WO2016189621A1 - 部品実装機 - Google Patents

部品実装機 Download PDF

Info

Publication number
WO2016189621A1
WO2016189621A1 PCT/JP2015/064906 JP2015064906W WO2016189621A1 WO 2016189621 A1 WO2016189621 A1 WO 2016189621A1 JP 2015064906 W JP2015064906 W JP 2015064906W WO 2016189621 A1 WO2016189621 A1 WO 2016189621A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
nozzle
height position
position reference
height
Prior art date
Application number
PCT/JP2015/064906
Other languages
English (en)
French (fr)
Inventor
淳 飯阪
伊藤 秀俊
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to US15/574,525 priority Critical patent/US10448551B2/en
Priority to PCT/JP2015/064906 priority patent/WO2016189621A1/ja
Priority to JP2017520095A priority patent/JP6717816B2/ja
Priority to CN201580080031.5A priority patent/CN107535089B/zh
Priority to EP15893256.6A priority patent/EP3307041B1/en
Publication of WO2016189621A1 publication Critical patent/WO2016189621A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0413Pick-and-place heads or apparatus, e.g. with jaws with orientation of the component while holding it; Drive mechanisms for gripping tools, e.g. lifting, lowering or turning of gripping tools
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool
    • H05K13/0409Sucking devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0813Controlling of single components prior to mounting, e.g. orientation, component geometry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30141Printed circuit board [PCB]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Definitions

