WO2016171233A1 - 感光性繊維及び繊維パターンの形成方法 - Google Patents
感光性繊維及び繊維パターンの形成方法 Download PDFInfo
- Publication number
- WO2016171233A1 WO2016171233A1 PCT/JP2016/062704 JP2016062704W WO2016171233A1 WO 2016171233 A1 WO2016171233 A1 WO 2016171233A1 JP 2016062704 W JP2016062704 W JP 2016062704W WO 2016171233 A1 WO2016171233 A1 WO 2016171233A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- group
- photosensitive
- pattern
- composition
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0015—Electro-spinning characterised by the initial state of the material
- D01D5/003—Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
- G03F7/0382—Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/04—Dry spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/44—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
- D01F6/50—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyalcohols, polyacetals or polyketals
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
- G03F7/0392—Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
Definitions
- the present invention relates to a positive type or negative type photosensitive fiber and a method for producing the same, a fiber pattern using the photosensitive fiber and a method for producing the same, and a substrate having the fiber pattern on the surface.
- fine processing by photolithography using a resist has been conventionally performed.
- a resist pattern is produced by exposing and developing through a photomask, and the substrate is etched using the obtained resist pattern as an etching mask.
- the fine unevenness corresponding to the resist pattern is formed on the substrate surface.
- nanofibers nanofibers
- non-woven fabrics as base materials for cell scaffolds.
- nanofibers are formed on the surface by a stamp method using a stamp having a predetermined pattern, a stencil method using a template (stencil) having holes of a predetermined pattern, a spray method using a spray to form a predetermined pattern, and the like.
- a base material on which a fiber pattern is formed has been proposed.
- Patent Document 2 also captures the produced fibers (nano / microfibers), which are part of an electrospinning device, for use as a culture substrate for cell three-dimensional culture or two-layer culture.
- a nano / microfiber non-woven fabric has been proposed in which a minute uneven pattern is formed at a predetermined position on a plane by using a mold having predetermined unevenness as a base material (collector part) for collection.
- Patent Document 3 a temperature-responsive polymer whose water-solubility changes depending on temperature is dissolved in a solvent, and the temperature-responsive polymer is dissolved by an electrospinning method or a wet method.
- Non-Patent Document 1 a UV cross-linking agent is introduced into a predetermined stimulus-responsive polymer, and then nanofibers are produced by electrospinning, and the nanofibers are cross-linked to capture and release cells. Of nanofiber mats is described.
- the present invention has been made in view of the above circumstances, and a problem to be solved is to provide a method capable of easily producing a complicated and fine resist pattern.
- the present inventors have spun (preferably electrospun) a raw material composition containing at least a positive type or negative type photosensitive material to form photosensitive fibers, and such fibers
- the present inventors have found that a complex and fine resist pattern (fiber pattern) can be easily produced by exposing and developing a fiber layer formed by using the above, and have completed the present invention. That is, the present invention is as follows.
- a fiber containing a positive type or negative type photosensitive material includes (i) a novolak resin and a dissolution inhibitor, (ii) a polyvinylphenol resin or an acrylic resin, and a photoacid generator, or (iii) a photoacid generator group.
- a polymer in which the negative photosensitive material includes (A) a structural unit having at least one organic group selected from a hydroxy group, a hydroxymethyl group, and an alkoxymethyl group having 1 to 5 carbon atoms in the side chain.
- the positive photosensitive material includes (i) a novolak resin and a dissolution inhibitor, (ii) a polyvinylphenol resin or an acrylic resin, and a photoacid generator, or (iii) a photoacid generator group.
- composition according to [6] comprising a polyvinylphenol resin or an acrylic resin containing a structural unit having a side chain.
- a method for producing a photosensitive fiber comprising a step of spinning the composition according to any one of [6] to [8].
- the method according to [9], wherein the spinning is electrospinning.
- [16] A fiber pattern formed using the fiber according to any one of [1] to [5].
- [17] A substrate having the fiber pattern according to [16] on the surface.
- [18] A first step of forming a fiber layer of photosensitive fibers on a substrate, A method for producing a fiber pattern, comprising: a second step of exposing the fiber layer through a mask; and a third step of developing the fiber layer with a developer.
- the method according to [18], wherein the photosensitive fiber is the fiber according to any one of [1] to [5].
- [20] The method according to [18] or [19], wherein the fiber is heated after the exposure in the second step.
- [21] The method according to any one of [18] to [20], wherein the developer contains water or an organic solvent.
- a first step of forming a fiber layer of photosensitive fibers on a substrate The manufacturing method of the base material with a fiber pattern including the 2nd process of exposing this fiber layer through a mask, and the 3rd process of developing this fiber layer with a developing solution.
- the developer contains water or an organic solvent.
- the fiber pattern formed using the photosensitive fiber which can produce a complicated and fine resist pattern simply, this photosensitive fiber, and those manufacturing methods can be provided.
- the composition (composition for photosensitive fiber manufacture) for manufacturing said photosensitive fiber can be provided.
- the base material which has said fiber pattern can be provided.
- FIG. 3 is a SEM photograph of a fiber layer made of fibers obtained from the positive photosensitive fiber production composition of Example 2 before exposure.
- 3 is a SEM photograph of a fiber pattern formed using fibers obtained from the positive photosensitive fiber manufacturing composition of Example 2. It is an optical microscope photograph after the fiber obtained from the composition for negative type photosensitive fiber manufacture of Example 1 was immersed in 20 degreeC water for 10 minutes. It is an optical microscope photograph after the fiber obtained from the negative photosensitive fiber manufacturing composition of Example 1 was immersed in 40 degreeC water for 10 minutes.
- the fiber of the present invention is mainly characterized in that it contains a positive or negative photosensitive material. That is, the fiber of the present invention is preferably a fiber obtained by spinning (more preferably electrospinning) a raw material composition containing at least a positive or negative photosensitive material.
- a fiber containing a positive photosensitive material may be referred to as a “positive photosensitive fiber”, and a fiber containing a negative photosensitive material may be referred to as a “negative photosensitive fiber”.
- the diameter of the fiber of the present invention can be adjusted as appropriate according to the use of the fiber, and is not particularly limited, but it can be used for etching masks, medical materials, cosmetic materials, etc. when processing various substrates used in displays and semiconductors.
- the fiber of the present invention is a fiber (nanofiber) having a diameter of nanometer order (eg, 1 to 1000 nm) and / or a fiber (microfiber) having a micrometer order (eg, 1 to 1000 ⁇ m). Is preferred.
- the diameter of the fiber is measured with a scanning electron microscope (SEM).
- the “positive type photosensitive material” refers to a material (for example, a positive type photoresist, a positive type photosensitive resin composition, etc.) that becomes hardly soluble in alkali or insoluble in alkali by the action of light.
- the “negative photosensitive material” refers to a material (for example, a negative photoresist, a negative photosensitive resin composition, or the like) that becomes easily soluble in alkali or hardly soluble or insoluble due to the action of light.
- the positive photosensitive material is not particularly limited as long as it can be made into a fibrous form, and conventionally known materials that are used as positive photoresists, positive photosensitive resin compositions, etc. may be used.
- a chemically amplified positive photosensitive material is preferred.
- the chemically amplified positive photosensitive material include (i) a novolak resin and a dissolution inhibitor; (ii) a polyvinylphenol resin or an acrylic resin and a photoacid generator; and (iii) a photoacid generator group as a side chain.
- the positive photosensitive material used in the present invention may include the above (i), the above (ii), or the above (iii).
- novolac resin those conventionally used in positive photosensitive materials can be used without limitation, and examples thereof include resins obtained by polymerizing phenols and aldehydes in the presence of an acid catalyst.
- the phenols include cresols such as phenol, o-cresol, m-cresol, and p-cresol; 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, and 2,6-xylenol.
- Xylenols such as 3,4-xylenol and 3,5-xylenol; o-ethylphenol, m-ethylphenol, p-ethylphenol, 2-isopropylphenol, 3-isopropylphenol, 4-isopropylphenol, o-butylphenol Alkylphenols such as m-butylphenol, p-butylphenol and p-tert-butylphenol; trialkylphenols such as 2,3,5-trimethylphenol and 3,4,5-trimethylphenol; resorcinol, catechol, hydro Polyhydric phenols such as non, hydroquinone monomethyl ether, pyrogallol, phloroglicinol; alkyl polyhydric phenols such as alkylresorcin, alkylcatechol, alkylhydroquinone (all alkyl groups have 1 to 4 carbon atoms); ⁇ - Examples include naphthol, ⁇ -nap
- phenols may be used alone or in combination of two or more.
- aldehydes include formaldehyde, paraformaldehyde, furfural, benzaldehyde, nitrobenzaldehyde, and acetaldehyde. These aldehydes may be used alone or in combination of two or more.
- the acid catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and phosphorous acid; organic acids such as formic acid, oxalic acid, acetic acid, diethylsulfuric acid, and paratoluenesulfonic acid; metal salts such as zinc acetate Etc.
- the weight average molecular weight of the novolak resin is not particularly limited, but is preferably 500 to 50,000, and more preferably 1,500 to 15,000 from the viewpoint of resolution and spinnability.
- “weight average molecular weight” means a molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
- those conventionally used as a photosensitive agent in a positive photosensitive material can be used without limitation.
- 1,2-naphthoquinonediazide-5-sulfonic acid ester, 1,2-naphthoic acid can be used.
- naphthoquinone diazide compounds such as quinonediazide-4-sulfonic acid ester, and 1,2-naphthoquinonediazide-5-sulfonic acid ester is preferable.
- the content of the dissolution inhibitor is usually 5 to 50 parts by weight, preferably 10 to 40 parts by weight with respect to 100 parts by weight of the novolak resin.
- polyvinyl phenol resin those conventionally used in positive photosensitive materials can be used without limitation.
- examples thereof include resins obtained by polymerizing hydroxystyrenes in the presence of a radical polymerization initiator. It is done.
- examples of the hydroxystyrenes include o-hydroxystyrene, m-hydroxystyrene, p-hydroxystyrene, 2- (o-hydroxyphenyl) propylene, 2- (m-hydroxyphenyl) propylene, 2- (p- Hydroxyphenyl) propylene and the like. These hydroxystyrenes may be used alone or in combination of two or more.
- radical polymerization initiator examples include organic peroxides such as benzoyl peroxide, dicumyl peroxide, and dibutyl peroxide; azobis compounds such as azobisisobutyronitrile and azobisvaleronitrile.
- the weight average molecular weight of the polyvinylphenol resin is not particularly limited, but is preferably 500 to 50,000, and more preferably 1,500 to 25,000 from the viewpoint of resolution and spinnability.
- acrylic resin those conventionally used in positive photosensitive materials can be used without limitation.
