎖状アルキル基の比率が、70~95%である[項1]~[項4]に記載の塩化ビニル系樹脂用可塑剤。
[項8] 4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルが、4-シクロヘキセン-1,2-ジカルボン酸ジエステルをエポキシ化反応して得られる[項1]~[項7]の何れかに記載の塩化ビニル系樹脂用可塑剤。
[項9] 前記4-シクロヘキセン-1,2-ジカルボン酸ジエステルが、4-シクロヘキセン-1,2-ジカルボン酸又はその酸無水物と炭素数7~13の飽和脂肪族アルコールをエステル化反応して得られたものであり、該飽和脂肪族アルコールが炭素数9~11の飽和脂肪族アルコールを主成分とし、かつ該飽和脂肪族アルコールの直鎖率(モル比)が、50~95%である[項8]に記載の塩化ビニル系樹脂用可塑剤。
[項10] 塩化ビニル系樹脂と[項1]~[項9]の何れかに記載の塩化ビニル系樹脂用可塑剤を含有することを特徴とする塩化ビニル系樹脂組成物。
[項11] 塩化ビニル系樹脂用可塑剤の含有量が、塩化ビニル系樹脂100重量部に対して、1~200重量部である[項10]に記載の塩化ビニル系樹脂組成物。
[項12] 塩化ビニル系樹脂用可塑剤の含有量が、塩化ビニル系樹脂100重量部に対して、20~200重量部であり、前記塩化ビニル系樹脂組成物が軟質塩化ビニル系樹脂組成物である[項10]に記載の塩化ビニル系樹脂組成物。
[項13] 塩化ビニル系樹脂用可塑剤の含有量が、塩化ビニル系樹脂100重量部に対して、30~150重量部である[項12]に記載の塩化ビニル系樹脂組成物。
[項14] [項10]~[項13]の何れかに記載の塩化ビニル系樹脂組成物から得られた塩化ビニル系成形体。
 また、本発明者らは、上述のエポキシ系化合物の安定化剤としての優位性に着目し、上記課題、即ち近年の厳しい要求に対応できる様な、少量でも安定化剤としての効果を示し,更に配合量を増やしても揮発性等の問題の生じないエポキシ系の安定化剤の開発に向けて鋭意検討した結果、特定の構造を有するエポキシシクロヘキサンジカルボン酸ジエステルが、安定化剤としての効果に優れ、かつ樹脂との相溶性が良好であり、耐揮発性にも優れていることを見出し、第3の本発明の完成に至った。
 即ち、第3の本発明は以下の特定の構造を有する新規なエポキシシクロヘキサンジカルボン酸ジエステルからなる塩素含有樹脂用安定化剤及び該安定化剤を含んでなる安定化された塩素含有樹脂組成物、更には塩素含有樹脂組成物の安定化方法を提供するものである。
[項1] 下記一般式(1)で示される4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルからなり、かつ該ジカルボン酸ジエステルを構成するアルキル基の全量に対する直鎖状のアルキル基の比率(モル比)が50~99%であることを特徴とする塩素含有樹脂用安定化剤。
Figure JPOXMLDOC01-appb-I000005
  (式中、R及びRは同一又は異なって、炭素数7~13の直鎖状又は分岐鎖状のアルキル基を表す。)
[項2] 前記アルキル基の炭素数が、8~12である[項1]に記載の塩素含有樹脂用安定化剤。
[項3] 前記アルキル基が、主として炭素数9~11のアルキル基から構成され、炭素数9のアルキル基/炭素数10のアルキル基/炭素数11のアルキル基の比率(モル比)が10~25/35~50/30~45の範囲である[項1]又は[項2]に記載の塩素含有樹脂用安定化剤。
[項4] 前記アルキル基が、90%以上(モル比)の炭素数9のアルキル基を含む[項1]又は[項2]に記載の塩素含有樹脂用安定化剤。
[項5] 前記アルキル基中の直鎖状のアルキル基の比率が、55~95%である[項1]~[項4]の何れかに記載の塩素含有樹脂用安定化剤。
[項6] 前記アルキル基中の直鎖状のアルキル基の比率が、60~95%である[項1]~[項4]の何れかに記載の塩素含有樹脂用安定化剤。
[項7] 前記アルキル基中の直鎖状のアルキル基の比率が、70~95%である[項1]~[項4]の何れかに記載の塩素含有樹脂用安定化剤。
[項8] 4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルが、4-シクロヘキセン-1,2-ジカルボン酸ジエステルをエポキシ化反応して得られる[項1]~[項7]の何れかに記載の塩素含有樹脂用安定化剤。
[項9] 前記4-シクロヘキセン-1,2-ジカルボン酸ジエステルが、4-シクロヘキセン-1,2-ジカルボン酸又はその酸無水物と炭素数7~13の飽和脂肪族アルコールをエステル化反応して得られたものであり、該飽和脂肪族アルコールが炭素数9~11の飽和脂肪族アルコールを主成分とし、かつ該飽和脂肪族アルコールの直鎖率(モル比)が、50~99%である[項8]に記載の塩素含有樹脂用安定化剤。
[項10] 塩素含有樹脂と[項1]~[項9]の何れかに記載の安定化剤を含有することを特徴とする安定化された塩素含有樹脂組成物。
[項11] 前記安定化剤の含有量が、塩素含有樹脂100重量部に対して、1~30重量部である[項10]に記載の塩素含有樹脂組成物。
[項12] 安定化剤の含有量が、塩素含有樹脂100重量部に対して、1重量部以上、20重量部未満である[項10]に記載の塩素含有樹脂組成物。
[項13] 安定化剤の含有量が、塩素含有樹脂100重量部に対して、5重量部以上、20重量部未満である[項10]に記載の塩素含有樹脂組成物。
[項14] 塩素含有樹脂が、塩化ビニル系樹脂である[項11]~[項13]の何れかに記載の塩素含有樹脂組成物。
[項15] 更に、可塑剤を含む[項11]~[項14]の何れかに記載の塩素含有樹脂組成物。
[項16] 可塑剤の含有量が、塩素含有樹脂100重量部に対して、5~150重量部である[項15]に記載の塩素含有樹脂組成物。
[項17] 前記可塑剤が、脂肪族多価カルボン酸エステル、芳香族多価カルボン酸エステル、脂環族多価カルボン酸エステル、ポリエステル、ポリエーテルよりなる群より選ばれた一種又は二種以上である、[項15]又は[項16]に記載の塩素含有樹脂組成物。
[項18] 前記可塑剤が、フタル酸エステル、トリメリット酸エステル、シクロヘキサンジカルボン酸エステルからなる群より選ばれた一種又は二種以上である、[項15]又は[項16]に記載の塩素含有樹脂組成物。
[項19] 前記可塑剤が、フタル酸ジイソデシル(DIDP)、ジ(2-プロピルヘプチル)フタレート(DPHP)、フタル酸ジウンデシル(DUP)、フタル酸ジアルキル(C9~C11)(PL-200)、フタル酸ジアルキル(C10~C13)(ビニサイザー124)、フタル酸ジトリデシル(ビニサイザー20)、トリメリット酸トリノルマルアルキル(C8,C10)(トリメックスN-08)、トリメリット酸トリノルマルオクチル(トリメックス New NSK)、トリメリット酸イソノニルエステル(C-9N)、90%以上の炭素数9の飽和脂肪族アルコールを含み、かつ直鎖状の飽和脂肪族アルコールの比率が50~99%である飽和脂肪族アルコールのトリメリット酸トリエステル(トリメリット酸トリノニル(分岐及び直鎖)、TL9TM)からなる群より選ばれた一種又は二種以上である、[項15]又は[項16]に記載の塩素含有樹脂組成物。
[項20] 前記塩素含有樹脂用安定化剤と可塑剤を予め混合した後、塩素含有樹脂に加える方法により得られることを特徴とする、[項15]~[項19]の何れかに記載の塩素含有樹脂組成物。
[項21] [項10]~[項20]の何れかに記載の塩素含有樹脂組成物から得られた塩素含有樹脂成形体。
[項22] 下記一般式(1)で示される4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルから選ばれる少なくとも一種を塩素含有樹脂に含有させることにより、該塩素含有樹脂を安定化する方法であって、該ジカルボン酸ジエステルを構成するアルキル基の全量に対する直鎖状のアルキル基の比率(モル比)が50~99%である、塩素含有樹脂を安定化する方法。
Figure JPOXMLDOC01-appb-I000006
 (式中、R及びRは同一又は異なって、炭素数7~13の直鎖状又は分岐鎖状のアルキル基を表す。)
[項23] 前記アルキル基が、主として炭素数9~11のアルキル基から構成され、炭素数9のアルキル基/炭素数10のアルキル基/炭素数11のアルキル基の比率(モル比)が10~25/35~50/30~45の範囲である[項22]に記載の方法。
[項24] 前記アルキル基が90%以上(モル比)の炭素数9のアルキル基を含む、[項22]に記載の方法。
[項25] 前記アルキル基中の直鎖状のアルキル基の比率が55~95%である、[項22]~[項24]の何れかに記載の方法。
[項26] 4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルが、4-シクロヘキセン-1,2-ジカルボン酸ジエステルをエポキシ化反応して得られる、[項22]~[項25]の何れかに記載の方法。
[項27] 前記4-シクロヘキセン-1,2-ジカルボン酸ジエステルが、4-シクロヘキセン-1,2-ジカルボン酸又はその酸無水物と炭素数7~13の飽和脂肪族アルコールをエステル化反応して得られたものであり、該飽和脂肪族アルコールが炭素数9~11の飽和脂肪族アルコールを主成分とし、かつ該飽和脂肪族アルコールの直鎖率(モル比)が50~99%である、[項26]に記載の方法。
[項28] [項1]~[項7]の何れかに記載の塩素含有樹脂用安定化剤に使用するための4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルの製造方法であって、
必要に応じて触媒の存在下で4-シクロヘキセン-1,2-ジカルボン酸又はその酸無水物と炭素数7~13の飽和脂肪族アルコールを、必要に応じて不活性ガスの雰囲気下若しくは気流下で、エステル化する工程、及びエステル化して得られた4-シクロヘキセン-1,2-ジカルボン酸ジエステルをエポキシ化剤の存在下でエポキシ化する工程を具備する、4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルの製造方法。
[項29] 飽和脂肪族アルコールが、主として炭素数9~11の飽和脂肪族アルコールから構成されかつ炭素数9の飽和脂肪族アルコール/炭素数10の飽和脂肪族アルコール/炭素数11の飽和脂肪族アルコールの比率(モル比)が10~25/35~50/30~45の範囲である、又は炭素数9の飽和脂肪族アルコールの比率(モル比)が90%以上の範囲である、[項28]に記載の製造方法。
[項30] 飽和脂肪族アルコールの直鎖率(モル比)が、50~99%である[項28]又は[項29]に記載の製造方法。
 また、本発明者らは、上記課題を解決すべく鋭意検討を行なった結果、特定の構造を有する新規なエポキシシクロヘキサンジカルボン酸ジエステルが塩化ビニル系樹脂との相溶性に優れ、そのエポキシシクロヘキサンジカルボン酸ジエステルを含有する塩化ビニル系樹脂組成物が、塩化ビニル系樹脂特有の熱や光による物性低下や着色を抑える効果に優れ、かつ課題であった耐寒性や耐揮発性、特に耐フォギング性を大きく改善することが可能であり、上述の自動車内装材として非常に有用であることを見出し、第4の本発明を完成するに至った。
 即ち、第4の本発明は、特定の構造を有する新規なエポキシシクロヘキサンジカルボン酸ジエステルを含有してなる自動車内装用塩化ビニル系樹脂組成物及び該塩化ビニル系樹脂組成物からなる自動車内装材、並びに特定の構造を有する新規なエポキシシクロヘキサンジカルボン酸ジエステルを含有してなる自動車内装材用塩化ビニル系樹脂用可塑剤及び安定化剤を提供するものである。
[項1] 塩化ビニル系樹脂及びエポキシシクロヘキサンジカルボン酸ジエステルを含有してなる自動車内装用塩化ビニル系樹脂組成物であって、
前記エポキシシクロヘキサンジカルボン酸ジエステルが、下記一般式(1)で示される4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルからなり、かつ該ジカルボン酸ジエステルを構成するアルキル基の全量に対する直鎖状のアルキル基の比率(モル比)が50~99%であることを特徴とする自動車内装用塩化ビニル系樹脂組成物。
Figure JPOXMLDOC01-appb-I000007
 (式中、R及びRは同一又は異なって、炭素数7~13の直鎖状又は分岐鎖状のアルキル基を表す。)
[項2] 前記アルキル基の炭素数が、8~12である[項1]に記載の自動車内装用塩化ビニル系樹脂組成物。
[項3] 前記アルキル基が、主として炭素数9~11のアルキル基から構成され、炭素数9のアルキル基/炭素数10のアルキル基/炭素数11のアルキル基の比率(モル比)が10~25/35~50/30~45の範囲である[項1]又は[項2]に記載の自動車内装用塩化ビニル系樹脂組成物。
[項4] 前記アルキル基が、90%以上(モル比)の炭素数9のアルキル基を含む[項1]又は[項2]に記載の自動車内装用塩化ビニル系樹脂組成物。
[項5] 前記アルキル基中の直鎖状のアルキル基の比率が、55~95%である[項1]~[項4]の何れかに記載の自動車内装用塩化ビニル系樹脂組成物。
[項6] 前記アルキル基中の直鎖状のアルキル基の比率が、60~95%である[項1]~[項4]の何れかに記載の自動車内装用塩化ビニル系樹脂組成物。
[項7] 前記アルキル基中の直鎖状のアルキル基の比率が、70~95%である[項1]~[項4]の何れかに記載の自動車内装用塩化ビニル系樹脂組成物。
[項8] 4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルが、4-シクロヘキセン-1,2-ジカルボン酸ジエステルをエポキシ化反応して得られる[項1]~[項7]の何れかに記載の自動車内装用塩化ビニル系樹脂組成物。
[項9] 前記4-シクロヘキセン-1,2-ジカルボン酸ジエステルが、4-シクロヘキセン-1,2-ジカルボン酸又はその酸無水物と炭素数7~13の飽和脂肪族アルコールをエステル化反応して得られるものであり、該飽和脂肪族アルコールの直鎖率(モル比)が、50~99%である[項8]に記載の自動車内装用塩化ビニル系樹脂組成物。
[項10] 前記エポキシシクロヘキサンジカルボン酸ジエステルの含有量が、塩化ビニル系樹脂100重量部に対して、1~200重量部である[項1]~[項9]の何れかに記載の自動車内装用塩化ビニル系樹脂組成物。
[項11] 前記エポキシシクロヘキサンジカルボン酸ジエステルの含有量が、塩化ビニル系樹脂100重量部に対して、5~150重量部である[項1]~[項9]の何れかに記載の自動車内装用塩化ビニル系樹脂組成物。
[項12] 前記エポキシシクロヘキサンジカルボン酸ジエステルの含有量が、塩化ビニル系樹脂100重量部に対して、1~30重量部である[項1]~[項9]の何れかに記載の自動車内装用塩化ビニル系樹脂組成物。
[項13] 前記エポキシシクロヘキサンジカルボン酸ジエステルの含有量が、塩化ビニル系樹脂100重量部に対して、30~150重量部である[項1]~[項9]の何れかに記載の自動車内装用塩化ビニル系樹脂組成物。
[項14] 更に、フタル酸エステル、トリメリット酸エステル、シクロヘキサンジカルボン酸エステルからなる群より選ばれた一種又は二種以上の可塑剤を含んでなる[項1]~[項13]の何れかに記載の自動車内装用塩化ビニル系樹脂組成物。
[項15] 前記可塑剤が、フタル酸ジイソデシル、フタル酸ジ(2-プロピルヘプチル)、フタル酸ジウンデシル、フタル酸ジアルキル(C9~C11)、フタル酸ジアルキル(C10~C13)、フタル酸ジトリデシル、トリメリット酸トリノルマルアルキル(C8,C10)、トリメリット酸トリノルマルオクチル、トリメリット酸トリイソノニル及びトリメリット酸トリエステルからなる群より選ばれた一種又は二種以上であり、前記トリメリット酸トリエステルはトリメリット酸と炭素数9の飽和脂肪族アルコールの比率(モル比)が90%以上かつ直鎖状の飽和脂肪族アルコールの比率(モル比)が50~99%である飽和脂肪族アルコールとから得られるトリメリット酸トリエステルである、[項14]に記載の自動車内装用塩化ビニル系樹脂組成物。
[項16] 更に、有機酸の金属石鹸化合物を含んでなる[項1]~[項15]の何れかに記載の自動車内装用塩化ビニル系樹脂組成物。
[項17] 前記金属石鹸化合物が、脂肪酸カルシウム塩、脂肪酸亜鉛塩及び脂肪酸バリウムよりなる群より選ばれた1種又は2種以上の脂肪酸金属石鹸である[項16]に記載の自動車内装用塩化ビニル系樹脂組成物。
[項18] [項1]~[項17]の何れかに記載の自動車内装用塩化ビニル系樹脂組成物からなる自動車内装材。
[項19] 下記一般式(1)で示される4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルからなり、かつ該ジカルボン酸ジエステルを構成するアルキル基の全量に対する直鎖状のアルキル基の比率(モル比)が50~99%であることを特徴とする自動車内装材用塩化ビニル系樹脂用可塑剤。
Figure JPOXMLDOC01-appb-I000008
 (式中、R1及びR2は同一又は異なって、炭素数7~13の直鎖状又は分岐鎖状のアルキル基を表す。)
[項20] 下記一般式(1)で示される4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルからなり、かつ該ジカルボン酸ジエステルを構成するアルキル基の全量に対する直鎖状のアルキル基の比率(モル比)が50~99%であることを特徴とする自動車内装材用塩化ビニル系樹脂用安定化剤。
Figure JPOXMLDOC01-appb-I000009
 (式中、R1及びR2は同一又は異なって、炭素数7~13の直鎖状又は分岐鎖状のアルキル基を表す。)
 また、本発明者らは、かかる現状に鑑み、上記課題を解決すべく鋭意検討を行なった結果、特定の構造のエポキシシクロヘキサンジカルボン酸ジエステルを配合することにより、滅菌や殺菌処理後の劣化が少なく、安定的に使用することのできる、加工性や柔軟性が良好であり、かつ耐熱性及び耐寒性の改善された医療用塩化ビニル系樹脂組成物が得られ、その樹脂組成物からなる医療用材料が、滅菌や殺菌処理後の劣化が少なく、安定的に使用することのできる、柔軟性等の機械的性能が良好であり、かつ耐熱性及び耐寒性の改善された医療用材料として有効であることを見出し、第5の本発明を完成するに至った。
 即ち、第5の本発明は、下記に示す特定の構造を有する新規なエポキシシクロヘキサンジカルボン酸ジエステルを含有してなる医療用塩化ビニル系樹脂組成物及び医療用材料を提供するものである。
[項1] 塩化ビニル系樹脂及びエポキシシクロヘキサンジカルボン酸ジエステルを含有してなる医療用塩化ビニル系樹脂組成物であって、前記エポキシシクロヘキサンジカルボン酸ジエステルが、下記一般式(1)で示される4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルからなり、かつ該ジカルボン酸ジエステルを構成するアルキル基の全量に対する直鎖状のアルキル基の比率(モル比)が50~99%であることを特徴とする医療用塩化ビニル系樹脂組成物。
Figure JPOXMLDOC01-appb-I000010
 (式中、R及びRは、同一又は異なって、それぞれ炭素数7~13の直鎖状又は分岐鎖状のアルキル基を表す。)
[項2] 前記アルキル基の炭素数が、8~12である[項1]に記載の医療用塩化ビニル系樹脂組成物。
[項3] 前記アルキル基が、主として炭素数9~11のアルキル基から構成され、炭素数9のアルキル基/炭素数10のアルキル基/炭素数11のアルキル基の比率が10~25/35~50/30~45の範囲である[項1]又は[項2]に記載の医療用塩化ビニル系樹脂組成物。
[項4] 前記アルキル基が、90%以上(モル比)の炭素数9のアルキル基を含む[項1]又は[項2]に記載の医療用塩化ビニル系樹脂組成物。
[項5] 前記アルキル基中の直鎖状のアルキル基の比率が、55~98%である[項1]~[項4]の何れかに記載の医療用塩化ビニル系樹脂組成物。
[項6] 前記アルキル基中の直鎖状のアルキル基の比率が、55~95%である[項1]~[項4]の何れかに記載の医療用塩化ビニル系樹脂組成物。
[項7] 前記アルキル基中の直鎖状のアルキル基の比率が、60~95%である[項1]~[項4]の何れかに記載の医療用塩化ビニル系樹脂組成物。
[項8] 前記アルキル基中の直鎖状のアルキル基の比率が、70~95%である[項1]~[項4]の何れかに記載の医療用塩化ビニル系樹脂組成物。
[項9] 4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルが、4-シクロヘキセン-1,2-ジカルボン酸ジエステルのエポキシ化物である[項1]~[項8]の何れかに記載の医療用塩化ビニル系樹脂組成物。
[項10] 前記4-シクロヘキセン-1,2-ジカルボン酸ジエステルが、4-シクロヘキセン-1,2-ジカルボン酸又はその無水物と炭素数7~13の飽和脂肪族アルコールのエステル化物であり、該飽和脂肪族アルコールが炭素数9~11の飽和脂肪族アルコールを主成分とし、かつ該飽和脂肪族アルコールの直鎖率(モル比)が、50~99%である[項9]に記載の医療用塩化ビニル系樹脂組成物。
[項11] エポキシシクロヘキサンジカルボン酸ジエステルの配合量が、塩化ビニル系樹脂100重量部に対して、5~200重量部である[項1]~[項10]の何れかに記載の医療用塩化ビニル系樹脂組成物。
[項12] 医療用塩化ビニル系樹脂組成物が、塩化ビニル系樹脂100重量部に対するエポキシシクロヘキサンジカルボン酸ジエステルの配合量を30~150重量部とする、医療用軟質塩化ビニル系樹脂組成物である、[項1]~[項10]の何れかに記載の医療用塩化ビニル系樹脂組成物。
[項13] エポキシシクロヘキサンジカルボン酸ジエステルの配合量が、塩化ビニル系樹脂100重量部に対して、40~100重量部である[項12]に記載の医療用塩化ビニル系樹脂組成物。
[項14] 医療用塩化ビニル系樹脂組成物が、塩化ビニル系樹脂100重量部に対するエポキシシクロヘキサンジカルボン酸ジエステルの配合量を5重量部以上30重量部未満とする、医療用半硬質塩化ビニル系樹脂組成物である、[項1]~[項10]の何れかに記載の医療用塩化ビニル系樹脂組成物。
[項15] エポキシシクロヘキサンジカルボン酸ジエステルの配合量が、塩化ビニル系樹脂100重量部に対して、5重量部以上、20重量部未満である[項14]に記載の医療用塩化ビニル系樹脂組成物。
[項16] 更に脂肪酸カルシウム塩及び/又は脂肪酸亜鉛塩を含有する[項1]~[項15]の何れかに記載の医療用塩化ビニル系樹脂組成物。
[項17] 前記脂肪酸カルシウム塩及び/又は脂肪酸亜鉛塩の配合量(何れか一方を使用するときはその配合量又は両者を使用するときはその合計量)の配合量が、塩化ビニル系樹脂100重量部に対して、0.1~10重量部である[項16]に記載の医療用塩化ビニル系樹脂組成物。
[項18] 更にシラン化合物を含有する[項1]~[項17]の何れかに記載の医療用塩化ビニル系樹脂組成物。
[項19] 前記シラン化合物の配合量が、塩化ビニル系樹脂100重量部に対して、0.1~15重量部である[項18]に記載の医療用塩化ビニル系樹脂組成物。
[項20] [項1]~[項19]の何れかに記載の医療用塩化ビニル系樹脂組成物からなる医療用材料。
 第1の本発明によれば、可塑剤や塩素含有樹脂における安定化剤に好適に使用できる、新規なエポキシ基を有するエポキシシクロヘキサンジカルボン酸ジエステルを得ることができる。また該エポキシシクロヘキサンジカルボン酸ジエステルを可塑剤として使用する場合、可塑剤本来の可塑化性能が良好であり、かつ耐熱性や耐寒性に優れており、近年のより厳しい要求にも適合した可塑剤として使用することができる。また該エポキシシクロヘキサンジカルボン酸ジエステルを安定化剤として使用する場合、塩素含有樹脂系における安定化剤としての性能にも優れている。 
 第2の本発明の塩化ビニル系樹脂用可塑剤は、塩化ビニル系樹脂との相溶性に優れることより可塑化効率や柔軟性に優れ、従来のものに較べて耐寒性や耐揮発性が大きく改善されており、それを可塑剤として用いることは、近年益々厳しくなる耐熱性や耐寒性の要求に対応した塩化ビニル系樹脂成形体を得るために非常に有用である。更に、化合物中に含まれるエポキシ基の効果による熱や光による老化防止能も期待されることより、特に屋外で長期間使用する様な用途で有用である。 
 第3の本発明の塩素含有樹脂用安定化剤は、安定化剤としての効果(安定化効果)が優れることに加えて、樹脂との相溶性が良好であり、耐揮発性が改善されており、更にブリードや積層樹脂等への移行性が少なく、長期間安定した効果を示す塩素含有樹脂用安定化剤として使用することができる。更に、該安定化剤を配合した塩素含有樹脂組成物は、フォギング等の懸念がなく、安定して使用することのできる安定化された塩素含有樹脂組成物である。また、その安定化された塩素含有樹脂組成物の成形体は、電線被覆等の用途で非常に有用であり、更には該安定化剤を用いた本発明に係る安定化法方法を採用することにより、これまで使用が困難とされていた長期間屋外で使用する様な用途においても塩素含有樹脂使用の可能性を広げることができる。 
 第4の本発明の自動車内装用塩化ビニル系樹脂組成物は、樹脂との相溶性に優れ、樹脂と混合しやすく、耐寒性、耐揮発性、特に耐フォギング性の改良された自動車内装材用可塑剤又は安定化剤を含有することにより、耐寒性、耐揮発性、特に耐フォギング性の改良された、耐光性、耐熱老化性に優れた自動車内装用塩化ビニル系樹脂組成物を得ることが可能となり、その自動車内装用塩化ビニル系樹脂組成物よりなる自動車内装材は、耐光性、耐熱老化性に優れており、炎天下等の過酷な条件下でも物性低下や着色等の問題がなく安定した品質を保持し、かつ寒冷地での使用時の亀裂や炎天下等の高温下におけるフォギング等の問題もなく使用することのできる自動車内装材として非常に有用である。 
 第5の本発明の医療用塩化ビニル系樹脂組成物は、加工性や柔軟性に代表される機械的特性が良好であり、かつ耐熱性及び耐寒性が改善され、加熱滅菌処理後も、揮発による可塑剤の含有量の低下が顕著に小さく、良好な機械的特性を保持し、更に紫外線や放射線照射による滅菌や殺菌処理においても、ほとんど着色がない。その塩化ビニル系樹脂組成物から得られる医療用材料は、柔軟性等の機械的特性が良好であり、かつ耐熱性及び耐寒性が改善され、様々な滅菌や殺菌処理後も機械的特性の低下が少なく、更に着色もほとんどなく、安定して使用することができる。
<エポキシシクロヘキサンジカルボン酸ジエステル>
 本発明のエポキシシクロヘキサンジカルボン酸ジエステルは、下記一般式(1)で示される4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルからなることを特徴とする。
Figure JPOXMLDOC01-appb-I000011
 なお、式中、R及びRは同一又は異なって、炭素数7~13、好ましくは炭素数8~12の直鎖状又は分岐鎖状のアルキル基を表し、かつ式中R、Rで示されるアルキル基の全量に対する直鎖状のアルキル基の比率(モル比)が、50~99%、好ましくは55~98%、より好ましくは55~95%、更に好ましくは60~95%、特に好ましくは70~95%である。なおこの比率を満たすことは、本発明のエポキシシクロヘキサンジカルボン酸ジエステルが4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルの混合物となる場合を含むことを意味する。そして混合物の場合の比率は、その混合物全体のアルキル基の全量に対する直鎖状のアルキル基の比率(モル比)を意味する。
 更に、前記アルキル基は、好ましい態様として、主として炭素数9~11のアルキル基から構成され、炭素数9のアルキル基/炭素数10のアルキル基/炭素数11のアルキル基の比率(モル比)が10~25/35~50/30~45の範囲である態様、または、エポキシシクロヘキサンジカルボン酸ジエステルを構成するアルキル基の全量に対して90%以上(モル比)の炭素数9のアルキル基を含む態様が推奨される。
 また、4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルは、シクロヘキサン環(いす型配座,舟型配座)、シクロヘキサン環に対するオキシラン環(シス体,トランス体)、シクロヘキサン環に対するアルキルオキシカルボニル基(シス体,トランス体)、及びシクロヘキサン環を介したオキシラン環とアルキルオキシカルボニル基(シス体,トランス体)において、それぞれ立体異性体が存在し得る。本発明において、所期の性能が得られるものであれば、特に制約はなく、シス体単独、トランス体単独、又はシス体とトランス体の混合物、何れであっても良い。下述の様に、一般的に4-シクロヘキセン-1,2-ジカルボン酸無水物を出発物質とした反応温度210℃付近よりも低い反応温度でのエステル化に続いてエポキシ化を行うことによって製造した場合、シクロヘキサン環に対するアルキルオキシカルボニル基の異性体構造はシス体が支配的である。
 また、シクロヘキサン環を介したオキシラン環とアルキルオキシカルボニル基の異性体構造は、好ましくはプロトン核磁気共鳴分光分析で測定した異性体比(シス体/トランス体、モル比)が5/95~35/65、より好ましく10/90~30/70、特に好ましくは15/85~25/75の範囲である、シス体とトランス体の混合物である態様が推奨される。
 なお,ここで言うシクロヘキサン環を介したオキシラン環とアルキルオキシカルボニル基の異性体構造とは、下記構造式(2)に示す様にシクロヘキサン環に対してオキシラン環とアルキルオキシカルボニル基が同一方向に位置するものがシス体、構造式(3)に示す様に異なった方向に位置するものがトランス体を意味し、その異性体比、即ちシス体とトランス体の異性体比は、プロトン核磁気共鳴分光分析(H-NMR)の結果より求めることができる。測定は、例えば、試料を重クロロホルム溶媒等に溶解し、汎用の核磁気共鳴分光計を用いて容易に行うことができる。また、異性体比は、上記測定により得られた分析チャートの3.2ppm付近に存在するオキシラン環部位のメチン水素に帰属される2つのピークのうち、低磁場側にシフトしたピークをトランス体、低磁場側にシフトしていないピークをシス体のピークと帰属し、それぞれのピーク積分値から次式を用いて計算した。 
 シス体/トランス体の異性体比=[{シス体積分値/(シス体積分値+トランス体積分値)}×100]/[{トランス体積分値/(シス体積分値+トランス体積分値)×100}]
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
 上記異性体構造は、目的に応じて、熱や化学剤によって、所期の異性体構造、即ち異性体比に異性化することもできる。
 本発明に係る4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステル(以下、「本ジエステル」ということがある)は、前記特定の構造を有するものであれば、特にその製造方法により限定されるものではないが、例えば、4-シクロヘキセン-1,2-ジカルボン酸またはその酸無水物と特定の構造の飽和脂肪族アルコールをエステル化反応し、得られた4-シクロヘキセン-1,2-ジカルボン酸ジエステル(以下、「本原料エステル」ということがある)を所定の条件でエポキシ化することにより、容易に得られる。また、4-シクロヘキセン-1,2-ジカルボン酸またはその酸無水物をエポキシ化後、得られた4,5-エポキシシクロヘキサン-1,2-ジカルボン酸またはその酸無水物と特定の構造の飽和脂肪族アルコールをエステル化する方法で得ることもできる。更に、上記飽和脂肪族アルコールの種類によっては、予め炭素数1~6程度の低級アルコールとエステル化後、上記飽和脂肪族アルコールを加えて、エステル交換反応により得る方法もある。簡便性等、実用性の観点から、エステル化後にエポキシ化する方法が最も好ましい。