  • the present invention relates to a component mounter equipped with an image processing apparatus that determines an adsorption posture of a component by capturing a side image of the component adsorbed on the lower end of the nozzle portion with a camera and performing image processing.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-313838
  • Patent Document 2 Japanese Patent Laid-Open No. 2009-88035
  • the nozzle portion is provided in the nozzle holder so as to be movable up and down, and the nozzle portion is urged downward by a spring to
  • the lowering of the mounting head that holds the nozzle holder stops after the lower end of the nozzle part comes into contact with the component during the suction operation or after the part sucked into the nozzle part comes into contact with the substrate during the component mounting operation.
  • the nozzle part is pushed against the spring force of the spring according to the operation, so that the impact applied to the parts is reduced.
  • Patent Document 3 Japanese Patent Laid-Open No. 2008-124293
  • Patent Document 4 Japanese Patent Laid-Open No. 2009-88035
  • a side image of the reference jig is referred to as a “reference image” in a state in which the nozzle holder that holds the nozzle portion is held in place of the nozzle portion and the reference jig is held.
  • the height position of the reference jig As the reference height position by imaging and processing as a reference height, remove the reference jig from the nozzle holder and replace it with the nozzle part, and attract to the lower end of the nozzle part
  • the height position of the lower end (lowest point) of the part is obtained, and the height difference (difference) between the reference height position and the height position of the lower end of the part Is calculated, and the suction posture of the component, the quality of the nozzle portion, and the like are determined based on the height difference.
  • the nozzle part that is pushed into the nozzle holder at the time of component suction operation or component mounting operation is not always pushed down accurately to a certain position (lower limit position) by the spring after the component suction operation or component mounting operation,
  • the height position of the nozzle part may slightly change due to frictional force or dust adhesion for each component adsorption operation or each component mounting operation, in any of the determination methods of Patent Documents 3 and 4 above, Since it is assumed that the height position is always constant (does not change), if the height position of the nozzle changes slightly for each component picking operation or for each component mounting operation, the influence of the component suction posture, etc. There is a possibility that determination accuracy deteriorates and erroneous determination is made.
  • the problem to be solved by the present invention is to provide a component mounting machine that can accurately determine whether or not the suction posture of a component is good only with one side image without a reference image.
  • the present invention urges a nozzle portion held by a nozzle holder so as to be movable up and down by an urging means, and captures a side image of a component adsorbed on the lower end of the nozzle portion with a camera. Then, in a component mounter equipped with an image processing device that determines the quality of the component suction posture by processing the side image, a height position reference unit capable of recognizing an image is provided on the outer periphery of the nozzle unit.
  • the image processing apparatus includes both the component and the height position reference portion that house both the component adsorbed on the lower end of the nozzle portion and the height position reference portion within the field of view of the camera.
  • a side image around the lower end is captured by the camera, the side image is processed to recognize the height position reference portion and the height position of the lower end of the component, and from the height position reference portion to the lower end of the component Measure the height difference of It is characterized in determining the quality of the suction attitude of the component based on the height difference.
  • a height position reference portion capable of recognizing an image is provided on the outer peripheral portion of the nozzle portion, and both the component adsorbed on the lower end of the nozzle portion and the height position reference portion are accommodated in the field of view of the camera. Since the side image of the periphery is taken and the height position reference part and the height position of the lower end of the component are recognized from the side image, the nozzle part can be obtained with only one side image without the reference image. The height difference from the height position reference part to the lower end of the part can be accurately measured.
  • the height difference from the nozzle height position reference part to the lower end of the nozzle part is a known value from the nozzle part specification data (design values, standard values, dimensional management data at the time of manufacture, etc.)
  • the height dimension (thickness dimension) of the part shown in the side image can be accurately estimated as the suction posture information.
  • the height position of the nozzle part may slightly change due to frictional force, dust adhesion, etc. for each component picking operation and each component mounting operation, but the height position reference part also moves up and down integrally with the nozzle part.
  • the height difference from the height position reference part of the nozzle part to the lower end of the part is not affected by the slight change in the height position of the nozzle part, and the height difference from the height position reference part to the lower end of the part Based on the above, it is possible to accurately determine the quality of the component suction posture. As a result, even if there is no reference image, only one side image is used, and the suction posture of the component is good without being affected by a slight change in the height position of the nozzle portion for each component suction operation or each component mounting operation. Can be determined with high accuracy.
  • the image processing apparatus can execute a nozzle portion determination mode for determining the quality of the nozzle unit in addition to the suction posture determination mode for determining the quality of the suction posture of the component.
  • the side image around the lower end of the nozzle unit including the lower end of the nozzle unit and the height position reference unit before the component adsorption operation or after the component mounting operation is captured by the camera, and the side image is processed to obtain the height. Recognizing the height positions of the position reference portion and the lower end of the nozzle portion, measuring the height difference from the height position reference portion to the lower end of the nozzle portion, and determining the quality of the nozzle portion based on the height differenceObviously.
  • the image processing apparatus determines that the height difference measured in the nozzle portion determination mode is greater than the height difference from the height position reference portion to the lower end of the nozzle portion obtained from the specification data of the nozzle portion.
  • the component adsorbed on the nozzle portion is a component take-away item that cannot be mounted on the circuit board.
  • the image recognition it is difficult to accurately distinguish and recognize the lower end of the nozzle part and the lower end of the part that are reflected in one side image. It is mistakenly recognized as the lower end, and the height difference from the height position reference part to the lower end of the part is measured. Therefore, if it is determined whether or not the height difference measured in the nozzle portion determination mode is greater than the height difference obtained from the specification data of the nozzle portion, it is possible to accurately determine whether or not the component has been taken home.
  • the image processing apparatus includes the nozzle holder during a component suction operation or a component mounting operation based on a height position of the height position reference unit recognized from the side image before the component suction operation or the component mounting operation. And a correction means for calculating a correction amount for the lowering amount (the lowering amount of the mounting head holding the nozzle holder) and correcting the lowering amount of the nozzle holder by the correction amount during the component suction operation or the component mounting operation. It is also good. In short, since there is a relationship that the height position of the lower end of the nozzle portion becomes higher as the height position of the height position reference portion of the nozzle portion becomes higher, the height of the nozzle portion is determined based on the height position of the height position reference portion.
  • the image processing apparatus detects an abnormality in the nozzle unit when a height position of the height position reference unit recognized from the side image before a component suction operation or a component mounting operation is higher than a predetermined abnormality determination value. What is necessary is just to determine with fixation. In short, when the nozzle part is stuck and cannot be pushed down due to the foreign matter biting into the sliding part between the nozzle holder and the nozzle part during the component suction operation or component mounting operation, the component will be It is necessary to detect abnormal adhesion of the nozzle portion at an early stage because there is a possibility that a suction error or a component mounting error may occur or an impact buffering effect cannot be obtained and the component or the circuit board may be damaged.
  • FIG. 1 is a front view showing a configuration of a rotary head and its peripheral portion of a component mounter in one embodiment of the present invention.
  • FIG. 2 is an enlarged longitudinal sectional view of the nozzle holder and the nozzle portion.
  • FIG. 3 is a block diagram showing the configuration of the control system of the component mounter.
  • FIGS. 4A to 4D are front views of the nozzle part for explaining four types of embodiments of the height position reference part.
  • FIGS. 5A to 5C are diagrams for explaining the principle of determining the quality of the component suction posture by recognizing the height position reference portion.
  • FIG. 6 is a flowchart (part 1) showing the flow of processing of the image processing program.
  • FIG. 7 is a flowchart (part 2) showing the flow of processing of the image processing program.
  • a plurality of nozzle holders 12 are supported by the rotary head 11 at predetermined intervals in the circumferential direction so as to be able to move up and down. It is engaged and held so that it can be exchanged and moved up and down.
  • nozzle portions 13 only two nozzle holders 12 (nozzle portions 13) are shown, and the other nozzle holders 12 (nozzle portions 13) are not shown.
  • the engagement pin 14 is fixed to the upper portion of the nozzle portion 13 in a state of penetrating in the horizontal direction (diameter direction of the nozzle portion 13), and both end portions of the engagement pin 14 are fixed to the nozzle holder 12.
  • Both end portions of the engagement pin 14 are fixed to the nozzle holder 12.
  • a cylindrical pressing member 25 for pressing both ends of the engaging pin 14 is fitted to the outer periphery of the nozzle holder 12 so as to be movable up and down.
  • the pressing member 25 is attached downward by a spring 26 (biasing means). By urging, both end portions of the engagement pin 14 are pressed by the pressing member 25 to hold the engagement state of the engagement pin 14.
  • the engagement groove 20 of the nozzle holder 12 is formed to have a wide vertical groove width so as to allow the engagement pin 14 to move up and down, and the pushing amount (push-up amount) of the nozzle portion 13 against the nozzle holder 12 is the engagement groove. It can be changed within a range of 20 vertical groove widths.
  • a pipe-shaped nozzle piston 32 is fitted inside the nozzle holder 12 so as to be movable up and down, and the nozzle piston 32 is biased downward by a spring 34 (biasing means), thereby lowering the nozzle piston 32.
  • the end surface is held in contact with the upper end surface of the nozzle portion 13. Accordingly, the nozzle portion 13 is engaged and held so as to be movable up and down with respect to the nozzle holder 12 while being urged downward by the two springs 26 and 34.
  • the head moving mechanism 15 that moves the rotary head 11 in the X and Y directions slides in the X axis direction (direction perpendicular to the paper surface of FIG. 1) as the substrate transport direction by the X axis ball screw 16.
  • the XY robot includes an X-axis slide 17 that moves and a Y-axis slide 18 that moves in a Y-axis direction orthogonal to the X-axis direction by a Y-axis ball screw (not shown).