- a polymerizable monomer having a (meth) acryl group is polymerized in the presence of a radical polymerization initiator. Resin obtained by the above.
- the polymerizable monomer having the (meth) acrylic group include (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid propyl ester, and (meth) acrylic acid butyl ester.
- polymerizable monomers having a (meth) acryl group may be used alone or in combination of two or more.
- the radical polymerization initiator include organic peroxides such as benzoyl peroxide, dicumyl peroxide, and dibutyl peroxide; azobis compounds such as azobisisobutyronitrile and azobisvaleronitrile.
- the acrylic resin is a polymerizable styrene substituted at the ⁇ -position or aromatic ring such as styrene, vinyltoluene, ⁇ -methylstyrene, etc.
- Esters of vinyl alcohol such as acrylonitrile and vinyl-n-butyl ether
- Maleic acid monoesters such as maleic acid, maleic anhydride, monomethyl maleate, monoethyl maleate, monoisopropyl maleate
- fumaric acid cinnamic acid
- One or more polymerizable monomers such as ⁇ -cyanocinnamic acid, itaconic acid, and crotonic acid may be copolymerized.
- (meth) acryl means both “acryl” and “methacryl”.
- the weight average molecular weight of the acrylic resin is not particularly limited, but is preferably 500 to 500,000, and more preferably 1,500 to 100,000 from the viewpoint of resolution and spinnability.
- the polyvinyl phenol resin or acrylic resin preferably contains a structural unit having an alkali-soluble group protected by an acid labile protecting group in the side chain.
- the acid labile protecting group include a tert-butyl group, a tert-butoxycarbonyl group, a tert-butoxycarbonylmethyl group, a tert-amyloxycarbonyl group, a tert-amyloxycarbonylmethyl group, and 1,1-diethyl.
- Propyloxycarbonyl group 1,1-diethylpropyloxycarbonylmethyl group, 1-ethylcyclopentyloxycarbonyl group, 1-ethylcyclopentyloxycarbonylmethyl group, 1-ethyl-2-cyclopentenyloxycarbonyl group, 1-ethyl-2 -Cyclopentenyloxycarbonylmethyl group, 1-ethoxyethoxycarbonylmethyl group, 2-tetrahydropyranyloxycarbonylmethyl group, 2-tetrahydrofuranyloxycarbonylmethyl group, tetrahydrofuran-2-y Group, 2-methyl-tetrahydrofuran-2-yl group, tetrahydropyran-2-yl group, 2-methyl-tetrahydropyran-2-yl group.
- alkali-soluble group examples include a phenolic hydroxy group and a carboxy group.
- Polyvinylphenol resin or acrylic resin containing a structural unit having an alkali-soluble group protected by an acid-labile protecting group in the side chain is, for example, acid-labile protection on the alkali-soluble group of polyvinylphenol resin or acrylic resin. It can be produced by introducing the group chemically.
- the monomer corresponding to the structural unit which has the alkali-soluble group protected by the acid labile protecting group in the side chain is mixed with the raw material monomer of the polyvinyl phenol resin or the acrylic resin, and the resulting monomer mixture is mixed. It can also be produced by copolymerization.
- the photoacid generator is not particularly limited as long as it is a compound that generates an acid directly or indirectly by the action of light.
- diazomethane compound, onium salt compound, sulfonimide compound, nitrobenzyl compound, iron arene complex
- benzoin Examples include tosylate compounds, halogen-containing triazine compounds, cyano group-containing oxime sulfonate compounds, and naphthalimide compounds.
- the content of the photoacid generator is usually 0.1 to 50 parts by weight, preferably 3 to 30 parts by weight with respect to 100 parts by weight of the polyvinylphenol resin or acrylic resin.
- Polyvinylphenol resin or acrylic resin containing a structural unit having a photoacid-generating group in the side chain is obtained by, for example, mixing the above-mentioned photoacid generator as a monomer with a raw material monomer of polyvinylphenol resin or acrylic resin. It can be produced by copolymerizing the mixture.
- the weight average molecular weight of the polyvinylphenol resin containing a structural unit having a photoacid generator group in the side chain is not particularly limited, but is preferably 500 to 50,000, more preferably from the viewpoint of resolution and spinnability. 1,500 to 25,000.
- the weight average molecular weight of the acrylic resin containing a structural unit having a photoacid generating group in the side chain is not particularly limited, but is preferably 500 to 500,000, and more preferably 1 from the viewpoint of resolution and spinnability. , 500 to 10,000.
- the positive photosensitive material may be produced by a method known per se.
- a positive photosensitive material containing a novolac resin and a dissolution inhibitor positive photoresist
- a positive photosensitive material (positive photoresist) containing a polyvinylphenol resin or an acrylic resin and a photoacid generator is disclosed in Japanese Patent Publication No. 7-66184 and Japanese Patent Application Laid-Open No. 2007-79589.
- a positive photosensitive material containing a polyvinylphenol resin or an acrylic resin containing a structural unit having a photoacid-generating group in the side chain Patent
- Resist is disclosed in JP-A-9-189998, JP-A 2002-72483, JP-A 2010-85971, or JP-A 2010-25856. It can be prepared by the method described in JP-like.
- the negative photosensitive material used in the present invention is not particularly limited as long as it can be a fiber, and a known material conventionally used as a negative photoresist, a negative photosensitive resin composition or the like is used.
- a chemically amplified negative photosensitive material is preferable.
- the chemically amplified negative photosensitive material include (A) a structural unit having at least one organic group selected from a hydroxy group, a hydroxymethyl group, and an alkoxymethyl group having 1 to 5 carbon atoms in the side chain. (Preferably, a polymer compound capable of forming a crosslinked structure using an acid as a catalyst) and (B) a photoacid generator.
- the negative photosensitive material used in the present invention includes (A) a structural unit having at least one organic group selected from a hydroxy group, a hydroxymethyl group and an alkoxymethyl group having 1 to 5 carbon atoms in the side chain.
- a polymer compound hereinafter, also simply referred to as “component A”
- component A a polymer compound that and (B) a photoacid generator may be included.
- Component A includes a structural unit having at least one organic group selected from a hydroxy group, a hydroxymethyl group, and an alkoxymethyl group having 1 to 5 carbon atoms in the side chain, and an acid generated by a photoacid generator (H + ) As a catalyst, a reaction between at least one organic group selected from a hydroxy group, a hydroxymethyl group and an alkoxymethyl group having 1 to 5 carbon atoms results in bonding between polymer chains to form a crosslinked structure.
- a hydroxy group is particularly preferable from the viewpoint of reactivity.
- alkoxymethyl group having 1 to 5 carbon atoms may be either linear or branched, and specific examples thereof include methoxymethyl group, ethoxymethyl group, n-propoxymethyl group, Propoxymethyl group, n-butoxymethyl group, isobutoxymethyl group, sec-butoxymethyl group, tert-butoxymethyl group, n-pentoxymethyl group, isopentoxymethyl group, neopentoxymethyl group, tert-pentoxy Examples thereof include a methyl group, 1-ethylpropoxymethyl group, 2-methylbutoxymethyl group and the like.
- the number of carbon atoms of the alkoxymethyl group is preferably 1 to 4, more preferably 1 to 3.
- Component A is preferably (A1) general formula (1):
- R 1 represents a hydrogen atom or a methyl group
- Q 1 represents an ester bond or an amide bond
- R 2 is an alkyl group having 1 to 10 carbon atoms or 6 to 10 carbon atoms in which at least one hydrogen atom is substituted with a hydroxy group, a hydroxymethyl group or an alkoxymethyl group having 1 to 5 carbon atoms.
- An aromatic hydrocarbon group is shown.
- a polymer compound hereinafter also simply referred to as “component A1”) and / or (A2) a natural polymer (hereinafter also simply referred to as “component A2”). More preferably, component A is component A1 and / or component A2.
- R 1 represents a hydrogen atom or a methyl group.
- Q 1 represents an ester bond or an amide bond.
- R 2 is an alkyl group having 1 to 10 carbon atoms or 6 to 10 carbon atoms in which at least one hydrogen atom is substituted with a hydroxy group, a hydroxymethyl group or an alkoxymethyl group having 1 to 5 carbon atoms.
- An aromatic hydrocarbon group is shown.
- the “alkoxymethyl group having 1 to 5 carbon atoms” may be linear or branched, and specific examples thereof are the same as those described above, and suitable carbon atoms are the same as described above. It is.
- alkyl group having 1 to 10 carbon atoms may be linear or branched, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, Isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-ethylpropyl group, n-hexyl group, isohexyl group, 1,1-dimethylbutyl group 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, hexyl group, pentyl group, octyl group, nonyl group, decyl group and the like.
- the number of carbon atoms of the alkyl group is preferably 1-6, more preferably 1-4.
- Examples of the aromatic hydrocarbon group having 6 to 10 carbon atoms in R 2 include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
- R 2 preferably has at least one hydrogen atom from the viewpoint of acting as a reactive crosslinking reaction site using Component B as a catalyst when a fiber formed using a negative photosensitive material is exposed.
- 1 to 10 carbon atoms (more preferably 1 to 6, particularly preferably 1 to 4) substituted with a hydroxy group, a hydroxymethyl group or an alkoxymethyl group having 1 to 5 carbon atoms (more preferably a hydroxy group)
- R 1 is a hydrogen atom or a methyl group
- Q 1 is an ester bond
- R 2 is substituted with at least one hydrogen atom by a hydroxy group.
- the alkyl group is preferably an alkyl group having 1 to 10 carbon atoms (more preferably 1 to 6, particularly preferably 1 to 4).
- the structural unit represented by the general formula (1) is preferably a structural unit represented by the general formula (1A).
- Component A1 may contain one type of structural unit represented by general formula (1), or may contain two or more types.
- Component A1 may contain structural units other than the structural unit represented by General Formula (1) as long as the object of the present invention is not impaired, but is represented by General Formula (1) for all structural units of Component A1.
- the content ratio of the structural unit is preferably 5 mol% or more, more preferably 15 mol% or more from the viewpoint of efficiently performing the crosslinking reaction.
- Component A1 is further represented by general formula (2):
- R 3 represents a hydrogen atom or a methyl group
- R 4 and R 5 may be the same or different and each represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may be substituted with a hydroxy group or a carboxy group.
- Component A1 may contain one type of structural unit represented by general formula (2), or may contain two or more types.
- the “alkyl group having 1 to 4 carbon atoms” in R 4 and R 5 in the general formula (2) may be linear or branched, and specific examples thereof include a methyl group, an ethyl group, n -Propyl group, isopropyl group, n-butyl group and isobutyl group can be mentioned.
- “may be substituted with a hydroxy group or a carboxy group” means that part or all of the hydrogen atoms contained in the above “alkyl group having 1 to 4 carbon atoms” are substituted with a hydroxy group or a carboxy group. Indicates that it may be.