 即ち、本発明に係る4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルは、4-シクロヘキセン-1,2-ジカルボン酸またはその酸無水物と飽和脂肪族アルコールをエステル化反応して得られた4-シクロヘキセン-1,2-ジカルボン酸ジエステル中のシクロヘキセン環上の不飽和結合をエポキシ化した構造を有することを特徴とする。
[飽和脂肪族アルコール]
 上記のエステル化反応又はエステル交換反応に用いられる飽和脂肪族アルコールは、炭素数7~13の直鎖状又は分岐鎖状の飽和脂肪族アルコールであり、好ましく炭素数8~12、より好ましくは9~11の直鎖状又は分岐鎖状の飽和脂肪族アルコールであり、特に好ましくは、(i)炭素数9の飽和脂肪族アルコールを90%以上、より好ましくは95%以上の比率(モル比)で含む直鎖状又は分岐鎖状の飽和脂肪族アルコール、又は(ii)主として炭素数9~11の飽和脂肪族アルコールからなり、炭素数9のアルキル基/炭素数10のアルキル基/炭素数11のアルキル基の比率(モル比)が10~25/35~50/30~45の範囲である飽和脂肪族アルコールである。なお、上記「主として」とは、飽和脂肪族アルコール全体に占める炭素数9~11の飽和脂肪族アルコールの比率(モル比)が90%以上、好ましくは95%以上を意味する。当該飽和脂肪族アルコールは、前記一般式(1)で示される4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルを構成する飽和脂肪族アルキル基となる原料アルコールであり、即ち前記説明は該アルキル基の説明と同義となる。
 また、前記飽和脂肪族アルコールは、該アルコール中に占める直鎖状の飽和脂肪族アルコールの比率(モル比)が、50~99%、好ましくは55~98%、より好ましくは55~95%、更に好ましくは60~95%、特に好ましくは70~95%であることを特徴とする。
 前記飽和脂肪族アルコールの好ましい態様の詳細としては、(i)炭素数7~13の直鎖状又は分岐鎖状の飽和脂肪族アルコールからなり、炭素数9の飽和脂肪族アルコールの比率(モル比)が90%以上、好ましくは95%以上で、かつ直鎖状の飽和脂肪族アルコールの占める比率(モル比)が50~99%、好ましくは55~98%、より好ましくは55~95%、更に好ましくは60~95%、特に好ましくは70~95%である態様、または、(ii)炭素数7~13の直鎖状又は分岐鎖状の飽和脂肪族アルコールからなる、主として炭素数9~11の飽和脂肪族アルコールの混合物であり、更に、炭素数9、10、11の各アルコールの占める比率(モル比)が、10~25/35~50/30~45となる範囲であり、かつ直鎖状の飽和脂肪族アルコールの占める比率(モル比)が50~99%、好ましくは55~98%、より好ましくは55~95%、更に好ましくは60~95%、特に好ましくは70~95%である態様等が推奨される。
 炭素数7未満の飽和脂肪族アルコールが含まれると、十分な耐寒性または安定化効果が得られ難いだけでなく、耐揮発性も低下し、フォギング等の問題が生ずる可能性がある。また炭素数13を超えた飽和脂肪族アルコールが含まれると、樹脂との相溶性が悪くなる傾向があり、加工性または可塑化効率等が低下したり、樹脂との混合むらが生じ、その結果安定化効果にばらつきが生ずる懸念があり、好ましくない。同様に、直鎖状の飽和脂肪族アルコールの比率が50%未満の場合には、耐寒性または耐揮発性が低下する傾向にあり、直鎖状の飽和脂肪族アルコールの比率が99%を超えると樹脂との相溶性が悪くなり、可塑化効率等の低下の懸念または安定化の効果にばらつきが生ずる懸念が出てくるため、いずれも好ましくない。
 90%以上の炭素数9の飽和脂肪族アルコールを含み、かつ直鎖状の飽和脂肪族アルコールの比率が50~99%である飽和脂肪族アルコールは、(1)1-オクテン、一酸化炭素と水素とのヒドロホルミル化反応による炭素数9のアルデヒドを製造する工程及び(2)炭素数9のアルデヒドを水素添加してアルコールに還元する工程を具備する製造方法により製造することができ、その製造方法で得られた飽和脂肪族アルコールをそのまま用いるか又は含有させることにより、前記の飽和脂肪族アルコールとすることができる。
 前記工程(1)のヒドロホルミル化反応は、例えば、コバルト触媒又はロジウム触媒の存在下、1-オクテン、一酸化炭素及び水素を反応することにより炭素数9のアルデヒドを製造することができる。
 前記工程(2)の水素添加は、例えば、ニッケル触媒又はパラジウム触媒等の貴金属触媒の存在下、炭素数9のアルデヒドを水素加圧下で、水素添加することによりアルコールに還元することができる。市販品の具体例としては、シェルケミカルズ社のリネボール9、及びオクセア社製のn-Nonanolなどが挙げられる。
 同じく、主として炭素数9~11の飽和脂肪族アルコールからなり、炭素数9のアルキル基/炭素数10のアルキル基/炭素数11のアルキル基の比率(モル比)が10~25/35~50/30~45の範囲である飽和脂肪族アルコールで、直鎖状の飽和脂肪族アルコールの比率(モル比)が50~99%である飽和脂肪族アルコールは、(1)1-オクテン、1-ノネン、1-デセンと一酸化炭素と水素とのヒドロホルミル化反応による炭素数9~11のアルデヒドを製造する工程及び(2)炭素数9~11のアルデヒドを水素添加してアルコールに還元する工程を具備する製造方法により製造することができ、その製造方法で得られた飽和脂肪族アルコールをそのまま用いるか又は含有させることにより、前記の飽和脂肪族アルコールとすることができる。
 前記工程(1)のヒドロホルミル化反応は、例えば、コバルト触媒又はロジウム触媒の存在下、1-オクテン、1-ノネン、1-デセン、一酸化炭素及び水素を反応することにより炭素数9~11のアルデヒドを製造することができる。
 前記工程(2)の水素添加は、例えば、ニッケル触媒又はパラジウム触媒等の貴金属触媒の存在下、炭素数9~11のアルデヒドを水素加圧下で、水素添加することによりアルコールに還元することができる。市販品の具体例としては、シェルケミカルズ社のネオドール911などが挙げられる。
[エステル化反応]
 エステル化反応とは、本ジエステルを得るためのエポキシ化反応の原料である4-シクロヘキセン-1,2-ジカルボン酸ジエステル(原料エステル)を得るための上記原料アルコールと4-シクロヘキセン-1,2-ジカルボン酸又はその酸無水物とのエステル化反応を意味し、そのエステル化反応を行うに際し、該原料アルコールは、例えば、4-シクロヘキセン-1,2-ジカルボン酸又はその酸無水物1モルに対して、好ましくは2.00モル~5.00モル、より好ましくは2.01モル~3.00モル、特に2.02モル~2.50モルを使用することが推奨される。
 エステル化反応に触媒を使用する場合、その触媒としては、鉱酸、有機酸、ルイス酸類等が例示される。より具体的には、鉱酸として、硫酸、塩酸、燐酸等が例示され、有機酸としては、p-トルエンスルホン酸、メタンスルホン酸等が例示され、ルイス酸としては、アルミニウム誘導体、スズ誘導体、チタン誘導体、鉛誘導体、亜鉛誘導体等が例示され、これらの1種又は2種以上を併用することが可能である。
 それらの中でも、p-トルエンスルホン酸、炭素数3~8のテトラアルキルチタネート、酸化チタン、水酸化チタン、炭素数3~12の脂肪酸スズ、酸化スズ、水酸化スズ、酸化亜鉛、水酸化亜鉛、酸化鉛、水酸化鉛、酸化アルミニウム、水酸化アルミニウムが特に好ましい。その使用量は、例えば、エステル合成原料である酸成分およびアルコール成分の総重量に対して、好ましくは0.01重量%~5.0重量%、より好ましくは0.02重量%~4.0重量%、特に0.03重量%~3.0重量%を使用することが推奨される。
 エステル化温度としては、100℃~230℃が例示され、通常、3時間~30時間で反応は完結する。
 原料エステルの原料である、4-シクロヘキセン-1,2-ジカルボン酸若しくはその酸無水物は、特に制限はなく、公知の方法で製造したものや、市販品、試薬等で入手できるものなどが使用できる。例えば、市販品としてリカシッドTH(商品名,新日本理化(株))などが例示される。4-シクロヘキセン-1,2-ジカルボン酸無水物は、通常、無水マレイン酸と1,3-ブタジエンとをディールス・アルダー反応して得られる。エステル化反応の観点から、4-シクロヘキセン-1,2-ジカルボン酸無水物を使用することが推奨される。
 エステル化反応においては、反応により生成する水の留出を促進するために、ベンゼン、トルエン、キシレン、シクロヘキサンなどの水同伴剤を使用することが可能である。
 また、エステル化反応時に原料、生成エステル及び有機溶媒(水同伴剤)の酸化劣化により酸化物、過酸化物、カルボニル化合物などの含酸素有機化合物を生成すると耐熱性、耐光性等に悪影響を与えるため、系内を窒素ガスなどの不活性ガス雰囲気下又は不活性ガス気流下で、常圧ないし減圧下にて反応を行うことが望ましい。エステル化反応終了後、過剰若しくは原料アルコールを減圧下または常圧下にて留去することが推奨される。
 上記エステル化方法により得られた原料エステルは、引き続き、必要に応じて塩基処理(中和処理)→水洗処理、液液抽出、蒸留(減圧、脱水処理)、吸着処理等により精製してもよい。
 塩基処理に用いる塩基としては、塩基性の化合物であれば特に制約はなく、例えば、水酸化ナトリウム、炭酸ナトリウムなどが例示される。
 吸着処理に用いる吸着剤としては、活性炭、活性白土、活性アルミナ、ハイドロタルサイト、シリカゲル、シリカアルミナ、ゼオライト、マグネシア、カルシア、珪藻土などが例示される。それらを1種で又は2種以上を適宜組み合わせて使用することができる。
上記エステル化後の精製処理は、常温で行なっても良いが、40~90℃程度に加温して行なうこともできる。
[エポキシ化反応]
 エポキシ化反応とは、本ジエステルを得るための上記原料エステル中のシクロヘキセン環上の不飽和結合のエポキシ化反応を意味し、通常、「有機合成化学、第23巻第7号、612~619頁(1985)」等に記載されているよく知られたエポキシ化反応を用いて、容易に行うことができる。例えば、(i)エポキシ化剤に過酢酸や過蟻酸の様な有機過酸を用いる方法や(ii)エポキシ化剤に過酸化水素を用いる方法などが挙げられる。
 より具体的には、(i)の方法の場合、例えば、過酸化水素と無水酢酸または酢酸を硫酸のような強酸を触媒として反応させて得られた過酢酸を、原料エステルに加え、20~30℃で数時間攪拌した後、徐々に温度を上げていき、50~60℃に到達した後、2~3時間その温度を保持して反応を完結させることができる。上記有機過酸としては、上記以外にも、モノ過フタル酸、メタクロル過安息香酸、トリフルオル過酢酸なども使うことができる。
 また、(ii)の方法の場合、例えば、蟻酸などの酸素キャリアーや硫酸などの強酸触媒の共存下、原料エステルに反応させることによりエポキシ化することができる。より具体的には、過酸化水素1モルに対して、酢酸または蟻酸を0.5モル以下、触媒として硫酸を0.05モル以下の少量用いて、40~70℃で2~15時間その温度を保持して反応させることにより、容易に原料エステルをエポキシ化させることができる。上記触媒としては、上記以外にも、燐酸、塩酸、硝酸、硼酸、またはその塩などがよく知られており、また、スルホン酸型強酸性陽イオン交換樹脂や酸化アルミニウムなども有効である。
 上記エポキシ化方法により得られた本ジエステルは、引き続き、必要に応じて水相除去、水洗処理、液液抽出、脱水処理、減圧蒸留、吸着処理等により精製してもよい。
 吸着処理に用いる吸着剤としては、活性炭、活性白土、活性アルミナ、ハイドロタルサイト、シリカゲル、シリカアルミナ、ゼオライト、マグネシア、カルシア、珪藻土などが例示される。それらを1種で又は2種以上を適宜組み合わせて使用することができる。
 前記エポキシ化後の精製処理は、常温で行なっても良いが、40~100℃程度に加温して行なうこともできる。
 上述の方法、条件の範囲で得られたジエステルのシクロヘキサン環に対するアルキルオキシカルボニル基の異性体構造は、ほとんどの化合物がシス体であることが、プロトン核磁気共鳴分光分析の結果より確認されている。
<可塑剤としての使用>
 本ジエステルは、可塑剤として好適に使用することができ、特に塩化ビニル系樹脂用可塑剤として好適に使用することができる。即ち、該可塑剤は、本発明に係る特定の構造を有する上記エポキシシクロヘキサンジカルボン酸ジエステルからなることを特徴とする。好ましい態様として、プロトン核磁気共鳴分光分析で測定したシクロヘキサン環を介したオキシラン環とアルキルオキシカルボニル基の異性体比(シス体/トランス体、モル比)が5/95~35/65であるエポキシシクロヘキサンジカルボン酸ジエステル化合物を可塑剤として使用することが推奨される。
<塩素含有樹脂用安定化剤としての使用>
 本ジエステルは、塩素含有樹脂用安定化剤として好適に使用することができる。即ち、該安定化剤は、本発明に係る特定の構造を有する上記エポキシシクロヘキサンジカルボン酸ジエステルからなることを特徴とする。好ましい態様として、プロトン核磁気共鳴分光分析で測定したオキシラン環部位の異性体比(シス体/トランス体、モル比)が5/95~35/65であるエポキシシクロヘキサンジカルボン酸ジエステル化合物を該安定化剤として使用することが推奨される。
 本発明に係る特定の構造のエポキシシクロヘキサンジカルボン酸ジエステルを含む樹脂組成物及びその成形体は、自動車アンダーボディコート、インストルメントパネル、コンソール、ドアシート、アンダーカーペット、トランクシート、ドアトリム類などの自動車装材、各種レザー類、装飾シート、農業用フィルム、食品包装用フィルム、電線被覆、各種発泡製品、ホース、医療用チューブ、食品用チューブ、冷蔵庫用ガスケット、パッキン類、壁紙、床材、ブーツ、カーテン、靴底、手袋、止水板、玩具、化粧板、血液バック、輸液バック、ターポリン、マット類、シーリング材、遮水シート、土木シート、ルーフィング、防水シート、絶縁シート、工業用テープ、ガラスフィルム、字消し等に有用である。
<塩化ビニル系樹脂組成物>
 本発明の塩化ビニル系樹脂組成物は、上述した本ジエステルを可塑剤として、又は安定化剤として塩化ビニル系樹脂に配合することにより得られる。本発明に係る塩化ビニル系樹脂組成物における本ジエステルの含有量としては、その用途に応じて適宜選択されるが、塩化ビニル系樹脂100重量部に対して、好ましくは1~200重量部である。
[塩化ビニル系樹脂]
 本発明で用いられる塩化ビニル系樹脂とは、塩化ビニルあるいは塩化ビニリデンの単独重合体及び塩化ビニルあるいは塩化ビニリデンの共重合体であり、その製造方法は、従来公知の重合方法で行われる。例えば、汎用塩化ビニル樹脂の場合は、油溶性重合触媒の存在下に懸濁重合する方法などが挙げられる。また、塩化ビニルペースト樹脂では水性媒体中で水溶性重合触媒の存在下に乳化重合する方法などが挙げられる。これらの塩化ビニル系樹脂の重合度は、通常300から5000であり、好ましくは400~3500、さらに好ましくは700~3000である。この重合度が低すぎると耐熱性等が低下し、高すぎると成形加工性が低下する傾向がある。
 共重合体の場合、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン等の炭素数2~30のα-オレフィン類、アクリル酸およびそのエステル類、メタクリル酸およびそのエステル類、マレイン酸およびそのエステル類、酢酸ビニル、プロピオン酸ビニル、アルキルビニルエーテル等のビニル化合物、ジアリルフタレート等の多官能性モノマー及びこれらの混合物と塩化ビニルモノマーとの共重合体、エチレン-アクリル酸エチル共重合体等のエチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸エステル共重合体、エチレン-酢酸ビニル共重合体(EVA)、塩素化ポリエチレン、ブチルゴム、架橋アクリルゴム、ポリウレタン、ブタジエンースチレンーメチルメタクリレート共重合体(MBS)、ブタジエンーアクリロニトリルー(α-メチル)スチレン共重合体(ABS)、スチレン-ブタジエン共重合体、ポリエチレン、ポリメチルメタクリレート及びこれらの混合物へ塩化ビニルモノマーをグラフトしたグラフト共重合体等が例示される。
<軟質塩化ビニル系樹脂組成物>
 本発明の軟質塩化ビニル系樹脂組成物は、上述した本ジエステルを可塑剤として前記塩化ビニル系樹脂に配合することにより得られる。本発明に係る軟質塩化ビニル系樹脂組成物における本ジエステルの含有量としては、その用途に応じて適宜選択されるが、塩化ビニル系樹脂100重量部に対して、好ましくは20~200重量部であり、より好ましくは30~150重量部である。20重量部以上であれば、柔軟性の要求される用途においても十分な柔軟性を得ることができ、更に柔軟性の要求される用途では、適宜その配合量を調整することにより柔軟性を付与することができるが、成形品表面へのブリード等が懸念される用途では、200重量部以下であれば、その懸念もなく、好ましく使用することができる。但し、上記の塩化ビニル系樹脂組成物に対して充填剤などを添加する場合は、充填剤自身が吸油するために上記の範囲を超えて当該可塑剤を配合する場合もある。例えば、塩化ビニル系樹脂100重量部に対し、充填剤として炭酸カルシウムを100重量部配合した場合には、当該可塑剤を500重量部程度まで配合されていてもよい。
 塩化ビニル系樹脂組成物又は軟質塩化ビニル系樹脂組成物は、本ジエステルと共に他の公知の可塑剤を併用することもできる。また、必要に応じて難燃剤、安定化剤、安定化助剤、着色剤、加工助剤、充填剤、酸化防止剤(老化防止剤)、紫外線吸収剤、ヒンダードアミン等の光安定化剤、滑剤或いは帯電防止剤等の添加剤を適宜配合して使用されることが多い。
 上記本ジエステル以外の他の可塑剤、添加剤は、1種でまたは2種以上組み合わせて本ジエステルと共に配合されていてもよい。
 本ジエステルと併用することができる他の可塑剤としては、本技術分野で従来から使用されている公知の可塑剤が使用でき、例えば、ジエチレングリコールジベンゾエート等の安息香酸エステル類、フタル酸ジブチル(DBP)、フタル酸ジ-2-エチルヘキシル(DOP)、フタル酸ジイソノニル(DINP)、フタル酸ジイソデシル(DIDP)、ジ(2-プロピルヘプチル)フタレート(DPHP)、フタル酸ジウンデシル(DUP)、フタル酸ジトリデシル(DTDP)、テレフタル酸ビス(2-エチルヘキシル)(DOTP)、イソフタル酸ビス(2-エチルヘキシル)(DOIP)等のフタル酸エステル類、シクロヘキサン-1, 2-ジカルボン酸ビス(2-エチルヘキシル)(DOCH)、シクロヘキサン-1,2-ジカルボン酸ジイソノニル(DINCH)等のシクロヘキサンジカルボン酸エステル、4-シクロヘキセン-1, 2-ジカルボン酸ビス(2-エチルヘキシル)(DOTH)等のテトラヒドロフタル酸エステル等の脂環式二塩基酸エステル類、アジピン酸ジ-2-エチルヘキシル(DOA)、アジピン酸ジイソノニル(DINA)、アジピン酸ジイソデシル(DIDA)、セバシン酸ジ-2-エチルヘキシル(DOS)、セバシン酸ジイソノニル(DINS)等の脂肪族二塩基酸エステル類、トリメリット酸トリ-2-エチルヘキシル(TOTM)、トリメリット酸トリイソノニル(TINTM)、トリメリット酸トリイソデシル(TIDTM)、トリメリット酸トリノルマルアルキル(C8,C10)(トリメックスN-08)、90%以上の炭素数9の飽和脂肪族アルコールを含み、かつ直鎖状の飽和脂肪族アルコールの比率が50~99%である飽和脂肪族アルコールのトリメリット酸トリエステル(トリメリット酸トリノニル(分岐及び直鎖)、TL9TM)等のトリメリット酸エステル類、ピロメリット酸テトラ-2-エチルヘキシル(TOPM)等のピロメリット酸エステル類、リン酸トリ-2-エチルヘキシル(TOP)、リン酸トリクレジル(TCP)等のリン酸エステル類、ペンタエリスリトール等の多価アルコールのアルキルエステル類、アジピン酸等の2塩基酸とグリコールとのポリエステル化によって合成された分子量800~4000のポリエステル類、ポリエーテル類、エポキシ化大豆油、エポキシ化亜麻仁油等のエポキシ化エステル類、ジカプリン酸-1,4-ブタンジオール等の脂肪酸グリコールエステル類、アセチルクエン酸トリブチル(ATBC)、アセチルクエン酸トリヘキシル(ATHC)、アセチルクエン酸トリエチルヘキシル(ATEHC)、ブチリルクエン酸トリヘキシル(BTHC)等のクエン酸エステル類、イソソルビドジエステル類、パラフィンワックスやn-パラフィンを塩素化した塩素化パラフィン類、塩素化ステアリン酸エステル等の塩素化脂肪酸エステル類、オレイン酸ブチル等の高級脂肪酸エステル類等が例示される。上記併用できる他の可塑剤を配合する場合、その配合量は、本発明に係る可塑剤の効果を損なわない範囲で適宜選択され、通常、塩化ビニル系樹脂100重量部に対し、1~100重量部程度が推奨される。
 難燃剤としては、水酸化アルミニウム、三酸化アンチモン、水酸化マグネシウム、ホウ酸亜鉛等の無機系化合物、クレジルジフェニルホスフェート、トリスクロロエチルフォスフェート、トリスクロロプロピルフォスフェート、トリスジクロロプロピルフォスフェート等のリン系化合物、塩素化パラフィン等のハロゲン系化合物等が例示される。難燃剤を配合する場合、塩化ビニル系樹脂100重量部に対する難燃剤の配合量は0.1~20重量部程度が推奨される。
 安定化剤としては、ステアリン酸リチウム、ステアリン酸マグネシウム、ラウリン酸マグネシウム、リシノール酸カルシウム、ステアリン酸カルシウム、ラウリン酸バリウム、リシノール酸バリウム、ステアリン酸バリウム、オクチル酸亜鉛、ラウリン酸亜鉛、リシノール酸亜鉛、ステアリン酸亜鉛等の金属を含む有機酸化合物等の金属石鹸化合物、ステアリン酸バリウム-亜鉛、ラウリン酸バリウム-亜鉛、リシノール酸バリウム-亜鉛、オクチル酸バリウム-亜鉛、ステアリン酸カルシウム-亜鉛、ラウリン酸カルシウム-亜鉛、リシノール酸カルシウム-亜鉛、オクチル酸カルシウム-亜鉛等の複合金属を含む有機酸化合物等の金属石鹸化合物、ジメチルスズビス-2-エチルヘキシルチオグリコレート、ジブチルスズマレエート、ジブチルスズビスブチルマレエート、ジブチルスズジラウレート等の有機錫系化合物、アンチモンメルカプタイド化合物、エポキシ化大豆油、エポキシ化亜麻仁油、エポキシ樹脂等の本ジエステル以外のエポキシ化合物類等が例示される。安定化剤を配合する場合、塩化ビニル系樹脂100重量部に対する安定化剤の配合量は0.1~20重量部程度が推奨される。
 安定化助剤としては、トリフェニルホスファイト、モノオクチルジフェニルホスファイト、トリデシルフォスファイト等のホスファイト系化合物、アセチルアセトン、ベンゾイルアセトン等のベータジケトン化合物、グリセリン、ソルビトール、ペンタエリスリトール、ポリエチレングリコール等のポリオール化合物、過塩素酸バリウム塩、過塩素酸ナトリウム塩等の過塩素酸塩化合物、ハイドロタルサイト化合物、ゼオライトなどが例示される。安定化助剤を配合する場合、塩化ビニル系樹脂100重量部に対する安定化助剤の配合量は0.1~20重量部程度が推奨される。
 着色剤としては、カーボンブラック、硫化鉛、ホワイトカーボン、チタン白、リトポン、べにがら、硫化アンチモン、クロム黄、クロム緑、フタロシアニン緑、コバルト青、フタロシアニン青、モリブデン橙などが例示される。着色剤を配合する場合、塩化ビニル系樹脂100重量部に対する着色剤の配合量は1~100重量部程度が推奨される。
 加工助剤としては、流動パラフィン、ポリエチレンワックス、ステアリン酸、ステアリン酸アマイド、エチレンビスステアリン酸アマイド、ブチルステアエレート、ステアリン酸カルシウムなどが例示される。加工助剤を配合する場合、塩化ビニル系樹脂100重量部に対する加工助剤の配合量は0.1~20重量部程度が推奨される。
 充填剤としては、炭酸カルシウム、シリカ、アルミナ、クレー、タルク、珪藻土、フェライト、などの金属酸化物、ガラス、炭素、金属などの繊維及び粉末、ガラス球、グラファイト、水酸化アルミニウム、硫酸バリウム、酸化マグネシウム、炭酸マグネシウム、珪酸マグネシウム、珪酸カルシウムなどが例示される。充填剤を配合する場合、塩化ビニル系樹脂100重量部に対する充填剤の配合量は1~100重量部程度が推奨される。
 酸化防止剤としては、2,6-ジ-tert-ブチルフェノール、テトラキス[メチレン-3-(3,5-tert-ブチル-4-ヒドロキシフェノール)プロピオネート]メタン、2-ヒドロキシ-4-メトキシベンゾフェノンなどのフェノール系化合物、アルキルジスルフィド、チオジプロピオン酸エステル、ベンゾチアゾールなどの硫黄系化合物、トリスノニルフェニルホスファイト、ジフェニルイソデシルホスファイト、トリフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイトなどのリン酸系化合物、ジアルキルジチオリン酸亜鉛、ジアリールジチオリン酸亜鉛などの有機金属系化合物などが例示される。また酸化防止剤を配合する場合、塩化ビニル系樹脂100重量部に対する酸化防止剤の配合量は0.2~20重量部程度が推奨される。
 紫外線吸収剤としては、フェニルサリシレート、p-tert-ブチルフェニルサリシレートなどのサリシレート系化合物、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノンなどのベンゾフェノン系化合物、5-メチル-1H-ベンゾトリアゾール、1-ジオクチルアミノメチルベンゾトリアゾールなどのベンゾトリアゾール系化合物の他、シアノアクリレート系化合物などが例示される。紫外線吸収剤を配合する場合、塩化ビニル系樹脂100重量部に対する紫外線吸収剤の配合量は0.1~10重量部程度が推奨される。
 ヒンダードアミン系の光安定化剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート及びメチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート(混合物)、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドリキシフェニル]メチル]ブチルマロネート、デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジル)エステル及び1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、2,2,6,6-テトラメチル-4-ピペリジノールと高級脂肪酸のエステル混合物、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重縮合物、ポリ[{(6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル){(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}}、ジブチルアミン・1,3,5-トリアジン・N,N' -ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、N,N' ,N'' ,N''' -テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン等が例示される。光安定化剤を配合する場合、塩化ビニル系樹脂100重量部に対する光安定化剤の配合量は0.1~10重量部程度が推奨される。
 滑剤としては、シリコーン、流動パラフィン、バラフィンワックス、ステアリン酸金属やラウリン酸金属塩などの脂肪酸金属塩、脂肪酸アミド類、脂肪酸ワックス、高級脂肪酸ワックス等が例示される。滑剤を配合する場合、塩化ビニル系樹脂100重量部に対する滑剤の配合量は0.1~10重量部程度が推奨される。
 帯電防止剤としては、アルキルスルホネート型、アルキルエーテルカルボン酸型又はジアルキルスルホサクシネート型のアニオン性帯電防止剤、ポリエチレングリコール誘導体、ソルビタン誘導体、ジエタノールアミン誘導体などのノニオン性帯電防止剤、アルキルアミドアミン型、アルキルジメチルベンジル型などの第4級アンモニウム塩、アルキルピリジニウム型の有機酸塩又は塩酸塩などのカチオン性帯電防止剤、アルキルベタイン型、アルキルイミダゾリン型などの両性帯電防止剤などが例示される。帯電防止剤を配合する場合、塩化ビニル系樹脂100重量部に対する帯電防止剤の配合量は0.1~10重量部程度が推奨される。
 本発明の塩化ビニル系樹脂組成物又は軟質塩化ビニル系樹脂組成物は、本ジエステル、塩化ビニル系樹脂及び必要に応じて各種添加剤を例えばモルタルミキサー、ヘンシェルミキサー、バンバリーミキサー、リボンブレンダー等の攪拌機により攪拌混合を行い、塩化ビニル系樹脂組成物又は軟質塩化ビニル系樹脂組成物の混合粉とすることができる。
 また、本ジエステル、塩化ビニル系樹脂及び必要に応じて各種添加剤を、例えばコニカル二軸押出機、パラレル二軸押出機、単軸押出機、コニーダー型混練機、ロール混練機等の混練機により溶融成形することによりペレット状の塩化ビニル系樹脂組成物又は軟質塩化ビニル系樹脂組成物を得ることもできる。
 また、本ジエステル、塩化ビニル系ペースト樹脂及び必要に応じて本ジエステル以外の他の可塑剤や各種添加剤を、例えばポニーミキサー、バタフライミキサー、プラネタリミキサー、リボンブレンダー、ニーダー、ディゾルバー、二軸ミキサー、ヘンシェルミキサー、三本ロールミル等の混合機により均一に混合し、必要に応じて減圧下で脱泡処理し、ペースト状の軟質塩化ビニル系樹脂組成物を得ることもできる。
[塩化ビニル系成形体]
 本発明に係る塩化ビニル系樹脂組成物又は軟質塩化ビニル系樹脂組成物(配合粉状やペレット状)を、真空成型、圧縮成形、押出成形、射出成形、カレンダー成形、プレス成形、ブロー成形、粉体成形等の従来公知の方法を用いて溶融成形加工することにより、所望の形状に成形することができる。
 一方、上記ペースト状の軟質塩化ビニル系樹脂組成物は、スプレッド成形、ディッピング成形、グラビア成形、スラッシュ成形、スクリーン加工等の従来公知の方法を用いて成形加工することにより、所望の形状に成形することができる。
 成形体の形状としては、特に限定されないが、例えば、ロッド状、シート状、フィルム状、板状、円筒状、円形、楕円形等あるいは玩具、装飾品等特殊な形状のもの、例えば星形、多角形形状が例示される。
<塩素含有樹脂組成物>
 本発明の安定化された塩素含有樹脂組成物は、上述した本ジエステルを安定化剤として塩素含有樹脂に配合することにより得られる。
[塩素含有樹脂]
 本発明で用いられる塩素含有樹脂とは、その構造中に塩素を含む樹脂であれば、特に限定されないが、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレンや塩素化ポリプロピレンなどの塩素化ポリオレフィン、塩素化ポリ塩化ビニルなどの単独重合体、更に、塩化ビニル-エチレン共重合体、塩化ビニル-プロピレン共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-スチレン共重合体、塩化ビニル-イソブチレン共重合体、塩化ビニル-ブタジエン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-塩素化プロピレン共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化アリル共重合体、塩化ビニル-メタクリル酸エステル共重合体、エチレン-酢酸ビニル-塩化ビニル共重合体、塩化ビニル-スチレン-無水マレイン酸三元共重合体、塩化ビニル-スチレン-アクリロニトリル共重合体、塩化ビニル-イソプレン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル三元共重合体、塩化ビニル-アクリロニトリル共重合体、及び塩化ビニル-各種ビニルエーテル共重合体などの共重合体等が挙げられる。
 また、クロロプレン系合成ゴム、エピクロロヒドリンゴム及びその共重合体、塩酸ゴム、塩素化ゴムなどの塩素を含むゴムまたはエラストマーの系でも本発明に係る安定化剤を使用することができる。
 上記塩素含有樹脂は、単独系であってもよく、他の相溶性の樹脂、例えば、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、アクリロニトリル-スチレン-ブタジエン共重合体等の樹脂とのブレンド系であってもよい。