  • the X-axis slide 17 is supported so as to be slidable in the X-axis direction along an X-axis guide rail 19 provided on the Y-axis slide 18, and the Y-axis slide 18 is provided on the component mounter main body side. It is supported so as to be slidable in the Y-axis direction along a rail (not shown).
  • the support frame 21 of the rotary head 11 is detachably attached to the X-axis slide 17.
  • the rotary head 11 is fitted to the lower end of an R axis 22 (also referred to as an index axis) extending in the vertical direction, and the upper side of the R axis 22 is rotatably supported by a support frame 21.
  • the R shaft 22 is rotationally driven by an R shaft motor 23 fixed to the support frame 21 side. By rotating the R shaft 22, the rotating head 11 rotates around the R shaft 22, so that the plurality of nozzle holders 12 supported by the rotating head 11 rotate together with the plurality of nozzle portions 13.
  • the head 11 is turned in the circumferential direction.
  • An R-axis drive mechanism 24 is constituted by the R-axis motor 23, the R-axis 22, and the like.
  • Two upper and lower Q-axis gears 28 and 29 of the Q-axis drive mechanism 27 are rotatably inserted into the R-axis 22, and a gear fitted to the upper end of each nozzle holder 12 is inserted into the lower Q-axis gear 29. 30 are engaged.
  • a gear 33 connected to a Q-axis motor 31 fixed on the support frame 21 side meshes with the upper Q-axis gear 28, and the Q-axis gears 28 and 29 are integrally formed by the rotation of the gear 33 of the Q-axis motor 31.
  • each gear 30 that meshes with the lower Q-axis gear 29 rotates, and each nozzle holder 12 rotates around the axis (Q axis) of each nozzle holder 12, whereby each nozzle holder 12.
  • the direction (angle) of each component adsorbed on each nozzle portion 13 held in the nozzle is corrected.
  • the Q axis is sometimes called the ⁇ axis.
  • a Z-axis drive mechanism 37 for individually lowering the nozzle holder 12 is provided, and the Z-axis drive mechanism 37 allows the nozzle at a predetermined position on the orbit of the nozzle holder 12.
  • the holder 12 is lowered individually, and the nozzle portion 13 held by the nozzle holder 12 is lowered.
  • the Z-axis drive mechanism 37 may be arranged at only one place around the rotary head 11 or may be arranged at two or more places.
  • the Z-axis drive mechanism 37 rotates the Z-axis ball screw 38 rotatably supported on the support frame 21 side by the Z-axis motor 39 to move the Z-axis slide 40 in the vertical direction, thereby causing the upper end of the nozzle holder 12 to move.
  • the nozzle holder 12 is moved up and down by engaging (contacting) the engagement piece 42 of the Z-axis slide 40 with the flange 41 from above.
  • each nozzle holder 12 is biased upward by the spring 43 attached to each nozzle holder 12, so that the upper end flange 41 of each nozzle holder 12 is engaged with the engagement piece 42 of the Z-axis slide 40 from below.
  • the nozzle holder 12 is held by the push-up force of the spring 43 as the engaging piece 42 of the Z-axis slide 40 is lifted.
  • an image pickup device 46 for picking up an image of the component adsorbed on the nozzle unit 13 from the side is disposed.
  • the imaging device 46 includes a camera 48 and an illumination light source 49 that are fixed to the support frame 21 via a holder 47.
  • the height position of the camera 48 is picked up by the lower end of the nozzle portion 13 within the field of view of the camera 48 when the nozzle portion 13 rises to the upper limit position (standby position) of the ascending / descending range and waits after the component sucking operation. It is set so that a side image around the lower end of the nozzle portion 13 can be taken by accommodating both the above-described components and a height position reference portion 61 of the nozzle portion 13 described later.
  • the illumination light from the illumination light source 49 is received at the center of the lower surface side of the rotary head 11 when the part 48 adsorbed to the nozzle unit 13 and the height position reference unit 61 are imaged by the camera 48 from the side.
  • a reflecting cylindrical light reflecting plate 51 is provided. The height position of the lower end of the light reflecting plate 51 is set to a height position at which the light reflecting plate 51 does not interfere with the component or the like when the nozzle portion 13 is lowered to suck the component.
  • the control device 55 (see FIG. 3) of the component mounting machine controls the operations of the R-axis drive mechanism 24, the Q-axis drive mechanism 27, the Z-axis drive mechanism 37, and the head moving mechanism 15, and the feeder 56 (see FIG. 3).
  • the components supplied from are sucked by the nozzle unit 13 and mounted on the circuit board.
  • control device 55 of the component mounting machine executes an image processing program shown in FIGS. 6 and 7 to be described later, thereby processing a side image around the lower end of the nozzle unit 13 imaged by the camera 48 and picking up the component. It also functions as an image processing device that determines whether the product is good or bad. When it is determined that the suction posture of the component is poor, the component is discarded in a predetermined disposal place or is collected on a recovery conveyor (not shown). I have to.
  • a height position reference unit 61 capable of recognizing an image is provided on the outer peripheral portion of the nozzle unit 13.
  • any one of FIGS. 4A to 4D may be used as the height position reference portion 61.
  • an annular groove formed in the outer peripheral portion of the nozzle portion 13 is used.
  • a step formed on the outer peripheral portion of the nozzle portion 13 with a small diameter on the lower side is used as the height position reference portion 61, or As shown in FIG.
  • a step formed on the outer peripheral portion of the nozzle portion 13 and having a large diameter on the lower side is used as the height position reference portion 61, or as shown in FIG.
  • An image-recognizable line (for example, a white line) formed in an annular shape on the outer periphery of the nozzle unit 13 may be used as the height position reference unit 61.
  • the nozzle unit 13 including the height position reference unit 61 is important. Any device can be used as long as it can clearly recognize the height position reference unit 61 from the side image around the lower end.
  • the part adsorbed to the lower end of the nozzle unit 13 is imaged from the lower surface side with a parts camera (not shown) and the image of the deviation of the adsorbing position of the part with respect to the nozzle unit 13 or the rotation angle of the part is recognized. Even if the height position reference portion 61 is not overlapped with the lower surface image of the image or the height position reference portion 61 is overlapped with the lower surface image of the component, the component can be clearly distinguished from the height position reference portion 61 and recognized. Thus, it is necessary to set the shape, position, color, and the like of the height position reference unit 61.
  • the height position at which the height position reference portion 61 is provided on the outer peripheral portion of the nozzle portion 13 is a height position at which the height position reference portion 61 included in one side image and the component can be recognized with an interval.
  • the distance between the height position reference unit 61 and the component is too far, the component size shown in the side image is too small, and the recognition accuracy of the lower end position of the component is reduced. It is better that the distance between 61 and the parts be appropriately close.
  • both the component sucked to the lower end of the nozzle unit 13 and the height position reference unit 61 of the nozzle unit 13 are stored in the field of view of the camera 48. Then, a side image around the lower end of the nozzle unit 61 including the component and the height position reference unit 61 is captured by the camera 48, and the side image is processed by the control device 55 to process the height position reference unit 61 and the lower end of the component. , The height difference A (see FIG. 5) from the height position reference unit 61 to the lower end of the component is measured, and the quality of the suction posture of the component is determined based on the height difference A.
  • the height position reference portion 61 of the portion 13 Since the height position reference portion 61 of the portion 13 also moves up and down integrally with the nozzle portion 13, the height difference A from the height position reference portion 61 of the nozzle portion 13 to the lower end of the component is the height position of the nozzle portion 13.
  • the specification data design value, standard value, manufacturing dimension
  • the control device 55 of the component mounting machine can execute a nozzle portion determination mode for determining the quality of the nozzle portion 13 in addition to the suction posture determination mode for determining the quality of the component suction posture.
  • a side image around the lower end of the nozzle portion 13 including the lower end of the nozzle portion 13 and the height position reference portion 61 is captured by the camera 48 before the component suction operation or after the component mounting operation.
  • the nozzle portion 13 depends on whether or not the measured value coincides with the height difference from the height position reference portion 61 to the lower end of the nozzle portion 13 obtained from the specification data (design value, standard value, dimensional management data at the time of manufacture, etc.). The quality of the nozzle part 13 And it determines only the presence or absence of bending, etc.).
  • the picked-up component is a component that can be taken home without being mounted on the circuit board.
  • the image recognition it is difficult to accurately distinguish and recognize the lower end of the nozzle portion 13 and the lower end of the component shown in one side image, and therefore when the component is brought home, the lower end of the component is moved to the nozzle portion. 13 is erroneously recognized as the lower end of 13 and the height difference from the height position reference unit 61 to the lower end of the component is measured.
  • the component is brought home. The presence or absence of can be accurately determined.
  • control device 55 of the component mounter is based on the height position of the height position reference unit 61 of the nozzle unit 13 recognized from the side image around the lower end of the nozzle unit 13 before the component suction operation or before the component mounting operation.
  • a correction amount is calculated for the lowering amount of the nozzle holder 12 during the component suction operation or the component mounting operation (the lowering amount of the mounting head that holds the nozzle holder 12), and the nozzle holder 12 is lowered during the component suction operation or the component mounting operation.
  • a function as correction means for correcting the amount by the correction amount is provided.
  • the height position of the lower end of the nozzle unit 13 becomes higher as the height position of the height position reference unit 61 of the nozzle unit 13 becomes higher, it is based on the height position of the height position reference unit 61.
  • the height position of the lower end of the nozzle portion 13 is estimated, and the lowering operation (mounting) of the nozzle holder 12 is performed so that the pushing amount of the nozzle portion 13 pushed into the nozzle holder 12 during the component suction operation or the component mounting operation becomes constant. Head lowering operation). Accordingly, it is possible to prevent component adsorption failure and mounting failure due to insufficient pressing of the nozzle portion 13 and damage of components and the substrate due to excessive pressing of the nozzle portion 13 in advance.
  • the portion 13 is abnormally fixed.
  • the nozzle portion 13 is stuck and cannot be pushed down due to the foreign matter biting into the sliding portion between the nozzle holder 12 and the nozzle portion 13. If this occurs, there is a possibility that a component adsorption error or component mounting error may occur, or that the shock absorbing effect may not be obtained and the component or the circuit board may be damaged. Therefore, it is necessary to detect abnormal adhesion of the nozzle portion 13 at an early stage. .
  • the push amount of the nozzle section 13 against the nozzle holder 12 increases as the height position of the height position reference section 61 of the nozzle section 13 increases. It means that (push-up amount) is large. From such a relationship between the height position of the height position reference portion 61 and the pushing amount of the nozzle portion 13, if the height position of the height position reference portion 61 is higher than a predetermined abnormality determination value, It is determined that the pushing amount of the nozzle portion 13 is abnormally large (the nozzle portion 13 is fixed and cannot be pushed down), and it is determined that the nozzle portion 13 is abnormally fixed.