- R 3 is more preferably a hydrogen atom or a methyl group, and both R 4 and R 5 are more preferably a methyl group.
- the weight average molecular weight of component A1 is preferably in the range of 1,000 to 1,000,000, more preferably in the range of 5,000 to 500,000, particularly preferably from the viewpoint of appropriate fiber formation. It is in the range of 10,000 to 200,000.
- Component A1 may be used alone or in combination of two or more.
- Component A1 can be produced by a method known per se or a method analogous thereto.
- a monomer corresponding to each structural unit (a monomer corresponding to the structural unit represented by the general formula (1), a structural unit other than the structural unit represented by the general formula (1) (preferably the general formula The monomer corresponding to the structural unit represented by (2)) in a suitable solvent (eg, propylene glycol monoethyl ether, etc.) and a suitable polymerization initiator (eg, 2,2′-azobis).
- a suitable solvent eg, propylene glycol monoethyl ether, etc.
- a suitable polymerization initiator eg, 2,2′-azobis
- Examples of the monomer corresponding to the structural unit represented by the general formula (1) include 2-hydroxyethyl (meth) acrylate (for example, a compound having CAS number: 868-77-9), 2-hydroxypropyl ( (Meth) acrylate (for example, a compound having CAS number: 923-26-2), 4-hydroxybutyl (meth) acrylate (for example, a compound having CAS number: 2478-10-6), N-hydroxymethyl (meth) acrylamide ( For example, a compound having CAS number: 923-02-4), N- (2-hydroxyethyl) (meth) acrylamide (for example, a compound having CAS number: 5238-56-2), N- (2-hydroxypropyl) ( (Meth) acrylamide (for example, a compound having CAS number: 26099-09-2), p-hydroxy (meth) acryl Examples include anilide (for example, a compound having CAS number: 19243-95-9), N-methoxymethyl (meth) acrylamide, N-
- the (meth) acrylate compound refers to both an acrylate compound and a methacrylate compound.
- Examples of the monomer corresponding to the structural unit represented by the general formula (2) include N-isopropyl (meth) acrylamide, N- (1-methylpropyl) (meth) acrylamide, and N- (1-ethylpropyl). ) (Meth) acrylamide, N- (1-propylbutyl) (meth) acrylamide, N- (1-butylpentyl) (meth) acrylamide, 2-carboxyisopropyl (meth) acrylamide, 2-hydroxyisopropyl (meth) acrylamide, etc.
- the fiber of the present invention has temperature responsiveness as shown in Examples described later.
- the content ratio of the structural unit represented by the general formula (2) with respect to all the structural units of the component A1 is preferably 60 to 95 mol%.
- the fiber of this invention can form the fiber pattern from which a magnitude
- the said fiber and fiber pattern are (i) water or a chemical
- Component A1 may further contain an arbitrary structural unit in addition to the structural unit represented by the general formula (1) and the structural unit represented by the general formula (2).
- Such arbitrary structural unit corresponds to the monomer corresponding to the structural unit represented by the general formula (1) and the structural unit represented by the general formula (2) without impairing the performance of the fiber of the present invention.
- Examples of such monomers include (meth) acrylic acid esters having 1 to 10 carbon atoms in the alkyl group, benzyl (meth) acrylate, acrylamides (eg, acrylamide, N-alkylacrylamide, N- Arylacrylamide, N, N-dialkylacrylamide, N, N-diarylacrylamide, N-methyl-N-phenylacrylamide, N-2-acetamidoethyl-N-acetylacrylamide, etc.), methacrylamides (eg, methacrylamide, N -Alkyl methacrylamide, N-aryl methacrylamide, N, N-dialkyl methacrylamide, N, N-diaryl methacrylamide, N-methyl-N-phenyl methacrylamide, N-ethyl-N-phenyl methacrylamide, etc.) It is done.
- acrylamides eg, acrylamide, N-alkylacrylamide, N- Arylacrylamide, N
- component A1 may be used alone or in combination of two or more.
- a (meth) acrylic acid ester having 1 to 10 carbon atoms in the alkyl group having a hydrophobic side chain or benzyl (meth) acrylate is used, the hydrophilicity / hydrophobicity balance of component A1 can be adjusted. it can.
- Component A2 is a natural polymer containing a structural unit having at least one organic group selected from a hydroxy group, a hydroxymethyl group and an alkoxymethyl group having 1 to 5 carbon atoms in the side chain (preferably using an acid as a catalyst).
- the polymer is not particularly limited as long as it is a natural polymer capable of forming a crosslinked structure.
- Component A2 may be a modified natural polymer obtained by causing a reaction such as hydrolysis to occur in a natural polymer.
- Component A2 may be a biopolymer (including a modified biopolymer). In the present specification, “biopolymer” is a general term for living-derived polymers.
- Component A2 is preferably dextrin which is a hydrolyzate of starch or glycogen, and derivatives thereof.
- the dextrin derivative refers to a derivative in which part or all of the dextrin hydroxy group is substituted with a substituent (eg, acetoxy group, benzoyl group, etc.).
- the weight average molecular weight of component A2 is preferably 1,000 to 5,000,000, and more preferably 1,000 to 100,000.
- Component A2 may be used alone or in combination of two or more.
- Component B is not particularly limited as long as it is a compound that generates an acid directly or indirectly by the action of light.
- diazomethane compound, onium salt compound, sulfonimide compound, nitrobenzyl compound, iron arene complex, benzoin tosylate Examples thereof include compounds, halogen-containing triazine compounds, cyano group-containing oxime sulfonate compounds, and naphthalimide compounds.
- diazomethane compound examples include bis (p-toluenesulfonyl) diazomethane, bis (1,1-dimethylethylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, and bis (2,4-dimethylphenylsulfonyl) diazomethane. .
- onium salt compound examples include bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate, triphenylsulfonium trifluoromethanesulfonate, and the like.
- sulfonimide compound examples include N- (trifluoromethanesulfonyloxy) succinimide, N- (nonafluoro-normalbutanesulfonyloxy) succinimide, N- (camphorsulfonyloxy) succinimide, N- (trifluoromethanesulfonyloxy) naphthalimide, and the like. Is mentioned.
- nitrobenzyl compound examples include 2-nitrobenzyl p-toluenesulfonate, 2,6-dinitrobenzyl p-toluenesulfonate, 2,4-dinitrobenzyl p-toluenesulfonate, and the like.
- iron arene complex examples include biscyclopentadienyl- ( ⁇ 6-isopropylbenzene) -iron (II) hexafluorophosphate.
- benzoin tosylate compound examples include benzoin tosylate and ⁇ -methylbenzoin tosylate.
- halogen-containing triazine compound examples include 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxynaphthyl) -4,6-bis. (Trichloromethyl) -1,3,5-triazine, 2- [2- (2-furyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- ( 5-methyl-2-furyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine and the like.
- Examples of the cyano group-containing oxime sulfonate compound include ⁇ - (methylsulfonyloxyimino) -4-methoxybenzyl cyanide, ⁇ - (trifluoromethylsulfonyloxyimino) -4-methoxybenzyl cyanide, ⁇ - (ethyl And sulfonyloxyimino) -4-methoxybenzyl cyanide, ⁇ - (propylsulfonyloxyimino) -4-methylbenzyl cyanide, and the like.
- naphthalimide compounds include 6- (n-butylthio) -2- (perfluorobutylsulfonyloxy) -2-aza-2H-phenalene-1,3-dione, 6- (n-butylthio) -2 -(Trifluoromethylsulfonyloxy) -2-aza-2H-phenalene-1,3-dione and 6- (isopropylthio) -2- (trifluoromethylsulfonyloxy) -2-aza-2H-phenalene-1, 3-dione and the like can be mentioned.
- Component B is preferably a cyano group-containing oxime sulfonate compound, and particularly preferably ⁇ - (methylsulfonyloxyimino) -4-methoxybenzyl cyanide.
- Component B may be used alone or in combination of two or more.
- Component B can be produced by a method known per se or a method analogous thereto. Moreover, you may use a commercial item.
- component C The negative photosensitive material containing component A and component B may further contain (C) a cross-linking agent (hereinafter also simply referred to as “component C”).
- component C a cross-linking agent
- Component C includes at least one organic compound selected from a hydroxy group, a hydroxymethyl group and an alkoxymethyl group having 1 to 5 carbon atoms, which is contained in Component A, using the acid (H + ) generated by Component B as a catalyst.
- Any compound having at least two organic groups capable of reacting with a group in one molecule can be used without particular limitation.
- a compound having 3 to 4 organic groups in one molecule is preferable, and a compound having 4 organic groups in one molecule is more preferable.
- aminoplast crosslinking agents such as 1,3,4,6-tetrakis (methoxymethyl) glycoluril and 1,3,4,6-tetrakis (butoxymethyl) glycoluril; 2,2-bis Phenoplast crosslinking agents such as (4-hydroxy-3,5-dihydroxymethylphenyl) propane; isocyanate crosslinking agents such as hexamethylene diisocyanate; vinyl ether crosslinking agents such as 1,4-bis (vinyloxy) butane;
- Component C is preferably an aminoplast crosslinker, preferably 1,3,4,6-tetrakis (methoxymethyl) glycoluril or 1,3,4,6-tetrakis (butoxymethyl) glycoluril, and more 1,3,4,6-tetrakis (methoxymethyl) glycoluril is preferred.
- Component C may be used alone or in combination of two or more.
- Component C can be produced by a method known per se or a method analogous thereto, or a commercially available product may be used.
- the negative photosensitive material contains component C, so that when component B generates an acid (H + ), not only the crosslinked structure due to the reaction between the polymer chains of component A but also the polymer chain of component A becomes component C.
- the reaction of three-dimensional crosslinking proceeds via
- a commercially available product may be used as the negative photosensitive material.
- the fiber of the present invention is preferably obtained by spinning a positive or negative photosensitive material and a composition for producing a photosensitive fiber containing a solvent (hereinafter also simply referred to as “the composition of the present invention”). Manufactured.
- the solvent is not particularly limited as long as it can uniformly dissolve or disperse the positive or negative photosensitive material and does not react with each material, but a polar solvent is preferable.
- the polar solvent include water, methanol, ethanol, 2-propanol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, acetone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and the like. From the viewpoint of easy spinning of the composition for use, propylene glycol monomethyl ether or propylene glycol monomethyl ether acetate is preferred.
- Solvents may be used alone or in combination of two or more.
- the content of the positive type or negative type photosensitive material in the composition of the present invention is preferably from 60 to 60 on the basis of the solid content of the composition for producing photosensitive fiber excluding the solvent from the viewpoint of resolution and spinnability. It is 100% by weight, more preferably 60 to 95% by weight, and particularly preferably 70 to 90% by weight.