 なかでも、塩化ビニル系樹脂は、加工しやすく、得られた成形体の特性に優れ、広く使われている塩素含有樹脂である。
 塩化ビニル系樹脂とは、上述の通りであるため、説明を省略する。
[塩素含有樹脂組成物]
 本発明に係る安定化された塩素含有樹脂組成物における本ジエステルの含有量としては、配合する樹脂の種類や使用される用途によって適宜選択されるが、塩素含有樹脂100重量部に対して、好ましくは1~30重量部であり、より好ましくは1重量部以上、20重量部未満、特に好ましくは5重量部以上、20重量部未満である。その含有量が1重量部以上であれば、より優位な安定化効果を得ることが可能であり、特に長期的な安定化効果の面で有利であり、含有量が30重量部以下であれば、どの様な使用環境でも成形品表面へのブリードの問題、積層樹脂や接触するオイル等への移行の問題、更には揮発によりフォギング等の様々な問題が生じる懸念が少なく、好ましい。
 前記塩素含有樹脂組成物には、本ジエステルと共に他の公知の安定化剤を併用することもできる。また、必要に応じて安定化助剤、酸化防止剤(老化防止剤)、紫外線吸収剤、ヒンダードアミン等の光安定化剤、可塑剤、難燃剤、着色剤、加工助剤、充填剤、滑剤或いは帯電防止剤等の添加剤を適宜配合して使用されることが多い。
 上記本ジエステル以外の他の安定化剤、添加剤は、1種でまたは2種以上組み合わせて本ジエステルと共に配合されていてもよい。
 本ジエステルと併用することのできる安定化剤としては、上記のものが例示される。中でも、上記金属石鹸化合物の併用は、相乗効果により本ジエステルの安定化効果を増幅する効果を示し、特に好ましい。上記併用できる他の安定化剤を配合する場合、その配合量は、本発明に係る安定化剤の効果を損なわない範囲で適宜選択され、通常、塩素含有樹脂100重量部に対して、0.1~20重量部程度が推奨される。
 また、安定化助剤を併用することも、本ジエステルの効果をより効果的にする方法として有効である。安定化助剤としては、上記のものが例示される。安定化助剤を配合する場合、その配合量は、本発明に係る安定化剤の効果を損なわない範囲で適宜選択され、通常、塩素含有樹脂100重量部に対して、0.1~20重量部程度が推奨される。
 また、酸化防止剤、紫外線吸収剤酸化防止剤や光安定化剤などを併用することも、本ジエステルの効果をより効果的にする方法として有効である。酸化防止剤としては、上記のものが例示される。また酸化防止剤を配合する場合、塩素含有樹脂100重量部に対する酸化防止剤の配合量は0.2~20重量部程度が推奨される。
 紫外線吸収剤としては、上記のものが例示される。紫外線吸収剤を配合する場合、塩素含有樹脂100重量部に対する紫外線吸収剤の配合量は0.1~10重量部程度が推奨される。
 ヒンダードアミン系の光安定化剤としては、上記のものが例示される。光安定化剤を配合する場合、塩素含有樹脂100重量部に対する光安定化剤の配合量は0.1~10重量部程度が推奨される。
 可塑剤としては、従来から使用されている公知の可塑剤が使用でき、上記のものが例示される。
 中でも、フタル酸エステル類、トリメリット酸エステル類等の芳香族多価カルボン酸エステル類、脂環式二塩基酸エステル類等の脂環族多価カルボン酸エステル類、ポリエステル類、ポリエーテル類等が例示され、更に具体的には、フタル酸エステル類、トリメリット酸エステル類、シクロヘキサンジカルボン酸エステル類等が、特に好ましい可塑剤として例示される。前記好ましい可塑剤の具体的な例としては、フタル酸ジイソデシル(DIDP)、ジ(2-プロピルヘプチル)フタレート(DPHP)、フタル酸ジウンデシル、フタル酸ジアルキル(C9~C11)(PL-200)、フタル酸ジアルキル(C10~C13)(ビニサイザー124)、フタル酸ジトリデシル(ビニサイザー20)、トリメリット酸トリ-2-エチルヘキシル(TOTM)、トリメリット酸トリノルマルオクチル(トリメックス New NSK)、トリメリット酸トリイソノニル(TINTM)、トリメリット酸トリイソデシル(TIDTM)、トリメリット酸トリノルマルアルキル(C8,C10)(トリメックスN-08)、トリメリット酸トリノニル(分岐及び直鎖)(TL9TM)などが挙げられる。
 上記可塑剤を含有する場合、その含有量は、使用する用途において要求される硬度に応じて適宜選択されるが、通常、塩素含有樹脂100重量部に対し、1~200重量部、好ましくは5~150重量部程度が推奨される。
 なお、本発明に係る塩素含有樹脂用安定化剤と可塑剤は、別々に塩素含有樹脂に加えても良いが、予め混合した後に、塩素含有樹脂に加える方法がより好ましい。予め混合することにより、樹脂との相溶性の良くない可塑剤の樹脂への相溶化(即ち可塑化効率の良くない可塑剤の可塑化効率の向上という添加効果)、または、安定化剤の含有量が少量の場合の樹脂中での安定化剤の均一性の向上、即ち安定化効果のむらの防止等の効果が期待される。
 難燃剤としては、上記のものが例示される。難燃剤を配合する場合、塩素含有樹脂100重量部に対する難燃剤の配合量は0.1~20重量部程度が推奨される。
 着色剤としては、上記のものが例示される。着色剤を配合する場合、塩素含有樹脂100重量部に対する着色剤の配合量は1~100重量部程度が推奨される。
 加工助剤としては、上記のものが例示される。加工助剤を配合する場合、塩素含有樹脂100重量部に対する加工助剤の配合量は0.1~20重量部程度が推奨される。
 充填剤としては、上記のものが例示される。充填剤を配合する場合、塩素含有樹脂100重量部に対する充填剤の配合量は1~100重量部程度が推奨される。
 滑剤としては、上記のものが例示される。滑剤を配合する場合、塩素含有樹脂100重量部に対する滑剤の配合量は0.1~10重量部程度が推奨される。
 帯電防止剤としては、上記のものが例示される。帯電防止剤を配合する場合、塩素含有樹脂100重量部に対する帯電防止剤の配合量は0.1~10重量部程度が推奨される。
 本発明の塩素含有樹脂組成物は、本ジエステル、塩素含有樹脂及び必要に応じて各種添加剤を例えばモルタルミキサー、ヘンシェルミキサー、バンバリーミキサー、リボンブレンダー等の攪拌機により攪拌混合を行い、塩素含有樹脂組成物の混合粉とすることができる。
 また、本ジエステル、塩素含有樹脂及び必要に応じて各種添加剤を、例えばコニカル二軸押出機、パラレル二軸押出機、単軸押出機、コニーダー型混練機、ロール混練機等の混練機により溶融成形することによりペレット状の塩素含有樹脂組成物を得ることもできる。
 また、本ジエステル、可塑剤、塩化ビニル系ペースト樹脂及び必要に応じて各種添加剤を、例えばポニーミキサー、バタフライミキサー、プラネタリミキサー、リボンブレンダー、ニーダー、ディゾルバー、二軸ミキサー、ヘンシェルミキサー、三本ロールミル等の混合機により均一に混合し、必要に応じて減圧下で脱泡処理し、ペースト状の塩素含有樹脂組成物を得ることもできる。
[塩素含有樹脂成形体]
 本発明に係る塩素含有樹脂組成物(配合粉状やペレット状)を、真空成型、圧縮成形、押出成形、射出成形、カレンダー成形、プレス成形、ブロー成形、粉体成形等の従来公知の方法を用いて溶融成形加工することにより、所望の形状に成形することができる。
 一方、上記ペースト状の塩素含有樹脂組成物は、スプレッド成形、ディッピング成形、グラビア成形、スラッシュ成形、スクリーン加工等の従来公知の方法を用いて成形加工することにより、所望の形状に成形することができる。
成形体の形状としては、特に限定されないが、例えば、ロッド状、シート状、フィルム状、板状、円筒状、円形、楕円形等あるいは玩具、装飾品等特殊な形状のもの、例えば星形、多角形形状が例示される。
<自動車内装用塩化ビニル系樹脂組成物>
 本発明の自動車内装用塩化ビニル系樹脂組成物は、上述した本ジエステルを、当該樹脂組成物における可塑化成分(可塑剤)又は安定化成分(安定化剤)として含有することを最大の特徴としており、上述した本ジエステルを可塑剤として、または安定化剤として塩化ビニル系樹脂に配合することにより得られる。
[塩化ビニル系樹脂]
 本発明で用いられる塩化ビニル系樹脂とは、上述の通りであるため、説明を省略する。
[自動車内装用塩化ビニル系樹脂組成物]
 本発明に係る自動車内装用塩化ビニル系樹脂組成物における本ジエステルの含有量としては、その用途に応じて適宜選択されるが、塩化ビニル系樹脂100重量部に対して、好ましくは1~200重量部であり、より好ましくは5~150重量部である。本ジエステルは、その配合量に関わらず、可塑剤としても効果も有し、かつ安定化剤としての効果も有するものであるが、より具体的には、可塑剤としての効果を望む場合は、好ましくは20~200重量部、より好ましくは30~150重量部であり、主として安定化剤としての効果を望む場合は、好ましくは1~30重量部、より好ましくは5~20重量部である。
 塩化ビニル系樹脂100重量部に対する含有量が1重量部以上であれば、本ジエステルの安定化剤としての効果を十分に発揮することができ、また、200重量部以下であれば、成形品表面へのブリード等の懸念もなく安心して使用することができる。
 また、可塑剤としての効果を望む場合は、塩化ビニル系樹脂100重量部に対する含有量が20重量部以上であれば、使用目的に応じた十分な柔軟性を得ることができる。
 更に、主として安定化剤としての効果(安定化効果)を望む場合は、塩化ビニル系樹脂100重量部に対する含有量が1重量部以上であれば、十分な安定化効果、特に長期的な安定化効果が得られる。また、その含有量が30重量部以下であれば、可塑剤としての効果よりも安定化効果が支配的となるので、柔らかくなることもなく、本来目的とする使用用途において目標とする硬度を保持することも可能である。
 本発明に係る自動車内装材用塩化ビニル系樹脂組成物には、本ジエステルと共に他の公知の可塑剤や安定化剤を併用することができ、可塑化効果や安定化効果の観点からは推奨される。また、安定化効果の観点から、必要に応じて、安定化助剤、酸化防止剤(老化防止剤)、紫外線吸収剤、ヒンダードアミン等の光安定化剤を併用することも推奨される。さらに使用用途に応じて、難燃剤、着色剤、加工助剤、充填剤、滑剤或いは帯電防止剤等の添加剤を適宜配合して使用されることが多い。
 上記本ジエステル以外の他の可塑剤や安定化剤、その他の添加剤は、1種でまたは2種以上組み合わせて本ジエステルと共に配合されていてもよい。
 本ジエステルと併用することができる他の可塑剤としては、本技術分野で従来から使用されている公知の可塑剤が使用でき、上記のものが例示される。上記併用できる他の可塑剤を配合する場合、その配合量は、本発明に係る可塑剤の効果を損なわない範囲で適宜選択され、通常、塩化ビニル系樹脂100重量部に対し、1~100重量部程度が推奨される。
 中でも、フタル酸エステル類、トリメリット酸エステル類等の芳香族多価カルボン酸エステル類、脂環式二塩基酸エステル類等の脂環族多価カルボン酸エステル類、ポリエステル類、ポリエーテル類等が好ましい可塑剤として例示され、更に、フタル酸エステル類、トリメリット酸エステル類、シクロヘキサンジカルボン酸エステル類が、特に好ましい可塑剤として例示される。前記特に好ましい可塑剤の具体的な例としては、フタル酸ジイソデシル(DIDP)、フタル酸ジ(2-プロピルヘプチル)(DPHP)、フタル酸ジウンデシル、フタル酸ジアルキル(C9~C11)(PL-200)、フタル酸ジアルキル(C10~C13)(ビニサイザー124)、フタル酸ジトリデシル(ビニサイザー20)、トリメリット酸トリ-2-エチルヘキシル(TOTM)、トリメリット酸トリノルマルオクチル(トリメックス New NSK)、トリメリット酸トリイソノニル(TINTM)、トリメリット酸トリイソデシル(TIDTM)、トリメリット酸トリノルマルアルキル(C8,C10)(トリメックスN-08)、90%以上の炭素数9の飽和脂肪族アルコールを含み、かつ直鎖状の飽和脂肪族アルコールの比率が50~99%である飽和脂肪族アルコールのトリメリット酸トリエステル(トリメリット酸トリノニル(分岐及び直鎖)、TL9TM)などが挙げられる。
 上記可塑剤を併用する場合、その含有量は、使用する用途において要求される硬度に応じて適宜選択されるが、通常、塩化ビニル系樹脂100重量部に対し、1~200重量部、好ましくは5~150重量部程度が推奨される。
 なお、本発明に係る本ジエステルと可塑剤は、別々に塩化ビニル系樹脂に加えても良いが、予め混合した後に、塩化ビニル系樹脂に加える方法がより好ましい。予め混合することにより、樹脂との相溶性の良くない、即ち可塑化効率の良くない可塑剤の樹脂への相溶化、即ち可塑化効率の向上の効果、本ジエステルを安定化剤として使用した場合には、その含有量が少量でも、樹脂中での均一性が保持でき、その結果安定化効果のむらの防止の効果、などが得られやすくなる。
 本ジエステルと併用することのできる安定化剤としては、上記のものが例示される。中でも、上記金属石鹸化合物の併用は、相乗効果により本ジエステルの安定化効果を増幅する効果を示し、特に好ましい。上記併用できる他の安定化剤を配合する場合、その配合量は、本発明に係る安定化剤の効果を損なわない範囲で適宜選択され、通常、塩化ビニル系樹脂100重量部に対して、0.1~20重量部程度が推奨される。
 また、安定化助剤を併用することも、本ジエステルの効果をより効果的にする方法として有効である。安定化助剤としては、上記のものが例示される。安定化助剤を配合する場合、その配合量は、本発明に係る安定化剤の効果を損なわない範囲で適宜選択され、通常、塩化ビニル系樹脂100重量部に対して、0.1~20重量部程度が推奨される。
 また、酸化防止剤、紫外線吸収剤酸化防止剤や光安定化剤などを併用することも、本ジエステルの効果をより効果的にする方法として有効である。酸化防止剤としては、上記のものが例示される。また酸化防止剤を配合する場合、塩化ビニル系樹脂100重量部に対する酸化防止剤の配合量は0.2~20重量部程度が推奨される。
 紫外線吸収剤としては、上記のものが例示される。紫外線吸収剤を配合する場合、塩化ビニル系樹脂100重量部に対する紫外線吸収剤の配合量は0.1~10重量部程度が推奨される。
 ヒンダードアミン系の光安定化剤としては、上記のものが例示される。光安定化剤を配合する場合、塩化ビニル系樹脂100重量部に対する光安定化剤の配合量は0.1~10重量部程度が推奨される。
 難燃剤としては、上記のものが例示される。難燃剤を配合する場合、塩化ビニル系樹脂100重量部に対する難燃剤の配合量は0.1~20重量部程度が推奨される。
 着色剤としては、上記のものが例示される。着色剤を配合する場合、塩化ビニル系樹脂100重量部に対する着色剤の配合量は1~100重量部程度が推奨される。
 加工助剤としては、上記のものが例示される。加工助剤を配合する場合、塩化ビニル系樹脂100重量部に対する加工助剤の配合量は0.1~20重量部程度が推奨される。
 充填剤としては、上記のものが例示される。充填剤を配合する場合、塩化ビニル系樹脂100重量部に対する充填剤の配合量は1~100重量部程度が推奨される。
 滑剤としては、上記のものが例示される。滑剤を配合する場合、塩化ビニル系樹脂100重量部に対する滑剤の配合量は0.1~10重量部程度が推奨される。
 帯電防止剤としては、上記のものが例示される。帯電防止剤を配合する場合、塩化ビニル系樹脂100重量部に対する帯電防止剤の配合量は0.1~10重量部程度が推奨される。
 本発明の自動車内装材用塩化ビニル系樹脂組成物は、本ジエステル、塩化ビニル系樹脂及び必要に応じて各種添加剤を例えばモルタルミキサー、ヘンシェルミキサー、バンバリーミキサー、リボンブレンダー等の攪拌機により攪拌混合を行い、自動車内装用塩化ビニル系樹脂組成物の混合粉とすることができる。
 また、本ジエステル、塩化ビニル系樹脂及び必要に応じて各種添加剤を、例えばコニカル二軸押出機、パラレル二軸押出機、単軸押出機、コニーダー型混練機、ロール混練機等の混練機により溶融成形することによりペレット状の自動車内装用塩化ビニル系樹脂組成物を得ることもできる。
 また、本ジエステル、塩化ビニル系ペースト樹脂及び必要に応じて各種添加剤を、例えばポニーミキサー、バタフライミキサー、プラネタリミキサー、リボンブレンダー、ニーダー、ディゾルバー、二軸ミキサー、ヘンシェルミキサー、三本ロールミル等の混合機により均一に混合し、必要に応じて減圧下で脱泡処理し、ペースト状の自動車内装用塩化ビニル系樹脂組成物を得ることもできる。
[自動車内装材]
 本発明に係る自動車内装用塩化ビニル系樹脂組成物(配合粉状やペレット状)を、真空成型、圧縮成形、押出成形、射出成形、カレンダー成形、プレス成形、ブロー成形、粉体成形等の従来公知の方法を用いて溶融成形加工することにより、所望の形状の自動車内装材に成形することができる。
 一方、上記ペースト状の自動車内装用塩化ビニル系樹脂組成物は、スプレッド成形、ディッピング成形、グラビア成形、スラッシュ成形、スクリーン加工等の従来公知の方法を用いて成形加工することにより、所望の形状の自動車内装材に成形することができる。
 かくして得られた自動車内装材は、インストルパネル、ドアトリム、トランクトリム、座席シート、ピラーカバー、天井材、リアトレイ、コンソールボックス、エアバッグカバー、アームレスト、ヘッドレスト、メーターカバー、クラッシュパッド、フロアカーペット等の自動車内装材として好適に使用することができる。
<医療用塩化ビニル系樹脂組成物>
 本発明の塩化ビニル系樹脂組成物は、上述した本ジエステルを、当該樹脂組成物における可塑化成分(可塑剤)又は安定化成分(安定化剤)として含有することを最大の特徴としており、上述した本ジエステルを、塩化ビニル系樹脂に配合することにより得られる。
[塩化ビニル系樹脂]
 本発明で用いられる塩化ビニル系樹脂とは、上述の通りであるため、説明を省略する。
[医療用塩化ビニル系樹脂組成物]
 本発明の医療用塩化ビニル系樹脂組成物における本ジエステルの含有量としては、その用途に応じて適宜選択されるが、通常、塩化ビニル系樹脂100重量部に対し、5~200重量部であり、好ましくは5~100重量部である。また前記含有量の範囲であっても本発明の医療用塩化ビニル系樹脂組成物の使用方法(用途)によって、例えば、軟質材料として使用する場合には、好ましくは30~200重量部、より好ましくは30~150重量部、特に好ましくは40~100重量部の範囲であることが推奨され、半硬質材料として使用する場合には、好ましくは5重量部以上、30重量未満、より好ましくは5重量部以上、20重量部未満の範囲であることが推奨される。5重量部未満では機械的特性や滅菌や殺菌時の劣化防止効果が不十分である場合があり、200重量部を越えて配合した場合には、成形品表面へのブリードが激しく、いずれの場合も好ましくない場合がある。なお、上記の塩化ビニル系樹脂組成物に対して充填剤などを添加する場合は、充填剤自身が吸油するために上記の範囲を超えて本ジエステルを配合することも可能であり、例えば、塩化ビニル系樹脂100重量部に対し、充填剤として炭酸カルシウムを100重量部配合した場合には、当該可塑剤を5~500重量部程度配合することもできる。
 また、本ジエステルを含有するだけでも十分であるが、更に金属石鹸化合物等の安定化剤やシラン化合物系の耐放射線材料を含有することにより、滅菌や殺菌処理後の劣化をより一層抑制することが可能である。
 前記安定化剤としては、上記のものが例示される。また、安定化剤を配合する場合、塩化ビニル系樹脂100重量部に対する安定化剤の配合量は0.1~20重量部程度が推奨される。なお前記金属石鹸化合物は、加工助剤や滑剤としての機能を安定化剤の機能と共に発揮する場合がある。
 前記安定化剤のうち、安全性等の面より、ステアリン酸カルシウムとステアリン酸亜鉛の組み合わせが、最も好ましく使用される。また、その配合量は、合計量で0.1~10重量部、好ましくは0.2~6重量部程度が推奨され、その配合比率は、安定化の効果を示す範囲であれば、特に制限はないが、通常、5:1~1:5の範囲で使われることが多い。
 また、前記シラン化合物系の耐放射線材料としては、トリメチルメトキシシラン、トリメチルエトキシシラン、トリエチルメトキシシラン、トリエチルエトキシシラン等のモノアルコキシシラン化合物、ジメチルジメトキシシラン、ジエチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルアミノエトキシプロピルジアルコキシシラン、N-(βアミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン等のジアルコキシシラン化合物、メチルトリメトキシシラン、メチルトリエトキシシラン、ヘキシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(フェニル)-γ-アミノプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-(ポリエチレンアミノ)プロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、トリデカフルオロオクチルトリメトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のトリアルコキシシラン化合物、テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシラン化合物、ビニルトリアセトキシシラン等のアセトキシシラン化合物、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン、ビニルトリクロロシラン、γ-クロロプロピルメチルジクロロシラン等のクロロシラン化合物、トリイソプロピルシラン、トリイソプロピルシリルアクリレート、アリルトリメチルシラン、トリメチルシリル酢酸メチル等のオルガノシラン化合物が例示される。また、耐放射線材料を配合する場合、塩化ビニル系樹脂100重量部に対する耐放射線材料の配合量は0.1~15重量部程度が推奨される。
 本発明の医療用塩化ビニル系樹脂組成物には、本ジエステルと共に他の公知の可塑剤を併用することができる。また、必要に応じて安定化助剤、酸化防止剤(老化防止剤)、紫外線吸収剤、ヒンダードアミン系の光安定化剤、充填剤、希釈剤、減粘剤、増粘剤、加工助剤、滑剤、帯電防止剤、難燃剤、発泡剤、接着剤、着色剤等の添加剤を配合することができる。
 上記本ジエステル以外の他の可塑剤、添加剤は、1種でまたは2種以上適宜組み合わせて本ジエステルと共に配合されていてもよい。
 本ジエステルと併用することができる公知の可塑剤としては、上記のものが例示される。上記併用できる可塑剤を配合する場合、その配合量は、塩化ビニル系樹脂100重量部に対し、1~100重量部程度が推奨される。
 安定化助剤としては、上記のものが例示される。安定化助剤を配合する場合、塩化ビニル系樹脂100重量部に対する安定化助剤の配合量は0.1~20重量部程度が推奨される。
 酸化防止剤としては、上記のものが例示される。酸化防止剤を配合する場合、塩化ビニル系樹脂100重量部に対する酸化防止剤の配合量は0.2~20重量部程度が推奨される。
 紫外線吸収剤としては、上記のものが例示される。紫外線吸収剤を配合する場合、塩化ビニル系樹脂100重量部に対する紫外線吸収剤の配合量は0.1~10重量部程度が推奨される。
 ヒンダードアミン系の光安定化剤としては、上記のものが例示される。光安定化剤を配合する場合、塩化ビニル系樹脂100重量部に対する光安定化剤の配合量は0.1~10重量部程度が推奨される。
 充填剤としては、上記のものが例示される。充填剤を配合する場合、塩化ビニル系樹脂100重量部に対する充填剤の配合量は1~100重量部程度が推奨される。
 希釈剤としては、2,2,4-トリメチル-1,3-ペンタンジオールジイソブチレートや低沸点の脂肪族系、芳香族系の炭化水素などが例示される。希釈剤を配合する場合、塩化ビニル系樹脂100重量部に対する希釈剤の配合量は1~50重量部程度が推奨される。
 減粘剤としては、各種非イオン系界面活性剤、スルフォサクシネート系アニオン界面活性剤、界面活性をもったシリコーン系化合物、大豆油レシチン、一価アルコール類、グリコールエーテル類、ポリエチレングリコール類などが例示される。減粘剤を配合する場合、塩化ビニル系樹脂100重量部に対する減粘剤の配合量は0.1~20重量部程度が推奨される。
 増粘剤としては、合成微粉シリカ系、ベントナイト系、極微細沈降炭酸カルシウム、金属石鹸系、水素添加ひまし油、ポリアミドワックス、酸化ポリエチレン系、植物油系、粒酸エステル系界面活性剤、非イオン系界面活性剤などが例示される。増粘剤を配合する場合、塩化ビニル系樹脂100重量部に対する増粘剤の配合量は1~50重量部程度が推奨される。
 加工助剤としては、上記のものが例示される。加工助剤を配合する場合、塩化ビニル系樹脂100重量部に対する加工助剤の配合量は0.1~20重量部程度が推奨される。
 滑剤としては、上記のものが例示される。滑剤を配合する場合、塩化ビニル系樹脂100重量部に対する滑剤の配合量は0.1~10重量部程度が推奨される。
 帯電防止剤としては、上記のものが例示される。帯電防止剤を配合する場合、塩化ビニル系樹脂100重量部に対する帯電防止剤の配合量は0.1~10重量部程度が推奨される。
 難燃剤としては、上記のものが例示される。難燃剤を配合する場合、塩化ビニル系樹脂100重量部に対する難燃剤の配合量は0.1~20重量部程度が推奨される。
 発泡剤としては、アゾジカルボンアミド、オキシビスベンゼンスルホニルヒドラジド等の有機発泡剤、重曹等の無機発泡剤などが例示される。発泡剤を配合する場合、塩化ビニル系樹脂100重量部に対する発泡剤の配合量は0.1~30重量部程度が推奨される。
 着色剤としては、上記のものが例示される。着色剤を配合する場合、塩化ビニル系樹脂100重量部に対する着色剤の配合量は1~20重量部程度が推奨される。
 本発明の医療用塩化ビニル系樹脂組成物は、本ジエステル、塩化ビニル系樹脂及び使用目的・使用用途に応じて上記安定化剤やシラン化合物、並びに必要に応じて各種添加剤を例えばハンドリング混合や、ポニーミキサ、バタフライミキサ、プラネタリミキサ、ディゾルバ、二軸ミキサ-、三本ロールミル、モルタルミキサー、ヘンシェルミキサー、バンバリーミキサー、リボンブレンダー等の攪拌・混合機やコニカル二軸押出機、パラレル二軸押出機、単軸押出機、コニーダー型混練機、ロール混練機等の混練機により攪拌混合・溶融混合を行い、粉状、ペレット状またはペースト状の塩化ビニル系樹脂組成物とすることができる。
[医療用材料]
 本発明に係る医療用塩化ビニル系樹脂組成物は、真空成形、圧縮成形、押出成形、射出成形、カレンダー成形、プレス成形、ブロー成形、粉体成形、スプレッドコーティング、ディップコーティング、スプレーコーティング、紙キャスティング、押出コーティング、グラビア印刷法、スクリーン印刷法、スラッシュ成形、回転成形、注型、ディップ成形、溶着等の従来公知の方法を用いて成形加工することにより、所望の形状の成形体である医療用材料に成形することができる。
 医療用材料である成形体の形状としては、特に限定されないが、例えば、ロッド状、シート状、フィルム状、板状、円筒状、円形、楕円形等あるいは特殊な形状のもの、例えば星形、多角形形状が例示される。
 かくして得られた医療用材料である成形体は、胸腔チューブ,透析チューブ、人工呼吸チューブ、気管内チューブ、呼吸器チューブ、栄養チューブ、延長チューブ等のチューブ類、導尿カテーテル、吸引カテーテル、静脈注射カテーテル、消化管カテーテル等のカテーテル類、血液バッグ、輸液バッグ、薬液バッグ、ドレインバッグ等のバッグ類、血液成分分離機、血液透析回路、腹膜透析回路、人工心肺回路等の回路機器部材、連結部材、分岐バルブ、速度調節部材等のコネクタ部材、輸液セット、輸血セット、静脈注射セット、心肺バイパス、手術用手袋、医薬品包装材料、医療用フィルム、衛生材料、呼吸マスク等の医療用材料として非常に有用である。
 以下に実施例を示し、本発明を更に詳しく説明するが、本発明はこれらの実施例によって制限されるものではない。尚、実施例や応用例中の化合物の略号、及び各特性の測定は以下の通りである。
〔第1の本発明〕
(1)アルキル基の炭素数と直鎖状アルキル基の比率
 実施例及び応用例で用いる4-シクロヘキセン-1,2-ジカルボン酸ジエステル及び4,5-エポキシシクロヘキサンジカルボン酸ジエステル中のアルキル基の炭素数と直鎖状アルキル基の比率は、その製造に用いた原料アルコール中の組成をガスクロマトグラフィー(以下GCと略記)によって測定し、その結果を原料エステル又は本ジエステル中のアルキル基の炭素数と直鎖状アルキル基の比率とした。前記GCによる原料アルコールの測定方法は次のとおりである。
《GCの測定条件》
機種:ガスクロマトグラフ  GC-17A(島津製作所製)
検出器:FID
カラム:キャピラリーカラム ZB-1 30m
カラム温度:60℃から290℃まで昇温。昇温速度=13℃/分
キャリアガス:ヘリウム
試料:50%アセトン溶液
注入量:1μl
定量:安息香酸n-プロピルを内部標準物質として用い定量した。 
 前記内部標準物質の選定に当たっては、原料アルコール中の安息香酸n-プロピルがGCで検出限界以下であることを予め確認している。 
 なお、上述のエステル化反応において、本発明の範囲内では原料アルコールの構造による反応性に差異はなく、用いた原料アルコール中の組成比と原料エステル及び本ジエステル中のアルキル基の組成比に差異がないことは、予め確認している。
(2)原料エステル及びジエステルの分析
 下記の実施例で得られたジエステルは次の方法で分析を行った。なお、中間原料である原料エステルに関しても、下記分析方法を適用した。
元素分析
<炭素・水素>
有機元素分析装置:商品名「CHNコーダーMT-5」、ヤナコ分析工業社製)
試料量:2mg
燃焼炉温度:970℃
酸化炉温度:850℃
還元炉温度:590℃
燃焼時ガス流量:Heガス200ml/min.
ガス20ml/min.
<酸素>
有機元素分析装置:商品名「元素分析装置JM-10」、ジェイ・サイエンス・ラボ社製)
試料量:2mg
燃焼炉温度:950℃
酸化炉温度:850℃
還元炉温度:550℃
燃焼時ガス流量:Heガス200ml/min.
ガス20ml/min.
核磁気共鳴分光分析(NMR分析)
NMR分析装置:商品名「DRX-500」、Bruker社製
溶媒:重クロロホルム(CDCl
内部標準物質:テトラメチルシラン(TMS)
試料管:5mm
H-NMR・・・共鳴周波数:500.1MHz、積算回数4回
13C-NMR・・・共鳴周波数:125.8MHz、積算回数71回
なお、測定試料は、20mgの試料を0.8mlの溶媒で希釈して調整した。
赤外線分光分析(IR分析)
FT-IR装置:商品名「Spectrum  One」、パーキンエルマー社製、測定範囲:650~4000cm-1、測定方法:ATR法、積算回数:4回、分解能:4.00cm-1
なお、測定はサンプルを装置のセル上に直接滴下して分析を行った。
化学分析
エステル価:JIS K-0070(1992)に準拠して測定した。
酸価:JIS K-0070(1992)に準拠して測定した。
ヨウ素価:JIS K-0070(1992)に準拠して測定した。
オキシラン酸素:基準油脂分析試験法 2.3.7.1-2013「オキシラン酸素定量方法(その1)」に準拠して測定した。
色相:JIS K-0071(1998)に準拠して測定して、ハーゼン単位色数を求めた。
[実施例1]
エステル化反応
 温度計、デカンター、攪拌羽、還流冷却管を備えた2L四ツ口フラスコに、4-シクロヘキセン-1,2-ジカルボン酸無水物182.6g(1.2モル,新日本理化(株)製:リカシッドTH)、炭素数9の直鎖状の飽和脂肪族アルコール重量85.1%と炭素数9の分岐鎖状の飽和族飽和アルコール重量11.7%を含む飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9、直鎖率(モル比)85%)416g(2.9モル)、及びエステル化触媒としてテトライソプロピルチタネート0.24gを加え、反応温度を200℃としてエステル化反応を実施した。減圧下アルコールを還流させて生成水を系外へ除去しながら、反応溶液の酸価が0.5mgKOH/gになるまで反応を行った。反応終了後、未反応アルコールを減圧下で系外へ留去した後、常法に従って中和、水洗、脱水して目的とする4-シクロヘキセン-1,2-ジカルボン酸ジエステル(以下、「原料エステル1」という。)449gを得た。 