  • step 101 it is determined whether or not it is the imaging timing after the component adsorption operation (before the component mounting operation), and at the imaging timing after the component adsorption operation (before the component mounting operation). If it is determined that there is not, the process proceeds to step 117 in FIG.
  • step 101 determines whether it is the imaging timing after the component adsorption operation (before the component mounting operation). If it is determined in step 101 that it is the imaging timing after the component adsorption operation (before the component mounting operation), the process proceeds to step 102 where the component and nozzle unit adsorbed to the lower end of the nozzle unit 13 within the field of view of the camera 48. Both of the 13 height position reference parts 61 are accommodated, and a side image around the lower end of the nozzle part 61 including the parts and the height position reference part 61 is captured by the camera 48.
  • step 103 the side image around the lower end of the nozzle unit 61 is processed to recognize the height position of the height position reference unit 61 and the lower end of the component, and from the height position reference unit 61 to the lower end of the component The height difference A is measured.
  • step 104 a correction amount for the lowering amount of the nozzle holder 12 during the component mounting operation (lowering amount of the mounting head) is calculated based on the height position of the height position reference portion 61 of the nozzle portion 13.
  • the amount by which the nozzle portion 13 is pushed into the nozzle holder 12 during the component mounting operation is constant by correcting the amount by which the nozzle holder 12 is lowered during the component mounting operation (the amount by which the mounting head is lowered) by the correction amount.
  • the lowering operation of the nozzle holder 12 (the lowering operation of the mounting head) is controlled.
  • step 105 the height dimension C of the component adsorbed on the lower end of the nozzle portion 13 is measured by the following equation.
  • C AB A: Measured value of the height difference from the height position reference part 61 to the lower end of the part B: Specification value of the height difference from the height position reference part 61 to the lower end of the nozzle part 13
  • step 106 it is determined whether or not the measured value of the height dimension C of the part adsorbed to the lower end of the nozzle unit 13 matches the specification value (design value, standard value, etc.) of the height dimension of the part. judge. At this time, if the difference between the two is within the range of the measurement error in the image processing, it is determined that they match, the process proceeds to step 109, the normal suction posture is determined, and the process proceeds to step 117 in FIG.
  • step 106 determines whether or not the measured value of the height dimension C of the component does not match the specification value. If it is determined in step 106 that the measured value of the height dimension C of the component does not match the specification value, the process proceeds to step 107, and whether or not the measured value of the height dimension C of the component is a positive value. judge. As a result, if it is determined that the measured value of the height dimension C of the component is a positive value, the process proceeds to step 110, where it is determined that the suction position is abnormal (bad suction position). In this case, the part determined to be in an abnormal suction posture is discarded in a predetermined disposal place or placed on a recovery conveyor (not shown) and recovered, and the part suction operation is retried (re-executed). Returning to step 101, the above-described processing is repeated.
  • step 107 determines whether or not the measured value of the height dimension C of the part is 0. judge.
  • step 108 determines whether or not the measured value of the height dimension C of the part is 0. judge.
  • the process proceeds to step 113, it is determined that the component is attracted, and the process proceeds to step 112, where the component adsorption operation is retried.
  • step 107 and step 108 when it is determined as “No” in both step 107 and step 108, that is, when the measured value of the height dimension C of the component is a negative value, the height position reference portion 61 to the lower end of the nozzle portion 13. Since this means that the height difference is shorter than the specification value, the process proceeds to step 114, where it is determined that the nozzle unit 13 is abnormal (the nozzle unit 13 is missing, bent, or the like). In this case, the worker is warned with a warning display or voice, and the operation of the component mounter is stopped due to an error.
  • step 109 If it is determined in step 109 described above that the suction posture is normal, the process proceeds to step 117 in FIG. 7 to determine whether it is the imaging timing after the component mounting operation (before the component suction operation). If it is determined that it is not the imaging timing (before the component suction operation), this program is terminated as it is.
  • step 117 determines whether it is the imaging timing after the component mounting operation (before the component suction operation). If it is determined in step 117 that it is the imaging timing after the component mounting operation (before the component suction operation), the process proceeds to step 118, where the lower end of the nozzle unit 13 and the height position reference unit 61 are within the field of view of the camera 48. Both are stored, and a side image around the lower end of the nozzle unit 61 including the lower end of the nozzle unit 13 and the height position reference unit 61 is captured by the camera 48.
  • step 119 the side image around the lower end of the nozzle unit 61 is processed to recognize the height positions of the height position reference unit 61 and the lower end of the nozzle unit 13.
  • the height difference B to the lower end of the part 13 is measured.
  • step 120 a correction amount is calculated with respect to the lowering amount of the nozzle holder 12 (lowering amount of the mounting head) during the component suction operation based on the height position of the height position reference portion 61 of the nozzle portion 13.
  • the amount by which the nozzle portion 13 is pushed into the nozzle holder 12 during the component suction operation is constant by correcting the amount by which the nozzle holder 12 is lowered during the component suction operation (the amount by which the mounting head is lowered) by the correction amount.
  • the lowering operation of the nozzle holder 12 (the lowering operation of the mounting head) is controlled.
  • step 121 it is determined whether or not the measured value of the height difference B from the height position reference unit 61 to the lower end of the nozzle unit 13 measured in step 119 matches the specification value. At this time, if the difference between the two is within the range of the measurement error in image processing, it is determined that they match, and the process proceeds to step 123, where the nozzle unit 13 is determined to be normal, and this program ends.
  • step 121 if it is determined in step 121 that the measured value of the height difference B from the height position reference unit 61 to the lower end of the nozzle unit 13 does not match the specification value, the process proceeds to step 122 where the height position reference unit 61 It is determined whether or not the measured value of the height difference B to the lower end of the nozzle portion 13 is smaller than the specification value. As a result, if it is determined that the measured value of the height difference B from the height position reference portion 61 to the lower end of the nozzle portion 13 is smaller than the specification value, the height difference from the height position reference portion 61 to the lower end of the nozzle portion 13 is determined.
  • the process proceeds to step 124, and it is determined that the nozzle portion 13 is abnormal (the nozzle portion 13 is missing, bent, or the like). In this case, the worker is warned with a warning display or voice, and the operation of the component mounter is stopped due to an error.
  • step 121 and step 122 when it is determined as “No” in both step 121 and step 122, that is, when the measured value of the height difference B from the height position reference part 61 to the lower end of the nozzle part 13 is larger than the specification value, Since it means that a component is attached to the lower end of the nozzle portion 13, the process proceeds to step 127 and it is determined that the component is taken home. Also in this case, the worker is warned with a warning display or voice, and the operation of the component mounter is stopped due to an error.
  • the process of determining whether or not the nozzle unit 13 is abnormally fixed based on the height position of the height position reference unit 61 is omitted. Whether the height position of the height position reference portion 61 is higher than a predetermined abnormality determination value every time a side image around the lower end of the nozzle is captured and the height position of the height position reference portion 61 of the nozzle portion 13 is recognized. If the height position of the height position reference portion 61 is higher than a predetermined abnormality determination value, the amount of pushing of the nozzle portion 13 against the nozzle holder 12 is abnormally large (the nozzle portion 13 is fixed and A process for determining that the nozzle portion 13 is abnormally fixed may be added.
  • the height position reference portion 61 capable of recognizing an image is provided on the outer peripheral portion of the nozzle portion 13, and the components adsorbed on the lower end of the nozzle portion 13 and the height position reference in the field of view of the camera 48. Since both side portions 61 are accommodated and a side image around the lower end of the nozzle portion 13 is captured, and the height position reference unit 61 and the height position of the lower end of the component are recognized from the side images, there is no reference image. Even with only one side image, it is possible to accurately measure the height difference A from the height position reference portion 61 of the nozzle portion 13 to the lower end of the component, and from the measured value of the height difference A, the side image is obtained.
  • a side image around the lower end of the nozzle unit 13 including the lower end of the nozzle unit 13 and the height position reference unit 61 is captured by the camera 48 before the component suction operation or after the component mounting operation, and the side image is processed, Since the height difference B from the height position reference portion 61 to the lower end of the nozzle portion 13 is measured and the quality of the nozzle portion 13 is determined based on the height difference B, one sheet is obtained even if there is no reference image.
  • the nozzle part 13 is good or bad (whether the nozzle part 13 is chipped or bent, etc.) without being affected by the slight change in the height position of the nozzle part 13 for each component suction operation and each component mounting operation. Can be determined with high accuracy.
  • the component is taken home. The presence or absence of can be accurately determined.
  • the nozzle holder 12 during the component suction operation or the component mounting operation based on the height position of the height position reference unit 61 recognized from the side image around the lower end of the nozzle portion 13 before the component suction operation or the component mounting operation. Since the amount of correction for the amount of lowering (the amount of lowering of the mounting head) is calculated and the amount of lowering of the nozzle holder 12 is corrected during the component suction operation or component mounting operation, the height position reference unit 61 is corrected. The height position of the lower end of the nozzle portion 13 is estimated based on the height position of the nozzle holder 12 so that the pushing amount of the nozzle portion pushed into the nozzle holder 12 during the component suction operation and the component mounting operation is constant. It is possible to control the lowering operation (the lowering operation of the mounting head), the component suction failure and mounting failure due to insufficient pressing of the nozzle part 13, and excessive pressing of the nozzle part 13 According parts and damage to the substrate can be prevented.
  • the present invention is not limited to the rotary type component mounting machine provided with the rotating head 11 and may be applied to a component mounting machine provided with a non-rotating mounting head. Needless to say, this can be done.