- the content ratio of component A in the composition of the present invention is the production of fibers having an appropriate thickness, and the composition of the present invention.
- the content is preferably 1 to 90% by weight, more preferably 5 to 70% by weight.
- the content ratio of component B in the composition of the present invention is determined in view of maintaining the characteristics of the temperature-responsive resin, From the viewpoint of spinnability, 0.1 to 50% by weight is preferable, 0.5 to 40% by weight is more preferable, and 1 to 20% by weight is particularly preferable.
- the weight ratio of component A to component B (weight of component A / weight of component B) in the composition of the present invention is From the viewpoint of reaction efficiency between component A and component B, 5 to 50 is preferable, and 10 to 40 is more preferable.
- the content of component C in the composition of the present invention is 0.1 to 15 from the viewpoint of reaction efficiency with component A. % By weight is preferred, 0.3 to 10% by weight is more preferred, and 0.5 to 5% by weight is particularly preferred.
- composition of the present invention may contain, as necessary, additives that are usually used in the composition for fiber production, in addition to the positive type or negative type photosensitive material, as long as the object of the present invention is not significantly impaired.
- additives include a surfactant, a rheology modifier, a drug, and fine particles.
- composition of the present invention is prepared by mixing a positive type or negative type photosensitive material in a solvent, or further mixing the above additives.
- the mixing method is not particularly limited, and may be mixed by a method known per se or a method analogous thereto.
- the method for spinning the composition of the present invention is not particularly limited as long as it can form fibers, and examples thereof include a melt blow method, a composite melt spinning method, an electrospinning method, and the like. From the viewpoint of the ability to form (fiber), the electrospinning method is preferred.
- the electrospinning method is a known spinning method and can be performed using a known electrospinning apparatus.
- Speed discharge speed
- the discharge rate is usually from 0.1 to 100 ⁇ l / min, preferably from 0.5 to 50 ⁇ l / min, more preferably from 1 to 20 ⁇ l / min.
- the applied voltage is usually 0.5 to 80 kV, preferably 1 to 60 kV, more preferably 3 to 40 kV.
- the discharge distance is usually 1 to 60 cm, preferably 2 to 40 cm, more preferably 3 to 30 cm.
- the electrospinning method may be performed using a drum collector or the like.
- a drum collector or the like By using a drum collector or the like, the orientation of the fibers can be controlled. For example, a nonwoven fabric or the like can be obtained when the drum is rotated at a low speed, and an oriented fiber sheet or the like can be obtained when the drum is rotated at a high speed. This is effective when manufacturing an etching mask material or the like when processing a semiconductor material (eg, a substrate).
- the fiber manufacturing method of the present invention may further include a step of heating the spun fiber at a specific temperature in addition to the above-described spinning step.
- the temperature at which the spun fiber is heated is usually in the range of 70 to 300 ° C, preferably 80 to 250 ° C, more preferably 90 to 200 ° C.
- the temperature is less than 70 ° C., for example, when the composition of the present invention contains a negative photosensitive material containing components A and B, the crosslinking reaction between components A becomes insufficient, and the produced fibers Organic solvent resistance tends to be low.
- the temperature exceeds 300 ° C., for example, when the composition of the present invention contains a negative photosensitive material containing components A and B, the component A is decomposed or dissolved by heat to form fibers. Can not.
- the method for heating the spun fiber is not particularly limited as long as it can be heated at the above heating temperature, and can be appropriately heated by a method known per se or a method analogous thereto.
- Specific examples of the heating method include a method using a hot plate or an oven in the atmosphere.
- the time for heating the spun fiber can be appropriately set according to the heating temperature and the like, but from the viewpoint of the crosslinking reaction rate and production efficiency, it is preferably 1 minute to 48 hours, more preferably 5 minutes to 36 hours, and more preferably 10 minutes. ⁇ 24 hours is particularly preferred.
- the fiber of the present invention has photosensitivity. Therefore, it can be used to produce an etching mask material, a medical material, a cosmetic material, or the like when processing a semiconductor material (eg, a substrate).
- a semiconductor material eg, a substrate
- nanofibers and microfibers are etching masks with pores, cell culture substrates with patterns (biomimetic substrates, for example, substrates for co-culture with vascular cells to prevent the deterioration of cultured cells, etc. ) And the like.
- the fiber of the present invention is formed by forming a fiber layer in which the fibers are assembled and subjecting the fiber layer to lithography processing directly. Is a positive photosensitive fiber, the exposed portion of the fiber is solubilized and removed to form a fiber pattern in which the unexposed portion remains, while the fiber of the present invention is a negative photosensitive fiber. The unexposed part is removed, and the fiber pattern in which the fiber in the exposed part is insolubilized by crosslinking is formed.
- a lithography process to the fiber layer of nanofibers and / or microfibers, a complicated and fine fiber pattern can be formed.
- the fibers in the fiber layer are aggregated in a one-dimensional, two-dimensional or three-dimensional state, and the aggregated state may or may not have regularity.
- the “pattern” in the present invention refers to what is recognized as a shape of a spatial object such as a design or a pattern mainly composed of a straight line, a curve, and a combination thereof.
- the pattern may be of any shape, and the pattern itself may or may not have regularity.
- the present invention includes a first step of forming a fiber layer of photosensitive fibers (preferably, a fiber of the present invention) on a substrate, a second step of exposing the fiber layer through a mask, and the fiber layer.
- a method of forming a fiber pattern is provided, which includes a third step of developing with a developer. This method can also be referred to as a fiber pattern manufacturing method.
- the said method since the base material with a fiber pattern can be manufactured, the said method can also be called the manufacturing method of a base material with a fiber pattern.
- the first step is a step of forming a fiber layer made of photosensitive fibers (preferably, the fibers of the present invention) on the substrate.
- the method for forming a fiber layer with photosensitive fibers (preferably, the fiber of the present invention) on the substrate is not particularly limited.
- the fiber layer is formed by directly spinning the composition of the present invention on the substrate. May be.
- the base material is not particularly limited as long as the base material is a material that does not cause deformation or modification to the lithography process.
- Cloth woven fabric, knitted fabric, non-woven fabric, yarn and the like can be used.
- the basis weight after the pattern formation of the fiber in the fiber layer is not particularly limited.
- the thickness is 5 ⁇ m.
- the amount of fiber layer of about ⁇ 50 ⁇ m may be formed.
- the second step is a step of exposing the fiber formed on the substrate in the first step through a mask.
- a mask For example, g-line (wavelength 436 nm), h-line (wavelength 405 nm), i-line (wavelength 365 nm), mercury lamp, various lasers (eg, KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm) F2 excimer laser (excimer laser such as a wavelength of 157 nm), LED, or the like.
- KrF excimer laser wavelength 248 nm
- ArF excimer laser wavelength 193 nm
- F2 excimer laser excimer laser such as a wavelength of 157 nm
- LED or the like.
- the fiber After exposing the photosensitive fiber, if necessary, the fiber may be heated (Post Exposure Bake: PEB).
- PEB Post Exposure Bake
- the fiber is heated, for example, when the fiber is a negative photosensitive fiber, the exposed portion is increased in molecular weight by the action of the acid generated by exposure, and the developer with the unexposed portion is developed. The effect is that the solubility difference is widened and the resolution contrast is improved.
- the heating temperature can be appropriately set according to the heating time and the like, but is usually 80 to 200 ° C.
- the heating time can be appropriately set according to the heating temperature and the like, but is usually 1 to 20 minutes.
- the third step is a step of developing the fiber that has been exposed in the second step and heated as necessary with a developer.
- a developer usually used for pattern formation of the photosensitive composition can be used as appropriate.
- the fiber of the present invention contains a negative photosensitive material containing components A to C.
- a developer capable of dissolving the component B contained in the fiber of the present invention, the uncrosslinked component C and the like is preferable.
- the developer used in the third step more preferably contains water or an organic solvent.
- Water may be water alone or various alkaline aqueous solutions (eg, inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia; ethylamine, N-propylamine, etc.)
- Primary amines such as diethylamine and di-N-butylamine; tertiary amines such as triethylamine and methyldiethylamine; alcohol amines such as dimethylethanolamine and triethanolamine; tetramethylammonium hydroxide and tetraethyl Quaternary ammonium salts such as ammonium hydroxide and choline; cyclic amines such as pyrrole and piperidine;
- the organic solvent include alcohols (eg, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol,
- the developer used in the third step is preferably water, an aqueous solution of ethyl lactate or tetramethylammonium hydroxide, and particularly preferably water or ethyl lactate.
- the pH of the developer is preferably near neutral (eg, 6 to 8) or basic (eg, 9 to 14), and the developer may contain an additive such as a surfactant.
- the fiber pattern of the present invention produced on the substrate through the above steps is used together with the substrate or used separately from the substrate.
- the substrate When the fiber pattern of the present invention is used together with a substrate, the substrate (that is, the substrate having the fiber pattern of the present invention on the surface) is formed of nanofibers and / or microfibers. Can be suitably used as an etching mask, a cell culture scaffold material or the like used for processing a substrate such as a semiconductor.
- a base material is glass or a plastics.
- the fiber pattern of the present invention comprises a negative photosensitive material containing components A and B, and a fiber pattern formed by fibers in which the whole or a part of component A is component A2 (preferably, a biopolymer).
- component A2 preferably, a biopolymer
- the substrate having the fiber pattern on the surface can be suitably used as a wound dressing material, a face mask (for cosmetics and hygiene management) and the like.
- the fiber or fiber pattern of the present invention (preferably a fiber containing a negative photosensitive material containing components A and B and component A is component A1, or a fiber formed from the fiber. Pattern; a fiber containing a negative photosensitive material containing components A and B, and the whole or a part of component A is component A2 (more preferably, biopolymer), or a fiber pattern formed by the fibers A cell culture scaffold material comprising a) is also provided.
- the weight average molecular weight of the polymer was measured by gel permeation chromatography (GPC).
- the apparatus and measurement conditions used for the measurement are as follows.
- the production of the fiber by the electrospinning method was carried out using Esplayer ES-2000 (manufactured by Fuence Co., Ltd.).
- the composition for producing fibers was poured into a 1 ml lock-type glass syringe (manufactured by As One Co., Ltd.), and a lock-type metal needle 24G (manufactured by Musashi Engineering Co., Ltd.) having a needle length of 13 mm was attached.
- the distance (discharge distance) from the tip of the needle to the substrate that receives the fibers was 20 cm.
- the applied voltage was 25 kV, and the ejection speed was 10 ⁇ l / min.
- the content ratio of the structural unit derived from N-isopropylacrylamide to the total structural unit of the polymer 1 is 80 mol%, and the structural unit derived from 2-hydroxyethyl acrylate The content of is 20 mol%.
- the weight average molecular weight of the polymer 1 was 19,000 in terms of polystyrene.