 得られた原料エステル1は、エステル価:262mgKOH/g、酸価:0.04mgKOH/g、色相:15であった。
エポキシ化反応
 次に、温度計、攪拌羽、冷却管を備えた1L四ツ口フラスコに、前記原料エステル1を423g(1.0モル)仕込み、60~70℃に昇温した。昇温後、60%過酸化水素水76.6g(1.35モル)、76%蟻酸18.3g(0.30モル)、及び75%燐酸1.47g(0.01モル)を2.25時間かけてゆっくりと滴下した。滴下終了後、更に4時間上記温度を保持し、熟成して反応を完了した。反応終了後、水相を系外へ除去した後、常法に従って、水洗、脱水して目的とする4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステル(以下、「ジエステル1」という。)397gを得た。 
 得られたジエステル1は、透明液体であり、エステル価:256mgKOH/g、酸価:0.06mgKOH/g、ヨウ素価:2.5gI2/100g、オキシラン酸素:3.5%、色相:10であった。 
 得られたジエステル1に関して、元素分析、NMR分析、IR分析を行い、結果をまとめて表1に示した。 
 表1のH-NMR分析の結果より計算されたジエステル1のオキシラン環部位の異性体比(シス体/トランス体、モル比)は、20/80であった。
[実施例2]
 飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416gの代わりに、炭素数9/10/11の比率(モル比)が18/42/38であり、全体の直鎖率が84%である炭素数9~11の飽和脂肪族アルコール(シェルケミカルズ社製:ネオドール911)400g(2.5モル)を加えた以外は実施例1と同様に実施して、4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「ジエステル2」という。)404gを得た。 
 得られたジエステル2は、エステル価:242mgKOH/g、酸価:0.04mgKOH/g、ヨウ素価:1.9gI2/100g、オキシラン酸素:3.1%、色相:10であった。 
 得られたジエステル2に関して、元素分析、NMR分析、IR分析を行い、結果をまとめて表1に示した。 
 表1のH-NMR分析の結果より計算されたジエステル2のオキシラン環部位の異性体比(シス体/トランス体、モル比)は、20/80であった。
Figure JPOXMLDOC01-appb-T000014
[応用例1]
 汎用の塩化ビニル樹脂(商品名「Zest1000z」、新第一塩ビ(株)製)100重量部に、カルシウムステアレート(ナカライテスク(株)製)及びジンクステアレート(ナカライテスク(株)製)を各々0.3及び0.2重量部を配合し、モルタルミキサーで攪拌混合後、実施例1で得られたジエステル1又は実施例2で得られたジエステル2を50重量部加え、均一になるまで更に混合し、塩化ビニル系樹脂組成物とした。この樹脂組成物を5×12インチの二本ロールを用いて160~166℃で4分間溶融混練しロールシートを作製し、続いて162~168℃×10分間プレス成形を行い、厚さ約1mmのプレスシートを作製した。
 次に、本発明に係るジエステルの代わりに汎用のフタル酸エステルであるフタル酸ジ-2-エチルへキシル(以下、DOP)、分子構造中にエポキシ基を含まないエポキシシクロヘキサンジカルボン酸ジエステルである1,2-シクロヘキサンジカルボン酸ジイソノニル(以下、DINCH)、本発明の範囲外の構造である4,5-エポキシシクロヘキサンジカルボン酸ジ-2エチルヘキシルエステル(以下、E-DEHTH)を加えて、同様に実施して、塩化ビニルシート(プレスシート)を作製した。
 上記で得られた塩化ビニルシートを用いて、引張試験、耐寒性試験及び耐熱性試験を行ない、本発明に係るジエステルを配合した塩化ビニルシートと本発明外のDOP、DINCH、E-DEHTHを配合した塩化ビニルシートの物性を比較した。
 本発明のジエステルを配合した塩化ビニルシートは、他の可塑剤を配合した塩化ビニルシートと比較して、引張試験結果の100%モジュラスや伸びで示される柔軟性、可塑化性能が同等か、それ以上と非常に良好であり、可塑剤としての性能に優れていることが確認された。
 また、耐寒性試験結果より、本発明のジエステルを配合した塩化ビニルシートの柔軟温度がE-DEHTH等の他の可塑剤を配合した塩化ビニルシートと比較して、10℃以上低く、非常に耐寒性に優れていることが確認された。
 更に、耐熱性試験の結果より、本発明のジエステルを配合した塩化ビニルシートの170℃における揮発減量は、他の可塑剤を配合した塩化ビニルシートと比較して、1/4~1/7まで低減されており、非常に耐熱性に優れていることが確認された。 
 同時に、上記耐熱性試験における塩化ビニルシートの着色を確認したところ、他の可塑剤を配合した塩化ビニルシートが1時間程度で著しく着色するのに対して、本発明のジエステルを配合した塩化ビニルシートはほとんど着色せず、可塑剤としての効果と同時に安定化剤としても作用していることが確認された。
[応用例2]
 汎用の塩化ビニル樹脂(商品名「Zest1000z」、新第一塩ビ(株)製)100重量部に、実施例1で得られたジエステル1を19重量部又は実施例2で得られたジエステル2を10重量部配合し、更にカルシウム-亜鉛系複合安定化剤3.0重量部を加えて、モルタルミキサーで攪拌混合して塩化ビニル系樹脂組成物とした。この樹脂組成物を5×12インチの二本ロールを用いて170~176℃で4分間溶融混練しロールシートを作製し、続いて172~178℃×10分間プレス成形を行い、厚さ約0.5mmのプレスシートを作製した。
 上記で得られた塩化ビニルシートを用いて、引張試験及び耐熱性試験を行ない、本発明のジエステルを配合した塩化ビニルシートと配合していない本発明外の塩化ビニルシートの物性を比較した。
 本発明のジエステルを配合していない塩化ビニルシートが、170℃の高温下では30分程度で着色が始まり、1時間程度で著しく着色するのに対して、本発明のジエステルを配合した塩化ビニルシートは1時間後でもほとんど着色がなく、安定化剤として有効に作用していることが確認された。
 以上の結果より、本発明のジエステルが可塑剤として、また安定化剤として非常に有用であることは、明らかである。
〔第2の本発明〕
(1)アルキル基の炭素数と直鎖状アルキル基の比率
 本発明の実施例及び比較例で用いる可塑剤中のアルキル基の炭素数と直鎖状アルキル基の比率は、その製造に用いた原料アルコール中の組成をガスクロマトグラフィー(以下GCと略記)によって測定し、その結果を可塑剤中のアルキル基の炭素数と直鎖状アルキル基の比率とした。前記GCによる原料アルコールの測定方法は上記と同様である。
(2)本ジエステルの物性評価
 下記の製造例で得られたジエステルのエステル価、酸価、ヨウ素価、オキシラン酸素、及び色相は、上記と同様の方法で分析を行った。
(3)成形加工性
 塩化ビニル樹脂(ストレート、重合度1050、商品名「Zest1000Z」、新第一塩ビ(株)製)2gに可塑剤10gを入れ混合したサンプル約0.01gをスライドガラス上に滴下し、カバーガラスをかけ、微量融点測定器にセットした。5℃/minの速度で昇温し、加熱昇温による塩化ビニル樹脂の粒子の状態変化を観察し、塩化ビニル樹脂の粒子が溶け始める温度と該粒子が透明になった温度をそれぞれゲル化開始温度およびゲル化終了温度とし、その平均値をゲル化温度とした。ゲル化温度が低いほど可塑剤の吸収速度が速く加工性に優れる。
(4)塩化ビニルシートの作製(引張特性、耐寒性、耐熱性試験用シート)
 塩化ビニル樹脂(ストレート、重合度1050、商品名「Zest1000Z」、新第一塩ビ(株)製)100重量部に、安定化剤としてカルシウムステアレート(ナカライテスク(株)製)及びジンクステアレート(ナカライテスク(株)製)を各々0.3及び0.2重量部を配合し、モルタルミキサーで攪拌混合した後、可塑剤50重量部を加え、均一になるまでハンドリング混合し塩化ビニル樹脂組成物とした。この樹脂組成物を5×12インチの二本ロールを用いて160~166℃で4分間溶融混練しロールシートを作製した。続いて162~168℃×10分間プレス成形を行い、厚さ約1mmのプレスシートを作製した。
[樹脂の物性評価]
(5)引張特性:JIS K-6723(1995)に準拠し、プレスシートの100%モジュラス、破断強度、破断伸びを測定した。100%モジュラスの値が小さいほど柔軟性が良好であることを示し、破断強度、破断伸びはその材料の実用的な強度の目安であり、一般的にはその値が大きいほど実用的な強度に優れると言うことができる。
(6)耐寒性:クラッシュベルグ試験機を用いて、JIS K-6773(1999)に準拠して測定した。柔軟温度(℃)が低いほど耐寒性に優れる。ここで言う柔軟温度とは、前記測定において所定のねじり剛性率(3.17×103kg/cm2)を示す低温限界の温度を指す。
(7)耐熱性:揮発減量及びシート着色の評価による。
a)揮発減量:ギヤーオーブン中、ロールシートを170℃で60分、120分加熱した後のシートの重量変化を測定し、下記の式に従って揮発減量(%)を算出した。揮発減量の数値が小さいほど、耐熱性が高い。 
 揮発減量(%)=((試験前の重量―試験後の重量)/試験前の重量)×100
b)シート着色 :ギヤーオーブン中、ロールシートを170℃で30分、60分間加熱した後の着色度の強弱を目視により6段階で評価した。
◎:着色なし、 ○:僅かに着色、  ○△:少し着色、
△:着色、   ×:強い着色、    ××:著しい着色
[製造例1]
エステル化反応
 温度計、デカンター、攪拌羽、還流冷却管を備えた2L四ツ口フラスコに、4-シクロヘキセン-1,2-ジカルボン酸無水物182.6g(1.2モル,新日本理化(株)製:リカシッドTH)、炭素数9の直鎖状の飽和脂肪族アルコール重量85.1%と炭素数9の分岐鎖状の飽和族飽和アルコール重量11.7%を含む飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416g(2.9モル)、及びエステル化触媒としてテトライソプロピルチタネート0.24gを加え、反応温度を200℃としてエステル化反応を実施した。減圧下アルコールを還流させて生成水を系外へ除去しながら、反応溶液の酸価が0.5mgKOH/gになるまで反応を行った。反応終了後、未反応アルコールを減圧下で系外へ留去した後、常法に従って中和、水洗、脱水して目的とする4-シクロヘキセン-1,2-ジカルボン酸ジエステル(以下、「エステル1」という。)449gを得た。 
 得られたエステル1は、エステル価:254mgKOH/g、酸価:0.04mgKOH/g、色相:15であった。
エポキシ化反応
 次に、温度計、攪拌羽、冷却管を備えた1L四ツ口フラスコに、上記エステル化反応で得られたエステル1を423g(1.0モル)仕込み、60~70℃に昇温した。昇温後、60%過酸化水素水76.6g(1.35モル)、76%蟻酸18.3g(0.30モル)、及び75%燐酸1.47g(0.01モル)を2.25時間かけてゆっくりと滴下した。滴下終了後、更に4時間上記温度を保持し、熟成して反応を完了した。反応終了後、水相を系外へ除去した後、常法に従って、水洗、脱水して目的とする4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ1」という。)397gを得た。 
 得られたエポキシ1は、エステル価:256mgKOH/g、酸価:0.06mgKOH/g、ヨウ素価:2.5gI2/100g、オキシラン酸素:3.5%、色相:10であった。
[製造例2]
 飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416gの代わりに、炭素数9/10/11の比率が19/43/38であり、全体の直鎖率が84%である炭素数9~11の混合飽和脂肪族アルコール(シェルケミカルズ社製:ネオドール911)400g(2.5モル)を加えた以外は製造例1と同様に実施して、4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ2」という。)404gを得た。 
 得られたエポキシ2は、エステル価:242mgKOH/g、酸価:0.04mgKOH/g、ヨウ素価:1.9gI2/100g、オキシラン酸素:3.1%、色相:10であった。
[製造例3]
 飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416gの代わりに、n-ノニルアルコール251g(1.7モル)とイソノニルアルコール167g(1.2モル)を加えた以外は製造例1と同様に実施して、4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ3」という。)390gを得た。 
 得られたエポキシ3は、エステル価:250mgKOH/g、酸価:0.02mgKOH/g、ヨウ素価:1.9gI2/100g、オキシラン酸素:3.3%、色数:10であった。
[製造例4]
 飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416gの代わりに、2-エチルヘキサノール374g(2.9モル)を加えた以外は製造例1と同様に実施して、4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ4」という。)390gを得た。 
 得られたエポキシ4は、エステル価:273mgKOH/g、酸価:0.04mgKOH/g、ヨウ素価:3.3gI2/100g、オキシラン酸素:3.5%、色相:10であった。
[製造例5]
 飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416gの代わりに、イソノニルアルコール416g(2.9モル)を加えた以外は製造例1と同様に実施して、4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ5」という。)379gを得た。
 得られたエポキシ5は、エステル価:255mgKOH/g、酸価:0.05mgKOH/g、ヨウ素価:1.6gI2/100g、オキシラン酸素:3.4%、色相:10であった。
[製造例6]
 飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416gの代わりに、イソデシルアルコール459g(2.9モル)を加えた以外は製造例1と同様に実施して、4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ6」という。)410gを得た。
 得られたエポキシ6は、エステル価:239mgKOH/g、酸価:0.05mgKOH/g、ヨウ素価:2.0gI2/100g、オキシラン酸素:3.1%、色相:10であった。
[実施例1]
 上記「(3)成形加工性」に記載した方法に従って、製造例1で得られたエポキシシクロヘキサンジカルボン酸ジエステル(エポキシ1)を用いて成形加工性(ゲル化温度)を測定した。得られた結果を表2に示した。 
 続いて、上記「(4)塩化ビニルシートの作製」に記載した通り、エポキシ1を可塑剤として用いて軟質塩化ビニル系樹脂組成物を調製し、得られた軟質塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験及び耐熱性試験を行なった。得られた結果を表2に示した。
[実施例2]
 エポキシ1の代わりにエポキシ2を用いた以外は実施例1と同様に実施して、成形加工性を測定し、続いて軟質塩化ビニル系樹脂組成物を調製し、得られた軟質塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験及び耐熱性試験を行なった。得られた結果をまとめて表2に示した。
[実施例3]
 エポキシ1の代わりにエポキシ3を用いた以外は実施例1と同様に実施して、成形加工性を測定し、続いて軟質塩化ビニル系樹脂組成物を調製し、得られた軟質塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験及び耐熱性試験を行なった。得られた結果をまとめて表2に示した。
[比較例1]
 エポキシ1の代わりにエポキシ4を用いた以外は実施例1と同様に実施して、成形加工性を測定し、続いて軟質塩化ビニル系樹脂組成物を調製し、得られた軟質塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験及び耐熱性試験を行なった。得られた結果をまとめて表2に示した。
[比較例2]
 エポキシ1の代わりにエポキシ5を用いた以外は実施例1と同様に実施して、成形加工性を測定し、続いて軟質塩化ビニル系樹脂組成物を調製し、得られた軟質塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験及び耐熱性試験を行なった。得られた結果をまとめて表2に示した。
[比較例3]
 エポキシ1の代わりにエポキシ6を用いた以外は実施例1と同様に実施して、成形加工性を測定し、続いて軟質塩化ビニル系樹脂組成物を調製し、得られた軟質塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験及び耐熱性試験を行なった。得られた結果をまとめて表2に示した。
[比較例4]
 エポキシ1の代わりにフタル酸ジ2-エチルヘキシル(新日本理化(株)製、サンソサイザーDOP)を用いた以外は実施例1と同様に実施して、成形加工性を測定し、続いて軟質塩化ビニル系樹脂組成物を調製し、得られた軟質塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験及び耐熱性試験を行なった。得られた結果をまとめて表2に示した。
[比較例5]
 エポキシ1の代わりにフタル酸ジイソノニル(新日本理化(株)製、サンソサイザーDINP)を用いた以外は実施例1と同様に実施して、成形加工性を測定し、続いて軟質塩化ビニル系樹脂組成物を調製し、得られた軟質塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験及び耐熱性試験を行なった。得られた結果をまとめて表2に示した。
[比較例6]
 エポキシ1の代わりに市販のトリメリット酸トリ2-エチルヘキシル(TOTM)を用いた以外は実施例1と同様に実施して、成形加工性を測定し、続いて軟質塩化ビニル系樹脂組成物を調製し、得られた軟質塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験及び耐熱性試験を行なった。得られた結果をまとめて表2に示した。
Figure JPOXMLDOC01-appb-T000015
 表2の結果より、本発明の4,5-エポキシシクロヘキサンジカルボン酸ジエステル(実施例1~3)を可塑剤として用いることにより、現在最も良く使われているフタル酸ジエステル(比較例4、5)を用いた場合と較べると、同等の成形加工性、柔軟性及び耐寒性を保持しつつ、耐熱性、特に加熱着色性を大きく改善できることがわかる。更に、耐熱用可塑剤としてよく使われているトリメリット酸エステル(比較例6)と較べても、耐揮発性は若干劣るものの、耐熱着色性では大きく向上されており、優れた成形加工性、柔軟性、耐寒性を考慮するとその有用性は明らかである。また、表2の結果より、本発明の4,5-エポキシシクロヘキサンジカルボン酸ジエステル(実施例1、3)を可塑剤として用いることにより、従来の4,5-エポキシシクロヘキサンジカルボン酸ジエステル(比較例1)を用いた場合と較べて、同等の成形加工性や柔軟性を保持しつつ、耐寒性及び耐熱性を大きく改善されていることがわかる。更に、本発明の範囲外の4,5-エポキシシクロヘキサンジカルボン酸ジエステル(比較例2、3)を用いた場合と較べても、その効果は明瞭である。同じく、本発明の4,5-エポキシシクロヘキサンジカルボン酸ジエステル(実施例2)を可塑剤として用いた場合には、汎用可塑剤であるフタル酸ジエステルと同等以上の成形加工性を示し、更に耐寒性や耐熱性がより向上されており、より厳しい環境下で使用する場合に特に有用であることがわかる。
〔第3の本発明〕
(1)アルキル基の炭素数と直鎖状アルキル基の比率
 本発明の実施例及び比較例で用いる安定化剤中のアルキル基の炭素数と直鎖状アルキル基の比率は、その製造に用いた原料アルコール中の組成をガスクロマトグラフィー(以下GCと略記)によって測定し、その結果を安定化剤中のアルキル基の炭素数と直鎖状アルキル基の比率とした。前記GCによる原料アルコールの測定方法は上記と同様である。
(2)原料エステル及び本ジエステルの物性評価
 下記の製造例で得られた原料エステル及び本ジエステルのエステル価、酸価、ヨウ素価、オキシラン酸素、及び色相は、上記と同様の方法で分析を行った。
(3)塩化ビニルシートの作製
[方法1:硬質及び半硬質塩化ビニルシート]
 塩化ビニル樹脂(ストレート、重合度1050、商品名「Zest1000Z」、新第一塩ビ(株)製)100重量部に、本発明に係る安定化剤を表3に記載の所定量配合し、更に本発明以外の安定化剤として、カルシウム-亜鉛系複合安定剤3.0重量部配合し、モルタルミキサーで攪拌混合して、塩化ビニル系樹脂組成物とした。この樹脂組成物を5×12インチの二本ロールを用いて170~176℃で4分間溶融混練しロールシートを作製した。続いて172~178℃×10分間プレス成形を行い、厚さ約0.5mmのプレスシートを作製した。
[方法2:軟質塩化ビニルシート]
 塩化ビニル樹脂(ストレート、重合度1050、商品名「Zest1000Z」、新第一塩ビ(株)製)100重量部に、本発明に係る安定化剤を表4に記載の所定量配合し、更に本発明以外の安定化剤として、カルシウムステアレート(ナカライテスク(株)製)及びジンクステアレート(ナカライテスク(株)製)を各々0.3及び0.2重量部配合し、モルタルミキサーで攪拌混合して、塩化ビニル系樹脂組成物とした。続いて、モルタルミキサーでの攪拌混合後、更に可塑剤30重量部を加え、均一になるまでハンドリング混合し、軟質塩化ビニル系樹脂組成物とした。この樹脂組成物を5×12インチの二本ロールを用いて160~166℃で4分間溶融混練しロールシートを作製した。続いて162~168℃×10分間プレス成形を行い、厚さ約1mmのプレスシートを作製した。
[樹脂の物性評価]
(4)引張特性:JIS K-6723(1995)に準拠し、プレスシートの弾性率又は100%モジュラスと破断強度及び破断伸びを測定した。弾性率又は100%モジュラスの値が小さいほど柔軟性が良好であることを示し、破断強度及び破断伸びはその材料の実用的な強度の目安であり、一般的にはその値が大きいほど実用的な強度に優れると言うことができる。
(5)耐熱性:揮発減量及びシート着色の評価による。
a)揮発減量:ギヤーオーブン中、ロールシートを170℃で30分、60分加熱した後のシートの重量変化を測定し、下記の式に従って揮発減量(%)を算出した。 
 揮発減量の数値が小さいほど、耐熱性に優れ、安定化剤としての効果の低下が少ないと言うことができる。 
 揮発減量(%)=((試験前の重量―試験後の重量)/試験前の重量)×100
b)シート着色 :ギヤーオーブン中、ロールシートを170℃で30分、60分間加熱した後の着色度の強弱を目視により6段階で評価した。 
 なお、シート着色は、耐熱性の評価であるが、熱に対する安定化剤としての効果(安定化効果)の指標でもある。即ち、着色が少ないほど、加えた安定化剤が熱に対する安定化剤として有効に作用し、着色を抑制していると言える。
◎:着色なし、 ○:僅かに着色、  ○△:少し着色、
△:着色、   ×:強い着色、    ××:著しい着色
(6)耐熱性(老化性);JIS K-6723(1995)に準拠し、120℃×120時間の加熱条件で加熱後引張試験を行った。結果は、常態に対する試験後のプレスシートの100%モジュラス残率(%)と破断伸び残率(%)で示した。 
 結果の値が100に近いほど、加熱後の物性変化が少なく、耐熱老化性に優れると言える。また、本試験は、耐熱性試験であると同時に、熱に対する安定化剤としての効果(安定化効果)の指標でもある。即ち、結果の値が100に近いほど、加えた安定化剤が熱に対する安定化剤として有効に作用し、老化を抑制していると言える。 
 100%モジュラス残率(%)=(1-(加熱後の100%モジュラス-加熱前の100%モジュラス)/加熱前の100%モジュラス))×100
 伸び残率(%)=(加熱後の破断伸び/加熱前の破断伸び)×100
(7)耐フォギング性
 プレスシート4gをガラス製サンプル瓶に入れ、100℃に温度調節したフォギング試験機にセットした。さらに、上記サンプル瓶にガラス板の蓋をした後、その上に20℃に温度調節した冷却水を通水した冷却板を載せ、100℃で3時間熱処理を実施した。熱処理後、ヘイズメーター(東洋精機製作所製:ヘイズガードII)を用いて上記ガラス板の曇り度(Haze)(%)を測定した。 
 Haze値が小さいほど、耐フォギング性に優れる。
[製造例1]
エステル化反応
 温度計、デカンター、攪拌羽、還流冷却管を備えた2L四ツ口フラスコに、4-シクロヘキセン-1,2-ジカルボン酸無水物182.6g(1.2モル,新日本理化(株)製:リカシッドTH)、炭素数9の直鎖状の飽和脂肪族アルコール重量85.1%と炭素数9の分岐鎖状の飽和族飽和アルコール重量11.7%を含む飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9、直鎖率(モル比)85%)416g(2.9モル)、及びエステル化触媒としてテトライソプロピルチタネート0.24gを加え、反応温度を200℃としてエステル化反応を実施した。減圧下アルコールを還流させて生成水を系外へ除去しながら、反応溶液の酸価が0.5mgKOH/gになるまで反応を行った。反応終了後、未反応アルコールを減圧下で系外へ留去した後、常法に従って中和、水洗、脱水して目的とする4-シクロヘキセン-1,2-ジカルボン酸ジエステル(以下、「エステル1」という。)449gを得た。 
 得られたエステル1は、エステル価:262mgKOH/g、酸価:0.04mgKOH/g、色相:15であった。
エポキシ化反応
 次に、温度計、攪拌羽、冷却管を備えた1L四ツ口フラスコに、上記エステル化反応で得られたエステル1を423g(1.0モル)仕込み、60~70℃に昇温した。昇温後、60%過酸化水素水76.6g(1.35モル)、76%蟻酸18.3g(0.30モル)、及び75%燐酸1.47g(0.01モル)を2.25時間かけてゆっくりと滴下した。滴下終了後、更に4時間上記温度を保持し、熟成して反応を完了した。反応終了後、水相を系外へ除去した後、常法に従って、水洗、脱水して目的とする4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ1」という。)397gを得た。 
 得られたエポキシ1は、エステル価:256mgKOH/g、酸価:0.06mgKOH/g、ヨウ素価:2.5gI2/100g、オキシラン酸素:3.5%、色相:10であった。
[製造例2]
 飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416gの代わりに、炭素数9/10/11の比率(モル比)が18/42/38であり、全体の直鎖率が84%である炭素数9~11の混合飽和脂肪族アルコール(シェルケミカルズ社製:ネオドール911、)400g(2.5モル)を加えた以外は製造例1と同様に実施して、4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ2」という。)404gを得た。 
 得られたエポキシ2は、エステル価:242mgKOH/g、酸価:0.04mgKOH/g、ヨウ素価:1.9gI2/100g、オキシラン酸素:3.1%、色相:10であった。
[製造例3]
 飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416gの代わりに、2-エチルヘキサノール374g(2.9モル)を加えた以外は製造例1と同様に実施して、4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ3」という。)390gを得た。 
 得られたエポキシ3は、エステル価:273mgKOH/g、酸価:0.04mgKOH/g、ヨウ素価:3.3gI2/100g、オキシラン酸素:3.5%、色相:10であった。
[実施例1]
 上記「(3)塩化ビニルシートの作製」の[方法1:硬質及び半硬質塩化ビニルシート]に記載の方法に従って、19重量部のエポキシシクロヘキサンジカルボン酸ジエステル(エポキシ1)を安定化剤として用いて塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐熱性試験及び耐フォギング性試験を行なった。得られた結果をまとめて表3に示した。 
 なお、上記で作製した塩化ビニルシートは、1ヶ月間室温で放置してもブリード等の兆候は全く認められていない。
[実施例2]
 19重量部のエポキシ1の代わりに、10重量部のエポキシ2を安定化剤として用いた以外は実施例1と同様に実施して、塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐熱性試験及び耐フォギング性試験を行なった。得られた結果をまとめて表3に示した。 
 なお、上記で作製した塩化ビニルシートは、1ヶ月間室温で放置してもブリード等の兆候は全く認められていない。
[実施例3]
 上記「(3)塩化ビニルシートの作製」の[方法2:軟質塩化ビニルシート]に記載の方法に従って、安定化剤として19重量部のエポキシシクロヘキサンジカルボン酸ジエステル(エポキシ1)を、可塑剤としてトリメリット酸トリ2-エチルヘキシル(TOTM)用いて塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐熱性試験及び耐フォギング性試験を行なった。得られた結果をまとめて表4に示した。
[実施例4]
 エポキシ1の代わりにエポキシ2を用いた以外は実施例3と同様に実施して、塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐熱性試験及び耐フォギング性試験を行なった。得られた結果をまとめて表4に示した。
[実施例5]
 TOTMの代わりに上記飽和脂肪族アルコール(リネボール9)のトリメリット酸トリエステル(TL9TM)を用いた以外は実施例3と同様に実施して、塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐熱性試験及び耐フォギング性試験を行なった。得られた結果をまとめて表4に示した。
[比較例1]
 エポキシ1を加えない以外は実施例1と同様に実施して、塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐熱性試験及び耐フォギング性試験を行なった。得られた結果をまとめて表3に示した。
[比較例2]
 エポキシ1に代わりにエポキシ3を用いた以外は実施例1と同様に実施して、塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐熱性試験及び耐フォギング性試験を行なった。得られた結果をまとめて表3に示した。
[比較例3]
 エポキシ1を加えない以外は実施例3と同様に実施して、塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐熱性試験及び耐フォギング性試験を行なった。得られた結果をまとめて表4に示した。
[比較例4]