Abstract

ノズルホルダ(12)にノズル部(13)を上下動可能に保持すると共に、このノズル部をスプリング(26,34)により下方に付勢する。ノズル部の外周部に画像認識可能な高さ位置基準部(61)を設け、ノズル部の下端周辺の側面画像を撮像するカメラ(48)の視野内にノズル部の下端に吸着した部品及び前記高さ位置基準部の両方を収めてノズル部の下端周辺の側面画像を撮像する。そして、この側面画像を処理して高さ位置基準部及び部品の下端の高さ位置を認識し、高さ位置基準部から部品の下端までの高低差(A)を測定してその高低差に基づいて部品の吸着姿勢の良否を判定する。

Description

部品実装機
 本発明は、ノズル部の下端に吸着した部品の側面画像をカメラで撮像して画像処理することで部品の吸着姿勢を判定する画像処理装置を搭載した部品実装機に関する発明である。
 部品実装機においては、例えば、特許文献1(特開2006-313838号公報)、特許文献2(特開2009-88035号公報)に記載されているように、吸着ノズルで部品を吸着する際や、吸着した部品を基板に実装する際に、衝撃で部品が損傷しないようにするために、ノズルホルダにノズル部を上下動可能に設けると共に、該ノズル部をスプリングによって下方に付勢し、部品吸着動作時にノズル部の下端が部品に当接した後や、部品実装動作時にノズル部に吸着した部品が基板に当接した後に、ノズルホルダを保持する実装ヘッドの下降動作が停止するまでその下降動作に応じてノズル部がスプリングの弾発力に抗して押し込まれることで、部品に加わる衝撃を緩和するようになっている。
 また、特許文献3(特開2008-124293号公報)、特許文献4(特開2009-88035号公報)に記載されているように、ノズル部の下端に吸着した部品の側面画像をカメラで撮像して画像処理することで、部品の吸着姿勢の良否、吸着部品の有無、ノズル部の良否等を判定するようにしたものがある。
 具体的には、特許文献3の判定方法では、ノズル部を保持するノズルホルダに、ノズル部に代えて、基準治具を保持させた状態で、該基準治具の側面画像を「基準画像」として撮像して画像処理することで、該基準治具の高さ位置を基準高さ位置として求めた後、ノズルホルダから基準治具を取り外してノズル部に付け替えて、該ノズル部の下端に吸着した部品の側面画像を撮像して画像処理することで、該部品の下端(最下点)の高さ位置を求め、基準高さ位置と部品の下端の高さ位置との高低差(差分)を算出して、その高低差に基づいて部品の吸着姿勢やノズル部の良否等を判定するようにしている。
 一方、特許文献4の判定方法では、欠け等のない正常なノズル部単体の側面画像を「基準画像」として撮像すると共に、部品を吸着したノズル部の側面画像を撮像して、基準画像とノズル部の側面画像との差分画像を求めることで、部品の吸着姿勢やノズル部の良否等を判定するようにしている。
特開2006-313838号公報 特開2009-88035号公報 特開2008-124293号公報 特開2009-88035号公報
 上記特許文献3,4のいずれの判定方法も、部品を吸着したノズル部の側面画像の他に、基準画像を必要とするため、基準画像が無いと部品の吸着姿勢やノズル部の良否等を判定できない。
 しかも、部品吸着動作時や部品実装動作時に、ノズルホルダに押し込まれたノズル部が、部品吸着動作後や部品実装動作後にスプリングによって常に一定位置(下限位置)まで正確に押し下げられるとは限らず、部品吸着動作毎や部品実装動作毎にノズル部の高さ位置が摩擦力やごみ付着等の影響で微少変化することがあるが、上記特許文献3,4のいずれの判定方法でも、ノズル部の高さ位置が常に一定である(変化しない)ことを前提としているため、部品吸着動作毎や部品実装動作毎にノズル部の高さ位置が微少変化すると、その影響で、部品の吸着姿勢等の判定精度が悪化して、誤判定する可能性がある。
 近年来の部品の極小化によって部品の厚み寸法が微小化しているため、部品吸着動作毎や部品実装動作毎のノズル部の高さ位置の微小変化が部品の吸着姿勢等の判定精度に与える影響度合いが大きくなり、部品の吸着姿勢等の誤判定の頻度が増加する傾向にある。
 そこで、本発明が解決しようとする課題は、基準画像が無くても、1枚の側面画像のみで部品の吸着姿勢の良否等を精度良く判定できる部品実装機を提供することである。
 上記課題を解決するために、本発明は、ノズルホルダに上下動可能に保持したノズル部を付勢手段により下方に付勢し、前記ノズル部の下端に吸着した部品の側面画像をカメラで撮像して、その側面画像を処理することで前記部品の吸着姿勢の良否を判定する画像処理装置を搭載した部品実装機において、前記ノズル部の外周部に画像認識可能な高さ位置基準部を設け、前記画像処理装置は、前記カメラの視野内に前記ノズル部の下端に吸着した部品及び前記高さ位置基準部の両方を収めて前記部品と前記高さ位置基準部とを含む前記ノズル部の下端周辺の側面画像を前記カメラで撮像し、その側面画像を処理して前記高さ位置基準部及び前記部品の下端の高さ位置を認識し、前記高さ位置基準部から前記部品の下端までの高低差を測定してその高低差に基づいて前記部品の吸着姿勢の良否を判定することを特徴とするものである。
 この構成では、ノズル部の外周部に画像認識可能な高さ位置基準部を設け、カメラの視野内にノズル部の下端に吸着した部品及び高さ位置基準部の両方を収めてノズル部の下端周辺の側面画像を撮像し、その側面画像から高さ位置基準部及び部品の下端の高さ位置を認識するようにしたので、基準画像が無くても、1枚の側面画像のみで、ノズル部の高さ位置基準部から部品の下端までの高低差を精度良く測定することができる。ノズル部の高さ位置基準部からノズル部の下端までの高低差は、ノズル部の仕様データ(設計値、標準値、製造時の寸法管理データ等)から既知の値であるため、ノズル部の高さ位置基準部から部品の下端までの高低差の測定値から、側面画像に写った部品の高さ寸法(厚み寸法)を吸着姿勢の情報として精度良く推定することができる。この場合、部品吸着動作毎や部品実装動作毎にノズル部の高さ位置が摩擦力やごみ付着等の影響で微少変化することがあるが、高さ位置基準部もノズル部と一体に上下動するため、ノズル部の高さ位置基準部から部品の下端までの高低差は、ノズル部の高さ位置の微少変化の影響を全く受けず、高さ位置基準部から部品の下端までの高低差に基づいて部品の吸着姿勢の良否を精度良く判定することができる。これにより、基準画像が無くても、1枚の側面画像のみで、部品吸着動作毎や部品実装動作毎のノズル部の高さ位置の微少変化の影響を受けずに、部品の吸着姿勢の良否を精度良く判定することができる。
 また、前記画像処理装置は、前記部品の吸着姿勢の良否を判定する吸着姿勢判定モードの他に、前記ノズル部の良否を判定するノズル部判定モードを実行可能であり、前記ノズル部判定モードでは、部品吸着動作前又は部品実装動作後に前記ノズル部下端と前記高さ位置基準部とを含む前記ノズル部の下端周辺の側面画像を前記カメラで撮像し、その側面画像を処理して前記高さ位置基準部及び前記ノズル部下端の高さ位置を認識し、前記高さ位置基準部から前記ノズル部下端までの高低差を測定してその高低差に基づいて前記ノズル部の良否を判定するようにしても良い。このようにすれば、基準画像が無くても、1枚の側面画像のみで、部品吸着動作毎や部品実装動作毎のノズル部の高さ位置の微少変化の影響を受けずに、ノズル部の良否(ノズル部の欠けや曲りの有無等)を精度良く判定することができる。
 この場合、前記画像処理装置は、前記ノズル部判定モードで測定した前記高低差が前記ノズル部の仕様データから求めた高さ位置基準部からノズル部下端までの高低差よりも大きいと判断したときに、前記ノズル部に吸着した部品を回路基板に実装できずに持ち帰る部品持ち帰りであると判定するようにすると良い。要するに、画像認識では、1枚の側面画像に写ったノズル部の下端と部品の下端とを正確に区別して認識することが困難であるため、部品持ち帰りが発生すると、部品の下端をノズル部の下端と誤認識して、高さ位置基準部から部品の下端までの高低差を測定してしまう。従って、ノズル部判定モードで測定した高低差がノズル部の仕様データから求めた高低差よりも大きいか否かを判定すれば、部品持ち帰りの有無を精度良く判定することができる。
 また、前記画像処理装置は、部品吸着動作前又は部品実装動作前に前記側面画像から認識した前記高さ位置基準部の高さ位置に基づいて部品吸着動作時又は部品実装動作時の前記ノズルホルダの下降量(ノズルホルダを保持する実装ヘッドの下降量)に対する補正量を算出し、部品吸着動作時又は部品実装動作時に前記ノズルホルダの下降量を前記補正量で補正する補正手段を備えた構成としても良い。要するに、ノズル部の高さ位置基準部の高さ位置が高くなるほど、ノズル部の下端の高さ位置も高くなるという関係があるため、高さ位置基準部の高さ位置に基づいてノズル部の下端の高さ位置を推定して、部品吸着動作時や部品実装動作時にノズルホルダに押し込まれるノズル部の押し込み量が一定となるようにノズルホルダの下降動作(実装ヘッドの下降動作)を制御することが可能となり、ノズル部の押し込み不足による部品の吸着不良や実装不良、ノズル部の過剰な押し込みによる部品や基板の損傷を未然に防止することができる。
 更に、前記画像処理装置は、部品吸着動作前又は部品実装動作前に前記側面画像から認識した前記高さ位置基準部の高さ位置が所定の異常判定値よりも高いときに前記ノズル部の異常固着と判定するようにすれば良い。要するに、部品吸着動作時や部品実装動作時にノズルホルダとノズル部との間の摺動部への異物の噛み込み等によりノズル部が固着して押し下げられなくなるノズル部の異常固着が発生すると、部品吸着ミスや部品実装ミスが発生したり、衝撃緩衝効果が得られなくなって部品や回路基板が損傷する可能性があるため、ノズル部の異常固着を早期に検出する必要がある。撮像時のノズルホルダの高さ位置は一定であるため、ノズル部の高さ位置基準部の高さ位置が高いほど、ノズルホルダに対するノズル部の押し込み量(押し上げ量)が大きいことを意味する。このような高さ位置基準部の高さ位置とノズル部の押し込み量との関係から、高さ位置基準部の高さ位置が所定の異常判定値よりも高ければ、ノズルホルダに対するノズル部の押し込み量が異常に大きい(ノズル部が固着して押し下げられない)と判断して、ノズル部の異常固着と判定することができる。
図1は本発明の一実施例における部品実装機の回転ヘッド及びその周辺部分の構成を示す正面図である。 図2はノズルホルダ及びノズル部の拡大縦断面図である。 図3は部品実装機の制御系の構成を示すブロック図である。 図4(a)~(d)は、高さ位置基準部の4種類の実施態様を説明するノズル部の正面図である。 図5(a)~(c)は、高さ位置基準部を認識して部品の吸着姿勢の良否を判定する原理を説明する図である。 図6は画像処理プログラムの処理の流れを示すフローチャート(その1)である。 図7は画像処理プログラムの処理の流れを示すフローチャート(その2)である。
 以下、本発明を実施するための形態を回転型の部品実装機に適用して具体化した一実施例を図面を用いて説明する。
 まず、図1及び図2を用いて部品実装機の回転ヘッド11(回転型の実装ヘッド)の構成を説明する。
 図1に示すように、回転ヘッド11には、その円周方向に所定間隔で複数本のノズルホルダ12が昇降可能に支持され、各ノズルホルダ12には、それぞれ部品を吸着するノズル部13が交換可能且つ上下動可能に係合保持されている。尚、図1にはノズルホルダ12(ノズル部13)が2本のみ図示され、他のノズルホルダ12(ノズル部13)の図示が省略されている。
 図2に示すように、ノズル部13の上部には、係合ピン14が水平方向(ノズル部13の直径方向)に貫通した状態で固定され、この係合ピン14の両端部がノズルホルダ12の下部の2箇所に形成した逆L字形の係合溝20に着脱可能に係合されている。ノズルホルダ12の外周には、係合ピン14の両端部を押さえるための筒状の押さえ部材25が上下動可能に嵌合され、この押さえ部材25をスプリング26(付勢手段)によって下方に付勢することで、係合ピン14の両端部を押さえ部材25で押さえ付けて係合ピン14の係合状態を保持するようになっている。ノズルホルダ12の係合溝20は、係合ピン14の上下動を許容するように上下方向の溝幅が広く形成され、ノズルホルダ12に対するノズル部13の押し込み量(押し上げ量)が係合溝20の上下方向の溝幅の範囲内で変化可能となっている。