- a novolak resin contained in a thick film positive resist product name: PMER (solid content concentration 40%) manufactured by Tokyo Ohka Kogyo Co., Ltd. was used as it was.
- the weight average molecular weight of the polymer 2 was 15,000 in terms of polystyrene.
- Example 1 ⁇ - (Methylsulfonyloxyimino) -4-methoxybenzyl cyanide (trade name: PAI-1001, manufactured by Midori Chemical Co., Ltd.) 0.05 g, 1,3,4,6- Tetrakis (methoxymethyl) glycoluril 0.015g and propylene glycol monomethyl ether 0.597g were added, and the negative photosensitive fiber manufacturing composition of Example 1 was prepared.
- the content ratio of the polymer 1 in the negative photosensitive fiber production composition is about 40% by weight.
- Comparative Example 1 A negative photosensitive fiber production composition of Comparative Example 1 was prepared in the same manner as in Example 1 except that ⁇ - (methylsulfonyloxyimino) -4-methoxybenzyl cyanide was not added.
- Example 2 Polymer 2 (8 g) and 1,2-naphthoquinonediazide-5-sulfonic acid ester (2 g) were dissolved in propylene glycol monomethyl ether acetate (15 g), and the composition for producing positive photosensitive fiber of Example 2 was obtained. Prepared. The concentration of solid content (components other than the solvent) in the positive photosensitive fiber production composition of Example 2 is 40% by weight.
- SEM scanning electron microscope
- FIG. 3 An SEM photograph of the fiber pattern is shown in FIG. 3. Moreover, the SEM photograph of the enlarged view of the partial cross section of the said fiber pattern is shown in FIG. 3, and the SEM photograph (partial enlarged view of the fiber part of FIG. 3) of the fiber part of the said fiber pattern is shown in FIG.
- a patterning test was conducted in the same manner as in Example 1 using the negative photosensitive fiber production composition of Comparative Example 1. As a result of exposing the exposed fiber layer to water, the fiber was dissolved in water. No pattern was obtained.
- ⁇ Patterning test (2)> The composition for producing positive photosensitive fiber of Example 2 was spun onto an aluminum film (thickness 25 ⁇ m) by an electrospinning method to form a fiber layer (fiber diameter: about 1 to 5 ⁇ m). Next, the fiber layer was heated in an oven at 140 ° C. for 2 minutes to remove the residual solvent in the fiber layer, and the fiber was thermally melted to improve the adhesion between the fiber layer and the aluminum film. Optical micrographs of the fiber layer before and after oven heating are shown in FIGS. 5 and 6, respectively. The heated fiber layer was contact-exposed through a photomask using an ultrahigh pressure mercury lamp as a light source. The exposure wavelength was broadband exposure from 350 nm to 450 nm.
- the exposure amount was measured at the i-line wavelength and was 1000 mJ / cm 2 .
- the exposed fiber layer was exposed to a 2.38% tetramethylammonium hydroxide aqueous solution for 2 minutes and then rinsed with pure water for 5 minutes. Then, it was dried by heating in an oven at 140 ° C. for 5 minutes to obtain a fiber pattern having a width of 400 ⁇ m ⁇ length of 2000 ⁇ m.
- FIG. 7 shows an SEM photograph of the fiber layer before exposure
- FIG. 8 shows an SEM photograph of the fiber pattern.
- Example 1 The negative photosensitive fiber production composition of Example 1 was spun onto a silicon wafer by electrospinning to form a fiber layer (fiber diameter: about 1 to 5 ⁇ m). Next, the fiber layer was immersed in water at 20 ° C. and 40 ° C. for 10 minutes, and then the state of the fiber was observed with an optical microscope (FIGS. 9 and 10). As a result of observation, the fiber swelled at 20 ° C., and the fiber contracted at 40 ° C., indicating that the fiber has temperature responsiveness.
- the fiber pattern formed using the photosensitive fiber which can produce a complicated and fine resist pattern simply, this photosensitive fiber, and those manufacturing methods can be provided.
- the base material which has a complicated and fine fiber pattern on the surface can be provided.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Materials For Photolithography (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Nonwoven Fabrics (AREA)
- Artificial Filaments (AREA)
Abstract
Description
即ち、本発明は以下の通りである。
[2]ポジ型感光性材料が、(i)ノボラック樹脂及び溶解抑制剤を含むか、(ii)ポリビニルフェノール樹脂又はアクリル樹脂、及び光酸発生剤を含むか、あるいは(iii)光酸発生基を側鎖に有する構造単位を含むポリビニルフェノール樹脂又はアクリル樹脂を含む、[1]記載の繊維。
[3]ネガ型感光性材料が、(A)ヒドロキシ基、ヒドロキシメチル基及び炭素原子数1~5のアルコキシメチル基から選ばれる少なくとも1種の有機基を側鎖に有する構造単位を含む高分子化合物、及び(B)光酸発生剤を含む、[1]又は[2]記載の繊維。
[4]感光性繊維である、[1]~[3]のいずれか1つに記載の繊維。
[5]ナノ繊維及び/又はマイクロ繊維である、[1]~[4]のいずれか1つに記載の繊維。
[6]ポジ型又はネガ型感光性材料、並びに、溶剤を含有する、感光性繊維製造用組成物。
[7]ポジ型感光性材料が、(i)ノボラック樹脂及び溶解抑制剤を含むか、(ii)ポリビニルフェノール樹脂又はアクリル樹脂、及び光酸発生剤を含むか、あるいは(iii)光酸発生基を側鎖に有する構造単位を含むポリビニルフェノール樹脂又はアクリル樹脂を含む、[6]記載の組成物。
[8]ネガ型感光性材料が、(A)ヒドロキシ基、ヒドロキシメチル基及び炭素原子数1~5のアルコキシメチル基から選ばれる少なくとも1種の有機基を側鎖に有する構造単位を含む高分子化合物、及び(B)光酸発生剤を含む、[6]又は[7]記載の組成物。
[9][6]~[8]のいずれか1つに記載の組成物を紡糸する工程を含む、感光性繊維の製造方法。
[10]上記紡糸が、電界紡糸である、[9]記載の方法。
[11]紡糸した繊維を、70~300℃の範囲で加熱する工程を含む、[9]又は[10]記載の方法。
[12]基材上に、感光性繊維による繊維層を形成する第1工程、
該繊維層を、マスクを介して露光する第2工程、及び
該繊維層を、現像液により現像する第3工程
を含む、繊維パターンの形成方法。
[13]上記感光性繊維が、[1]~[5]のいずれか1つに記載の繊維である、[12]に記載の方法。
[14]第2工程において、露光した後に繊維を加熱する、[12]又は[13]記載の方法。
[15]上記現像液が、水又は有機溶媒を含む、[12]~[14]のいずれか1つに記載の方法。
[16][1]~[5]のいずれか1つに記載の繊維を用いて形成された繊維パターン。
[17]表面に[16]記載の繊維パターンを有する基材。
[18]基材上に、感光性繊維による繊維層を形成する第1工程、
該繊維層を、マスクを介して露光する第2工程、及び
該繊維層を、現像液により現像する第3工程
を含む、繊維パターンの製造方法。
[19]上記感光性繊維が、[1]~[5]のいずれか1つに記載の繊維である、[18]に記載の方法。
[20]第2工程において、露光した後に繊維を加熱する、[18]又は[19]記載の方法。
[21]上記現像液が、水又は有機溶媒を含む、[18]~[20]のいずれか1つに記載の方法。
[22]基材上に、感光性繊維による繊維層を形成する第1工程、
該繊維層を、マスクを介して露光する第2工程、及び
該繊維層を、現像液により現像する第3工程
を含む、繊維パターン付き基材の製造方法。
[23]上記感光性繊維が、[1]~[5]のいずれか1つに記載の繊維である、[22]に記載の方法。
[24]第2工程において、露光した後に繊維を加熱する、[22]又は[23]記載の方法。
[25]上記現像液が、水又は有機溶媒を含む、[22]~[24]のいずれか1つに記載の方法。
また本発明によれば、上記の感光性繊維を製造するための組成物(感光性繊維製造用組成物)を提供できる。
また本発明によれば、上記の繊維パターンを有する基材を提供できる。
本発明の繊維は、ポジ型又はネガ型感光性材料を含むことを主たる特徴とする。
すなわち、本発明の繊維は、好ましくはポジ型又はネガ型感光性材料を少なくとも含む原料組成物を紡糸(より好ましくは電界紡糸)して得られる繊維である。
本発明において、ポジ型感光性材料を含む繊維を「ポジ型感光性繊維」と称し、ネガ型感光性材料を含む繊維を「ネガ型感光性繊維」と称する場合がある。