 エポキシ1に代わりにエポキシ3を用いた以外は実施例3と同様に実施して、塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐熱性試験及び耐フォギング性試験を行なった。得られた結果をまとめて表4に示した。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 表3及び4の結果より、明らかに本発明のエポキシシクロヘキサンジカルボン酸ジエステル(実施例1~5)を配合することにより、配合していないもの(比較例1、3)と比較して、熱着色、熱による物性低下、即ち熱劣化が著しく減少していることがわかる。従来のエポキシシクロヘキサンジカルボン酸ジエステル、即ち本発明の範囲外のエポキシシクロヘキサンジカルボン酸ジエステル(比較例2、4)を配合した場合、フォギング性の低下する傾向が認められるのに対して、本発明の範囲内のエポキシシクロヘキサンジカルボン酸ジエステル(実施例1~5)を配合したものは、ほとんどフォギング性の低下が認められていない。これらの傾向は、硬質から耐熱性可塑剤を配合した軟質まで全く同じ傾向を示している。以上の結果より、本発明に係るエポキシシクロヘキサンジカルボン酸ジエステルが、非常に優れた安定化剤として、硬質から、半硬質、軟質用途まで幅広く有用であることがわかる。
〔第4の本発明〕
(1)アルキル基の炭素数と直鎖状アルキル基の比率
 本発明の実施例及び比較例で用いる可塑剤中のアルキル基の炭素数と直鎖状アルキル基の比率は、その製造に用いた原料アルコール中の組成をガスクロマトグラフィー(以下GCと略記)によって測定し、その結果を可塑剤中のアルキル基の炭素数と直鎖状アルキル基の比率とした。前記GCによる原料アルコールの測定方法は上記と同様である。
(2)原料エステル及び本ジエステルの物性評価
 下記の製造例で得られた原料エステル及び本ジエステルのエステル価、酸価、ヨウ素価、オキシラン酸素、及び色相は、上記と同様の方法で分析を行った。
(3)塩化ビニルシートの作製
 塩化ビニル樹脂(ストレート、重合度1050、商品名「Zest1000Z」、新第一塩ビ(株)製)100重量部に、本発明以外の安定化剤として、カルシウムステアレート(ナカライテスク(株)製)及びジンクステアレート(ナカライテスク(株)製)を各々0.3及び0.2重量部を配合し、モルタルミキサーで攪拌混合して、塩化ビニル系樹脂組成物とした。また、モルタルミキサーでの攪拌混合後、本発明に係るジエステルを表5に記載の所定量加え、均一になるまでハンドリング混合し、塩化ビニル系樹脂組成物とした。この樹脂組成物を5×12インチの二本ロールを用いて160~166℃で4分間溶融混練しロールシートを作製した。続いて162~168℃×10分間プレス成形を行い、厚さ約1mmのプレスシートを作製した。
[樹脂の物性評価]
(4)引張特性:JIS K-6723(1995)に準拠し、プレスシートの100%モジュラス、破断強度、破断伸びを測定した。100%モジュラスの値が小さいほど柔軟性が良好であることを示し、破断強度、破断伸びはその材料の実用的な強度の目安であり、一般的にはその値が大きいほど実用的な強度に優れると言うことができる。
(5)耐寒性:クラッシュベルグ試験機を用いて、JIS K-6773(1999)に準拠して、プレスシートの柔軟温度(℃)を測定した。柔軟温度(℃)が低いほど耐寒性に優れる。ここで言う柔軟温度とは、前記測定において所定のねじり剛性率(3.17×103kg/cm2)を示す低温限界の温度を指す。
(6)耐熱性(揮発性、着色性):加熱後の揮発減量及びシート着色の評価による。
a)揮発減量:ギヤーオーブン中、ロールシートを170℃で60分、120分加熱した後のシートの重量変化を測定し、下記の式に従って揮発減量(%)を算出した。 
 揮発減量の数値が小さいほど、耐熱性が高い。 
 揮発減量(%)=((試験前の重量―試験後の重量)/試験前の重量)×100
b)シート着色 :ギヤーオーブン中、ロールシートを170℃で30分、60分間加熱した後の着色度の強弱を目視により6段階で評価した。
◎:着色なし、 〇:僅かに着色、  ○△:少し着色、
△:着色、   ×:強い着色、    ××:著しい着色
(7)耐フォギング性
 プレスシート4gをガラス製サンプル瓶に入れ、100℃に温度調節したフォギング試験機にセットした。さらに、上記サンプル瓶にガラス板の蓋をした後、その上に20℃に温度調節した冷却水を通水した冷却板を載せ、100℃で3時間熱処理を実施した。熱処理後、ガラス板表面の曇り具合を目視にて観察し4段階で評価し、またヘイズメーター(東洋精機製作所製:ヘイズガードII)を用いて前記ガラス板の曇り度(Haze)(%)を測定した。Haze値が小さいほど、耐フォギング性に優れる。
[目視観察による4段階評価]
◎:全く曇りがなく、ガラス板の向こうの視界に影響はなかった
〇:僅かに曇りが生じたが、ガラス板の向こうの視界に影響があるほどではなかった
△:明らかに曇りが生じ、ガラス板の向こうの視界に僅かに影響が生じた
×:ガラス板表面の曇り具合がきつく、ガラス板の向こうの視界が低下した
(8)耐熱老化性:JIS K-6723(1995)に準拠し、100℃で120時間の加熱条件で加熱後引張試験を行った。結果は常態に対する試験後のプレスシートの100%モジュラス残率(%)および破断伸び残率(%)で示した。数値が100%に近いほど、耐熱老化性に優れる。 
 100%モジュラス残率=(加熱後引張試験のプレスシートの100%モジュラス)/(加熱前引張試験のプレスシートの100%モジュラス)×100
 破断伸び残率=(加熱後引張試験のプレスシートの破断伸び)/(加熱前引張試験のプレスシートの破断伸び)×100
(9)耐光性:キセノンウェザーメーター(スガ試験機株式会社)による照射200時間の試験後のイエローインデックス(YI)を測定した。
[製造例1]
エステル化反応
 温度計、デカンター、攪拌羽、還流冷却管を備えた2L四ツ口フラスコに、4-シクロヘキセン-1,2-ジカルボン酸無水物182.6g(1.2モル,新日本理化(株)製:リカシッドTH)、炭素数9の直鎖状の飽和脂肪族アルコール重量85.1%と炭素数9の分岐鎖状の飽和族飽和アルコール重量11.7%を含む飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9、直鎖状の飽和脂肪族アルコールの比率:87%)416g(2.9モル)、及びエステル化触媒としてテトライソプロピルチタネート0.24gを加え、反応温度を200℃としてエステル化反応を実施した。減圧下アルコールを還流させて生成水を系外へ除去しながら、反応溶液の酸価が0.5mgKOH/gになるまで反応を行った。反応終了後、未反応アルコールを減圧下で系外へ留去した後、常法に従って中和、水洗、脱水して目的とする4-シクロヘキセン-1,2-ジカルボン酸ジエステル(以下、「エステル1」という。)449gを得た。 
 得られたエステル1は、エステル価:254mgKOH/g、酸価:0.04mgKOH/g、色相:15であった。
エポキシ化反応
 次に、温度計、攪拌羽、冷却管を備えた1L四ツ口フラスコに、上記エステル化反応で得られたエステル1を423g(1.0モル)仕込み、60~70℃に昇温した。昇温後、60%過酸化水素水76.6g(1.35モル)、76%蟻酸18.3g(0.30モル)、及び75%燐酸1.47g(0.01モル)を2時間15分かけてゆっくりと滴下した。滴下終了後、更に4時間上記温度を保持し、熟成して反応を完了した。反応終了後、水相を系外へ除去した後、常法に従って、水洗、脱水して目的とする4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ1」という。)397gを得た。 
 得られたエポキシ1は、エステル価:256mgKOH/g、酸価:0.06mgKOH/g、ヨウ素価:2.5gI2/100g、オキシラン酸素:3.5%、色相:10であった。
[製造例2]
 飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416gの代わりに、炭素数9/10/11の比率が19/43/38であり、直鎖状の飽和脂肪族アルコールの比率が84%である炭素数9~11の混合飽和脂肪族アルコール(シェルケミカルズ社製:ネオドール911、)400g(2.5モル)を加えた以外は製造例1と同様に実施して、4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ2」という。)404gを得た。 
 得られたエポキシ2は、エステル価:242mgKOH/g、酸価:0.04mgKOH/g、ヨウ素価:1.9gI2/100g、オキシラン酸素:3.1%、色相:10であった。
[製造例3]
 飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416gの代わりに、n-ノニルアルコール198g(1.4モル)とイソノニルアルコール162g(1.1モル)を加えた以外は製造例1と同様に実施して、4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ3」という。)390gを得た。なお、直鎖状の飽和脂肪族アルコールの比率は60%であった。 
 得られたエポキシ3は、エステル価:256mgKOH/g、酸価:0.05mgKOH/g、ヨウ素価:2.5gI2/100g、オキシラン酸素:3.5%、色相:10であった。
[製造例4]
 飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416gの代わりに、2-エチルヘキサノール374g(2.9モル)を加えた以外は製造例1と同様に実施して、4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ4」という。)390gを得た。 
 得られたエポキシ4は、エステル価:273mgKOH/g、酸価:0.04mgKOH/g、ヨウ素価:3.3gI2/100g、オキシラン酸素:3.5%、色相:10であった。
[製造例5]
 飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416gの代わりに、イソノニルアルコール416g(2.9モル)を加えた以外は製造例1と同様に実施して、4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ5」という。)379gを得た。 
 得られたエポキシ5は、エステル価:255mgKOH/g、酸価:0.05mgKOH/g、ヨウ素価:1.6gI2/100g、オキシラン酸素:3.4%、色相:10であった。
[製造例6]
 飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416gの代わりに、イソデシルアルコール459g(2.9モル)を加えた以外は製造例1と同様に実施して、4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ6」という。)410gを得た。 
 得られたエポキシ6は、エステル価:239mgKOH/g、酸価:0.05mgKOH/g、ヨウ素価:2.0gI2/100g、オキシラン酸素:3.1%、色相:10であった。
[実施例1]
 上記「(3)塩化ビニルシートの作製」に記載した方法に従って、製造例1で得られたエポキシシクロヘキサンジカルボン酸ジエステル(エポキシ1)を表5に記載の所定量用いて塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験、耐光性試験及び耐フォギング試験を行なった。得られた結果をまとめて表5に示した。
[実施例2]
 エポキシの代わりにエポキシ2を用いた以外は実施例1と同様に実施して、塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験、耐光性試験及び耐フォギング試験を行なった。得られた結果をまとめて表5に示した。
[実施例3]
 エポキシ1の代わりにエポキシ3を用いた以外は実施例1と同様に実施して、塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験、耐光性試験及び耐フォギング試験を行なった。得られた結果をまとめて表5に示した。
[実施例4]
 エポキシ1の配合量を10部に減らし、1,2-シクロヘキサンジカルボン酸ジイソノニル(hexamoll DINCH、BASF社製)を40部用いた以外は実施例1と同様に実施して、塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験、耐光性試験及び耐フォギング試験を行なった。得られた結果をまとめて表5に示した。
[実施例5]
 エポキシ2の配合量を10部に減らし、1,2-シクロヘキサンジカルボン酸ジイソノニル(hexamoll DINCH、BASF社製)を40部用いた以外は実施例2と同様に実施して、塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験、耐光性試験及び耐フォギング試験を行なった。得られた結果をまとめて表5に示した。
[実施例6]
 エポキシ1の配合量を10部に減らし、トリメリット酸トリ2-エチルヘキシル(TOTM)を40部用いた以外は実施例1と同様に実施して、塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験、耐光性試験及び耐フォギング試験を行なった。得られた結果をまとめて表5に示した。
[比較例1]
 エポキシ1の代わりにエポキシ4を用いた以外は実施例1と同様に実施して、本発明外の塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験、耐光性試験及び耐フォギング試験を行なった。得られた結果をまとめて表5に示した。
[比較例2]
 エポキシ1の代わりにエポキシ5を用いた以外は実施例1と同様に実施して、本発明外の塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験、耐光性試験及び耐フォギング試験を行なった。得られた結果をまとめて表5に示した。
[比較例3]
 エポキシ1の代わりにエポキシ6を用いた以外は実施例1と同様に実施して、本発明外の塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験、耐光性試験及び耐フォギング試験を行なった。得られた結果をまとめて表5に示した。
[比較例4]
 エポキシ1の代わりに1,2-シクロヘキサンジカルボン酸ジイソノニル(hexamoll DINCH、BASF社製)を用いた以外は実施例1と同様に実施して、本発明外の塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験、耐光性試験及び耐フォギング試験を行なった。得られた結果をまとめて表5に示した。
[比較例5]
 エポキシ1の代わりに市販のトリメリット酸トリ2-エチルヘキシル(TOTM)を用いた以外は実施例1と同様に実施して、本発明外の塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験、耐光性試験及び耐フォギング試験を行なった。得られた結果をまとめて表5に示した。
[比較例6]
 エポキシ1の代わりに市販のフタル酸ジイソノニル(新日本理化(株)製、サンソサイザーDINP)を用いた以外は実施例1と同様に実施して、本発明外の塩化ビニル系樹脂組成物を調製し、得られた塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験、耐光性試験及び耐フォギング試験を行なった。得られた結果をまとめて表5に示した。
Figure JPOXMLDOC01-appb-T000018
 表5の結果より、本発明の4,5-エポキシシクロヘキサンジカルボン酸ジエステル(実施例1~3)を可塑剤として用いることにより、現在広く使われているDINCH(比較例5)やDINP(比較例7)を用いた場合と比較して、同等の成形加工性、柔軟性及び耐寒性を保持しつつ、耐熱性、特に着色性を大きく改善できることがわかる。更に、耐熱用可塑剤としてよく使われているトリメリット酸エステル(比較例6)と比較しても、耐フォギング性に有意差はなく、耐熱性、特に着色性が大きく向上されており、優れた成形加工性、柔軟性、耐寒性を考慮すると自動車内装材としてのその有用性は明らかである。また、表5の結果より、本発明の4,5-エポキシシクロヘキサンジカルボン酸ジエステル(実施例1~3)を可塑剤として用いることにより、従来の4,5-エポキシシクロヘキサンジカルボン酸ジエステル(比較例1)を用いた場合と比較して、同等の成形加工性や柔軟性を保持しつつ、耐寒性及び耐熱性が大きく改善されていることがわかる。更に、実施例4~6の結果より、現在広く使われているDINCHやTOTMに本発明の4,5-エポキシシクロヘキサンジカルボン酸ジエステルを加えることにより、耐熱性、特に着色性を大きく改善できることがわかる。以上の結果より、本発明に係るエポキシシクロヘキサンジカルボン酸ジエステルを含む自動車内装用塩化ビニル系樹脂組成物は、より厳しい環境下で使用する寒冷地仕様や海外仕様の自動車に使われる内装材などに特に有用であることがわかる。
〔第5の本発明〕
(1)アルキル基の炭素数と直鎖状アルキル基の比率
 本発明の実施例及び比較例で用いる可塑剤中のアルキル基の炭素数と直鎖状アルキル基の比率は、その製造に用いた原料アルコール中の組成をガスクロマトグラフィー(以下GCと略記)によって測定し、その結果を可塑剤中のアルキル基の炭素数と直鎖状アルキル基の比率とした。前記GCによる原料アルコールの測定方法は上記と同様である。
(2)原料エステル及び本ジエステルの物性評価
 下記の製造例で得られた原料エステル及び本ジエステルのエステル価、酸価、ヨウ素価、オキシラン酸素、及び色相は、上記と同様の方法で分析を行った。
(3)成形加工性
 塩化ビニル樹脂(ストレート、重合度1050、商品名「Zest1000Z」、新第一塩ビ(株)製)2gに可塑剤10gを入れ混合したサンプル約0.01gをスライドガラス上に滴下し、カバーガラスをかけ、光学顕微鏡にセットした。5℃/minの速度で昇温し、加熱昇温による塩化ビニル樹脂の粒子の状態変化を観察し、塩化ビニル樹脂の粒子が溶け始める温度と該粒子が透明になった温度をそれぞれゲル化開始温度およびゲル化終了温度とし、その平均値をゲル化温度とした。ゲル化温度が低いほど可塑剤の吸収速度が速く加工性に優れる。
(4)塩化ビニルシートの作製
 塩化ビニル樹脂(ストレート、重合度1050、商品名「Zest1000Z」、新第一塩ビ(株)製)100重量部に、安定剤として、カルシウムステアレート(ナカライテスク(株)製)及びジンクステアレート(ナカライテスク(株)製)を各々0.3及び0.2重量部を配合し、モルタルミキサーで攪拌混合して、塩化ビニル系樹脂組成物とした。また、モルタルミキサーでの攪拌混合後、本発明に係るジエステルを50重量部加え、均一になるまでハンドリング混合し、本発明の医療用塩化ビニル系樹脂組成物とした。この樹脂組成物を5×12インチの二本ロールを用いて160~166℃で4分間溶融混練しロールシートを作製した。続いて162~168℃×10分間プレス成形を行い、厚さ約1mmのプレスシートを作製した。
[樹脂の物性評価]
(5)引張特性:JIS K-6723(1995)に準拠し、プレスシートの100%モジュラス、破断強度、破断伸びを測定した。100%モジュラスの値が小さいほど柔軟性が良好であることを示し、破断強度、破断伸びはその材料の実用的な強度の目安であり、一般的にはその値が大きいほど実用的な強度に優れると言うことができる。
(6)耐寒性:クラッシュベルグ試験機を用いて、JIS K-6773(1999)に準拠して、プレスシートの柔軟温度(℃)を測定した。柔軟温度(℃)が低いほど耐寒性に優れる。ここで言う柔軟温度とは、前記測定において所定のねじり剛性率(3.17×103kg/cm2)を示す低温限界の温度を指す。
(7)耐熱性(揮発性、着色性):加熱後の揮発減量及びシート着色の評価による。
a)揮発減量:ギヤーオーブン中、ロールシートを170℃で60分、120分加熱した後のシートの重量変化を測定し、下記の式に従って揮発減量(%)を算出した。 
 揮発減量の数値が小さいほど、耐熱性が高い。 
 揮発減量(%)=((試験前の重量―試験後の重量)/試験前の重量)×100
b)シート着色 :ギヤーオーブン中、ロールシートを170℃で30分、60分間加熱した後の着色度の強弱を目視により5段階で評価した。
◎:着色なし、 〇:僅かに着色、  △:着色、 ×:強い着色、 ××:著しい着色
(8)紫外線照射試験
 スガ試験機社製キセノンウェザーメーターを用いて、測定条件(放射照度120W/m、温度63℃、湿度50%)を200時間実施した後のプレスシートのイエローインデックス(YI)を測定した。
[製造例1]
エステル化反応
 温度計、デカンター、攪拌羽、還流冷却管を備えた2L四ツ口フラスコに、4-シクロヘキセン-1,2-ジカルボン酸無水物182.6g(1.2モル,新日本理化(株)製:リカシッドTH)、炭素数9の直鎖状の飽和脂肪族アルコール重量85.1%と炭素数9の分岐鎖状の飽和族飽和アルコール重量11.7%を含む飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416g(2.9モル)、及びエステル化触媒としてテトライソプロピルチタネート0.24gを加え、反応温度を200℃としてエステル化反応を実施した。減圧下アルコールを還流させて生成水を系外へ除去しながら、反応溶液の酸価が0.5mgKOH/gになるまで反応を行った。反応終了後、未反応アルコールを減圧下で系外へ留去した後、常法に従って中和、水洗、脱水して目的とする4-シクロヘキセン-1,2-ジカルボン酸ジエステル(以下、「エステル1」という。)449gを得た。 
 得られたエステル1は、エステル価:262mgKOH/g、酸価:0.04mgKOH/g、色数:20であった。
エポキシ化反応
 次に、温度計、攪拌羽、冷却管を備えた1L四ツ口フラスコに、上記エステル化反応で得られたエステル1を423g(1.0モル)仕込み、60~70℃に昇温した。昇温後、60%過酸化水素水76.6g(1.35モル)、76%蟻酸18.3g(0.30モル)、及び75%燐酸1.47g(0.01モル)を2時間15分かけてゆっくりと滴下した。滴下終了後、更に4時間上記温度を保持し、熟成して反応を完了した。反応終了後、水相を系外へ除去した後、常法に従って、水洗、脱水して目的とする4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ1」という。)397gを得た。 
 得られたエポキシ1は、エステル価:256mgKOH/g、酸価:0.06mgKOH/g、ヨウ素価:1.7gI2/100g、オキシラン酸素:3.5%、色数:10であった。
[製造例2]
 飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416gの代わりに、炭素数9/10/11の比率が19/43/38であり、全体の直鎖率が84%である炭素数9~11の飽和脂肪族アルコール(シェルケミカルズ社製:ネオドール911、)464g(2.9モル)を加えた以外は製造例1と同様に実施して、4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ2」という。)404gを得た。 
 得られたエポキシ2は、エステル価:242mgKOH/g、酸価:0.04mgKOH/g、ヨウ素価:1.7gI2/100g、オキシラン酸素:3.1%、色数:10であった。
[製造例3]
 飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416gの代わりに、n-ノニルアルコール251g(1.7モル)とイソノニルアルコール167g(1.2モル)を加えた以外は製造例1と同様に実施して、4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ3」という。)390gを得た。 
 得られたエポキシ3は、エステル価:250mgKOH/g、酸価:0.02mgKOH/g、ヨウ素価:1.9gI2/100g、オキシラン酸素:3.3%、色数:10であった。
[製造例4]
 飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416gの代わりに、2-エチルヘキサノール378g(2.9モル)を加えた以外は製造例1と同様に実施して、4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ4」という。)390gを得た。 
 得られたエポキシ4は、エステル価:273mgKOH/g、酸価:0.04mgKOH/g、ヨウ素価:2.6gI2/100g、オキシラン酸素:3.7%、色数:10であった。
[製造例5]
 飽和脂肪族アルコール(シェルケミカルズ社製:リネボール9)416gの代わりに、n-ノニルアルコール167g(1.2モル)とイソノニルアルコール251g(1.7モル)を加えた以外は製造例1と同様に実施して、4,5-エポキシシクロヘキサンジカルボン酸ジエステル(以下、「エポキシ5」という。)340gを得た。 
 得られたエポキシ5は、エステル価:257mgKOH/g、酸価:0.06mgKOH/g、ヨウ素価:2.5gI2/100g、オキシラン酸素:3.3%、色数:10であった。
[実施例1]
 上記「(3)成形加工性」に記載した方法に従って、製造例1で得られたエポキシシクロヘキサンジカルボン酸ジエステル(エポキシ1)を用いて成形加工性(ゲル化温度)を測定した。得られた結果を表6に示した。 
 続いて、上記「(4)塩化ビニルシートの作製」に記載した通り、エポキシ1を可塑剤として用いて医療用軟質塩化ビニル系樹脂組成物(即ち、軟質材料に使用する為の医療用塩化ビニル系樹脂組成物)を調製し、得られた軟質塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験及び紫外線照射試験を行なった。得られた結果を表6に示した。
[実施例2]
 エポキシ1の代わりにエポキシ2を用いた以外は実施例1と同様に実施して、成形加工性を測定し、続いて医療用軟質塩化ビニル系樹脂組成物を調製し、得られた軟質塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験及び紫外線照射試験を行なった。得られた結果をまとめて表6に示した。
[実施例3]
 エポキシ1の代わりにエポキシ3を用いた以外は実施例1と同様に実施して、成形加工性を測定し、続いて医療用軟質塩化ビニル系樹脂組成物を調製し、得られた軟質塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験及び紫外線照射試験を行なった。得られた結果をまとめて表6に示した。
[比較例1]
 エポキシ1の代わりにエポキシ4を用いた以外は実施例1と同様に実施して、成形加工性を測定し、続いて軟質塩化ビニル系樹脂組成物を調製し、得られた軟質塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験及び紫外線照射試験を行なった。得られた結果をまとめて表6に示した。
[比較例2]
 エポキシ1の代わりにエポキシ5を用いた以外は実施例1と同様に実施して、成形加工性を測定し、続いて軟質塩化ビニル系樹脂組成物を調製し、得られた軟質塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験及び紫外線照射試験を行なった。得られた結果をまとめて表6に示した。
[比較例3]
 エポキシ1の代わりに1,2-シクロヘキサンジカルボン酸ジイソノニル(BASF社製、hexamoll DINCH)を用いた以外は実施例1と同様に実施して、成形加工性を測定し、続いて軟質塩化ビニル系樹脂組成物を調製し、得られた軟質塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験及び紫外線照射試験を行なった。得られた結果をまとめて表6に示した。
[比較例4]
 エポキシ1の代わりにフタル酸ジ2-エチルヘキシル(新日本理化(株)製、サンソサイザーDOP)を用いた以外は実施例1と同様に実施して、成形加工性を測定し、続いて軟質材料用の塩化ビニル系樹脂組成物を調製し、得られた軟質材料用の塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験及び紫外線照射試験を行なった。得られた結果をまとめて表6に示した。
[比較例5]
 エポキシ1の代わりに市販のトリメリット酸トリ2-エチルヘキシルを用いた以外は実施例1と同様に実施して、成形加工性を測定し、続いて軟質材料用の塩化ビニル系樹脂組成物を調製し、得られた軟質材料用の塩化ビニル系樹脂組成物より塩化ビニルシートを作製して引張試験、耐寒性試験、耐熱性試験及び紫外線照射試験を行なった。得られた結果をまとめて表6に示した。
Figure JPOXMLDOC01-appb-T000019
  表6の結果より、明らかに本発明のエポキシシクロヘキサンジカルボン酸ジエステルを配合した医療用塩化ビニル系樹脂組成物(実施例1~3)は、現在最も汎用に使われているフタル酸エステル系の可塑剤であるDOPを配合した樹脂組成物(比較例4)と比べて、紫外線照射試験後の着色が非常に少ないことがわかる。一般に塩化ビニル樹脂組成物から得られた成形体の着色の原因は、塩化ビニル樹脂の脱塩酸反応による共役ポリエンの生成により着色するもので、紫外線や放射線の照射がそれを促進するために滅菌や殺菌処理時に着色することが知られており、上記結果より紫外線照射だけでなく、同じメカニズムで着色すると考えられる様々な放射線照射による滅菌や殺菌処理においても、同様の効果を示すものと言える。
 また、同じく本発明のエポキシシクロヘキサンジカルボン酸ジエステルを配合した医療用塩化ビニル系樹脂組成物(実施例1~3)は、現在最も汎用に使われているフタル酸エステル系の可塑剤を配合した樹脂組成物(比較例4)と比べて、揮発減量が少なく、更に熱着色もなく、煮沸やオートクレーブ等の加熱を伴う殺菌や滅菌処理において、可塑剤の揮発による柔軟性の低下や着色等の劣化の懸念がより低減され、非常に有用であることがわかる。
 次に、最近耐熱性に優れるとして使われ始めているトリメリット酸エステル系の可塑剤であるTOTMを配合した樹脂組成物(比較例5)と比べても、紫外線照射試験後の着色が非常に少ないことがわかる。
 更に、本発明外のエポキシシクロヘキサンジカルボン酸ジエステルを配合した樹脂組成物(比較例1、2)と比較しても、本発明に係るエポキシシクロヘキサンジカルボン酸ジエステルを使うことにより、使用時の柔軟性や耐寒性が同等か、それ以上であり、かつ揮発減量が少なく、煮沸やオートクレーブ等の加熱を伴う殺菌や滅菌処理における可塑剤の揮発による柔軟性の低下等、劣化の懸念がより低減され、非常に有用であることが明らかである。
 本発明の分子構造中にエポキシ基を有する新規なエポキシシクロヘキサンジカルボン酸ジエステルは、熱可塑性樹脂やゴム等の可塑剤として、可塑剤本来の可塑化性能は良好であり、かつ耐熱性や耐寒性に優れており、近年益々厳しくなる耐寒性や耐熱性の要求にも対応可能な可塑剤であり、又は塩素含有樹脂における安定化剤として非常に有用である。特に、本発明のエポキシシクロヘキサンジカルボン酸ジエステルは、塩化ビニルを代表とする塩素含有樹脂において、安定化剤としての性能を併せ持つ可塑剤として、また、硬質、半硬質、更には他の可塑剤を配合した軟質材料等、様々な材料系における安定化剤として使用することができる。そのような性能を有する該エポキシシクロヘキサンジカルボン酸ジエステルを配合した樹脂組成物及び樹脂成形体は電線被覆用途や自動車用部材用途、水道管などのパイプ類、パイプ用の継手類、雨樋などの樋類、窓枠サイディング、平板、波板、一般フィルムシート(ラミネート、包装、車両、雑貨等)用途、農業用フィルム用途、レザー用途、コンパウンド用途、床材用途、壁紙用途、履物用途、シーリング材用途、繊維用途、ホース用途、ガスケット用途、建築資材用途、塗料用途、接着剤用途、ペースト用途、医療用途などに利用することができる。