 ノズルホルダ12の内部には、パイプ状のノズルピストン32が上下動可能に嵌合され、該ノズルピストン32をスプリング34(付勢手段)によって下方に付勢することで、該ノズルピストン32の下端面をノズル部13の上端面に当接させた状態に保持するようになっている。これにより、ノズル部13は、2つのスプリング26,34によって下方に付勢された状態でノズルホルダ12に対して上下動可能に係合保持されている。
 一方、図1に示すように、回転ヘッド11をXY方向に移動させるヘッド移動機構15は、X軸ボールねじ16によって基板搬送方向であるX軸方向(図1の紙面と垂直な方向)にスライドするX軸スライド17と、Y軸ボールねじ(図示せず)によってX軸方向と直交するY軸方向に移動するY軸スライド18とを備えたXYロボットである。X軸スライド17は、Y軸スライド18に設けられたX軸ガイドレール19に沿ってX軸方向にスライド可能に支持され、Y軸スライド18は、部品実装機本体側に設けられたY軸ガイドレール(図示せず)に沿ってY軸方向にスライド可能に支持されている。
 X軸スライド17には、回転ヘッド11の支持フレーム21が着脱可能に取り付けられている。回転ヘッド11は、上下方向に延びるR軸22(インデックス軸とも呼ばれる)の下端に嵌着され、該R軸22の上部側が支持フレーム21に回転可能に支持されている。R軸22は、支持フレーム21側に固定されたR軸モータ23によって回転駆動される。このR軸22の回転により、回転ヘッド11がR軸22を中心に回転することで、該回転ヘッド11に支持された複数本のノズルホルダ12が複数本のノズル部13と一体的に該回転ヘッド11の円周方向に旋回されるようになっている。これらR軸モータ23とR軸22等からR軸駆動機構24が構成されている。
 R軸22には、Q軸駆動機構27の上下2段のQ軸ギア28,29が回転可能に挿通され、下段のQ軸ギア29には、各ノズルホルダ12の上端に嵌着されたギア30が噛み合っている。上段のQ軸ギア28には、支持フレーム21側に固定されたQ軸モータ31に連結されたギア33が噛み合い、Q軸モータ31のギア33の回転によりQ軸ギア28,29が一体的に回転して、下段のQ軸ギア29に噛み合う各ギア30が回転して、各ノズルホルダ12がそれぞれ各ノズルホルダ12の軸心線(Q軸)の回りを回転することで、各ノズルホルダ12に保持された各ノズル部13に吸着した各部品の向き(角度)を修正するようになっている。尚、Q軸はθ軸とも呼ばれることがある。
 更に、R軸駆動機構24の側方には、ノズルホルダ12を個別に下降させるZ軸駆動機構37が設けられ、該Z軸駆動機構37により、ノズルホルダ12の旋回軌道の所定位置で、ノズルホルダ12を個別に下降させて、該ノズルホルダ12に保持されたノズル部13を下降させるように構成されている。Z軸駆動機構37は、回転ヘッド11の周囲の1箇所のみに配置しても良いし、2箇所以上に配置しても良い。
 Z軸駆動機構37は、支持フレーム21側に回転可能に支持されたZ軸ボールねじ38をZ軸モータ39によって回転させてZ軸スライド40を上下方向に移動させることで、ノズルホルダ12の上端フランジ41に上方から該Z軸スライド40の係合片42を係合(当接)させて該ノズルホルダ12を上下動させるようになっている。この場合、各ノズルホルダ12に装着したスプリング43により各ノズルホルダ12が上方に付勢されることで、各ノズルホルダ12の上端フランジ41がZ軸スライド40の係合片42に下方から係合(当接)した状態に保持され、該Z軸スライド40の係合片42の上昇に伴って、該スプリング43の押し上げ力により該ノズルホルダ12が上昇するようになっている。
 一方、回転ヘッド11の側方には、ノズル部13に吸着した部品を側方から撮像する撮像装置46が配置されている。この撮像装置46は、支持フレーム21側にホルダ47を介して固定されたカメラ48と照明光源49等から構成されている。カメラ48の高さ位置は、部品吸着動作後にノズル部13が昇降範囲の上限位置(待機位置)に上昇して待機しているときに、該カメラ48の視野内にノズル部13の下端に吸着した部品及び後述するノズル部13の高さ位置基準部61の両方を収めてノズル部13の下端周辺の側面画像を撮像できるように設定されている。
 これに対応して、回転ヘッド11の下面側中央部には、ノズル部13に吸着した部品と高さ位置基準部61を側方からカメラ48で撮像する際に照明光源49からの照明光を反射する円筒型の光反射板51が設けられている。この光反射板51の下端の高さ位置は、ノズル部13を下降させて部品を吸着するときに該光反射板51が部品等と干渉しない高さ位置に設定されている。
 部品実装機の制御装置55(図3参照)は、R軸駆動機構24、Q軸駆動機構27、Z軸駆動機構37及びヘッド移動機構15の動作を制御して、フィーダ56(図3参照)から供給される部品をノズル部13で吸着して回路基板に実装する。
 更に、部品実装機の制御装置55は、後述する図6及び図7の画像処理プログラムを実施することで、カメラ48で撮像したノズル部13の下端周辺の側面画像を処理して部品の吸着姿勢の良否等を判定する画像処理装置としても機能し、部品の吸着姿勢の不良と判定したときには、当該部品を所定の廃棄場所に廃棄したり、回収コンベア(図示せず)に載せて回収するようにしている。
 本実施例では、画像処理による部品の吸着姿勢等の判定精度を向上させるために、ノズル部13の外周部に、画像認識可能な高さ位置基準部61が設けられている。高さ位置基準部61としては、例えば、図4(a)~(d)のいずれを用いても良く、図4(a)のように、ノズル部13の外周部に環状に形成した溝を高さ位置基準部61として用いたり、或は、図4(b)のように、ノズル部13の外周部に形成した下側が径小となる段差を高さ位置基準部61として用いたり、或は、図4(c)のように、ノズル部13の外周部に形成した下側が径大となる段差を高さ位置基準部61として用いたり、或は、図4(d)のように、ノズル部13の外周部に環状に形成した画像認識可能なライン(例えば白色ライン等)を高さ位置基準部61として用いても良く、要は、高さ位置基準部61を含むノズル部13の下端周辺の側面画像から高さ位置基準部61を明瞭に画像認識できるものであれば良い。但し、ノズル部13の下端に吸着した部品を下面側からパーツカメラ(図示せず)で撮像してノズル部13に対する部品の吸着位置のずれや部品の回転角度等を画像認識する場合に、部品の下面画像に高さ位置基準部61が重ならないようにしたり、部品の下面画像に高さ位置基準部61が重なって写っても、部品を高さ位置基準部61と明瞭に区別して認識できるように、高さ位置基準部61の形状、位置、色等を設定する必要がある。
 また、ノズル部13の外周部に高さ位置基準部61を設ける高さ位置は、1枚の側面画像に含まれる高さ位置基準部61と部品とを間隔をあけて認識できる高さ位置であれば良いが、高さ位置基準部61と部品との間隔が離れ過ぎると、側面画像に写る部品サイズが小さくなり過ぎて、部品の下端位置の認識精度が低下するため、高さ位置基準部61と部品との間隔は、適度に近付けた方が良い。
 ノズル部13の下端に吸着した部品の吸着姿勢の良否を判定する場合は、カメラ48の視野内にノズル部13の下端に吸着した部品及びノズル部13の高さ位置基準部61の両方を収めて、部品と高さ位置基準部61とを含むノズル部61の下端周辺の側面画像をカメラ48で撮像し、その側面画像を制御装置55で処理して高さ位置基準部61及び部品の下端の高さ位置を認識し、高さ位置基準部61から部品の下端までの高低差A(図5参照)を測定してその高低差Aに基づいて部品の吸着姿勢の良否を判定する。
 この場合、ノズル部13の高さ位置基準部61からノズル部13の下端までの高低差B(図5参照)は、ノズル部13の仕様データ(設計値、標準値、製造時の寸法管理データ等)から既知の値であるため、ノズル部13の高さ位置基準部61から部品の下端までの高低差Aの測定値から、側面画像に写った部品の高さ寸法C(=A-B)を吸着姿勢の情報として精度良く推定することができる。図5(a)~(c)に示すように、部品吸着動作毎や部品実装動作毎にノズル部13の高さ位置が摩擦力やごみ付着等の影響で微少変化することがあるが、ノズル部13の高さ位置基準部61も該ノズル部13と一体に上下動するため、ノズル部13の高さ位置基準部61から部品の下端までの高低差Aは、ノズル部13の高さ位置の微少変化の影響を全く受けず、ノズル部13の高さ位置基準部61から部品の下端までの高低差Aに基づいて、ノズル部13の下端に吸着した部品の高さ寸法C(=A-B)を推定して部品の吸着姿勢の良否を精度良く判定することができる。
 例えば、ノズル部13の高さ位置基準部61から部品の下端までの高低差Aに基づいて推定された部品の高さ寸法Cが当該部品の仕様データ(設計値、標準値、製造時の寸法管理データ等)から求めた部品の高さ寸法と一致する場合は、正常な吸着姿勢と判定し、両者の高さ寸法が一致しない場合は、異常な吸着姿勢(例えば立ち吸着、斜め吸着等)と判定する。また、部品の高さ寸法C(=A-B)が0と推定された場合は、ノズル部13の下端に部品が吸着されていないことを意味するため、部品の吸着に失敗した部品吸着ミスと判定する。
 また、本実施例では、部品実装機の制御装置55は、部品の吸着姿勢の良否を判定する吸着姿勢判定モードの他に、ノズル部13の良否を判定するノズル部判定モードを実行可能であり、ノズル部判定モードでは、部品吸着動作前又は部品実装動作後にノズル部13の下端と高さ位置基準部61とを含むノズル部13の下端周辺の側面画像をカメラ48で撮像し、その側面画像を処理して高さ位置基準部61及びノズル部13の下端の高さ位置を認識し、高さ位置基準部61からノズル部13の下端までの高低差Bを測定して、その高低差Bの測定値が仕様データ(設計値、標準値、製造時の寸法管理データ等)から求めた高さ位置基準部61からノズル部13の下端までの高低差と一致するか否かでノズル部13の良否(ノズル部13の欠けや曲りの有無等)を判定する。
 このノズル部判定モードで測定した高低差Bがノズル部13の仕様データから求めた高さ位置基準部61からノズル部13の下端までの高低差よりも大きいと判定した場合は、ノズル部13に吸着した部品を回路基板に実装できずに持ち帰る部品持ち帰りであると判定する。要するに、画像認識では、1枚の側面画像に写ったノズル部13の下端と部品の下端とを正確に区別して認識することが困難であるため、部品持ち帰りが発生すると、部品の下端をノズル部13の下端と誤認識して、高さ位置基準部61から部品の下端までの高低差を測定してしまう。従って、ノズル部判定モードで測定した高低差がノズル部13の仕様データから求めた高さ位置基準部61からノズル部13の下端までの高低差よりも大きいか否かを判定すれば、部品持ち帰りの有無を精度良く判定することができる。
 また、部品実装機の制御装置55は、部品吸着動作前又は部品実装動作前にノズル部13の下端周辺の側面画像から認識したノズル部13の高さ位置基準部61の高さ位置に基づいて部品吸着動作時又は部品実装動作時のノズルホルダ12の下降量(ノズルホルダ12を保持する実装ヘッドの下降量)に対する補正量を算出し、部品吸着動作時又は部品実装動作時にノズルホルダ12の下降量を前記補正量で補正する補正手段としての機能を搭載している。要するに、ノズル部13の高さ位置基準部61の高さ位置が高くなるほど、ノズル部13の下端の高さ位置も高くなるという関係があるため、高さ位置基準部61の高さ位置に基づいてノズル部13の下端の高さ位置を推定して、部品吸着動作時や部品実装動作時にノズルホルダ12に押し込まれるノズル部13の押し込み量が一定となるようにノズルホルダ12の下降動作(実装ヘッドの下降動作)を制御するものである。これにより、ノズル部13の押し込み不足による部品の吸着不良や実装不良、ノズル部13の過剰な押し込みによる部品や基板の損傷を未然に防止することができる。