上記のフェノール類としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール等のクレゾール類;2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等のキシレノール類;o-エチルフェノール、m-エチルフェノール、p-エチルフェノール、2-イソプロピルフェノール、3-イソプロピルフェノール、4-イソプロピルフェノール、o-ブチルフェノール、m-ブチルフェノール、p-ブチルフェノール、p-tert-ブチルフェノール等のアルキルフェノール類;2,3,5-トリメチルフェノール、3,4,5-トリメチルフェノール等のトリアルキルフェノール類;レゾルシノール、カテコール、ハイドロキノン、ハイドロキノンモノメチルエーテル、ピロガロール、フロログリシノール等の多価フェノール類;アルキルレゾルシン、アルキルカテコール、アルキルハイドロキノン等のアルキル多価フェノール類(いずれのアルキル基も炭素数1~4である);α-ナフトール、β-ナフトール、ヒドロキシジフェニル、ビスフェノールA等が挙げられる。これらのフェノール類は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記アルデヒド類としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、フルフラール、ベンズアルデヒド、ニトロベンズアルデヒド、アセトアルデヒド等が挙げられる。これらのアルデヒド類は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記酸触媒としては、例えば、塩酸、硫酸、硝酸、リン酸、亜リン酸等の無機酸類;蟻酸、シュウ酸、酢酸、ジエチル硫酸、パラトルエンスルホン酸等の有機酸類;酢酸亜鉛等の金属塩類等が挙げられる。
本発明において「重量平均分子量」とは、ゲルパーミエーションクロマトグラフィー(GPC)にて測定される、ポリスチレン換算の分子量をいう。
上記のヒドロキシスチレン類としては、例えば、o-ヒドロキシスチレン、m-ヒドロキシスチレン、p-ヒドロキシスチレン、2-(o-ヒドロキシフェニル)プロピレン、2-(m-ヒドロキシフェニル)プロピレン、2-(p-ヒドロキシフェニル)プロピレン等が挙げられる。これらのヒドロキシスチレン類は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記のラジカル重合開始剤としては、例えば、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジブチルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル、アゾビスバレロニトリル等のアゾビス化合物等が挙げられる。
上記の(メタ)アクリル基を有する重合性単量体としては、例えば、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸プロピルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸ペンチルエステル、(メタ)アクリル酸ヘキシルエステル、(メタ)アクリル酸ヘプチルエステル、(メタ)アクリル酸オクチルエステル、(メタ)アクリル酸2-エチルヘキシルエステル、(メタ)アクリル酸ノニルエステル、(メタ)アクリル酸デシルエステル、(メタ)アクリル酸ウンデシルエステル、(メタ)アクリル酸ドデシルエステル、(メタ)アクリル酸トリフルオロエチルエステル、及び(メタ)アクリル酸テトラフルオロプロピルエステル等の(メタ)アクリル酸アルキルエステル;ジアセトンアクリルアミド等のアクリルアミド;(メタ)アクリル酸テトラヒドロフルフリルエステル、(メタ)アクリル酸ジアルキルアミノエチルエステル、(メタ)アクリル酸グリシジルエステル、(メタ)アクリル酸、α-ブロモ(メタ)アクリル酸、α-クロル(メタ)アクリル酸、β-フリル(メタ)アクリル酸、及びβ-スチリル(メタ)アクリル酸等が挙げられる。これらの(メタ)アクリル基を有する重合性単量体は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記のラジカル重合開始剤としては、例えば、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジブチルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル、アゾビスバレロニトリル等のアゾビス化合物等が挙げられる。
また、上記アクリル樹脂は、(メタ)アクリル基を有する重合性単量体に加えて、スチレン、ビニルトルエン、α-メチルスチレン等のα-位又は芳香族環において置換されている重合可能なスチレン誘導体;アクリロニトリル、ビニル-n-ブチルエーテル等のビニルアルコールのエステル類;マレイン酸、マレイン酸無水物、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノイソプロピル等のマレイン酸モノエステル;フマール酸、ケイ皮酸、α-シアノケイ皮酸、イタコン酸、クロトン酸等の重合性単量体の1種又は2種以上が共重合されていてもよい。
上記の酸不安定保護基としては、例えば、tert-ブチル基、tert-ブトキシカルボニル基、tert-ブトキシカルボニルメチル基、tert-アミロキシカルボニル基、tert-アミロキシカルボニルメチル基、1,1-ジエチルプロピルオキシカルボニル基、1,1-ジエチルプロピルオキシカルボニルメチル基、1-エチルシクロペンチルオキシカルボニル基、1-エチルシクロペンチルオキシカルボニルメチル基、1-エチル-2-シクロペンテニルオキシカルボニル基、1-エチル-2-シクロペンテニルオキシカルボニルメチル基、1-エトキシエトキシカルボニルメチル基、2-テトラヒドロピラニルオキシカルボニルメチル基、2-テトラヒドロフラニルオキシカルボニルメチル基、テトラヒドロフラン-2-イル基、2-メチルテトラヒドロフラン-2-イル基、テトラヒドロピラン-2-イル基、2-メチルテトラヒドロピラン-2-イル基等が挙げられる。
上記のアルカリ可溶基としては、例えば、フェノール性ヒドロキシ基、カルボキシ基等が挙げられる。
酸不安定保護基によって保護されているアルカリ可溶基を側鎖に有する構造単位を含むポリビニルフェノール樹脂又はアクリル樹脂は、例えば、ポリビニルフェノール樹脂又はアクリル樹脂のアルカリ可溶基に、酸不安定保護基を化学反応させて導入することによって製造し得る。また、ポリビニルフェノール樹脂又はアクリル樹脂の原料モノマーに、酸不安定保護基によって保護されているアルカリ可溶基を側鎖に有する構造単位に対応する単量体を混合し、得られたモノマー混合物を共重合することによっても製造し得る。
成分Aは、ヒドロキシ基、ヒドロキシメチル基及び炭素原子数1~5のアルコキシメチル基から選ばれる少なくとも1種の有機基を側鎖に有する構造単位を含み、光酸発生剤により発生した酸(H+)を触媒として、ヒドロキシ基、ヒドロキシメチル基及び炭素原子数1~5のアルコキシメチル基から選ばれる少なくとも1種の有機基が反応することにより、ポリマー鎖間が結合して架橋構造が形成される。
これらの有機基の中でも、反応性の観点からヒドロキシ基が特に好ましい。
R1は、水素原子又はメチル基を示し、
Q1は、エステル結合又はアミド結合を示し、
R2は、少なくとも1個の水素原子がヒドロキシ基、ヒドロキシメチル基又は炭素原子数1~5のアルコキシメチル基で置換されている炭素原子数1~10のアルキル基又は炭素原子数6~10の芳香族炭化水素基を示す。〕
で表される構造単位を含む高分子化合物(以下、単に「成分A1」とも称する)及び/又は(A2)天然高分子(以下、単に「成分A2」とも称する)を含む。より好ましくは、成分Aは、成分A1及び/又は成分A2である。
「炭素原子数1~5のアルコキシメチル基」は、直鎖状又は分岐鎖状のいずれでもよく、その具体例としては、上記と同様のものが挙げられ、好適な炭素原子数も上記と同様である。
「炭素原子数1~10のアルキル基」は、直鎖状又は分岐鎖状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-エチルプロピル基、n-ヘキシル基、イソヘキシル基、1,1-ジメチルブチル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、2-エチルブチル基、ヘキシル基、ペンチル基、オクチル基、ノニル基、デシル基等が挙げられる。該アルキル基の炭素原子数は、好ましくは1~6であり、より好ましくは1~4である。
また、R2における炭素原子数6~10の芳香族炭化水素基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。
R2は、ネガ型感光性材料を用いて形成された繊維を露光したときに、成分Bを触媒として反応性を有する架橋反応部位として作用させる観点から、好ましくは、少なくとも1個の水素原子がヒドロキシ基、ヒドロキシメチル基又は炭素原子数1~5のアルコキシメチル基(より好ましくはヒドロキシ基)で置換されている炭素原子数1~10(より好ましくは1~6、特に好ましくは1~4)のアルキル基、又は少なくとも1個の水素原子がヒドロキシ基、ヒドロキシメチル基又は炭素原子数1~5のアルコキシメチル基(より好ましくはヒドロキシ基)で置換されているフェニル基である。
R3は、水素原子又はメチル基を示し、
R4およびR5は、同一または異なっていてもよく、水素原子又はヒドロキシ基若しくはカルボキシ基で置換されていてもよい炭素原子数1~4のアルキル基を示す。〕
で表される構造単位を含むことが望ましい。
本発明において「ヒドロキシ基若しくはカルボキシ基で置換されていてもよい」とは上記「炭素原子数1~4のアルキル基」に含まれる水素原子の一部又は全部がヒドロキシ基若しくはカルボキシ基で置換されていてもよいことを示す。
なお、本発明において(メタ)アクリレート化合物とは、アクリレート化合物とメタクリレート化合物の両方をいう。
成分A1が、一般式(2)で表される構造単位を有する場合、後述の実施例に示すように、本発明の繊維は温度応答性を有する。この場合、成分A1の全構造単位に対する、一般式(2)で表される構造単位の含有割合は、60~95モル%が好ましい。なお、本発明の繊維は、温度応答性を有することで、例えば、温度に応じて大きさが変化する繊維パターンを形成することができ、当該繊維及び繊維パターンは、例えば(i)水や薬剤等を繊維内に留まらせたり、放出したりできるドラッグデリバリーシステム(DDS)や薬剤シートへの応用、(ii)繊維径が太くなったり細くなったりすることで、通過する物質を制御できるフィルター等への応用、(iii)表面の疎水/親水を制御することで、物質の付着性を制御できるデバイス等への応用等が期待される点で有利である。
例えば疎水性の側鎖を有する、アルキル基の炭素原子数が1~10の(メタ)アクリル酸エステル類やベンジル(メタ)アクリレート等を使用した場合、成分A1の親疎水バランスを調整することができる。
成分Bは、光の作用により直接若しくは間接的に酸を発生する化合物であれば特に制限はなく、例えば、ジアゾメタン化合物、オニウム塩化合物、スルホンイミド化合物、ニトロベンジル化合物、鉄アレーン錯体、ベンゾイントシラート化合物、ハロゲン含有トリアジン化合物、シアノ基含有オキシムスルホナート化合物及びナフタルイミド系化合物等が挙げられる。
成分A及び成分Bを含むネガ型感光性材料は、さらに(C)架橋剤(以下、単に「成分C」とも称する)を含有してよい。
具体的には、例えば、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル等のアミノプラスト架橋剤;2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン等のフェノプラスト架橋剤;ヘキサメチレンジイソシアネート等のイソシアネート架橋剤;1,4-ビス(ビニルオキシ)ブタン等のビニルエーテル架橋剤;等が挙げられる。
当該極性溶剤としては、例えば、水、メタノール、エタノール、2-プロパノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、アセトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられ、感光性繊維製造用組成物の紡糸し易さの観点から、好ましくはプロピレングリコールモノメチルエーテル又はプロピレングリコールモノメチルエーテルアセテートである。
また電界紡糸法は、ドラムコレクター等を用いて行ってもよい。ドラムコレクター等を用いることにより、繊維の配向性を制御することができる。例えば、ドラムを低速回転した場合は不織布等を得ることができ、高速回転した場合は配向性繊維シート等を得ることができる。これは半導体材料(例、基板等)を加工する時のエッチングマスク材料等を作製するときに有効である。
本発明の繊維は、感光性を有することから、繊維を集合させた繊維層を形成して、該繊維層に直接リソグラフィー処理を施すことで、本発明の繊維がポジ型感光性繊維である場合は、露光部の繊維が可溶化して除去され、未露光部が残存する繊維パターンが形成され、一方、本発明の繊維がネガ型感光性繊維である場合は、未露光部が除去され、露光部の繊維が架橋により不溶化して残存する繊維パターンが形成される。ナノ繊維及び/又はマイクロ繊維の繊維層にリソグラフィー処理を施すことで、複雑で微細な繊維パターンの形成が可能である。
第1工程は、基材上に感光性繊維(好ましくは、本発明の繊維)による繊維層を形成する工程である。
感光性繊維(好ましくは、本発明の繊維)による繊維層を基材上に形成する方法は特に制限されず、例えば、本発明の組成物を基材上に直接紡糸して繊維層を形成してもよい。
第2工程は、上記第1工程において基材上に形成した繊維を、マスクを介して露光する工程である。当該露光は、例えば、g線(波長436nm)、h線(波長405nm)、i線(波長365nm)、水銀ランプ、各種レーザー(例、KrFエキシマレーザー(波長248nm)、ArFエキシマレーザー(波長193nm)、F2エキシマレーザー(波長157nm)等のエキシマレーザー等)、LED等により行うことができる。
第3工程は、上記第2工程において露光し、必要に応じて加熱した繊維を、現像液により現像する工程である。当該現像液には、感光性組成物のパターン形成のために通常使用される現像液を適宜用いることができるが、例えば本発明の繊維が成分A~Cを含むネガ型感光性材料を含有する場合、本発明の繊維に含まれる成分Bや、未架橋の成分C等を溶解できる現像液が好ましい。上記第3工程において使用される現像液は、より好ましくは水又は有機溶媒を含む。