Claims (20)

  1.  下記一般式(1)で示される4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルからなり、かつ該ジカルボン酸ジエステルを構成するアルキル基の全量に対する直鎖状のアルキル基の比率(モル比)が50~99%であることを特徴とするエポキシシクロヘキサンジカルボン酸ジエステル。
    Figure JPOXMLDOC01-appb-I000001
     (式中、R及びRは同一又は異なって、炭素数7~13の直鎖状又は分岐鎖状のアルキル基を表す。)
  2.  前記アルキル基が、(i)主として炭素数9~11のアルキル基から構成され、炭素数9のアルキル基/炭素数10のアルキル基/炭素数11のアルキル基の比率(モル比)が10~25/35~50/30~45の範囲である、又は(ii)ジカルボン酸ジエステルを構成するアルキル基の全量に対して90%以上(モル比)の炭素数9のアルキル基を含むものである、請求項1に記載のエポキシシクロヘキサンジカルボン酸ジエステル。
  3.  前記アルキル基中の直鎖状のアルキル基の比率(モル比)が、55~95%である請求項1又は2に記載のエポキシシクロヘキサンジカルボン酸ジエステル。
  4.  プロトン核磁気共鳴分光分析で測定したシクロヘキサン環を介したオキシラン環とアルキルオキシカルボニル基の異性体比(シス体/トランス体、モル比)が5/95~35/65である請求項1~3の何れかに記載のエポキシシクロヘキサンジカルボン酸ジエステル。
  5.  請求項1~4の何れかに記載のエポキシシクロヘキサンジカルボン酸ジエステルを含有する塩化ビニル系樹脂用可塑剤。
  6.  塩化ビニル系樹脂と請求項5に記載の塩化ビニル系樹脂用可塑剤を含有する塩化ビニル系樹脂組成物。
  7.  前記塩化ビニル系樹脂用可塑剤の含有量が、塩化ビニル系樹脂100重量部に対して、1~200重量部である請求項6に記載の塩化ビニル系樹脂組成物。
  8.  請求項6又は7に記載の塩化ビニル系樹脂組成物から得られた塩化ビニル系成形体。
  9.  請求項1~4の何れかに記載のエポキシシクロヘキサンジカルボン酸ジエステルを含有する塩素含有樹脂用安定化剤。
  10.  塩素含有樹脂と請求項9に記載の安定化剤を含有する塩素含有樹脂組成物。
  11.  前記安定化剤の含有量が、塩素含有樹脂100重量部に対して、1~30重量部である請求項10に記載の塩素含有樹脂組成物。
  12.  更に、可塑剤を含む請求項10又は11に記載の塩素含有樹脂組成物。
  13.  請求項10~12の何れかに記載の塩素含有樹脂組成物から得られた塩素含有樹脂成形体。
  14.  下記一般式(1)で示される4,5-エポキシシクロヘキサン-1,2-ジカルボン酸ジエステルから選ばれる少なくとも一種を塩素含有樹脂に含有させることにより、該塩素含有樹脂を安定化する方法であって、該ジカルボン酸ジエステルを構成するアルキル基の全量に対する直鎖状のアルキル基の比率(モル比)が50~99%である、塩素含有樹脂を安定化する方法。
    Figure JPOXMLDOC01-appb-I000002
     (式中、R及びRは同一又は異なって、炭素数7~13の直鎖状又は分岐鎖状のアルキル基を表す。)
  15.  塩化ビニル系樹脂と請求項1~4の何れかに記載のエポキシシクロヘキサンジカルボン酸ジエステルを含有する自動車内装用塩化ビニル系樹脂組成物。
  16.  請求項15に記載の自動車内装用塩化ビニル系樹脂組成物からなる自動車内装材。
  17.  塩化ビニル系樹脂と請求項1~4の何れかに記載のエポキシシクロヘキサンジカルボン酸ジエステルを含有する医療用塩化ビニル系樹脂組成物。
  18.  更に脂肪酸カルシウム塩及び/又は脂肪酸亜鉛塩を含有する請求項17に記載の医療用塩化ビニル系樹脂組成物。
  19.  更にシラン化合物を含有する請求項17又は18に記載の医療用塩化ビニル系樹脂組成物。
  20.  請求項17~19の何れかに記載の医療用塩化ビニル系樹脂組成物からなる医療用材料。
PCT/JP2016/065456 2015-05-27 2016-05-25 エポキシシクロヘキサンジカルボン酸ジエステル、可塑剤、安定化剤、及び樹脂組成物 WO2016190354A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16800058.6A EP3305772A4 (en) 2015-05-27 2016-05-25 Epoxycyclohexane dicarboxylic acid diester, plasticizer, stabilizer and resin composition
KR1020177037288A KR20180012318A (ko) 2015-05-27 2016-05-25 에폭시사이클로헥산디카르복시산디에스테르, 가소제, 안정화제, 및 수지조성물
US15/576,651 US10836739B2 (en) 2015-05-27 2016-05-25 Epoxycyclohexane dicarboxylic acid diester, plasticizer, stabilizer and resin composition
CN201680030614.1A CN107614492A (zh) 2015-05-27 2016-05-25 环氧环己烷二羧酸二酯、塑化剂、稳定剂以及树脂组合物