 更に、部品実装機の制御装置55は、部品吸着動作前又は部品実装動作前に前記側面画像から認識した高さ位置基準部61の高さ位置が所定の異常判定値よりも高いときに、ノズル部13の異常固着と判定する。要するに、部品吸着動作時や部品実装動作時にノズルホルダ12とノズル部13との間の摺動部への異物の噛み込み等によりノズル部13が固着して押し下げられなくなるノズル部13の異常固着が発生すると、部品吸着ミスや部品実装ミスが発生したり、衝撃緩衝効果が得られなくなって部品や回路基板が損傷する可能性があるため、ノズル部13の異常固着を早期に検出する必要がある。撮像時のノズルホルダ12の高さ位置は待機位置に保持されて一定であるため、ノズル部13の高さ位置基準部61の高さ位置が高いほど、ノズルホルダ12に対するノズル部13の押し込み量(押し上げ量)が大きいことを意味する。このような高さ位置基準部61の高さ位置とノズル部13の押し込み量との関係から、高さ位置基準部61の高さ位置が所定の異常判定値よりも高ければ、ノズルホルダ12に対するノズル部13の押し込み量が異常に大きい(ノズル部13が固着して押し下げられない)と判断して、ノズル部13の異常固着と判定する。
 以上説明した本実施例の画像処理は、部品実装機の稼働中(生産中)に制御装置55によって図6及び図7の画像処理プログラムによって周期的に実行される。以下、図6及び図7の画像処理プログラムの処理内容を説明する。本プログラムが起動されると、まず、ステップ101で、部品吸着動作後(部品実装動作前)の撮像タイミングであるか否かを判定し、部品吸着動作後(部品実装動作前)の撮像タイミングではないと判定すれば、図7のステップ117へ進む。
 一方、上記ステップ101で、部品吸着動作後(部品実装動作前)の撮像タイミングであると判定すれば、ステップ102に進み、カメラ48の視野内にノズル部13の下端に吸着した部品及びノズル部13の高さ位置基準部61の両方を収めて、部品と高さ位置基準部61とを含むノズル部61の下端周辺の側面画像をカメラ48で撮像する。
 この後、ステップ103に進み、ノズル部61の下端周辺の側面画像を処理して、高さ位置基準部61及び部品の下端の高さ位置を認識し、高さ位置基準部61から部品の下端までの高低差Aを測定する。そして、次のステップ104で、ノズル部13の高さ位置基準部61の高さ位置に基づいて部品実装動作時のノズルホルダ12の下降量(実装ヘッドの下降量)に対する補正量を算出する。これにより、部品実装動作時のノズルホルダ12の下降量(実装ヘッドの下降量)を上記補正量で補正することで、部品実装動作時にノズルホルダ12に押し込まれるノズル部13の押し込み量が一定となるようにノズルホルダ12の下降動作(実装ヘッドの下降動作)を制御する。
 その後、ステップ105に進み、ノズル部13の下端に吸着した部品の高さ寸法Cを次式により測定する。
    C=A-B
      A:高さ位置基準部61から部品の下端までの高低差の測定値
      B:高さ位置基準部61からノズル部13の下端までの高低差の仕様値
 この後、ステップ106に進み、ノズル部13の下端に吸着した部品の高さ寸法Cの測定値が当該部品の高さ寸法の仕様値(設計値、標準値等)と一致するか否かを判定する。この際、両者の差が画像処理上の測定誤差の範囲内であれば、一致すると判定し、ステップ109に進み、正常な吸着姿勢と判定して、図7のステップ117へ進む。
 一方、上記ステップ106で、部品の高さ寸法Cの測定値が仕様値と一致しないと判定すれば、ステップ107に進み、部品の高さ寸法Cの測定値がプラス値であるか否かを判定する。その結果、部品の高さ寸法Cの測定値がプラス値であると判定すれば、ステップ110に進み、異常な吸着姿勢(吸着姿勢の不良)と判定する。この場合は、異常な吸着姿勢と判定された部品を所定の廃棄場所に廃棄したり、回収コンベア(図示せず)に載せて回収したりすると共に、部品吸着動作をリトライ(再実行)して、ステップ101へ戻り、上述した処理を繰り返す。
 これに対し、上記ステップ107で、部品の高さ寸法Cの測定値がプラス値ではないと判定すれば、ステップ108に進み、部品の高さ寸法Cの測定値が0であるか否かを判定する。この際、部品の高さ寸法Cの測定値と0との差が画像処理上の測定誤差の範囲内であれば、部品の高さ寸法Cの測定値が0であると判定する。この状態は、ノズル部13の下端に部品が吸着されていないことを意味するため、ステップ113に進み、部品吸着ミスと判定して、ステップ112に進み、部品吸着動作をリトライして、前述したステップ101へ戻り、上述した処理を繰り返す。
 一方、上記ステップ107及びステップ108の両方で「No」と判定した場合、すなわち、部品の高さ寸法Cの測定値がマイナス値となる場合は、高さ位置基準部61からノズル部13の下端までの高低差が仕様値と比べて短くなっていることを意味するため、ステップ114に進み、ノズル部13が異常(ノズル部13の欠けや曲り等が有る)と判定する。この場合は、警告表示や音声等で作業者に警告して、部品実装機の稼働をエラー停止する。
 前述したステップ109で、正常な吸着姿勢と判定した場合は、図7のステップ117に進み、部品実装動作後(部品吸着動作前)の撮像タイミングであるか否かを判定し、部品実装動作後(部品吸着動作前)の撮像タイミングではないと判定すれば、そのまま本プログラムを終了する。
 一方、上記ステップ117で、部品実装動作後(部品吸着動作前)の撮像タイミングであると判定すれば、ステップ118に進み、カメラ48の視野内にノズル部13の下端と高さ位置基準部61の両方を収めて、ノズル部13の下端と高さ位置基準部61とを含むノズル部61の下端周辺の側面画像をカメラ48で撮像する。
 この後、ステップ119に進み、ノズル部61の下端周辺の側面画像を処理して、高さ位置基準部61及びノズル部13の下端の高さ位置を認識し、高さ位置基準部61からノズル部13の下端までの高低差Bを測定する。そして、次のステップ120で、ノズル部13の高さ位置基準部61の高さ位置に基づいて部品吸着動作時のノズルホルダ12の下降量(実装ヘッドの下降量)に対する補正量を算出する。これにより、部品吸着動作時のノズルホルダ12の下降量(実装ヘッドの下降量)を上記補正量で補正することで、部品吸着動作時にノズルホルダ12に押し込まれるノズル部13の押し込み量が一定となるようにノズルホルダ12の下降動作(実装ヘッドの下降動作)を制御する。
 その後、ステップ121に進み、上記ステップ119で測定した高さ位置基準部61からノズル部13の下端までの高低差Bの測定値が仕様値と一致するか否かを判定する。この際、両者の差が画像処理上の測定誤差の範囲内であれば、一致すると判定し、ステップ123に進み、ノズル部13が正常と判定して、本プログラムを終了する。
 一方、上記ステップ121で、高さ位置基準部61からノズル部13の下端までの高低差Bの測定値が仕様値と一致しないと判定すれば、ステップ122に進み、高さ位置基準部61からノズル部13の下端までの高低差Bの測定値が仕様値よりも小さいか否かを判定する。その結果、高さ位置基準部61からノズル部13の下端までの高低差Bの測定値が仕様値よりも小さいと判定すれば、高さ位置基準部61からノズル部13の下端までの高低差Bの測定値が仕様値と比べて短くなっていることを意味するため、ステップ124に進み、ノズル部13が異常(ノズル部13の欠けや曲り等が有る)と判定する。この場合は、警告表示や音声等で作業者に警告して、部品実装機の稼働をエラー停止する。
 一方、上記ステップ121及びステップ122の両方で「No」と判定した場合、すなわち、高さ位置基準部61からノズル部13の下端までの高低差Bの測定値が仕様値よりも大きい場合は、ノズル部13の下端に部品が付着していることを意味するため、ステップ127に進み、部品持ち帰りと判定する。この場合も、警告表示や音声等で作業者に警告して、部品実装機の稼働をエラー停止する。
 尚、上述した図6及び図7の画像処理プログラムでは、高さ位置基準部61の高さ位置に基づいてノズル部13の異常固着の有無を判定する処理が省略されているが、ノズル部13の下端周辺の側面画像を撮像してノズル部13の高さ位置基準部61の高さ位置を認識する毎に、高さ位置基準部61の高さ位置が所定の異常判定値よりも高いか否かを判定して、高さ位置基準部61の高さ位置が所定の異常判定値よりも高ければ、ノズルホルダ12に対するノズル部13の押し込み量が異常に大きい(ノズル部13が固着して押し下げられない)と判断して、ノズル部13の異常固着と判定する処理を追加しても良い。
 以上説明した本実施例によれば、ノズル部13の外周部に画像認識可能な高さ位置基準部61を設け、カメラ48の視野内にノズル部13の下端に吸着した部品及び高さ位置基準部61の両方を収めてノズル部13の下端周辺の側面画像を撮像し、その側面画像から高さ位置基準部61及び部品の下端の高さ位置を認識するようにしたので、基準画像が無くても、1枚の側面画像のみで、ノズル部13の高さ位置基準部61から部品の下端までの高低差Aを精度良く測定することができ、その高低差Aの測定値から、側面画像に写った部品の高さ寸法Cを吸着姿勢の情報として精度良く推定することができる。このノズル部13の高さ位置基準部61から部品の下端までの高低差Aは、ノズル部13の高さ位置の微少変化の影響を全く受けないため、その高低差Aから推定した部品の高さ寸法Cに基づいて部品の吸着姿勢の良否を精度良く判定することができる。これにより、基準画像が無くても、1枚の側面画像のみで、部品吸着動作毎や部品実装動作毎のノズル部13の高さ位置の微少変化の影響を受けずに、部品の吸着姿勢の良否を精度良く判定することができる。
 また、部品吸着動作前又は部品実装動作後にノズル部13の下端と高さ位置基準部61とを含むノズル部13の下端周辺の側面画像をカメラ48で撮像し、その側面画像を処理して、高さ位置基準部61からノズル部13の下端までの高低差Bを測定してその高低差Bに基づいてノズル部13の良否を判定するようにしたので、基準画像が無くても、1枚の側面画像のみで、部品吸着動作毎や部品実装動作毎のノズル部13の高さ位置の微少変化の影響を受けずに、ノズル部13の良否(ノズル部13の欠けや曲りの有無等)を精度良く判定することができる。
 更に、高さ位置基準部61からノズル部13の下端までの高低差Bの測定値が設計値等の仕様値よりも大きいと判断したときに、部品持ち帰りと判定するようにしたので、部品持ち帰りの有無を精度良く判定することができる。
 また、部品吸着動作前又は部品実装動作前にノズル部13の下端周辺の側面画像から認識した高さ位置基準部61の高さ位置に基づいて部品吸着動作時又は部品実装動作時のノズルホルダ12の下降量(実装ヘッドの下降量)に対する補正量を算出し、部品吸着動作時又は部品実装動作時にノズルホルダ12の下降量を前記補正量で補正するようにしたので、高さ位置基準部61の高さ位置に基づいてノズル部13の下端の高さ位置を推定して、部品吸着動作時や部品実装動作時にノズルホルダ12に押し込まれるノズル部の押し込み量が一定となるようにノズルホルダ12の下降動作(実装ヘッドの下降動作)を制御することが可能となり、ノズル部13の押し込み不足による部品の吸着不良や実装不良、ノズル部13の過剰な押し込みによる部品や基板の損傷を未然に防止することができる。
 尚、本発明は、回転ヘッド11を備えた回転型の部品実装機に限定されず、回転しない実装ヘッドを備えた部品実装機に適用しても良い等、要旨を逸脱しない範囲内で種々変更して実施できることは言うまでもない。
 11…回転ヘッド(実装ヘッド)、12…ノズルホルダ、13…ノズル部、15…ヘッド移動機構、24…R軸駆動機構、26…スプリング(付勢手段)、27…Q軸駆動機構、34…スプリング(付勢手段)、37…Z軸駆動機構、46…撮像装置、48…カメラ、49…照明光源、51…光反射板、55…制御装置(画像処理装置,補正手段)