水は、水単独でもよいし、各種アルカリ性水溶液(例、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類;エチルアミン、N-プロピルアミン等の第一アミン類;ジエチルアミン、ジ-N-ブチルアミン等の第二アミン類;トリエチルアミン、メチルジエチルアミン等の第三アミン類;ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、コリン等の第4級アンモニウム塩;ピロール、ピペリジン等の環状アミン類;等のアルカリ類の水溶液)でもよい。
有機溶媒としては、例えば、アルコール類(例、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘプタノール、2-ヘプタノール、tert-アミルアルコール、ネオペンチルアルコール、2-メチル-1-プロパノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-1-ブタノール、3-メチル-3-ペンタノール、シクロペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2,3-ジメチル-2-ブタノール、3,3-ジメチル-1-ブタノール、3,3-ジメチル-2-ブタノール、2-ジエチル-1-ブタノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、3-メチル-3-ペンタノール、4-メチル-1-ペンタノール、4-メチル-2-ペンタノール、4-メチル-3-ペンタノール、1-ブトキシ-2-プロパノール及びシクロヘキサノール等)及び通常のレジスト組成物等に使用される溶媒(例、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトシキ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル等)等が挙げられる。
第3工程において使用される現像液は、水、乳酸エチル又はテトラメチルアンモニウムヒドロキシドの水溶液が好ましく、水又は乳酸エチルが特に好ましい。現像液のpHは中性付近(例えば、6~8)又は塩基性(例えば、9~14)が好ましく、また、現像液は、界面活性剤等の添加剤を含んでもよい。
本実施例において、重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定した。測定に用いた装置、測定条件は次の通りである。
装置:TOSOH HLC-8320GPC system
カラム:Shodex(登録商標)KF-803L、KF-802及びKF-801
カラム温度:40℃
溶離液:DMF
流量:0.6ml/分
検出器:RI
標準試料:ポリスチレン
本実施例において、電界紡糸法による繊維の製造は、エスプレイヤーES-2000(株式会社フューエンス製)を用いて実施した。繊維製造用組成物は、1mlのロック式ガラス注射筒(アズワン株式会社製)に注入し、針長13mmのロック式金属製ニードル24G(武蔵エンジニアリング株式会社製)を取り付けた。ニードル先端から繊維を受け取る基板までの距離(吐出距離)は20cmとした。印加電圧は25kVとし、吐出速度は10μl/minとした。
N-イソプロピルアクリルアミド20.0g(0.177mol)、2-ヒドロキシエチルアクリレート5.13g(0.044mol)及び2,2’-アゾビスイソブチロニトリル(和光純薬工業株式会社製)0.25gをプロピレングリコールモノメチルエーテル25.1gに溶解させ、窒素雰囲気下80℃で24時間反応させ、重合体1を含む溶液を得た。仕込み通りに反応が進行しているとすると、重合体1の全構造単位に対する、N-イソプロピルアクリルアミドに由来する構造単位の含有割合は80モル%であり、2-ヒドロキシエチルアクリレートに由来する構造単位の含有割合は20モル%である。重合体1の重量平均分子量は、ポリスチレン換算で19,000であった。
重合体2として、東京応化工業株式会社製の厚膜ポジ型レジスト(製品名:PMER(固形分濃度40%))に含まれるノボラック樹脂をそのまま用いた。
重合体2の重量平均分子量は、ポリスチレン換算で15,000であった。
(実施例1)
重合体1を含む溶液2gにα-(メチルスルホニルオキシイミノ)-4-メトキシベンジルシアニド(商品名:PAI-1001、みどり化学(株)製)0.05g、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル0.015g及びプロピレングリコールモノメチルエーテル0.597gを加え、実施例1のネガ型感光性繊維製造用組成物を調製した。当該ネガ型感光性繊維製造用組成物における重合体1の含有割合は、約40重量%である。
α-(メチルスルホニルオキシイミノ)-4-メトキシベンジルシアニドを加えなかったこと以外は、実施例1と同様にして比較例1のネガ型感光性繊維製造用組成物を調製した。
重合体2(8g)及び1,2-ナフトキノンジアジド-5-スルホン酸エステル(2g)を、プロピレングリコールモノメチルエーテルアセテート(15g)に溶解し、実施例2のポジ型感光性繊維製造用組成物を調製した。実施例2のポジ型感光性繊維製造用組成物における固形分(溶剤以外の成分)の濃度は、40重量%である。
実施例1のネガ型感光性繊維製造用組成物を電界紡糸法にて、シリコンウエハ上に紡糸し、繊維層を形成した(繊維の直径:約1~5μm)。当該繊維層を、走査型電子顕微鏡(SEM)(S-4800、株式会社日立ハイテクノロジーズ製)を使用して撮影した写真を、図1に示す。次いで該繊維層を、i線アライナーPLA-501((株)キヤノン製、露光量:1000mJ/cm2)を使用し、マスクを介して露光した。露光後、ホットプレート上で、140℃で5分間加熱(PEB)し、水に10分間暴露した。その後、100℃で1分間加熱して乾燥させ、横200μm×縦200μmの繊維パターンを得た。当該繊維パターンのSEM写真を図2に示す。また当該繊維パターンの一部断面の拡大図のSEM写真を図3に、当該繊維パターンの繊維部のSEM写真(図3の繊維部の一部の拡大図)を図4に示す。
実施例2のポジ型感光性繊維製造用組成物を電界紡糸法にて、アルミニウムフィルム(厚み25μm)上に紡糸し、繊維層を形成した(繊維の直径:約1~5μm)。次いで、該繊維層を140℃のオーブンで2分間加熱し、該繊維層中の残留溶媒を除去するとともに、繊維を熱融解させ、繊維層とアルミニウムフィルムとの密着性を向上させた。オーブン加熱前及び加熱後の繊維層の光学顕微鏡写真を、それぞれ図5及び図6に示す。加熱後の繊維層を、超高圧水銀ランプを光源に用いて、フォトマスクを介してコンタクト露光した。露光波長は、350nm~450nmまでのブロードバンド露光とした。また露光量は、i線波長にて測定し、1000mJ/cm2とした。露光した繊維層を、2.38%水酸化テトラメチルアンモニウム水溶液に2分間暴露し、次いで、純水で5分間リンスした。その後、140℃のオーブンで5分間加熱して乾燥させ、横400μm×縦2000μmの繊維パターンを得た。露光前の繊維層のSEM写真を図7に、繊維パターンのSEM写真を図8に示す。
実施例1のネガ型感光性繊維製造用組成物を電界紡糸法にて、シリコンウエハ上に紡糸し、繊維層を形成した(繊維の直径:約1~5μm)。次いで該繊維層を20℃及び40℃の水に10分間浸漬させた後、光学顕微鏡にて繊維の状態を観察した(図9及び10)。観察の結果、20℃では繊維が膨潤し、40℃では繊維が収縮していたことから、当該繊維は温度応答性を有することが示された。
また本発明によれば、表面に複雑で微細な繊維パターンを有する基材を提供できる。
Claims (19)
- ポジ型又はネガ型感光性材料を含む繊維。
- ポジ型感光性材料が、(i)ノボラック樹脂及び溶解抑制剤を含むか、(ii)ポリビニルフェノール樹脂又はアクリル樹脂、及び光酸発生剤を含むか、あるいは(iii)光酸発生基を側鎖に有する構造単位を含むポリビニルフェノール樹脂又はアクリル樹脂を含む、請求項1記載の繊維。
- ネガ型感光性材料が、(A)ヒドロキシ基、ヒドロキシメチル基及び炭素原子数1~5のアルコキシメチル基から選ばれる少なくとも1種の有機基を側鎖に有する構造単位を含む高分子化合物、及び(B)光酸発生剤を含む、請求項1又は2記載の繊維。
- 感光性繊維である、請求項1~3のいずれか1項に記載の繊維。
- ナノ繊維及び/又はマイクロ繊維である、請求項1~4のいずれか1項に記載の繊維。
- ポジ型又はネガ型感光性材料、並びに、溶剤を含有する、感光性繊維製造用組成物。
- ポジ型感光性材料が、(i)ノボラック樹脂及び溶解抑制剤を含むか、(ii)ポリビニルフェノール樹脂又はアクリル樹脂、及び光酸発生剤を含むか、あるいは(iii)光酸発生基を側鎖に有する構造単位を含むポリビニルフェノール樹脂又はアクリル樹脂を含む、請求項6記載の組成物。
- ネガ型感光性材料が、(A)ヒドロキシ基、ヒドロキシメチル基及び炭素原子数1~5のアルコキシメチル基から選ばれる少なくとも1種の有機基を側鎖に有する構造単位を含む高分子化合物、及び(B)光酸発生剤を含む、請求項6又は7記載の組成物。
- 請求項6~8のいずれか1項に記載の組成物を紡糸する工程を含む、感光性繊維の製造方法。
- 上記紡糸が、電界紡糸である、請求項9記載の方法。
- 紡糸した繊維を、70~300℃の範囲で加熱する工程を含む、請求項9又は10記載の方法。
- 基材上に、感光性繊維による繊維層を形成する第1工程、
該繊維層を、マスクを介して露光する第2工程、及び
該繊維層を、現像液により現像する第3工程
を含む、繊維パターンの形成方法。 - 上記感光性繊維が、請求項1~5のいずれか1項に記載の繊維である、請求項12に記載の方法。
- 第2工程において、露光した後に繊維を加熱する、請求項12又は13記載の方法。
- 上記現像液が、水又は有機溶媒を含む、請求項12~14のいずれか1項に記載の方法。
- 請求項1~5のいずれか1項に記載の繊維を用いて形成された繊維パターン。
- 表面に請求項16記載の繊維パターンを有する基材。
- 基材上に、感光性繊維による繊維層を形成する第1工程、
該繊維層を、マスクを介して露光する第2工程、及び
該繊維層を、現像液により現像する第3工程
を含む、繊維パターンの製造方法。 - 基材上に、感光性繊維による繊維層を形成する第1工程、
該繊維層を、マスクを介して露光する第2工程、及び
該繊維層を、現像液により現像する第3工程
を含む、繊維パターン付き基材の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/568,482 US20180148859A1 (en) | 2015-04-22 | 2016-04-22 | Photosensitive fibers and method for forming fiber pattern |
CN201680023231.1A CN107532337A (zh) | 2015-04-22 | 2016-04-22 | 感光性纤维及纤维图案的形成方法 |
KR1020177032820A KR101994024B1 (ko) | 2015-04-22 | 2016-04-22 | 감광성 섬유 및 섬유 패턴의 형성 방법 |
EP16783254.2A EP3287551A4 (en) | 2015-04-22 | 2016-04-22 | Photosensitive fibers and method for forming fiber pattern |
JP2017514193A JP6786071B2 (ja) | 2015-04-22 | 2016-04-22 | 感光性繊維及び繊維パターンの形成方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-087963 | 2015-04-22 | ||
JP2015087963 | 2015-04-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016171233A1 true WO2016171233A1 (ja) | 2016-10-27 |
Family
ID=57143162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/062704 WO2016171233A1 (ja) | 2015-04-22 | 2016-04-22 | 感光性繊維及び繊維パターンの形成方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180148859A1 (ja) |
EP (1) | EP3287551A4 (ja) |
JP (1) | JP6786071B2 (ja) |
KR (1) | KR101994024B1 (ja) |
CN (1) | CN107532337A (ja) |
TW (2) | TWI752906B (ja) |
WO (1) | WO2016171233A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020162131A1 (ja) * | 2019-02-08 | 2020-08-13 | 富山県 | 感光性繊維形成組成物及び繊維パターンの形成方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03144650A (ja) * | 1989-10-17 | 1991-06-20 | Shipley Co Inc | 近紫外線フォトレジスト |
JPH07509500A (ja) * | 1991-10-30 | 1995-10-19 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | ポリアミド材料 |
JP2006249622A (ja) * | 2005-03-14 | 2006-09-21 | Shinshu Tlo:Kk | 光応答伸縮性繊維 |