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2015107693 2015-05-27
JP2015-107693 2015-05-27
JP2015-130534 2015-06-30
JP2015130534 2015-06-30
JP2015-141136 2015-07-15
JP2015141136 2015-07-15
JP2015-156987 2015-08-07
JP2015156987A JP6623605B2 (ja) 2015-08-07 2015-08-07 分子構造中にエポキシ基を有する新規な脂環式ジカルボン酸ジエステル
JP2016-032560 2016-02-24
JP2016032560A JP6705985B2 (ja) 2016-02-24 2016-02-24 エポキシシクロヘキサンジカルボン酸ジエステルを含有してなる医療用塩化ビニル系樹脂組成物及び医療用材料
JP2016-056500 2016-03-22
JP2016056500A JP6823246B2 (ja) 2015-05-27 2016-03-22 エポキシシクロヘキサンジカルボン酸ジエステルからなる塩化ビニル系樹脂用可塑剤及び該可塑剤を含有する軟質塩化ビニル系樹脂組成物
JP2016057876A JP6823247B2 (ja) 2015-06-30 2016-03-23 エポキシシクロヘキサンジカルボン酸ジエステルを含有してなる自動車内装用塩化ビニル系樹脂組成物及び自動車内装材
JP2016-057876 2016-03-23

Publications (1)