Claims (5)

  1.  ノズルホルダに上下動可能に保持したノズル部を付勢手段により下方に付勢し、前記ノズル部の下端に吸着した部品の側面画像をカメラで撮像して、その側面画像を処理することで前記部品の吸着姿勢の良否を判定する画像処理装置を搭載した部品実装機において、
     前記ノズル部の外周部に画像認識可能な高さ位置基準部を設け、
     前記画像処理装置は、前記カメラの視野内に前記ノズル部の下端に吸着した部品及び前記高さ位置基準部の両方を収めて前記部品と前記高さ位置基準部とを含む前記ノズル部の下端周辺の側面画像を前記カメラで撮像し、その側面画像を処理して前記高さ位置基準部及び前記部品の下端の高さ位置を認識し、前記高さ位置基準部から前記部品の下端までの高低差を測定してその高低差に基づいて前記部品の吸着姿勢の良否を判定することを特徴とする部品実装機。
  2.  前記画像処理装置は、前記部品の吸着姿勢の良否を判定する吸着姿勢判定モードの他に、前記ノズル部の良否を判定するノズル部判定モードを実行可能であり、前記ノズル部判定モードでは、部品吸着動作前又は部品実装動作後に前記ノズル部下端と前記高さ位置基準部とを含む前記ノズル部の下端周辺の側面画像を前記カメラで撮像し、その側面画像を処理して前記高さ位置基準部及び前記ノズル部下端の高さ位置を認識し、前記高さ位置基準部から前記ノズル部下端までの高低差を測定してその高低差に基づいて前記ノズル部の良否を判定することを特徴とする請求項1に記載の部品実装機。
  3.  前記画像処理装置は、前記ノズル部判定モードで測定した前記高低差が前記ノズル部の仕様データから求めた前記高さ位置基準部から前記ノズル部下端までの高低差よりも大きいと判断したときに、前記ノズル部に吸着した部品を回路基板に実装できずに持ち帰る部品持ち帰りであると判定することを特徴とする請求項2に記載の部品実装機。
  4.  前記画像処理装置は、部品吸着動作前又は部品実装動作前に前記側面画像から認識した前記高さ位置基準部の高さ位置に基づいて部品吸着動作時又は部品実装動作時の前記ノズルホルダの下降量に対する補正量を算出し、
     部品吸着動作時又は部品実装動作時に前記ノズルホルダの下降量を前記補正量で補正する補正手段を備えていることを特徴とする請求項1乃至3のいずれかに記載の部品実装機。
  5.  前記画像処理装置は、部品吸着動作前又は部品実装動作前に前記側面画像から認識した前記高さ位置基準部の高さ位置が所定の異常判定値よりも高いときに前記ノズル部の異常固着と判定することを特徴とする請求項4に記載の部品実装機。
PCT/JP2015/064906 2015-05-25 2015-05-25 部品実装機 WO2016189621A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/574,525 US10448551B2 (en) 2015-05-25 2015-05-25 Component mounter
PCT/JP2015/064906 WO2016189621A1 (ja) 2015-05-25 2015-05-25 部品実装機
JP2017520095A JP6717816B2 (ja) 2015-05-25 2015-05-25 部品実装機
CN201580080031.5A CN107535089B (zh) 2015-05-25 2015-05-25 元件安装机
EP15893256.6A EP3307041B1 (en) 2015-05-25 2015-05-25 Component mounting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/064906 WO2016189621A1 (ja) 2015-05-25 2015-05-25 部品実装機

Publications (1)

Publication Number Publication Date
WO2016189621A1 true WO2016189621A1 (ja) 2016-12-01

Family

ID=57393895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064906 WO2016189621A1 (ja) 2015-05-25 2015-05-25 部品実装機

Country Status (5)

Country Link
US (1) US10448551B2 (ja)
EP (1) EP3307041B1 (ja)
JP (1) JP6717816B2 (ja)
CN (1) CN107535089B (ja)
WO (1) WO2016189621A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056131A (ja) * 2019-09-30 2021-04-08 シチズンファインデバイス株式会社 ワーク保持装置
JP7473572B2 (ja) 2018-03-22 2024-04-23 株式会社Fuji 構成装置良否判定方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107251675B (zh) * 2015-02-24 2019-10-18 株式会社富士 元件安装机及元件安装方法
US10824137B2 (en) * 2017-06-19 2020-11-03 Panasonic Intellectual Property Management Co., Ltd. Mounting board manufacturing system
US11134595B2 (en) * 2018-09-05 2021-09-28 Assembleon B.V. Compliant die attach systems having spring-driven bond tools
US20220174851A1 (en) * 2019-03-28 2022-06-02 Panasonic Intellectual Property Management Co., Ltd. Production data creation device and production data creation method
CN113678580B (zh) * 2019-04-11 2022-08-30 株式会社富士 元件安装机以及元件安装方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474800A (en) * 1987-09-17 1989-03-20 Sony Corp Decision method of attitude of part for mounting machine
JPH07131191A (ja) * 1993-10-29 1995-05-19 Sanyo Electric Co Ltd 電子部品自動装着装置
JPH0983192A (ja) * 1995-09-12 1997-03-28 Juki Corp チップマウンタ
JPH1131899A (ja) * 1997-07-14 1999-02-02 Matsushita Electric Ind Co Ltd 電子部品装着装置
JP2001189600A (ja) * 1999-12-28 2001-07-10 Matsushita Electric Ind Co Ltd 電子部品の実装方法
JP2005322802A (ja) * 2004-05-10 2005-11-17 Yamagata Casio Co Ltd 部品搭載装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951383A (en) * 1988-11-14 1990-08-28 Sanyo Electric Co., Ltd. Electronic parts automatic mounting apparatus
EP0652699B1 (en) 1993-10-29 1997-07-02 Sanyo Electric Co., Ltd. Apparatus and method for automatically mounting electronic parts
US6634091B1 (en) * 2000-02-15 2003-10-21 Samsung Techwin Co., Ltd. Part mounter
JP4015402B2 (ja) * 2001-10-16 2007-11-28 松下電器産業株式会社 部品吸着ノズル、及び部品実装装置
JP4046030B2 (ja) * 2002-08-30 2008-02-13 株式会社村田製作所 部品装着方法および部品装着装置
WO2005089036A1 (ja) * 2004-03-15 2005-09-22 Matsushita Electric Industrial Co., Ltd. 部品装着精度の検査方法及び検査装置
JP4758263B2 (ja) * 2005-03-30 2011-08-24 ヤマハ発動機株式会社 部品移載装置、表面実装機および部品検査装置
JP2006313838A (ja) 2005-05-09 2006-11-16 Juki Corp 部品実装装置
JP2007043076A (ja) * 2005-07-06 2007-02-15 Juki Corp 電子部品の実装装置
JP4896136B2 (ja) * 2005-09-14 2012-03-14 サイバーオプティクス コーポレーション 改善された構成部品ピックイメージ処理を備えたピックアンドプレース機
JP4828298B2 (ja) * 2006-05-11 2011-11-30 ヤマハ発動機株式会社 部品実装方法および部品実装装置
JP4845032B2 (ja) 2006-11-14 2011-12-28 富士機械製造株式会社 画像処理機能付き撮像装置及び検査システム
JP4998148B2 (ja) * 2007-08-28 2012-08-15 パナソニック株式会社 部品実装装置
JP2009088035A (ja) 2007-09-28 2009-04-23 Hitachi High-Tech Instruments Co Ltd 電子部品装着装置
JP4338765B2 (ja) * 2008-09-09 2009-10-07 株式会社日立ハイテクインスツルメンツ 電子部品装着装置
JP5774968B2 (ja) * 2011-11-15 2015-09-09 ヤマハ発動機株式会社 部品移載装置および部品移載装置における吸着位置調整方法
WO2014080525A1 (ja) * 2012-11-26 2014-05-30 富士機械製造株式会社 装着位置ずれ原因究明方法および電子回路部品装着装置
JP6190229B2 (ja) 2013-09-30 2017-08-30 ヤマハ発動機株式会社 部品実装装置
CN109952017B (zh) * 2013-10-11 2021-02-23 株式会社富士 元件装配机
US20150262848A1 (en) * 2014-03-11 2015-09-17 SCREEN Holdings Co., Ltd. Substrate processing apparatus and substrate processing method for discharge of processing liquid from nozzle
JP6370177B2 (ja) * 2014-09-05 2018-08-08 株式会社Screenホールディングス 検査装置および検査方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474800A (en) * 1987-09-17 1989-03-20 Sony Corp Decision method of attitude of part for mounting machine
JPH07131191A (ja) * 1993-10-29 1995-05-19 Sanyo Electric Co Ltd 電子部品自動装着装置
JPH0983192A (ja) * 1995-09-12 1997-03-28 Juki Corp チップマウンタ
JPH1131899A (ja) * 1997-07-14 1999-02-02 Matsushita Electric Ind Co Ltd 電子部品装着装置
JP2001189600A (ja) * 1999-12-28 2001-07-10 Matsushita Electric Ind Co Ltd 電子部品の実装方法
JP2005322802A (ja) * 2004-05-10 2005-11-17 Yamagata Casio Co Ltd 部品搭載装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473572B2 (ja) 2018-03-22 2024-04-23 株式会社Fuji 構成装置良否判定方法
JP2021056131A (ja) * 2019-09-30 2021-04-08 シチズンファインデバイス株式会社 ワーク保持装置
JP7198188B2 (ja) 2019-09-30 2022-12-28 シチズンファインデバイス株式会社 ワーク保持装置

Also Published As

Publication number Publication date
CN107535089B (zh) 2019-10-01
CN107535089A (zh) 2018-01-02
US10448551B2 (en) 2019-10-15
JP6717816B2 (ja) 2020-07-08
EP3307041B1 (en) 2019-08-21
US20180153061A1 (en) 2018-05-31
JPWO2016189621A1 (ja) 2018-03-08
EP3307041A1 (en) 2018-04-11
EP3307041A4 (en) 2018-05-02

Similar Documents

Publication Publication Date Title
WO2016189621A1 (ja) 部品実装機
JP6279708B2 (ja) 部品装着装置
JP6462000B2 (ja) 部品実装機
JP5665648B2 (ja) 部品装着ヘッドの吸着ノズルにおける被吸着物検知方法および部品装着装置
JP6421320B2 (ja) 部品実装方法
JP6021560B2 (ja) 部品検査方法及び装置
JP7002831B2 (ja) 部品実装機
JP2007123807A (ja) 部品移載装置、表面実装機、部品検査装置および異常判定方法
JP5765864B2 (ja) 電子部品搬送装置及びテーピングユニット
JP6828223B2 (ja) 実装装置
US10932401B2 (en) Component mounting machine
JP6674705B2 (ja) 画像認識装置
JP4681174B2 (ja) 電子部品自動装着装置
JP6587086B2 (ja) 部品実装方法
JP5171450B2 (ja) 吸着部品の体積計算方法及び実装装置
US20200084926A1 (en) Component mounter
JP5615092B2 (ja) 電子部品装着装置
JP6892552B2 (ja) 部品装着装置
JP6997069B2 (ja) 部品実装機
JP6043966B2 (ja) ヘッドメンテナンス方法
JP2009004640A (ja) ウエハチップチャック装置およびウエハチップチャック装置におけるチャック不良判定方法
JP4894291B2 (ja) 電子部品実装装置および電子部品実装方法
JP2006120928A (ja) 電子部品の実装装置及び実装方法
JP2017143181A (ja) 作業ヘッドユニット、実装装置及び作業ヘッドユニットの制御方法
JP2006093247A (ja) 電子部品実装装置及びノズル返却方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520095

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15574525

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015893256

Country of ref document: EP