JP2007291335A (ja) * | 2006-03-30 | 2007-11-08 | Tokyo Ohka Kogyo Co Ltd | 半導体リソグラフィー用樹脂の製造方法 |
JP2013058184A (ja) * | 2011-09-06 | 2013-03-28 | Samsung Electro-Mechanics Co Ltd | タッチパネルの製造方法 |
WO2015056789A1 (ja) * | 2013-10-17 | 2015-04-23 | 日産化学工業株式会社 | 感光性繊維およびその製造方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3814961B2 (ja) * | 1996-08-06 | 2006-08-30 | 三菱化学株式会社 | ポジ型感光性印刷版 |
US6660445B2 (en) * | 2000-10-13 | 2003-12-09 | Fuji Photo Film Co., Ltd. | Photosensitive composition comprising a vinyl copolymer and an o-naphthoquinone diazide compound |
KR101073417B1 (ko) * | 2003-10-14 | 2011-10-17 | 가부시키가이샤 아데카 | 포토 레지스트 조성물 |
US20090082535A1 (en) * | 2005-03-31 | 2009-03-26 | Nippon Shokubai Co., Ltd. | (meth)acrylic acid copolymer, method for procucing the same, and application thereof |
JP4883498B2 (ja) | 2005-05-24 | 2012-02-22 | 独立行政法人物質・材料研究機構 | マイクロパターン構造を持つナノ・マイクロファイバー不織布とその製造方法 |
JP2007044149A (ja) | 2005-08-08 | 2007-02-22 | Toray Ind Inc | ナノファイバーパターン基材及び該基材を用いた成型体 |
JP2009057522A (ja) | 2007-09-03 | 2009-03-19 | Univ Of Yamanashi | 温度応答性高分子、およびこれを用いた温度応答性ファイバーおよび不織布、並びにその製造方法 |
JP5007827B2 (ja) * | 2008-04-04 | 2012-08-22 | 信越化学工業株式会社 | ダブルパターン形成方法 |
US9005871B2 (en) * | 2008-10-20 | 2015-04-14 | Basf Se | Sulfonium derivatives and the use therof as latent acids |
JP5393128B2 (ja) * | 2008-12-16 | 2014-01-22 | 東京応化工業株式会社 | ポジ型レジスト組成物及びレジストパターン形成方法 |
KR101732178B1 (ko) * | 2010-01-15 | 2017-05-04 | 삼성전자주식회사 | 나노 섬유-나노 와이어 복합체 및 그 제조방법 |
CN102193316B (zh) * | 2010-03-15 | 2015-11-18 | 富士胶片株式会社 | 正型感光性树脂组合物、固化膜的形成方法、固化膜、有机el显示装置以及液晶显示装置 |
US20110300347A1 (en) * | 2010-06-06 | 2011-12-08 | University Of Florida Research Foundation, Inc. | Fabrication of Patterned Nanofibers |
CN102540730B (zh) * | 2010-12-30 | 2013-12-11 | 乐凯华光印刷科技有限公司 | 一种阳图uv-ctp平版印刷版版材 |
EP2698669A4 (en) * | 2011-04-12 | 2014-11-26 | Nissan Chemical Ind Ltd | PHOTOSENSITIVE ORGANIC PARTICLE |
JP6174420B2 (ja) * | 2013-08-23 | 2017-08-02 | 東京応化工業株式会社 | 化学増幅型ポジ型感光性樹脂組成物及びそれを用いたレジストパターンの製造方法 |
-
2016
- 2016-04-22 CN CN201680023231.1A patent/CN107532337A/zh active Pending
- 2016-04-22 EP EP16783254.2A patent/EP3287551A4/en not_active Withdrawn
- 2016-04-22 TW TW105112713A patent/TWI752906B/zh active
- 2016-04-22 KR KR1020177032820A patent/KR101994024B1/ko active IP Right Grant
- 2016-04-22 JP JP2017514193A patent/JP6786071B2/ja active Active
- 2016-04-22 US US15/568,482 patent/US20180148859A1/en active Pending
- 2016-04-22 WO PCT/JP2016/062704 patent/WO2016171233A1/ja active Application Filing
- 2016-04-22 TW TW110132800A patent/TW202146720A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03144650A (ja) * | 1989-10-17 | 1991-06-20 | Shipley Co Inc | 近紫外線フォトレジスト |
JPH07509500A (ja) * | 1991-10-30 | 1995-10-19 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | ポリアミド材料 |
JP2006249622A (ja) * | 2005-03-14 | 2006-09-21 | Shinshu Tlo:Kk | 光応答伸縮性繊維 |
JP2007291335A (ja) * | 2006-03-30 | 2007-11-08 | Tokyo Ohka Kogyo Co Ltd | 半導体リソグラフィー用樹脂の製造方法 |
JP2013058184A (ja) * | 2011-09-06 | 2013-03-28 | Samsung Electro-Mechanics Co Ltd | タッチパネルの製造方法 |
WO2015056789A1 (ja) * | 2013-10-17 | 2015-04-23 | 日産化学工業株式会社 | 感光性繊維およびその製造方法 |
Non-Patent Citations (4)
Title |
---|
BJORN CARLBERG ET AL.: "Direct Photolithographic Patterning of Electrospun Films for Defined Nanofibrillar Microarchitectures", LANGMUIR, vol. 26, no. 4, 21 January 2010 (2010-01-21), pages 2235 - 2239, XP055324475 * |
JEREMY K. STEACH ET AL.: "Optimization of Electrospinning an SU -8 Negative Photoresist to Create Patterned Carbon Nanofibers and Nanobeads", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 118, 20 May 2010 (2010-05-20), pages 405 - 412, XP007913865, DOI: doi:10.1002/app.31597 * |
See also references of EP3287551A4 * |
YOSHIYUKI YOKOYAMA ET AL.: "Ondo Otosei Gel Nanofiber no Hikari Patterning Gijutsu no Kaihatsu", THE 94TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2014) KOEN YOKOSHU III, 12 March 2014 (2014-03-12), pages 656, XP009506986 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020162131A1 (ja) * | 2019-02-08 | 2020-08-13 | 富山県 | 感光性繊維形成組成物及び繊維パターンの形成方法 |
JP7564521B2 (ja) | 2019-02-08 | 2024-10-09 | 富山県 | 感光性繊維形成組成物及び繊維パターンの形成方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101994024B1 (ko) | 2019-06-27 |
KR20170135969A (ko) | 2017-12-08 |
US20180148859A1 (en) | 2018-05-31 |
TW201641754A (zh) | 2016-12-01 |
EP3287551A4 (en) | 2018-10-03 |
CN107532337A (zh) | 2018-01-02 |
JP6786071B2 (ja) | 2020-11-18 |
JPWO2016171233A1 (ja) | 2018-02-22 |
TW202146720A (zh) | 2021-12-16 |
TWI752906B (zh) | 2022-01-21 |
EP3287551A1 (en) | 2018-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102358725B1 (ko) | 후막용 화학 증폭형 포지티브형 감광성 수지 조성물 | |
TWI374342B (en) | Water soluble resin composition and method for pattern formation using the same | |
JP3665166B2 (ja) | 化学増幅型レジスト組成物及びそれに用いる酸発生剤 | |
JP2001281886A (ja) | レジストパターン縮小化材料及びそれを使用する微細レジストパターンの形成方法 | |
JP2016206673A (ja) | 送液性が改善されたフォトリソグラフィー用薬液及びこれを含むレジスト組成物{chemical for photolithography with improved liquid transfer property and resist composition comprising the same} | |
JP6596628B2 (ja) | 感光性繊維およびその製造方法 | |
WO2020162131A1 (ja) | 感光性繊維形成組成物及び繊維パターンの形成方法 | |
JP4481789B2 (ja) | エポキシ硬化剤 | |
EP4066059B1 (en) | Chemically amplified photoresist | |
JP4998278B2 (ja) | ポジ型感放射線性樹脂組成物 | |
JP6786071B2 (ja) | 感光性繊維及び繊維パターンの形成方法 | |
JP4717612B2 (ja) | スプレー塗布用ホトレジスト組成物および積層体 | |
TW202405563A (zh) | 附圖案膜之基板之製造方法 | |
JP2023073785A (ja) | 積層体、及び積層体の製造方法 | |
JP4300843B2 (ja) | レジスト用樹脂の製造方法 | |
WO2008044326A1 (fr) | composition de photorésine positive et négative du type à amplification chimique pour gravure à sec à basse température, et procédé pour la formation d'un motif en photorésine l'utilisant | |
JP4615115B2 (ja) | 化学増幅型フォトレジスト組成物および前記組成物を用いたフォトレジストレリーフ画像の形成方法 | |
JP2002296787A (ja) | 化学増幅型レジストパターンの形成方法 | |
JP2002040659A (ja) | ネガ型感光性樹脂組成物 | |
JP2001242624A (ja) | 感光性樹脂組成物 | |
JP2005157400A (ja) | 化学増幅型レジスト組成物及びそれに用いる酸発生剤 | |
JPH09292704A (ja) | パターン形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16783254 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017514193 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15568482 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177032820 Country of ref document: KR Kind code of ref document: A |