Publication Number Publication Date
WO2016190354A1 true WO2016190354A1 (ja) 2016-12-01

Family

ID=57393911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065456 WO2016190354A1 (ja) 2015-05-27 2016-05-25 エポキシシクロヘキサンジカルボン酸ジエステル、可塑剤、安定化剤、及び樹脂組成物

Country Status (1)

Country Link
WO (1) WO2016190354A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027596A (ja) * 2017-07-28 2019-02-21 積水化学工業株式会社 樹脂製透明継手
WO2019102995A1 (ja) * 2017-11-22 2019-05-31 新日本理化株式会社 内容物視認性の改善方法、塩化ビニル系樹脂組成物、安定化剤、塩化ビニル系樹脂成形体、医療材料、及び滅菌処理方法
JP2020097654A (ja) * 2018-12-17 2020-06-25 アキレス株式会社 射出成形用樹脂組成物および当該樹脂組成物からなる射出成形長靴
CN111363260A (zh) * 2020-03-24 2020-07-03 惠州市美林电线电缆有限公司 电缆护套用组合物、电缆及其制备方法
CN112409726A (zh) * 2020-11-25 2021-02-26 北京化工大学 一种亲水性聚氯乙烯配混物
CN112867592A (zh) * 2018-10-31 2021-05-28 日本瑞翁株式会社 粉体成型用氯乙烯树脂组合物、氯乙烯树脂成型体以及层叠体

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB796391A (en) * 1955-09-23 1958-06-11 Union Carbide Corp Plasticized and heat and light stabilized polymeric compositions
US2963490A (en) * 1956-11-23 1960-12-06 Rohm & Haas Epoxyhexahydrophthalates and endoalkylene-epoxyhexahydrophthalates
JPS5399251A (en) * 1977-02-12 1978-08-30 Ciba Geigy Ag Polymer composition
JPH05170753A (ja) * 1990-09-28 1993-07-09 Union Carbide Chem & Plast Co Inc シクロ脂肪族エポキシドを製造するためのエステル交換方法
JPH08228997A (ja) * 1995-02-24 1996-09-10 Sekisui Chem Co Ltd 透明フード
JP2006063102A (ja) * 2004-08-24 2006-03-09 Kobayashi Kk スラッシュ成形、回転成形またはディップ成形用のプラスチゾル組成物
WO2012020618A1 (ja) * 2010-08-12 2012-02-16 日本ゼオン株式会社 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP2015030774A (ja) * 2013-08-01 2015-02-16 リケンテクノス株式会社 医療用放射線滅菌対応塩化ビニル樹脂組成物およびそれからなる医療用器具
JP2015030773A (ja) * 2013-08-01 2015-02-16 リケンテクノス株式会社 医療用放射線滅菌対応塩化ビニル樹脂組成物およびそれからなる医療用器具
WO2015147300A1 (ja) * 2014-03-27 2015-10-01 新日本理化株式会社 非フタル酸系エステルを含有する塩化ビニル系樹脂用可塑剤、及び該可塑剤を含有する塩化ビニル系樹脂組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB796391A (en) * 1955-09-23 1958-06-11 Union Carbide Corp Plasticized and heat and light stabilized polymeric compositions
US2963490A (en) * 1956-11-23 1960-12-06 Rohm & Haas Epoxyhexahydrophthalates and endoalkylene-epoxyhexahydrophthalates
JPS5399251A (en) * 1977-02-12 1978-08-30 Ciba Geigy Ag Polymer composition
JPH05170753A (ja) * 1990-09-28 1993-07-09 Union Carbide Chem & Plast Co Inc シクロ脂肪族エポキシドを製造するためのエステル交換方法
JPH08228997A (ja) * 1995-02-24 1996-09-10 Sekisui Chem Co Ltd 透明フード
JP2006063102A (ja) * 2004-08-24 2006-03-09 Kobayashi Kk スラッシュ成形、回転成形またはディップ成形用のプラスチゾル組成物
WO2012020618A1 (ja) * 2010-08-12 2012-02-16 日本ゼオン株式会社 粉体成形用塩化ビニル樹脂組成物、塩化ビニル樹脂成形体及び積層体
JP2015030774A (ja) * 2013-08-01 2015-02-16 リケンテクノス株式会社 医療用放射線滅菌対応塩化ビニル樹脂組成物およびそれからなる医療用器具
JP2015030773A (ja) * 2013-08-01 2015-02-16 リケンテクノス株式会社 医療用放射線滅菌対応塩化ビニル樹脂組成物およびそれからなる医療用器具
WO2015147300A1 (ja) * 2014-03-27 2015-10-01 新日本理化株式会社 非フタル酸系エステルを含有する塩化ビニル系樹脂用可塑剤、及び該可塑剤を含有する塩化ビニル系樹脂組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3305772A4 *
VAN CLEVE, R. ET AL.: "Derivatives of cyclohexene oxide as plasticizers and stabilizers for vinyl chloride resins", INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 50, no. 6, 1958, pages 873 - 876, XP055332030 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027596A (ja) * 2017-07-28 2019-02-21 積水化学工業株式会社 樹脂製透明継手
JP7096094B2 (ja) 2017-07-28 2022-07-05 積水化学工業株式会社 樹脂製透明継手
WO2019102995A1 (ja) * 2017-11-22 2019-05-31 新日本理化株式会社 内容物視認性の改善方法、塩化ビニル系樹脂組成物、安定化剤、塩化ビニル系樹脂成形体、医療材料、及び滅菌処理方法
CN111372992A (zh) * 2017-11-22 2020-07-03 新日本理化株式会社 内容物视认性改善方法、氯乙烯系树脂组合物及成型体、稳定剂、医疗材料、灭菌处理方法
JPWO2019102995A1 (ja) * 2017-11-22 2020-10-01 新日本理化株式会社 内容物視認性の改善方法、塩化ビニル系樹脂組成物、安定化剤、塩化ビニル系樹脂成形体、医療材料、及び滅菌処理方法
CN112867592A (zh) * 2018-10-31 2021-05-28 日本瑞翁株式会社 粉体成型用氯乙烯树脂组合物、氯乙烯树脂成型体以及层叠体
CN112867592B (zh) * 2018-10-31 2022-10-28 日本瑞翁株式会社 粉体成型用氯乙烯树脂组合物、氯乙烯树脂成型体以及层叠体
JP2020097654A (ja) * 2018-12-17 2020-06-25 アキレス株式会社 射出成形用樹脂組成物および当該樹脂組成物からなる射出成形長靴
CN111363260A (zh) * 2020-03-24 2020-07-03 惠州市美林电线电缆有限公司 电缆护套用组合物、电缆及其制备方法
CN111363260B (zh) * 2020-03-24 2023-04-07 惠州市美林电线电缆有限公司 电缆护套用组合物、电缆及其制备方法
CN112409726A (zh) * 2020-11-25 2021-02-26 北京化工大学 一种亲水性聚氯乙烯配混物

Similar Documents

Publication Publication Date Title
US10407559B2 (en) Plasticizer for vinyl chloride resin containing non-phthalate ester and vinyl chloride resin composition containing such plasticizer
WO2016190354A1 (ja) エポキシシクロヘキサンジカルボン酸ジエステル、可塑剤、安定化剤、及び樹脂組成物
WO2015147300A1 (ja) 非フタル酸系エステルを含有する塩化ビニル系樹脂用可塑剤、及び該可塑剤を含有する塩化ビニル系樹脂組成物
US10836739B2 (en) Epoxycyclohexane dicarboxylic acid diester, plasticizer, stabilizer and resin composition
JP2014189688A (ja) トリメリット酸トリエステルを含有する塩化ビニル系樹脂用可塑剤
JP6905192B2 (ja) 脂肪族二塩基酸ジエステルを含有してなる塩化ビニル系樹脂用可塑剤
JP6409384B2 (ja) 4−シクロヘキセン−1,2−ジカルボン酸ジエステルを含有する塩化ビニル系樹脂用可塑剤
JP6524729B2 (ja) 1,2−シクロヘキサンジカルボン酸ジエステルを含有する塩化ビニル系樹脂用可塑剤
JP6694135B2 (ja) 耐着色性に優れた塩化ビニル系樹脂用の可塑剤組成物
TW201542639A (zh) 含有非鄰苯二甲酸系酯之氯乙烯系樹脂用塑化劑,及含有該塑化劑之氯乙烯系樹脂組成物
JP6694136B2 (ja) 耐着色性に優れた塩化ビニル系樹脂用の可塑剤組成物
JP2016141787A (ja) 非フタル酸エステル系の塩化ビニル系樹脂用可塑剤およびそれを含有してなる塩化ビニル系樹脂組成物
JP2016155938A (ja) トリメリット酸トリエステルを含有してなる医療用塩化ビニル系樹脂組成物及び医療用材料
JP6792140B2 (ja) 塩素含有樹脂用安定化剤及び該安定化剤を含む安定化された塩素含有樹脂組成物
JP2016074876A (ja) 1,4−シクロヘキサンジカルボン酸ジエステルからなる塩化ビニル系樹脂用可塑剤
JP6520570B2 (ja) 1,2−シクロヘキサンジカルボン酸ジエステルを含有する塩化ビニル系樹脂用可塑剤
JP6823247B2 (ja) エポキシシクロヘキサンジカルボン酸ジエステルを含有してなる自動車内装用塩化ビニル系樹脂組成物及び自動車内装材
JP6823246B2 (ja) エポキシシクロヘキサンジカルボン酸ジエステルからなる塩化ビニル系樹脂用可塑剤及び該可塑剤を含有する軟質塩化ビニル系樹脂組成物
JP6409597B2 (ja) 4−シクロヘキセン−1,2−ジカルボン酸ジエステルを含有してなる医療用塩化ビニル系樹脂組成物及び医療用材料
JP6705985B2 (ja) エポキシシクロヘキサンジカルボン酸ジエステルを含有してなる医療用塩化ビニル系樹脂組成物及び医療用材料
JP2017082135A (ja) 1,4−シクロヘキサンジカルボン酸ジエステルを含有する塩化ビニル系樹脂用可塑剤
JP2019059888A (ja) イソフタル酸ジエステルからなる塩化ビニル系樹脂用可塑剤
JP6547587B2 (ja) 4−シクロヘキセン−1,2−ジカルボン酸ジエステルを含有する塩化ビニル系樹脂用可塑剤
WO2019102995A1 (ja) 内容物視認性の改善方法、塩化ビニル系樹脂組成物、安定化剤、塩化ビニル系樹脂成形体、医療材料、及び滅菌処理方法
JP6770226B2 (ja) 塩化ビニル系樹脂成形体の耐熱着色性の改善方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800058

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15576651

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177037288

Country of ref document: KR

Kind code of ref document: A